

Precalculus
$5 e$

PRECALCULUS

Robert Blitzer
Miami Dade College

PEARSON

Editorial Director: Christine Hoag
Acquisitions Editor: Katie O'Connor
Senior Sponsoring Editor: Dawn Murrin
Assistant Editor: Joseph Colella
Senior Managing Editor: Karen Wernholm
Senior Production Project Manager: Kathleen A. Manley
Digital Assets Manager: Marianne Groth
Media Producer: Shana Siegmund
Software Development: Kristina Evans, MathXL; and
Mary Durnwald, TestGen
Marketing Manager: Peggy Sue Lucas
Marketing Assistant: Justine Goulart
Senior Author Support/Technology Specialist: Joe Vetere

Rights and Permissions Advisor: Cheryl Besenjak Image Manager: Rachel Youdelman
Procurement Manager: Evelyn Beaton
Procurement Specialist: Debbie Rossi
Senior Media Buyer: Ginny Michaud
Associate Director of Design: Andrea Nix
Art Direction and Cover Design: Beth Paquin
Text Design: Lisa Kuhn, Curio Press, and Ellen Pettengell
Design
Production Coordination: Rebecca Dunn/cMPreparé
Composition: cMPreparé
Illustrations: Scientific Illustrators/Laserwords

For permission to use copyrighted material, grateful acknowledgment is made to the copyright holders on page C 1 , which is hereby made part of this copyright page.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Pearson Education was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Blitzer, Robert.
Precalculus / Robert Blitzer Miami Dade College. -Fifth edition.
pages cm
Includes index.
ISBN 978-0-321-83734-9

1. Algebra-Textbooks. I. Title.

QA154.3.B586 2014
512-dc23

$$
2012042264
$$

Copyright © 2014, 2010, 2007 Pearson Education, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. For information on obtaining permission for use of material in this work, please submit a written request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

123456789 10-DOW-16 15141312

DEDICATION

For Jerid (1985-2012)

And for those who have loved their pets and have been loved by them

CONTENTS

Preface viii
Acknowledgments xii
Dynamic Resources xiii
To the Student xv
About the Author xvi
Applications Index xvii
P Prerequisites: Fundamental Concepts of Algebra 1
P. 1 Algebraic Expressions, Mathematical Models, and Real Numbers 2
P. 2 Exponents and Scientific Notation 20
P. 3 Radicals and Rational Exponents 32
P. 4 Polynomials 48
P. 5 Factoring Polynomials 58
Mid-Chapter Check Point 70
P. 6 Rational Expressions 71
P. 7 Equations 86
P. 8 Modeling with Equations 106
P. 9 Linear Inequalities and Absolute Value Inequalities 120
Summary, Review, and Test 134
Review Exercises 135
Chapter P Test 138
1 Functions and Graphs 141
1.1 Graphs and Graphing Utilities 142
1.2 Basics of Functions and Their Graphs 154
1.3 More on Functions and Their Graphs 173
1.4 Linear Functions and Slope 188
1.5 More on Slope 203
Mid-Chapter Check Point 214
1.6 Transformations of Functions 215
1.7 Combinations of Functions; Composite Functions 231
1.8 Inverse Functions 245
1.9 Distance and Midpoint Formulas; Circles 257
1.10 Modeling with Functions 266
Summary, Review, and Test 281
Review Exercises 284
Chapter 1 Test 289

Exponential and

 Logarithmic Functions 4133.1 Exponential Functions 414
3.2 Logarithmic Functions 427
3.3 Properties of Logarithms 441

Mid-Chapter Check Point 451
3.4 Exponential and Logarithmic Equations 451
3.5 Exponential Growth and Decay; Modeling Data 466

Summary, Review, and Test 482
Review Exercises 484
Chapter 3 Test 488
Cumulative Review Exercises (Chapters P-3) 489

4
 Trigonometric Functions 491

4.1 Angles and Radian Measure 492
4.2 Trigonometric Functions: The Unit Circle 508
4.3 Right Triangle Trigonometry 523
4.4 Trigonometric Functions of Any Angle 537

Mid-Chapter Check Point 549
4.5 Graphs of Sine and Cosine Functions 551
4.6 Graphs of Other Trigonometric Functions 572
4.7 Inverse Trigonometric Functions 585
4.8 Applications of Trigonometric Functions 601

Summary, Review, and Test 612
Review Exercises 615
Chapter 4 Test 618
Cumulative Review Exercises (Chapters P-4) 619
6.6 Vectors 739
6.7 The Dot Product 754

Summary, Review, and Test 764
Review Exercises 766
Chapter 6 Test 769
Cumulative Review Exercises (Chapters P-6) 769
5 Analytic

Trigonometry 621
5.1 Verifying Trigonometric Identities 622
5.2 Sum and Difference Formulas 633
5.3 Double-Angle, Power-Reducing, and Half-Angle Formulas 644

Mid-Chapter Check Point 655
5.4 Product-to-Sum and Sum-to-Product Formulas 656
5.5 Trigonometric Equations 664

Summary, Review, and Test 677
Review Exercises 678
Chapter 5 Test 680
Cumulative Review Exercises (Chapters P-5) 680Additional Topics in Trigonometry 681
6.1 The Law of Sines 682
6.2 The Law of Cosines 694
6.3 Polar Coordinates 702
6.4 Graphs of Polar Equations 714

Mid-Chapter Check Point 725
6.5 Complex Numbers in Polar Form; DeMoivre's Theorem 726

7 Systems of Equations and Inequalities 771
7.1 Systems of Linear Equations in Two Variables 772
7.2 Systems of Linear Equations in Three Variables 792
7.3 Partial Fractions 800
7.4 Systems of Nonlinear Equations in Two Variables 811

Mid-Chapter Check Point 821
7.5 Systems of Inequalities 822
7.6 Linear Programming 835

Summary, Review, and Test 843
Review Exercises 844
Chapter 7 Test 846
Cumulative Review Exercises (Chapters P-7) 847
8
Matrices and Determinants 849
8.1 Matrix Solutions to Linear Systems 850
8.2 Inconsistent and Dependent Systems and Their Applications 862
8.3 Matrix Operations and Their Applications 872

Mid-Chapter Check Point 887
8.4 Multiplicative Inverses of Matrices and Matrix Equations 888
8.5 Determinants and Cramer's Rule 902
Summary, Review, and Test 914
Review Exercises 915
Chapter 8 Test 918
Cumulative Review Exercises (Chapters P-8) 918

9
 Conic Sections and Analytic Geometry 919

9.1 The Ellipse 920
9.2 The Hyperbola 933
9.3 The Parabola 948

Mid-Chapter Check Point 960
9.4 Rotation of Axes 962

9.5 Parametric Equations 974
9.6 Conic Sections in Polar Coordinates 984

Summary, Review, and Test 994
Review Exercises 996
Chapter 9 Test 998
Cumulative Review Exercises (Chapters P-9) 999

10
 Sequences, Induction, and Probability 1001

10.1 Sequences and Summation Notation 1002
10.2 Arithmetic Sequences 1013
10.3 Geometric Sequences and Series 1023

Mid-Chapter Check Point 1039
10.4 Mathematical Induction 1040
10.5 The Binomial Theorem 1048
10.6 Counting Principles, Permutations, and Combinations 1056
10.7 Probability 1067

Summary, Review, and Test 1082
Review Exercises 1084
Chapter 10 Test 1087
Cumulative Review Exercises (Chapters P-10) 1088

1- Introduction to Calculus 1091

11.1 Finding Limits Using Tables and Graphs 1092
11.2 Finding Limits Using Properties of Limits 1104
11.3 Limits and Continuity 1117

Mid-Chapter Check Point 1124
11.4 Introduction to Derivatives 1125

Summary, Review, and Test 1138
Review Exercises 1139
Chapter 11 Test 1140
Cumulative Review Exercises (Chapters P-11) 1141

Appendix A: Where Did That Come From? Selected Proofs 1143
Appendix B: The Transition from Precalculus to Calculus 1149
Answers to Selected Exercises AA1
Subject Index I1
Photo Credits C1

PREFACE

I've written Precalculus, Fifth Edition, to help diverse students, with different backgrounds and future goals, to succeed. The book has three fundamental goals:

1. To help students acquire a solid foundation in algebra and trigonometry, preparing them for other courses such as calculus, business calculus, and finite mathematics.
2. To show students how algebra and trigonometry can model and solve authentic real-world problems.
3. To enable students to develop problem-solving skills, while fostering critical thinking, within an interesting setting.
One major obstacle in the way of achieving these goals is the fact that very few students actually read their textbook. This has been a regular source of frustration for me and for my colleagues in the classroom. Anecdotal evidence gathered over years highlights two basic reasons that students do not take advantage of their textbook:

- "I'll never use this information."
- "I can't follow the explanations."

I've written every page of the Fifth Edition with the intent of eliminating these two objections. The ideas and tools I've used to do so are described for the student in "A Brief Guide to Getting the Most from This Book," which appears at the front of the book.

How Does Precalculus Differ from Algebra and Trigonometry?

Precalculus is not simply a condensed version of my Algebra and Trigonometry book. Precalculus students are different from algebra and trigonometry students, and this text reflects those differences. Here are a few examples:

- Algebra and Trigonometry devotes an entire chapter to linear equations, rational equations, quadratic equations, radical equations, linear inequalities, and developing models involving these equations and
inequalities. Precalculus reviews these topics in three sections of the prerequisites chapter (P.7: Equations; P.8:
Modeling with Equations;
P.9: Linear Inequalities and Absolute Value Inequalities). Functions, the core of any precalculus course, are then introduced in Chapter 1.
- Precalculus contains a section on constructing functions from verbal descriptions and formulas (1.10: Modeling
with Functions) that is not included in Algebra and Trigonometry. Modeling skills are applied to situations that students are likely to see in calculus when solving applied problems involving maximum or minimum values.
- Precalculus develops trigonometry from the perspective of the unit circle (4.2: Trigonometric Functions: The Unit Circle). In Algebra and Trigonometry, trigonometry is developed using right triangles.
- Precalculus contains a chapter

(Chapter 11: Introduction to Calculus) that takes the student into calculus with discussions of limits, continuity, and derivatives. This chapter is not included in Algebra and Trigonometry.
- Many of the liberal arts applications in Algebra and Trigonometry are replaced by more scientific or higher level applications in Precalculus. Some examples:
- Black Holes in Space (P.2: Exponents and Scientific Notation)
- Average Velocity (1.5: More on Slope)
- Newton's Law of Cooling (3.5: Exponential Growth and Decay; Modeling Data)
- Modeling Involving Mixtures and Uniform Motion (7.1: Systems of Linear Equations in Two Variables)

What's New in the Fifth Edition?

New Applications and Real-World Data. I'm on a constant search for data that can be used to illustrate unique mathematical applications. I researched hundreds of books, magazines, newspapers, almanacs, and online sites to prepare the Fifth Edition. Among the 108 worked-out examples and exercises based on new data sets, you'll find applications involving modeling bloodalcohol concentration (Section P.1), starting salaries for college graduates (Section P.8), the world's vanishing tiger population (Section 2.3), and the year humans become immortal (Section 3.1).
Concept and Vocabulary Checks. The Fifth Edition contains 679 new short-answer exercises, mainly fill-in-the-blank and true/false items, that assess students' understanding of the definitions and concepts presented in each section. The Concept and Vocabulary Checks appear as separate features preceding the Exercise Sets.

Great Question! This feature takes the content of each Study Tip in the Fourth Edition and presents it in the
context of a student question. Answers to questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions. 'Great Question!' should draw students' attention and curiosity more than the 'Study Tips.' As a secondary benefit, this new feature should help students not to feel anxious or threatened when asking questions in class.
New Chapter-Opening and Section-Opening Scenarios. Every chapter and every section open with a scenario based on an application, many of which are unique to the Fifth Edition. These scenarios are revisited in the course of the chapter or section in one of the book's new examples, exercises, or discussions. The often humorous tone of these openers is intended to help fearful and reluctant students overcome their negative perceptions about math.
New Blitzer Bonuses. The Fifth Edition contains a variety of new but optional enrichment essays. Examples include "Using Algebra to Measure Blood-Alcohol Concentration" (Section P.1), "Seven Ways to Spend \$1 Trillion" (Section P.2), "Addressing Stress Parabolically" (Section 2.2), "Five Things Scientists Learned from the Hubble Space Telescope" (Section 9.3), and "Ponzi Schemes and Geometric Sequences" (Section 10.3).

Sample Homework Assignments. Within each Exercise Set, I have chosen odd-numbered problems, primarily from the Practice Exercises, that can serve as sample homework assignments. These are indicated by a blue underline in the Annotated Instructor's Edition. Based on the goals and objectives of your course, you may wish to enrich each sample homework assignment with additional exercises from the other categories in the Exercise Set.
New Interactive Figures. These new figures bring mathematical concepts to life and are included in MyMathLab. Used as a lecture tool, the figures help engage students more fully and save the time spent drawing figures by hand. Questions pertaining to each figure are assignable in MyMathLab and reinforce active learning and critical thinking. Each figure has an accompanying Exploratory Exercise that encourages further study and can be used as a presentation tool or as an open-ended learning assignment.

What Content and Organizational Changes Have Been Made to the Fifth Edition?

- Section P. 1 (Algebraic Expressions, Mathematical Models, and Real Numbers) contains a new essay, now called a Blitzer Bonus, on using algebra to measure blood-alcohol concentration. This Blitzer Bonus should set the stage for the book's engaging collection of unique applications.
- Section P. 6 (Rational Expressions) presents a new example on excluding numbers from a rational expression with a trinomial denominator.

- Section 1.6 (Transformations of Functions) has a more thoroughly developed discussion of how stretching or shrinking changes a graph's shape.
- Section 1.7 (Combinations of Functions; Composite Functions) has a new example on finding the domain of a function with a square root in the denominator. There is also a new example that ties in with the section opener (number of births and deaths in the United States) and illustrates an application of the algebra of functions.
- Section 2.3 (Polynomial Functions and Their Graphs) contains a new example on graphing $f(x)=-2(x-1)^{2}(x+2)$, a polynomial function whose equation is given in factored form.
- Section 2.6 (Rational Functions and Their Graphs) has a variety of exercises where students must factor to find vertical asymptotes or holes.
- Section 2.7 (Polynomial and Rational Inequalities) contains a new example on solving a polynomial inequality with irrational boundary points that requires the use of the quadratic formula.
- Section 3.1 (Exponential Functions) presents an intriguing new Blitzer Bonus on the year humans become immortal. The section also contains a new table clarifying interest plans in which interest is paid more than once a year.
- Section 3.4 (Exponential and Logarithmic Equations) has a new discussion (within the context of the Great Question! feature) on whether a negative number can belong to the solution set of a logarithmic equation.
- Section 5.1 (Verifying Trigonometric Identities) has a new discussion (within the context of the Great Question! feature) on the difference between solving a conditional equation and verifying that an equation is an identity.
- Section 7.3 (Partial Fractions) uses the Great Question! feature to include a discussion on speeding up the process of finding partial fraction decompositions.

What Familiar Features Have Been Retained in the Fifth Edition?

- Detailed Worked-Out Examples. Each worked example is titled, making clear the purpose of the example. Examples are clearly written and provide students with detailed step-by-step solutions. No steps are omitted and key steps are thoroughly explained to the right of the mathematics.
- Explanatory Voice Balloons. Voice balloons are used in a variety of ways to demystify mathematics. They translate mathematical ideas into everyday English,

connect problem solving to concepts students have already learned.
- Check Point Examples. Each example is followed by a similar matched problem, called a Check Point, offering students the opportunity to test their understanding of the example by working a similar exercise. The answers to the Check Points are provided in the answer section.
- Extensive and Varied Exercise Sets. An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within eight category types: Practice Exercises, Practice Plus Exercises, Application Exercises, Writing in Mathematics, Technology Exercises, Critical Thinking Exercises, Group Exercises, and Preview Exercises. This format makes it easy to create well-rounded homework assignments. The order of the Practice Exercises is exactly the same as the order of the section's worked examples. This parallel order enables students to refer to the titled examples and their detailed explanations to achieve success working the Practice Exercises.
- Practice Plus Problems. This category of exercises contains more challenging practice problems that often require students to combine several skills or concepts. With an average of ten Practice Plus problems per Exercise Set, instructors are provided with the option of creating assignments that take Practice Exercises to a more challenging level.
- Mid-Chapter Check Points. At approximately the midway point in each chapter, an integrated set of Review Exercises allows students to review and assimilate the skills and concepts they learned separately over several sections.
- Graphing and Functions. Graphing and functions are introduced in Chapter 1, with an integrated graphing functional approach emphasized throughout the book. Graphs and functions that model data appear in nearly every section and Exercise Set. Examples and exercises use graphs of functions to explore relationships between data and to provide ways of visualizing a problem's solution. Because functions are the core of this course, students are repeatedly shown how functions relate to equations and graphs.
- Section Objectives. Learning objectives are clearly stated at the beginning of each section. These objectives help students recognize and focus on the section's most important ideas. The objectives are restated in the margin at their point of use.
- Integration of Technology Using Graphic and Numerical Approaches to Problems. Side-by-side features in the Technology boxes connect a problem's solution to graphic and numerical approaches to solving that problem. Although the use of graphing utilities is optional, students can use the explanatory voice balloons to understand different approaches to problems even if they are not using a graphing utility in the course.
- Chapter Summaries. Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
- End-of-Chapter Materials. A comprehensive collection of Review Exercises for each of the chapter's sections follows the Summary. This is followed by a Chapter Test that enables students to test their understanding of the material covered in
the chapter. Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed Cumulative Review Exercises.
- Discovery. Discovery boxes, found throughout the text, encourage students to further explore algebraic and trigonometric concepts. These explorations are optional and their omission does not interfere with the continuity of the topic at hand.

I hope that my passion for teaching, as well as my respect for the diversity of students I have taught and learned from over the years, is apparent throughout this new edition. By connecting algebra and trigonometry to the whole spectrum of learning, it is my intent to show students that their world is profoundly mathematical, and indeed, π is in the sky.

Acknowledgments

An enormous benefit of authoring a successful series is the broad-based feedback I receive from the students, dedicated users, and reviewers. Every change to this edition is the result of their thoughtful comments and suggestions. I would like to express my appreciation to all the reviewers, whose collective insights form the backbone of this revision. In particular, I would like to thank the following people for reviewing College Algebra, Algebra and Trigonometry, Precalculus, and Trigonometry.

Barnhill, Kayoko Yates, Clark College
Beaver, Timothy, Isothermal Community College
Becan, Jaromir, University of Texas-San Antonio
Benjelloun, Imad, Delaware Valley College
Best, Lloyd, Pacific Union College
Brown, Denise, Collin College, Spring Creek Campus
Burgin, Bill, Gaston College
Cabaniss, Jennifer, Central Texas College
Chang, Jimmy, St. Petersburg College
Colt, Diana, University of Minnesota-Duluth
Cornell, Shannon, Amarillo College
Davidson, Wendy, Georgia Perimeter College-Newton
Densmore, Donna, Bossier Parish Community College
Enegren, Disa, Rose State College
Erickson, Keith A., Georgia Gwinnett College
Fisher, Nancy, University of Alabama
Gerken, Donna, Miami Dade College
Glickman, Cynthia, Community College of Southern Nevada
Goel, Sudhir Kumar, Valdosta State University
Gordon, Donald, Manatee Community College
Gross, David L., University of Connecticut
Groves, Jason W., South Plains College
Haack, Joel K., University of Northern Iowa
Haefner, Jeremy, University of Colorado
Hague, Joyce, University of Wisconsin at River Falls
Hall, Mike, University of Mississippi
Hassani, Mahshid, Hillsborough Community College
Hayes, Tom, Montana State University
Hay-Jahans, Christopher N., University of South Dakota
Hernandez, Celeste, Richland College
Horney, Jo Beth, South Plains College
Howard, Heidi, Florida State College at Jacksonville, South Campus Ihlow, Winfield A., SUNY College at Oswego
Johnson, Nancy Raye, Manatee Community College
Larue, Dennine, Fairmont State University
Leesburg, Mary, Manatee Community College
Lehman, Christine Heinecke, Purdue University North Central
Levichev, Alexander, Boston University
Lin, Zongzhu, Kansas State University
Marlin, Benjamin, Northwestern Oklahoma State University
Massey, Marilyn, Collin County Community College
McCarthy-Germaine, Yvelyne, University of New Orleans
Mertens, Owen, Missouri State University-Springfield

Miller, James, West Virginia University
Nega, Martha, Georgia Perimeter College-Decatur
Peterman, Shahla, University of Missouri St. Louis
Pharo, Debra A., Northwestern Michigan College
Phoenix, Gloria, North Carolina Agricultural and Technical State University
Platt, David, Front Range Community College Pohjanpelto, Juha, Oregon State University Quinlan, Brooke, Hillsborough Community College
Rech, Janice, University of Nebraska at Omaha
Rody, Joseph W., Arizona State University
Rouhani, Behnaz, Georgia Perimeter College-Dunwoody
Salmon, Judith, Fitchburg State University
Schramm, Michael, Indian River State College
Schultz, Cynthia, Illinois Valley Community College
Shelton, Pat, North Carolina Agricultural and Technical State University
Spillman, Caroline, Georgia Perimeter College-Clarkston
Stadler, Jonathan, Capital University
Stallworth, Franotis R., Gwinnett Technical College
Stump, Chris, Bethel College
Sykes, Scott, University of West Georgia
Townsend, Richard, North Carolina Central University
Trim, Pamela, Southwest Tennessee Community College
Turner, Chris, Arkansas State University
Van Lommel, Richard E., California State University-Sacramento
Van Peursem, Dan, University of South Dakota
Van Veldhuizen, Philip, University of Nevada at Reno
Weaver, Jeffrey, Baton Rouge Community College
Wheeler, Amanda, Amarillo College
White, David, The Victoria College
Wienckowski, Tracy, University of Buffalo

Additional acknowledgments are extended to Dan Miller and Kelly Barber for preparing the solutions manuals; Brad Davis for preparing the answer section, serving as accuracy checker, and writing the new learning guide; cMPreparé formatting team for the book's brilliant paging; Brian Morris and Kevin Morris at Scientific Illustrators for superbly illustrating the book; Sheila Norman, photo researcher, for obtaining the book's new photographs; Rebecca Dunn, project manager, and Kathleen Manley, production editor, whose collective talents kept every aspect of this complex project moving through its many stages.

I would like to thank my editors at Pearson, Katie O'Connor and Dawn Murrin, who, with the assistance of Joseph Colella, guided and coordinated the book from manuscript through production. Thanks to Beth Paquin for the beautiful covers and interior design. Finally, thanks to Peggy Lucas for her innovative marketing efforts and to the entire Pearson sales force for their confidence and enthusiasm about the book.

DYNAMIC RESOURCES

MyMathLab ${ }^{\circledR}$ Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And it comes from a trusted partner with educational expertise and an eye on the future.

To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit www.mymathlab.com or contact your Pearson representative.
In Blitzer's MyMathLab® ${ }^{\circledR}$ course, you have access to the most cutting-edge, innovative study solutions proven to increase student success. Noteworthy features include the following:

Ready to Go Courses.

These new courses provide students with all the same great MyMathLab features that you're used to but make it easier for instructors to get started. Each course includes author-chosen, preassigned homework, integrated review questions, quizzes, and cumulative review exercises to make creating your course even simpler.

Interactive Figures.

These Mathematica-based figures make the figures from the text come alive. Used during a lecture, interactive figures engage students more fully and save time that would otherwise be spent drawing them by hand. Exercises pertaining to each interactive figure are assignable in MyMathLab to reinforce active learning, critical thinking, and conceptual reasoning.

Integrated Review.

Skill review quizzes are assignable throughout the course, testing students on prerequisite knowledge. From these quizzes, each student receives a personalized, just-in-time review assignment, allowing them to refresh forgotten concepts.

MathTalk Videos.

Engaging videos connect mathematics to real-life events and interesting applications. These fun, instructional videos show students that math is relevant to their daily lives and are assignable in MyMathLab.

Video Assessment.

Assignable MXL exercises are available for MathTalk videos to help students retain valuable information presented in the videos.

Section-Lecture Videos.

These videos provide lectures for each section of the text to help students review important concepts and procedures 24/7.

Concept and Vocabulary Check.

New and assignable in MyMathLab, these short-answer and fill-in-the blank exercises provide a quick check for understanding of concepts. These questions also test for reading comprehension before the student moves on to the exercises.

Chapter Test Prep Videos.
Students can watch instructors work through step-by-step solutions to all the Chapter Test exercises from the textbook. These are available in
 MyMathLab and on YouTube.

Instructor Resources

Additional resources can be downloaded from www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.

TestGen.

Enables instructors to build, edit, print, and administer tests using a computerized bank of algorithmic questions developed to cover all the objectives of the text.

PowerPoint Lecture Slides.

Fully editable lecture slides that correlate to the textbook.

Instructor's Solutions Manual.

Fully worked solutions to all textbook exercises.

Mini Lecture Notes.

Additional examples and helpful teaching tips for each section.

Annotated Instructor's Edition.

Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Student Resources

Additional resources to help student success are available to be packaged with the Blitzer textbook and MyMathLab access code.

Student's Solutions Manual.

Fully worked solutions to odd-numbered exercises and available to be packaged with the textbook.

Learning Guide.

This note-taking guide is organized by objective and begins each chapter with an engaging application, providing additional examples and exercises for students to work through for greater conceptual understanding and mastery of mathematical topics. The Learning Guide is available as PDFs and customizable Word files in MyMathLab. They can also be packaged with the textbook and MyMathLab access code.

TO THE STUDENT

The bar graph shows some of the qualities that students say make a great teacher. It was my goal to incorporate each of these qualities throughout the pages of this book.

Explains Things Clearly

I understand that your primary purpose in reading Precalculus is to acquire a solid understanding of the required algebra and trigonometry topics in your precalculus course. In order to achieve this goal, I've carefully explained each topic. Important definitions and procedures are set off in boxes, and worked-out examples that present solutions in a step-by-step manner appear in every section. Each example is followed by a similar matched problem, called a Check Point, for you to try so that you can actively participate in the learning process as you read the book. (Answers to all Check Points appear in the back of the book.)

Funny \& Entertaining

Who says that a precalculus textbook can't be entertaining? From our quirky cover to the photos in the chapter and section openers, prepare to expect the unexpected. I hope some of the book's enrichment essays, called Blitzer Bonuses, will put a smile on your face from time to time.

Helpful

I designed the book's features to help you acquire knowledge of algebra and trigonometry, as well as to show you how algebra and trigonometry can solve authentic problems that apply to your life. These helpful features include

- Explanatory Voice Balloons: Voice balloons are used in a variety of ways to make math less intimidating. They translate algebraic and trigonometric language into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect new concepts to concepts you have already learned.
- Great Question!: The book's Great Question! boxes are based on questions students ask in class. The answers to these questions give suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
- Chapter Summaries: Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples from the chapter that illustrate these key concepts are also referenced in the chart. Review these summaries and you'll know the most important material in the chapter!

Passionate about the Subject

I passionately believe that no other discipline comes close to math in offering a more extensive set of tools for application and development of your mind. I wrote the book in Point Reyes National Seashore, 40 miles north of San Francisco. The park consists of 75,000 acres with miles of pristine surfwashed beaches, forested ridges, and bays bordered by white cliffs. It was my hope to convey the beauty and excitement of mathematics using nature's unspoiled beauty as a source of inspiration and creativity. Enjoy the pages that follow as you empower yourself with the algebra and trigonometry needed to succeed in college, your career, and your life.

$$
\begin{gathered}
\text { Regards, } \\
\text { Bale } \\
\text { Robert Blitzer }
\end{gathered}
$$

ABOUT THE AUTHOR

Bob Blitzer is a native of Manhattan and received a Bachelor of Arts degree with dual majors in mathematics and psychology (minor: English literature) from the City College of New York. His unusual combination of academic interests led him toward a Master of Arts in mathematics from the University of Miami and a doctorate in behavioral sciences from Nova University. Bob's love for teaching mathematics was nourished for nearly 30 years at Miami Dade College, where he received numerous teaching awards, including Innovator of the Year from the League for Innovations in the Community College and an endowed chair based on excellence in the classroom. In addition to Precalculus, Bob has written textbooks covering introductory
 algebra, intermediate algebra, college algebra, algebra and trigonometry, trigonometry, and liberal arts mathematics, all published by Pearson. When not secluded in his Northern California writer's cabin, Bob can be found hiking the beaches and trails of Point Reyes National Seashore and tending to the chores required by his beloved entourage of horses, chickens, and irritable roosters.

APPLICATIONS INDEX

A
Academy awards, films winning most, 245-246
Acid rain, 464
Actor selection, 1065, 1086
Adulthood, transition to, 886
Adult residential community costs, 1013, 1019-1020
Advertising
sales and price and, 399-400, 404
worldwide spending on, 1089
African life span, AIDS and, 799
Age(s). See also Marriage age
average number of awakenings during night by, 151
body-mass index and, 833
calories needed to maintain energy by, 84-85
chances of surviving to various, 171
of driver, accidents per day and, 917
driver's. See Driver's age
height as function of, 207, 210, 228-229, 1125-1126, 1130
perceived length of time period and, 403
percentage of U.S. population never married, ages 25-29, 200, 202
percent body fat in adults by, 185
preferred age in a mate, 255
for sex and marriage, legal, 170-171
spatial orientation and, 1102
verbal ability and, 1102
of wife at marriage, probability of divorce and, 148-149
Aging rate, space travel and, 32,44 , 47, 1115
AIDS. See also HIV infection, T cell count and
African life span and, 799
cases diagnosed (U.S.), 317, 318, 321
Aircraft, Mach speed of, 654
Airline revenue, number of customers and, 269-270, 277
Airplane line up for departure on runway, 1086
Airplanes. See Plane(s)
Airports, distance between, 700
Alcohol and risk of accident, 458-459, 464
arrests and drunk driving, 381
Alcohol content of wines, mixture based on, 787
Alcohol use
moderate wine consumption and heart disease, 201-202
by U.S. high school seniors, 151
Alligators
tail length given body length, 402
Altitude
atmospheric pressure and, 486 gained by hiker climbing incline, 616
increase on inclined road of, 534
American Idol ratings, 316
Amusia (tone deafness), sound quality and, 633,635

Angle(s)
in architecture, 492
clock hands forming, 492, 493
of depression, 530
of elevation, 531-532, 535, 536, 550,
$583,610,611,616,618,691-692$
Angular speed
of audio records, 504
of carousel, 503
of hard drive in computer, 503
of propeller on wind generator, 615
Annuities, 1030-1032
value of, 1037, 1085
Antenna on top of building, height of, 617
Arch, height of, 535
Arch bridge, 996
Archer's arrow, path of, 310
Architecture
angles in, 492
conic sections in, 933, 943
Area
of circle with changing radius, 1136
of greenhouse, 1103
maximum, 311-312, 314-315, 360, 407, 1141
of oblique triangle, 688
of page, as function of width of rectangle containing print on, 380
of plane figure, 57
of rectangular garden/field,
271-273, 290
of region under curve, 600
of shaded region, 57, 69
of square with changing side, 1136
of triangle, 698, 913
Area code possibilities, 1065
Arrests and drunk driving, 381
Artists in documentary, 1060-1061
Asteroid detection, 811
Atmospheric pressure and altitude, 486
Attitudes in U.S., changing, 117
Audio records, angular speed and linear speed of, 504
Autistic disorder, 1011
Automobiles
accidents per day, age of driver and, 917
computing work of pushing, 760, 762
depreciation, 117, 172
fuel efficiency of, 173
leaving city at same time, distance between, 766
possible race finishes, 1065
purchase options, 1064
rentals, $120,123,129-130,138,276$, 1103
repair estimate, 133
required stopping distance, 381-382, 392
stopping distances for, at selected speeds, 381-382
Average cost function, 374, 378, 408, 411
Average growth rates, 1125-1126

Average rate of change, 207-209, 229
of area of square, 1136
of volume, 1131-1132, 1140
Average velocity, 118, 210, 380, 409, 1133
of airplane, 787
of ball rolling down ramp, 210-211 of boat, 787

B

Babies born out of wedlock, 276
Ball. See also Baseball; Football angle of elevation and throwing distance of, 680
attached to spring
finding amplitude and period of motion of, 643
simple harmonic motion of, 605-606, 676, 680
height above ground, 287, 314,
389-390, 392, 798, 860, 1089
baseball, 489
bounce height, 402
football, 17, 308-309, 407, 860
maximum height, 407, 769, 1140
location of thrown, 974-975
rolling down ramp, average velocity of, 210-211
thrown straight up instantaneous velocity of, 1133-1134, 1137, 1140, 1142
maximum height of, 1140
Bank and credit union charges, 133
Banking angle and turning radius of bicycle, 402
Bank loans, interest on, 1141
Baseball
angle of elevation and throwing distance of, 676
height above ground, 489
hit straight upward, instantaneous velocity of, 1136
path of, 974,983
pitcher's angle of turn to throw ball, 701
position as function of time, 983
Baseball contract, 1001, 1036, 1039
Baseball diamond, distance from
pitcher's mound to bases on, 701
Baseball game attendance, ticket price and, 277
Basketball court, dimensions of, 112
Bass in lake over time, 409
Batting average, 118
Bearings, 604-605, 618
of boat, $605,611,700-701,1142$
distance at certain, 611, 617
to fire from two fire stations, 689, 691
of jet from control tower, 611
true, of plane, 752-753
between two cities, 618
Beauty
changes in cultural values of, 771
earnings and, 140
symmetry and, 176

Benefit concert lineup possibilities, 1065
Berlin Airlift, 835, 841
Biorhythms, 491, 508, 522, 569-570, 571
Birthday, probability of same, 1081
Birthday cake, 48
Birthday date sharing, 255, 656
Births and deaths in U.S. from 2000 through 2009, 231, 236-237
Births to unmarried women, 481
Black holes, formation of, 28-29
Blood, speed of, 29
Blood alcohol concentration, 15, 19, 458-459, 464
Blood volume and body weight, 395-396
Boat/ship
average velocity of, 787
bearing of, 605, 611, 700-701, 1142
direction angle of, 768
distance from lighthouse, 693
ground speed, 768
on tilted ramp, vector components
of force on, 758,762
velocity of, 768
velocity vector of, 749
Body fat in adults by age and gender, percent, 185
Body-mass index, 402 age and, 833
Body temperature, variation in, 616-617
Book club selections, 1066
Book selections, 1065, 1087
Books on shelf, arranging, 1060
Bouquet, mixture of flowers in, 822
Box dimensions, 345. See also Open boxes
Brain
growth of the human, 474
modeling activity of, 583
Break-even analysis, 619, 783-785, 788, 822
Breathing cycle, 551
modeling, 565-566
velocity of air flow in, 676
Breeze from fan, location and feeling, 1102
Bridge
arch, 996
George Washington Bridge, 997 suspension, parabolas formed by, 997
Bridge coupon book/toll passes, 133, 276
Budget
federal deficit, 135
food and health care spending, 212
Building
height of, 530, 531, 611, 617, 618, 693
shadow cast by, 137, 676
Bus fares, 276
Business ventures, 788
Butterfat content in cream, 787
Butterflies, symmetry of, 702

C

Cable car, distance covered by, 692-693
Cable lengths between vertical poles, 279
Cable service, 999

Calculator manufacturing costs, 408-409
Calorie-nutrient information, 845
Calories
candy bars with highest fat content and, 790
needed by age groups and activity levels, 886
needed to maintain energy balance, 84-85
Camera(s)
instantaneous velocity when
dropped into water, 1136
price before reduction, 110
viewing angle for, 599
Candy bars with highest fat content, 790
Candy mixtures, 787
Car. See Automobiles
Carbon-14 dating, 469 decay model, 478
Carbon dioxide
atmospheric, 572, 584
global warming and, 141, 196-198
Cardboard length/width for box, 820
Carousel, linear speed and angular speed of animals on, 503, 507
CD selection for vacation trip, 1086
Celebrities, highest-paid, 106, 154-155, 156-157
Cellular phone plan, 132, 172, 178-179, 187
Centrifugal force, 400-401
Chaos, patterns of, 726 computer-generated visualizations of, 681
Checking accounts, 133
Chernobyl nuclear power plant accident, 425
Cherry tree yield, maximum, 315
Chess moves, 1057
Chickens eaten per year, 31
Children's height modeled, 434, 439, 440, 460-461
Cholesterol and dietary restrictions, 833,847 intake, 847
Cigarettes. See Smokers
Cigarette tax, 1011
Circle with changing radius, area of, 1136 length of arc on, 618
Class structure of the United States, 916
Cliff, distance of ship from base of, 610
Clock
angles formed by hands of, 492, 493
degrees moved by minute hand on, 506
distance between tip of hour hand and ceiling, 570
distance between tips of hands at 10:00, 702
minute hand movement in terms of $\pi, 506$
Club officers, choosing, 1065, 1086
Coding, 888, 897-898, 900-901
Coffee consumption, sleep and, 489
Coin tosses, 132, 1070, 1077-1078, 1080, 1081
College education
annual earnings and, 116
attitudes toward, 117
bachelor's degrees awarded, gender
and, 138-139, 487
cost of, 2, 4-5, 19, 1022
green studies programs, 426
majors, 20

College graduates
among people ages 25 and older, in U.S., 426
starting salaries for, 107-108, 284
College students
family income and type of college attended, 1086
first-year
attitudes about life goals, 109 claiming no religious affiliation, 155-156, 157, 158
emotional health of, 286-287 opposition to feminism among, 439
opposition to homosexual relationships among, 486
procrastination and symptoms of physical illness among, 772, 789
projected enrollment of, 117, 137
Collinear points, 913
Comedy act schedule, 1065, 1066
Comets
Halley's Comet, 929, 943, 993
intersection of planet paths and, 819, 943
Committee formation, 1062, 1063, 1065
Commuter, average velocity and time required for round trip of, 375-376
Compound interest, 421-422, 424, 425,
426, 459-460, 463, 465, 484, 486,
488, 1012, 1037, 1085
on annuity, 1030-1032, 1037
continuously compounded, 451, 459-460, 463, 486, 488, 848
Computer(s)
angular speed of hard drive in, 503
assembly, time required for, 410
computer-generated animation, 215
discounts, 237-238, 244
price before reduction, 111
prices, 246-247
ratio of students to computers in
U.S. public schools, 322
sale, 69
Computer graphics, 882-883, 885 animation, 215
Concentration of mixture, 104. See also Mixture problems
Cone volume, 281, 401
Conference attendees, choosing, 1063, 1066
Constraints, 836-839, 841-842
Continuously compounded interest, 451, 459-460, 463, 486, 488, 848
Cooling, Newton's Law of, 472-473, 480
Cooling pie, modeling temperature of, 1141
Coronary heart disease, 480
Corporation officers, choosing, 1060, 1065
Cost and revenue functions/break-even points, $783,784,788,844,847$
for PDA manufacturing, 822
Cost function, 408. See also Cost and revenue functions/break-even points
bike manufacturing, 378
robotic exoskeleton manufacturing, 374-375
running shoe manufacturing, 379
wheelchair manufacturing, 375
Cost(s). See also Manufacturing costs of college education, 2, 4-5, 19, 1022
of family health insurance, 425
of groceries, 799
mailing, 286, 1123
minimizing, 841
of raising child born in U.S., 1006-1007
truck rental, 999
of wars in Iraq and Afghanistan, 28
Course schedule, options in planning, 1057
Crane lifting boulder, computing work of, 762
Crate, computing work of dragging, 768
Cryptograms, 897-898, 900-901.

See also Coding

Cycles, modeling, 537
Cycloid, 983

D

Dads raising kids alone, 480
Daylight, number of hours of, 508,
521-522, 568, 676
modeling, 568, 570, 583
Dead Sea Scrolls, carbon-14 dating of, 469
Death penalty, percentage of Americans in favor of, 789
Death rate
firearms and, 286
hours of sleep and, 792, 796
Deaths in 20th century, main causes of, 845
Debris from explosion, instantaneous velocity of, 1136
Debt, national, 20, 24, 27-28
Decay model for carbon-14, 478
Deck of 52 cards, probability and, 1071-1072, 1074-1075, 1080, 1086, 1087
Decoding a word or message, 898 , 900-901
Deforestation, Amazon, 407
Degree-days, 1023
Depreciation, car, 117
Depression
exercise and, 215
probability of, 1054
in remission, exercise and, 215
Depression, angle of, 530
Desk manufacturing, 861
Die rolling outcomes, 1070-1071, 1079, 1080, 1086
Digital photography, 872, 881-882, 885, 887, 917
Dinosaur bones and potassium-40 dating, 479
Dinosaur footprints, pace angle and stride indicated by, 694, 700
Direction, 739-740. See also Resultant forces
Discount warehouse membership plans, 276-277
Distance
from base to top of Leaning Tower of Pisa, 691
between cars leaving city at same time, 766
between cars on expressway, speed and recommended, 1102
of forest ranger from fire, 611
between houses at closest point, 946
of island from coast, 610
across lake, 531, 534, 616, 700
of marching band from person filming it, 583
of oil platform from ends of beach, 691
between pairs of cities, 265
of rotating beam of light from point, 582, 583
safe, expressway speed and, 135
of ship from base of cliff, 610
of ship from base of Statue of Liberty, 610
of ship from lighthouse, 536, 617
of ship from radio towers on coast, 946
of stolen car from point directly below helicopter, 610
that skydiver falls in given time, 1039
throwing. See Throwing distance
time traveled as function of, 280-281
between two points on Earth, 506
between two points on opposite banks of river, 691
between two trains leaving station at same time, 725
Distance traveled, 19
by car after brakes applied, 798 by plane, 534
Diver's height above water, 392
Diversity index, 135
Diving board motion, modeling, 583
Divorce, age of wife at marriage and probability of, 148-149
DNA, structure of, 523
Domed ceiling, light reflectance and parabolic surface of, 961
Drink order possibilities, 1064
Driver's age
accidents per day and, 917
arrests and drunk driving as function of, 381
Driving accidents
intoxication and probability, 1081
texting and, 290
Driving fatalities
age of driver and, 105
involving distracted driving, 290
Driving rate and time for trip, 397
Drug concentration, 209, 379
Drug dosage, child vs. adult, 680
Drug experiment volunteer selection, 1064, 1066
Drug tests, mandatory, probability of accurate results, 1081
Dual investments, 19, 274, 278, 279, 288, 848

E

Eagle's height and time in flight, 286
Earnings. See also Salaries
college education and, 116
Earth
angular velocity of point on, 507
distance between two points on, 506
finding radius of, 612
motion of Moon relative to, 523
Earthquake
epicenter of, 265
intensity of, 427, 435, 485
simple harmonic motion from, 608
Earthquake relief, 834, 836-838
Educational attainment, 1021, 1080.
See also College education
median annual income by, 56-57
Election ballot, 1065
Electrical resistance, 403, 1089
Elephant's weight, 464
Elevation, angle of, 531-532, 535, 536, 550, 583, 610-611, 616, 618, 691-692
Elevator capacity, 133, 833

Elk population, 488
Elliptical ceiling, 932
Elliptipool, 932
Encoding a message, 888, 897-898, 900-901
Endangered species, 479
Equator, linear velocity of point on, 506
Equilibrium, forces in, 752
Exam grades, 133, 138, 886
Exercise
depression and, 215
heart rate and, 3
target heart rate ranges for, 18
Explosion recorded by two
microphones, location of, 943-944, 946, 961
Exponential growth and decay, 478-479, 487, 488, 619, 918
Expressway speeds and safe distances, 135
Eye color and gender, 1087
F
Fahrenheit/Celsius temperature interconversions, 17, 132, 255
Family, independent events in, 1078, 1079, 1087
Federal budget expenditures on human resources, 380
Federal Express aircraft purchase decisions, 842
Feminism, first-year college students' opposition to, 439
Fencing
cost of, 1141
for enclosure, 277-278, 288, 290, 817-818, 1141
maximum area inside, 311-312, 407, 1141
Ferris wheel, 265
height above ground when riding, 522
linear speed of, 507
Field's dimensions, 845, 1089
Fire
distance of forest ranger from, 611 locating potentially devastating, 682, 689, 691, 725, 769
Firearms, death rates for industrialized countries and, 286
Fishing trip, shared cost per club member, 138
Flagpole
height of, finding, 680
leaning, angle made with ground, 693
on top of building, height of, 611
Flood, probability of, 1087
Floor dimensions, and area for pool and fountain, 820
Flu
epidemic, 470-471, 479
inoculation costs, 84
mixture for vaccine, 172
modeling spread of, 487
outbreak on campus, 1038
time-temperature flu scenario, 173-174
vaccine, 780-782
Focal length of glasses lens, 91
Food, spending on, 212
Football
height above ground, 17, 308-309, 860
maximum height of, 998
position as function of time, 998
vector describing thrown, 751

Football field dimensions, 111-112
Football game attendance, ticket price and, 277
Force(s)
on body leaning against wall, 739, 742
in equilibrium, 752
pulling cart up incline, 739
required to stretch spring, 402
resultant, 752, 768, 769
FoxTrot, math in, 46
Frame dimensions, 117, 137
Freedom 7 spacecraft flight, 256
Free-falling object's position, 389-390,
392, 409-410, 1089
Freshmen. See under College students
Friendship 7, distance from Earth's center, 993
Fruit tree yield, 277, 407
Fuel efficiency, 173

G

Galaxies, elliptical, 1048
Garbage, pounds produced per day, 71
Gasoline prices, 332-333
Gasoline sold, gallons of regular and premium, 762
Gas pressure in can, 398
Gas under pressure, volume of, 1142
Gay service members discharged from military, 212-213
Gender
average number of awakenings during night by, 151
bachelor's degrees awarded and, 138-139
calories needed to maintain energy by, 84-85
eye color and, 1087
first-year U.S. college students claiming no religious affiliation by, 155-156, 157, 158
labor force by, 105
life expectancy by year of birth and, 200
median annual income by level of education and, 56-57
percentage of United States population never married, ages 25-29 and, 200, 202 percent body fat in adults by, 185 wage gap by, 171
George Washington Bridge, height of cable between towers of, 997
Global warming, 141, 196-198
Gold alloys/karats, 787
Golden rectangles, 47
Granola and raisin mixture, 787
Gravitational force, 400
Gravity model, 403
Greenhouse, area enclosed for, 1103
Gross domestic product (GDP), percentage going toward health care, 463
Ground speed, 753-754
Groups fitting into van, 1065
Growth rates
average, 1125-1126
instantaneous, 1130
Gun control, 790
Guy wire attached to pole, angle made with ground and, 603

H
Half-life of radioactive element, 478, 487, 488, 918
Halley's Comet, 929, 943, 993

Happiness
average level of, at different times of day, 255
per capita income and national, 201
Headlight
parabolic surface of, 997, 998
unit design, 997, 998
Health care
percentage of GDP going toward, 463
savings needed for expenses during retirement, 480
spending on, 212
Health insurance, cost of, 425
Heart beats over lifetime, 32
Heart disease
coronary, 480
moderate wine consumption and, 201-202
Heart rate, 18
exercise and, 3
exercise and, target heart rate ranges for, 18
life span and, 410
before and during panic attack, 332
Heat generated by stove, 403
Heating systems, cost comparison for, 140
Heat loss of a glass window, 403
Height. See also under Ball
of antenna on top of building, 617
of arch, 535
of building, 530, 531, 610, 617, 618, 693
child's height modeled, 434, 439, 440, 460-461
diver's height above water, 392
of eagle, in terms of time in flight, 286
on Ferris wheel while riding, 522
of flagpole, 611, 680
as function of age, 207, 210,
228-229, 1125-1126, 1130
healthy weight region for, 771,822 , 827-828, 832-833
of leaning wall, finding, 692
maximum, 769, 998, 1089, 1140
of Mt. Rushmore sculpture, 604
percentage of adult height attained by girl of given age, 439, 460-461
of plane, 536,550
of tower, $114,602,610$
of tree, 725
weight and height
recommendations/calculations, 118, 402
Higher education. See College education
Hiking trails, finding bearings on, 605
Hill, magnitude of force required to
keep car from sliding down, 752
HIV infection, T cell count and, 154, 163-164. See also AIDS
Homosexual relationships, first-year college students' opposition to, 486
Horror films, body count in, 137
Hot-air balloon, distance traveled by ascending, 603, 611
Hotel room cost, revenue and, 288, 316
Hotel room types, 790
Hourly wage, 788
House sales prices, value appreciation, 1039
House value, inflation rate and, 425
Housework, time devoted to, 1085
Hubble Space Telescope, 404

Human resources, federal budget expenditures on, 380
Hurricane probability, 1080
Hurricanes and barometric air pressure, 464
Hydrogen atom, mass of, 31

I

Ice cream consumption in U.S., 487
Ice cream flavor combinations, 1062 1066
Identical twins, distinguishing between, 791
Illumination intensity, 402, 403
Imaginary number joke, 299
Income
highest paid TV celebrities, 106
median annual, 48, 56-57
Individual Retirement Account (IRA), 1030-1032, 1037, 1038, 1085
Inflation rate, 425
Inn's nightly cost before the tax, 117
Inoculation costs for flu, 84
Instantaneous rate of change, 1130
of area of square with changing side, 1136
of volume, 1131-1132, 1136, 1140
Instantaneous velocity, 1133-1134, 1136
of ball thrown straight up, 1133-1134, 1137, 1140, 1142
of baseball hit straight upward, 1136 of debris from explosions, 1136
Insulation, rate of heat lost through, 619
Insurance policy, pet, 186
Intelligence quotient (IQ) and mental/ chronological age, 402
Interest
on bank loans, 1141
compound. See Compound interest
simple, 274
Investment(s)
accumulated value of, 421-422, 424, 459-460
amounts invested per rate, 799
choosing between, 422-423, 424
compound interest, 421-422, 424,
$425,426,451,459-460,463,465$,
484, 486, 488, 848, 1037
dual, $19,274,278,279,288,848$
and interest rates, 19
maximizing expected returns, 842
money divided between high- and low-risk, 833
possibility of stock changes, 1086
Island, distance from coast of, 610

J

Jeans price, 244
Job applicants, filling positions with, 1087
Job offers, 1022, 1023, 1036, 1037
Jokes about books, 1066

K

Kidney stone disintegration, 928, 961
Kinetic energy, 403
Kite, angle made with ground of flying, 603

L

Labor force by gender, 105
Labrador retrievers, color of, 55
Ladder's reach, 118
Lake, distance across, 531, 534, 616, 700
Land, triangular piece of
cost of, 701, 767
length of sides of, 767
right triangular piece of land, 119

Landscape design, 112-113
Leaning Tower of Pisa, distance from base to top of, 691
Leaning wall, finding height of, 692
Learning, in precalculus course, 1122
Learning rate and amount learned, measuring, 770
Learning theory project, 471
Length
of moving starship with respect to observer on Earth, 1115
of violin string and frequency, 399
Letter arrangements, 1065
License plates, 1058
Life expectancy, 116, 200
Life span, heart rate and, 410
Light intensity, 411
sunlight beneath ocean's surface, 462
Light reflectance and parabolic surface, 961, 997, 998
Light waves, modeling, 617
Linear speed, 507
of airplane propeller, 615
of animals on carousel, 503, 507
of wind machine propeller, 504
Line formation, 1066
Literacy and child mortality, 188, 201
Little league baseball team batting order, 1058-1059
Living alone, number of Americans, 203, 206
Living arrangements of U.S. adults, 790
Long-distance carriers/plans, 280
Lottery
number of winners sharing winnings, 116,118
numbers selection, 1065
probability of winning, 1056, 1072-1073, 1080, 1081, 1087
LOTTO
numbers selection, 1065
probability of winning, 1072-1073, 1081
Love over time, course of, 131-132
Luggage, volume of carry-on, 358
Lunch menus, 841, 1065

M

Mach speed of aircraft, 654
Magnitude, direction and. See also Resultant forces
Mailing costs, 186, 286, 1123
Mall browsing time and average amount spent, 414, 415
Mammography screening data, 1068-1069
Mandatory drug testing, probability of accurate results, 1081
Mandelbrot set, 726, 735, 737-738
Manufacturing and testing, hours needed for, 871
Manufacturing constraints, 838-839
Manufacturing costs. See also Cost function
bicycles, 172
calculator, 408-409
PDAs, 822
portable satellite radio players, 411 robotic exoskeletons, 361, 374-375 wheelchair, 375
Maps, making, 532
Marching band, 791
Marijuana use by U.S. high school seniors, 151
Markup, 117

Marriage(s)
interfaith, 132
marital status, 475, 789, 1076, 1079
Marriage age
difference within couple, 119
legal, 170-171
preferred age in a mate, 255
of wife, probability of divorce and, 148-149
Mass
attached to spring, simple harmonic motion of, 607-608
of hydrogen atoms, 31
of oxygen molecules, 31
Mathematics department personnel, random selection from, 1080
Mathematics exam problems, 1067
Maximum area, 311-312, 314-315, 317, 360, 407, 1141
Maximum height, 769, 998, 1089 of thrown ball, 1140
Maximum product, $314,315,360,410$
Maximum profit, 360, 410, 838-839, 847
Maximum scores, 842
Maximum yield, 315
Medicare costs/spending, 789
Medication dosage, adult vs. child/ infant, 680
Memory retention, 425, 439, 440, 463, 485
Merry-go-round
linear speed of horse on, 550
polar coordinates of horses on, 712
Military, gay service members
discharged from, 212-213
Minimum product, 314, 407
Miscarriages, by age, 480
Mixture problems, 787, 822
alcohol content of wines, 787
butterfat in cream, 787
candy, 787
concentration, 104
flu vaccine, 172, 780-782
gold alloys/karats, 787
raisins in granola, 787
Modernistic painting consisting of geometric figures, 800
Moiré patterns, 947
Moon weight of person given Earth weight, 402
Moth eggs and abdominal width, 334, 345
Motion, uniform. See Uniform motion
Motion picture industry box-office receipts, 31
Mountain, measuring height of, 523, 532, 692-693
Mt. Rushmore sculpture, height of, 604
Movies, ranking, 1065
Movie theater, finding best viewing angle in, 585, 599, 600
Movie ticket, average price of, 137
Multiple-choice test, 1057-1058, 1065 1088
Multiplier effect, 1034, 1038
Music
amplitude and frequency of note's sine wave, 660
amusia and, 633, 635
modeling musical sounds, 607, 612
Music business, evolution to digital
marketplace, 844
N
National debt, 20, 24, 27-28
Natural disaster relief, 841

Nature
Fibonacci numbers found in, 1002
Navajo sand painting, 522
Navigation, 523. See also Bearings
Negative square roots, 299
Neurons in human vs. gorilla brain, 71
Newton's Law of Cooling, 472-473, 480 482, 487, 1141
Norman window, area of, 281
Nutritional content, 861, 870

0

Officers for Internet marketing consulting firm, choosing, 1060
Ohm's law, 299
Open boxes dimensions of sheet metal forming, 1141
lengths and widths, 277, 278, 288
with square base, surface area of, 1142
volume of, 57, 270-271, 277
Orbit(s)
of comets, $819,929,943,947,993$
modeling, 984
perigee/apogee of satellite's orbit, 932
of planets, $819,928,932$
Oscars, films winning most, 245-246
Oxygen molecule, mass of, 31

P

Package, forces exerted on held, 748
Palindromic numbers, 1081
Panic attack, heart rate before and during, 332
Paragraph formation, 1065
Parking lot dimensions, 118
Parthenon at Athens, as golden rectangle, 47
Passwords formed, 1064, 1066
Path around pool, dimensions of, 117, 281
Payroll spent in town, 1086
PDA manufacturing costs and revenues, 822
Peanuts cartoon, 47
Pen and pad, cost of, 1089
Pen choices, 1064, 1086
Pendulum swings, 1037
Per capita income and national happiness, 201
Perceived length of time period and age, 403
Perigee/apogee of satellite's orbit, 932
Perimeter of rectangular floor, as function of width of rectangle, 380, 409
Periodic rhythms, 664
Pest-eradication program, 1038
Pets
insurance policy for, 186
spending on, 1013
pH
of human mouth after eating, 379 pH scale, 464
Phone calls between cities, 394, 403
Physician visits, 186
Piano keyboard, Fibonacci numbers on, 1002
Pier, finding length of, 692
Pitch of a musical tone, 410
Pizza choices, 1057
Plane(s)
approaching runway, vector
describing, 751
average velocity of, 787
direction angle of, given speed, 754
distance and angle of elevation of, 583
distance flown by, 534
ground speed of, 753-754
height of, 536, 550
leaving airport at same time, distance
between, 693, 697-698, 767
linear speed of propeller, 615
true bearing of, 752-753
vector describing flight of, 751
velocity vector of, 749
weight/volume constraints, 834 , 835-838
wind speed and direction angle exerted on, 752-753
Planets
elliptical orbits, 928, 932
modeling motion of, 991, 993
Play production, break-even analysis of, 619
Poker hands, 1063-1064
Pole, angle made by rope anchoring
circus tent and, 618
Political affiliation, academic major and, 1081
Pollutants in the air, 916
Pollution removal costs, 71
Pool, path around, 117, 118, 281
Pool dimensions, 117
Pool table, elliptical, 996
Population
Africa, 468
over age 65 (U.S.), 481
Asia, 488
bird species in danger of extinction, 479
Bulgaria, 478
California, 462, 1036
Canada, 482
Colombia, 478
elk, 488
exponential growth modeling, 478, 479
Florida, 1085
foreign-born (U.S.), 799
geometric growth in, 1025, 1026
Germany, 478, 488
gray wolf, 420-421
Hispanic, 487
Hungary, 465
India, 425, 478
Iraq, 478
Israel, 478
Japan, 478
Madagascar, 478
Mexico, 479
New Zealand, 479
Nigeria, 481
Pakistan, 478
Palestinian, 478
Philippines, 478
Russia, 478
in scientific notation, 26
single, 203, 206
Texas, 462, 1036-1037
tiger, 332
Uganda, 482
United States, 26, 244, 409, 467-468,
481, 1016-1017
percentage never married, ages 25-29, 200, 202
total tax collections and, 31
world, 138, 466, 475, 477, 479, 480, 487, 861, 1074
Population projections, 117, 478
U.S. elderly, 46-47

Precalculus course, time and percentage of topics learned in, 1122
Price reductions, 246-247
price before, 110-111, 117, 119, 137, 140
Prices of movie tickets, 137
Problem solving time, 400
Profit function, 785, 788, 822
Profits
department store branches, 244
maximizing, 360, 410, 841, 846, 847
maximum, 410
maximum daily, 838-839, 862
maximum monthly, 841
on newsprint/writing paper, 846
production and sales for gains in, 133
total monthly, 841
Projectiles, path of, 300, 409-410, 983, 998. See also Ball; Baseball; Football; Free-falling object's position
Propeller
of airplane, linear speed of, 615
on wind generator, angular speed of, 615
Pyramid volume, 410
R
Radiation intensity and distance of radiation machine, 402
Radios
cost of, and revenue for,
manufacturing, 244
production and sales, 788
Radio show programming, 1065
Radio station
call letters, 1065
locating illegal, 691
Radio tower(s)
on coast, distance of ship from, 946 height of, 114
Radio waves, simple harmonic motion of, 611
Raffle prizes, 1064, 1066
Railway crossing sign, length of arcs formed by cross on, 506
Rain gutter cross-sectional area, 277, 315
Ramp
computing work of pulling box along, 762
force and weight of box being pulled up, 752
magnitude of force required to keep object from sliding down, 752
vector components of force on boat on tilted, 758,762
wheelchair, 113-114, 611
Rate of change. See Average rate of change; Instantaneous rate of change
Rate of travel
airplane rate, 791
average rate and time traveled, 172
average rate on a round-trip commute, 84
Razor blades sold, 799
Real-estate sales and prices (U.S.), 1039
Rectangle
area of, 47
dimensions of, 118, 137, 311-312,
$392,790,817-818,820,845$,
847, 848
golden, 47
perimeter of, 47, 85, 106

Rectangular box
dimensions, 345
surface area of, 290
Rectangular carpet dimensions, 140
Rectangular field/lot
area of, as function of one
dimension, 290
cost of fencing, 1141
dimensions, 137
fencing to enclose, 277-278, 288
Rectangular garden
area of, 271-273
cost of enclosing, 278
doubling area with path around, 112-113
maximizing area within fencing of, 1141
path/border around, dimensions of, 118
Redwood trees, finding height of, 692
Reflections, 220
Relativity, Einstein's special theory of, 32, 44, 1115
Religious affiliation, first-year U.S. college students claiming no, 155-156, 157, 158
Repair bill
cost of parts and labor on, 118 estimate, 133
Residential community costs, adult, 1013, 1019-1020
Restaurant tables and maximum occupancy, 790
Resultant forces, 752, 768, 769 of two tugboats pulling ship, 752, 753
Revenue
as function of ticket price, 269-270, 277
game attendance and, 277
hotel room cost and, 288, 316
Revenue and cost functions, 315,783 ,
784, 788, 822. See also Cost and revenue functions/break-even points
break-even points, $788,844,847$
Reversibility of thought, 58
Roads to expressway, length of, 279
Robotic exoskeletons manufacturing costs, 361, 374-375
Roller coasters, instantaneous velocity of, 1134
Rolling motion, 981
Roof of A-frame cabin, finding length of, 766
Rotating beam of light, distance from point, 582, 583
Roulette wheel, independent events on, 1078
Royal flush (poker hand), probability of, 1064
Rug's length and width, 820
Runner's pulse, 464
Running track, area enclosed by, 278
S
Sailing angle to $10-\mathrm{knot}$ wind, sailing speed and, 712-713, 723
Salaries
anticipated earnings, 1036
average weekly, 288
choosing between pay
arrangements, 1088
after college, 284
comparing, 1021, 1022, 1023
earnings with overtime, 489
gross amount per paycheck, 118
lifetime computation, 1029-1030, 1036, 1037
salesperson's earnings/commissions, 137, 1088
in sixth year, 1085
starting, for college graduates, 107-108, 284
total, 1022, 1036, 1085, 1087
total weekly earnings, 841 weekly, 106
Sales. See also Price reductions
computer, 69
price and advertising and, 399-400, 404
real estate, 1039
selling price for paintings, 844
television, 69
theater ticket, 799
Salesperson's earnings, 137, 1088
Satellite dish, 997
Satellite radio players, manufacturing costs of, 411
Savings
and compound interest, 463
geometric sequencing, 1036, 1037
needed for health-care expenses during retirement, 480
total, 1036, 1037
Scattering experiments, 946
Scheduling appearances, ways of, 1065, 1066
Seasons, 537
Seating number, 1022
Seconds in a year, 31
Semielliptical archway and truck
clearance, $929,931,961,996$
Sex, legal age for, 170-171
Shaded region areas, 57, 69
Shading process, 1038
Shadow, length of, 751
Ship
bearing of, 605, 611, 700-701, 1142
distance from lighthouse, 617
leaving harbor at same time, distance between after three
hours, 700
location between two radio towers, 996
tracking system, 819
Shipping cost, 286. See also Mailing costs
"Shortest time" problems, 981
Shot put
angle and height of, 314
throwing distance, $621,654,692$
Sign dimensions, rectangular, 118
Simple harmonic motion, 770, 1089
modeling, 605-608, 611, 618
radio waves, 611
tuning fork, 611
Simple interest, 274
Skydiver's fall, 396-397, 410
Sled, pulling
computing work of, 761
forces exerted, 751
Sleep
average number of awakenings during night, by age and gender, 151
coffee consumption and, 489
death rate and hours of, 792, 796
hours of, on typical night, 1067
Smokers
incidence of ailments among, vs. non-smokers, 1054
percentage of, 104
smoking-related deaths and disease's incidence ratios, 379 , 380
Soccer field dimension, 117
Social Security benefits/costs, 139, 789
Soft-drink can
minimizing aluminum in, 266
surface area of, 273
Soft drink consumption, 266
Sonic boom, hyperbolic shape of, 943
Sound
amplitude and frequency of, 660
from touching buttons on touch tone phone, 656,662
Sound intensity, 403, 439, 449, 480, 488
Sound quality, amusia and, 633, 635
Space exploration and relativity theory, 32, 44, 47, 1115
Spaceguard Survey, 947
Spatial orientation, age and, 1102
Speed. See also Linear speed
angular, 503-504, 615
of blood, 29
on expressway, recommended safe distance between cars and, 1102
Mach speed of aircraft, 654
Speed skating, winning time for women in, 290
Spending per person, annual, 798
Sphere with changing radius, surface area of, 1136
Spinner, probability of pointer landing in specific way, 1076, 1080, 1086, 1088
Spring, simple harmonic motion of object attached to, 605-606 607-608
ball, 605-606, 643, 676, 680
distance from rest position, 609, 618
frequency of, 609
maximum displacement of, 609
phase shift of motion, 609
time required for one cycle, 609
Square
with changing side, area of, 1136
enlarged, length of side of original, 118
Stadium seats, 1022
Standbys for airline seats, 1065
Starship moving in space, length with respect to observer on Earth, 1115
Statue of Liberty, distance of ship from base of, 610
Stereo speaker loudness, 410
Stolen plants, 119
Stomach acid, pH of, 464
Stonehenge, raising stones of, 535
Stopping distances
for car, 381-382, 392
for motorcycles at selected speeds, 409
for trucks, 392-393
Stories, matching graphs with, 152-153
Student government elections,
1061-1062
Students. See also College students probability of selecting specific, 1087
saying school is not drug free, percentage of, 1142
Sun, finding angle of elevation of, 531, $534,550,611,616$
Sunscreen, exposure time without burning and, 2
Supply and demand, 788

Supply-side economics, 345
Surface area
of box with square base and top, 288
of open box with square base, 1142
of rectangular box, 290
of soft-drink can, 273
of sphere with changing radius, 1136
Surface sunlight, intensity beneath
ocean's surface, 462
Surveying
bearings in, 604-605
to find distance between two points on opposite banks of river, 691
Suspension bridges, parabolas formed by, 997
Swimming pool dimensions, 117
Synthesizers, musical sounds modeled by, 601, 607

T
Talent contest, picking winner and runner-up in, 1066
Target, probability of hitting, 1081
Target heart rate for exercise, 18
Task mastery, 450, 485
Taxes
bills, 133
cigarette, 1011
e-filing of, 487
federal tax rate schedule for tax owed, 186
owed by single taxpayer in 2011, 1123
rebate and multiplier effect, 1034, 1038
tax rate percentage and revenue, 345
U.S. population and total tax collections, 31
Telephone numbers in United States, 1058, 1087
Telephone plans cellular plans, 132, 172, 178-179, 187
long-distance, 280
texting, 106, 132, 140, 267-268, 288
Telephone pole
angle between guy wire and, 535
tilted, finding length of, 692
Television
average price of, 71
manufacturing profits and
constraints, 840-841
programming of movies, 1065
sale of, 69
screen dimensions, 820
Temperature, 739
average monthly, 570, 571
body, variation in, 616-617
of cooling cup of coffee, 484
degree-days, 1023
and depth of water, 402
in enclosed vehicle, increase in, 436

Fahrenheit-Celsius interconversions, 17, 132, 255
global warming, 141, 196-198
home temperature as function of time, 229-230
increase in an enclosed vehicle, 480
Newton's Law of Cooling, 472-473, 480, 482, 487, 1141
time-temperature flu scenario, 173-174
Tennis court dimensions, 117
Texting, 106, 132, 140, 267-268, 288 while driving, 290
Theater attendance, maximizing revenue from, 841
Theater seats, 1022, 1085
Theater ticket sales, 799
Throwing distance, 621, 644, 654
angle of elevation of, 676, 680
maximum height of thrown ball, 769
shot put, 621, 654, 692
Ticket price
number of airline passengers and, 280
revenue as function of, 269,277
U.S. film admissions and admission charges, 31
Tides, behavior of, 508, 522, 537, 567, 570
modeling cycle of, 567
modeling water depth and, 570
Tiger population, 332
Time, involved in uniform motion, 375-376
Time traveled
average rate and, 172
as function of average velocity, 380
as function of distance, 280-281
Total economic impact of factory on town, 1038, 1086
Touch-tone phone, sounds from touching buttons on, 656, 662
Tower
angle of elevation between point on ground and top of, 619
height of, finding, 114, 602, 610, 611 length of two guy wires anchoring, 701
Track-and-field records, 276
Traffic control, 862, 867-868, 870, 871, 916
Trains leaving station at same time, distance between, 725
Transformations of an image, 882-883, 885, 917
Travel. See Distance traveled; Rate of travel
Tree, finding height of, 725
Triangle
area, 913
area of, 688, 698
oblique, 688
Triangular piece of land cost of, 701, 767 dimensions of right, 119
length of sides of, 767

Trucks
rental costs, 132, 999
stopping distances required for, 392-393
Tugboats towing ship, resultant force of two, 752, 753
Tuning fork
eardrum vibrations from, 643
simple harmonic motion on, 611
TV. See Television

U

Unemployment and years of education, 409
Uniform motion
average velocity, 787
time involved in, 375-376
V
Vacation condominium, number of owners sharing, 118
Vacation lodgings, 833
Vacation plan packages, cost of, 845
Vaccine, mixture for flu, 172, 780-782
Value of an annuity, 1037, 1085
Velocity
average, 118, 210-211, 380, 409, 787, 1133
instantaneous, 1133-1134, 1136, $1137,1140,1142$
Velocity vector
of boat, 749
of plane, 749
of wind, 748, 749, 752-753
Verbal ability, age and, 1102
Vertical pole supported by wire, 140
Video games, retail sales for Call of Duty, 465
Videos rented, number of one-day and three-day, 762
Violin string length and frequency, 399
Vitamin content, 870
Volume(s)
average rate of change of,

1131-1132, 1140

of carry-on luggage, 358
of cone, 281, 401
of figures, 359
of gas under pressure, 1142
of given figures, 57
for given regions, 69
instantaneous rate of change of 1131-1132, 1136, 1140
of open box, 57, 270-271, 277
of package whose front is a square, 278
Voters, by age and gender, 886

W

Wage, hourly, 788
Wage gap, 171
Wagon, computing work of pulling, 760 762, 769
Walking speed and city population, 474
Walnut tree yield, 290, 315
War, cost of, 28

Wardrobe selection, 1056-1057
Warehouse, cost of building, 278
Washington Monument, angle of elevation to top of, 534
Water pipe diameter, number of houses served and size of, 402
Water pressure and depth, 394
Water supply produced by snowpack, 410
Water temperature and depth, 402
Water used in a shower, 396
Water wheel, linear speed of, 507
Weight
blood volume and body, 395-396
elephant's, age and, 464
of great white shark, cube of its length and, 397
healthy, for height and age, 771, 822, 827-828, 832-833
and height recommendations/ calculations, 118, 402 moon weight of person given Earth weight, 402
Weightlifting, 481 work done by, 754, 763
Wheelchair business manufacturing costs, 375 profit function for, 785 revenue and cost functions for, 784
Wheelchair ramp angle of elevation of, 611 vertical distance of, 113-114
Wheel rotation, centimeters moved with, 506
Whispering gallery, 928, 932, 998
White House, rooms, bathrooms, fireplaces and elevators in, 861
Will distribution, 119
Wind, velocity vector of, 748,749 , 752-753
Wind force, 403
Wind generator angular speed of propeller on, 615 linear speed of propeller of, 504
Wind pressure, 403
Wine consumption, heart disease and moderate, 201-202
Wing span of jet fighter, finding, 693
Wire length, 118, 277
Witch of Agnesi, 983
Women. See also Gender average level of happiness at different times of day, 255 bachelor's degree awarded to, 487 births to unmarried, 481
Work, 760-761, 762 crane lifting boulder, 762 dragging crate, 768 pulling box up ramp, 762 pulling wagon, $760,762,769$ pushing car, 760, 762 in U.S., changing pattern of, 820 of weightlifter, 754, 763

Y

Yacht, dividing cost of, 114-115

PREREQUISITES: FUNDAMENTAL CONCEPTS OF ALGEBRA

CHAPTER P

What can algebra possibly have to tell me about

- the skyrocketing cost of a college education?
- my workouts?
- the effects of alcohol?
- the meaning of the national debt that exceeds $\$ 15$ trillion?
- time dilation on a futuristic high-speed journey to a nearby star?
- ethnic diversity in the United States?
- the widening imbalance between numbers of women and men on college campuses? This chapter reviews fundamental concepts of algebra that are prerequisites for the study of precalculus. Throughout the chapter, you will see how the special language of algebra describes your world.

HERE'S WHERE YOU'LL FIND THESE APPLICATIONS:

College costs: Section P.1, Example 2; Exercise Set P.1, Exercises 131-132
Workouts: Exercise Set P.1, Exercises 129-130
The effects of alcohol: Blitzer Bonus on page 15
The national debt: Section P.2,
Example 6
Time dilation: Blitzer Bonus on page 44 U.S. ethnic diversity: Chapter P Review, Exercise 23
College gender imbalance: Chapter P Test, Exercise 32.

SECTION P. 1

Objectives

(1) Evaluate algebraic expressions.
(2) Use mathematical models.
(3) Find the intersection of two sets.
(4) Find the union of two sets.
(5) Recognize subsets of the real numbers.
(6) Use inequality symbols.
(7) Evaluate absolute value.
(8) Use absolute value to express distance.
(9) Identify properties of the real numbers.
(10) Simplify algebraic expressions.

Algebraic Expressions, Mathematical Models, and Real Numbers

How would your lifestyle change if a gallon of gas cost $\$ 9.15$? Or if the price of a staple such as milk was $\$ 15$? That's how much those products would cost if their prices had increased at the same rate college tuition has increased since 1980. (Source: Center for College Affordability and Productivity) In this section, you will learn how the special language of algebra describes your world, including the skyrocketing cost of a college education.

Algebraic Expressions

Algebra uses letters, such as x and y, to represent numbers. If a letter is used to represent various numbers, it is called a variable. For example, imagine that you are basking in the sun on the beach. We can let x represent the number of minutes that you can stay in the sun without burning with no sunscreen. With a number 6 sunscreen, exposure time without burning is six times as long, or 6 times x. This can be written $6 \cdot x$, but it is usually expressed as $6 x$. Placing a number and a letter next to one another indicates multiplication.

Notice that $6 x$ combines the number 6 and the variable x using the operation of multiplication. A combination of variables and numbers using the operations of addition, subtraction, multiplication, or division, as well as powers or roots, is called an algebraic expression. Here are some examples of algebraic expressions:

$$
x+6, \quad x-6, \quad 6 x, \quad \frac{x}{6}, \quad 3 x+5, \quad x^{2}-3, \quad \sqrt{x}+7
$$

Many algebraic expressions involve exponents. For example, the algebraic expression

$$
4 x^{2}+341 x+3194
$$

approximates the average cost of tuition and fees at public U.S. colleges for the school year ending x years after 2000. The expression x^{2} means $x \cdot x$ and is read " x to the second power" or " x squared." The exponent, 2, indicates that the base, x, appears as a factor two times.

Exponential Notation

If n is a counting number ($1,2,3$, and so on),

b^{n} is read "the nth power of b " or " b to the nth power." Thus, the nth power of b is defined as the product of n factors of b. The expression b^{n} is called an exponential expression. Furthermore, $b^{1}=b$.

For example,

$$
8^{2}=8 \cdot 8=64, \quad 5^{3}=5 \cdot 5 \cdot 5=125, \quad \text { and } \quad 2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16
$$

1 Evaluate algebraic expressions.

Evaluating Algebraic Expressions

Evaluating an algebraic expression means to find the value of the expression for a given value of the variable.

Many algebraic expressions involve more than one operation. Evaluating an algebraic expression without a calculator involves carefully applying the following order of operations agreement:

The Order of Operations Agreement

1. Perform operations within the innermost parentheses and work outward. If the algebraic expression involves a fraction, treat the numerator and the denominator as if they were each enclosed in parentheses.
2. Evaluate all exponential expressions.
3. Perform multiplications and divisions as they occur, working from left to right.
4. Perform additions and subtractions as they occur, working from left to right.

EXAMPLE 1 Evaluating an Algebraic Expression

Evaluate $7+5(x-4)^{3}$ for $x=6$.
SOLUTION

$$
\begin{aligned}
7+5(x-4)^{3} & =7+5(6-4)^{3} & & \text { Replace } \times \text { with } 6 . \\
& =7+5(2)^{3} & & \text { First work inside parentheses: } 6-4=2 . \\
& =7+5(8) & & \text { Evaluate the exponential expression: } \\
& =7+40 & & 2^{3}=2 \cdot 2 \cdot 2=8 . \\
& =47 & & \text { Multiply: } 5(8)=40 .
\end{aligned}
$$

6 Check Point 1 Evaluate $8+6(x-3)^{2}$ for $x=13$.

Formulas and Mathematical Models

An equation is formed when an equal sign is placed between two algebraic expressions. One aim of algebra is to provide a compact, symbolic description of the world. These descriptions involve the use of formulas. A formula is an equation that uses variables to express a relationship between two or more quantities.

Here are two examples of formulas related to heart rate and exercise.

Couch-Potato Exercise

Working It

The process of finding formulas to describe real-world phenomena is called mathematical modeling. Such formulas, together with the meaning assigned to the variables, are called mathematical models. We often say that these formulas model, or describe, the relationships among the variables.

EXAMPLE 2 Modeling the Cost of Attending a Public College

The bar graph in Figure P. 1 shows the average cost of tuition and fees for public four-year colleges, adjusted for inflation. The formula

$$
T=4 x^{2}+341 x+3194
$$

models the average cost of tuition and fees, T, for public U.S. colleges for the school year ending x years after 2000 .
a. Use the formula to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2010.
b. By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

SOLUTION
a. Because 2010 is 10 years after 2000, we substitute 10 for x in the given formula. Then we use the order of operations to find T, the average cost of tuition and fees for the school year ending in 2010.

$$
\begin{array}{ll}
T=4 x^{2}+341 x+3194 & \text { This is the given mathematical model. } \\
T=4(10)^{2}+341(10)+3194 & \text { Replace each occurrence of } \times \text { with } 10 . \\
T=4(100)+341(10)+3194 & \text { Evaluate the exponential expression: } \\
& 10^{2}=10 \cdot 10=100 . \\
T=400+3410+3194 & \begin{array}{l}
\text { Multiply from left to right: } 4(100)=400 \text { and } \\
\\
\\
341(10)=3410 .
\end{array} \\
T=7004 & \text { Add. }
\end{array}
$$

The formula indicates that for the school year ending in 2010, the average cost of tuition and fees at public U.S. colleges was $\$ 7004$.
b. Figure P. 1 shows that the average cost of tuition and fees for the school year ending in 2010 was $\$ 7020$.
The cost obtained from the formula, $\$ 7004$, underestimates the actual data value by $\$ 7020-\$ 7004$, or by $\$ 16$.

GREAT QUESTION!

Can I use symbols other than braces when writing sets using the roster method?

No. Grouping symbols such as parentheses, (), and square brackets, [], are not used to represent sets in the roster method. Furthermore, only commas are used to separate the elements of a set. Separators such as colons or semicolons are not used.
3. Find the intersection of two sets.

FIGURE P. 2 Picturing the intersection of two sets

Check Point 2 Assuming trends indicated by the data in Figure P. 1 continue, use the formula $T=4 x^{2}+341 x+3194$, described in Example 2, to project the average cost of tuition and fees at public U.S. colleges for the school year ending in 2015.

Sometimes a mathematical model gives an estimate that is not a good approximation or is extended to include values of the variable that do not make sense. In these cases, we say that model breakdown has occurred. For example, it is not likely that the formula in Example 2 would give a good estimate of tuition and fees in 2050 because it is too far in the future. Thus, model breakdown would occur.

Sets

Before we describe the set of real numbers, let's be sure you are familiar with some basic ideas about sets. A set is a collection of objects whose contents can be clearly determined. The objects in a set are called the elements of the set. For example, the set of numbers used for counting can be represented by

$$
\{1,2,3,4,5, \ldots\} .
$$

The braces, $\{$ \}, indicate that we are representing a set. This form of representation, called the roster method, uses commas to separate the elements of the set. The symbol consisting of three dots after the 5 , called an ellipsis, indicates that there is no final element and that the listing goes on forever.

A set can also be written in set-builder notation. In this notation, the elements of the set are described but not listed. Here is an example:

The same set written using the roster method is

$$
\{1,2,3,4,5\} .
$$

If A and B are sets, we can form a new set consisting of all elements that are in both A and B. This set is called the intersection of the two sets.

Definition of the Intersection of Sets

The intersection of sets A and B, written $A \cap B$, is the set of elements common to both set A and set B. This definition can be expressed in set-builder notation as follows:

$$
A \cap B=\{x \mid x \text { is an element of } A \text { AND } x \text { is an element of } B\} .
$$

Figure P. 2 shows a useful way of picturing the intersection of sets A and B. The figure indicates that $A \cap B$ contains those elements that belong to both A and B at the same time.

EXAMPLE 3 Finding the Intersection of Two Sets

Find the intersection: $\{7,8,9,10,11\} \cap\{6,8,10,12\}$.

SOLUTION

The elements common to $\{7,8,9,10,11\}$ and $\{6,8,10,12\}$ are 8 and 10 . Thus,

$$
\{7,8,9,10,11\} \cap\{6,8,10,12\}=\{8,10\} .
$$

Check Point 3 Find the intersection: $\{3,4,5,6,7\} \cap\{3,7,8,9\}$.
4. Find the union of two sets.

FIGURE P. 3 Picturing the union of two sets

GREAT QUESTION!

How can I use the words union and intersection to help me distinguish between these two operations?

Union, as in a marriage union, suggests joining things, or uniting them. Intersection, as in the intersection of two crossing streets, brings to mind the area common to both, suggesting things that overlap.
5. Recognize subsets of the real numbers.

TECHNOLOGY

A calculator with a square root key gives a decimal approximation for $\sqrt{2}$, not the exact value.

If a set has no elements, it is called the empty set, or the null set, and is represented by the symbol \varnothing (the Greek letter phi). Here is an example that shows how the empty set can result when finding the intersection of two sets:

Another set that we can form from sets A and B consists of elements that are in A or B or in both sets. This set is called the union of the two sets.

Definition of the Union of Sets

The union of sets A and B, written $A \cup B$, is the set of elements that are members of set A or of set B or of both sets. This definition can be expressed in set-builder notation as follows:

$$
A \cup B=\{x \mid x \text { is an element of } A \text { OR } x \text { is an element of } B\} .
$$

Figure P. $\mathbf{3}$ shows a useful way of picturing the union of sets A and B. The figure indicates that $A \cup B$ is formed by joining the sets together.

We can find the union of set A and set B by listing the elements of set A. Then we include any elements of set B that have not already been listed. Enclose all elements that are listed with braces. This shows that the union of two sets is also a set.

EXAMPLE 4 Finding the Union of Two Sets

Find the union: $\{7,8,9,10,11\} \cup\{6,8,10,12\}$.

SOLUTION

To find $\{7,8,9,10,11\} \cup\{6,8,10,12\}$, start by listing all the elements from the first set, namely, $7,8,9,10$, and 11 . Now list all the elements from the second set that are not in the first set, namely, 6 and 12 . The union is the set consisting of all these elements. Thus,

$$
\{7,8,9,10,11\} \cup\{6,8,10,12\}=\{6,7,8,9,10,11,12\} .
$$

Although 8 and 10 appear in both sets,
do not list 8 and 10 twice.

\oint Check Point 4 Find the union: $\{3,4,5,6,7\} \cup\{3,7,8,9\}$.

The Set of Real Numbers

The sets that make up the real numbers are summarized in Table P. 1 at the top of the next page. We refer to these sets as subsets of the real numbers, meaning that all elements in each subset are also elements in the set of real numbers.

Notice the use of the symbol \approx in the examples of irrational numbers. The symbol means "is approximately equal to." Thus,

$$
\sqrt{2} \approx 1.414214
$$

We can verify that this is only an approximation by multiplying 1.414214 by itself. The product is very close to, but not exactly, 2 :

$$
1.414214 \times 1.414214=2.000001237796 .
$$

Table P. 1 Important Subsets of the Real Numbers

Name/Symbol	Description	Examples
Natural numbers \mathbb{N}	$\{1,2,3,4,5, \ldots\}$ These are the numbers that we use for counting.	2,3, 5, 17
Whole numbers W	$\{0,1,2,3,4,5, \ldots\}$ The set of whole numbers includes 0 and the natural numbers.	0, 2, 3, 5, 17
Integers \mathbb{Z}	$\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}$ The set of integers includes the negatives of the natural numbers and the whole numbers.	$-17,-5,-3,-2,0,2,3,5,17$
Rational numbers Q	$\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are integers and } b \neq 0\right\}$ This means that b is not equal to zero. The set of rational numbers is the set of all numbers that can be expressed as a quotient of two integers, with the denominator not 0 . Rational numbers can be expressed as terminating or repeating decimals.	$\begin{aligned} & -17=\frac{-17}{1},-5=\frac{-5}{1},-3,-2, \\ & 0,2,3,5,17, \\ & \frac{2}{5}=0.4, \\ & \frac{-2}{3}=-0.6666 \ldots=-0 . \overline{6} \end{aligned}$
Irrational numbers [The set of irrational numbers is the set of all numbers whose decimal representations are neither terminating nor repeating. Irrational numbers cannot be expressed as a quotient of integers.	$\begin{aligned} \sqrt{2} & \approx 1.414214 \\ -\sqrt{3} & \approx-1.73205 \\ \pi & \approx 3.142 \\ -\frac{\pi}{2} & \approx-1.571 \end{aligned}$

FIGURE P. 4 Every real number is either rational or irrational.

Not all square roots are irrational. For example, $\sqrt{25}=5$ because $5^{2}=5 \cdot 5=25$. Thus, $\sqrt{25}$ is a natural number, a whole number, an integer, and a rational number $\left(\sqrt{25}=\frac{5}{1}\right)$.

The set of real numbers is formed by taking the union of the sets of rational numbers and irrational numbers. Thus, every real number is either rational or irrational, as shown in Figure P.4.

Real Numbers

The set of real numbers is the set of numbers that are either rational or irrational:

$$
\{x \mid x \text { is rational or } x \text { is irrational }\} .
$$

The symbol \mathbb{R} is used to represent the set of real numbers. Thus,

$$
\mathbb{R}=\{x \mid x \text { is rational }\} \cup\{x \mid x \text { is irrational }\} .
$$

EXAMPLE 5 Recognizing Subsets of the Real Numbers

Consider the following set of numbers:

$$
\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}
$$

List the numbers in the set that are
a. natural numbers.
b. whole numbers.
c. integers.
d. rational numbers.
e. irrational numbers.
f. real numbers.

SOLUTION

a. Natural numbers: The natural numbers are the numbers used for counting. The only natural number in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ is $\sqrt{81}$ because $\sqrt{81}=9$. (9 multiplied by itself, or 9^{2}, is 81 .)
b. Whole numbers: The whole numbers consist of the natural numbers and 0 . The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that are whole numbers are 0 and $\sqrt{81}$.
c. Integers: The integers consist of the natural numbers, 0 , and the negatives of the natural numbers. The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3\right.$, $\sqrt{81}\}$ that are integers are $\sqrt{81}, 0$, and -7 .
d. Rational numbers: All numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that can be expressed as the quotient of integers are rational numbers. These include $-7\left(-7=\frac{-7}{1}\right),-\frac{3}{4}, 0\left(0=\frac{0}{1}\right)$, and $\sqrt{81}\left(\sqrt{81}=\frac{9}{1}\right)$. Furthermore, all numbers in the set that are terminating or repeating decimals are also rational numbers. These include $0 . \overline{6}$ and 7.3.
e. Irrational numbers: The irrational numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi\right.$, $7.3, \sqrt{81}\}$ are $\sqrt{5}(\sqrt{5} \approx 2.236)$ and $\pi(\pi \approx 3.14)$. Both $\sqrt{5}$ and π are only approximately equal to 2.236 and 3.14 , respectively. In decimal form, $\sqrt{5}$ and π neither terminate nor have blocks of repeating digits.
f. Real numbers: All the numbers in the given set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}\right.$, $\sqrt{5}, \pi, 7.3, \sqrt{81}\}$ are real numbers.
\oint Check Point 5 consider the following set of numbers:

$$
\left\{-9,-1.3,0,0 . \overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10}\right\}
$$

List the numbers in the set that are
a. natural numbers.
b. whole numbers.
c. integers.
d. rational numbers.
e. irrational numbers.
f. real numbers.

The Real Number Line

The real number line is a graph used to represent the set of real numbers. An arbitrary point, called the origin, is labeled 0 . Select a point to the right of 0 and label it 1 . The distance from 0 to 1 is called the unit distance. Numbers to the right of the origin are positive and numbers to the left of the origin are negative. The real number line is shown in Figure P.5.

FIGURE P. 5 The real number line

GREAT QUESTION!

How did you locate $\sqrt{2}$ as a precise point on the number line in Figure P.6?
We used a right triangle with two legs of length 1 . The remaining side has a length measuring $\sqrt{2}$.

We'll have lots more to say about right triangles later in the book.

Real numbers are graphed on a number line by placing a dot at the correct location for each number. The integers are easiest to locate. In Figure P.6, we've graphed six rational numbers and three irrational numbers on a real number line.

FIGURE P. 6 Graphing numbers on a real number line
Every real number corresponds to a point on the number line and every point on the number line corresponds to a real number. We say that there is a one-to-one correspondence between all the real numbers and all points on a real number line.

6 Use inequality symbols.

Ordering the Real Numbers

On the real number line, the real numbers increase from left to right. The lesser of two real numbers is the one farther to the left on a number line. The greater of two real numbers is the one farther to the right on a number line.

Look at the number line in Figure P.7. The integers -4 and -1 are graphed.

Observe that -4 is to the left of -1 on the number line. This means that -4 is less than -1 .

$$
-4<-1 \quad \begin{aligned}
& -4 \text { is less than }-1 \text { because }-4 \text { is to } \\
& \text { the left of }-1 \text { on the number line. }
\end{aligned}
$$

In Figure P.7, we can also observe that -1 is to the right of -4 on the number line. This means that -1 is greater than -4 .

$$
\begin{array}{ll}
-1 \text { is greater than }-4 \text { because }-1 \text { is to } \\
-1>-4 & \text { the right of }-4 \text { on the number line. }
\end{array}
$$

The symbols < and > are called inequality symbols. These symbols always point to the lesser of the two real numbers when the inequality statement is true.

The symbols < and > may be combined with an equal sign, as shown in the following table:

This inequality is true if either the < part or the $=$ part is true.	Symbols	Meaning	Examples	Explanation
	$a \leq b$	a is less than or equal to b.	$\begin{aligned} & 2 \leq 9 \\ & 9 \leq 9 \end{aligned}$	Because $2<9$ Because $9=9$
This inequality is true if either the $>$ part or the = part is true.	$b \geq a$	b is greater than or equal to a.	$\begin{aligned} & 9 \geq 2 \\ & 2 \geq 2 \end{aligned}$	Because $9>2$ Because $2=2$

Absolute Value

The absolute value of a real number a, denoted by $|a|$, is the distance from 0 to a on the number line. This distance is always taken to be nonnegative. For example, the real number line in Figure P. 8 shows that

$$
|-3|=3 \text { and }|5|=5 .
$$

The absolute value of -3 is 3 because -3 is 3 units from 0 on the number line. The absolute value of 5 is 5 because 5 is 5 units from 0 on the number line. The absolute value of a positive real number or 0 is the number itself. The absolute value of a negative real number, such as -3 , is the number without the negative sign.

We can define the absolute value of the real number x without referring to a number line. The algebraic definition of the absolute value of x is given as follows:

Definition of Absolute Value

$$
|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

If x is nonnegative (that is, $x \geq 0$), the absolute value of x is the number itself. For example,

$$
|5|=5 \quad|\pi|=\pi \quad\left|\frac{1}{3}\right|=\frac{1}{3} \quad|0|=0 . \quad \begin{aligned}
& \begin{array}{l}
\text { Zero is the only number } \\
\text { whose absolute value is } 0 .
\end{array}
\end{aligned}
$$

If x is a negative number (that is, $x<0$), the absolute value of x is the opposite of x. This makes the absolute value positive. For example,

$$
|-3|=-(-3)=3 \quad|-\pi|=-(-\pi)=\pi \quad\left|-\frac{1}{3}\right|=-\left(-\frac{1}{3}\right)=\frac{1}{3} .
$$

This middle step is usually omitted.

EXAMPLE 6 Evaluating Absolute Value

Rewrite each expression without absolute value bars:
a. $|\sqrt{3}-1|$
b. $|2-\pi|$
c. $\frac{|x|}{x}$ if $x<0$.

SOLUTION

a. Because $\sqrt{3} \approx 1.7$, the number inside the absolute value bars, $\sqrt{3}-1$, is positive. The absolute value of a positive number is the number itself. Thus,

$$
|\sqrt{3}-1|=\sqrt{3}-1
$$

b. Because $\pi \approx 3.14$, the number inside the absolute value bars, $2-\pi$, is negative. The absolute value of x when $x<0$ is $-x$. Thus,

$$
|2-\pi|=-(2-\pi)=\pi-2 .
$$

c. If $x<0$, then $|x|=-x$. Thus,

$$
\frac{|x|}{x}=\frac{-x}{x}=-1 .
$$

$\$$ Check Point 6 Rewrite each expression without absolute value bars:
a. $|1-\sqrt{2}|$
b. $|\pi-3|$
c. $\frac{|x|}{x}$ if $x>0$.

DISCOVERY

Verify the triangle inequality if $a=4$ and $b=5$. Verify the triangle inequality if $a=4$ and $b=-5$.

When does equality occur in the triangle inequality and when does inequality occur? Verify your observation with additional number pairs.

8 Use absolute value to express distance.

FIGURE P. 9 The distance between -5 and 3 is 8 .

Listed below are several basic properties of absolute value. Each of these properties can be derived from the definition of absolute value.

Properties of Absolute Value

For all real numbers a and b,

1. $|a| \geq 0$
2. $|-a|=|a|$
3. $a \leq|a|$
4. $|a b|=|a||b|$
5. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \quad b \neq 0$
6. $|a+b| \leq|a|+|b|$ (called the triangle inequality)

Distance between Points on a Real Number Line

Absolute value is used to find the distance between two points on a real number line. If a and b are any real numbers, the distance between \boldsymbol{a} and \boldsymbol{b} is the absolute value of their difference. For example, the distance between 4 and 10 is 6 . Using absolute value, we find this distance in one of two ways:

$$
|10-4|=|6|=6 \quad \text { or } \quad|4-10|=|-6|=6
$$

The distance between 4 and 10 on the real number line is 6 .

Notice that we obtain the same distance regardless of the order in which we subtract.

Distance between Two Points on the Real Number Line

If a and b are any two points on a real number line, then the distance between a and b is given by

$$
|a-b| \quad \text { or } \quad|b-a| .
$$

EXAMPLE 7 Distance between Two Points on a Number Line

Find the distance between -5 and 3 on the real number line.

SOLUTION

Because the distance between a and b is given by $|a-b|$, the distance between -5 and 3 is

$$
\begin{aligned}
& \quad|-5-3|=|-8|=8 . \\
& a=-5 \quad b=3
\end{aligned}
$$

Figure P. 9 verifies that there are 8 units between -5 and 3 on the real number line. We obtain the same distance if we reverse the order of the subtraction:

$$
|3-(-5)|=|8|=8
$$

Φ Check Point 7 Find the distance between -4 and 5 on the real number line.

Properties of Real Numbers and Algebraic Expressions

When you use your calculator to add two real numbers, you can enter them in any order. The fact that two real numbers can be added in any order is called the commutative property of addition. You probably use this property, as well as other

Blitzer Banus

The Associative Property and the English Language

In the English language, phrases can take on different meanings depending on the way the words are associated with commas.

Here are three examples.

- Woman, without her man, is nothing.
Woman, without her, man is nothing.
- What's the latest dope? What's the latest, dope?
- Population of Amsterdam broken down by age and sex Population of Amsterdam, broken down by age and sex
properties of real numbers listed in Table P.2, without giving it much thought. The properties of the real numbers are especially useful when working with algebraic expressions. For each property listed in Table P.2, a, b, and c represent real numbers, variables, or algebraic expressions.

Table P. 2 Properties of the Real Numbers

Name	Meaning	Examples
Commutative Property of Addition	Changing order when adding does not affect the sum. $a+b=b+a$	- $13+7=7+13$ - $13 x+7=7+13 x$
Commutative Property of Multiplication	Changing order when multiplying does not affect the product. $a b=b a$	- $\sqrt{2} \cdot \sqrt{5}=\sqrt{5} \cdot \sqrt{2}$ - $x \cdot 6=6 x$
Associative Property of Addition	Changing grouping when adding does not affect the sum. $(a+b)+c=a+(b+c)$	$\begin{aligned} \cdot 3+(8+x) & =(3+8)+x \\ & =11+x \end{aligned}$
Associative Property of Multiplication	Changing grouping when multiplying does not affect the product. $(a b) c=a(b c)$	- $-2(3 x)=(-2 \cdot 3) x=-6 x$
Distributive Property of Multiplication over Addition	Multiplication distributes over addition. $a \cdot(b+c)=a \cdot b+a \cdot c$	- $7(4+\sqrt{3})=$ $\begin{aligned} & =7 \cdot 4+7 \cdot \sqrt{3} \\ & =28+7 \sqrt{3} \end{aligned}$ $\begin{aligned} \cdot 5(3 x+7) & =5 \cdot 3 x+5 \cdot 7 \\ & =15 x+35 \end{aligned}$
Identity Property of Addition	Zero can be deleted from a sum. $\begin{aligned} & a+0=a \\ & 0+a=a \end{aligned}$	$\begin{aligned} & \text { - } \sqrt{3}+0=\sqrt{3} \\ & -0+6 x=6 x \end{aligned}$
Identity Property of Multiplication	One can be deleted from a product. $\begin{aligned} & a \cdot 1=a \\ & 1 \cdot a=a \end{aligned}$	- $1 \cdot \pi=\pi$ - $13 x \cdot 1=13 x$
Inverse Property of Addition	The sum of a real number and its additive inverse gives 0 , the additive identity. $\begin{aligned} & a+(-a)=0 \\ & (-a)+a=0 \end{aligned}$	- $\sqrt{5}+(-\sqrt{5})=0$ - $-\pi+\pi=0$ - $6 x+(-6 x)=0$ - $(-4 y)+4 y=0$
Inverse Property of Multiplication	The product of a nonzero real number and its multiplicative inverse gives 1 , the multiplicative identity. $\begin{aligned} & a \cdot \frac{1}{a}=1, \quad a \neq 0 \\ & \frac{1}{a} \cdot a=1, \quad a \neq 0 \end{aligned}$	$\begin{aligned} & \text { - } 7 \cdot \frac{1}{7}=1 \\ & \cdot\left(\frac{1}{x-3}\right)(x-3)=1, \quad x \neq 3 \end{aligned}$

The properties of the real numbers in Table P. 2 apply to the operations of addition and multiplication. Subtraction and division are defined in terms of addition and multiplication.

Definitions of Subtraction and Division

Let a and b represent real numbers.
Subtraction: $a-b=a+(-b)$
We call $-b$ the additive inverse or opposite of b.
Division: $a \div b=a \cdot \frac{1}{b}$, where $b \neq 0$
We call $\frac{1}{b}$ the multiplicative inverse or reciprocal of b. The quotient of a and $b, a \div b$, can be written in the form $\frac{a}{b}$, where a is the numerator and b the denominator of the fraction.

Because subtraction is defined in terms of adding an inverse, the distributive property can be applied to subtraction:

For example,

$$
4(2 x-5)=4 \cdot 2 x-4 \cdot 5=8 x-20
$$

Simplifying Algebraic Expressions

The terms of an algebraic expression are those parts that are separated by addition. For example, consider the algebraic expression

$$
7 x-9 y+z-3
$$

which can be expressed as

$$
7 x+(-9 y)+z+(-3) .
$$

This expression contains four terms, namely, $7 x,-9 y, z$, and -3 .
The numerical part of a term is called its coefficient. In the term $7 x$, the 7 is the coefficient. If a term containing one or more variables is written without a coefficient, the coefficient is understood to be 1 . Thus, z means $1 z$. If a term is a constant, its coefficient is that constant. Thus, the coefficient of the constant term -3 is -3 .

The parts of each term that are multiplied are called the factors of the term. The factors of the term $7 x$ are 7 and x.

Like terms are terms that have exactly the same variable factors. For example, $3 x$ and $7 x$ are like terms. The distributive property in the form

$$
b a+c a=(b+c) a
$$

enables us to add or subtract like terms. For example,

$$
\begin{aligned}
3 x+7 x & =(3+7) x=10 x \\
7 y^{2}-y^{2} & =7 y^{2}-1 y^{2}=(7-1) y^{2}=6 y^{2} .
\end{aligned}
$$

This process is called combining like terms.

An algebraic expression is simplified when parentheses have been removed and like terms have been combined.

EXAMPLE 8 Simplifying an Algebraic Expression

Simplify: $6\left(2 x^{2}+4 x\right)+10\left(4 x^{2}+3 x\right)$.

SOLUTION

$52 x^{2}$ and $54 x$ are not like terms. They contain different variable factors, x^{2} and x, and cannot be combined

$$
=\left(12 x^{2}+40 x^{2}\right)+(24 x+30 x)
$$

$$
=52 x^{2}+54 x
$$

Use the distributive property to remove the parentheses.
Multiply.
Group like terms.
Combine like terms. \quad. .
\int Check Point 8 simplify: $7\left(4 x^{2}+3 x\right)+2\left(5 x^{2}+x\right)$.

Properties of Negatives

The distributive property can be extended to cover more than two terms within parentheses. For example,

The voice balloons illustrate that negative signs can appear side by side. They can represent the operation of subtraction or the fact that a real number is negative. Here is a list of properties of negatives and how they are applied to algebraic expressions:

Properties of Negatives

Let a and b represent real numbers, variables, or algebraic expressions.

Property

1. $(-1) a=-a$
2. $-(-a)=a$
3. $(-a) b=-a b$
4. $a(-b)=-a b$
5. $-(a+b)=-a-b$
6. $-(a-b)=-a+b$ $=b-a$

Examples

$$
\begin{aligned}
& (-1) 4 x y=-4 x y \\
& -(-6 y)=6 y \\
& (-7) 4 x y=-7 \cdot 4 x y=-28 x y \\
& 5 x(-3 y)=-5 x \cdot 3 y=-15 x y \\
& -(7 x+6 y)=-7 x-6 y \\
& -(3 x-7 y)=-3 x+7 y \\
& =7 y-3 x
\end{aligned}
$$

It is not uncommon to see algebraic expressions with parentheses preceded by a negative sign or subtraction. Properties 5 and 6 in the box, $-(a+b)=-a-b$ and $-(a-b)=-a+b$, are related to this situation. An expression of the form $-(a+b)$ can be simplified as follows:

$$
-(a+b)=-1(a+b)=(-1) a+(-1) b=-a+(-b)=-a-b .
$$

Do you see a fast way to obtain the simplified expression on the right in the preceding equation? If a negative sign or a subtraction symbol appears outside parentheses, drop the parentheses and change the sign of every term within the parentheses. For example,

$$
-\left(3 x^{2}-7 x-4\right)=-3 x^{2}+7 x+4
$$

EXAMPLE 9 Simplifying an Algebraic Expression

Simplify: $8 x+2[5-(x-3)]$.

SOLUTION

$$
\begin{aligned}
& 8 x+2[5-(x-3)] \\
&= 8 x+2[5-x+3] \\
& \text { Drop parentheses and change the sign of each } \\
&=8 x+2[8-x] \text { term in parentheses: }-(x-3)=-x+3 . \\
&=8 x+16-2 x \text { Simplify inside brackets: } 5+3=8 . \\
&= \text { Apply the distributive property: } \\
&=(8 x-2 x)+16 \\
&=(8-x-x]=2 \cdot 8-2 x=16-2 x . \\
&= 6 x+16
\end{aligned} \quad \begin{aligned}
& \text { Group like terms. } \\
& \text { Apply the distributive property. }
\end{aligned}
$$

\oint Check Point 9 simplify: $6+4[7-(x-2)]$.

Blitzer Bonus || Using Algebra to Measure Blood-Alcohol Concentration

The amount of alcohol in a person's blood is known as bloodalcohol concentration (BAC), measured in grams of alcohol per deciliter of blood. A BAC of 0.08 , meaning 0.08%, indicates that a person has 8 parts alcohol per 10,000 parts blood. In every state in the United States, it is illegal to drive with a BAC of 0.08 or higher.

How Do I Measure My Blood-Alcohol Concentration?

Here's a formula that models BAC for a person who weighs w pounds and who has n drinks* per hour.

*A drink can be a 12 -ounce can of beer, a 5 -ounce glass of wine, or a 1.5 -ounce shot of liquor. Each contains approximately 14 grams, or $\frac{1}{2}$ ounce, of alcohol.

Blood-alcohol concentration can be used to quantify the meaning of "tipsy."

BAC	Effects on Behavior
0.05	Feeling of well-being; mild release of inhibitions; absence of observable effects
0.08	Feeling of relaxation; mild sedation; exaggeration of emotions and behavior; slight impairment of motor skills; increase in reaction time
0.12	Muscle control and speech impaired; difficulty performing motor skills; uncoordinated behavior
0.15	Euphoria; major impairment of physical and mental functions; irresponsible behavior; some difficulty standing, walking, and talking
0.35	Surgical anesthesia; lethal dosage for a small percentage of people 0.40Lethal dosage for 50\% of people; severe circulatory and respiratory depression; alcohol poisoning/overdose

[^0]
(continues on next page)

Keeping in mind the meaning of "tipsy," we can use our model to compare blood-alcohol concentrations of a 120-pound person and a 200-pound person for various numbers of drinks.

We determined each BAC using a calculator, rounding to three decimal places.

Blood-Alcohol Concentrations of a 200-Pound Person

$$
\mathrm{BAC}=\frac{600 n}{200(0.6 n+169)}
$$

\boldsymbol{n} (number of drinks per hour)	1	2	3	4	5	6	7	8	9	10
BAC (blood-alcohol concentration)	0.018	0.035	0.053	0.070	$\underbrace{0.087}$	0.104	0.121	0.138	0.155	0.171

Like all mathematical models, the formula for BAC gives approximate rather than exact values. There are other variables that influence blood-alcohol concentration that are not contained
in the model. These include the rate at which an individual's body processes alcohol, how quickly one drinks, sex, age, physical condition, and the amount of food eaten prior to drinking.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A combination of numbers, variables, and operation symbols is called an algebraic
2. If n is a counting number, b^{n}, read \qquad indicates that there are n factors of b. The number b is called the \qquad and the number n is called the \qquad —.
3. An equation that expresses a relationship between two or more variables, such as $H=\frac{9}{10}(220-a)$, is called a /an \qquad . The process of finding such equations to describe real-world phenomena is called mathematical \qquad Such equations, together with the meaning assigned to the variables, are called mathematical \qquad -
4. The set of elements common to both set A and set B is called the \qquad of sets A and B, and is symbolized by \qquad
5. The set of elements that are members of set A or set B or of both sets is called the \qquad of sets A or B and is symbolized by
6. The set $\{1,2,3,4,5, \ldots\}$ is called the set of \qquad numbers.
7. The set $\{0,1,2,3,4,5, \ldots\}$ is called the set of \qquad numbers.
8. The set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is called the set of \qquad -.
9. The set of numbers in the form $\frac{a}{b}$, where a and b belong to the set in Exercise 8 and $b \neq 0$, is called the set of \qquad numbers.
10. The set of numbers whose decimal representations are neither terminating nor repeating is called the set of \qquad numbers.
11. Every real number is either $a / a n$ \qquad number or a/an \qquad number.
12. The notation $|x|$ is read the \qquad of x. If $x \geq 0$, then $|x|=$ \qquad . If $x<0$, then $|x|=$ ——.
13. The commutative properties state that $a+b=$ \qquad and $a b=$ \qquad
14. The associative properties state that $(a+b)+c=$
\qquad and \qquad $=a(b c)$.
15. The distributive property states that $a(b+c)=$ \qquad
16. $a+(-a)=\ldots$: The sum of a real number and its additive \qquad is _ , the additive \qquad -.
17. $a \cdot \frac{1}{a}=1, a \neq 0$: The product of a nonzero real number and its multiplicative \qquad is \qquad , the multiplicative \qquad
18. An algebraic expression is \qquad when parentheses have been removed and like terms have been combined.
19. $-(-a)=$.

EXERCISE SET P. 1

Practice Exercises

In Exercises 1-16, evaluate each algebraic expression for the given value or values of the variable(s).

1. $7+5 x$, for $x=10$
2. $8+6 x$, for $x=5$
3. $6 x-y$, for $x=3$ and $y=8$
4. $8 x-y$, for $x=3$ and $y=4$
5. $x^{2}+3 x$, for $x=8$
6. $x^{2}+5 x$, for $x=6$
7. $x^{2}-6 x+3$, for $x=7$
8. $x^{2}-7 x+4$, for $x=8$
9. $4+5(x-7)^{3}$, for $x=9$
10. $6+5(x-6)^{3}$, for $x=8$
11. $x^{2}-3(x-y)$, for $x=8$ and $y=2$
12. $x^{2}-4(x-y)$, for $x=8$ and $y=3$
13. $\frac{5(x+2)}{2 x-14}$, for $x=10$
14. $\frac{7(x-3)}{2 x-16}$, for $x=9$
15. $\frac{2 x+3 y}{x+1}$, for $x=-2$ and $y=4$
16. $\frac{2 x+y}{x y-2 x}$, for $x=-2$ and $y=4$

The formula

$$
C=\frac{5}{9}(F-32)
$$

expresses the relationship between Fahrenheit temperature, F, and Celsius temperature, C. In Exercises 17-18, use the formula to convert the given Fahrenheit temperature to its equivalent temperature on the Celsius scale.
17. $50^{\circ} \mathrm{F}$
18. $86^{\circ} \mathrm{F}$

A football was kicked vertically upward from a height of 4 feet with an initial speed of 60 feet per second. The formula

$$
h=4+60 t-16 t^{2}
$$

describes the ball's height above the ground, h, in feet, t seconds after it was kicked. Use this formula to solve Exercises 19-20.
19. What was the ball's height 2 seconds after it was kicked?
20. What was the ball's height 3 seconds after it was kicked?

In Exercises 21-28, find the intersection of the sets.
21. $\{1,2,3,4\} \cap\{2,4,5\}$
22. $\{1,3,7\} \cap\{2,3,8\}$
23. $\{s, e, t\} \cap\{t, e, s\}$
24. $\{r, e, a, l\} \cap\{l, e, a, r\}$
25. $\{1,3,5,7\} \cap\{2,4,6,8,10\}$
26. $\{0,1,3,5\} \cap\{-5,-3,-1\}$
27. $\{a, b, c, d\} \cap \varnothing$
28. $\{w, y, z\} \cap \varnothing$

In Exercises 29-34, find the union of the sets.
29. $\{1,2,3,4\} \cup\{2,4,5\}$
30. $\{1,3,7,8\} \cup\{2,3,8\}$
31. $\{1,3,5,7\} \cup\{2,4,6,8,10\}$
32. $\{0,1,3,5\} \cup\{2,4,6\}$
33. $\{a, e, i, o, u\} \cup \varnothing$

In Exercises 35-38, list all numbers from the given set that are a. natural numbers, b. whole numbers, c. integers, d. rational numbers, e. irrational numbers, f. real numbers.
35. $\left\{-9,-\frac{4}{5}, 0,0.25, \sqrt{3}, 9.2, \sqrt{100}\right\}$
36. $\{-7,-0 . \overline{6}, 0, \sqrt{49}, \sqrt{50}\}$
37. $\left\{-11,-\frac{5}{6}, 0,0.75, \sqrt{5}, \pi, \sqrt{64}\right\}$
38. $\{-5,-0 . \overline{3}, 0, \sqrt{2}, \sqrt{4}\}$
39. Give an example of a whole number that is not a natural number.
40. Give an example of a rational number that is not an integer.
41. Give an example of a number that is an integer, a whole number, and a natural number.
42. Give an example of a number that is a rational number, an integer, and a real number.
Determine whether each statement in Exercises 43-50 is true or false.
43. $-13 \leq-2$
44. $-6>2$
45. $4 \geq-7$
46. $-13<-5$
47. $-\pi \geq-\pi$
48. $-3>-13$
49. $0 \geq-6$
50. $0 \geq-13$

In Exercises 51-60, rewrite each expression without absolute value bars.
51. $|300|$
52. $|-203|$
53. $|12-\pi|$
54. $|7-\pi|$
55. $|\sqrt{2}-5|$
56. $|\sqrt{5}-13|$
57. $\frac{-3}{|-3|}$
58. $\frac{-7}{|-7|}$
59. $||-3|-|-7||$
60. $||-5|-|-13||$

In Exercises 61-66, evaluate each algebraic expression for $x=2$ and $y=-5$.
61. $|x+y|$
62. $|x-y|$
63. $|x|+|y|$
64. $|x|-|y|$
65. $\frac{y}{|y|}$
66. $\frac{|x|}{x}+\frac{|y|}{y}$

In Exercises 67-74, express the distance between the given numbers using absolute value. Then find the distance by evaluating the absolute value expression.
67. 2 and 17
68. 4 and 15
69. -2 and 5
70. -6 and 8
71. -19 and -4
72. -26 and -3
73. -3.6 and -1.4
74. -5.4 and -1.2

In Exercises 75-84, state the name of the property illustrated.
75. $6+(-4)=(-4)+6$
76. $11 \cdot(7+4)=11 \cdot 7+11 \cdot 4$
77. $6+(2+7)=(6+2)+7$
78. $6 \cdot(2 \cdot 3)=6 \cdot(3 \cdot 2)$
79. $(2+3)+(4+5)=(4+5)+(2+3)$
80. $7 \cdot(11 \cdot 8)=(11 \cdot 8) \cdot 7$
81. $2(-8+6)=-16+12$
82. $-8(3+11)=-24+(-88)$
83. $\frac{1}{(x+3)}(x+3)=1, x \neq-3$
84. $(x+4)+[-(x+4)]=0$

In Exercises 85-96, simplify each algebraic expression.
85. $5(3 x+4)-4$
86. $2(5 x+4)-3$
87. $5(3 x-2)+12 x$
88. $2(5 x-1)+14 x$
89. $7(3 y-5)+2(4 y+3)$
90. $4(2 y-6)+3(5 y+10)$
91. $5(3 y-2)-(7 y+2)$
92. $4(5 y-3)-(6 y+3)$
93. $7-4[3-(4 y-5)]$
94. $6-5[8-(2 y-4)]$
95. $18 x^{2}+4-\left[6\left(x^{2}-2\right)+5\right]$
96. $14 x^{2}+5-\left[7\left(x^{2}-2\right)+4\right]$

In Exercises 97-102, write each algebraic expression without parentheses.
97. $-(-14 x)$
98. $-(-17 y)$
99. $-(2 x-3 y-6)$
100. $-(5 x-13 y-1)$
101. $\frac{1}{3}(3 x)+[(4 y)+(-4 y)]$
102. $\frac{1}{2}(2 y)+[(-7 x)+7 x]$

Practice Plus

In Exercises 103-110, insert either $<,>$, or $=$ in the shaded area to make a true statement.
103. $|-6| \quad|-3|$
104. $|-20| \quad|-50|$
105. $\left|\frac{3}{5}\right|-|-0.6|$
106. $\left|\frac{5}{2}\right|-|-2.5|$
107. $\frac{30}{40}-\frac{3}{4}-\frac{14}{15} \cdot \frac{15}{14}$
108. $\frac{17}{18} \cdot \frac{18}{17}-\frac{50}{60}-\frac{5}{6}$
109. $\frac{8}{13} \div \frac{8}{13} \quad|-1|$
110. $|-2| \quad \frac{4}{17} \div \frac{4}{17}$

In Exercises 111-120, use the order of operations to simplify each expression.
111. $8^{2}-16 \div 2^{2} \cdot 4-3$
112. $10^{2}-100 \div 5^{2} \cdot 2-3$
113. $\frac{5 \cdot 2-3^{2}}{\left[3^{2}-(-2)\right]^{2}}$
114. $\frac{10 \div 2+3 \cdot 4}{(12-3 \cdot 2)^{2}}$
115. $8-3[-2(2-5)-4(8-6)]$
116. $8-3[-2(5-7)-5(4-2)]$
117. $\frac{2(-2)-4(-3)}{5-8}$
118. $\frac{6(-4)-5(-3)}{9-10}$
119. $\frac{(5-6)^{2}-2|3-7|}{89-3 \cdot 5^{2}}$
120. $\frac{12 \div 3 \cdot 5\left|2^{2}+3^{2}\right|}{7+3-6^{2}}$

In Exercises 121-128, write each English phrase as an algebraic expression. Then simplify the expression. Let x represent the number.
121. A number decreased by the sum of the number and four
122. A number decreased by the difference between eight and the number
123. Six times the product of negative five and a number
124. Ten times the product of negative four and a number
125. The difference between the product of five and a number and twice the number
126. The difference between the product of six and a number and negative two times the number
127. The difference between eight times a number and six more than three times the number
128. Eight decreased by three times the sum of a number and six

Application Exercises

The maximum heart rate, in beats per minute, that you should achieve during exercise is 220 minus your age:

$$
220-a .
$$

This algebraic expression gives maximum heart rate in terms of age, a.

The following bar graph shows the target heart rate ranges for four types of exercise goals. The lower and upper limits of these ranges are fractions of the maximum heart rate, $220-a$. Exercises 129-130 are based on the information in the graph.

129. If your exercise goal is to improve cardiovascular conditioning, the graph shows the following range for target heart rate, H, in beats per minute:

$$
\begin{array}{ll}
\text { Lower limit of range } & H=\frac{7}{10}(220-a) \\
\text { Upper limit of range } & H=\frac{4}{5}(220-a)
\end{array}
$$

a. What is the lower limit of the heart range, in beats per minute, for a 20-year-old with this exercise goal?
b. What is the upper limit of the heart range, in beats per minute, for a 20 -year-old with this exercise goal?
130. If your exercise goal is to improve overall health, the graph shows the following range for target heart rate, H, in beats per minute:

$$
\begin{array}{ll}
\text { Lower limit of range } & H=\frac{1}{2}(220-a) \\
\text { Upper limit of range } & H=\frac{3}{5}(220-a)
\end{array}
$$

a. What is the lower limit of the heart range, in beats per minute, for a 30 -year-old with this exercise goal?
b. What is the upper limit of the heart range, in beats per minute, for a 30-year-old with this exercise goal?

The bar graph shows the average cost of tuition and fees at private four-year colleges in the United States.

Source: The College Board

The formula

$$
T=26 x^{2}+819 x+15,527
$$

models the average cost of tuition and fees, T, at private U.S. colleges for the school year ending x years after 2000. Use this information to solve Exercises 131-132.
131. a. Use the formula to find the average cost of tuition and fees at private U.S. colleges for the school year ending in 2010.
b. By how much does the formula underestimate or overestimate the actual cost shown by the graph for the school year ending in 2010?
c. Use the formula to project the average cost of tuition and fees at private U.S. colleges for the school year ending in 2013.
132. a. Use the formula to find the average cost of tuition and fees at private U.S. colleges for the school year ending in 2009.
b. By how much does the formula underestimate or overestimate the actual cost shown by the graph for the school year ending in $2009 ?$
c. Use the formula to project the average cost of tuition and fees at private U.S. colleges for the school year ending in 2012.
133. You had $\$ 10,000$ to invest. You put x dollars in a safe, government-insured certificate of deposit paying 5\% per year. You invested the remainder of the money in noninsured corporate bonds paying 12% per year. Your total interest earned at the end of the year is given by the algebraic expression

$$
0.05 x+0.12(10,000-x)
$$

a. Simplify the algebraic expression.
b. Use each form of the algebraic expression to determine your total interest earned at the end of the year if you invested $\$ 6000$ in the safe, government-insured certificate of deposit.
134. It takes you 50 minutes to get to campus. You spend t minutes walking to the bus stop and the rest of the time riding the bus. Your walking rate is 0.06 mile per minute and the bus travels at a rate of 0.5 mile per minute. The total distance walking and traveling by bus is given by the algebraic expression

$$
0.06 t+0.5(50-t)
$$

a. Simplify the algebraic expression.
b. Use each form of the algebraic expression to determine the total distance that you travel if you spend 20 minutes walking to the bus stop.
135. Read the Blitzer Bonus beginning on page 15 . Use the formula

$$
\mathrm{BAC}=\frac{600 n}{w(0.6 n+169)}
$$

and replace w with your body weight. Using this formula and a calculator, compute your BAC for integers from $n=1$ to $n=10$. Round to three decimal places. According to this model, how many drinks can you consume in an hour without exceeding the legal measure of drunk driving?

Writing in Mathematics

Writing about mathematics will help you learn mathematics. For all writing exercises in this book, use complete sentences to respond to the question. Some writing exercises can be answered in a sentence; others require a paragraph or two. You can decide how much you need to write as long as your writing clearly and directly answers the question in the exercise. Standard references such as a dictionary and a thesaurus should be helpful.
136. What is an algebraic expression? Give an example with your explanation.
137. If n is a natural number, what does b^{n} mean? Give an example with your explanation.
138. What does it mean when we say that a formula models real-world phenomena?
139. What is the intersection of sets A and B ?
140. What is the union of sets A and B ?
141. How do the whole numbers differ from the natural numbers?
142. Can a real number be both rational and irrational? Explain your answer.
143. If you are given two real numbers, explain how to determine which is the lesser.

Critical Thinking Exercises

Make Sense? In Exercises 144-147, determine whether each statement makes sense or does not make sense, and explain your reasoning.
144. My mathematical model describes the data for tuition and fees at public four-year colleges for the past ten years extremely well, so it will serve as an accurate prediction for the cost of public colleges in 2050.
145. A model that describes the average cost of tuition and fees at private U.S. colleges for the school year ending x years after 2000 cannot be used to estimate the cost of private education for the school year ending in 2000.
146. The humor in this cartoon is based on the fact that the football will never be hiked.

Foxtrot © 2003, 2009 by Bill Amend/Used by permission of Universal Uclick. All rights reserved.
147. Just as the commutative properties change groupings, the associative properties change order.
In Exercises 148-155, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
148. Every rational number is an integer.
149. Some whole numbers are not integers.
150. Some rational numbers are not positive.
151. Irrational numbers cannot be negative.
152. The term x has no coefficient.
153. $5+3(x-4)=8(x-4)=8 x-32$
154. $-x-x=-x+(-x)=0$
155. $x-0.02(x+200)=0.98 x-4$

In Exercises 156-158, insert either $<$ or $>$ in the shaded area between the numbers to make the statement true.
156. $\sqrt{2} 1.5$
157. $-\pi-3.5$
158. $-\frac{3.14}{2}-\frac{\pi}{2}$

Preview Exercises

Exercises 159-161 will help you prepare for the material covered in the next section.
159. In parts (a) and (b), complete each statement.
a. $b^{4} \cdot b^{3}=(b \cdot b \cdot b \cdot b)(b \cdot b \cdot b)=b^{\text {? }}$
b. $b^{5} \cdot b^{5}=(b \cdot b \cdot b \cdot b \cdot b)(b \cdot b \cdot b \cdot b \cdot b)=b^{\text {? }}$
c. Generalizing from parts (a) and (b), what should be done with the exponents when multiplying exponential expressions with the same base?
160. In parts (a) and (b), complete each statement.
a. $\frac{b^{7}}{b^{3}}=\frac{b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b}{b \cdot b \cdot b}=b^{?}$
b. $\frac{b^{8}}{b^{2}}=\frac{b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b}{b \cdot b}=b^{\text {? }}$
c. Generalizing from parts (a) and (b), what should be done with the exponents when dividing exponential expressions with the same base?
161. If 6.2 is multiplied by 10^{3}, what does this multiplication do to the decimal point in 6.2 ?

SECTION P. 2

 Exponents and Scientific Notation
Objectives

(1) Use properties of exponents.
2. Simplify exponential expressions.
(3) Use scientific notation.

Bigger than the biggest thing ever and then some. Much bigger than that in fact, really amazingly immense, a totally stunning size, real 'wow, that's big', time ... Gigantic multiplied by colossal multiplied by staggeringly huge is the sort of concept we're trying to get across here.

Douglas Adams, The Restaurant at the End of the Universe

Although Adams's description may not quite apply to this $\$ 15.2$ trillion national debt, exponents can be used to explore the meaning of this "staggeringly huge" number. In this section, you will learn to use exponents to provide a way of putting large and small numbers in perspective.

Properties of Exponents

The major properties of exponents are summarized in the box that follows on the next page.

GREAT QUESTION!

Cut to the chase. What do I do with negative exponents?
When a negative integer appears as an exponent, switch the position of the base (from numerator to denominator or from denominator to numerator) and make the exponent positive.

GREAT QUESTION!

What's the difference between $\frac{4^{3}}{4^{5}}$ and $\frac{4^{5}}{4^{3}}$?
These quotients represent different numbers:

$$
\begin{aligned}
& \frac{4^{3}}{4^{5}}=4^{3-5}=4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} \\
& \frac{4^{5}}{4^{3}}=4^{5-3}=4^{2}=16
\end{aligned}
$$

Properties of Exponents

Property

The Negative-Exponent Rule
If b is any real number other than 0 and n is a natural number, then

$$
b^{-n}=\frac{1}{b^{n}}
$$

Examples

- $5^{-3}=\frac{1}{5^{3}}=\frac{1}{125}$
- $\frac{1}{4^{-2}}=\frac{1}{\frac{1}{4^{2}}}=4^{2}=16$

The Zero-Exponent Rule

If b is any real number other than 0 ,

$$
b^{0}=1
$$

- $7^{0}=1$
- $(-5)^{0}=1$
- $-5^{0}=-1$

Only 5 is raised to the zero power.

The Product Rule

If b is a real number or algebraic

- $2^{2} \cdot 2^{3}=2^{2+3}=2^{5}=32$ expression, and m and n are integers,

$$
x^{-3} \cdot x^{7}=x^{-3+7}=x^{4}
$$

When multiplying exponential expressions with the same base, add the exponents. Use this sum as the exponent of the common base.

The Power Rule

If b is a real number or algebraic expression, and m and n are integers,

$$
\left(b^{m}\right)^{n}=b^{m n}
$$

- $\left(2^{2}\right)^{3}=2^{2 \cdot 3}=2^{6}=64$
- $\left(x^{-3}\right)^{4}=x^{-3 \cdot 4}=x^{-12}=\frac{1}{x^{12}}$

When an exponential expression is raised to a power, multiply the exponents. Place the product of the exponents on the base and remove the parentheses.

The Quotient Rule

If b is a nonzero real number or

- $\frac{2^{8}}{2^{4}}=2^{8-4}=2^{4}=16$ algebraic expression, and m and n are integers,

$$
\frac{b^{m}}{b^{n}}=b^{m-n}
$$

- $\frac{x^{3}}{x^{7}}=x^{3-7}=x^{-4}=\frac{1}{x^{4}}$

When dividing exponential expressions with the same nonzero base, subtract the exponent in the denominator from the exponent in the numerator. Use this difference as the exponent of the common base.

Products Raised to Powers

If a and b are real numbers or algebraic expressions, and n is an integer,

- $(-2 y)^{4}=(-2)^{4} y^{4}=16 y^{4}$

$$
(a b)^{n}=a^{n} b^{n}
$$

- $(-2 x y)^{3}=(-2)^{3} x^{3} y^{3}=-8 x^{3} y^{3}$

When a product is raised to a power, raise each factor to that power.

Quotients Raised to Powers

If a and b are real numbers, $b \neq 0$, or algebraic expressions, and n is an integer, - $\left(\frac{2}{5}\right)^{4}=\frac{2^{4}}{5^{4}}=\frac{16}{625}$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

$$
\left(-\frac{3}{x}\right)^{3}=\frac{(-3)^{3}}{x^{3}}=-\frac{27}{x^{3}}
$$

When a quotient is raised to a power, raise the numerator to that power and divide by the denominator to that power.
(2) Simplify exponential expressions.

Simplifying Exponential Expressions

Properties of exponents are used to simplify exponential expressions. An exponential expression is simplified when

- No parentheses appear.
- No powers are raised to powers.
- Each base occurs only once.
- No negative or zero exponents appear.

Simplifying Exponential Expressions

	Example
$(a b)^{n}=a^{n} b^{n} \quad$ or $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$.	$(x y)^{3}=x^{3} y^{3}$
1. If necessary, remove parentheses by using	$\left(x^{4}\right)^{3}=x^{4 \cdot 3}=x^{12}$
2. If necessary, simplify powers to powers by using $\left(b^{m}\right)^{n}=b^{m n}$	
3. If necessary, be sure that each base appears only once by using	

$$
\begin{array}{l|l}
b^{m} \cdot b^{n}=b^{m+n} \quad \text { or } \quad \frac{b^{m}}{b^{n}}=b^{m-n} . & x^{4} \cdot x^{3}=x^{4+3}=x^{7}
\end{array}
$$

4. If necessary, rewrite exponential expressions with zero powers as $1\left(b^{0}=1\right)$. Furthermore, write the answer with positive exponents by using

$$
\begin{array}{l|l}
b^{-n}=\frac{1}{b^{n}} \text { or } \frac{1}{b^{-n}}=b^{n} . \quad \left\lvert\, \frac{x^{5}}{x^{8}}=x^{5-8}=x^{-3}=\frac{1}{x^{3}}\right.
\end{array}
$$

The following example shows how to simplify exponential expressions. Throughout the example, assume that no variable in a denominator is equal to zero.

EXAMPLE 1 Simplifying Exponential Expressions

Simplify:
a. $\left(-3 x^{4} y^{5}\right)^{3}$
b. $\left(-7 x y^{4}\right)\left(-2 x^{5} y^{6}\right)$
c. $\frac{-35 x^{2} y^{4}}{5 x^{6} y^{-8}}$
d. $\left(\frac{4 x^{2}}{y}\right)^{-3}$.

SOLUTION

a. $\left(-3 x^{4} y^{5}\right)^{3}=(-3)^{3}\left(x^{4}\right)^{3}\left(y^{5}\right)^{3} \quad$ Raise each factor inside the parentheses to the third power.

$$
\begin{array}{ll}
=(-3)^{3} x^{4 \cdot 3} y^{5 \cdot 3} & \text { Multiply the exponents when raising powers to powers. } \\
=-27 x^{12} y^{15} & (-3)^{3}=(-3)(-3)(-3)=-27
\end{array}
$$

b. $\left(-7 x y^{4}\right)\left(-2 x^{5} y^{6}\right)=(-7)(-2) x x^{5} y^{4} y^{6} \quad$ Group factors with the same base.

$$
\begin{array}{ll}
=14 x^{1+5} y^{4+6} & \begin{array}{l}
\text { When multiplying expressions with the } \\
\text { same base, add the exponents. }
\end{array} \\
=14 x^{6} y^{10} & \text { Simplify. }
\end{array}
$$

c. $\frac{-35 x^{2} y^{4}}{5 x^{6} y^{-8}}=\left(\frac{-35}{5}\right)\left(\frac{x^{2}}{x^{6}}\right)\left(\frac{y^{4}}{y^{-8}}\right)$ Group factors with the same base.

$$
\begin{array}{ll}
=-7 x^{2-6} y^{4-(-8)} & \begin{array}{l}
\text { When dividing expressions with the same } \\
\text { base, subtract the exponents. }
\end{array} \\
=-7 x^{-4} y^{12} & \text { Simplify. Notice that } 4-(-8)=4+8=12 .
\end{array}
$$

$$
=\frac{-7 y^{12}}{x^{4}} \quad \begin{aligned}
& \text { Write as a fraction and move the base with } \\
& \text { the nearative exponent, } x^{-4} \text { to the other side }
\end{aligned}
$$ the negative exponent, x^{-4}, to the other side of the fraction bar and make the negative exponent positive.

d. $\left(\frac{4 x^{2}}{y}\right)^{-3}=\frac{\left(4 x^{2}\right)^{-3}}{y^{-3}} \quad$ Raise the numerator and the denominator to the -3 power.

$$
\begin{aligned}
& =\frac{4^{-3}\left(x^{2}\right)^{-3}}{y^{-3}} \text { Raise each factor inside the parentheses to the }-3 \text { power. } \\
& =\frac{4^{-3} x^{-6}}{y^{-3}} \quad \begin{array}{l}
\text { Multiply the exponents when raising a power to a power: } \\
\left(x^{2}\right)^{-3}=x^{2(-3)}=x^{-6} .
\end{array}
\end{aligned}
$$

$$
=\frac{y^{3}}{4^{3} x^{6}} \quad \begin{aligned}
& \text { Move each base with a negative exponent to the other side of } \\
& \text { the fraction bar and make each negative exponent positive. }
\end{aligned}
$$

$$
=\frac{y^{3}}{64 x^{6}} \quad 4^{3}=4 \cdot 4 \cdot 4=64
$$

$\$$ Check Point 1 simplify:

a. $\left(2 x^{3} y^{6}\right)^{4}$
b. $\left(-6 x^{2} y^{5}\right)\left(3 x y^{3}\right)$
c. $\frac{100 x^{12} y^{2}}{20 x^{16} y^{-4}}$
d. $\left(\frac{5 x}{y^{4}}\right)^{-2}$.

GREAT QUESTION!

Simplifying exponential expressions seems to involve lots of steps. Are there common errors I can avoid along the way?
Yes. Here's a list. The first column has the correct simplification. The second column contains common errors you should try to avoid.

Correct	Incorrect	Description of Error		
$b^{3} \cdot b^{4}=b^{7}$	$b^{3} \cdot b^{4}=b^{12}$	$3^{2} \cdot 3^{4}=9^{6}$		The exponents should be added, not
:---				
multiplied.				

Scientific Notation

As of December 2011, the national debt of the United States was about $\$ 15.2$ trillion. This is the amount of money the government has had to borrow over the years, mostly by selling bonds, because it has spent more than it has collected in taxes. A stack of $\$ 1$ bills equaling the national debt would measure more than 950,000 miles. That's more than two round trips from Earth to the moon. Because a trillion is 10^{12} (see Table P.3), the national debt can be expressed as

$$
15.2 \times 10^{12}
$$

Because $15.2=1.52 \times 10$, the national debt can be expressed as

$$
\begin{aligned}
15.2 \times 10^{12} & =(1.52 \times 10) \times 10^{12}=1.52 \times\left(10 \times 10^{12}\right) \\
& =1.52 \times 10^{1+12}=1.52 \times 10^{13}
\end{aligned}
$$

The number 1.52×10^{13} is written in a form called scientific notation.

Scientific Notation

A number is written in scientific notation when it is expressed in the form

$$
a \times 10^{n}
$$

where the absolute value of a is greater than or equal to 1 and less than 10 $(1 \leq|a|<10)$, and n is an integer.

It is customary to use the multiplication symbol, \times, rather than a dot, when writing a number in scientific notation.

Converting from Scientific to Decimal Notation

Here are two examples of numbers in scientific notation:

$$
\begin{aligned}
& 6.4 \times 10^{5} \quad \text { means } \quad 640,000 \\
& 2.17 \times 10^{-3} \quad \text { means } \\
& 0.00217
\end{aligned}
$$

Do you see that the number with the positive exponent is relatively large and the number with the negative exponent is relatively small?

We can use n, the exponent on the 10 in $a \times 10^{n}$, to change a number in scientific notation to decimal notation. If n is positive, move the decimal point in a to the right n places. If n is negative, move the decimal point in a to the left $|n|$ places.

EXAMPLE 2 Converting from Scientific to Decimal Notation

Write each number in decimal notation:
a. 6.2×10^{7}
b. -6.2×10^{7}
c. 2.019×10^{-3}
d. -2.019×10^{-3}.

SOLUTION

In each case, we use the exponent on the 10 to determine how far to move the decimal point and in which direction. In parts (a) and (b), the exponent is positive, so we move the decimal point to the right. In parts (c) and (d), the exponent is negative, so we move the decimal point to the left.
a. $6.2 \times 10^{7}=62,000,000$
$n=7 \quad$ Move the decimal point
7 places to the right.
b. $-6.2 \times 10^{7}=-62,000,000$
$n=7 \quad$ Move the decimal point 7 places to the right.
c. $2.019 \times 10^{-3}=0.002019$
$n=-3 \quad$ Move the decimal point $|-3|$ places, or 3 places, to the left.
d. $-2.019 \times 10^{-3}=-0.002019$
$n=-3 \quad$ Move the decimal point $|-3|$ places, or 3 places, to the left.
$\$$ Check Point 2 Write each number in decimal notation:
a. -2.6×10^{9}
b. 3.017×10^{-6}.

Converting from Decimal to Scientific Notation

To convert from decimal notation to scientific notation, we reverse the procedure of Example 2.

Converting from Decimal to Scientific Notation

Write the number in the form $a \times 10^{n}$.

- Determine a, the numerical factor. Move the decimal point in the given number to obtain a number whose absolute value is between 1 and 10 , including 1 .
- Determine n, the exponent on 10^{n}. The absolute value of n is the number of places the decimal point was moved. The exponent n is positive if the decimal point was moved to the left, negative if the decimal point was moved to the right, and 0 if the decimal point was not moved.

EXAMPLE 3 Converting from Decimal Notation to Scientific Notation

Write each number in scientific notation:
a. $34,970,000,000,000$
b. $-34,970,000,000,000$
c. 0.0000000000802
d. -0.0000000000802 .

SOLUTION
a. $34,970,000,000,000=3.497 \times 10^{13}$

Move the decimal point to get a number whose absolute value is between 1 and 10.

The decimal point was moved 13 places to the left, so $n=13$.
b. $-34,970,000,000,000=-3.497 \times 10^{13}$

TECHNOLOGY

You can use your calculator's
EE (enter exponent) or EXP
key to convert from decimal to scientific notation. Here is how it's done for 0.0000000000802 .

Many Scientific Calculators

Keystrokes
$.0000000000802 \mathrm{EE}=$
Display

$$
8.02-11
$$

Many Graphing Calculators
Use the mode setting for scientific notation.

Keystrokes
.0000000000802 ENTER
Display

$$
8.02 \mathrm{E}-11
$$

TECHNOLOGY

$\left(6.1 \times 10^{5}\right)\left(4 \times 10^{-9}\right)$
On a Calculator:

Many Scientific Calculators

Display

$$
2.44-03
$$

Many Graphing Calculators

6.1 EE $5 \times \times 4$ EE $(-) 9$ ENTER

Display (in scientific notation mode)

$$
2.44 \mathrm{E}-3
$$

c. $\underset{\sim}{0.0000000000802}=8.02 \times 10^{-11}$

Move the decimal point to get a number whose absolute value is between 1 and 10 .

GREAT QUESTION!

In scientific notation, which numbers have positive exponents and which have negative exponents?

If the absolute value of a number is
d. $-0.0000000000802=-8.02 \times 10^{-11}$

Check Point 3 Write each number in scientific notation: greater than 10 , it will have a positive exponent in scientific notation. If the absolute value of a number is less than 1 , it will have a negative exponent in scientific notation.
a. 5,210,000,000
b. -0.00000006893

EXAMPLE 4 Expressing the U.S. Population in Scientific Notation

As of December 2011, the population of the United States was approximately 312 million. Express the population in scientific notation.

SOLUTION

Because a million is 10^{6}, the 2011 population can be expressed as

$$
312 \times 10^{6}
$$

This factor is not between 1 and 10 , so the number is not in scientific notation.

The voice balloon indicates that we need to convert 312 to scientific notation.

$$
\begin{aligned}
312 \times 10^{6}= & \left(3.12 \times 10^{2}\right) \times 10^{6}=3.12 \times 10^{2+6}=3.12 \times 10^{8} \\
& 312=3.12 \times 10^{2}
\end{aligned}
$$

In scientific notation, the population is 3.12×10^{8}.

\int Check Point 4 Express 410×10^{7} in scientific notation.

Computations with Scientific Notation

Properties of exponents are used to perform computations with numbers that are expressed in scientific notation.

EXAMPLE 5 Computations with Scientific Notation

Perform the indicated computations, writing the answers in scientific notation:
a. $\left(6.1 \times 10^{5}\right)\left(4 \times 10^{-9}\right)$
b. $\frac{1.8 \times 10^{4}}{3 \times 10^{-2}}$.

SOLUTION

a. $\left(6.1 \times 10^{5}\right)\left(4 \times 10^{-9}\right)$

$$
\begin{array}{ll}
=(6.1 \times 4) \times\left(10^{5} \times 10^{-9}\right) & \begin{array}{l}
\text { Regroup factors. } \\
=24.4 \times 10^{5+(-9)}
\end{array} \\
& \begin{array}{l}
\text { Add the exponents on } 10 \text { and multiply } \\
\text { the other parts. }
\end{array} \\
=24.4 \times 10^{-4} & \\
=\left(2.44 \times 10^{1}\right) \times 10^{-4} & \\
& \text { Sonplify. } \\
=24.44 \times 10^{-3} & \\
24.4=24.44 \times 10^{1} .
\end{array}
$$

$$
\text { b. } \begin{array}{rlrl}
\frac{1.8 \times 10^{4}}{3 \times 10^{-2}} & =\left(\frac{1.8}{3}\right) \times\left(\frac{10^{4}}{10^{-2}}\right) & & \text { Regroup factors. } \\
& =0.6 \times 10^{4-(-2)} & & \text { Subtract the exponents on } 10 \text { and divide } \\
& =0.6 \times 10^{6} & & \text { the other parts. } \\
& =\left(6 \times 10^{-1}\right) \times 10^{6} & & \text { Simplify: } 4-(-2)=4+2=6 . \\
& =6 \times 10^{5} & & 0.6=6 \times 10^{-1} . \\
& & 10^{-1} \times 10^{6}=10^{-1+6}=10^{5}
\end{array}
$$

$\$$ Check Point 5 Perform the indicated computations, writing the answers in scientific notation:
a. $\left(7.1 \times 10^{5}\right)\left(5 \times 10^{-7}\right)$
b. $\frac{1.2 \times 10^{6}}{3 \times 10^{-3}}$.

Applications: Putting Numbers in Perspective

Due to tax cuts and spending increases, the United States began accumulating large deficits in the 1980s. To finance the deficit, the government had borrowed $\$ 15.2$ trillion as of December 2011. The graph in Figure P. 10 shows the national debt increasing over time.

FIGURE P. 10
Source: Office of Management and Budget

Example 6 shows how we can use scientific notation to comprehend the meaning of a number such as 15.2 trillion.

EXAMPLE 6 The National Debt

As of December 2011, the national debt was $\$ 15.2$ trillion, or 15.2×10^{12} dollars. At that time, the U.S. population was approximately $312,000,000$ (312 million), or 3.12×10^{8}. If the national debt was evenly divided among every individual in the United States, how much would each citizen have to pay?

SOLUTION

The amount each citizen must pay is the total debt, 15.2×10^{12} dollars, divided by the number of citizens, 3.12×10^{8}.

$$
\begin{aligned}
\frac{15.2 \times 10^{12}}{3.12 \times 10^{8}} & =\left(\frac{15.2}{3.12}\right) \times\left(\frac{10^{12}}{10^{8}}\right) \\
& \approx 4.87 \times 10^{12-8} \\
& =4.87 \times 10^{4} \\
& =48,700
\end{aligned}
$$

Every U.S. citizen would have to pay approximately $\$ 48,700$ to the federal government to pay off the national debt.
$\$$ Check Point 6 As of December 2011, the United States had spent $\$ 2.6$ trillion for the wars in Iraq and Afghanistan. (Source: costsofwar.org) At that time, the U.S. population was approximately 312 million $\left(3.12 \times 10^{8}\right)$. If the cost of these wars was evenly divided among every individual in the United States, how much, to the nearest hundred dollars, would each citizen have to pay?

An Application: Black Holes in Space

The concept of a black hole, a region in space where matter appears to vanish, intrigues scientists and nonscientists alike. Scientists theorize that when massive stars run out of nuclear fuel, they begin to collapse under the force of their own gravity. As the star collapses, its density increases. In turn, the force of gravity increases so tremendously that even light cannot escape from the star. Consequently, it appears black.

A mathematical model, called the Schwarzchild formula, describes the critical value to which the radius of a massive body must be reduced for it to become a black hole. This model forms the basis of our next example.

EXAMPLE 7 An Application of Scientific Notation

Use the Schwarzchild formula

$$
R_{s}=\frac{2 G M}{c^{2}}
$$

where

$$
\begin{aligned}
R_{s} & =\text { Radius of the star, in meters, that would cause it to become a black hole } \\
M & =\text { Mass of the star, in kilograms } \\
G & =\text { A constant, called the gravitational constant } \\
& =6.7 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \\
c & =\text { Speed of light } \\
& =3 \times 10^{8} \text { meters per second }
\end{aligned}
$$

to determine to what length the radius of the sun must be reduced for it to become a black hole. The sun's mass is approximately 2×10^{30} kilograms.

SOLUTION

$$
\begin{array}{rlrl}
R_{s} & =\frac{2 G M}{c^{2}} & & \text { Use the given model. } \\
& =\frac{2 \times 6.7 \times 10^{-11} \times 2 \times 10^{30}}{\left(3 \times 10^{8}\right)^{2}} & \begin{array}{l}
\text { Substitute the given values: } \\
G=6.7 \times 10^{-11}, M=2 \times 10^{30}, \text { and } \\
c=3 \times 10^{8} .
\end{array} \\
& =\frac{(2 \times 6.7 \times 2) \times\left(10^{-11} \times 10^{30}\right)}{\left(3 \times 10^{8}\right)^{2}} & & \text { Rearrange factors in the numerator. } \\
& =\frac{26.8 \times 10^{-11+30}}{3^{2} \times\left(10^{8}\right)^{2}} & \begin{array}{l}
\text { Add exponents in the numerator. Raise each } \\
\text { factor in the denominator to the power. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& =\frac{26.8 \times 10^{19}}{9 \times 10^{16}} \\
& =\frac{26.8}{9} \times 10^{19-16} \\
& \approx 2.978 \times 10^{3} \\
& =2978
\end{aligned}
$$

Multiply powers to powers:
$\left(10^{8}\right)^{2}=10^{8 \cdot 2}=10^{16}$.
When dividing expressions with the same base, subtract the exponents.
Simplify.

Although the sun is not massive enough to become a black hole (its radius is approximately 700,000 kilometers), the Schwarzchild model theoretically indicates that if the sun's radius were reduced to approximately 2978 meters, that is, about $\frac{1}{235,000}$ its present size, it would become a black hole.
W Check Point 7 The speed of blood, S, in centimeters per second, located r centimeters from the central axis of an artery is modeled by

$$
S=\left(1.76 \times 10^{5}\right)\left[\left(1.44 \times 10^{-2}\right)-r^{2}\right] .
$$

Find the speed of blood at the central axis of this artery.

Blitzer Bonus || Seven Ways to Spend \$1 Trillion

Image © photobank.kiev.ua, 2009

Confronting a national debt of $\$ 15.2$ trillion starts with grasping just how colossal $\$ 1$ trillion $\left(1 \times 10^{12}\right)$ actually is. To help you wrap your head around this mind-boggling number, and to put the national debt in further perspective, consider what $\$ 1$ trillion will buy:

- $40,816,326$ new cars based on an average sticker price of $\$ 24,500$ each
- 5,574,136 homes based on the national median price of $\$ 179,400$ for existing single-family homes
- one year's salary for 14.7 million teachers based on the average teacher salary of \$68,000 in California
- the annual salaries of all 535 members of Congress for the next 10,742 years based on current salaries of $\$ 174,000$ per year
- the salary of basketball superstar LeBron James for 50,000 years based on an annual salary of $\$ 20$ million
- annual base pay for 59.5 million U.S. privates (that's 100 times the total number of active-duty soldiers in the Army) based on basic pay of $\$ 16,794$ per year
- salaries to hire all 2.8 million residents of the state of Kansas in full-time minimum-wage jobs for the next 23 years based on the federal minimum wage of $\$ 7.25$ per hour
Source: Kiplinger.com

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The product rule for exponents states that $b^{m} \cdot b^{n}=$ \qquad When multiplying exponential expressions with the same base, \qquad the exponents.
2. The quotient rule for exponents states that $\frac{b^{m}}{b^{n}}=$
\qquad ,$b \neq 0$. When dividing exponential expressions with the same nonzero base, \qquad the exponents.
3. If $b \neq 0$, then $b^{0}=$ \qquad .
4. The negative-exponent rule states that $b^{-n}=$ \qquad —, $b \neq 0$.
5. True or false: $5^{-2}=-5^{2}$
6. Negative exponents in denominators can be evaluated using $\frac{1}{b^{-n}}=\ldots, b \neq 0$.
7. True or false: $\frac{1}{8^{-2}}=8^{2}$ \qquad
8. A positive number is written in scientific notation when it is expressed in the form $a \times 10^{n}$, where a is and n is a/an \qquad _.
9. True or false: 4×10^{3} is written in scientific notation. \qquad
10. True or false: 40×10^{2} is written in scientific notation. \qquad

EXERCISE SET P. 2

Practice Exercises

Evaluate each exponential expression in Exercises 1-22.

1. $5^{2} \cdot 2$
2. $6^{2} \cdot 2$
3. $(-2)^{6}$
4. $(-2)^{4}$
5. -2^{6}
6. -2^{4}
7. $(-3)^{0}$
8. $(-9)^{0}$
9. -3^{0}
10. -9^{0}
11. 4^{-3}
12. 2^{-6}
13. $2^{2} \cdot 2^{3}$
14. $3^{3} \cdot 3^{2}$
15. $\left(2^{2}\right)^{3}$
16. $\left(3^{3}\right)^{2}$
17. $\frac{2^{8}}{2^{4}}$
18. $\frac{3^{8}}{3^{4}}$
19. $3^{-3} \cdot 3$
20. $2^{-3} \cdot 2$
21. $\frac{2^{3}}{2^{7}}$
22. $\frac{3^{4}}{3^{7}}$

Simplify each exponential expression in Exercises 23-64.
23. $x^{-2} y$
25. $x^{0} y^{5}$
27. $x^{3} \cdot x^{7}$
24. $x y^{-3}$
29. $x^{-5} \cdot x^{10}$
31. $\left(x^{3}\right)^{7}$
33. $\left(x^{-5}\right)^{3}$
35. $\frac{x^{14}}{x^{7}}$
37. $\frac{x^{14}}{x^{-7}}$
39. $\left(8 x^{3}\right)^{2}$
41. $\left(-\frac{4}{x}\right)^{3}$
43. $\left(-3 x^{2} y^{5}\right)^{2}$
45. $\left(3 x^{4}\right)\left(2 x^{7}\right)$
47. $\left(-9 x^{3} y\right)\left(-2 x^{6} y^{4}\right)$
49. $\frac{8 x^{20}}{2 x^{4}}$
51. $\frac{25 a^{13} b^{4}}{-5 a^{2} b^{3}}$
53. $\frac{14 b^{7}}{7 b^{14}}$
55. $\left(4 x^{3}\right)^{-2}$
57. $\frac{24 x^{3} y^{5}}{32 x^{7} y^{-9}}$
59. $\left(\frac{5 x^{3}}{y}\right)^{-2}$
61. $\left(\frac{-15 a^{4} b^{2}}{5 a^{10} b^{-3}}\right)^{3}$
26. $x^{7} y^{0}$
28. $x^{11} \cdot x^{5}$
30. $x^{-6} \cdot x^{12}$
32. $\left(x^{11}\right)^{5}$
34. $\left(x^{-6}\right)^{4}$
36. $\frac{x^{30}}{x^{10}}$
38. $\frac{x^{30}}{x^{-10}}$
40. $\left(6 x^{4}\right)^{2}$
42. $\left(-\frac{6}{y}\right)^{3}$
44. $\left(-3 x^{4} y^{6}\right)^{3}$
46. $\left(11 x^{5}\right)\left(9 x^{12}\right)$
48. $\left(-5 x^{4} y\right)\left(-6 x^{7} y^{11}\right)$
50. $\frac{20 x^{24}}{10 x^{6}}$
52. $\frac{35 a^{14} b^{6}}{-7 a^{7} b^{3}}$
54. $\frac{20 b^{10}}{10 b^{20}}$
56. $\left(10 x^{2}\right)^{-3}$
58. $\frac{10 x^{4} y^{9}}{30 x^{12} y^{-3}}$
60. $\left(\frac{3 x^{4}}{y}\right)^{-3}$
62. $\left(\frac{-30 a^{14} b^{8}}{10 a^{17} b^{-2}}\right)^{3}$
63. $\left(\frac{3 a^{-5} b^{2}}{12 a^{3} b^{-4}}\right)^{0}$
64. $\left(\frac{4 a^{-5} b^{3}}{12 a^{3} b^{-5}}\right)^{0}$

In Exercises 65-76, write each number in decimal notation without the use of exponents.
65. 3.8×10^{2}
66. 9.2×10^{2}
67. 6×10^{-4}
68. 7×10^{-5}
69. -7.16×10^{6}
70. -8.17×10^{6}
71. 7.9×10^{-1}
72. 6.8×10^{-1}
73. -4.15×10^{-3}
74. -3.14×10^{-3}
75. -6.00001×10^{10}
76. -7.00001×10^{10}

In Exercises 77-86, write each number in scientific notation.
77. 32,000
78. 64,000
79. $638,000,000,000,000,000$
80. $579,000,000,000,000,000$
81. -5716
82. -3829
83. 0.0027
84. 0.0083
85. -0.00000000504
86. -0.00000000405

In Exercises 87-106, perform the indicated computations. Write the answers in scientific notation. If necessary, round the decimal factor in your scientific notation answer to two decimal places.
87. $\left(3 \times 10^{4}\right)\left(2.1 \times 10^{3}\right)$
88. $\left(2 \times 10^{4}\right)\left(4.1 \times 10^{3}\right)$
89. $\left(1.6 \times 10^{15}\right)\left(4 \times 10^{-11}\right)$
90. $\left(1.4 \times 10^{15}\right)\left(3 \times 10^{-11}\right)$
91. $\left(6.1 \times 10^{-8}\right)\left(2 \times 10^{-4}\right)$
92. $\left(5.1 \times 10^{-8}\right)\left(3 \times 10^{-4}\right)$
93. $\left(4.3 \times 10^{8}\right)\left(6.2 \times 10^{4}\right)$
94. $\left(8.2 \times 10^{8}\right)\left(4.6 \times 10^{4}\right)$
95. $\frac{8.4 \times 10^{8}}{4 \times 10^{5}}$
96. $\frac{6.9 \times 10^{8}}{3 \times 10^{5}}$
97. $\frac{3.6 \times 10^{4}}{9 \times 10^{-2}}$
98. $\frac{1.2 \times 10^{4}}{2 \times 10^{-2}}$
99. $\frac{4.8 \times 10^{-2}}{2.4 \times 10^{6}}$
100. $\frac{7.5 \times 10^{-2}}{2.5 \times 10^{6}}$
101. $\frac{2.4 \times 10^{-2}}{4.8 \times 10^{-6}}$
102. $\frac{1.5 \times 10^{-2}}{3 \times 10^{-6}}$
103. $\frac{480,000,000,000}{0.00012}$
104. $\frac{282,000,000,000}{0.00141}$
105. $\frac{0.00072 \times 0.003}{0.00024}$
106. $\frac{66,000 \times 0.001}{0.003 \times 0.002}$

Practice Plus

In Exercises 107-114, simplify each exponential expression. Assume that variables represent nonzero real numbers.
107. $\frac{\left(x^{-2} y\right)^{-3}}{\left(x^{2} y^{-1}\right)^{3}}$
108. $\frac{\left(x y^{-2}\right)^{-2}}{\left(x^{-2} y\right)^{-3}}$
109. $\left(2 x^{-3} y z^{-6}\right)(2 x)^{-5}$
111. $\left(\frac{x^{3} y^{4} z^{5}}{x^{-3} y^{-4} z^{-5}}\right)^{-2}$
110. $\left(3 x^{-4} y z^{-7}\right)(3 x)^{-3}$
112. $\left(\frac{x^{4} y^{5} z^{6}}{x^{-4} y^{-5} z^{-6}}\right)^{-4}$
113. $\frac{\left(2^{-1} x^{-2} y^{-1}\right)^{-2}\left(2 x^{-4} y^{3}\right)^{-2}\left(16 x^{-3} y^{3}\right)^{0}}{\left(2 x^{-3} y^{-5}\right)^{2}}$
114. $\frac{\left(2^{-1} x^{-3} y^{-1}\right)^{-2}\left(2 x^{-6} y^{4}\right)^{-2}\left(9 x^{3} y^{-3}\right)^{0}}{\left(2 x^{-4} y^{-6}\right)^{2}}$

Application Exercises

The bar graph shows the total amount Americans paid in federal taxes, in trillions of dollars, and the U.S. population, in millions, from 2007 through 2010. Exercises 115-116 are based on the numbers displayed by the graph.

Sources: Internal Revenue Service and U.S. Census Bureau
115. a. In 2010, the United States government collected $\$ 2.17$ trillion in taxes. Express this number in scientific notation.
b. In 2010, the population of the United States was approximately 309 million. Express this number in scientific notation.
c. Use your scientific notation answers from parts (a) and (b) to answer this question: If the total 2010 tax collections were evenly divided among all Americans, how much would each citizen pay? Express the answer in decimal notation, rounded to the nearest dollar.
116. a. In 2009, the United States government collected $\$ 2.20$ trillion in taxes. Express this number in scientific notation.
b. In 2009, the population of the United States was approximately 308 million. Express this number in scientific notation.
c. Use your scientific notation answers from parts (a) and (b) to answer this question: If the total 2009 tax collections were evenly divided among all Americans, how much would each citizen pay? Express the answer in decimal notation, rounded to the nearest dollar.

In the dramatic arts, ours is the era of the movies. As individuals and as a nation, we've grown up with them. Our images of love, war, family, country - even of things that terrify us-owe much to what we've seen on screen. The bar graph at the top of the next column quantifies our love for movies by showing the number of tickets sold, in millions, and the average price per ticket for five selected years. Exercises 117-118 are based on the numbers displayed by the graph.

Source: Motion Picture Association of America
117. Use scientific notation to compute the amount of money that the motion picture industry made from box-office receipts in 2010. Express the answer in scientific notation.
118. Use scientific notation to compute the amount of money that the motion picture industry made from box office receipts in 2005. Express the answer in scientific notation.
119. The mass of one oxygen molecule is 5.3×10^{-23} gram. Find the mass of 20,000 molecules of oxygen. Express the answer in scientific notation.
120. The mass of one hydrogen atom is 1.67×10^{-24} gram. Find the mass of 80,000 hydrogen atoms. Express the answer in scientific notation.
121. There are approximately 3.2×10^{7} seconds in a year. According to the United States Department of Agriculture, Americans consume 127 chickens per second. How many chickens are eaten per year in the United States? Express the answer in scientific notation.
122. Convert 365 days (one year) to hours, to minutes, and, finally, to seconds, to determine how many seconds there are in a year. Express the answer in scientific notation.

Writing in Mathematics

123. Describe what it means to raise a number to a power. In your description, include a discussion of the difference between -5^{2} and $(-5)^{2}$.
124. Explain the product rule for exponents. Use $2^{3} \cdot 2^{5}$ in your explanation.
125. Explain the power rule for exponents. Use $\left(3^{2}\right)^{4}$ in your explanation.
126. Explain the quotient rule for exponents. Use $\frac{5^{8}}{5^{2}}$ in your explanation.
127. Why is $\left(-3 x^{2}\right)\left(2 x^{-5}\right)$ not simplified? What must be done to simplify the expression?
128. How do you know if a number is written in scientific notation?
129. Explain how to convert from scientific to decimal notation and give an example.
130. Explain how to convert from decimal to scientific notation and give an example.
131. Refer to the Blitzer Bonus on page 29. Use scientific notation to verify any three of the bulleted items on ways to spend \$1 trillion.

Critical Thinking Exercises

Make Sense? In Exercises 132-135, determine whether each statement makes sense or does not make sense, and explain your reasoning.
132. There are many exponential expressions that are equal to $36 x^{12}$, such as $\left(6 x^{6}\right)^{2},\left(6 x^{3}\right)\left(6 x^{9}\right), 36\left(x^{3}\right)^{9}$, and $6^{2}\left(x^{2}\right)^{6}$.
133. If 5^{-2} is raised to the third power, the result is a number between 0 and 1 .
134. The population of Colorado is approximately 4.6×10^{12}.
135. I just finished reading a book that contained approximately 1.04×10^{5} words.
In Exercises 136-143, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
136. $4^{-2}<4^{-3}$
137. $5^{-2}>2^{-5}$
138. $(-2)^{4}=2^{-4}$
139. $5^{2} \cdot 5^{-2}>2^{5} \cdot 2^{-5}$
140. $534.7=5.347 \times 10^{3}$
141. $\frac{8 \times 10^{30}}{4 \times 10^{-5}}=2 \times 10^{25}$
142. $\left(7 \times 10^{5}\right)+\left(2 \times 10^{-3}\right)=9 \times 10^{2}$
143. $\left(4 \times 10^{3}\right)+\left(3 \times 10^{2}\right)=4.3 \times 10^{3}$
144. The mad Dr. Frankenstein has gathered enough bits and pieces (so to speak) for $2^{-1}+2^{-2}$ of his creature-to-be. Write a fraction that represents the amount of his creature that must still be obtained.
145. If $b^{A}=M N, b^{C}=M$, and $b^{D}=N$, what is the relationship among A, C, and D ?
146. Our hearts beat approximately 70 times per minute. Express in scientific notation how many times the heart beats over a lifetime of 80 years. Round the decimal factor in your scientific notation answer to two decimal places.

Group Exercise

147. Putting Numbers into Perspective. A large number can be put into perspective by comparing it with another number. For example, we put the $\$ 15.2$ trillion national debt (Example 12) and the $\$ 2.17$ trillion the government collected in taxes (Exercise 115) by comparing these numbers to the number of U.S. citizens.

For this project, each group member should consult an almanac, a newspaper, or the Internet to find a number greater than one million. Explain to other members of the group the context in which the large number is used. Express the number in scientific notation. Then put the number into perspective by comparing it with another number.

Preview Exercises

Exercises 148-150 will help you prepare for the material covered in the next section.
148. a. Find $\sqrt{16} \cdot \sqrt{4}$.
b. Find $\sqrt{16 \cdot 4}$.
c. Based on your answers to parts (a) and (b), what can you conclude?
149. a. Use a calculator to approximate $\sqrt{300}$ to two decimal places.
b. Use a calculator to approximate $10 \sqrt{3}$ to two decimal places.
c. Based on your answers to parts (a) and (b), what can you conclude?
150. a. Simplify: $21 x+10 x$.
b. Simplify: $21 \sqrt{2}+10 \sqrt{2}$.

SECTION P. 3

Objectives

(1) Evaluate square roots.
(2) Simplify expressions of the form $\sqrt{a^{2}}$.
(3) Use the product rule to simplify square roots.
(4) Use the quotient rule to simplify square roots.
(5) Add and subtract square roots.
(6) Rationalize denominators.
(7) Evaluate and perform operations with higher roots.
(8) Understand and use rational exponents.

Radicals and Rational Exponents

This photograph shows mathematical models used by Albert Einstein at a lecture on relativity. Notice the radicals that appear in many of the formulas. Among these models, there is one describing how an astronaut in a moving spaceship ages more slowly than friends who remain on Earth. No description of your world can be complete without roots and radicals. In this section, in addition to reviewing the basics of radical expressions and the use of rational exponents to indicate radicals, you will see how radicals model time dilation for a futuristic highspeed trip to a nearby star.

(1) Evaluate square roots.

GREAT QUESTION!
Is $\sqrt{a+b}$ equal to $\sqrt{a}+\sqrt{b}$? No. In Example 1, parts (d) and (e), observe that $\sqrt{9+16}$ is not equal to $\sqrt{9}+\sqrt{16}$. In general,

$$
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}
$$

and

$$
\sqrt{a-b} \neq \sqrt{a}-\sqrt{b}
$$

Square Roots

From our earlier work with exponents, we are aware that the square of both 5 and -5 is 25 :

$$
5^{2}=25 \quad \text { and } \quad(-5)^{2}=25
$$

The reverse operation of squaring a number is finding the square root of the number. For example,

- One square root of 25 is 5 because $5^{2}=25$.
- Another square root of 25 is -5 because $(-5)^{2}=25$.

In general, if $\boldsymbol{b}^{\mathbf{2}}=\boldsymbol{a}$, then \boldsymbol{b} is a square root of \boldsymbol{a}.
The symbol $\sqrt{ }$ is used to denote the nonnegative or principal square root of a number. For example,

- $\sqrt{25}=5$ because $5^{2}=25$ and 5 is positive.
- $\sqrt{100}=10$ because $10^{2}=100$ and 10 is positive.

The symbol $\sqrt{ }$ that we use to denote the principal square root is called a radical sign. The number under the radical sign is called the radicand. Together we refer to the radical sign and its radicand as a radical expression.

Radical expression

Definition of the Principal Square Root

If a is a nonnegative real number, the nonnegative number b such that $b^{2}=a$, denoted by $b=\sqrt{a}$, is the principal square root of a.

The symbol $-\sqrt{ }$ is used to denote the negative square root of a number. For example,

- $-\sqrt{25}=-5$ because $(-5)^{2}=25$ and -5 is negative.
- $-\sqrt{100}=-10$ because $(-10)^{2}=100$ and -10 is negative.

EXAMPLE 1 Evaluating Square Roots

Evaluate:
a. $\sqrt{64}$
b. $-\sqrt{49}$
c. $\sqrt{\frac{1}{4}}$
d. $\sqrt{9+16}$
e. $\sqrt{9}+\sqrt{16}$.

SOLUTION
a. $\sqrt{64}=8$
b. $-\sqrt{49}=-7$
c. $\sqrt{\frac{1}{4}}=\frac{1}{2}$
d. $\sqrt{9+16}=\sqrt{25}$
$=5$

$$
=7
$$

e. $\sqrt{9}+\sqrt{16}=3+4 \quad \sqrt{9}=3$ because $3^{2}=9 \cdot \sqrt{16}=4$ because $4^{2}=16$.

The principal square root of 64 is 8 . Check: $8^{2}=64$.
The negative square root of 49 is -7 . Check: $(-7)^{2}=49$.
The principal square root of $\frac{1}{4}$ is $\frac{1}{2}$. Check: $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.
First simplify the expression under the radical sign.
Then take the principal square root of 25 , which is 5 .
Φ Check Point 1 Evaluate:
a. $\sqrt{81}$
b. $-\sqrt{9}$
c. $\sqrt{\frac{1}{25}}$
d. $\sqrt{36+64}$
e. $\sqrt{36}+\sqrt{64}$.

A number that is the square of a rational number is called a perfect square. All the radicands in Example 1 and Check Point 1 are perfect squares.

- 64 is a perfect square because $64=8^{2}$. Thus, $\sqrt{64}=8$.
- $\frac{1}{4}$ is a perfect square because $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$. Thus, $\sqrt{\frac{1}{4}}=\frac{1}{2}$.

Let's see what happens to the radical expression \sqrt{x} if x is a negative number. Is the square root of a negative number a real number? For example, consider $\sqrt{-25}$. Is there a real number whose square is -25 ? No. Thus, $\sqrt{-25}$ is not a real number. In general, a square root of a negative number is not a real number.

If a number a is nonnegative $(a \geq 0)$, then $(\sqrt{a})^{2}=a$. For example,

$$
(\sqrt{2})^{2}=2, \quad(\sqrt{3})^{2}=3, \quad(\sqrt{4})^{2}=4, \quad \text { and } \quad(\sqrt{5})^{2}=5 .
$$

Simplifying Expressions of the Form $\sqrt{a^{2}}$

You may think that $\sqrt{a^{2}}=a$. However, this is not necessarily true. Consider the following examples:

$$
\begin{aligned}
\sqrt{4^{2}}=\sqrt{16}=4 \quad \begin{array}{l}
\text { The result is not }-4, \text { but rather } \\
\text { the absolute value of }-4, \text { or } 4 .
\end{array} \text {. } 0 \text {. }{ }^{(-4)^{2}}=\sqrt{16}=4 .
\end{aligned}
$$

Here is a rule for simplifying expressions of the form $\sqrt{a^{2}}$:

Simplifying $\sqrt{a^{2}}$

For any real number a,

$$
\sqrt{a^{2}}=|a| .
$$

In words, the principal square root of a^{2} is the absolute value of a.
For example, $\sqrt{6^{2}}=|6|=6$ and $\sqrt{(-6)^{2}}=|-6|=6$.

The Product Rule for Square Roots

A rule for multiplying square roots can be generalized by comparing $\sqrt{25} \cdot \sqrt{4}$ and $\sqrt{25 \cdot 4}$. Notice that

$$
\sqrt{25} \cdot \sqrt{4}=5 \cdot 2=10 \text { and } \sqrt{25 \cdot 4}=\sqrt{100}=10 .
$$

Because we obtain 10 in both situations, the original radical expressions must be equal. That is,

$$
\sqrt{25} \cdot \sqrt{4}=\sqrt{25 \cdot 4}
$$

This result is a special case of the product rule for square roots that can be generalized as follows:

The Product Rule for Square Roots

If a and b represent nonnegative real numbers, then

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \quad \text { and } \quad \sqrt{a} \cdot \sqrt{b}=\sqrt{a b}
$$

A square root is simplified when its radicand has no factors other than 1 that are perfect squares. For example, $\sqrt{500}$ is not simplified because it can be expressed as $\sqrt{100 \cdot 5}$ and 100 is a perfect square. Example 2 shows how the product rule is used to remove from the square root any perfect squares that occur as factors.

EXAMPLE 2 Using the Product Rule to Simplify Square Roots

Simplify:
a. $\sqrt{500}$
b. $\sqrt{6 x} \cdot \sqrt{3 x}$.

SOLUTION

a. $\sqrt{500}=\sqrt{100 \cdot 5} \quad$ Factor 500.100 is the greatest perfect square factor.

$$
\begin{array}{ll}
=\sqrt{100} \sqrt{5} & \text { Use the product rule: } \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} . \\
=10 \sqrt{5} & \begin{array}{l}
\text { Write } \sqrt{100} \text { as } 10 . \text { We read } 10 \sqrt{5} \text { as "ten times the square } \\
\text { root of 5." }
\end{array}
\end{array}
$$

b. We can simplify $\sqrt{6 x} \cdot \sqrt{3 x}$ using the product rule only if $6 x$ and $3 x$ represent nonnegative real numbers. Thus, $x \geq 0$.

$$
\begin{array}{rlrl}
\sqrt{6 x} \cdot \sqrt{3 x} & =\sqrt{6 x \cdot 3 x} & & \text { Use the product rule: } \sqrt{a} \sqrt{b}=\sqrt{a b} . \\
& =\sqrt{18 x^{2}} & & \text { Multiply in the radicand. } \\
& =\sqrt{9 x^{2} \cdot 2} & & \text { Factor } 18.9 \text { is the greatest perfect square factor. } \\
& =\sqrt{9 x^{2}} \sqrt{2} & & \text { Use the product rule: } \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} . \\
& =\sqrt{9} \sqrt{x^{2}} \sqrt{2} & & \text { Use the product rule to write } \sqrt{9 x^{2}} \text { as the } \\
& =3 x \sqrt{2} & & \text { product of two square roots. } \\
& & \sqrt{x^{2}}=|x|=x \text { because } x \geq 0 .
\end{array}
$$

GREAT QUESTION!

When simplifying square roots, what happens if I use a perfect square factor that isn't the greatest perfect square factor possible?
You'll need to simplify even further. For example, consider the following factorization:

$$
\sqrt{500}=\sqrt{25 \cdot 20}=\sqrt{25} \sqrt{20}=5 \sqrt{20}
$$

$$
25 \text { is a perfect square factor of } 500 \text {, but not the greatest perfect square factor. }
$$

Because 20 contains a perfect square factor, 4 , the simplification is not complete.

$$
5 \sqrt{20}=5 \sqrt{4 \cdot 5}=5 \sqrt{4} \sqrt{5}=5 \cdot 2 \sqrt{5}=10 \sqrt{5}
$$

Although the result checks with our simplification using $\sqrt{500}=\sqrt{100 \cdot 5}$, more work is required when the greatest perfect square factor is not used.

$\$$ Check Point 2 simplify:

a. $\sqrt{75}$
b. $\sqrt{5 x} \cdot \sqrt{10 x}$.

Use the quotient rule to simplify square roots.

The Quotient Rule for Square Roots

Another property for square roots involves division.

The Quotient Rule for Square Roots

If a and b represent nonnegative real numbers and $b \neq 0$, then

EXAMPLE 3 Using the Quotient Rule to Simplify Square Roots

Simplify:
a. $\sqrt{\frac{100}{9}}$
b. $\frac{\sqrt{48 x^{3}}}{\sqrt{6 x}}$.

SOLUTION

a. $\sqrt{\frac{100}{9}}=\frac{\sqrt{100}}{\sqrt{9}}=\frac{10}{3}$
b. We can simplify the quotient of $\sqrt{48 x^{3}}$ and $\sqrt{6 x}$ using the quotient rule only if $48 x^{3}$ and $6 x$ represent nonnegative real numbers and $6 x \neq 0$. Thus, $x>0$.

$$
\begin{array}{r}
\frac{\sqrt{48 x^{3}}}{\sqrt{6 x}}=\sqrt{\frac{48 x^{3}}{6 x}}=\sqrt{8 x^{2}}=\sqrt{4 x^{2}} \sqrt{2}=\sqrt{4} \sqrt{x^{2}} \sqrt{2}=2 x \sqrt{2} \\
\sqrt{x^{2}}=|x|=x \text { because } x>0 .
\end{array}
$$

$\$$ Check Point 3 simplify:
a. $\sqrt{\frac{25}{16}}$
b. $\frac{\sqrt{150 x^{3}}}{\sqrt{2 x}}$.
(5) Add and subtract square roots.

GREAT QUESTION!

Should like radicals remind me of like terms?
Yes. Adding or subtracting like radicals is similar to adding or subtracting like terms:

$$
7 x+6 x=13 x
$$

and

$$
7 \sqrt{11}+6 \sqrt{11}=13 \sqrt{11}
$$

Adding and Subtracting Square Roots

Two or more square roots can be combined using the distributive property provided that they have the same radicand. Such radicals are called like radicals. For example,

$$
7 \sqrt{11}+6 \sqrt{11}=(7+6) \sqrt{11}=13 \sqrt{11}
$$

7 square roots of 11 plus 6 square roots of 11 result in 13 square roots of 11.

EXAMPLE 4 Adding and Subtracting Like Radicals

Add or subtract as indicated:
a. $7 \sqrt{2}+5 \sqrt{2}$
b. $\sqrt{5 x}-7 \sqrt{5 x}$.

SOLUTION

a. $7 \sqrt{2}+5 \sqrt{2}=(7+5) \sqrt{2} \quad$ Apply the distributive property.

$$
=12 \sqrt{2} \quad \text { Simplify. }
$$

b. $\sqrt{5 x}-7 \sqrt{5 x}=1 \sqrt{5 x}-7 \sqrt{5 x}$ Write $\sqrt{5 x}$ as $1 \sqrt{5 \mathrm{x}}$.

$$
\begin{array}{ll}
=(1-7) \sqrt{5 x} & \text { Apply the distributive property. } \\
=-6 \sqrt{5 x} & \text { Simplify. }
\end{array}
$$

$\$$ Check Point 4 Add or subtract as indicated:
a. $8 \sqrt{13}+9 \sqrt{13}$
b. $\sqrt{17 x}-20 \sqrt{17 x}$.

In some cases, radicals can be combined once they have been simplified. For example, to add $\sqrt{2}$ and $\sqrt{8}$, we can write $\sqrt{8}$ as $\sqrt{4 \cdot 2}$ because 4 is a perfect square factor of 8 .

$$
\sqrt{2}+\sqrt{8}=\sqrt{2}+\sqrt{4 \cdot 2}=1 \sqrt{2}+2 \sqrt{2}=(1+2) \sqrt{2}=3 \sqrt{2}
$$

EXAMPLE 5 Combining Radicals That First Require Simplification

Add or subtract as indicated:
a. $7 \sqrt{3}+\sqrt{12}$
b. $4 \sqrt{50 x}-6 \sqrt{32 x}$.

SOLUTION

a. $7 \sqrt{3}+\sqrt{12}$

$$
=7 \sqrt{3}+\sqrt{4 \cdot 3} \quad \begin{aligned}
& \text { Split } 12 \text { into two factors such that one is a } \\
& \text { perfect square. }
\end{aligned}
$$

$$
=7 \sqrt{3}+2 \sqrt{3} \quad \sqrt{4 \cdot 3}=\sqrt{4} \sqrt{3}=2 \sqrt{3}
$$

$$
=(7+2) \sqrt{3} \quad \text { Apply the distributive property. You will find that }
$$ this step is usually done mentally.

$$
=9 \sqrt{3} \quad \text { Simplify }
$$

b. $4 \sqrt{50 x}-6 \sqrt{32 x}$

$$
=4 \sqrt{25 \cdot 2 x}-6 \sqrt{16 \cdot 2 x}
$$

$$
16 \text { is the greatest perfect square factor of } 32 x \text {. }
$$

$$
=4 \cdot 5 \sqrt{2 x}-6 \cdot 4 \sqrt{2 x} \quad \sqrt{25 \cdot 2 x}=\sqrt{25} \sqrt{2 x}=5 \sqrt{2 x} \text { and }
$$

$$
\sqrt{16 \cdot 2 x}=\sqrt{16} \sqrt{2 x}=4 \sqrt{2 x}
$$

$$
=20 \sqrt{2 x}-24 \sqrt{2 x} \quad \text { Multiply: } 4 \cdot 5=20 \text { and } 6 \cdot 4=24
$$

$$
=(20-24) \sqrt{2 x} \quad \text { Apply the distributive property. }
$$

$$
=-4 \sqrt{2 x}
$$

Simplify.
$\$$ Check Point 5 Add or subtract as indicated:
a. $5 \sqrt{27}+\sqrt{12}$
b. $6 \sqrt{18 x}-4 \sqrt{8 x}$.

Rationalizing Denominators

The calculator screen in Figure P. 11 shows approximate values for $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3}}{3}$. The two approximations are the same. This is not a coincidence:

$$
\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{\sqrt{9}}=\frac{\sqrt{3}}{3}
$$

Any number divided by itself is 1 . Multiplication by 1 does not change the value of $\frac{1}{\sqrt{3}}$.

This process involves rewriting a radical expression as an equivalent expression in which the denominator no longer contains any radicals. The process is called rationalizing the denominator. If the denominator consists of the square root of a natural number that is not a perfect square, multiply the numerator and the denominator by the smallest number that produces the square root of a perfect square in the denominator.

EXAMPLE 6 Rationalizing Denominators

Rationalize the denominator:
a. $\frac{15}{\sqrt{6}}$
b. $\frac{12}{\sqrt{8}}$.

GREAT QUESTION!

What exactly does rationalizing a denominator do to an irrational number in the denominator?
Rationalizing a numerical denominator makes that denominator a rational number.

SOLUTION

a. If we multiply the numerator and the denominator of $\frac{15}{\sqrt{6}}$ by $\sqrt{6}$, the denominator becomes $\sqrt{6} \cdot \sqrt{6}=\sqrt{36}=6$. Therefore, we multiply by 1 , choosing $\frac{\sqrt{6}}{\sqrt{6}}$ for 1 .

$$
\begin{aligned}
& \frac{15}{\sqrt{6}}=\frac{15}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{15 \sqrt{6}}{\sqrt{36}}=\frac{15 \sqrt{6}}{6}=\frac{5 \sqrt{6}}{2} \\
& \text { Multiply by } 1 . \\
& \text { Simplify: } \frac{15}{6}=\frac{15 \div 3}{6 \div 3}=\frac{5}{2}
\end{aligned}
$$

b. The smallest number that will produce the square root of a perfect square in the denominator of $\frac{12}{\sqrt{8}}$ is $\sqrt{2}$, because $\sqrt{8} \cdot \sqrt{2}=\sqrt{16}=4$. We multiply by 1 , choosing $\frac{\sqrt{2}}{\sqrt{2}}$ for 1 .

$$
\frac{12}{\sqrt{8}}=\frac{12}{\sqrt{8}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{12 \sqrt{2}}{\sqrt{16}}=\frac{12 \sqrt{2}}{4}=3 \sqrt{2}
$$

O Check Point 6 Rationalize the denominator:

a. $\frac{5}{\sqrt{3}}$
b. $\frac{6}{\sqrt{12}}$.

Radical expressions that involve the sum and difference of the same two terms are called conjugates. Thus,

$$
\sqrt{a}+\sqrt{b} \text { and } \sqrt{a}-\sqrt{b}
$$

are conjugates. Conjugates are used to rationalize denominators because the product of such a pair contains no radicals:

> Multiply each term of $\sqrt{a}-\sqrt{b}$ by each term of $\sqrt{a}+\sqrt{b}$.

$$
\begin{aligned}
&(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) \\
&= \sqrt{a}(\sqrt{a}-\sqrt{b})+\sqrt{b}(\sqrt{a}-\sqrt{b}) \\
& \begin{aligned}
& \text { Distribute } \sqrt{a} \\
& \text { over } \sqrt{a}-\sqrt{b .} \quad \begin{array}{c}
\text { Distribute } \sqrt{b} \\
\text { over } \sqrt{a}-\sqrt{b .}
\end{array} \\
&= \sqrt{a} \cdot \sqrt{a}-\sqrt{a} \cdot \sqrt{b}+\sqrt{b} \cdot \sqrt{a}-\sqrt{b} \cdot \sqrt{b} \\
&=(\sqrt{a})^{2}-\sqrt{a b}+\sqrt{a b}-(\sqrt{b})^{2}
\end{aligned} \\
& \quad-\sqrt{a b}+\sqrt{a b}=0 \\
&=(\sqrt{a})^{2}-(\sqrt{b})^{2} \\
&= a-b .
\end{aligned}
$$

Multiplying Conjugates

$$
(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b
$$

How can we rationalize a denominator if the denominator contains two terms with one or more square roots? Multiply the numerator and the denominator by the conjugate of the denominator. Here are three examples of such expressions:

The product of the denominator and its conjugate is found using the formula

$$
(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b
$$

The simplified product will not contain a radical.

EXAMPLE 7 Rationalizing a Denominator Containing Two Terms

Rationalize the denominator: $\frac{7}{5+\sqrt{3}}$.

SOLUTION

The conjugate of the denominator is $5-\sqrt{3}$. If we multiply the numerator and denominator by $5-\sqrt{3}$, the simplified denominator will not contain a radical. Therefore, we multiply by 1 , choosing $\frac{5-\sqrt{3}}{5-\sqrt{3}}$ for 1 .

$$
\begin{aligned}
& \frac{7}{5+\sqrt{3}}= \frac{7}{5+\sqrt{3}} \cdot \frac{5-\sqrt{3}}{5-\sqrt{3}}=\frac{7(5-\sqrt{3})}{5^{2}-(\sqrt{3})^{2}}=\frac{7(5-\sqrt{3})}{25-3} \\
& \text { Multiply by 1. } \quad \begin{array}{r}
(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) \\
\\
=(\sqrt{a})^{2}-(\sqrt{b})^{2}
\end{array} \\
&= \frac{7(5-\sqrt{3})}{22} \text { or } \frac{35-7 \sqrt{3}}{22}
\end{aligned}
$$

In either form of the answer, there is no radical in the denominator.

$$
\Phi \text { Check Point } 7 \text { Rationalize the denominator: } \frac{8}{4+\sqrt{5}} \text {. }
$$

7 Evaluate and perform operations with higher roots.

Other Kinds of Roots

We define the principal \boldsymbol{n} th root of a real number a, symbolized by $\sqrt[n]{a}$, as follows:

Definition of the Principal nth Root of a Real Number

$$
\sqrt[n]{a}=b \text { means that } b^{n}=a
$$

If n, the index, is even, then a is nonnegative ($a \geq 0$) and b is also nonnegative ($b \geq 0$). If n is odd, a and b can be any real numbers.

For example,

$$
\sqrt[3]{64}=4 \text { because } 4^{3}=64 \text { and } \sqrt[5]{-32}=-2 \text { because }(-2)^{5}=-32
$$

The same vocabulary that we learned for square roots applies to nth roots. The symbol $\sqrt[n]{ }$ is called a radical and the expression under the radical is called the radicand.

GREAT QUESTION!

Should I know the higher roots

 of certain numbers by heart?Some higher roots occur so frequently that you might want to memorize them.

\[

\]

Fourth Roots

Fifth Roots

$$
\begin{aligned}
& \sqrt[4]{1}=1 \\
& \sqrt[4]{16}=2 \\
& \sqrt[4]{81}=3 \\
& \sqrt[4]{256}=4 \\
& \sqrt[4]{625}=5
\end{aligned}
$$

A number that is the nth power of a rational number is called a perfect \boldsymbol{n} th power. For example, 8 is a perfect third power, or perfect cube, because $8=2^{3}$. Thus, $\sqrt[3]{8}=\sqrt[3]{2^{3}}=2$. In general, one of the following rules can be used to find the nth root of a perfect nth power:

Finding nth Roots of Perfect nth Powers

If n is odd, $\sqrt[n]{a^{n}}=a$.
If n is even, $\sqrt[n]{a^{n}}=|a|$.

For example,

$$
\sqrt[3]{(-2)^{3}}=-2 \quad \text { and } \quad \sqrt[4]{(-2)^{4}}=|-2|=2
$$

Absolute value is not needed with odd roots, but is necessary with even roots.

The Product and Quotient Rules for Other Roots

The product and quotient rules apply to cube roots, fourth roots, and all higher roots.

The Product and Quotient Rules for nth Roots

For all real numbers a and b, where the indicated roots represent real numbers,

> The nth root of a product is the product of the nth roots.
$\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$
The product of two nth roots is the nth root of the product of the radicands.

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0 \quad \text { and } \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}, b \neq 0
$$

The nth root of a quotient

is the quotient of the nth roots.

The quotient of two nth roots is the nth root of the quotient of the radicands.

EXAMPLE 8 Simplifying, Multiplying, and Dividing Higher Roots
Simplify:
a. $\sqrt[3]{24}$
b. $\sqrt[4]{8} \cdot \sqrt[4]{4}$
c. $\sqrt[4]{\frac{81}{16}}$.

SOLUTION

a. $\sqrt[3]{24}=\sqrt[3]{8 \cdot 3} \quad$ Find the greatest perfect cube that is a factor of $24.2^{3}=8$, so 8 is a perfect cube and is the greatest perfect cube factor of 24 .
$=\sqrt[3]{8} \cdot \sqrt[3]{3}$
$\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
$=2 \sqrt[3]{3}$
$\sqrt[3]{8}=2$
b. $\sqrt[4]{8} \cdot \sqrt[4]{4}=\sqrt[4]{8 \cdot 4}$
$\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$
$=\sqrt[4]{32} \quad$ Find the greatest perfect fourth power that is a factor of 32 .
$=\sqrt[4]{16 \cdot 2} \quad 2^{4}=16$, so 16 is a perfect fourth power and is the greatest perfect fourth power that is a factor of 32 .
$=\sqrt[4]{16} \cdot \sqrt[4]{2} \quad \sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
$=2 \sqrt[4]{2} \quad \sqrt[4]{16}=2$
c. $\sqrt[4]{\frac{81}{16}}=\frac{\sqrt[4]{81}}{\sqrt[4]{16}} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

$$
=\frac{3}{2} \quad \sqrt[4]{81}=3 \text { because } 3^{4}=81 \text { and } \sqrt[4]{16}=2 \text { because } 2^{4}=16 .
$$

$\$$ Check Point 8 simplify:
a. $\sqrt[3]{40}$
b. $\sqrt[5]{8} \cdot \sqrt[5]{8}$
c. $\sqrt[3]{\frac{125}{27}}$.

We have seen that adding and subtracting square roots often involves simplifying terms. The same idea applies to adding and subtracting higher roots.

EXAMPLE 9 Combining Cube Roots

Subtract: $5 \sqrt[3]{16}-11 \sqrt[3]{2}$.

SOLUTION

$$
\begin{array}{rlrl}
5 \sqrt[3]{16}-11 \sqrt[3]{2} & & \\
=5 \sqrt[3]{8 \cdot 2}-11 \sqrt[3]{2} & & \text { Factor } 16.8 \text { is the greatest perfect cube factor: } \\
& =5 \cdot 2 \sqrt[3]{2}-11 \sqrt[3]{2} & & \sqrt[3]{8 \cdot 2}=\sqrt[3]{8} \text { and } \sqrt[3]{8}=2 \\
=10 \sqrt[3]{2}-11 \sqrt[3]{2} & & \text { Multiply: } 5 \cdot 2=10 \\
=(10-11) \sqrt[3]{2} & & \text { Apply the distributive property. } \\
=-1 \sqrt[3]{2} \text { or }-\sqrt[3]{2} & & \text { Simplify. }
\end{array}
$$

Check Point 9 Subtract: $\quad 3 \sqrt[3]{81}-4 \sqrt[3]{3}$.
(8) Understand and use rational exponents.

Rational Exponents

We define rational exponents so that their properties are the same as the properties for integer exponents. For example, we know that exponents are multiplied when an exponential expression is raised to a power. For this to be true,

$$
\left(7^{\frac{1}{2}}\right)^{2}=7^{\frac{1}{2} \cdot 2}=7^{1}=7 .
$$

We also know that

$$
(\sqrt{7})^{2}=\sqrt{7} \cdot \sqrt{7}=\sqrt{49}=7
$$

Can you see that the square of both $7^{\frac{1}{2}}$ and $\sqrt{7}$ is 7 ? It is reasonable to conclude that We can generalize the fact that $7^{\frac{1}{2}}$ means $\sqrt{\frac{1}{2}}$ means $\sqrt{7}$.

The Definition of $a^{\frac{1}{n}}$

If $\sqrt[n]{a}$ represents a real number, where $n \geq 2$ is an integer, then

$$
a^{\frac{1}{n}}=\chi^{a} .
$$

The denominator of the rational
exponent is the radical's index.
Furthermore,

$$
a^{-\frac{1}{n}}=\frac{1}{a^{\frac{1}{n}}}=\frac{1}{\sqrt[n]{a}}, \quad a \neq 0 .
$$

EXAMPLE 10 Using the Definition of $a^{\frac{1}{n}}$

Simplify:
a. $64^{\frac{1}{2}}$
b. $125^{\frac{1}{3}}$
c. $-16^{\frac{1}{4}}$
d. $(-27)^{\frac{1}{3}}$
e. $64^{-\frac{1}{3}}$.

SOLUTION

a. $64^{\frac{1}{2}}=\sqrt{64}=8$
b. $125^{\frac{1}{3}}=\sqrt[3]{125}=5$

The denominator is the index.
c. $-16^{\frac{1}{4}}=-(\sqrt[4]{16})=-2$

The base is 16 and the negative sign is not affected by the exponent.
d. $(-27)^{\frac{1}{3}}=\sqrt[3]{-27}=-3$

Parentheses show that the base is -27 and that the negative sign is affected by the exponent.
e. $64^{-\frac{1}{3}}=\frac{1}{64^{\frac{1}{3}}}=\frac{1}{\sqrt[3]{64}}=\frac{1}{4}$
\oint Check Point 10 Simplify:
a. $25^{\frac{1}{2}}$
b. $8^{\frac{1}{3}}$
c. $-81^{\frac{1}{4}}$
d. $(-8)^{\frac{1}{3}}$
e. $27^{-\frac{1}{3}}$.

In Example 10 and Check Point 10, each rational exponent had a numerator of 1. If the numerator is some other integer, we still want to multiply exponents when raising a power to a power. For this reason,

$$
\begin{array}{ll}
a^{\frac{2}{3}}=\left(a^{\frac{1}{3}}\right)^{2} \text { and } a^{\frac{2}{3}}=\left(a^{2}\right)^{\frac{1}{3}} . \\
\text { This means }(\sqrt[3]{a})^{2} . & \text { This means } \sqrt[3]{a^{2}} .
\end{array}
$$

Thus,

$$
a^{\frac{2}{3}}=(\sqrt[3]{a})^{2}=\sqrt[3]{a^{2}}
$$

Do you see that the denominator, 3 , of the rational exponent is the same as the index of the radical? The numerator, 2 , of the rational exponent serves as an exponent in each of the two radical forms. We generalize these ideas with the following definition:

The Definition of $a^{\frac{m}{n}}$

If $\sqrt[n]{a}$ represents a real number and $\frac{m}{n}$ is a positive rational number, $n \geq 2$, then

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} .
$$

Also,

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} .
$$

Furthermore, if $a^{-\frac{m}{n}}$ is a nonzero real number, then

$$
a^{-\frac{m}{n}}=\frac{1}{a^{\frac{m}{n}}} .
$$

The first form of the definition of $a^{\frac{m}{n}}$, shown again below, involves taking the root first. This form is often preferable because smaller numbers are involved. Notice that the rational exponent consists of two parts, indicated by the following voice balloons:

The numerator is the exponent.

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
$$

The denominator is the radical's index.

EXAMPLE 11 Using the Definition of $a^{\frac{m}{n}}$

Simplify:
a. $27^{\frac{2}{3}}$
b. $9^{\frac{3}{2}}$
c. $81^{-\frac{3}{4}}$.

SOLUTION
a. $27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9$
b. $9^{\frac{3}{2}}=(\sqrt{9})^{3}=3^{3}=27$
c. $81^{-\frac{3}{4}}=\frac{1}{81^{\frac{3}{4}}}=\frac{1}{(\sqrt[4]{81})^{3}}=\frac{1}{3^{3}}=\frac{1}{27}$
\oint Check Point 11 simplify:
a. $27^{\frac{4}{3}}$
b. $4^{\frac{3}{2}}$
c. $32^{-\frac{2}{5}}$.

Properties of exponents can be applied to expressions containing rational exponents.

EXAMPLE 12 Simplifying Expressions with Rational Exponents

Simplify using properties of exponents:
a. $\left(5 x^{\frac{1}{2}}\right)\left(7 x^{\frac{3}{4}}\right)$
b. $\frac{32 x^{\frac{5}{3}}}{16 x^{\frac{3}{4}}}$.

SOLUTION
a. $\left(5 x^{\frac{1}{2}}\right)\left(7 x^{\frac{3}{4}}\right)=5 \cdot 7 x^{\frac{1}{2}} \cdot x^{\frac{3}{4}} \quad$ Group numerical factors and group variable factors

$$
\begin{array}{ll}
=35 x^{\frac{1}{2}+\frac{3}{4}} & \begin{array}{l}
\text { with the same base. } \\
\text { When multiplying expressions with the same base, } \\
\text { add the exponents. }
\end{array} \\
=35 x^{\frac{5}{4}} & \begin{array}{l}
\frac{1}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{5}{4}
\end{array}
\end{array}
$$

b. $\frac{32 x^{\frac{5}{3}}}{16 x^{\frac{3}{4}}}=\left(\frac{32}{16}\right)\left(\frac{x^{\frac{5}{3}}}{x^{\frac{3}{4}}}\right)$
$=2 x^{\frac{5}{3}-\frac{3}{4}}$
with the same base.

$$
\begin{array}{ll}
& \text { subtract the exponents. } \\
=2 x^{\frac{11}{12}} & \frac{5}{3}-\frac{3}{4}=\frac{20}{12}-\frac{9}{12}=\frac{11}{12}
\end{array}
$$

$\$$ Check Point 12 simplify using properties of exponents:
a. $\left(2 x^{\frac{4}{3}}\right)\left(5 x^{\frac{8}{3}}\right)$
b. $\frac{20 x^{4}}{5 x^{\frac{3}{2}}}$.

Rational exponents are sometimes useful for simplifying radicals by reducing the index.

EXAMPLE 13 Reducing the Index of a Radical

Simplify: $\sqrt[9]{x^{3}}$.
SOLUTION

$$
\sqrt[9]{x^{3}}=x^{\frac{3}{9}}=x^{\frac{1}{3}}=\sqrt[3]{x}
$$

() Check Point 13 Simplify: $\sqrt[6]{x^{3}}$.

Blitzer Bonus || A Radical Idea: Time Is Relative

The Persistence of Memory (1931), Salvador Dali:. © 2011 MOMA/ARS.

What does travel in space have to do with radicals? Imagine that in the future we will be able to travel at velocities approaching the speed of light (approximately 186,000 miles per second). According to Einstein's theory of special relativity, time would pass more quickly on Earth than it would in the moving spaceship. The specialrelativity equation

$$
R_{a}=R_{f} \sqrt{1-\left(\frac{v}{c}\right)^{2}}
$$

gives the aging rate of an astronaut, R_{a}, relative to the aging rate of a friend, R_{f}, on Earth. In this formula, v is the astronaut's speed and c is the speed of light. As the astronaut's speed approaches the speed of light, we can substitute c for v.

$$
\begin{aligned}
R_{a} & =R_{f} \sqrt{1-\left(\frac{v}{c}\right)^{2}} & & \begin{array}{l}
\text { Einstein's equation gives the aging rate of an astronaut, } R_{a}, \text { relative } \\
\text { to the aging rate of a friend, } R_{f}, \text { on Earth. }
\end{array} \\
R_{a} & =R_{f} \sqrt{1-\left(\frac{c}{c}\right)^{2}} & & \text { The velocity, } v, \text { is approaching the speed of light, } c \text {, so let } v=c . \\
& =R_{f} \sqrt{1-1} & & \left(\frac{c}{c}\right)^{2}=1^{2}=1 \cdot 1=1 \\
& =R_{f} \sqrt{0} & & \text { Simplify the radicand: } 1-1=0 . \\
& =R_{f} \cdot 0 & & \sqrt{0}=0 \\
& =0 & & \text { Multiply: } R_{f} \cdot O=0 .
\end{aligned}
$$

Close to the speed of light, the astronaut's aging rate, R_{a}, relative to a friend, R_{f}, on Earth is nearly 0 . What does this mean? As we age here on Earth, the space traveler would barely get older. The space traveler would return to an unknown futuristic world in which friends and loved ones would be long gone.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The symbol $\sqrt{ }$ is used to denote the nonnegative, or \qquad square root of a number.
2. $\sqrt{64}=8$ because \qquad $=64$.
3. $\sqrt{a^{2}}=$ \qquad
4. The product rule for square roots states that if a and b are nonnegative, then $\sqrt{a b}=$ \qquad —.
5. The quotient rule for square roots states that if a and b are nonnegative and $b \neq 0$, then $\sqrt{\frac{a}{b}}=$ \qquad .
6. $8 \sqrt{3}+10 \sqrt{3}=$ \qquad
7. $\sqrt{3}+\sqrt{75}=\sqrt{3}+\sqrt{25 \cdot 3}=\sqrt{3}+\ldots \sqrt{3}=$ \qquad
8. The conjugate of $7+\sqrt{3}$ is \qquad $-$

EXERCISE SET P. 3

Practice Exercises

Evaluate each expression in Exercises 1-12, or indicate that the root is not a real number.

1. $\sqrt{36}$
2. $\sqrt{25}$
3. $-\sqrt{36}$
4. $-\sqrt{25}$
5. $\sqrt{-36}$
6. $\sqrt{-25}$
7. $\sqrt{25-16}$
8. $\sqrt{144+25}$
9. $\sqrt{25}-\sqrt{16}$
10. $\sqrt{144}+\sqrt{25}$
11. $\sqrt{(-13)^{2}}$
12. $\sqrt{(-17)^{2}}$

Use the product rule to simplify the expressions in Exercises 13-22. In Exercises 17-22, assume that variables represent nonnegative real numbers.
13. $\sqrt{50}$
14. $\sqrt{27}$
15. $\sqrt{45 x^{2}}$
16. $\sqrt{125 x^{2}}$
17. $\sqrt{2 x} \cdot \sqrt{6 x}$
18. $\sqrt{10 x} \cdot \sqrt{8 x}$
19. $\sqrt{x^{3}}$
20. $\sqrt{y^{3}}$
21. $\sqrt{2 x^{2}} \cdot \sqrt{6 x}$
22. $\sqrt{6 x} \cdot \sqrt{3 x^{2}}$

Use the quotient rule to simplify the expressions in Exercises 23-32. Assume that $x>0$.
23. $\sqrt{\frac{1}{81}}$
24. $\sqrt{\frac{1}{49}}$
25. $\sqrt{\frac{49}{16}}$
26. $\sqrt{\frac{121}{9}}$
27. $\frac{\sqrt{48 x^{3}}}{\sqrt{3 x}}$
28. $\frac{\sqrt{72 x^{3}}}{\sqrt{8 x}}$
29. $\frac{\sqrt{150 x^{4}}}{\sqrt{3 x}}$
30. $\frac{\sqrt{24 x^{4}}}{\sqrt{3 x}}$
31. $\frac{\sqrt{200 x^{3}}}{\sqrt{10 x^{-1}}}$
32. $\frac{\sqrt{500 x^{3}}}{\sqrt{10 x^{-1}}}$

In Exercises 33-44, add or subtract terms whenever possible.
33. $7 \sqrt{3}+6 \sqrt{3}$
34. $8 \sqrt{5}+11 \sqrt{5}$
35. $6 \sqrt{17 x}-8 \sqrt{17 x}$
36. $4 \sqrt{13 x}-6 \sqrt{13 x}$
37. $\sqrt{8}+3 \sqrt{2}$
38. $\sqrt{20}+6 \sqrt{5}$
39. $\sqrt{50 x}-\sqrt{8 x}$
40. $\sqrt{63 x}-\sqrt{28 x}$
41. $3 \sqrt{18}+5 \sqrt{50}$
42. $4 \sqrt{12}-2 \sqrt{75}$
43. $3 \sqrt{8}-\sqrt{32}+3 \sqrt{72}-\sqrt{75}$
44. $3 \sqrt{54}-2 \sqrt{24}-\sqrt{96}+4 \sqrt{63}$

In Exercises 45-54, rationalize the denominator.
45. $\frac{1}{\sqrt{7}}$
46. $\frac{2}{\sqrt{10}}$
47. $\frac{\sqrt{2}}{\sqrt{5}}$
48. $\frac{\sqrt{7}}{\sqrt{3}}$
49. $\frac{13}{3+\sqrt{11}}$
50. $\frac{3}{3+\sqrt{7}}$
51. $\frac{7}{\sqrt{5}-2}$
52. $\frac{5}{\sqrt{3}-1}$
53. $\frac{6}{\sqrt{5}+\sqrt{3}}$
54. $\frac{11}{\sqrt{7}-\sqrt{3}}$

Evaluate each expression in Exercises 55-66, or indicate that the root is not a real number.
55. $\sqrt[3]{125}$
56. $\sqrt[3]{8}$
57. $\sqrt[3]{-8}$
58. $\sqrt[3]{-125}$
59. $\sqrt[4]{-16}$
60. $\sqrt[4]{-81}$
61. $\sqrt[4]{(-3)^{4}}$
62. $\sqrt[4]{(-2)^{4}}$
63. $\sqrt[5]{(-3)^{5}}$
64. $\sqrt[5]{(-2)^{5}}$
65. $\sqrt[5]{-\frac{1}{32}}$
66. $\sqrt[6]{\frac{1}{64}}$

Simplify the radical expressions in Exercises 67-74 if possible.
67. $\sqrt[3]{32}$
68. $\sqrt[3]{150}$
69. $\sqrt[3]{x^{4}}$
70. $\sqrt[3]{x^{5}}$
71. $\sqrt[3]{9} \cdot \sqrt[3]{6}$
72. $\sqrt[3]{12} \cdot \sqrt[3]{4}$
73. $\frac{\sqrt[5]{64 x^{6}}}{\sqrt[5]{2 x}}$
74. $\frac{\sqrt[4]{162 x^{5}}}{\sqrt[4]{2 x}}$

In Exercises 75-82, add or subtract terms whenever possible.
75. $4 \sqrt[5]{2}+3 \sqrt[5]{2}$
76. $6 \sqrt[5]{3}+2 \sqrt[5]{3}$
77. $5 \sqrt[3]{16}+\sqrt[3]{54}$
78. $3 \sqrt[3]{24}+\sqrt[3]{81}$
79. $\sqrt[3]{54 x y^{3}}-y \sqrt[3]{128 x}$
80. $\sqrt[3]{24 x y^{3}}-y \sqrt[3]{81 x}$
81. $\sqrt{2}+\sqrt[3]{8}$
82. $\sqrt{3}+\sqrt[3]{15}$

In Exercises 83-90, evaluate each expression without using a calculator.
83. $36^{\frac{1}{2}}$
84. $121^{\frac{1}{2}}$
85. $8^{\frac{1}{3}}$
86. $27^{\frac{1}{3}}$
87. $125^{\frac{2}{3}}$
88. $8^{\frac{2}{3}}$
89. $32^{-\frac{4}{5}}$
90. $16^{-\frac{5}{2}}$

In Exercises 91-100, simplify using properties of exponents.
91. $\left(7 x^{\frac{1}{3}}\right)\left(2 x^{\frac{1}{4}}\right)$
92. $\left(3 x^{\frac{2}{3}}\right)\left(4 x^{\frac{3}{4}}\right)$
93. $\frac{20 x^{\frac{1}{2}}}{5 x^{\frac{1}{4}}}$
94. $\frac{72 x^{\frac{3}{4}}}{9 x^{\frac{1}{3}}}$
95. $\left(x^{\frac{2}{3}}\right)^{3}$
96. $\left(x^{\frac{4}{5}}\right)^{5}$
97. $\left(25 x^{4} y^{6}\right)^{\frac{1}{2}}$
98. $\left(125 x^{9} y^{6}\right)^{\frac{1}{3}}$
99. $\frac{\left(3 y^{\frac{1}{4}}\right)^{3}}{y^{\frac{1}{12}}}$
100. $\frac{\left(2 y^{\frac{1}{5}}\right)^{4}}{y^{\frac{3}{10}}}$

In Exercises 101-108, simplify by reducing the index of the radical.
101. $\sqrt[4]{5^{2}}$
102. $\sqrt[4]{7^{2}}$
103. $\sqrt[3]{x^{6}}$
104. $\sqrt[4]{x^{12}}$
105. $\sqrt[6]{x^{4}}$
106. $\sqrt[9]{x^{6}}$
107. $\sqrt[9]{x^{6} y^{3}}$
108. $\sqrt[12]{x^{4} y^{8}}$

Practice Plus

In Exercises 109-110, evaluate each expression.
109. $\sqrt[3]{\sqrt[4]{16}}+\sqrt{625}$
110. $\sqrt[3]{\sqrt{\sqrt{169}+\sqrt{9}}+\sqrt{\sqrt[3]{1000}+\sqrt[3]{216}}}$

In Exercises 111-114, simplify each expression. Assume that all variables represent positive numbers.
111. $\left(49 x^{-2} y^{4}\right)^{-\frac{1}{2}}\left(x y^{\frac{1}{2}}\right)$
112. $\left(8 x^{-6} y^{3}\right)^{\frac{1}{3}}\left(x^{\frac{5}{6}} y^{-\frac{1}{3}}\right)^{6}$
113. $\left(\frac{x^{-\frac{5}{4}} y^{\frac{1}{3}}}{x^{-\frac{3}{4}}}\right)^{-6}$
114. $\left(\frac{x^{\frac{1}{2}} y^{-\frac{7}{4}}}{y^{-\frac{5}{4}}}\right)^{-4}$

Application Exercises

115. The popular comic strip FoxTrot follows the off-the-wall lives of the Fox family. Youngest son Jason is forever obsessed by his love of math. In the math-themed strip shown at the top of the next column, Jason shares his opinion in a coded message about the mathematical abilities of his sister Paige.

Foxtrot © 2003, 2009 by Bill Amend/Used by permission of Universal Uclick. All rights reserved.

Solve problems A through Z in the left panel. Then decode Jason Fox's message involving his opinion about the mathematical abilities of his sister Paige shown on the first line.
Hints: Here is the solution for problem C and partial solutions for problems Q and U .

Note: The comic strip FoxTrot is now printed in more than one thousand newspapers. What made cartoonist Bill Amend, a college physics major, put math in the comic? "I always try to use math in the strip to make the joke accessible to anyone," he said. "But if you understand math, hopefully you'll like it that much more!" We highly recommend the math humor in Amend's FoxTrot collection Math, Science, and Unix Underpants (Andrews McMeel Publishing, 2009).
116. America is getting older. The graph shows the projected elderly U.S. population for ages 65-84 and for ages 85 and older.

Source: U.S. Census Bureau

The formula $E=5 \sqrt{x}+34.1$ models the projected number of elderly Americans ages $65-84, E$, in millions, x years after 2010 .
a. Use the formula to find the projected increase in the number of Americans ages 65-84, in millions, from 2020 to 2050. Express this difference in simplified radical form.
b. Use a calculator and write your answer in part (a) to the nearest tenth. Does this rounded decimal overestimate or underestimate the difference in the projected data shown by the bar graph on the previous page? By how much?
117. The early Greeks believed that the most pleasing of all rectangles were golden rectangles, whose ratio of width to height is

$$
\frac{w}{h}=\frac{2}{\sqrt{5}-1}
$$

The Parthenon at Athens fits into a golden rectangle once the triangular pediment is reconstructed.

Rationalize the denominator of the golden ratio. Then use a calculator and find the ratio of width to height, correct to the nearest hundredth, in golden rectangles.
118. Use Einstein's special-relativity equation

$$
R_{a}=R_{f} \sqrt{1-\left(\frac{v}{c}\right)^{2}}
$$

described in the Blitzer Bonus on page 44, to solve this exercise. You are moving at 90% of the speed of light. Substitute $0.9 c$ for v, your velocity, in the equation. What is your aging rate, correct to two decimal places, relative to a friend on Earth? If you are gone for 44 weeks, approximately how many weeks have passed for your friend?
The perimeter, P, of a rectangle with length l and width w is given by the formula $P=2 l+2 w$. The area, A, is given by the formula $A=l w$. In Exercises 119-120, use these formulas to find the perimeter and area of each rectangle. Express answers in simplified radical form. Remember that perimeter is measured in linear units, such as feet or meters, and area is measured in square units, such as square feet, $f t^{2}$, or square meters, m^{2}.
119.
$\sqrt{125}$ feet

120.

Writing in Mathematics

121. Explain how to simplify $\sqrt{10} \cdot \sqrt{5}$.
122. Explain how to add $\sqrt{3}+\sqrt{12}$.
123. Describe what it means to rationalize a denominator. Use both $\frac{1}{\sqrt{5}}$ and $\frac{1}{5+\sqrt{5}}$ in your explanation.
124. What difference is there in simplifying $\sqrt[3]{(-5)^{3}}$ and $\sqrt[4]{(-5)^{4}}$?
125. What does $a^{\frac{m}{n}}$ mean?
126. Describe the kinds of numbers that have rational fifth roots.
127. Why must a and b represent nonnegative numbers when we write $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$? Is it necessary to use this restriction in the case of $\sqrt[3]{a} \cdot \sqrt[3]{b}=\sqrt[3]{a b}$? Explain.
128. Read the Blitzer Bonus on page 44. The future is now: You have the opportunity to explore the cosmos in a starship traveling near the speed of light. The experience will enable you to understand the mysteries of the universe in deeply personal ways, transporting you to unimagined levels of knowing and being. The downside: You return from your two-year journey to a futuristic world in which friends and loved ones are long gone. Do you explore space or stay here on Earth? What are the reasons for your choice?

Critical Thinking Exercises

Make Sense? In Exercises 129-132, determine whether each statement makes sense or does not make sense, and explain your reasoning.
129. The joke in this Peanuts cartoon would be more effective if Woodstock had rationalized the denominator correctly in the last frame.

Peanuts © 1978 Peanuts Worldwide LLC. Used by permission of Universal Uclick. All rights reserved.
130. Using my calculator, I determined that $6^{7}=279,936$, so 6 must be a seventh root of 279,936 .
131. I simplified the terms of $2 \sqrt{20}+4 \sqrt{75}$, and then I was able to add the like radicals.
132. When I use the definition for $a^{\frac{m}{n}}$, I usually prefer to first raise a to the m power because smaller numbers are involved.
In Exercises 133-136, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
133. $7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}}=49$
134. $8^{-\frac{1}{3}}=-2$
135. The cube root of -8 is not a real number.
136. $\frac{\sqrt{20}}{8}=\frac{\sqrt{10}}{4}$

In Exercises 137-138, fill in each box to make the statement true.
137. $(5+\sqrt{\square})(5-\sqrt{\square})=22$
138. $\sqrt{\square}=5 x^{7}$
139. Find the exact value of $\sqrt{13+\sqrt{2}+\frac{7}{3+\sqrt{2}}}$ without
the use of a calculator.
140. Place the correct symbol, $>$ or $<$, in the shaded area between the given numbers. Do not use a calculator. Then check your result with a calculator.
a. $3^{\frac{1}{2}} \quad 3^{\frac{1}{3}}$
b. $\sqrt{7}+\sqrt{18}-\sqrt{7+18}$
141. a. A mathematics professor recently purchased a birthday cake for her son with the inscription

$$
\operatorname{Happy}\left(2^{\frac{5}{2}} \cdot 2^{\frac{3}{4}} \div 2^{\frac{1}{4}}\right) \text { th Birthday. }
$$

How old is the son?
b. The birthday boy, excited by the inscription on the cake, tried to wolf down the whole thing. Professor Mom, concerned about the possible metamorphosis of her son into a blimp, exclaimed,"Hold on! It is your birthday, so why not take $\frac{8^{-\frac{4}{3}}+2^{-2}}{16^{-\frac{3}{4}}+2^{-1}}$ of the cake? I'll eat half of what's left over." How much of the cake did the professor eat?

Preview Exercises

Exercises 142-144 will help you prepare for the material covered in the next section.
142. Multiply: $\left(2 x^{3} y^{2}\right)\left(5 x^{4} y^{7}\right)$.
143. Use the distributive property to multiply:

$$
2 x^{4}\left(8 x^{4}+3 x\right)
$$

144. Simplify and express the answer in descending powers of x :

$$
2 x\left(x^{2}+4 x+5\right)+3\left(x^{2}+4 x+5\right)
$$

SECTION P. 4

Objectives

(1) Understand the vocabulary of polynomials.
(2) Add and subtract polynomials.
(3) Multiply polynomials.
(4) Use FOIL in polynomial multiplication.
(5) Use special products in polynomial multiplication.
6 Perform operations with polynomials in several variables.

(1) Understand the vocabulary of polynomials.

Can that be Axl, your author's yellow lab, sharing a special moment with a baby chick? And if it is (it is), what possible relevance can this have to polynomials? An answer is promised before you reach the Exercise Set. For now, we open the section by defining and describing polynomials.

How We Define Polynomials

More education results in a higher income. The mathematical models

Polynomials

$$
\begin{aligned}
\quad M & =0.6 x^{3}+285 x^{2}-2256 x+15,112 \\
\text { and } \quad W & =-1.2 x^{3}+367 x^{2}-4900 x+26,561
\end{aligned}
$$

describe the median, or middlemost, annual income for men, M, and women, W, who have completed x years of education. We'll be working with these models and the data upon which they are based in the Exercise Set.

The algebraic expressions that appear on the right sides of the models are examples of polynomials. A polynomial is a single term or the sum of two or more terms containing variables with whole-number exponents. The polynomials above each contain four terms. Equations containing polynomials are used in such diverse areas as science, business, medicine, psychology, and sociology. In this section, we review basic ideas about polynomials and their operations.

How We Describe Polynomials

Consider the polynomial

$$
7 x^{3}-9 x^{2}+13 x-6
$$

We can express $7 x^{3}-9 x^{2}+13 x-6$ as

$$
7 x^{3}+\left(-9 x^{2}\right)+13 x+(-6) .
$$

The polynomial contains four terms. It is customary to write the terms in the order of descending powers of the variable. This is the standard form of a polynomial.

Some polynomials contain only one variable. Each term of such a polynomial in x is of the form $a x^{n}$. If $a \neq 0$, the degree of $a x^{n}$ is n. For example, the degree of the term $7 x^{3}$ is 3 .

GREAT QUESTION!

Why doesn't the constant 0 have a degree?
We can express 0 in many ways, including $0 x, 0 x^{2}$, and $0 x^{3}$. It is impossible to assign a single exponent on the variable. This is why 0 has no defined degree.

The Degree of $a x^{n}$
If $a \neq 0$, the degree of $a x^{n}$ is n. The degree of a nonzero constant is 0 . The constant 0 has no defined degree.

Here is an example of a polynomial and the degree of each of its four terms:

Notice that the exponent on x for the term $2 x$, meaning $2 x^{1}$, is understood to be 1 . For this reason, the degree of $2 x$ is 1 . You can think of -5 as $-5 x^{0}$; thus, its degree is 0 .

A polynomial is simplified when it contains no grouping symbols and no like terms. A simplified polynomial that has exactly one term is called a monomial. A binomial is a simplified polynomial that has two terms. A trinomial is a simplified polynomial with three terms. Simplified polynomials with four or more terms have no special names.

The degree of a polynomial is the greatest degree of all the terms of the polynomial. For example, $4 x^{2}+3 x$ is a binomial of degree 2 because the degree of the first term is 2 , and the degree of the other term is less than 2 . Also, $7 x^{5}-2 x^{2}+4$ is a trinomial of degree 5 because the degree of the first term is 5 , and the degrees of the other terms are less than 5 .

Up to now, we have used x to represent the variable in a polynomial. However, any letter can be used. For example,

- $7 x^{5}-3 x^{3}+8 \quad$ is a polynomial (in x) of degree 5 . Because there are three terms, the polynomial is a trinomial.
- $6 y^{3}+4 y^{2}-y+3$ is a polynomial (in y) of degree 3. Because there are four terms, the polynomial has no special name.
- $z^{7}+\sqrt{2} \quad$ is a polynomial (in z) of degree 7. Because there are two terms, the polynomial is a binomial.
We can tie together the threads of our discussion with the formal definition of a polynomial in one variable. In this definition, the coefficients of the terms are represented by a_{n} (read " a sub n "), a_{n-1} (read " a sub n minus 1 "), a_{n-2}, and so on. The small letters to the lower right of each a are called subscripts and are not exponents. Subscripts are used to distinguish one constant from another when a large and undetermined number of such constants are needed.

Definition of a Polynomial in x

A polynomial in \boldsymbol{x} is an algebraic expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0},
$$

where $a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{1}$, and a_{0} are real numbers, $a_{n} \neq 0$, and n is a nonnegative integer. The polynomial is of degree \boldsymbol{n}, a_{n} is the leading coefficient, and a_{0} is the constant term.

2 Add and subtract polynomials.

GREAT QUESTION!

Can I use a vertical format to add and subtract polynomials?
Yes. Arrange like terms in columns and combine vertically:

$$
\begin{array}{r}
7 x^{3}-8 x^{2}+9 x-6 \\
-2 x^{3}+6 x^{2}+3 x-9 \\
\hline 5 x^{3}-2 x^{2}+12 x-15
\end{array}
$$

The like terms can be combined by adding their coefficients and keeping the same variable factor.

3 Multiply polynomials.

GREAT QUESTION!

Because monomials with the same base and different exponents can be multiplied, can they also be added?
No. Don't confuse adding and multiplying monomials.

Addition:

$$
5 x^{4}+6 x^{4}=11 x^{4}
$$

Multiplication:

$$
\begin{aligned}
\left(5 x^{4}\right)\left(6 x^{4}\right) & =(5 \cdot 6)\left(x^{4} \cdot x^{4}\right) \\
& =30 x^{4+4} \\
& =30 x^{8}
\end{aligned}
$$

Only like terms can be added or subtracted, but unlike terms may be multiplied.

Addition:

$5 x^{4}+3 x^{2}$ cannot be simplified.

Multiplication:

$$
\begin{aligned}
\left(5 x^{4}\right)\left(3 x^{2}\right) & =(5 \cdot 3)\left(x^{4} \cdot x^{2}\right) \\
& =15 x^{4+2} \\
& =15 x^{6}
\end{aligned}
$$

Adding and Subtracting Polynomials

Polynomials are added and subtracted by combining like terms. For example, we can combine the monomials $-9 x^{3}$ and $13 x^{3}$ using addition as follows:

$$
-9 x^{3}+13 x^{3}=(-9+13) x^{3}=4 x^{3}
$$

These like terms both contain x to the third power.

Add coefficients and keep the same variable factor, x^{3}.

EXAMPLE 1 Adding and Subtracting Polynomials

Perform the indicated operations and simplify:
a. $\left(-9 x^{3}+7 x^{2}-5 x+3\right)+\left(13 x^{3}+2 x^{2}-8 x-6\right)$
b. $\left(7 x^{3}-8 x^{2}+9 x-6\right)-\left(2 x^{3}-6 x^{2}-3 x+9\right)$.

SOLUTION
a. $\left(-9 x^{3}+7 x^{2}-5 x+3\right)+\left(13 x^{3}+2 x^{2}-8 x-6\right)$

$$
=\left(-9 x^{3}+13 x^{3}\right)+\left(7 x^{2}+2 x^{2}\right)+(-5 x-8 x)+(3-6) \text { Group like terms. }
$$

$$
=4 x^{3}+9 x^{2}+(-13 x)+(-3) \quad \text { Combine like terms. }
$$

$$
=4 x^{3}+9 x^{2}-13 x-3 \quad \text { Simplify }
$$

b. $\left(7 x^{3}-8 x^{2}+9 x-6\right)-\left(2 x^{3}-6 x^{2}-3 x+9\right)$

Change the sign of each coefficient.
Rewrite subtraction as addition of the additive inverse.

$$
\begin{array}{ll}
=\left(7 x^{3}-8 x^{2}+9 x-6\right)+\left(-2 x^{3}+6 x^{2}+3 x-9\right) & \\
=\left(7 x^{3}-2 x^{3}\right)+\left(-8 x^{2}+6 x^{2}\right)+(9 x+3 x)+(-6-9) & \\
=5 x^{3}+\left(-2 x^{2}\right)+12 x+(-15) & \\
=5 x^{3}-2 x^{2}+12 x-15 & \\
\text { Combine like terms. } \\
=\text { Simplify. }
\end{array}
$$

\int Check Point 1 Perform the indicated operations and simplify:
a. $\left(-17 x^{3}+4 x^{2}-11 x-5\right)+\left(16 x^{3}-3 x^{2}+3 x-15\right)$
b. $\left(13 x^{3}-9 x^{2}-7 x+1\right)-\left(-7 x^{3}+2 x^{2}-5 x+9\right)$.

Multiplying Polynomials

The product of two monomials is obtained by using properties of exponents. For example,

$$
\left(-8 x^{6}\right)\left(5 x^{3}\right)=-8 \cdot 5 x^{6+3}=-40 x^{9}
$$

Multiply coefficients and add exponents.

Furthermore, we can use the distributive property to multiply a monomial and a polynomial that is not a monomial. For example,

Monomial

Trinomial

How do we multiply two polynomials if neither is a monomial? For example, consider

$$
(2 x+3)\left(x^{2}+4 x+5\right)
$$

One way to perform $(2 x+3)\left(x^{2}+4 x+5\right)$ is to distribute $2 x$ throughout the trinomial

$$
2 x\left(x^{2}+4 x+5\right)
$$

and 3 throughout the trinomial

$$
3\left(x^{2}+4 x+5\right) .
$$

Then combine the like terms that result.

Multiplying Polynomials When Neither Is a Monomial

Multiply each term of one polynomial by each term of the other polynomial. Then combine like terms.

EXAMPLE 2 Multiplying a Binomial and a Trinomial
Multiply: $(2 x+3)\left(x^{2}+4 x+5\right)$.

SOLUTION

$$
\begin{array}{ll}
(2 x+3)\left(x^{2}+4 x+5\right) & \\
=2 x\left(x^{2}+4 x+5\right)+3\left(x^{2}+4 x+5\right) & \text { Multiply the trinomial by each } \\
=2 x \cdot x^{2}+2 x \cdot 4 x+2 x \cdot 5+3 x^{2}+3 \cdot 4 x+3 \cdot 5 & \text { term of the binomial. } \\
=2 x^{3}+8 x^{2}+10 x+3 x^{2}+12 x+15 & \text { Use the distributive property. } \\
& \text { Multiply monomials: Multiply } \\
=2 x^{3}+11 x^{2}+22 x+15 & \text { coefficients and add } \\
& \begin{array}{l}
\text { exponents. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} x^{2}+3 x^{2}=112 x+12 x=22 x .
\end{array}
$$

Another method for performing the multiplication is to use a vertical format similar to that used for multiplying whole numbers.

\oint Check Point 2 Multiply: $(5 x-2)\left(3 x^{2}-5 x+4\right)$.

Use FOIL in polynomial multiplication.

The Product of Two Binomials: FOIL

Frequently, we need to find the product of two binomials. One way to perform this multiplication is to distribute each term in the first binomial through the second binomial. For example, we can find the product of the binomials $3 x+2$ and $4 x+5$ as follows:

$$
\begin{aligned}
& \begin{aligned}
(3 x+2)(4 x+5) & =3 x(4 x+5)+2(4 x+5) \\
& =3 x(4 x)+3 x(5)+2(4 x)+2(5) \\
& =3 x+10 .
\end{aligned} \\
\begin{array}{c}
\text { Distribute } 3 x \\
\text { over } 4 x+5 .
\end{array} \begin{array}{c}
\text { Distribute 2 } \\
\text { over } 4 x+5 .
\end{array} & =12 x^{2}+15 x+8 x+10 .
\end{aligned}
$$

We'll combine these like terms later.
For now, our interest is in how to obtain each of these four terms.

We can also find the product of $3 x+2$ and $4 x+5$ using a method called FOIL, which is based on our preceding work. Any two binomials can be quickly multiplied
by using the FOIL method, in which \mathbf{F} represents the product of the first terms in each binomial, \mathbf{O} represents the product of the outside terms, I represents the product of the inside terms, and \mathbf{L} represents the product of the last, or second, terms in each binomial. For example, we can use the FOIL method to find the product of the binomials $3 x+2$ and $4 x+5$ as follows:

In general, here's how to use the FOIL method to find the product of $a x+b$ and $c x+d:$

Using the FOIL Method to Multiply Binomials

EXAMPLE 3 Using the FOIL Method
Multiply: $(3 x+4)(5 x-3)$.
SOLUTION

first last	F 0		L
		1	
$(3 x+4)(5 x-3)=3 x \cdot 5 x+3 x(-3)+4 \cdot 5 x+4(-3$			
$\underset{\text { inside }}{\uparrow}$	$=15 x^{2}-9 x+20 x-12$		
outside	$=15 x^{2}+11 x-12$		

\oint Check Point 3 Multiply: $(7 x-5)(4 x-3)$.
5. Use special products in polynomial multiplication.

GREAT QUESTION!

Do I have to memorize the special products shown in the table on the right?
Not necessarily. Although it's convenient to memorize these forms, the FOIL method can be used on all five examples in the box. To cube $x+4$, you can first square $x+4$ using FOIL and then multiply this result by $x+4$. We suggest memorizing these special forms because they let you multiply far more rapidly than using the FOIL method.
(Perform operations with polynomials in several variables.

Special Products

There are several products that occur so frequently that it's convenient to memorize the form, or pattern, of these formulas.

Special Products

Let A and B represent real numbers, variables, or algebraic expressions.

Special Product	Example
Sum and Difference of Two Terms	
$(A+B)(A-B)=A^{2}-B^{2}$	$\begin{aligned} (2 x+3)(2 x-3) & =(2 x)^{2}-3^{2} \\ & =4 x^{2}-9 \end{aligned}$
Squaring a Binomial	
$(A+B)^{2}=A^{2}+2 A B+B^{2}$	$\begin{aligned} (y+5)^{2} & =y^{2}+2 \cdot y \cdot 5+5^{2} \\ & =y^{2}+10 y+25 \end{aligned}$
$(A-B)^{2}=A^{2}-2 A B+B^{2}$	$\begin{aligned} & (3 x-4)^{2} \\ & =(3 x)^{2}-2 \cdot 3 x \cdot 4+4^{2} \\ & =9 x^{2}-24 x+16 \end{aligned}$
Cubing a Binomial	
$(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$	$\begin{aligned} & (x+4)^{3} \\ & =x^{3}+3 x^{2}(4)+3 x(4)^{2}+4^{3} \\ & =x^{3}+12 x^{2}+48 x+64 \end{aligned}$
$(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}$	$\begin{aligned} & (x-2)^{3} \\ & =x^{3}-3 x^{2}(2)+3 x(2)^{2}-2^{3} \\ & =x^{3}-6 x^{2}+12 x-8 \end{aligned}$

Polynomials in Several Variables

A polynomial in two variables, x and y, contains the sum of one or more monomials in the form $a x^{n} y^{m}$. The constant, a, is the coefficient. The exponents, n and m, represent whole numbers. The degree of the monomial $a x^{n} y^{m}$ is $n+m$.

Here is an example of a polynomial in two variables:

The degree of a polynomial in two variables is the highest degree of all its terms. For the preceding polynomial, the degree is 6 .

Polynomials containing two or more variables can be added, subtracted, and multiplied just like polynomials that contain only one variable. For example, we can add the monomials $-7 x y^{2}$ and $13 x y^{2}$ as follows:

$$
-7 x y^{2}+13 x y^{2}=(-7+13) x y^{2}=6 x y^{2}
$$

EXAMPLE 4 Multiplying Polynomials in Two Variables

Multiply: a. $(x+4 y)(3 x-5 y) \quad$ b. $(5 x+3 y)^{2}$.

SOLUTION

We will perform the multiplication in part (a) using the FOIL method. We will multiply in part (b) using the formula for the square of a binomial sum, $(A+B)^{2}$.
a. $(x+4 y)(3 x-5 y)$ Multiply these binomials using the FOIL method.
\quad F
$=(x)(3 x)+(x)(-5 y)+(4 y)(3 x)+(4 y)(-5 y)$
$=3 x^{2}-5 x y+12 x y-20 y^{2}$
$=3 x^{2}+7 x y-20 y^{2} \quad$ Combine like terms.

$$
(A+B)^{2}=A^{2}+2 \cdot A \cdot B+B^{2}
$$

b. $(5 x+3 y)^{2}=(5 x)^{2}+2(5 x)(3 y)+(3 y)^{2}$

$$
=25 x^{2}+30 x y+9 y^{2}
$$

W Check Point 4 Multiply:

a. $(7 x-6 y)(3 x-y)$
b. $(2 x+4 y)^{2}$.

Special products can sometimes be used to find the products of certain trinomials, as illustrated in Example 5.

EXAMPLE 5 Using the Special Products

Multiply:
a. $(7 x+5+4 y)(7 x+5-4 y)$
b. $(3 x+y+1)^{2}$.

SOLUTION

a. By grouping the first two terms within each of the parentheses, we can find the product using the form for the sum and difference of two terms.

$$
\begin{aligned}
(A+B) \cdot(A-B) & =A^{2}-B^{2} \\
{[(7 x+5)+4 y] \cdot[(7 x+5)-4 y] } & =(7 x+5)^{2}-(4 y)^{2} \\
& =(7 x)^{2}+2 \cdot 7 x \cdot 5+5^{2}-(4 y)^{2} \\
& =49 x^{2}+70 x+25-16 y^{2}
\end{aligned}
$$

b. We can group the terms of $(3 x+y+1)^{2}$ so that the formula for the square of a binomial can be applied.

$$
\begin{aligned}
(A+B)^{2} & =A^{2}+2 \cdot A \cdot B+B^{2} \\
{[(3 x+y)+1]^{2} } & =(3 x+y)^{2}+2 \cdot(3 x+y) \cdot 1+1^{2} \\
& =9 x^{2}+6 x y+y^{2}+6 x+2 y+1
\end{aligned}
$$

\oint Check Point 5 Multiply:

a. $(3 x+2+5 y)(3 x+2-5 y)$
b. $(2 x+y+3)^{2}$.

Blitzer Banus || Labrador Retrievers and Polynomial Multiplication

The color of a Labrador retriever is determined by its pair of genes. A single gene is inherited at random from each parent. The black-fur gene, B , is dominant. The yellow-fur gene, Y , is recessive. This means that labs with at least one black-fur gene (BB or BY) have black coats. Only labs with two yellow-fur genes (YY) have yellow coats.

Axl, your author's yellow lab, inherited his genetic makeup from two black BY parents.

Because YY is one of four possible outcomes, the probability that a yellow lab like Axl will be the offspring of these black parents is $\frac{1}{4}$.

The probabilities suggested by the table can be modeled by the expression $\left(\frac{1}{2} B+\frac{1}{2} Y\right)^{2}$.

$$
\begin{aligned}
&\left(\frac{1}{2} B+\frac{1}{2} Y\right)^{2}=\left(\frac{1}{2} B\right)^{2}+2\left(\frac{1}{2} B\right)\left(\frac{1}{2} Y\right)+\left(\frac{1}{2} Y\right)^{2} \\
&=\frac{1}{4} B B+\frac{1}{2} B Y+\frac{1}{4} Y Y \\
& \begin{array}{c}
\text { The probability of a } \\
\text { black lab with two } \\
\text { dominant black genes is } \frac{1}{4} .
\end{array} \begin{array}{c}
\text { The probability of a } \\
\text { black lab with a } \\
\text { recessive yellow gene is } \frac{1}{2} \text {. }
\end{array} \begin{array}{c}
\text { The probability of a } \\
\text { yellow lab with two }
\end{array} \\
& \text { recesive yellow genes is } \frac{1}{4} .
\end{aligned}
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A polynomial is a single term or the sum of two or more terms containing variables with exponents that are \qquad numbers.
2. It is customary to write the terms of a polynomial in the order of descending powers of the variable. This is called the \qquad form of a polynomial.
3. A simplified polynomial that has exactly one term is called a/an \qquad _.
4. A simplified polynomial that has two terms is called a/an \qquad -.
5. A simplified polynomial that has three terms is called a/an \qquad
6. If $a \neq 0$, the degree of $a x^{n}$ is \qquad \therefore.
7. Polynomials are added by combining \qquad terms.
8. To multiply $7 x^{3}\left(4 x^{5}-8 x^{2}+6\right)$, use the __ property to multiply each term of the trinomial property to multiply each term
by the monomial \qquad -
9. To multiply $\left.\overline{(5 x+3)\left(x^{2}\right.}+8 x+7\right)$, begin by multiplying each term of $x^{2}+8 x+7$ by \qquad .Then multiply each term of $x^{2}+8 x+7$ by \qquad Then
\qquad terms.

EXERCISE SET P. 4

Practice Exercises

In Exercises 1-4, is the algebraic expression a polynomial? If it is, write the polynomial in standard form.

1. $2 x+3 x^{2}-5$
2. $2 x+3 x^{-1}-5$
3. $\frac{2 x+3}{x}$
4. $x^{2}-x^{3}+x^{4}-5$

In Exercises 5-8, find the degree of the polynomial.
5. $3 x^{2}-5 x+4$
6. $-4 x^{3}+7 x^{2}-11$
7. $x^{2}-4 x^{3}+9 x-12 x^{4}+63$
8. $x^{2}-8 x^{3}+15 x^{4}+91$

In Exercises 9-14, perform the indicated operations. Write the resulting polynomial in standard form and indicate its degree.
9. $\left(-6 x^{3}+5 x^{2}-8 x+9\right)+\left(17 x^{3}+2 x^{2}-4 x-13\right)$
10. $\left(-7 x^{3}+6 x^{2}-11 x+13\right)+\left(19 x^{3}-11 x^{2}+7 x-17\right)$
11. $\left(17 x^{3}-5 x^{2}+4 x-3\right)-\left(5 x^{3}-9 x^{2}-8 x+11\right)$
12. $\left(18 x^{4}-2 x^{3}-7 x+8\right)-\left(9 x^{4}-6 x^{3}-5 x+7\right)$
13. $\left(5 x^{2}-7 x-8\right)+\left(2 x^{2}-3 x+7\right)-\left(x^{2}-4 x-3\right)$
14. $\left(8 x^{2}+7 x-5\right)-\left(3 x^{2}-4 x\right)-\left(-6 x^{3}-5 x^{2}+3\right)$

In Exercises 15-82, find each product.
15. $(x+1)\left(x^{2}-x+1\right)$
16. $(x+5)\left(x^{2}-5 x+25\right)$
17. $(2 x-3)\left(x^{2}-3 x+5\right)$
18. $(2 x-1)\left(x^{2}-4 x+3\right)$
19. $(x+7)(x+3)$
21. $(x-5)(x+3)$
23. $(3 x+5)(2 x+1)$
25. $(2 x-3)(5 x+3)$
27. $\left(5 x^{2}-4\right)\left(3 x^{2}-7\right)$
29. $\left(8 x^{3}+3\right)\left(x^{2}-5\right)$
31. $(x+3)(x-3)$
33. $(3 x+2)(3 x-2)$
35. $(5-7 x)(5+7 x)$
37. $\left(4 x^{2}+5 x\right)\left(4 x^{2}-5 x\right)$
39. $\left(1-y^{5}\right)\left(1+y^{5}\right)$
41. $(x+2)^{2}$
43. $(2 x+3)^{2}$
45. $(x-3)^{2}$
47. $\left(4 x^{2}-1\right)^{2}$
49. $(7-2 x)^{2}$
51. $(x+1)^{3}$
53. $(2 x+3)^{3}$
55. $(x-3)^{3}$
57. $(3 x-4)^{3}$
59. $(x+5 y)(7 x+3 y)$
61. $(x-3 y)(2 x+7 y)$
63. $(3 x y-1)(5 x y+2)$
65. $(7 x+5 y)^{2}$
67. $\left(x^{2} y^{2}-3\right)^{2}$
69. $(x-y)\left(x^{2}+x y+y^{2}\right)$
20. $(x+8)(x+5)$
22. $(x-1)(x+2)$
24. $(7 x+4)(3 x+1)$
26. $(2 x-5)(7 x+2)$
28. $\left(7 x^{2}-2\right)\left(3 x^{2}-5\right)$
30. $\left(7 x^{3}+5\right)\left(x^{2}-2\right)$
32. $(x+5)(x-5)$
34. $(2 x+5)(2 x-5)$
36. $(4-3 x)(4+3 x)$
38. $\left(3 x^{2}+4 x\right)\left(3 x^{2}-4 x\right)$
40. $\left(2-y^{5}\right)\left(2+y^{5}\right)$
42. $(x+5)^{2}$
44. $(3 x+2)^{2}$
46. $(x-4)^{2}$
48. $\left(5 x^{2}-3\right)^{2}$
50. $(9-5 x)^{2}$
52. $(x+2)^{3}$
54. $(3 x+4)^{3}$
56. $(x-1)^{3}$
58. $(2 x-3)^{3}$
60. $(x+9 y)(6 x+7 y)$
62. $(3 x-y)(2 x+5 y)$
64. $\left(7 x^{2} y+1\right)\left(2 x^{2} y-3\right)$
66. $(9 x+7 y)^{2}$
68. $\left(x^{2} y^{2}-5\right)^{2}$
70. $(x+y)\left(x^{2}-x y+y^{2}\right)$
72. $(7 x+3 y)(7 x-3 y)$
71. $(3 x+5 y)(3 x-5 y)$
73. $(x+y+3)(x+y-3)$
74. $(x+y+5)(x+y-5)$
75. $(3 x+7-5 y)(3 x+7+5 y)$
76. $(5 x+7 y-2)(5 x+7 y+2)$
77. $[5 y-(2 x+3)][5 y+(2 x+3)]$
78. $[8 y+(7-3 x)][8 y-(7-3 x)]$
79. $(x+y+1)^{2}$
80. $(x+y+2)^{2}$
81. $(2 x+y+1)^{2}$
82. $(5 x+1+6 y)^{2}$

Practice Plus

In Exercises 83-90, perform the indicated operation or operations.
83. $(3 x+4 y)^{2}-(3 x-4 y)^{2}$
84. $(5 x+2 y)^{2}-(5 x-2 y)^{2}$
85. $(5 x-7)(3 x-2)-(4 x-5)(6 x-1)$
86. $(3 x+5)(2 x-9)-(7 x-2)(x-1)$
87. $(2 x+5)(2 x-5)\left(4 x^{2}+25\right)$
88. $(3 x+4)(3 x-4)\left(9 x^{2}+16\right)$
89. $\frac{(2 x-7)^{5}}{(2 x-7)^{3}}$
90. $\frac{(5 x-3)^{6}}{(5 x-3)^{4}}$

Application Exercises

As you complete more years of education, you can count on a greater income. The bar graph shows the median, or middlemost, annual income for Americans, by level of education, in 2009.

Source: Bureau of the Census
Here are polynomial models that describe the median annual income for men, M, and for women, W, who have completed x years of education:

$$
\begin{aligned}
& M=312 x^{2}-2615 x+16,615 \\
& W=316 x^{2}-4224 x+23,730 \\
& M=0.6 x^{3}+285 x^{2}-2256 x+15,112 \\
& W=-1.2 x^{3}+367 x^{2}-4900 x+26,561
\end{aligned}
$$

Exercises 91-92 are based on these models and the data displayed by the graph above.
91. a. Use the equation defined by a polynomial of degree 2 to find the median annual income for a man with 16 years of education. Does this underestimate or overestimate the median income shown by the bar graph? By how much?
b. Use the equations defined by polynomials of degree 3 to find a mathematical model for $M-W$.
c. According to the model in part (b), what is the difference, rounded to the nearest dollar, in the median annual income between men and women with 14 years of education?
d. According to the data displayed by the graph, what is the actual difference in the median annual income between men and women with 14 years of education? Did the result of part (c) underestimate or overestimate this difference? By how much?
92. a. Use the equation defined by a polynomial of degree 2 to find the median annual income for a woman with 18 years of education. Does this underestimate or overestimate the median income shown by the bar graph? By how much?
b. Use the equations defined by polynomials of degree 3 to find a mathematical model for $M-W$.
c. According to the model in part (b), what is the difference, rounded to the nearest dollar, in the median annual income between men and women with 16 years of education?
d. According to the data displayed by the graph, what is the actual difference in the median annual income between men and women with 16 years of education? Did the result of part (c) underestimate or overestimate this difference? By how much?

The volume, V, of a rectangular solid with length l, width w, and height h is given by the formula $V=l w h$. In Exercises 93-94, use this formula to write a polynomial in standard form that models, or represents, the volume of the open box.
93.

94.

In Exercises 95-96, write a polynomial in standard form that models, or represents, the area of the shaded region.
95.

96.

Writing in Mathematics

97. What is a polynomial in x ?
98. Explain how to subtract polynomials.
99. Explain how to multiply two binomials using the FOIL method. Give an example with your explanation.
100. Explain how to find the product of the sum and difference of two terms. Give an example with your explanation.
101. Explain how to square a binomial difference. Give an example with your explanation.
102. Explain how to find the degree of a polynomial in two variables.

Critical Thinking Exercises

Make Sense? In Exercises 103-106, determine whether each statement makes sense or does not make sense, and explain your reasoning.
103. Knowing the difference between factors and terms is important: In $\left(3 x^{2} y\right)^{2}$, I can distribute the exponent 2 on each factor, but in $\left(3 x^{2}+y\right)^{2}$, I cannot do the same thing on each term.
104. I used the FOIL method to find the product of $x+5$ and $x^{2}+2 x+1$
105. Many English words have prefixes with meanings similar to those used to describe polynomials, such as monologue, binocular, and tricuspid.
106. Special-product formulas have patterns that make their multiplications quicker than using the FOIL method.
107. Express the area of the plane figure shown as a polynomial in standard form.

In Exercises 108-109, represent the volume of each figure as a polynomial in standard form.
108.

109.

110. Simplify: $\left(y^{n}+2\right)\left(y^{n}-2\right)-\left(y^{n}-3\right)^{2}$.

Preview Exercises

Exercises 111-113 will help you prepare for the material covered in the next section. In each exercise, replace the boxed question mark with an integer that results in the given product. Some trial and error may be necessary.
111. $(x+3)(x+\square)=x^{2}+7 x+12$
112. $(x-?)(x-12)=x^{2}-14 x+24$
113. $(4 x+1)(2 x-?)=8 x^{2}-10 x-3$

SECTION P. 5

Objectives

(1) Factor out the greatest common factor of a polynomial.
2 Factor by grouping.
(3) Factor trinomials.
(4. Factor the difference of squares.
(5) Factor perfect square trinomials.
6 Factor the sum or difference of two cubes.
(7) Use a general strategy for factoring polynomials.
(8) Factor algebraic expressions containing fractional and negative exponents.
(1) Factor out the greatest common factor of a polynomial.

Factoring Polynomials

A He answers, "Yes." "What is your brother's name?" "Tom." Asked if Tom has a brother, the two-year-old replies, "No." The child can go in the direction from self to brother, but he cannot reverse this direction and move from brother back to self.

As our intellects develop, we learn to reverse the direction of our thinking. Reversibility of thought is found throughout algebra. For example, we can multiply polynomials and show that

$$
5 x(2 x+3)=10 x^{2}+15 x
$$

We can also reverse this process and express the resulting polynomial as

$$
10 x^{2}+15 x=5 x(2 x+3)
$$

Factoring a polynomial expressed as the sum of monomials means finding an equivalent expression that is a product.

In this section, we will be factoring over the set of integers, meaning that the coefficients in the factors are integers. Polynomials that cannot be factored using integer coefficients are called irreducible over the integers, or prime.

The goal in factoring a polynomial is to use one or more factoring techniques until each of the polynomial's factors, except possibly for a monomial factor, is prime or irreducible. In this situation, the polynomial is said to be factored completely.

We will now discuss basic techniques for factoring polynomials.

Common Factors

In any factoring problem, the first step is to look for the greatest common factor. The greatest common factor, abbreviated GCF, is an expression of the highest degree that divides each term of the polynomial. The distributive property in the reverse direction

$$
a b+a c=a(b+c)
$$

can be used to factor out the greatest common factor.

EXAMPLE 1 Factoring Out the Greatest Common Factor

Factor:
a. $18 x^{3}+27 x^{2}$
b. $x^{2}(x+3)+5(x+3)$.

GREAT QUESTION!

Is there a rule that can help me

 determine the greatest common factor?Yes. The variable part of the greatest common factor always contains the smallest power of a variable or algebraic expression that appears in all terms of the polynomial.

2 Factor by grouping.

DISCOVERY

In Example 2, group the terms as follows:

$$
\left(x^{3}+3 x\right)+\left(4 x^{2}+12\right)
$$

Factor out the greatest common factor from each group and complete the factoring process. Describe what happens. What can you conclude?

SOLUTION

a. First, determine the greatest common factor.

9 is the greatest integer that divides 18 and 27.

$$
18 x^{3}+27 x^{2}
$$

$$
x^{2} \text { is the greatest expression that divides } x^{3} \text { and } x^{2}
$$

The GCF of the two terms of the polynomial is $9 x^{2}$.

$$
\begin{array}{ll}
18 x^{3}+27 x^{2} & \\
=9 x^{2}(2 x)+9 x^{2}(3) & \text { Express each term as the product } \\
\text { of the GCF and its other factor. } \\
=9 x^{2}(2 x+3) & \text { Factor out the GCF. }
\end{array}
$$

b. In this situation, the greatest common factor is the common binomial factor $(x+3)$. We factor out this common factor as follows:
$x^{2}(x+3)+5(x+3)=(x+3)\left(x^{2}+5\right)$. Factor out the common binomial factor.

$\$$ Check Point 1 Factor:

a. $10 x^{3}-4 x^{2}$
b. $2 x(x-7)+3(x-7)$.

Factoring by Grouping

Some polynomials have only a greatest common factor of 1 . However, by a suitable grouping of the terms, it still may be possible to factor. This process, called factoring by grouping, is illustrated in Example 2.

EXAMPLE 2 Factoring by Grouping

Factor: $x^{3}+4 x^{2}+3 x+12$.

SOLUTION

There is no factor other than 1 common to all terms. However, we can group terms that have a common factor:

We now factor the given polynomial as follows:

$$
\begin{array}{ll}
x^{3}+4 x^{2}+3 x+12 & \\
=\left(x^{3}+4 x^{2}\right)+(3 x+12) & \text { Group terms with common factors. } \\
=x^{2}(x+4)+3(x+4) & \begin{array}{l}
\text { Factor out the greatest common factor } \\
\text { from the grouped terms. The remaining two }
\end{array} \\
& \begin{array}{l}
\text { terms have } x+4 \text { as a common binomial } \\
\text { factor. }
\end{array} \\
=(x+4)\left(x^{2}+3\right) . & \text { Factor out the GCF, } x+4 .
\end{array}
$$

Thus, $x^{3}+4 x^{2}+3 x+12=(x+4)\left(x^{2}+3\right)$. Check the factorization by multiplying the right side of the equation using the FOIL method. Because the factorization is correct, you should obtain the original polynomial.
$\$$ Check Point 2 Factor: $x^{3}+5 x^{2}-2 x-10$.
3) Factor trinomials.

GREAT QUESTION!

Should I feel discouraged if it takes me a while to get the correct factorization?
The error part of the factoring strategy plays an important role in the process. If you do not get the correct factorization the first time, this is not a bad thing. This error is often helpful in leading you to the correct factorization.

Factoring Trinomials

To factor a trinomial of the form $a x^{2}+b x+c$, a little trial and error may be necessary.

A Strategy for Factoring $a x^{2}+b x+c$

Assume, for the moment, that there is no greatest common factor.

1. Find two First terms whose product is $a x^{2}$:

$$
(\underset{\downarrow}{(\square+})(\square x+)=\underset{\downarrow}{a x^{2}}+b x+c .
$$

2. Find two Last terms whose product is c :

3. By trial and error, perform steps 1 and 2 until the sum of the Outside product and Inside product is $b x$:

If no such combination exists, the polynomial is prime.

EXAMPLE 3 Factoring a Trinomial Whose Leading Coefficient Is 1

Factor: $x^{2}+6 x+8$.

SOLUTION

Step 1 Find two First terms whose product is $\boldsymbol{x}^{\mathbf{2}}$.

$$
x^{2}+6 x+8=(x \quad)(x \quad)
$$

Step 2 Find two Last terms whose product is 8 .

$$
\begin{array}{|c|c|c|c|c}
\hline \text { Factors of } 8 & 8,1 & 4,2 & -8,-1 & -4,-2
\end{array}
$$

Step 3 Try various combinations of these factors. The correct factorization of $x^{2}+6 x+8$ is the one in which the sum of the Outside and Inside products is equal to $6 x$. Here is a list of the possible factorizations:

$$
\begin{gathered}
\text { Possible Factorizations } \\
\text { of } \boldsymbol{x}^{2}+\mathbf{6} \boldsymbol{x}+\mathbf{8} \\
(x+8)(x+1) \\
(x+4)(x+2) \\
(x-8)(x-1) \\
(x-4)(x-2)
\end{gathered}
$$

 Sum of Outside and Inside
 Products (Should Equal 6x)
 \(\begin{aligned} x+8 x & =9 x \\ 2 x+4 x & =6 x\end{aligned}\)
 \(-x-8 x=-9 x\)
 \(-2 x-4 x=-6 x\)

his is the required middle term.

Thus, $x^{2}+6 x+8=(x+4)(x+2)$ or $(x+2)(x+4)$.
In factoring a trinomial of the form $x^{2}+b x+c$, you can speed things up by listing the factors of c and then finding their sums. We are interested in a sum of b. For example, in factoring $x^{2}+6 x+8$, we are interested in the factors of 8 whose sum is 6 .

Thus, $x^{2}+6 x+8=(x+4)(x+2)$.
\int Check Point 3 Factor: $x^{2}+13 x+40$.

EXAMPLE 4 Factoring a Trinomial Whose Leading Coefficient Is 1

Factor: $x^{2}+3 x-18$.

SOLUTION

Step 1 Find two First terms whose product is x^{2}.

$$
x^{2}+3 x-18=(x \quad)(x \quad)
$$

To find the second term of each factor, we must find two integers whose product is -18 and whose sum is 3 .

Step 2 Find two Last terms whose product is $\mathbf{- 1 8}$.

Factors of $\mathbf{- 1 8}$	$18,-1$	$-18,1$	$9,-2$	$-9,2$	$6,-3$	$-6,3$

Step 3 Try various combinations of these factors. We are looking for the pair of factors whose sum is 3 .

Thus, $x^{2}+3 x-18=(x+6)(x-3)$ or $(x-3)(x+6)$.

GREAT QUESTION!

Is there a way to eliminate some of the combinations of factors for a trinomial whose leading coefficient is 1 ?
Yes. To factor $x^{2}+b x+c$ when c is positive, find two numbers with the same sign as the middle term.

To factor $x^{2}+b x+c$ when c is negative, find two numbers with opposite signs whose sum is the coefficient of the middle term.

$$
x^{2}+3 x-18=(x+6)(x-3) \quad x^{2}-2 x-99=(x+9)(x-11)
$$

$\begin{array}{llll}\text { Negative } & \text { Opposite signs } & \text { Negative } & \text { Opposite signs }\end{array}$

\oint Check Point 4 Factor: $x^{2}-5 x-14$.

EXAMPLE 5 Factoring a Trinomial Whose Leading Coefficient Is Not 1

Factor: $8 x^{2}-10 x-3$.

GREAT QUESTION!

When factoring trinomials, must I list every possible factorization before getting the correct one?
With practice, you will find that it is not necessary to list every possible factorization of the trinomial. As you practice factoring, you will be able to narrow down the list of possible factors to just a few. When it comes to factoring, practice makes perfect.

SOLUTION

Step 1 Find two First terms whose product is $8 x^{2}$.

$$
\left.\begin{array}{ll}
8 x^{2}-10 x-3 & \stackrel{?}{=}(8 x \\
8 x^{2}-10 x-3 \stackrel{?}{=}(4 x &)(2 x
\end{array}\right)
$$

Step 2 Find two Last terms whose product is - 3. The possible factorizations are $1(-3)$ and $-1(3)$.
Step 3 Try various combinations of these factors. The correct factorization of $8 x^{2}-10 x-3$ is the one in which the sum of the Outside and Inside products is equal to $-10 x$. Here is a list of the possible factorizations:

	Possible Factorizations of $8 x^{2}-10 x-3$	Sum of Outside and Inside Products (Should Equal - 10x)	
	$(8 x+1)(x-3)$	$-24 x+x=-23 x$	
These four factorizations use $(8 x \quad 11 x \quad 1$	$(8 x-3)(x+1)$	$8 x-3 x=5 x$	
with $1(-3)$ and $-1(3)$ as	$(8 x-1)(x+3)$	$24 x-x=23 x$	
	$(8 x+3)(x-1)$	$-8 x+3 x=-5 x$	This is the required
	$(4 x+1)(2 x-3)$	$-12 x+2 x=-10 x$	middle term.
These four factorizations use $(4 x \quad 1(2 x \quad)$	$(4 x-3)(2 x+1)$	$4 x-6 x=-2 x$	
with $1(-3)$ and $-1(3)$ as factorizations of -3 .	$(4 x-1)(2 x+3)$	$12 x-2 x=10 x$	
	$(4 x+3)(2 x-1)$	$-4 x+6 x=2 x$	

Thus, $8 x^{2}-10 x-3=(4 x+1)(2 x-3)$ or $(2 x-3)(4 x+1)$.
Use FOIL multiplication to check either of these factorizations.

GREAT QUESTION!

I zone out reading your long lists of possible factorizations. Are there any rules for shortening these lists?
Here are some suggestions for reducing the list of possible factorizations for $a x^{2}+b x+c$:

1. If b is relatively small, avoid the larger factors of a.
2. If c is positive, the signs in both binomial factors must match the sign of b
3. If the trinomial has no common factor, no binomial factor can have a common factor.
4. Reversing the signs in the binomial factors changes the sign of $b x$, the middle term.

Check Point 5 Factor: $6 x^{2}+19 x-7$.

EXAMPLE 6 Factoring a Trinomial in Two Variables

Factor: $2 x^{2}-7 x y+3 y^{2}$.

SOLUTION

Step 1 Find two First terms whose product is $\mathbf{2} \boldsymbol{x}^{\mathbf{2}}$.

$$
2 x^{2}-7 x y+3 y^{2}=(2 x \quad)(x \quad)
$$

Step 2 Find two Last terms whose product is $\mathbf{3} \boldsymbol{y}^{\mathbf{2}}$. The possible factorizations are $(y)(3 y)$ and $(-y)(-3 y)$.

Step 3 Try various combinations of these factors. The correct factorization of $2 x^{2}-7 x y+3 y^{2}$ is the one in which the sum of the Outside and Inside products is equal to $-7 x y$. Here is a list of possible factorizations:

Possible Factorizations of $2 \boldsymbol{x}^{\mathbf{2}}-\mathbf{7 x y}+\mathbf{3 y}^{\mathbf{2}}$	Sum of Outside and Inside Products (Should Equal $-\mathbf{7 x y})$
$(2 x+3 y)(x+y)$	$2 x y+3 x y=5 x y$
$(2 x+y)(x+3 y)$	$6 x y+x y=7 x y$
$(2 x-3 y)(x-y)$	$-2 x y-3 x y=-5 x y$
$(2 x-y)(x-3 y)$	$-6 x y-x y=-7 x y$

Factor the difference of squares.

GREAT QUESTION!

Why isn't factoring $x^{4}-81$ as $\left(x^{2}+9\right)\left(x^{2}-9\right)$ a complete factorization?
The second factor, $x^{2}-9$, is itself a difference of two squares and can be factored.

Thus,

$$
2 x^{2}-7 x y+3 y^{2}=(2 x-y)(x-3 y) \quad \text { or } \quad(x-3 y)(2 x-y) .
$$

Use FOIL multiplication to check either of these factorizations.

\int Check Point 6 Factor: $3 x^{2}-13 x y+4 y^{2}$.

Factoring the Difference of Two Squares

A method for factoring the difference of two squares is obtained by reversing the special product for the sum and difference of two terms.

The Difference of Two Squares

If A and B are real numbers, variables, or algebraic expressions, then

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

In words: The difference of the squares of two terms factors as the product of a sum and a difference of those terms.

EXAMPLE 7 Factoring the Difference of Two Squares

Factor: a. $x^{2}-4 \quad$ b. $81 x^{2}-49$.

SOLUTION

We must express each term as the square of some monomial. Then we use the formula for factoring $A^{2}-B^{2}$.
a. $\quad x^{2}-4=x^{2}-2^{2}=(x+2)(x-2)$

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

b. $81 x^{2}-49=(9 x)^{2}-7^{2}=(9 x+7)(9 x-7)$

\int Check Point 7 Factor:

a. $x^{2}-81$
b. $36 x^{2}-25$.

We have seen that a polynomial is factored completely when it is written as the product of prime polynomials. To be sure that you have factored completely, check to see whether any factors with more than one term in the factored polynomial can be factored further. If so, continue factoring.

EXAMPLE 8 A Repeated Factorization

Factor completely: $x^{4}-81$.

SOLUTION

$$
x^{4}-81=\left(x^{2}\right)^{2}-9^{2}
$$

$$
=\left(x^{2}+9\right)\left(x^{2}-9\right) \quad \text { The factors are the sum and the difference of the }
$$

expressions being squared.

$$
=\left(x^{2}+9\right)\left(x^{2}-3^{2}\right) \quad \text { The factor } x^{2}-9 \text { is the difference of two }
$$

squares and can be factored.

The factors of $x^{2}-9$ are the sum and the difference of the expressions being squared. ...

Factoring Perfect Square Trinomials

Our next factoring technique is obtained by reversing the special products for squaring binomials. The trinomials that are factored using this technique are called perfect square trinomials.

Factoring Perfect Square Trinomials

Let A and B be real numbers, variables, or algebraic expressions.

The two items in the box show that perfect square trinomials, $A^{2}+2 A B+B^{2}$ and $A^{2}-2 A B+B^{2}$, come in two forms: one in which the coefficient of the middle term is positive and one in which the coefficient of the middle term is negative. Here's how to recognize a perfect square trinomial:

1. The first and last terms are squares of monomials or integers.
2. The middle term is twice the product of the expressions being squared in the first and last terms.

EXAMPLE 9 Factoring Perfect Square Trinomials

Factor:
a. $x^{2}+6 x+9$
b. $25 x^{2}-60 x+36$.

SOLUTION

a. $x^{2}+6 x+9=x^{2}+2 \cdot x \cdot 3+3^{2}=(x+3)^{2} \quad$ The middle term has a
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
positive sign.
b. We suspect that $25 x^{2}-60 x+36$ is a perfect square trinomial because $25 x^{2}=(5 x)^{2}$ and $36=6^{2}$. The middle term can be expressed as twice the product of $5 x$ and 6 .

$$
\begin{array}{r}
25 x^{2}-60 x+36=(5 x)^{2}-2 \cdot 5 x \cdot 6+6^{2}=(5 x-6)^{2} \\
A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{array}
$$

$\$$ Check Point 9 Factor:

a. $x^{2}+14 x+49$
b. $16 x^{2}-56 x+49$.

6 Factor the sum or difference of two cubes.

GREAT QUESTION!

A Cube of SOAP
The formulas for factoring $A^{3}+B^{3}$ and $A^{3}-B^{3}$ are difficult to remember and easy to confuse. Can you help me out?
When factoring sums or differences of cubes, observe the sign patterns shown by the voice balloons in the box. The word $S O A P$ is a way to remember these patterns:

(7) Use a general strategy for factoring polynomials.

Factoring the Sum or Difference of Two Cubes

We can use the following formulas to factor the sum or the difference of two cubes:

Factoring the Sum or Difference of Two Cubes

1. Factoring the Sum of Two Cubes

2. Factoring the Difference of Two Cubes

EXAMPLE 10 Factoring Sums and Differences of Two Cubes

Factor:
a. $x^{3}+8$
b. $64 x^{3}-125$.

SOLUTION

a. To factor $x^{3}+8$, we must express each term as the cube of some monomial. Then we use the formula for factoring $A^{3}+B^{3}$.

$$
\begin{gathered}
x^{3}+8=x^{3}+2^{3}=(x+2)\left(x^{2}-x \cdot 2+2^{2}\right)=(x+2)\left(x^{2}-2 x+4\right) \\
A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
\end{gathered}
$$

b. To factor $64 x^{3}-125$, we must express each term as the cube of some monomial. Then we use the formula for factoring $A^{3}-B^{3}$.

$$
\begin{aligned}
64 x^{3}-125=(4 x)^{3}-5^{3} & =(4 x-5)\left[(4 x)^{2}+(4 x)(5)+5^{2}\right] \\
A^{3}-B^{3}= & (A-B)\left(A^{2}+A B+B^{2}\right) \\
& =(4 x-5)\left(16 x^{2}+20 x+25\right)
\end{aligned}
$$

$\$$ Check Point 10 Factor:

a. $x^{3}+1$
b. $125 x^{3}-8$.

A Strategy for Factoring Polynomials

It is important to practice factoring a wide variety of polynomials so that you can quickly select the appropriate technique. The polynomial is factored completely when all its polynomial factors, except possibly for monomial factors, are prime. Because of the commutative property, the order of the factors does not matter.

A Strategy for Factoring a Polynomial

1. If there is a common factor, factor out the GCF.
2. Determine the number of terms in the polynomial and try factoring as follows:
a. If there are two terms, can the binomial be factored by using one of the following special forms?

Difference of two squares: $A^{2}-B^{2}=(A+B)(A-B)$
Sum of two cubes: $\quad A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
Difference of two cubes: $\quad A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
b. If there are three terms, is the trinomial a perfect square trinomial? If so, factor by using one of the following special forms:

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2} .
\end{aligned}
$$

If the trinomial is not a perfect square trinomial, try factoring by trial and error.
c. If there are four or more terms, try factoring by grouping.
3. Check to see if any factors with more than one term in the factored polynomial can be factored further. If so, factor completely.

EXAMPLE 11 Factoring a Polynomial

Factor: $2 x^{3}+8 x^{2}+8 x$.

SOLUTION

Step 1 If there is a common factor, factor out the GCF. Because $2 x$ is common to all terms, we factor it out.

$$
2 x^{3}+8 x^{2}+8 x=2 x\left(x^{2}+4 x+4\right) \quad \text { Factor out the GCF. }
$$

Step 2 Determine the number of terms and factor accordingly. The factor $x^{2}+4 x+4$ has three terms and is a perfect square trinomial. We factor using $A^{2}+2 A B+B^{2}=(A+B)^{2}$.

$$
\begin{array}{rlr}
2 x^{3}+8 x^{2}+8 x= & 2 x\left(x^{2}+4 x+4\right) \\
= & 2 x\left(x^{2}+2 \cdot x \cdot 2+2^{2}\right) \\
& A^{2}+2 A B+B^{2} \\
= & 2 x(x+2)^{2} \quad A^{2}+2 A B+B^{2}=(A+B)^{2}
\end{array}
$$

Step 3 Check to see if factors can be factored further. In this problem, they cannot. Thus,

$$
2 x^{3}+8 x^{2}+8 x=2 x(x+2)^{2}
$$

S Check Point 11 Factor: $3 x^{3}-30 x^{2}+75 x$.

EXAMPLE 12 Factoring a Polynomial

Factor: $x^{2}-25 a^{2}+8 x+16$.

SOLUTION

Step 1 If there is a common factor, factor out the GCF. Other than 1 or -1 , there is no common factor.
Step 2 Determine the number of terms and factor accordingly. There are four terms. We try factoring by grouping. It can be shown that grouping into two groups of two terms does not result in a common binomial factor. Let's try grouping as a difference of squares.

$$
\begin{array}{ll}
x^{2}-25 a^{2}+8 x+16 \\
=\left(x^{2}+8 x+16\right)-25 a^{2} & \begin{array}{l}
\text { Rearrange terms and group as a perfect } \\
\text { square trinomial minus } 25 a^{2} \text { to obtain a }
\end{array} \\
=(x+4)^{2}-(5 a)^{2} & \text { difference of squares. } \\
=(x+4+5 a)(x+4-5 a) & \begin{array}{l}
\text { Factor the perfect square trinomial. } \\
\text { factor the difference of squares. The } \\
\text { expressions being squared. }
\end{array}
\end{array}
$$

Step 3 Check to see if factors can be factored further. In this case, they cannot, so we have factored completely.

5 Check Point 12 Factor: $x^{2}-36 a^{2}+20 x+100$.

8 Factor algebraic expressions containing fractional and negative exponents.

Factoring Algebraic Expressions Containing Fractional and Negative Exponents

Although expressions containing fractional and negative exponents are not polynomials, they can be simplified using factoring techniques.

EXAMPLE 13 Factoring Involving Fractional and Negative

 ExponentsFactor and simplify: $x(x+1)^{-\frac{3}{4}}+(x+1)^{\frac{1}{4}}$.

SOLUTION

The greatest common factor of $x(x+1)^{-\frac{3}{4}}+(x+1)^{\frac{1}{4}}$ is $x+1$ with the smaller exponent in the two terms. Thus, the greatest common factor is $(x+1)^{-\frac{3}{4}}$.

$$
\begin{array}{ll}
x(x+1)^{-\frac{3}{4}}+(x+1)^{\frac{1}{4}} & \\
=(x+1)^{-\frac{3}{4}} x+(x+1)^{-\frac{3}{4}}(x+1)^{\frac{4}{4}} & \begin{array}{l}
\text { Express each term as the product } \\
\text { of the greatest common factor } \\
\text { and its other factor. Note that } \\
(x+1)^{-\frac{-3}{4}}(x+1)^{\frac{4}{4}}=(x+1)^{-\frac{3}{4}+\frac{4}{4}}=(x+1)^{\frac{1}{4} .}
\end{array} \\
=(x+1)^{-\frac{3}{4} x} x+(x+1)^{-\frac{3}{4}}(x+1) & \text { Simplify: }(x+1)^{\frac{4}{4}}=(x+1) . \\
=(x+1)^{-\frac{3}{4}}[x+(x+1)] & \text { Factor out the greatest common factor. } \\
=\frac{2 x+1}{(x+1)^{\frac{3}{4}}} & b^{-n}=\frac{1}{b^{n}}
\end{array}
$$

\bigcirc Check Point 13 Factor and simplify: $x(x-1)^{-\frac{1}{2}}+(x-1)^{\frac{1}{2}}$

CONCEPT AND VOCABULARY CHECK

Here is a list of the factoring techniques that we have discussed.
a. Factoring out the GCF
b. Factoring by grouping
c. Factoring trinomials by trial and error
d. Factoring the difference of two squares

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

e. Factoring perfect square trinomials

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

f. Factoring the sum of two cubes

$$
A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
$$

g. Factoring the difference of two cubes

$$
A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
$$

Fill in each blank by writing the letter of the technique (a through g) for factoring the polynomial.

1. $16 x^{2}-25$ \qquad
2. $27 x^{3}-1$ \qquad
3. $x^{2}+7 x+x y+7 y$
4. $4 x^{2}+8 x+3$ \qquad
5. $9 x^{2}+24 x+16$ \qquad
6. $5 x^{2}+10 x$ \qquad
7. $x^{3}+1000$ \qquad
8. The algebraic expression $(x+1)^{\frac{1}{2}}-\frac{1}{3}(x+1)^{\frac{3}{2}}$ can be factored using \qquad as the greatest common factor.

EXERCISE SET P. 5

Practice Exercises

In Exercises 1-10, factor out the greatest common factor.

1. $18 x+27$
2. $16 x-24$
3. $3 x^{2}+6 x$
4. $4 x^{2}-8 x$
5. $9 x^{4}-18 x^{3}+27 x^{2}$
6. $6 x^{4}-18 x^{3}+12 x^{2}$
7. $x(x+5)+3(x+5)$
8. $x(2 x+1)+4(2 x+1)$
9. $x^{2}(x-3)+12(x-3)$
10. $x^{2}(2 x+5)+17(2 x+5)$

In Exercises 11-16, factor by grouping.
11. $x^{3}-2 x^{2}+5 x-10$
12. $x^{3}-3 x^{2}+4 x-12$
13. $x^{3}-x^{2}+2 x-2$
14. $x^{3}+6 x^{2}-2 x-12$
15. $3 x^{3}-2 x^{2}-6 x+4$
16. $x^{3}-x^{2}-5 x+5$

In Exercises 17-38, factor each trinomial, or state that the trinomial is prime.
17. $x^{2}+5 x+6$
18. $x^{2}+8 x+15$
19. $x^{2}-2 x-15$
20. $x^{2}-4 x-5$
21. $x^{2}-8 x+15$
22. $x^{2}-14 x+45$
23. $3 x^{2}-x-2$
24. $2 x^{2}+5 x-3$
25. $3 x^{2}-25 x-28$
26. $3 x^{2}-2 x-5$
27. $6 x^{2}-11 x+4$
28. $6 x^{2}-17 x+12$
29. $4 x^{2}+16 x+15$
30. $8 x^{2}+33 x+4$
31. $9 x^{2}-9 x+2$
32. $9 x^{2}+5 x-4$
33. $20 x^{2}+27 x-8$
34. $15 x^{2}-19 x+6$
35. $2 x^{2}+3 x y+y^{2}$
36. $3 x^{2}+4 x y+y^{2}$
37. $6 x^{2}-5 x y-6 y^{2}$
38. $6 x^{2}-7 x y-5 y^{2}$

In Exercises 39-48, factor the difference of two squares.
39. $x^{2}-100$
40. $x^{2}-144$
41. $36 x^{2}-49$
42. $64 x^{2}-81$
43. $9 x^{2}-25 y^{2}$
44. $36 x^{2}-49 y^{2}$
45. $x^{4}-16$
46. $x^{4}-1$
47. $16 x^{4}-81$
48. $81 x^{4}-1$

In Exercises 49-56, factor each perfect square trinomial.
49. $x^{2}+2 x+1$
50. $x^{2}+4 x+4$
51. $x^{2}-14 x+49$
52. $x^{2}-10 x+25$
53. $4 x^{2}+4 x+1$
54. $25 x^{2}+10 x+1$
55. $9 x^{2}-6 x+1$
56. $64 x^{2}-16 x+1$

In Exercises 57-64, factor using the formula for the sum or difference of two cubes.
57. $x^{3}+27$
58. $x^{3}+64$
59. $x^{3}-64$
60. $x^{3}-27$
61. $8 x^{3}-1$
62. $27 x^{3}-1$
63. $64 x^{3}+27$
64. $8 x^{3}+125$

In Exercises 65-92, factor completely, or state that the polynomial is prime.
65. $3 x^{3}-3 x$
66. $5 x^{3}-45 x$
67. $4 x^{2}-4 x-24$
68. $6 x^{2}-18 x-60$
69. $2 x^{4}-162$
70. $7 x^{4}-7$
71. $x^{3}+2 x^{2}-9 x-18$
72. $x^{3}+3 x^{2}-25 x-75$
73. $2 x^{2}-2 x-112$
74. $6 x^{2}-6 x-12$
75. $x^{3}-4 x$
76. $9 x^{3}-9 x$
77. $x^{2}+64$
78. $x^{2}+36$
79. $x^{3}+2 x^{2}-4 x-8$
80. $x^{3}+2 x^{2}-x-2$
81. $y^{5}-81 y$
82. $y^{5}-16 y$
83. $20 y^{4}-45 y^{2}$
84. $48 y^{4}-3 y^{2}$
85. $x^{2}-12 x+36-49 y^{2}$
86. $x^{2}-10 x+25-36 y^{2}$
87. $9 b^{2} x-16 y-16 x+9 b^{2} y$
88. $16 a^{2} x-25 y-25 x+16 a^{2} y$
89. $x^{2} y-16 y+32-2 x^{2}$
90. $12 x^{2} y-27 y-4 x^{2}+9$
91. $2 x^{3}-8 a^{2} x+24 x^{2}+72 x$
92. $2 x^{3}-98 a^{2} x+28 x^{2}+98 x$

In Exercises 93-102, factor and simplify each algebraic expression.
93. $x^{\frac{3}{2}}-x^{\frac{1}{2}}$
94. $x^{\frac{3}{4}}-x^{\frac{1}{4}}$
95. $4 x^{-\frac{2}{3}}+8 x^{\frac{1}{3}}$
96. $12 x^{-\frac{3}{4}}+6 x^{\frac{1}{4}}$
97. $(x+3)^{\frac{1}{2}}-(x+3)^{\frac{3}{2}}$
98. $\left(x^{2}+4\right)^{\frac{3}{2}}+\left(x^{2}+4\right)^{\frac{7}{2}}$
99. $(x+5)^{-\frac{1}{2}}-(x+5)^{-\frac{3}{2}}$
100. $\left(x^{2}+3\right)^{-\frac{2}{3}}+\left(x^{2}+3\right)^{-\frac{5}{3}}$
101. $(4 x-1)^{\frac{1}{2}}-\frac{1}{3}(4 x-1)^{\frac{3}{2}}$
102. $-8(4 x+3)^{-2}+10(5 x+1)(4 x+3)^{-1}$

Practice Plus

In Exercises 103-114, factor completely.
103. $10 x^{2}(x+1)-7 x(x+1)-6(x+1)$
104. $12 x^{2}(x-1)-4 x(x-1)-5(x-1)$
105. $6 x^{4}+35 x^{2}-6$
106. $7 x^{4}+34 x^{2}-5$
107. $y^{7}+y$
108. $(y+1)^{3}+1$
109. $x^{4}-5 x^{2} y^{2}+4 y^{4}$
110. $x^{4}-10 x^{2} y^{2}+9 y^{4}$
111. $(x-y)^{4}-4(x-y)^{2}$
112. $(x+y)^{4}-100(x+y)^{2}$
113. $2 x^{2}-7 x y^{2}+3 y^{4}$
114. $3 x^{2}+5 x y^{2}+2 y^{4}$

Application Exercises

115. Your computer store is having an incredible sale. The price on one model is reduced by 40%. Then the sale price is reduced by another 40%. If x is the computer's original price, the sale price can be modeled by

$$
(x-0.4 x)-0.4(x-0.4 x)
$$

a. Factor out $(x-0.4 x)$ from each term. Then simplify the resulting expression.
b. Use the simplified expression from part (a) to answer these questions. With a 40% reduction followed by a 40% reduction, is the computer selling at 20% of its original price? If not, at what percentage of the original price is it selling?
116. Your local electronics store is having an end-of-the-year sale. The price on a plasma television had been reduced by 30%. Now the sale price is reduced by another 30%. If x is the television's original price, the sale price can be modeled by

$$
(x-0.3 x)-0.3(x-0.3 x)
$$

a. Factor out $(x-0.3 x)$ from each term. Then simplify the resulting expression.
b. Use the simplified expression from part (a) to answer these questions. With a 30% reduction followed by a 30% reduction, is the television selling at 40% of its original price? If not, at what percentage of the original price is it selling?

In Exercises 117-120,
a. Write an expression for the area of the shaded region.
b. Write the expression in factored form.
117.

118.

119.

120.

In Exercises 121-122, find the formula for the volume of the region outside the smaller rectangular solid and inside the larger rectangular solid. Then express the volume in factored form.
121.

122.

Writing in Mathematics

123. Using an example, explain how to factor out the greatest common factor of a polynomial.
124. Suppose that a polynomial contains four terms. Explain how to use factoring by grouping to factor the polynomial.
125. Explain how to factor $3 x^{2}+10 x+8$.
126. Explain how to factor the difference of two squares. Provide an example with your explanation.
127. What is a perfect square trinomial and how is it factored?
128. Explain how to factor $x^{3}+1$.
129. What does it mean to factor completely?

Critical Thinking Exercises

Make Sense? In Exercises 130-133, determine whether each statement makes sense or does not make sense, and explain your reasoning.
130. Although $20 x^{3}$ appears in both $20 x^{3}+8 x^{2}$ and $20 x^{3}+10 x$, I'll need to factor $20 x^{3}$ in different ways to obtain each polynomial's factorization.
131. You grouped the polynomial's terms using different groupings than I did, yet we both obtained the same factorization.
132. I factored $4 x^{2}-100$ completely and obtained $(2 x+10)(2 x-10)$.
133. First factoring out the greatest common factor makes it easier for me to determine how to factor the remaining factor, assuming that it is not prime.

In Exercises 134-137, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
134. $x^{4}-16$ is factored completely as $\left(x^{2}+4\right)\left(x^{2}-4\right)$.
135. The trinomial $x^{2}-4 x-4$ is a prime polynomial.
136. $x^{2}+36=(x+6)^{2}$
137. $x^{3}-64=(x+4)\left(x^{2}+4 x-16\right)$

In Exercises 138-141, factor completely.
138. $x^{2 n}+6 x^{n}+8$
139. $-x^{2}-4 x+5$
140. $x^{4}-y^{4}-2 x^{3} y+2 x y^{3}$
141. $(x-5)^{-\frac{1}{2}}(x+5)^{-\frac{1}{2}}-(x+5)^{\frac{1}{2}}(x-5)^{-\frac{3}{2}}$

In Exercises 142-143, find all integers b so that the trinomial can be factored.
142. $x^{2}+b x+15$
143. $x^{2}+4 x+b$

Preview Exercises

Exercises 144-146 will help you prepare for the material covered in the next section.
144. Factor the numerator and the denominator. Then simplify by dividing out the common factor in the numerator and the denominator.

$$
\frac{x^{2}+6 x+5}{x^{2}-25}
$$

In Exercises 145-146, perform the indicated operation. Where possible, reduce the answer to its lowest terms.
145. $\frac{5}{4} \cdot \frac{8}{15}$
146. $\frac{1}{2}+\frac{2}{3}$

CHAPTER P

Mid-Chapter Check Point

WHAT YOU KNOW: We defined the real numbers [$\{x \mid x$ is rational $\} \cup\{x \mid x$ is irrational $\}]$ and graphed them as points on a number line. We reviewed the basic rules of algebra, using these properties to simplify algebraic expressions. We expanded our knowledge of exponents to include exponents other than natural numbers:

$$
\begin{aligned}
b^{0} & =1 ; \quad b^{-n}=\frac{1}{b^{n}} ; \quad \frac{1}{b^{-n}}=b^{n} ; \quad b^{\frac{1}{n}}=\sqrt[n]{b} \\
b^{\frac{m}{n}} & =(\sqrt[n]{b})^{m}=\sqrt[n]{b^{m}} ; \quad b^{-\frac{m}{n}}=\frac{1}{b^{\frac{m}{n}}}
\end{aligned}
$$

We used properties of exponents to simplify exponential expressions and properties of radicals to simplify radical expressions. We performed operations with polynomials. We used a number of fast methods for finding products of polynomials, including the FOIL method for multiplying binomials, a special-product formula for the product of the sum and difference of two terms $\left[(A+B)(A-B)=A^{2}-B^{2}\right]$, and special-productformulas for squaring binomials $\left[(A+B)^{2}=A^{2}+2 A B+B^{2}\right.$; $\left.(A-B)^{2}=A^{2}-2 A B+B^{2}\right]$. We reversed the direction of these formulas and reviewed how to factor polynomials. We used a general strategy, summarized in the box on page 66 , for factoring a wide variety of polynomials.
In Exercises 1-27, simplify the given expression or perform the indicated operation (and simplify, if possible), whichever is appropriate.

1. $(3 x+5)(4 x-7)$
2. $(3 x+5)-(4 x-7)$
3. $\sqrt{6}+9 \sqrt{6}$
4. $3 \sqrt{12}-\sqrt{27}$
5. $7 x+3[9-(2 x-6)]$
6. $(8 x-3)^{2}$
7. $\left(x^{\frac{1}{3}} y^{-\frac{1}{2}}\right)^{6}$
8. $\left(\frac{2}{7}\right)^{0}-32^{-\frac{2}{5}}$
9. $(2 x-5)-\left(x^{2}-3 x+1\right)$
10. $(2 x-5)\left(x^{2}-3 x+1\right)$
11. $x^{3}+x^{3}-x^{3} \cdot x^{3}$
12. $(9 a-10 b)(2 a+b)$
13. $\{a, c, d, e\} \cup\{c, d, f, h\}$
14. $\{a, c, d, e\} \cap\{c, d, f, h\}$
15. $\left(3 x^{2} y^{3}-x y+4 y^{2}\right)-\left(-2 x^{2} y^{3}-3 x y+5 y^{2}\right)$
16. $\frac{24 x^{2} y^{13}}{-2 x^{5} y^{-2}}$
17. $\left(\frac{1}{3} x^{-5} y^{4}\right)\left(18 x^{-2} y^{-1}\right)$
18. $\sqrt[12]{x^{4}}$
19. $[4 y-(3 x+2)][4 y+(3 x+2)]$
20. $(x-2 y-1)^{2}$
21. $\frac{24 \times 10^{3}}{2 \times 10^{6}}$ (Express the answer in scientific notation.)
22. $\frac{\sqrt[3]{32}}{\sqrt[3]{2}}$
23. $\left(x^{3}+2\right)\left(x^{3}-2\right)$
24. $\left(x^{2}+2\right)^{2}$
25. $\sqrt{50} \cdot \sqrt{6}$
26. $\frac{11}{7-\sqrt{3}}$
27. $\frac{11}{\sqrt{3}}$

In Exercises 28-34, factor completely, or state that the polynomial is prime.
28. $7 x^{2}-22 x+3$
29. $x^{2}-2 x+4$
30. $x^{3}+5 x^{2}+3 x+15$
31. $3 x^{2}-4 x y-7 y^{2}$
32. $64 y-y^{4}$
33. $50 x^{3}+20 x^{2}+2 x$
34. $x^{2}-6 x+9-49 y^{2}$

In Exercises 35-36, factor and simplify each algebraic expression.
35. $x^{-\frac{3}{2}}-2 x^{-\frac{1}{2}}+x^{\frac{1}{2}}$
36. $\left(x^{2}+1\right)^{\frac{1}{2}}-10\left(x^{2}+1\right)^{-\frac{1}{2}}$
37. List all the rational numbers in this set:

$$
\left\{-11,-\frac{3}{7}, 0,0.45, \sqrt{23}, \sqrt{25}\right\} .
$$

In Exercises 38-39, rewrite each expression without absolute value bars.
38. $|2-\sqrt{13}|$
39. $x^{2}|x|$ if $x<0$
40. If the population of the United States is approximately 3.0×10^{8} and each person produces about 4.6 pounds of garbage per day, express the total number of pounds of garbage produced in the United States in one day in scientific notation.
41. A human brain contains 3×10^{10} neurons and a gorilla brain contains 7.5×10^{9} neurons. How many times as many neurons are in the brain of a human as in the brain of a gorilla?
42. TVs keep getting fancier and bigger, but prices do not. The bar graph at the top of the next column shows the average price of a TV in the United States from 2007 through 2012.

Average Price of a TV

Source: Consumer Electronics Association
Here are two mathematical models for the data shown by the graph. In each formula, P represents the average price of a TV x years after 2007.

$$
\begin{aligned}
\text { Model 1 } P & =-86 x+890 \\
\text { Model 2 } P & =18 x^{2}-175 x+950
\end{aligned}
$$

a. Which model better describes the data for 2007 ?
b. Does the polynomial model of degree 2 underestimate or overestimate the average TV price for 2012? By how much?

SECTION P. 6

Rational Expressions

Objectives

(1) Specify numbers that must be excluded from the domain of a rational expression.
(2) Simplify rational expressions.
(3) Multiply rational expressions.
(4) Divide rational expressions.
(5) Add and subtract rational expressions.
6 Simplify complex rational expressions.
(7) Simplify fractional expressions that occur in calculus.
8 Rationalize numerators.

How do we describe the costs of reducing environmental pollution? We often use algebraic expressions involving quotients of polynomials. For example, the algebraic expression

$$
\frac{250 x}{100-x}
$$

describes the cost, in millions of dollars, to remove x percent of the pollutants that are discharged into a river. Removing a modest percentage of pollutants, say 40%, is far less costly than removing a substantially greater percentage, such as 95%. We see this by evaluating the algebraic expression for $x=40$ and $x=95$.

$$
\text { Evaluating } \frac{250 x}{100-x} \text { for }
$$

$$
x=40
$$

Cost is $\frac{250(40)}{100-40} \approx 167$.
Cost is $\frac{250(95)}{100-95}=4750$.
The cost increases from approximately $\$ 167$ million to a possibly prohibitive $\$ 4750$ million, or $\$ 4.75$ billion. Costs spiral upward as the percentage of removed pollutants increases.

Specify numbers that must be excluded from the domain of a rational expression.

Many algebraic expressions that describe costs of environmental projects are examples of rational expressions. First we will define rational expressions. Then we will review how to perform operations with such expressions.

Rational Expressions

A rational expression is the quotient of two polynomials. Some examples are

$$
\frac{x-2}{4}, \quad \frac{4}{x-2}, \quad \frac{x}{x^{2}-1}, \quad \text { and } \quad \frac{x^{2}+1}{x^{2}+2 x-3}
$$

The set of real numbers for which an algebraic expression is defined is the domain of the expression. Because rational expressions indicate division and division by zero is undefined, we must exclude numbers from a rational expression's domain that make the denominator zero.

EXAMPLE 1 Excluding Numbers from the Domain

Find all the numbers that must be excluded from the domain of each rational expression:
a. $\frac{4}{x-2}$
b. $\frac{x}{x^{2}-1}$
c. $\frac{9 x}{x^{2}+3 x-18}$.

SOLUTION

To determine the numbers that must be excluded from each domain, examine the denominators.
a. $\frac{4}{x-2}$
This denominator would equal zero if $x=\mathbf{2}$.
c. $\frac{9 x}{x^{2}+3 x-18}=\frac{9 x}{(x+6)(x-3)}$
b. $\frac{x}{x^{2}-1}=\frac{x}{(x+1)(x-1)}$

$$
\begin{aligned}
& \text { This factor would } \\
& \text { equal zero if } x=-6 \text {. }
\end{aligned}
$$

This factor would equal zero if $x=\mathbf{3}$.

For the rational expression in part (a), we must exclude 2 from the domain. For the rational expression in part (b), we must exclude both -1 and 1 from the domain. For the rational expression in part (c), we must exclude both -6 and 3 from the domain. These excluded numbers are often written to the right of a rational expression:

$$
\frac{4}{x-2}, x \neq 2 \quad \frac{x}{x^{2}-1}, x \neq-1, x \neq 1 \quad \frac{9 x}{x^{2}+3 x-18}, x \neq-6, x \neq 3
$$

3 Check Point 1 Find all the numbers that must be excluded from the domain of each rational expression:
a. $\frac{7}{x+5}$
b. $\frac{x}{x^{2}-36}$
c. $\frac{7 x}{x^{2}-5 x-14}$.

(2) Simplify rational expressions.

Simplifying Rational Expressions

A rational expression is simplified if its numerator and denominator have no common factors other than 1 or -1 . The following procedure can be used to simplify rational expressions:

Simplifying Rational Expressions

1. Factor the numerator and the denominator completely.
2. Divide both the numerator and the denominator by any common factors.

EXAMPLE 2 Simplifying Rational Expressions

Simplify:
a. $\frac{x^{3}+x^{2}}{x+1}$
b. $\frac{x^{2}+6 x+5}{x^{2}-25}$.

SOLUTION
a. $\frac{x^{3}+x^{2}}{x+1}=\frac{x^{2}(x+1)}{x+1}$

Factor the numerator. Because the denominator is $x+1, x \neq-1$.

$$
=\frac{x^{2}(x+1)}{\frac{x+1}{1}} \quad \text { Divide out the common factor, } x+1
$$

$$
=x^{2}, x \neq-1 \quad \text { Denominators of } 1 \text { need not be written because }
$$ $\frac{a}{1}=a$.

b. $\frac{x^{2}+6 x+5}{x^{2}-25}=\frac{(x+5)(x+1)}{(x+5)(x-5)} \quad \begin{aligned} & \text { Factor the numerator and denominator. } \\ & \text { Because the denominator is } \\ & (x+5)(x-5), x \neq-5 \text { and } x \neq 5 .\end{aligned}$

$$
\begin{aligned}
& =\frac{(x+5)(x+1)}{(x+5)(x-5)} \quad \text { Divide out the common factor, } x+5 . \\
& =\frac{x+1}{x-5}, \quad x \neq-5, \quad x \neq 5
\end{aligned}
$$

$\$$ Check Point 2 simplify:
a. $\frac{x^{3}+3 x^{2}}{x+3}$
b. $\frac{x^{2}-1}{x^{2}+2 x+1}$.
(3) Multiply rational expressions.

Multiplying Rational Expressions

The product of two rational expressions is the product of their numerators divided by the product of their denominators. Here is a step-by-step procedure for multiplying rational expressions:

Multiplying Rational Expressions

1. Factor all numerators and denominators completely.
2. Divide numerators and denominators by common factors.
3. Multiply the remaining factors in the numerators and multiply the remaining factors in the denominators.

EXAMPLE 3 Multiplying Rational Expressions

Multiply: $\frac{x-7}{x-1} \cdot \frac{x^{2}-1}{3 x-21}$.

SOLUTION

$$
\begin{aligned}
& \frac{x-7}{x-1} \cdot \frac{x^{2}-1}{3 x-21} \\
& =\frac{x-7}{x-1} \cdot \frac{(x+1)(x-1)}{3(x-7)} \\
& =\frac{x}{x-1} \cdot \frac{(x+1)(x-1)}{3(x-7)} \\
& =\frac{1}{3+1}, x \neq 1, x \neq 7
\end{aligned}
$$

This is the given multiplication problem.

Factor as many numerators and denominators as possible. Because the denominators have factors of $x-1$ and $x-7, x \neq 1$ and $x \neq 7$.

Divide numerators and denominators by common factors.

Multiply the remaining factors in the numerators and denominators.
$\$$ Check Point 3 Multiply:

$$
\frac{x+3}{x^{2}-4} \cdot \frac{x^{2}-x-6}{x^{2}+6 x+9}
$$

(4) Divide rational expressions.

Dividing Rational Expressions

The quotient of two rational expressions is the product of the first expression and the multiplicative inverse, or reciprocal, of the second expression. The reciprocal is found by interchanging the numerator and the denominator. Thus, we find the quotient of two rational expressions by inverting the divisor and multiplying.

EXAMPLE 4 Dividing Rational Expressions

Divide: $\frac{x^{2}-2 x-8}{x^{2}-9} \div \frac{x-4}{x+3}$.

SOLUTION

$$
\begin{array}{ll}
\frac{x^{2}-2 x-8}{x^{2}-9} \div \frac{x-4}{x+3} & \text { This is the given division problem. } \\
=\frac{x^{2}-2 x-8}{x^{2}-9} \cdot \frac{x+3}{x-4} & \begin{array}{l}
\text { Invert the divisor and multiply. } \\
=\frac{(x-4)(x+2)}{(x+3)(x-3)} \cdot \frac{x+3}{x-4} \\
=\frac{(x-4)(x+2)}{(x+3)(x-3)} \cdot \frac{(x+3)}{(x-4)} \\
=\frac{\text { Factor as many numerators and }}{\text { denominators as possible. For nonzero }} \begin{array}{l}
\text { denominators, } x \neq-3, x \neq 3, \text { and } x \neq 4 .
\end{array} \\
=\frac{\text { Divide numerators and denominators by }}{x+2}, x \neq-3, x \neq 3, x \neq 4
\end{array} \\
\text { common factors. }
\end{array}
$$

5. Add and subtract rational expressions.

EXAMPLE 6 Subtracting Rational Expressions Having No Common Factors in Their Denominators

Subtract: $\frac{x+2}{2 x-3}-\frac{4}{x+3}$.

SOLUTION

We need to find the least common denominator. This is the product of the distinct factors in each denominator, namely $(2 x-3)(x+3)$. We can therefore use the subtraction property given previously as follows:

$$
\begin{array}{rlrl}
\frac{a}{b}-\frac{c}{d} & =\frac{a d-b c}{b d} \\
\frac{x+2}{2 x-3}-\frac{4}{x+3} & =\frac{(x+2)(x+3)-(2 x-3) 4}{(2 x-3)(x+3)} & \begin{array}{l}
\text { Observe that } \\
a=x+2, b=2 x-3, c=4 \\
\text { and } d=x+3 .
\end{array} \\
& =\frac{x^{2}+5 x+6-(8 x-12)}{(2 x-3)(x+3)} & & \begin{array}{l}
\text { Multiply in the numerator. }
\end{array} \\
& =\frac{x^{2}+5 x+6-8 x+12}{(2 x-3)(x+3)} \\
& =\frac{x^{2}-3 x+18}{(2 x-3)(x+3)}, x \neq \frac{3}{2}, x \neq-3 & \begin{array}{l}
\text { Remove parentheses and } \\
\text { then change the sign of each } \\
\text { term in parentheses. }
\end{array} \\
\begin{array}{l}
\text { Combine like terms in the } \\
\text { numerator. }
\end{array}
\end{array}
$$

\int Check Point 6 Add: $\frac{3}{x+1}+\frac{5}{x-1}$.

The least common denominator, or LCD, of several rational expressions is a polynomial consisting of the product of all prime factors in the denominators, with each factor raised to the greatest power of its occurrence in any denominator. When adding and subtracting rational expressions that have different denominators with one or more common factors in the denominators, it is efficient to find the least common denominator first.

Finding the Least Common Denominator

1. Factor each denominator completely.
2. List the factors of the first denominator.
3. Add to the list in step 2 any factors of the second denominator that do not appear in the list.
4. Form the product of the factors from the list in step 3. This product is the least common denominator.

EXAMPLE 7 Finding the Least Common Denominator

Find the least common denominator of

$$
\frac{7}{5 x^{2}+15 x} \text { and } \frac{9}{x^{2}+6 x+9}
$$

SOLUTION

Step 1 Factor each denominator completely.

$$
\begin{gathered}
5 x^{2}+15 x=5 x(x+3) \\
x^{2}+6 x+9=(x+3)^{2}
\end{gathered} \text { or }(x+3)(x+3) .
$$

Step 2 List the factors of the first denominator.

$$
5, x, x+3
$$

Step 3 Add any unlisted factors from the second denominator. One factor of $x^{2}+6 x+9$ is already in our list. That factor is $x+3$. However, the other factor of $x+3$ is not listed in step 2 . We add a second factor of $x+3$ to the list. We have

$$
5, x, x+3, x+3 .
$$

Step 4 The least common denominator is the product of all factors in the final list. Thus,

$$
5 x(x+3)(x+3) \text { or } 5 x(x+3)^{2}
$$

is the least common denominator.
$\$$ Check Point 7 Find the least common denominator of

$$
\frac{3}{x^{2}-6 x+9} \text { and } \frac{7}{x^{2}-9}
$$

Finding the least common denominator for two (or more) rational expressions is the first step needed to add or subtract the expressions.

Adding and Subtracting Rational Expressions That Have Different Denominators

1. Find the LCD of the rational expressions.
2. Rewrite each rational expression as an equivalent expression whose denominator is the LCD. To do so, multiply the numerator and the denominator of each rational expression by any factor(s) needed to convert the denominator into the LCD.
3. Add or subtract numerators, placing the resulting expression over the LCD.
4. If possible, simplify the resulting rational expression.

EXAMPLE 8 Adding Rational Expressions with Different Denominators

Add: $\frac{x+3}{x^{2}+x-2}+\frac{2}{x^{2}-1}$.

SOLUTION

Step 1 Find the least common denominator. Start by factoring the denominators.

$$
\begin{aligned}
x^{2}+x-2 & =(x+2)(x-1) \\
x^{2}-1 & =(x+1)(x-1)
\end{aligned}
$$

The factors of the first denominator are $x+2$ and $x-1$. The only factor from the second denominator that is not listed is $x+1$. Thus, the least common denominator is

$$
(x+2)(x-1)(x+1) .
$$

Step 2 Write equivalent expressions with the LCD as denominators. We must rewrite each rational expression with a denominator of $(x+2)(x-1)(x+1)$. We do so by multiplying both the numerator and the denominator of each rational expression by any factor(s) needed to convert the expression's denominator into the LCD.

$$
\frac{x+3}{(x+2)(x-1)} \cdot \frac{x+1}{x+1}=\frac{(x+3)(x+1)}{(x+2)(x-1)(x+1)} \quad \frac{2}{(x+1)(x-1)} \cdot \frac{x+2}{x+2}=\frac{2(x+2)}{(x+2)(x-1)(x+1)}
$$

[^1]Because $\frac{x+1}{x+1}=1$ and $\frac{x+2}{x+2}=1$, we are not changing the value of either rational expression, only its appearance.

Now we are ready to perform the indicated addition.

$$
\begin{aligned}
& \frac{x+3}{x^{2}+x-2}+\frac{2}{x^{2}-1} \\
& =\frac{x+3}{(x+2)(x-1)}+\frac{2}{(x+1)(x-1)} \\
& =\frac{(x+3)(x+1)}{(x+2)(x-1)(x+1)}+\frac{2(x+2)}{(x+2)(x-1)(x+1)}
\end{aligned}
$$

This is the given problem.
Factor the denominators.
The LCD is $(x+2)(x-1)(x+1)$.

Rewrite equivalent expressions with the LCD.

Step 3 Add numerators, putting this sum over the LCD.

$$
\begin{array}{ll}
=\frac{(x+3)(x+1)+2(x+2)}{(x+2)(x-1)(x+1)} & \\
=\frac{x^{2}+4 x+3+2 x+4}{(x+2)(x-1)(x+1)} & \begin{array}{l}
\text { Perform the multiplications in } \\
\text { the numerator. }
\end{array} \\
=\frac{x^{2}+6 x+7}{(x+2)(x-1)(x+1)}, x \neq-2, x \neq 1, x \neq-1 & \begin{array}{l}
\text { Combine like terms in the } \\
\text { numerator: } 4 x+2 x=6 x \\
\text { and } 3+4=7 .
\end{array}
\end{array}
$$

Step 4 If necessary, simplify. Because the numerator is prime, no further simplification is possible.
$\$$ Check Point 8 Subtract: $\frac{x}{x^{2}-10 x+25}-\frac{x-4}{2 x-10}$.

6 Simplify complex rational expressions.

Complex Rational Expressions

Complex rational expressions, also called complex fractions, have numerators or denominators containing one or more rational expressions. Here are two examples of such expressions:

> Separate rational expressions occur in the numerator.

One method for simplifying a complex rational expression is to combine its numerator into a single expression and combine its denominator into a single expression. Then perform the division by inverting the denominator and multiplying.

EXAMPLE 9 Simplifying a Complex Rational Expression

Simplify: $\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$.

SOLUTION

Step 1 Add to get a single rational expression in the numerator.

$$
1+\frac{1}{x}=\frac{1}{1}+\frac{1}{x}=\frac{1 \cdot x}{1 \cdot x}+\frac{1}{x}=\frac{x}{x}+\frac{1}{x}=\frac{x+1}{x}
$$

The LCD is $1 \cdot x$, or x.
Step 2 Subtract to get a single rational expression in the denominator.

$$
1-\frac{1}{x}=\frac{1}{1}-\frac{1}{x}=\frac{1 \cdot x}{1 \cdot x}-\frac{1}{x}=\frac{x}{x}-\frac{1}{x}=\frac{x-1}{x}
$$

The LCD is $1 \cdot x$, or x.
Step 3 Perform the division indicated by the main fraction bar: Invert and multiply. If possible, simplify.

$$
\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x-1}{x}}=\frac{x+1}{x} \cdot \frac{x}{x-1}=\frac{x+1}{\substack{x \\ 1}} \cdot \frac{\frac{1}{x}}{x-1}=\frac{x+1}{x-1}
$$

\int Check Point 9 Simplify: $\frac{\frac{1}{x}-\frac{3}{2}}{\frac{1}{x}+\frac{3}{4}}$.
A second method for simplifying a complex rational expression is to find the least common denominator of all the rational expressions in its numerator and denominator. Then multiply each term in its numerator and denominator by this least common denominator. Because we are multiplying by a form of 1 , we will obtain an equivalent expression that does not contain fractions in its numerator or denominator. Here we use this method to simplify the complex rational expression in Example 9.

$$
\begin{array}{rlrl}
\frac{1+\frac{1}{x}}{1-\frac{1}{x}} & =\frac{\left(1+\frac{1}{x}\right)}{\left(1-\frac{1}{x}\right)} \cdot \frac{x}{x} & & \begin{array}{l}
\text { The least common denominator of all the rational } \\
\text { expressions is } x . \text { Multiply the numerator and }
\end{array} \\
& =\frac{1 \cdot x+\frac{1}{x} \cdot x}{} \quad \begin{array}{l}
\text { denominator by } x . \text { Because } \frac{x}{x}=1, \text { we are not changing } \\
\text { the complex fraction }(x \neq 0) .
\end{array} \\
& =\frac{1 \cdot x-\frac{1}{x} \cdot x}{x-1}, x \neq 0, x \neq 1 & \begin{array}{l}
\text { Use the distributive property. Be sure to distribute } \times \text { to } \\
\text { every term. }
\end{array} \\
\begin{array}{lll}
1 \cdot 1 & \begin{array}{l}
\text { Multiply. The complex rational expression is now } \\
\text { simplified. }
\end{array}
\end{array}
\end{array}
$$

EXAMPLE 10 Simplifying a Complex Rational Expression

Simplify: $\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$.

SOLUTION

We will use the method of multiplying each of the three terms, $\frac{1}{x+h}, \frac{1}{x}$, and h, by the least common denominator. The least common denominator is $x(x+h)$.

$$
\begin{array}{ll}
\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
=\frac{\left(\frac{1}{x+h}-\frac{1}{x}\right) x(x+h)}{h x(x+h)} & \begin{array}{l}
\text { Multiply the numerator and denominator by } \\
x(x+h), h \neq 0, x \neq 0, x \neq-h .
\end{array} \\
=\frac{\frac{1}{x+h} \cdot x(x+h)-\frac{1}{x} \cdot x(x+h)}{h x(x+h)} & \text { Use the distributive property in the numerator. } \\
=\frac{x-(x+h)}{h x(x+h)} & \text { Simplify: } \frac{1}{x+\hbar} \cdot x(x+h)=x \text { and }
\end{array}
$$

$$
\begin{array}{ll}
=\frac{x-x-h}{h x(x+h)} & \begin{array}{l}
\text { Subtract in the numerator } \mathrm{R} \\
\text { and change the sign of each }
\end{array} \\
=\frac{-h}{h x(x+h)} & \text { Simplify: } x-x-h=-h .
\end{array}
$$

$$
=-\frac{1}{x(x+h)}, h \neq 0, x \neq 0, x \neq-h \quad \text { Divide the numerator and denominator by } h .
$$

$$
\oint \text { Check Point } 10 \text { simplify: } \frac{\frac{1}{x+7}-\frac{1}{x}}{7}
$$

(7) Simplify fractional expressions that occur in calculus.

Fractional Expressions in Calculus

Fractional expressions containing radicals occur frequently in calculus. Because of the radicals, these expressions are not rational expressions. However, they can often be simplified using the procedure for simplifying complex rational expressions.

EXAMPLE 11 Simplifying a Fractional Expression Containing Radicals

Simplify: $\frac{\sqrt{9-x^{2}}+\frac{x^{2}}{\sqrt{9-x^{2}}}}{9-x^{2}}$.

SOLUTION

$$
\begin{array}{ll}
\frac{\sqrt{9-x^{2}}+\frac{x^{2}}{\sqrt{9-x^{2}}}}{9-x^{2}} & \begin{array}{l}
\sqrt{\text { The least common denominator is }} \sqrt{9-x^{2}} .
\end{array} \\
=\frac{\sqrt{9-x^{2}}+\frac{x^{2}}{\sqrt{9-x^{2}}} \cdot \frac{\sqrt{9-x^{2}}}{\sqrt{9-x^{2}}}}{} \begin{array}{ll}
\sqrt{9-x^{2}} \sqrt{9-x^{2}}+\frac{x^{2}}{\sqrt{9-x^{2}}} \sqrt{9-x^{2}} & \begin{array}{l}
\text { Multiply the numerator and the } \\
\text { denominator by } \sqrt{9-x^{2}} .
\end{array} \\
=\frac{\begin{array}{l}
\text { Use the distributive property in the } \\
\text { numerator. }
\end{array}}{\left(9-x^{2}\right) \sqrt{9-x^{2}}} & \text { In the denominator: }
\end{array} \\
=\frac{\left(9-x^{2}\right)+x^{2}}{\left(9-x^{2}\right)^{\frac{3}{2}}} &
\end{array}
$$

$$
=\frac{9}{\sqrt{\left(9-x^{2}\right)^{3}}}
$$

Because the original expression was in radical form, write the denominator in radical form.

7 Rationalize numerators.
Another fractional expression that you will encounter in calculus is

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

Can you see that this expression is not defined if $h=0$? However, in calculus, you will ask the following question:

What happens to the expression as h takes on values that get closer and closer to 0 , such as $h=0.1, h=0.01, h=0.001, h=0.0001$, and so on?

The question is answered by first rationalizing the numerator. This process involves rewriting the fractional expression as an equivalent expression in which the numerator no longer contains any radicals. To rationalize a numerator, multiply by 1 to eliminate the radicals in the numerator. Multiply the numerator and the denominator by the conjugate of the numerator.

EXAMPLE 12 Rationalizing a Numerator

Rationalize the numerator:

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h} .
$$

SOLUTION

The conjugate of the numerator is $\sqrt{x+h}+\sqrt{x}$. If we multiply the numerator and denominator by $\sqrt{x+h}+\sqrt{x}$, the simplified numerator will not contain a radical. Therefore, we multiply by 1 , choosing $\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$ for 1 .

Blitzer Banus

Calculus Preview

In calculus, you will summarize the discussion on the right using the special notation

$$
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{2 \sqrt{x}} .
$$

This is read "the limit of $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ as h approaches 0 equals $\frac{1}{2 \sqrt{x}}$." Limits are discussed in Chapter 11, where we present an introduction to calculus.

$$
\begin{array}{ll}
\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} & \text { Multiply by } 1 . \\
=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} & (\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})= \\
=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} & (\sqrt{a})^{2}-(\sqrt{b})^{2} \\
=\frac{h}{h(\sqrt{x+h}+\sqrt{x})} & \text { and }(\sqrt{x})^{2}=x . \\
=h & \text { Simplify: } x+h-x=h .
\end{array}
$$

$$
=\frac{1}{\sqrt{x+h}+\sqrt{x}}, \quad h \neq 0
$$

Divide both the numerator and denominator by h. •••

What happens to $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ as h gets closer and closer to 0 ? In Example 12,
we showed that

$$
\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
$$

As h gets closer to 0 , the expression on the right gets closer to $\frac{1}{\sqrt{x+0}+\sqrt{x}}=$ $\frac{1}{\sqrt{x}+\sqrt{x}}$, or $\frac{1}{2 \sqrt{x}}$. Thus, the fractional expression $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ approaches $\frac{1}{2 \sqrt{x}}$ as h gets closer to 0 .
0 Check Point 12 Rationalize the numerator: $\frac{\sqrt{x+3}-\sqrt{x}}{3}$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A rational expression is the quotient of two
2. The set of real numbers for which a rational expression is defined is the \qquad of the expression. We must exclude all numbers from this set that make the denominator of the rational expression
3. We simplify a rational expression by \qquad the numerator and the denominator completely. Then we divide the numerator and the denominator by any \qquad
4. $\frac{x}{5} \cdot \frac{x}{3}=$ \qquad 5. $\frac{x}{5} \div \frac{x}{3}=\ldots, x \neq 0$
5. $\frac{x^{2}}{3}-\frac{x-4}{3}=$ \qquad
6. Consider the following subtraction problem:

$$
\frac{x-1}{x^{2}+x-6}-\frac{x-2}{x^{2}+4 x+3} .
$$

The factors of the first denominator are \qquad
The factors of the second denominator are \qquad $-$
The LCD is \qquad
8. An equivalent expression for $\frac{3 x+2}{x-5}$ with a denominator of $(3 x+4)(x-5)$ can be obtained by multiplying the numerator and denominator by \qquad _.
9. A rational expression whose numerator or denominator or both contain rational expressions is called a/an \qquad rational expression or a/an \qquad fraction.
10. $\frac{\frac{1}{x+3}-\frac{1}{x}}{3}=\frac{x(x+3)}{x(x+3)} \cdot \frac{\left(\frac{1}{x+3}-\frac{1}{x}\right)}{3}=\frac{--(()}{3 x(x+3)}$

$$
=\frac{\overline{3 x(x+3)}}{}
$$

$$
=
$$

\qquad
11. We can simplify

$$
\frac{\sqrt{x}+\frac{1}{\sqrt{x}}}{x}
$$

by multiplying the numerator and the denominator by \qquad .
12. We can rationalize the numerator of $\frac{\sqrt{x+7}-\sqrt{x}}{7}$ by multiplying the numerator and the denominator by \qquad

EXERCISE SET P. 6

Practice Exercises

In Exercises 1-6, find all numbers that must be excluded from the domain of each rational expression.

1. $\frac{7}{x-3}$
2. $\frac{13}{x+9}$
3. $\frac{x+5}{x^{2}-25}$
4. $\frac{x+7}{x^{2}-49}$
5. $\frac{x-1}{x^{2}+11 x+10}$
6. $\frac{x-3}{x^{2}+4 x-45}$

In Exercises 7-14, simplify each rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
7. $\frac{3 x-9}{x^{2}-6 x+9}$
8. $\frac{4 x-8}{x^{2}-4 x+4}$
9. $\frac{x^{2}-12 x+36}{4 x-24}$
10. $\frac{x^{2}-8 x+16}{3 x-12}$
11. $\frac{y^{2}+7 y-18}{y^{2}-3 y+2}$
12. $\frac{y^{2}-4 y-5}{y^{2}+5 y+4}$
13. $\frac{x^{2}+12 x+36}{x^{2}-36}$
14. $\frac{x^{2}-14 x+49}{x^{2}-49}$

In Exercises 15-32, multiply or divide as indicated.
15. $\frac{x-2}{3 x+9} \cdot \frac{2 x+6}{2 x-4}$
16. $\frac{6 x+9}{3 x-15} \cdot \frac{x-5}{4 x+6}$
17. $\frac{x^{2}-9}{x^{2}} \cdot \frac{x^{2}-3 x}{x^{2}+x-12}$
18. $\frac{x^{2}-4}{x^{2}-4 x+4} \cdot \frac{2 x-4}{x+2}$
19. $\frac{x^{2}-5 x+6}{x^{2}-2 x-3} \cdot \frac{x^{2}-1}{x^{2}-4}$
20. $\frac{x^{2}+5 x+6}{x^{2}+x-6} \cdot \frac{x^{2}-9}{x^{2}-x-6}$
21. $\frac{x^{3}-8}{x^{2}-4} \cdot \frac{x+2}{3 x}$
22. $\frac{x^{2}+6 x+9}{x^{3}+27} \cdot \frac{1}{x+3}$
23. $\frac{x+1}{3} \div \frac{3 x+3}{7}$
24. $\frac{x+5}{7} \div \frac{4 x+20}{9}$
25. $\frac{x^{2}-4}{x} \div \frac{x+2}{x-2}$
26. $\frac{x^{2}-4}{x-2} \div \frac{x+2}{4 x-8}$
27. $\frac{4 x^{2}+10}{x-3} \div \frac{6 x^{2}+15}{x^{2}-9}$
28. $\frac{x^{2}+x}{x^{2}-4} \div \frac{x^{2}-1}{x^{2}+5 x+6}$
29. $\frac{x^{2}-25}{2 x-2} \div \frac{x^{2}+10 x+25}{x^{2}+4 x-5}$
30. $\frac{x^{2}-4}{x^{2}+3 x-10} \div \frac{x^{2}+5 x+6}{x^{2}+8 x+15}$
31. $\frac{x^{2}+x-12}{x^{2}+x-30} \cdot \frac{x^{2}+5 x+6}{x^{2}-2 x-3} \div \frac{x+3}{x^{2}+7 x+6}$
32. $\frac{x^{3}-25 x}{4 x^{2}} \cdot \frac{2 x^{2}-2}{x^{2}-6 x+5} \div \frac{x^{2}+5 x}{7 x+7}$

In Exercises 33-58, add or subtract as indicated.
33. $\frac{4 x+1}{6 x+5}+\frac{8 x+9}{6 x+5}$
34. $\frac{3 x+2}{3 x+4}+\frac{3 x+6}{3 x+4}$
35. $\frac{x^{2}-2 x}{x^{2}+3 x}+\frac{x^{2}+x}{x^{2}+3 x}$
36. $\frac{x^{2}-4 x}{x^{2}-x-6}+\frac{4 x-4}{x^{2}-x-6}$
37. $\frac{4 x-10}{x-2}-\frac{x-4}{x-2}$
38. $\frac{2 x+3}{3 x-6}-\frac{3-x}{3 x-6}$
39. $\frac{x^{2}+3 x}{x^{2}+x-12}-\frac{x^{2}-12}{x^{2}+x-12}$
40. $\frac{x^{2}-4 x}{x^{2}-x-6}-\frac{x-6}{x^{2}-x-6}$
41. $\frac{3}{x+4}+\frac{6}{x+5}$
42. $\frac{8}{x-2}+\frac{2}{x-3}$
43. $\frac{3}{x+1}-\frac{3}{x}$
44. $\frac{4}{x}-\frac{3}{x+3}$
45. $\frac{2 x}{x+2}+\frac{x+2}{x-2}$
46. $\frac{3 x}{x-3}-\frac{x+4}{x+2}$
47. $\frac{x+5}{x-5}+\frac{x-5}{x+5}$
48. $\frac{x+3}{x-3}+\frac{x-3}{x+3}$
49. $\frac{3}{2 x+4}+\frac{2}{3 x+6}$
50. $\frac{5}{2 x+8}+\frac{7}{3 x+12}$
51. $\frac{4}{x^{2}+6 x+9}+\frac{4}{x+3}$
52. $\frac{3}{5 x+2}+\frac{5 x}{25 x^{2}-4}$
53. $\frac{3 x}{x^{2}+3 x-10}-\frac{2 x}{x^{2}+x-6}$
54. $\frac{x}{x^{2}-2 x-24}-\frac{x}{x^{2}-7 x+6}$
55. $\frac{x+3}{x^{2}-1}-\frac{x+2}{x-1}$
56. $\frac{x+5}{x^{2}-4}-\frac{x+1}{x-2}$
57. $\frac{4 x^{2}+x-6}{x^{2}+3 x+2}-\frac{3 x}{x+1}+\frac{5}{x+2}$
58. $\frac{6 x^{2}+17 x-40}{x^{2}+x-20}+\frac{3}{x-4}-\frac{5 x}{x+5}$

In Exercises 59-72, simplify each complex rational expression.
59. $\frac{\frac{x}{3}-1}{x-3}$
60. $\frac{\frac{x}{4}-1}{x-4}$
61. $\frac{1+\frac{1}{x}}{3-\frac{1}{x}}$
62.
$\frac{8+\frac{1}{x}}{4-\frac{1}{x}}$
63. $\frac{\frac{1}{x}+\frac{1}{y}}{x+y}$
64. $\frac{x}{x y}$
65. $\frac{x-\frac{x}{x+3}}{x+2}$
66. $\frac{x-3}{x-\frac{3}{x-2}}$
67. $\frac{\frac{3}{x-2}-\frac{4}{x+2}}{\frac{7}{x^{2}-4}}$
68. $\frac{\frac{x}{x-2}+1}{\frac{3}{x^{2}-4}+1}$
69. $\frac{1}{x+1}$
69.

$$
\frac{1}{x^{2}-2 x-3}+\frac{1}{x-3}
$$

70. $\frac{\frac{6}{x^{2}+2 x-15}-\frac{1}{x-3}}{\frac{1}{x+5}+1}$
71. $\frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}$
72. $\frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}$

Exercises 73-78 contain fractional expressions that occur frequently in calculus. Simplify each expression.
73. $\frac{\sqrt{x}-\frac{1}{3 \sqrt{x}}}{\sqrt{x}}$
75. $\frac{\frac{x^{2}}{\sqrt{x^{2}+2}}-\sqrt{x^{2}+2}}{x^{2}}$
77. $\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}$
74. $\frac{\sqrt{x}-\frac{1}{4 \sqrt{x}}}{\sqrt{x}}$
76. $\frac{\sqrt{5-x^{2}}+\frac{x^{2}}{\sqrt{5-x^{2}}}}{5-x^{2}}$
78. $\frac{\frac{1}{\sqrt{x+3}}-\frac{1}{\sqrt{x}}}{3}$

In Exercises 79-82, rationalize the numerator.
79. $\frac{\sqrt{x+5}-\sqrt{x}}{5}$
80. $\frac{\sqrt{x+7}-\sqrt{x}}{7}$
81. $\frac{\sqrt{x}+\sqrt{y}}{x^{2}-y^{2}}$
82. $\frac{\sqrt{x}-\sqrt{y}}{x^{2}-y^{2}}$

Practice Plus

In Exercises 83-90, perform the indicated operations. Simplify the result, if possible.
83. $\left(\frac{2 x+3}{x+1} \cdot \frac{x^{2}+4 x-5}{2 x^{2}+x-3}\right)-\frac{2}{x+2}$
84. $\frac{1}{x^{2}-2 x-8} \div\left(\frac{1}{x-4}-\frac{1}{x+2}\right)$
85. $\left(2-\frac{6}{x+1}\right)\left(1+\frac{3}{x-2}\right)$
86. $\left(4-\frac{3}{x+2}\right)\left(1+\frac{5}{x-1}\right)$
87. $\frac{y^{-1}-(y+5)^{-1}}{5}$
88. $\frac{y^{-1}-(y+2)^{-1}}{2}$
89. $\left(\frac{1}{a^{3}-b^{3}} \cdot \frac{a c+a d-b c-b d}{1}\right)-\frac{c-d}{a^{2}+a b+b^{2}}$
90. $\frac{a b}{a^{2}+a b+b^{2}}+\left(\frac{a c-a d-b c+b d}{a c-a d+b c-b d} \div \frac{a^{3}-b^{3}}{a^{3}+b^{3}}\right)$

Application Exercises

91. The rational expression

$$
\frac{130 x}{100-x}
$$

describes the cost, in millions of dollars, to inoculate x percent of the population against a particular strain of flu.
a. Evaluate the expression for $x=40, x=80$, and $x=90$. Describe the meaning of each evaluation in terms of percentage inoculated and cost.
b. For what value of x is the expression undefined?
c. What happens to the cost as x approaches 100% ? How can you interpret this observation?
92. The average rate on a round-trip commute having a one-way distance d is given by the complex rational expression

$$
\frac{2 d}{\frac{d}{r_{1}}+\frac{d}{r_{2}}}
$$

in which r_{1} and r_{2} are the average rates on the outgoing and return trips, respectively. Simplify the expression. Then find your average rate if you drive to campus averaging 40 miles per hour and return home on the same route averaging 30 miles per hour. Explain why the answer is not 35 miles per hour.
93. The bar graph shows the estimated number of calories per day needed to maintain energy balance for various gender and age groups for moderately active lifestyles. (Moderately active means a lifestyle that includes physical activity equivalent to walking 1.5 to 3 miles per day at 3 to 4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.)

Calories Needed to Maintain Energy Balance for Moderately Active Lifestyles

Source: U.S.D.A.
a. The mathematical model

$$
W=-66 x^{2}+526 x+1030
$$

describes the number of calories needed per day, W, by women in age group x with moderately active lifestyles. According to the model, how many calories per day are needed by women between the ages of 19 and 30, inclusive, with this lifestyle? Does this underestimate or overestimate the number shown by the graph? By how much?
b. The mathematical model

$$
M=-120 x^{2}+998 x+590
$$

describes the number of calories needed per day, M, by men in age group x with moderately active lifestyles. According to the model, how many calories per day are needed by men between the ages of 19 and 30 , inclusive, with this lifestyle? Does this underestimate or overestimate the number shown by the graph? By how much?
c. Write a simplified rational expression that describes the ratio of the number of calories needed per day by women in age group x to the number of calories needed per day by men in age group x for people with moderately active lifestyles.
94. If three resistors with resistances R_{1}, R_{2}, and R_{3} are connected in parallel, their combined resistance is given by the expression
$\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$.

Simplify the complex rational expression. Then find the combined resistance when R_{1} is 4 ohms, R_{2} is 8 ohms, and R_{3} is 12 ohms.

In Exercises 95-96, express the perimeter of each rectangle as a single rational expression.
95.

96.

Writing in Mathematics

97. What is a rational expression?
98. Explain how to determine which numbers must be excluded from the domain of a rational expression.
99. Explain how to simplify a rational expression.
100. Explain how to multiply rational expressions.
101. Explain how to divide rational expressions.
102. Explain how to add or subtract rational expressions with the same denominators.
103. Explain how to add rational expressions having no common factors in their denominators. Use $\frac{3}{x+5}+\frac{7}{x+2}$ in your
explanation. explanation.
104. Explain how to find the least common denominator for denominators of $x^{2}-100$ and $x^{2}-20 x+100$.
105. Describe two ways to simplify $\frac{\frac{3}{x}+\frac{2}{x^{2}}}{\frac{1}{x^{2}}+\frac{2}{x}}$.

Explain the error in Exercises 106-108. Then rewrite the right side of the equation to correct the error that now exists.
106. $\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}$
107. $\frac{1}{x}+7=\frac{1}{x+7}$
108. $\frac{a}{x}+\frac{a}{b}=\frac{a}{x+b}$

Critical Thinking Exercises

Make Sense? In Exercises 109-112, determine whether each statement makes sense or does not make sense, and explain your reasoning.
109. I evaluated $\frac{3 x-3}{4 x(x-1)}$ for $x=1$ and obtained 0 .
110. The rational expressions

$$
\frac{7}{14 x} \text { and } \frac{7}{14+x}
$$

can both be simplified by dividing each numerator and each denominator by 7 .
111. When performing the division

$$
\frac{7 x}{x+3} \div \frac{(x+3)^{2}}{x-5}
$$

I began by dividing the numerator and the denominator by the common factor, $x+3$.
112. I subtracted $\frac{3 x-5}{x-1}$ from $\frac{x-3}{x-1}$ and obtained a constant.

In Exercises 113-116, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
113. $\frac{x^{2}-25}{x-5}=x-5$
114. The expression $\frac{-3 y-6}{y+2}$ simplifies to the consecutive integer that follows -4 .
115. $\frac{2 x-1}{x-7}+\frac{3 x-1}{x-7}-\frac{5 x-2}{x-7}=0$
116. $6+\frac{1}{x}=\frac{7}{x}$

In Exercises 117-119, perform the indicated operations.
117. $\frac{1}{x^{n}-1}-\frac{1}{x^{n}+1}-\frac{1}{x^{2 n}-1}$
118. $\left(1-\frac{1}{x}\right)\left(1-\frac{1}{x+1}\right)\left(1-\frac{1}{x+2}\right)\left(1-\frac{1}{x+3}\right)$
119. $(x-y)^{-1}+(x-y)^{-2}$
120. In one short sentence, five words or less, explain what

$$
\frac{\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}}{\frac{1}{x^{4}}+\frac{1}{x^{5}}+\frac{1}{x^{6}}}
$$

does to each number x.

Preview Exercises

Exercises 121-123 will help you prepare for the material covered in the next section.
121. If 6 is substituted for x in the equation

$$
2(x-3)-17=13-3(x+2)
$$

is the resulting statement true or false?
122. Multiply and simplify: $12\left(\frac{x+2}{4}-\frac{x-1}{3}\right)$.
123. Evaluate

$$
\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

for $a=2, b=9$, and $c=-5$.

SECTION P. 7

Objectives

(1) Solve linear equations in one variable.
(2) Solve linear equations containing fractions.
(3) Solve rational equations with variables in the denominators.
(4) Solve a formula for a variable.
(5) Solve equations involving absolute value.
6 Solve quadratic equations by factoring.
(7) Solve quadratic equations by the square root property.
(8) Solve quadratic equations by completing the square.
(9) Solve quadratic equations using the quadratic formula.
(10) Use the discriminant to determine the number and type of solutions of quadratic equations.
(11) Determine the most efficient method to use when solving a quadratic equation.
(12) Solve radical equations.

Equations

I'm very well acquainted, too, with matters mathematical, I understand equations, both simple and quadratical. About binomial theorem I'm teeming with a lot of news, With many cheerful facts about the square of the hypotenuse.
-Gilbert and Sullivan,
The Pirates of Penzance

Equations quadratical? Cheerful news about the square of the hypotenuse? You've come to the right place. In this section, we will review how to solve a variety of equations, including linear equations, quadratic equations, and radical equations. (Yes,it's quadratic and not quadratical, despite the latter's rhyme with mathematical.) In the next section, we will look at applications of quadratic equations, introducing (cheerfully, of course) the Pythagorean Theorem and the square of the hypotenuse.

Solving Linear Equations in One Variable

We begin with a general definition of a linear equation in one variable.

Definition of a Linear Equation

A linear equation in one variable \boldsymbol{x} is an equation that can be written in the form

$$
a x+b=0
$$

where a and b are real numbers, and $a \neq 0$.

An example of a linear equation in one variable is

$$
4 x+12=0
$$

Solving an equation in x involves determining all values of x that result in a true statement when substituted into the equation. Such values are solutions, or roots, of the equation. For example, substitute -3 for x in $4 x+12=0$. We obtain

$$
4(-3)+12=0, \quad \text { or } \quad-12+12=0
$$

This simplifies to the true statement $0=0$. Thus, -3 is a solution of the equation $4 x+12=0$. We also say that -3 satisfies the equation $4 x+12=0$, because when we substitute -3 for x, a true statement results. The set of all such solutions is called the equation's solution set. For example, the solution set of the equation $4 x+12=0$ is $\{-3\}$ because -3 is the equation's only solution.

Two or more equations that have the same solution set are called equivalent equations. For example, the equations

$$
4 x+12=0 \quad \text { and } \quad 4 x=-12 \text { and } x=-3
$$

are equivalent equations because the solution set for each is $\{-3\}$. To solve a linear equation in x, we transform the equation into an equivalent equation one or more times. Our final equivalent equation should be of the form

$$
x=\text { a number. }
$$

The solution set of this equation is the set consisting of the number.

To generate equivalent equations, we will use the following principles:

Generating Equivalent Equations

An equation can be transformed into an equivalent equation by one or more of the following operations:

Operation	Example
1. Simplify an expression by removing grouping symbols and combining like terms.	$\begin{aligned} 3(x-6) & =6 x-x \\ 3 x-18 & =5 x \end{aligned}$
2. Add (or subtract) the same real number or variable expression on both sides of the equation.	
3. Multiply (or divide) by the same nonzero quantity on both sides of the equation.	$\begin{aligned} -18 & =2 x \\ \frac{-18}{2} & =\frac{2 x}{2} \\ -9 & =x \end{aligned}\left\{\begin{array}{c} \text { Divide both sides } \\ \text { of the equation } \\ \text { by } 2 . \end{array}\right.$
4. Interchange the two sides of the equation.	$\begin{aligned} -9 & =x \\ x & =-9 \end{aligned}$

If you look closely at the equations in the box, you will notice that we have solved the equation $3(x-6)=6 x-x$. The final equation, $x=-9$, with x isolated on the left side, shows that $\{-9\}$ is the solution set. The idea in solving a linear equation is to get the variable by itself on one side of the equal sign and a number by itself on the other side.

Here is a step-by-step procedure for solving a linear equation in one variable. Not all of these steps are necessary to solve every equation.

Solve linear equations in one variable.

Solving a Linear Equation

1. Simplify the algebraic expression on each side by removing grouping symbols and combining like terms.
2. Collect all the variable terms on one side and all the numbers, or constant terms, on the other side.
3. Isolate the variable and solve.
4. Check the proposed solution in the original equation.

EXAMPLE 1 Solving a Linear Equation

Solve and check: $2(x-3)-17=13-3(x+2)$.

SOLUTION

Step 1 Simplify the algebraic expression on each side.

DISCOVERY

Solve the equation in Example 1 by collecting terms with the variable on the right and numerical terms on the left. What do you observe?

Step 2 Collect variable terms on one side and constant terms on the other side. We will collect variable terms of $2 x-23=-3 x+7$ on the left by adding $3 x$ to both sides. We will collect the numbers on the right by adding 23 to both sides.

$$
\begin{aligned}
2 x-23+3 x & =-3 x+7+3 x & & \text { Add } 3 x \text { to both sides. } \\
5 x-23 & =7 & & \text { Simplify: } 2 x+3 x=5 x \\
5 x-23+23 & =7+23 & & \text { Add } 23 \text { to both sides. } \\
5 x & =30 & & \text { Simplify. }
\end{aligned}
$$

Step 3 Isolate the variable and solve. We isolate the variable, x, by dividing both sides of $5 x=30$ by 5 .

$$
\begin{aligned}
\frac{5 x}{5} & =\frac{30}{5} & & \text { Divide both sides by } 5 . \\
x & =6 & & \text { Simplify. }
\end{aligned}
$$

Step 4 Check the proposed solution in the original equation. Substitute 6 for x in the original equation.

$$
\begin{aligned}
2(x-3)-17 & =13-3(x+2) & & \text { This is the original equation. } \\
2(6-3)-17 & \stackrel{?}{=} 13-3(6+2) & & \text { Substitute } 6 \text { for } x . \\
2(3)-17 & \stackrel{?}{=} 13-3(8) & & \text { Simplify inside parentheses. } \\
6-17 & \stackrel{?}{=} 13-24 & & \text { Multiply. } \\
-11 & =-11 & & \text { Subtract. }
\end{aligned}
$$

The true statement $-11=-11$ verifies that the solution set is $\{6\}$.
\circlearrowleft Check Point 1 Solve and check: $4(2 x+1)=29+3(2 x-5)$.

Linear Equations with Fractions

Equations are easier to solve when they do not contain fractions. How do we remove fractions from an equation? We begin by multiplying both sides of the equation by the least common denominator of any fractions in the equation. The least common denominator is the smallest number that all denominators will divide into. Multiplying every term on both sides of the equation by the least common denominator will eliminate the fractions in the equation. Example 2 shows how we "clear an equation of fractions."

EXAMPLE 2 Solving a Linear Equation Involving Fractions

Solve and check: $\frac{x+2}{4}-\frac{x-1}{3}=2$.

SOLUTION

The fractional terms have denominators of 4 and 3 . The smallest number that is divisible by 4 and 3 is 12 . We begin by multiplying both sides of the equation by 12 , the least common denominator.

$$
\begin{aligned}
\frac{x+2}{4}-\frac{x-1}{3} & =2 \quad \text { This is the given equation. } \\
12\left(\frac{x+2}{4}-\frac{x-1}{3}\right) & =12 \cdot 2 \quad \text { Multiply both sides by } 12 .
\end{aligned}
$$

3 Solve rational equations with variables in the denominators.

$$
\begin{array}{rlrl}
12\left(\frac{x+2}{4}\right)-12\left(\frac{x-1}{3}\right) & =24 & & \begin{array}{l}
\text { Use the distributive property and } \\
\text { multiply each term on the left by } 12 .
\end{array} \\
1_{1}^{3}\left(\frac{x+2}{4}\right)-1_{1}^{4}\left(\frac{x-1}{3}\right) & =24 & & \begin{array}{l}
\text { Divide out common factors in each } \\
\text { multiplication on the left. }
\end{array} \\
3(x+2)-4(x-1) & =24 & & \text { The fractions are now cleared. } \\
3 x+6-4 x+4 & =24 & & \text { Use the distributive property. } \\
-x+10 & =24 & & \text { Combine like terms: } 3 x-4 x=-x \\
-x+10-10 & =24-10 \\
-x & =14 & & \text { Subtract } 10 \text { from both sides. } \\
\text { and } 4=10 .
\end{array}
$$

We're not finished. A negative sign should not precede the variable.

Isolate x by multiplying or dividing both sides of this equation by -1 .

$$
\begin{aligned}
\frac{-x}{-1} & =\frac{14}{-1} & & \text { Divide both sides by }-1 . \\
x & =-14 & & \text { Simplify. }
\end{aligned}
$$

Check the proposed solution. Substitute -14 for x in the original equation. You should obtain $2=2$. This true statement verifies that the solution set is $\{-14\}$. ...
\oint Check Point 2 Solve and check: $\frac{x-3}{4}=\frac{5}{14}-\frac{x+5}{7}$.

Rational Equations

A rational equation is an equation containing one or more rational expressions. In Example 2, we solved a rational equation with constants in the denominators. This rational equation was a linear equation. Now, let's consider a rational equation such as

$$
\frac{3}{x+6}+\frac{1}{x-2}=\frac{4}{x^{2}+4 x-12} .
$$

Can you see how this rational equation differs from the rational equation that we solved earlier? The variable appears in the denominators. Although this rational equation is not a linear equation, the solution procedure still involves multiplying each side by the least common denominator. However, we must avoid any values of the variable that make a denominator zero.

EXAMPLE 3 Solving a Rational Equation

Solve: $\frac{3}{x+6}+\frac{1}{x-2}=\frac{4}{x^{2}+4 x-12}$.

SOLUTION

To identify values of x that make denominators zero, let's factor $x^{2}+4 x-12$, the denominator on the right. This factorization is also necessary in identifying the least common denominator.

$$
\frac{3}{x+6}+\frac{1}{x-2}=\frac{4}{(x+6)(x-2)}
$$

We see that x cannot equal -6 or 2 . The least common denominator is $(x+6)(x-2)$.

Check the proposed solution. Substitute 1 for x in the original equation. You should obtain $-\frac{4}{7}=-\frac{4}{7}$. This true statement verifies that the solution set is $\{1\}$.
σ Check Point 3 Solve: $\frac{6}{x+3}-\frac{5}{x-2}=\frac{-20}{x^{2}+x-6}$.

EXAMPLE 4 Solving a Rational Equation

Solve: $\frac{1}{x+1}=\frac{2}{x^{2}-1}-\frac{1}{x-1}$.

SOLUTION

We begin by factoring $x^{2}-1$.

$$
\frac{1}{x+1}=\frac{2}{(x+1)(x-1)}-\frac{1}{x-1}
$$

This denominator
is zero if $x=-1$.

This denominator

is zero if $x=-1$ or $x=1$.

This denominator is zero if $x=1$.

We see that x cannot equal -1 or 1 . The least common denominator is $(x+1)(x-1)$.

$$
\frac{1}{x+1}=\frac{2}{(x+1)(x-1)}-\frac{1}{x-1}, \quad x \neq-1, x \neq 1 \quad \begin{aligned}
& \text { This is the given equation with } \\
& \text { a denominator factored. }
\end{aligned}
$$

$$
\begin{aligned}
& (x+1)(x-1) \cdot \frac{1}{x+1}=(x+1)(x-1)\left(\frac{2}{(x+1)(x-1)}-\frac{1}{x-1}\right) \\
& (x+1)(x-1) \cdot \frac{1}{x+1}=(x+1)(x-1) \cdot \frac{2}{(x+1)(x-1)}-(x+1)(x-1) \cdot \frac{1}{(x-1)}
\end{aligned}
$$

Multiply both sides by
$(x+1)(x-1)$, the LCD.

Use the distributive property and divide out common factors.

$$
\begin{aligned}
& \frac{3}{x+6}+\frac{1}{x-2}=\frac{4}{(x+6)(x-2)}, \quad x \neq-6, x \neq 2 \quad \begin{array}{l}
\text { This is the given equation with a } \\
\text { denominator factored. }
\end{array} \\
& (x+6)(x-2)\left(\frac{3}{x+6}+\frac{1}{x-2}\right)=(x+6)(x-2) \cdot \frac{4}{(x+6)(x-2)} \quad \begin{array}{l}
\text { Multiply both sides by } \\
(x+6)(x-2) \text {, the LCD. }
\end{array} \\
& (x+6)(x-2) \cdot \frac{3}{x+6}+(x+6)(x-2) \cdot \frac{1}{x-6}=(x+6)(x-2) \cdot \frac{4}{(x+6)(x-2)} \quad \text { Use the distributive property and } \\
& 3(x-2)+1(x+6)=4 \\
& 3 x-6+x+6=4 \\
& 4 x=4 \quad \text { Combine like terms. } \\
& \frac{4 x}{4}=\frac{4}{4} \\
& x=1 \\
& \text { This is the given equation with a } \\
& \text { Multiply both sides by } \\
& (x+6)(x-2) \text {, the LCD. } \\
& \text { Use the distributive property and } \\
& \text { divide out common factors. } \\
& \text { Simplify. This equation is cleared } \\
& \text { of fractions. } \\
& \text { Use the distributive property. } \\
& \text { Combine like terms. } \\
& \text { Divide both sides by } 4 . \\
& \text { Simplify. This is not part of the } \\
& \text { restriction that } x \neq-6 \text { and } \\
& x \neq 2 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
1(x-1) & =2-(x+1) & & \text { Simplify. This equation is cleared } \\
x-1 & =2-x-1 & & \text { of fractions. } \\
x-1 & =-x+1 & & \text { Simplify. } \\
x+x-1 & =-x+x+1 & & \text { Add } x \text { to both sides. } \\
2 x-1 & =1 & & \text { Simplify. } \\
2 x-1+1 & =1+1 & & \text { Add } 1 \text { to both sides. } \\
2 x & =2 & & \text { Simplify. } \\
\frac{2 x}{2} & =\frac{2}{2} & & \text { Divide both sides by } 2 . \\
x & =1 & & \text { Simplify. }
\end{aligned}
$$

GREAT QUESTION!

When do I get rid of proposed solutions in rational equations?
Reject any proposed solution that causes any denominator in an equation to equal 0 .

4. Solve a formula for a variable.

FIGURE P. 12

The proposed solution, 1 , is not a solution because of the restriction that $x \neq 1$. There is no solution to this equation. The solution set for this equation contains no elements. The solution set is \varnothing, the empty set.
\int Check Point 4 Solve: $\frac{1}{x+2}=\frac{4}{x^{2}-4}-\frac{1}{x-2}$.

Solving a Formula for One of Its Variables

Solving a formula for a variable means rewriting the formula so that the variable is isolated on one side of the equation. It does not mean obtaining a numerical value for that variable.

To solve a formula for one of its variables, treat that variable as if it were the only variable in the equation. Think of the other variables as if they were numbers.

EXAMPLE 5 Solving a Formula for a Variable

If you wear glasses, did you know that each lens has a measurement called its focal length, f ? When an object is in focus, its distance from the lens, p, and the distance from the lens to your retina, q, satisfy the formula

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

(See Figure P.12.) Solve this formula for p.

SOLUTION

Our goal is to isolate the variable p. We begin by multiplying both sides by the least common denominator, $p q f$, to clear the equation of fractions.

We need to isolate $p . \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{f} \quad$ This is the given formula.

$$
\begin{aligned}
p q f\left(\frac{1}{p}+\frac{1}{q}\right) & =p q f\left(\frac{1}{f}\right) \quad \begin{array}{l}
\text { Multiply both sides by pqf, the LCD. } \\
p q f\left(\frac{1}{p p}\right)+p q f\left(\frac{1}{q}\right)
\end{array}=p q f\left(\frac{1}{f}\right) \quad \begin{array}{l}
\text { Use the distributive property on the left side } \\
\text { and divide out common factors. }
\end{array} \\
q f+p f=p q & \begin{array}{l}
\text { Simplify. The formula is cleared of } \\
\text { fractions. }
\end{array}
\end{aligned}
$$

GREAT QUESTION!

Can I solve $q f+p f=p q$ for p by dividing both sides by q and writing

$$
\frac{q f+p f}{q}=p ?
$$

No. When a formula is solved for a specified variable, that variable must be isolated on one side. The variable p occurs on both sides of

$$
\frac{q f+p f}{q}=p .
$$

5) Solve equations involving absolute value.

FIGURE P. 13

To collect terms with p on one side of $q f+p f=p q$, subtract $p f$ from both sides. Then factor p from the two resulting terms on the right to convert two occurrences of p into one.

$$
\begin{aligned}
q f+p f & =p q & & \text { This is the equation cleared of fractions. } \\
q f+p f-p f & =p q-p f & & \text { Subtract pf from both sides. } \\
q f & =p q-p f & & \text { Simplify. } \\
q f & =p(q-f) & & \text { Factor out } p, \text { the specified variable. } \\
\frac{q f}{q-f} & =\frac{p(q-f)}{q-f} & & \text { Divide both sides by } q-f \text { and solve for } p . \\
\frac{q f}{q-f} & =p & & \text { Simplify. }
\end{aligned}
$$

\oint Check Point 5 Solve for $q: \frac{1}{p}+\frac{1}{q}=\frac{1}{f}$.

Equations Involving Absolute Value

We have seen that the absolute value of x, denoted $|x|$, describes the distance of x from zero on a number line. Now consider an absolute value equation, such as

$$
|x|=2
$$

This means that we must determine real numbers whose distance from the origin on a number line is 2. Figure P. 13 shows that there are two numbers such that $|x|=2$, namely, 2 and -2 . We write $x=2$ or $x=-2$. This observation can be generalized as follows:

Rewriting an Absolute Value Equation without Absolute Value Bars

If c is a positive real number and u represents any algebraic expression, then
$|u|=c$ is equivalent to $u=c$ or $u=-c$.

EXAMPLE 6 Solving an Equation Involving Absolute Value

Solve: $5|1-4 x|-15=0$.

SOLUTION

$$
5|1-4 x|-15=0 \quad \text { This is the given equation. }
$$

We need to isolate $|1-4 x|$, the absolute value expression.

$$
\begin{array}{rlrlrl}
5|1-4 x| & =15 & & \text { Add } 15 \text { to both sides. } \\
& |1-4 x| & =3 & & \text { Divide both sides by } 5 . \\
1-4 x & =3 & \text { or } 1-4 x & =-3 & & \text { Rewrite }|u|=c \text { as } u=c \text { or } u=-c . \\
-4 x & =2 & & -4 x & =-4 & \\
\text { Subtract } 1 \text { from both sides of each equation. } \\
x & =-\frac{1}{2} & x & =1 & & \text { Divide both sides of each equation by }-4 .
\end{array}
$$

Take a moment to check $-\frac{1}{2}$ and 1, the proposed solutions, in the original equation, $5|1-4 x|-15=0$. In each case, you should obtain the true statement $0=0$. The solution set is $\left\{-\frac{1}{2}, 1\right\}$.

Check Point 6 Solve: $4|1-2 x|-20=0$.

Solve quadratic equations by factoring.

The absolute value of a number is never negative. Thus, if u is an algebraic expression and c is a negative number, then $|u|=c$ has no solution. For example, the equation $|3 x-6|=-2$ has no solution because $|3 x-6|$ cannot be negative. The solution set is \varnothing, the empty set.

The absolute value of 0 is 0 . Thus, if u is an algebraic expression and $|u|=0$, the solution is found by solving $u=0$. For example, the solution of $|x-2|=0$ is obtained by solving $x-2=0$. The solution is 2 and the solution set is $\{2\}$.

Quadratic Equations and Factoring

Linear equations are first-degree polynomial equations of the form $a x+b=0$. Quadratic equations are second-degree polynomial equations and contain an additional term involving the square of the variable.

Definition of a Quadratic Equation

A quadratic equation in x is an equation that can be written in the general form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers, with $a \neq 0$. A quadratic equation in x is also called a second-degree polynomial equation in x.

Here are examples of quadratic equations in general form:

$$
\begin{array}{rrr}
4 x^{2}-2 x & =0 & 2 x^{2}+7 x-4=0 . \\
a=4 & b=-2 & c=0
\end{array} a=2 \quad b=7 \quad c=-4 .
$$

Some quadratic equations, including the two shown above, can be solved by factoring and using the zero-product principle.

The Zero-Product Principle

If the product of two algebraic expressions is zero, then at least one of the factors is equal to zero.

$$
\text { If } A B=0, \text { then } A=0 \text { or } B=0
$$

The zero-product principle can be applied only when a quadratic equation is in general form, with zero on one side of the equation.

Solving a Quadratic Equation by Factoring

1. If necessary, rewrite the equation in the general form $a x^{2}+b x+c=0$, moving all terms to one side, thereby obtaining zero on the other side.
2. Factor completely.
3. Apply the zero-product principle, setting each factor containing a variable equal to zero.
4. Solve the equations in step 3.
5. Check the solutions in the original equation.

EXAMPLE 7 Solving Quadratic Equations by Factoring

Solve by factoring:
a. $4 x^{2}-2 x=0$
b. $2 x^{2}+7 x=4$.

SOLUTION

a. $4 x^{2}-2 x=0 \quad$ The given equation is in general form, with

$$
\begin{array}{lll}
2 x(2 x-1)=0 & \\
2 x=0 & \text { or } & 2 x-1=0
\end{array}
$$

Use the zero-product principle and set

$$
\begin{array}{rl}
x=0 & 2 x \\
=1 \\
x & =\frac{1}{2}
\end{array} \quad \text { Solve the resulting equations. }
$$ zero on one side.

Factor.
each factor equal to zero. each factor equal to zero.

Check the proposed solutions, 0 and $\frac{1}{2}$, in the original equation.

$$
\begin{aligned}
& \text { Check } 0: \\
& 4 x^{2}-2 x=0 \\
& 4 \cdot 0^{2}-2 \cdot 0 \stackrel{?}{=} 0 \\
& 0-0 \stackrel{?}{=} 0 \\
& 0=0, \quad \text { true }
\end{aligned}
$$

Check $\frac{1}{2}$:
$4 x^{2}-2 x=0$
$4\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right) \stackrel{?}{=} 0$
$4\left(\frac{1}{4}\right)-2\left(\frac{1}{2}\right) \stackrel{?}{=} 0$
$1-1 \stackrel{?}{=} 0$
$0=0, \quad$ true

The solution set is $\left\{0, \frac{1}{2}\right\}$.
b.

$$
\begin{array}{rlrl}
2 x^{2}+7 x=4 & & \text { This is the given equation. } \\
2 x^{2}+7 x-4=4-4 & & \begin{array}{l}
\text { Subtract } 4 \text { from both sides and write the } \\
\text { quadratic equation in general form. }
\end{array} \\
2 x^{2}+7 x-4=0 & \text { Simplify. } \\
(2 x-1)(x+4)=0 & \text { Factor. } \\
2 x-1=0 \quad \text { or } \quad x+4=0 & \begin{array}{l}
\text { Use the zero-product principle and set } \\
\text { each factor equal to zero. }
\end{array} \\
2 x=1 & x=-4 & \text { Solve the resulting equations. } \\
x=\frac{1}{2} & &
\end{array}
$$

Check the proposed solutions, $\frac{1}{2}$ and -4 , in the original equation.

$$
\begin{aligned}
& \text { Check } \frac{1}{2}: \\
& 2 x^{2}+7 x=4 \\
& 2\left(\frac{1}{2}\right)^{2}+7\left(\frac{1}{2}\right) \stackrel{?}{=} 4 \\
& \frac{1}{2}+\frac{7}{2} \stackrel{?}{=} 4 \\
& 4=4, \quad \text { true }
\end{aligned}
$$

Check - 4 :
$2 x^{2}+7 x=4$
$2(-4)^{2}+7(-4) \stackrel{?}{=} 4$
$32+(-28) \stackrel{?}{=} 4$
$4=4, \quad$ true

The solution set is $\left\{-4, \frac{1}{2}\right\}$.
$\$$ Check Point 7 Solve by factoring:
a. $3 x^{2}-9 x=0$
b. $2 x^{2}+x=1$.
(7) Solve quadratic equations by the square root property.

Quadratic Equations and the Square Root Property

Quadratic equations of the form $u^{2}=d$, where u is an algebraic expression and d is a positive real number, can be solved by the square root property. First, isolate the squared expression u^{2} on one side of the equation and the number d on the other side. Then take the square root of both sides. Remember, there are two numbers whose square is d. One number is \sqrt{d} and one is $-\sqrt{d}$.

We can use factoring to verify that $u^{2}=d$ has these two solutions.

$$
\begin{array}{rlrl}
u^{2} & =d & & \begin{array}{l}
\text { This is the given equation. } \\
u^{2}-d
\end{array} \\
=0 & \begin{array}{l}
\text { Move all terms to one side and obtain } \\
\text { zero on the other side. }
\end{array} \\
(u+\sqrt{d})(u-\sqrt{d}) & =0 & & \text { Factor. }
\end{array}
$$

Because the solutions differ only in sign, we can write them in abbreviated notation as $u= \pm \sqrt{d}$. We read this as " u equals positive or negative square root of d " or " u equals plus or minus square root of d."

Now that we have verified these solutions, we can solve $u^{2}=d$ directly by taking square roots. This process is called the square root property.

The Square Root Property

If u is an algebraic expression and d is a positive real number, then $u^{2}=d$ has exactly two solutions:

$$
\text { If } u^{2}=d \text {, then } u=\sqrt{d} \text { or } u=-\sqrt{d} \text {. }
$$

Equivalently,

$$
\text { If } u^{2}=d \text {, then } u= \pm \sqrt{d} \text {. }
$$

EXAMPLE 8 Solving Quadratic Equations by the Square Root Property

Solve by the square root property:
a. $3 x^{2}-15=0$
b. $(x-2)^{2}=6$.

SOLUTION

To apply the square root property, we need a squared expression by itself on one side of the equation.

$$
3 x^{2}-15=0
$$

We want x^{2} by itself.
$(x-2)^{2}=6$

> The squared expression is by itself.
a. $\quad 3 x^{2}-15=0$

$$
3 x^{2}=15
$$

$$
x^{2}=5
$$

$$
x=\sqrt{5} \text { or } x=-\sqrt{5}
$$

This is the original equation.
Add 15 to both sides.
Divide both sides by 3 .
Apply the square root property.
Equivalently, $x= \pm \sqrt{5}$.

By checking both proposed solutions in the original equation, we can confirm that the solution set is $\{-\sqrt{5}, \sqrt{5}\}$ or $\{ \pm \sqrt{5}\}$.
b. $(x-2)^{2}=6$

$$
\begin{aligned}
x-2 & = \pm \sqrt{6} \\
x & =2 \pm \sqrt{6}
\end{aligned}
$$

This is the original equation.
Apply the square root property.
Add 2 to both sides.

By checking both values in the original equation, we can confirm that the solution set is $\{2+\sqrt{6}, 2-\sqrt{6}\}$ or $\{2 \pm \sqrt{6}\}$.

Ch Check Point 8 Solve by the square root property:
a. $3 x^{2}-21=0$
b. $(x+5)^{2}=11$.

8 Solve quadratic equations by completing the square.

Quadratic Equations and Completing the Square

How do we solve an equation in the form $a x^{2}+b x+c=0$ if the trinomial $a x^{2}+b x+c$ cannot be factored? We cannot use the zero-product principle in such a case. However, we can convert the equation into an equivalent equation that can be solved using the square root property. This is accomplished by completing the square.

Completing the Square

If $x^{2}+b x$ is a binomial, then by adding $\left(\frac{b}{2}\right)^{2}$, which is the square of half the coefficient of x, a perfect square trinomial will result. That is,

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

We can solve any quadratic equation by completing the square. If the coefficient of the x^{2}-term is one, we add the square of half the coefficient of x to both sides of the equation. When you add a constant term to one side of the equation to complete the square, be certain to add the same constant to the other side of the equation. These ideas are illustrated in Example 9.

EXAMPLE 9 Solving a Quadratic Equation by Completing the Square

Solve by completing the square: $x^{2}-6 x+4=0$.

SOLUTION

We begin by subtracting 4 from both sides. This is done to isolate the binomial $x^{2}-6 x$ so that we can complete the square.

$$
\begin{aligned}
x^{2}-6 x+4 & =0 & & \text { This is the original equation. } \\
x^{2}-6 x & =-4 & & \text { Subtract } 4 \text { from both sides. }
\end{aligned}
$$

Next, we work with $x^{2}-6 x=-4$ and complete the square. Find half the coefficient of the x-term and square it. The coefficient of the x-term is -6 . Half of -6 is -3 and $(-3)^{2}=9$. Thus, we add 9 to both sides of the equation.

$$
\begin{array}{rlrl}
x^{2}-6 x & +9=-4+9 & & \begin{array}{l}
\text { Add } 9 \text { to both sides of } x^{2}-6 x=-4 \\
\text { to complete the square. }
\end{array} \\
(x-3)^{2}=5 & & \text { Factor and simplify. } \\
x-3 & =\sqrt{5} \text { or } & x-3 & =-\sqrt{5} \\
x & =3+\sqrt{5} & & \text { Apply the square root property. }
\end{array}
$$

The solutions are $3 \pm \sqrt{5}$ and the solution set is $\{3+\sqrt{5}, 3-\sqrt{5}\}$, or $\{3 \pm \sqrt{5}\}$.

Check Point 9 Solve by completing the square: $x^{2}+4 x-1=0$.
9) Solve quadratic equations using the quadratic formula.

Quadratic Equations and the Quadratic Formula

We can use the method of completing the square to derive a formula that can be used to solve all quadratic equations. The derivation given here also shows a particular quadratic equation, $3 x^{2}-2 x-4=0$, to specifically illustrate each of the steps.

Notice that if the coefficient of the x^{2}-term in a quadratic equation is not one, you must divide each side of the equation by this coefficient before completing the square.

Deriving the Quadratic Formula

$$
\begin{aligned}
& \text { General Form } \\
& \text { of a Quadratic Equation } \\
& a x^{2}+b x+c=0, a>0 \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
& x^{2}+\frac{b}{a} x=-\frac{c}{a} \\
& x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \\
& \text { (half) }^{\uparrow} \\
& x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} \\
& \left(x+\frac{b}{2 a}\right)^{2}=-\frac{c}{a} \cdot \frac{4 a}{4 a}+\frac{b^{2}}{4 a^{2}} \\
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{-4 a c+b^{2}}{4 a^{2}} \\
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Comment

This is the given equation.
Divide both sides by a so that the coefficient of x^{2} is 1 .

Isolate the binomial by adding $-\frac{c}{a}$ on both sides of the equation.

Complete the square. Add the square of half the coefficient of x to both sides.

Factor on the left side and obtain a common denominator on the right side.

Add fractions on the right side.

Apply the square root property.
Take the square root of the quotient, simplifying the denominator.

Solve for x by subtracting $\frac{b}{2 a}$ from both
sides.

Combine fractions on the right side.

A Specific Example

$$
\begin{aligned}
& 3 x^{2}-2 x-4=0 \\
& x^{2}-\frac{2}{3} x-\frac{4}{3}=0 \\
& x^{2}-\frac{2}{3} x=\frac{4}{3}
\end{aligned}
$$

$$
x^{2}-\frac{2}{3} x+\left(-\frac{1}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{1}{3}\right)^{2}
$$

$$
\text { (half) }^{2} \uparrow
$$

$$
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{4}{3}+\frac{1}{9}
$$

$$
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{3} \cdot \frac{3}{3}+\frac{1}{9}
$$

$$
\left(x-\frac{1}{3}\right)^{2}=\frac{12+1}{9}
$$

$$
\left(x-\frac{1}{3}\right)^{2}=\frac{13}{9}
$$

$$
x-\frac{1}{3}= \pm \sqrt{\frac{13}{9}}
$$

$$
x-\frac{1}{3}= \pm \frac{\sqrt{13}}{3}
$$

$$
x=\frac{1}{3} \pm \frac{\sqrt{13}}{3}
$$

$$
x=\frac{1 \pm \sqrt{13}}{3}
$$

The formula shown at the bottom of the left column is called the quadratic formula. A similar proof shows that the same formula can be used to solve quadratic equations if a, the coefficient of the x^{2}-term, is negative.

The Quadratic Formula

The solutions of a quadratic equation in general form $a x^{2}+b x+c=0$, with $a \neq 0$, are given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \cdot\left\{\begin{array}{l}
x \text { equals negative } b \text { plus or minus } \\
\text { the square root of } b^{2}-4 a c, \text { all } \\
\text { divided by } 2 a .
\end{array}\right.
$$

GREAT QUESTION:

Should I check irrational solutions by substitution in the given quadratic equation?
No. Checking irrational solutions can be time-consuming. The solutions given by the quadratic formula are always correct, unless you have made a careless error. Checking for computational errors or errors in simplification is sufficient.

To use the quadratic formula, write the quadratic equation in general form if necessary. Then determine the numerical values for a (the coefficient of the x^{2}-term), b (the coefficient of the x-term), and c (the constant term). Substitute the values of a, b, and c into the quadratic formula and evaluate the expression. The \pm sign indicates that there are two solutions of the equation.

EXAMPLE 10 Solving a Quadratic Equation Using the Quadratic Formula

Solve using the quadratic formula: $2 x^{2}-6 x+1=0$.

SOLUTION

The given equation is in general form. Begin by identifying the values for a, b, and c.

$$
\begin{aligned}
& 2 x^{2}-6 x+1=0 \\
& a=2 \quad b=-6 \quad c=1
\end{aligned}
$$

Substituting these values into the quadratic formula and simplifying gives the equation's solutions.

$$
\begin{array}{rlrl}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Use the quadratic formula. } \\
& =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(2)(1)}}{2 \cdot 2} & \begin{array}{l}
\text { Substitute the values for } a, b, \text { and } c: \\
a=2, b=-6, \text { and } c=1 .
\end{array} \\
& =\frac{6 \pm \sqrt{36-8}}{4} & & \begin{array}{l}
-(-6)=6,(-6)^{2}=(-6)(-6)=36, \text { and } \\
4(2)(1)=8 .
\end{array} \\
& =\frac{6 \pm \sqrt{28}}{4} & & \text { Complete the subtraction under the radical. } \\
& =\frac{6 \pm 2 \sqrt{7}}{4} & & \sqrt{28}=\sqrt{4 \cdot 7}=\sqrt{4} \sqrt{7}=2 \sqrt{7} \\
& =\frac{2(3 \pm \sqrt{7})}{4} & & \text { Factor out } 2 \text { from the numerator. } \\
& =\frac{3 \pm \sqrt{7}}{2} & & \text { Divide the numerator and denominator by } 2 .
\end{array}
$$

The solution set is $\left\{\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}\right\}$ or $\left\{\frac{3 \pm \sqrt{7}}{2}\right\}$.

Check Point 10 Solve using the quadratic formula:

$$
2 x^{2}+2 x-1=0
$$

10 Use the discriminant to determine the number and type of solutions of quadratic equations.

GREAT QUESTION!

Is the square root sign part of the discriminant?
No. The discriminant is $b^{2}-4 a c$. It is not $\sqrt{b^{2}-4 a c}$, so do not give the discriminant as a radical.
(11) Determine the most efficient method to use when solving a quadratic equation.

Quadratic Equations and the Discriminant

The quantity $b^{2}-4 a c$, which appears under the radical sign in the quadratic formula, is called the discriminant. Table P. 4 shows how the discriminant of the quadratic equation $a x^{2}+b x+c=0$ determines the number and type of solutions.

Table P. 4 The Discriminant and the Kinds of Solutions to $a x^{2}+b x+c=0$

Discriminant $\boldsymbol{b}^{\mathbf{2}}-\mathbf{4 a c}$	Kinds of Solutions to $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$
$b^{2}-4 a c>0$	Two unequal real solutions: If a, b, and c are rational numbers and the discriminant is a perfect square, the solutions are rational. If the discriminant is not a perfect square, the solutions are irrational.
$b^{2}-4 a c=0$	One solution (a repeated solution) that is a real number: If a, b, and c are rational numbers, the repeated solution is also a rational number.
$b^{2}-4 a c<0$	No real solutions

EXAMPLE 11 Using the Discriminant

Compute the discriminant of $4 x^{2}-8 x+1=0$. What does the discriminant indicate about the number and type of solutions?

SOLUTION

Begin by identifying the values for a, b, and c.

$$
\begin{aligned}
& 4 x^{2}-8 x+1=0 \\
& a=4 \quad b=-8 \quad c=1
\end{aligned}
$$

Substitute and compute the discriminant:

$$
b^{2}-4 a c=(-8)^{2}-4 \cdot 4 \cdot 1=64-16=48 .
$$

The discriminant is 48 . Because the discriminant is positive, the equation $4 x^{2}-8 x+1=0$ has two unequal real solutions.

Check Point 11 Compute the discriminant of $3 x^{2}-2 x+5=0$. What does the discriminant indicate about the number and type of solutions?

Determining Which Method to Use

All quadratic equations can be solved by the quadratic formula. However, if an equation is in the form $u^{2}=d$, such as $x^{2}=5$ or $(2 x+3)^{2}=8$, it is faster to use the square root property, taking the square root of both sides. If the equation is not in the form $u^{2}=d$, write the quadratic equation in general form $\left(a x^{2}+b x+c=0\right)$. Try to solve the equation by factoring. If $a x^{2}+b x+c$ cannot be factored, then solve the quadratic equation by the quadratic formula.

Because we used the method of completing the square to derive the quadratic formula, we no longer need it for solving quadratic equations. However, we will use completing the square later in the book to help graph circles and other kinds of equations.

Table P. 5 on the next page summarizes our observations about which technique to use when solving a quadratic equation.

Table P. 5 Determining the Most Efficient Technique to Use When Solving a Quadratic Equation

Description and Form of the Quadratic Equation
 $a x^{2}+b x+c=0$ and $a x^{2}+b x+c$ can be factored easily.

$a x^{2}+b x=0$
The quadratic equation has no constant term. $(c=0)$
$a x^{2}+c=0$
The quadratic equation has no x-term. ($b=0$)

Most Efficient

Solution Method
Example
Factor and use the zero-product principle.

$$
\begin{array}{rlr}
3 x^{2}+5 x-2=0 \\
(3 x-1)(x+2)=0 & \\
3 x-1=0 \quad \text { or } \quad x+2=0 \\
x=\frac{1}{3} & x=-2
\end{array}
$$

Factor and use the zero-product principle.

$$
\begin{aligned}
& 6 x^{2}+9 x=0 \\
& 3 x(2 x+3)=0 \\
& 3 x=0 \quad \text { or } \quad 2 x+3=0 \\
& x=0 \quad 2 x=-3 \\
& x=-\frac{3}{2}
\end{aligned}
$$

Solve for x^{2} and apply the square root property.

$$
\begin{aligned}
7 x^{2}-4 & =0 \\
7 x^{2} & =4 \\
x^{2} & =\frac{4}{7} \\
x & = \pm \sqrt{\frac{4}{7}} \\
& = \pm \frac{2}{\sqrt{7}}= \pm \frac{2}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}= \pm \frac{2 \sqrt{7}}{7}
\end{aligned}
$$

Use the square root property.

$$
\begin{aligned}
(x+4)^{2} & =5 \\
x+4 & = \pm \sqrt{5} \\
x & =-4 \pm \sqrt{5}
\end{aligned}
$$

Use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
x & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-6)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4+24}}{2(1)} \\
& =\frac{2 \pm \sqrt{28}}{2}=\frac{2 \pm \sqrt{4} \sqrt{7}}{2} \\
& =\frac{2 \pm 2 \sqrt{7}}{2}=\frac{2(1 \pm \sqrt{7})}{2} \\
& =1 \pm \sqrt{7}
\end{aligned}
$$

too difficult.
$a x^{2}+b x+c=0$ and $a x^{2}+b x+c$
cannot be factored or the factoring is

We solve the equation by squaring both sides:

$$
\begin{aligned}
\begin{array}{c}
\text { Squaring both } \\
\text { sides eliminates } \\
\text { the square root. }
\end{array} & (\sqrt{x})^{2}
\end{aligned}=9^{2}
$$

The proposed solution, 81 , can be checked in the original equation, $\sqrt{x}=9$. Because $\sqrt{ } 81=9$, the solution is 81 and the solution set is $\{81\}$.

In general, we solve radical equations with square roots by squaring both sides of the equation. We solve radical equations with nth roots by raising both sides of the equation to the nth power. Unfortunately, if n is even, all the solutions of the equation raised to the even power may not be solutions of the original equation. Consider, for example, the equation

$$
x=4 .
$$

If we square both sides, we obtain

$$
x^{2}=16
$$

Solving this equation using the square root property, we obtain

$$
x= \pm \sqrt{16}= \pm 4
$$

The new equation $x^{2}=16$ has two solutions, -4 and 4 . By contrast, only 4 is a solution of the original equation, $x=4$. For this reason, when raising both sides of an equation to an even power, always check proposed solutions in the original equation.

Here is a general method for solving radical equations with nth roots:

Solving Radical Equations Containing nth Roots

1. If necessary, arrange terms so that one radical is isolated on one side of the equation.
2. Raise both sides of the equation to the nth power to eliminate the isolated nth root.
3. Solve the resulting equation. If this equation still contains radicals, repeat steps 1 and 2.
4. Check all proposed solutions in the original equation.

Extra solutions may be introduced when you raise both sides of a radical equation to an even power. Such solutions, which are not solutions of the given equation, are called extraneous solutions or extraneous roots.

EXAMPLE 12 Solving a Radical Equation

Solve: $\sqrt{2 x-1}+2=x$.

GREAT QUESTION!

Can I square the right side of $\sqrt{2 x-1}=x-2$ by first squaring x and then squaring 2?
No. Be sure to square both sides of an equation. Do not square each term.

Correct:

$$
\frac{(\sqrt{2 x-1})^{2}=(x-2)^{2}}{\text { Incorrect! }}
$$

SOLUTION

Step 1 Isolate a radical on one side. We isolate the radical, $\sqrt{2 x-1}$, by subtracting 2 from both sides.

$$
\begin{aligned}
\sqrt{2 x-1}+2 & =x & & \text { This is the given equation. } \\
\sqrt{2 x-1} & =x-2 & & \text { Subtract } 2 \text { from both sides. }
\end{aligned}
$$

Step 2 Raise both sides to the \boldsymbol{n} th power. Because n, the index, is 2 , we square both sides.

$$
\begin{array}{rlrl}
(\sqrt{2 x-1})^{2} & =(x-2)^{2} & & \\
2 x-1 & =x^{2}-4 x+4 & & \text { Simplify. Use the formula } \\
& (A-B)^{2}=A^{2}-2 A B+B^{2} \text { on the right side. }
\end{array}
$$

Step3 Solve the resulting equation. Because of the x^{2}-term in $2 x-1=x^{2}-4 x+4$, the resulting equation is a quadratic equation. We can obtain 0 on the left side by subtracting $2 x$ and adding 1 on both sides.

$$
\begin{array}{rlrl}
2 x-1 & =x^{2}-4 x+4 & & \text { The resulting equation is quadratic. } \\
0 & =x^{2}-6 x+5 & & \text { Write in general form, subtracting } 2 x \text { and adding } \\
& & & \text { 1 on both sides. } \\
0 & =(x-1)(x-5) & & \text { Factor. } \\
x-1 & =0 \text { or } x-5=0 & & \text { Set each factor equal to } 0 . \\
x & =1 & x=5 & \\
\text { Solve the resulting equations. }
\end{array}
$$

Step 4 Check the proposed solutions in the original equation.

Check 1:

$\begin{aligned} \sqrt{2 x-1}+2 & =x \\ \sqrt{2 \cdot 1-1}+2 & \stackrel{?}{=} 1 \\ \sqrt{1}+2 & \stackrel{?}{=} 1 \\ 1+2 & \stackrel{?}{=} 1 \\ 3 & =1, \quad \text { false }\end{aligned}$

Check 5:

$$
\begin{aligned}
\sqrt{2 x-1}+2 & =x \\
\sqrt{2 \cdot 5-1}+2 & \stackrel{?}{=} 5 \\
\sqrt{9}+2 & \stackrel{?}{=} 5 \\
3+2 & \stackrel{?}{=} 5 \\
5 & =5, \quad \text { true }
\end{aligned}
$$

Thus, 1 is an extraneous solution. The only solution is 5 , and the solution set is $\{5\}$.

Check Point 12 Solve: $\sqrt{x+3}+3=x$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. An equation in the form $a x+b=0, a \neq 0$, such as $3 x+17=0$, is called a/an \qquad equation in one variable.
2. Two or more equations that have the same solution set are called \qquad equations.
3. The first step in solving $7+3(x-2)=2 x+10$ is to \qquad
4. The fractions in the equation

$$
\frac{x}{4}=2+\frac{x-3}{3}
$$

can be eliminated by multiplying both sides by the \longrightarrow of $\frac{x}{4}$ and $\frac{x-3}{3}$, which is \qquad
5. We reject any proposed solution of a rational equation that causes a denominator to equal \qquad
6. The restrictions on the variable in the rational equation

$$
\frac{1}{x-2}-\frac{2}{x+4}=\frac{2 x-1}{x^{2}+2 x-8}
$$

are \qquad and \qquad
7. $\frac{5}{x+4}+\frac{3}{x+3}=\frac{12 x+9}{(x+4)(x+3)}$

$$
\begin{aligned}
(x & +4)(x+3)\left(\frac{5}{x+4}+\frac{3}{x+3}\right) \\
& =(x+4)(x+3)\left(\frac{12 x+9}{(x+4)(x+3)}\right)
\end{aligned}
$$

The resulting equation cleared of fractions is
8. Solving a formula for a variable means rewriting the formula so that the variable is \qquad —.
9. The first step in solving $I R+I r=E$ for I is to obtain a single occurrence of I by \qquad I from the two terms on the left.
10. If $c>0,|u|=c$ is equivalent to $u=-\quad$ or $u=$ \qquad .
11. $|3 x-1|=7$ is equivalent to \qquad or
12. An equation that can be written in the general form $a x^{2}+b x+c=0, a \neq 0$, is called a/an \qquad equation.
13. The zero-product principle states that if $A B=0$, then \qquad
14. The square root property states that if $u^{2}=d$, then $u=$ \qquad
15. If $x^{2}=7$, then $x=$ \qquad
16. To solve $x^{2}+6 x=7$ by completing the square, add \qquad to both sides of the equation.
17. The solutions of a quadratic equation in the general form $a x^{2}+b x+c=0, a \neq 0$, are given by the quadratic formula $x=$ \qquad -
18. In order to solve $2 x^{2}+9 x-5=0$ by the quadratic formula, we use $a=$ \qquad , $b=$ \qquad and
$c=$ \qquad —.
19. In order to solve $x^{2}=4 x+1$ by the quadratic formula, we use $a=$ \qquad , $b=$ \qquad , and $c=$ \qquad
20. $x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}$ simplifies to
$x=$ \qquad
21. The discriminant of $a x^{2}+b x+c=0$ is defined by
22. If the discriminant of $a x^{2}+b x+c=0$ is negative, the quadratic equation has \qquad real solutions.
23. If the discriminant of $a x^{2}+b x+c=0$ is positive,
the quadratic equation has \qquad real solutions.
24. The most efficient technique for solving $(2 x+7)^{2}=25$ is by using
25. The most efficient technique for solving $x^{2}+5 x-10=0$ is by using \qquad -
26. The most efficient technique for solving $x^{2}+8 x+15=0$ is by using
27. An equation in which the variable occurs in a square root, cube root, or any higher root is called a/an -_ equation.
28. Solutions of a squared equation that are not solutions of the original equation are called solutions.
29. Consider the equation

$$
\sqrt{2 x+1}=x-7
$$

Squaring the left side and simplifying results in \qquad -. Squaring the right side and simplifying results in \qquad

EXERCISE SET P. 7

Practice Exercises

In Exercises 1-16, solve each linear equation.

1. $7 x-5=72$
2. $6 x-3=63$
3. $11 x-(6 x-5)=40$
4. $5 x-(2 x-10)=35$
5. $2 x-7=6+x$
6. $3 x+5=2 x+13$
7. $7 x+4=x+16$
8. $13 x+14=12 x-5$
9. $3(x-2)+7=2(x+5)$
10. $2(x-1)+3=x-3(x+1)$
11. $\frac{x+3}{6}=\frac{3}{8}+\frac{x-5}{4}$
12. $\frac{x+1}{4}=\frac{1}{6}+\frac{2-x}{3}$
13. $\frac{x}{4}=2+\frac{x-3}{3}$
14. $5+\frac{x-2}{3}=\frac{x+3}{8}$
15. $\frac{x+1}{3}=5-\frac{x+2}{7}$
16. $\frac{3 x}{5}-\frac{x-3}{2}=\frac{x+2}{3}$

Exercises 17-26 contain rational equations with variables in denominators. For each equation, a. Write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. \mathbf{b}. Keeping the restrictions in mind, solve the equation.
17. $\frac{1}{x-1}+5=\frac{11}{x-1}$
18. $\frac{3}{x+4}-7=\frac{-4}{x+4}$
19. $\frac{8 x}{x+1}=4-\frac{8}{x+1}$
20. $\frac{2}{x-2}=\frac{x}{x-2}-2$
21. $\frac{3}{2 x-2}+\frac{1}{2}=\frac{2}{x-1}$
22. $\frac{3}{x+3}=\frac{5}{2 x+6}+\frac{1}{x-2}$
23. $\frac{2}{x+1}-\frac{1}{x-1}=\frac{2 x}{x^{2}-1}$
24. $\frac{4}{x+5}+\frac{2}{x-5}=\frac{32}{x^{2}-25}$
25. $\frac{1}{x-4}-\frac{5}{x+2}=\frac{6}{x^{2}-2 x-8}$
26. $\frac{1}{x-3}-\frac{2}{x+1}=\frac{8}{x^{2}-2 x-3}$

In Exercises 27-42, solve each formula for the specified variable.
Do you recognize the formula? If so, what does it describe?
27. $I=\operatorname{Prt}$ for P
28. $C=2 \pi r$ for r
29. $T=D+p m$ for p
30. $P=C+M C$ for M
31. $A=\frac{1}{2} h(a+b)$ for a
32. $A=\frac{1}{2} h(a+b)$ for b
33. $S=P+$ Prt for r
34. $S=P+\operatorname{Prt}$ for t
35. $B=\frac{F}{S-V}$ for S
36. $S=\frac{C}{1-r}$ for r
37. $I R+I r=E$ for I
38. $A=2 l w+2 l h+2 w h$ for h
39. $\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$ for f
40. $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ for R_{1}
41. $f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$ for f_{1}
42. $f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$ for f_{2}

In Exercises 43-54, solve each absolute value equation or indicate the equation has no solution.
43. $|x-2|=7$
44. $|x+1|=5$
45. $|2 x-1|=5$
46. $|2 x-3|=11$
47. $2|3 x-2|=14$
48. $3|2 x-1|=21$
49. $2\left|4-\frac{5}{2} x\right|+6=18$
50. $4\left|1-\frac{3}{4} x\right|+7=10$
51. $|x+1|+5=3$
52. $|x+1|+6=2$
53. $|2 x-1|+3=3$
54. $|3 x-2|+4=4$

In Exercises 55-60, solve each quadratic equation by factoring.
55. $x^{2}-3 x-10=0$
56. $x^{2}-13 x+36=0$
57. $x^{2}=8 x-15$
58. $x^{2}=-11 x-10$
59. $5 x^{2}=20 x$
60. $3 x^{2}=12 x$

In Exercises 61-66, solve each quadratic equation by the square root property.
61. $3 x^{2}=27$
62. $5 x^{2}=45$
63. $5 x^{2}+1=51$
64. $3 x^{2}-1=47$
65. $3(x-4)^{2}=15$
66. $3(x+4)^{2}=21$

In Exercises 67-74, solve each quadratic equation by completing the square.
67. $x^{2}+6 x=7$
68. $x^{2}+6 x=-8$
69. $x^{2}-2 x=2$
70. $x^{2}+4 x=12$
71. $x^{2}-6 x-11=0$
72. $x^{2}-2 x-5=0$
73. $x^{2}+4 x+1=0$
74. $x^{2}+6 x-5=0$

In Exercises 75-82, solve each quadratic equation using the quadratic formula.
75. $x^{2}+8 x+15=0$
76. $x^{2}+8 x+12=0$
77. $x^{2}+5 x+3=0$
78. $x^{2}+5 x+2=0$
79. $3 x^{2}-3 x-4=0$
80. $5 x^{2}+x-2=0$
81. $4 x^{2}=2 x+7$
82. $3 x^{2}=6 x-1$

Compute the discriminant of each equation in Exercises 83-90. What does the discriminant indicate about the number and type of solutions?
83. $x^{2}-4 x-5=0$
84. $4 x^{2}-2 x+3=0$
85. $2 x^{2}-11 x+3=0$
86. $2 x^{2}+11 x-6=0$
87. $x^{2}=2 x-1$
88. $3 x^{2}=2 x-1$
89. $x^{2}-3 x-7=0$
90. $3 x^{2}+4 x-2=0$

In Exercises 91-114, solve each quadratic equation by the method of your choice.
91. $2 x^{2}-x=1$
92. $3 x^{2}-4 x=4$
93. $5 x^{2}+2=11 x$
94. $5 x^{2}=6-13 x$
95. $3 x^{2}=60$
96. $2 x^{2}=250$
97. $x^{2}-2 x=1$
98. $2 x^{2}+3 x=1$
99. $(2 x+3)(x+4)=1$
100. $(2 x-5)(x+1)=2$
101. $(3 x-4)^{2}=16$
102. $(2 x+7)^{2}=25$
103. $3 x^{2}-12 x+12=0$
104. $9-6 x+x^{2}=0$
105. $4 x^{2}-16=0$
106. $3 x^{2}-27=0$
107. $x^{2}=4 x-2$
108. $x^{2}=6 x-7$
109. $2 x^{2}-7 x=0$
110. $2 x^{2}+5 x=3$
111. $\frac{1}{x}+\frac{1}{x+2}=\frac{1}{3}$
112. $\frac{1}{x}+\frac{1}{x+3}=\frac{1}{4}$
113. $\frac{2 x}{x-3}+\frac{6}{x+3}=-\frac{28}{x^{2}-9}$
114. $\frac{3}{x-3}+\frac{5}{x-4}=\frac{x^{2}-20}{x^{2}-7 x+12}$

In Exercises 115-124, solve each radical equation. Check all proposed solutions.
115. $\sqrt{3 x+18}=x$
116. $\sqrt{20-8 x}=x$
117. $\sqrt{x+3}=x-3$
118. $\sqrt{x+10}=x-2$
119. $\sqrt{2 x+13}=x+7$
120. $\sqrt{6 x+1}=x-1$
121. $x-\sqrt{2 x+5}=5$
122. $x-\sqrt{x+11}=1$
123. $\sqrt{2 x+19}-8=x$
124. $\sqrt{2 x+15}-6=x$

Practice Plus

In Exercises 125-134, solve each equation.
125. $25-[2+5 x-3(x+2)]=$

$$
-3(2 x-5)-[5(x-1)-3 x+3]
$$

126. $45-[4-2 x-4(x+7)]=$

$$
-4(1+3 x)-[4-3(x+2)-2(2 x-5)]
$$

127. $7-7 x=(3 x+2)(x-1)$
128. $10 x-1=(2 x+1)^{2}$
129. $\left|x^{2}+2 x-36\right|=12$
130. $\left|x^{2}+6 x+1\right|=8$
131. $\frac{1}{x^{2}-3 x+2}=\frac{1}{x+2}+\frac{5}{x^{2}-4}$
132. $\frac{x-1}{x-2}+\frac{x}{x-3}=\frac{1}{x^{2}-5 x+6}$
133. $\sqrt{x+8}-\sqrt{x-4}=2$
134. $\sqrt{x+5}-\sqrt{x-3}=2$

In Exercises 135-136, list all numbers that must be excluded from the domain of each rational expression.
135. $\frac{3}{2 x^{2}+4 x-9}$
136. $\frac{7}{2 x^{2}-8 x+5}$

Application Exercises

In the years after warning labels were put on cigarette packs, the number of smokers dropped from approximately two in five adults to one in five. The bar graph shows the percentage of American adults who smoked cigarettes for selected years from 1970 through 2010.

Source: Centers for Disease Control and Prevention

The mathematical model

$$
p+\frac{x}{2}=37
$$

describes the percentage of Americans who smoked cigarettes, p, x years after 1970. Use this model to solve Exercises 137-138.
137. a. Does the mathematical model underestimate or overestimate the percentage of American adults who smoked cigarettes in 2010? By how much?
b. Use the mathematical model to project the year when only 7\% of American adults will smoke cigarettes.
138. a. Does the mathematical model underestimate or overestimate the percentage of American adults who smoked cigarettes in 2000? By how much?
b. Use the mathematical model to project the year when only 2% of American adults will smoke cigarettes.
139. A company wants to increase the 10% peroxide content of its product by adding pure peroxide (100% peroxide). If x liters of pure peroxide are added to 500 liters of its 10% solution, the concentration, C, of the new mixture is given by

$$
C=\frac{x+0.1(500)}{x+500}
$$

How many liters of pure peroxide should be added to produce a new product that is 28% peroxide?
140. Suppose that x liters of pure acid are added to 200 liters of a 35% acid solution.
a. Write a formula that gives the concentration, C, of the new mixture. (Hint: See Exercise 139.)
b. How many liters of pure acid should be added to produce a new mixture that is 74% acid?

A driver's age has something to do with his or her chance of getting into a fatal car crash. The bar graph shows the number of fatal vehicle crashes per 100 million miles driven for drivers of various age groups. For example, 25-year-old drivers are involved in 4.1 fatal crashes per 100 million miles driven. Thus, when a group of 25-year-old Americans have driven a total of 100 million miles, approximately 4 have been in accidents in which someone died.

Age of U.S. Drivers and Fatal Crashes

Source: Insurance Institute for Highway Safety
The number of fatal vehicle crashes per 100 million miles, y, for drivers of age x can be modeled by the formula

$$
y=0.013 x^{2}-1.19 x+28.24
$$

Use the formula above to solve Exercises 141-142.
141. What age groups are expected to be involved in 3 fatal crashes per 100 million miles driven? How well does the formula model the trend in the actual data shown in the bar graph?
142. What age groups are expected to be involved in 10 fatal crashes per 100 million miles driven? How well does the formula model the trend in the actual data shown by the bar graph?

By the end of 2010, women made up more than half of the labor force in the United States for the first time in the country's history. The graphs show the percentage of jobs in the U.S. labor force held by men and by women from 1972 through
2009. Exercises

143-144 are based Source: Bureau of Labor Statistics on the data displayed by the graphs.
143. The formula

$$
p=2.2 \sqrt{t}+36.2
$$

models the percentage of jobs in the U.S. labor force, p, held by women t years after 1972 .
a. Use the appropriate graph to estimate the percentage of jobs in the U.S. labor force held by women in 2000. Give your estimation to the nearest percent.
b. Use the mathematical model to determine the percentage of jobs in the U.S. labor force held by women in 2000. Round to the nearest tenth of a percent.
c. According to the formula, when will 52% of jobs in the U.S. labor force be held by women? Round to the nearest year.
144. The formula

$$
p=-2.2 \sqrt{t}+63.8
$$

models the percentage of jobs in the U.S. labor force, p, held by men t years after 1972.
a. Use the appropriate graph to estimate the percentage of jobs in the U.S. labor force held by men in 2000. Give your estimation to the nearest percent.
b. Use the mathematical model to determine the percentage of jobs in the U.S. labor force held by men in 2000. Round to the nearest tenth of a percent.
c. According to the formula, when will 48% of jobs in the U.S. labor force be held by men? Round to the nearest year.

Writing in Mathematics

145. What is a linear equation in one variable? Give an example of this type of equation.
146. Explain how to determine the restrictions on the variable for the equation

$$
\frac{3}{x+5}+\frac{4}{x-2}=\frac{7}{x^{2}+3 x-6}
$$

147. What does it mean to solve a formula for a variable?
148. Explain how to solve an equation involving absolute value.
149. Why does the procedure that you explained in Exercise 148 not apply to the equation $|x-2|=-3$? What is the solution set for this equation?
150. What is a quadratic equation?
151. Explain how to solve $x^{2}+6 x+8=0$ using factoring and the zero-product principle.
152. Explain how to solve $x^{2}+6 x+8=0$ by completing the square.
153. Explain how to solve $x^{2}+6 x+8=0$ using the quadratic formula.
154. How is the quadratic formula derived?
155. What is the discriminant and what information does it provide about a quadratic equation?
156. If you are given a quadratic equation, how do you determine which method to use to solve it?
157. In solving $\sqrt{2 x-1}+2=x$, why is it a good idea to isolate the radical term? What if we don't do this and simply square each side? Describe what happens.
158. What is an extraneous solution to a radical equation?

Critical Thinking Exercises

Make Sense? In Exercises 159-162, determine whether each statement makes sense or does not make sense, and explain your reasoning.
159. The model $P=-0.18 n+2.1$ describes the number of pay phones, P, in millions, n years after 2000, so I have to solve a linear equation to determine the number of pay phones in 2010.
160. Although I can solve $3 x+\frac{1}{5}=\frac{1}{4}$ by first subtracting $\frac{1}{5}$ from both sides, I find it easier to begin by multiplying both sides by 20 , the least common denominator.
161. Because I want to solve $25 x^{2}-169=0$ fairly quickly, I'll use the quadratic formula.
162. When checking a radical equation's proposed solution, I can substitute into the original equation or any equation that is part of the solution process.
In Exercises 163-166, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
163. The equation $(2 x-3)^{2}=25$ is equivalent to $2 x-3=5$.
164. Every quadratic equation has two distinct numbers in its solution set.
165. The equations $3 y-1=11$ and $3 y-7=5$ are equivalent.
166. The equation $a x^{2}+c=0, a \neq 0$, cannot be solved by the quadratic formula.
167. Find b such that $\frac{7 x+4}{b}+13=x$ will have a solution set given by $\{-6\}$.
168. Write a quadratic equation in general form whose solution set is $\{-3,5\}$.
169. Solve for $C: \quad V=C-\frac{C-S}{L} N$.
170. Solve for $t: \quad s=-16 t^{2}+v_{0} t$.

Preview Exercises

Exercises 171-173 will help you prepare for the material covered in the next section.
171. Jane's salary exceeds Jim's by $\$ 150$ per week. If x represents Jim's weekly salary, write an algebraic expression that models Jane's weekly salary.
172. A telephone texting plan has a monthly fee of $\$ 20$ with a charge of $\$ 0.05$ per text. Write an algebraic expression that models the plan's monthly cost for x text messages.
173. If the width of a rectangle is represented by x and the length is represented by $x+200$, write a simplified algebraic expression that models the rectangle's perimeter.

SECTION P. 8

Objective

(1) Use equations to solve problems.

How Long It Takes to Earn \$1000

Source: Time
In this section, you'll see examples and exercises focused on how much money Americans earn. These situations illustrate a step-by-step strategy for solving problems. As you become familiar with this strategy, you will learn to solve a wide variety of problems.

GREAT QUESTION!

Why are word problems important?

There is great value in reasoning through the steps for solving a word problem. This value comes from the problem-solving skills that you will attain and is often more important than the specific problem or its solution.

Problem Solving with Equations

We have seen that a model is a mathematical representation of a real-world situation. In this section, we will be solving problems that are presented in English. This means that we must obtain models by translating from the ordinary language of English into the language of algebraic equations. To translate, however, we must understand the English prose and be familiar with the forms of algebraic language. Following are some general steps we will use in solving word problems:

Strategy for Solving Word Problems

Step 1 Read the problem carefully several times until you can state in your own words what is given and what the problem is looking for. Let x (or any variable) represent one of the unknown quantities in the problem.
Step 2 If necessary, write expressions for any other unknown quantities in the problem in terms of x.
Step 3 Write an equation in x that models the verbal conditions of the problem.
Step 4 Solve the equation and answer the problem's question.
Step 5 Check the solution in the original wording of the problem, not in the equation obtained from the words.

EXAMPLE 1 Starting Salaries for College Graduates with Undergraduate Degrees

The bar graph in Figure P. 14 shows the ten most popular college majors with median, or middlemost, starting salaries for recent college graduates.

Median Starting Salaries for U.S. College Graduates

FIGURE P. 14
Source: PayScale (2010 data)

The median starting salary of a business major exceeds that of a psychology major by $\$ 8$ thousand. The median starting salary of an English major exceeds that of a psychology major by $\$ 3$ thousand. Combined, their median starting salaries are $\$ 116$ thousand. Determine the median starting salaries of psychology majors, business majors, and English majors with bachelor's degrees.

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We know something about the median starting salaries of business majors and English majors: Business majors earn $\$ 8$ thousand more than psychology majors and English majors earn $\$ 3$ thousand more than psychology majors. We will let
$x=$ the median starting salary, in thousands of dollars, of psychology majors.

Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. Because business majors earn $\$ 8$ thousand more than psychology majors, let

Salary exceeds a psychology major, x, by \$8 thousand.

$$
x+8=\text { the median starting salary, in thousands of dollars, of business majors. }
$$

Because English majors earn $\$ 3$ thousand more than psychology majors, let

Salary exceeds a psychology major, x, by $\$ 3$ thousand.
$x+3=$ the median starting salary, in thousands of dollars, of English majors.

Step 3 Write an equation in \boldsymbol{x} that models the conditions. Combined, the median starting salaries for psychology, business, and English majors are $\$ 116$ thousand.

Step 4 Solve the equation and answer the question.

$$
\begin{aligned}
x+(x+8)+(x+3) & =116 & & \begin{array}{l}
\text { This is the equation that models the } \\
\text { problem's conditions. }
\end{array} \\
3 x+11 & =116 & & \begin{array}{l}
\text { Remove parentheses, regroup, and combine } \\
\text { like terms. }
\end{array} \\
3 x & =105 & & \text { Subtract 11 from both sides. } \\
x & =35 & & \text { Divide both sides by } 3 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\text { starting salary of psychology majors } & =x=35 \\
\text { starting salary of business majors } & =x+8=35+8=43 \\
\text { starting salary of English majors } & =x+3=35+3=38
\end{aligned}
$$

The median starting salary of psychology majors is $\$ 35$ thousand, the median starting salary of business majors is $\$ 43$ thousand, and the median starting salary of English majors is \$38 thousand.

Step 5 Check the proposed solution in the original wording of the problem. The problem states that combined, the median starting salaries are $\$ 116$ thousand. Using the median salaries we determined in step 4, the sum is

$$
\$ 35 \text { thousand }+\$ 43 \text { thousand }+\$ 38 \text { thousand, }
$$

or $\$ 116$ thousand, which verifies the problem's conditions.

GREAT QUESTION!

Example 1 involves using the word exceeds to represent two of the unknown quantities. Can you help me to write algebraic expressions for quantities described using exceeds?
Modeling with the word exceeds can be a bit tricky. It's helpful to identify the smaller quantity. Then add to this quantity to represent the larger quantity. For example, suppose that Tim's height exceeds Tom's height by a inches. Tom is the shorter person. If Tom's height is represented by x, then Tim's height is represented by $x+a$.

Check Point 1 Three of the bars in Figure P. 14 on page 107 represent median starting salaries of education, computer science, and economics majors. The median starting salary of a computer science major exceeds that of an education major by $\$ 21$ thousand. The median starting salary of an economics major exceeds that of an education major by $\$ 14$ thousand. Combined, their median starting salaries are $\$ 140$ thousand. Determine the median starting salaries of education majors, computer science majors, and economics majors with bachelor's degrees.

Your author teaching math in 1969

EXAMPLE 2 Modeling Attitudes of College Freshmen

Researchers have surveyed college freshmen every year since 1969. Figure P. 15 shows that attitudes about some life goals have changed dramatically over the years. In particular, the freshman class of 2009 was more interested in making money than the freshmen of 1969 had been. In $1969,42 \%$ of first-year college students considered "being well-off financially" essential or very important. For the period from 1969 through 2009, this percentage increased by approximately 0.9 each year. If this trend continues, by which year will all college freshmen consider "being well-off financially" essential or very important?

Life Objectives of College Freshmen, 1969-2009

FIGURE P. 15
Source: Higher Education Research Institute

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We are interested in the year when all college freshmen, or 100% of the freshmen, will consider this life objective essential or very important. Let
$x=$ the number of years after 1969 when all freshmen will consider "being well-off financially" essential or very important.
Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. There are no other unknown quantities to find, so we can skip this step.
Step 3 Write an equation in \boldsymbol{x} that models the conditions.

Step 4 Solve the equation and answer the question.

$$
\begin{aligned}
42+0.9 x & =100 & & \begin{array}{l}
\text { This is the equation that models tl } \\
\text { problem's conditions. }
\end{array} \\
42-42+0.9 x & =100-42 & & \text { Subtract 42 from both sides. } \\
0.9 x & =58 & & \text { Simplify. } \\
\frac{0.9 x}{0.9} & =\frac{58}{0.9} & & \text { Divide both sides by 0.9. } \\
x & =64 . \overline{4} \approx 64 & & \begin{array}{l}
\text { Simplify and round to the nearest } \\
\text { whole number. }
\end{array}
\end{aligned}
$$

Using current trends, by approximately 64 years after 1969, or in 2033, all freshmen will consider "being well-off financially" essential or very important.

GREAT QUESTION!

Why is the $\mathbf{4 0 \%}$ reduction written as $\mathbf{0 . 4 x}$ in Example 3?

- 40% is written 0.40 or 0.4 .
- "Of" represents multiplication, so 40% of the original price is $0.4 x$.

Notice that the original price, x, reduced by 40% is $x-0.4 x$ and not $x-0.4$.

Step 5 Check the proposed solution in the original wording of the problem. The problem states that all freshmen (100%, represented by 100 using the model) will consider the objective essential or very important. Does this approximately occur if we increase the 1969 percentage, 42%, by 0.9 each year for 64 years, our proposed solution?

$$
42+0.9(64)=42+57.6=99.6 \approx 100
$$

This verifies that using trends shown in Figure P.15, all first-year college students will consider the objective essential or very important approximately 64 years after 1969.

Check Point 2 Figure $\mathbf{P} .15$ on page 109 shows that the freshman class of 2009 was less interested in developing a philosophy of life than the freshmen of 1969 had been. In 1969, 85% of the freshmen considered this objective essential or very important. Since then, this percentage has decreased by approximately 0.9 each year. If this trend continues, by which year will only 25% of college freshmen consider "developing a meaningful philosophy of life" essential or very important?

EXAMPLE 3 A Price Reduction on a Digital Camera

Your local computer store is having a terrific sale on digital cameras. After a 40% price reduction, you purchase a digital camera for $\$ 276$. What was the camera's price before the reduction?

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We will let
$x=$ the price of the digital camera prior to the reduction.
Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. There are no other unknown quantities to find, so we can skip this step.
Step 3 Write an equation in \boldsymbol{x} that models the conditions. The camera's original price minus the 40% reduction is the reduced price, $\$ 276$.

Step 4 Solve the equation and answer the question.

$$
\begin{aligned}
x-0.4 x & =276 & & \begin{array}{l}
\text { This is the equation that models the problem's } \\
\text { conditions. }
\end{array} \\
0.6 x & =276 & & \text { Combine like terms: } x-0.4 x=1 x-0.4 x=0.6 x \\
\frac{0.6 x}{0.6} & =\frac{276}{0.6} & & \text { Divide both sides by } 0.6 . \\
x & =460 & & \text { Simplify: } 0 . 6 \longdiv { 2 7 6 . 0 }
\end{aligned}
$$

The digital camera's price before the reduction was $\$ 460$.
Step 5 Check the proposed solution in the original wording of the problem. The price before the reduction, $\$ 460$, minus the 40% reduction should equal the reduced price given in the original wording, $\$ 276$:

$$
460-40 \% \text { of } 460=460-0.4(460)=460-184=276
$$

This verifies that the digital camera's price before the reduction was $\$ 460$.

Check Point 3 After a 30\% price reduction, you purchase a new computer for $\$ 840$. What was the computer's price before the reduction?

Solving geometry problems usually requires a knowledge of basic geometric ideas and formulas. Formulas for area, perimeter, and volume are given in Table P.6.

Table P. 6 Common Formulas for Area, Perimeter, and Volume

We will be using the formula for the perimeter of a rectangle, $P=2 l+2 w$, in our next example. The formula states that a rectangle's perimeter is the sum of twice its length and twice its width.

EXAMPLE 4 Finding the Dimensions of an American Football Field

The length of an American football field is 200 feet more than the width. If the perimeter of the field is 1040 feet, what are its dimensions?

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We know something about the length; the length is 200 feet more than the width. We will let

$$
x=\text { the width. }
$$

Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. Because the length is 200 feet more than the width, we add 200 to the width to represent the length.Thus,

$$
x+200=\text { the length. }
$$

Figure P. 16 illustrates an American football field and its dimensions.
Step 3 Write an equation in \boldsymbol{x} that models the conditions. Because the perimeter of the field is 1040 feet,

GREAT QUESTION!

Should I draw pictures like

 Figure P. 16 when solving geometry problems?When solving word problems, particularly problems involving geometric figures, drawing a picture of the situation is often helpful. Label x on your drawing and, where appropriate, label other parts of the drawing in terms of x.

FIGURE P. 17 The garden's area is to be doubled by adding the path.

Step 4 Solve the equation and answer the question.

$$
\begin{array}{rlrl}
2(x+200)+2 x & =1040 & & \\
& \begin{array}{l}
\text { This is the equation that models the } \\
\text { problem's conditions. }
\end{array} \\
2 x+400+2 x & =1040 & & \text { Apply the distributive property. } \\
4 x+400 & =1040 & & \text { Combine like terms: } 2 x+2 x=4 x . \\
4 x & =640 & & \text { Subtract } 400 \text { from both sides. } \\
x & =160 & & \text { Divide both sides by } 4 .
\end{array}
$$

Thus,

$$
\begin{aligned}
\text { width } & =x=160 \\
\text { length } & =x+200=160+200=360
\end{aligned}
$$

The dimensions of an American football field are 160 feet by 360 feet. (The 360 -foot length is usually described as 120 yards.)
Step 5 Check the proposed solution in the original wording of the problem. The perimeter of the football field using the dimensions that we found is

$$
2(360 \text { feet })+2(160 \text { feet })=720 \text { feet }+320 \text { feet }=1040 \text { feet } .
$$

Because the problem's wording tells us that the perimeter is 1040 feet, our dimensions are correct.

Check Point 4 The length of a rectangular basketball court is 44 feet more than the width. If the perimeter of the basketball court is 288 feet, what are its dimensions?

We will use the formula for the area of a rectangle, $A=l w$, in our next example. The formula states that a rectangle's area is the product of its length and its width.

EXAMPLE 5 Solving a Problem Involving Landscape Design

A rectangular garden measures 80 feet by 60 feet. A large path of uniform width is to be added along both shorter sides and one longer side of the garden. The landscape designer doing the work wants to double the garden's area with the addition of this path. How wide should the path be?

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We will let

$$
x=\text { the width of the path. }
$$

The situation is illustrated in Figure P.17. The figure shows the original 80-by- 60 foot rectangular garden and the path of width x added along both shorter sides and one longer side.
Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. Because the path is added along both shorter sides and one longer side, Figure P. 17 shows that

$$
\begin{aligned}
80+2 x & =\text { the length of the new, expanded rectangle } \\
60+x & =\text { the width of the new, expanded rectangle. }
\end{aligned}
$$

Step 3 Write an equation in \boldsymbol{x} that models the conditions. The area of the rectangle must be doubled by the addition of the path.

Step 4 Solve the equation and answer the question.

$$
\begin{array}{rl}
(80+2 x)(60+x)=2 \cdot 80 \cdot 60 & \begin{array}{l}
\text { This is the equation that models the } \\
\text { problem's conditions. }
\end{array} \\
4800+200 x+2 x^{2}=9600 & \text { Multiply. Use FOIL on the left side. } \\
2 x^{2}+200 x-4800=0 & \begin{array}{l}
\text { Subtract } 9600 \text { from both sides } \\
\text { and write the quadratic equation in } \\
\text { general form. }
\end{array} \\
2\left(x^{2}+100 x-2400\right)=0 & \text { Factor out 2, the GCF. } \\
2(x-20)(x+120)=0 & \text { Factor the trinomial. } \\
x-20=0 \text { or } x+120=0 & \text { Set each variable factor equal to } O . \\
x=20 & x=-120
\end{array} \begin{aligned}
& \text { Solve for } x .
\end{aligned}
$$

The path cannot have a negative width. Because -120 is geometrically impossible, we use $x=20$. The width of the path should be 20 feet.
Step 5 Check the proposed solution in the original wording of the problem. Has the landscape architect doubled the garden's area with the 20 -foot-wide path? The area of the garden is 80 feet times 60 feet, or 4800 square feet. Because $80+2 x$ and $60+x$ represent the length and width of the expanded rectangle,

$$
\begin{aligned}
80+2 x=80+2 \cdot 20 & =120 \text { feet is the expanded rectangle's length. } \\
60+x=60+20 & =80 \text { feet is the expanded rectangle's width. }
\end{aligned}
$$

The area of the expanded rectangle is 120 feet times 80 feet, or 9600 square feet. This is double the area of the garden, 4800 square feet, as specified by the problem's conditions.

W Check Point 5 A rectangular garden measures 16 feet by 12 feet. A path of uniform width is to be added so as to surround the entire garden. The landscape artist doing the work wants the garden and path to cover an area of 320 square feet. How wide should the path be?

The solution to our next problem relies on knowing the Pythagorean Theorem. The theorem relates the lengths of the three sides of a right triangle, a triangle with one angle measuring 90°. The side opposite the 90° angle is called the hypotenuse. The other sides are called legs. The legs form the two sides of the right angle.

The Pythagorean Theorem

The sum of the squares of the lengths of the legs of a right triangle equals the square of the length of the hypotenuse.

If the legs have lengths a and b, and the hypotenuse has length c, then

$$
a^{2}+b^{2}=c^{2} .
$$

EXAMPLE 6 Using the Pythagorean Theorem

a. A wheelchair ramp with a length of 122 inches has a horizontal distance of 120 inches. What is the ramp's vertical distance?
b. Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 inch requires a horizontal run of 12 inches. Does this ramp satisfy the requirement?

FIGURE P. 18

SOLUTION

a. Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We will let

$$
x=\text { the ramp's vertical distance. }
$$

The situation is illustrated in Figure P. 18.
Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. There are no other unknown quantities, so we can skip this step.

Step 3 Write an equation in \boldsymbol{x} that models the conditions. Figure P. 18 shows the right triangle that is formed by the ramp, the wall, and the ground. We can find x, the ramp's vertical distance, using the Pythagorean Theorem.

Step 4 Solve the equation and answer the question. The quadratic equation $x^{2}+120^{2}=122^{2}$ can be solved most efficiently by the square root property.

$$
\begin{array}{rlrl}
x^{2}+120^{2} & =122^{2} & \begin{array}{l}
\text { This is th } \\
\text { Pythagor }
\end{array} \\
x^{2}+14,400 & =14,884 & \begin{array}{l}
\text { Square } 12 \\
x^{2}
\end{array}=484 & \text { Isolate } x^{2} \\
\text { soth side }
\end{array}
$$

Because x represents the ramp's vertical distance, this measurement must be positive. We reject -22 . Thus, the ramp's vertical distance is 22 inches.
Step 5 Check the proposed solution in the original wording of the problem. The problem's wording implies that the ramp, the wall, and the ground form a right triangle. This can be checked using the converse of the Pythagorean Theorem: If a triangle has sides of lengths a, b, and c, where c is the length of the longest side, and if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle. Let's check that a vertical distance of 22 inches forms a right triangle with the ramp's length of 122 inches and its horizontal distance of 120 inches. Is $22^{2}+120^{2}=122^{2}$? Simplifying the arithmetic, we obtain the true statement $14,884=14,884$. Thus, a vertical distance of 22 inches forms a right triangle.
b. Every vertical rise of 1 inch requires a horizontal run of 12 inches. Because the ramp has a vertical distance of 22 inches, it requires a horizontal distance of $22(12)$ inches, or 264 inches. The horizontal distance is only 120 inches, so this ramp does not satisfy construction laws for access ramps for the disabled. \bullet.

Check Point 6 A radio tower is supported by two wires that are each 130 yards long and attached to the ground 50 yards from the base of the tower. How tall is the tower?

In our final example, the conditions are modeled by a rational equation.

EXAMPLE 7 Dividing the Cost of a Yacht

A group of friends agrees to share the cost of a $\$ 50,000$ yacht equally. Before the purchase is made, one more person joins the group and enters the agreement. As a result, each person's share is reduced by $\$ 2500$. How many people were in the original group?

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We will let $x=$ the number of people in the original group.

Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. Because one more person joined the original group, let

$$
x+1=\text { the number of people in the final group. }
$$

Step 3 Write an equation in \boldsymbol{x} that models the conditions. As a result of one more person joining the original group, each person's share is reduced by $\$ 2500$.

> This is the yacht's cost, $\$ 50,000$, divided by the number of people, x.

> This is the yacht's cost, $\$ 50,000$, divided by the number of people, $x+1$.

Step 4 Solve the equation and answer the question.

$$
\begin{aligned}
& \frac{50,000}{x}-2500=\frac{50,000}{x+1} \\
& x(x+1)\left(\frac{50,000}{x}-2500\right)=x(x+1) \cdot \frac{50,000}{x+1} \\
& x^{\prime}(x+1) \cdot \frac{50,000}{x}-x(x+1) 2500=x(x+1) \cdot \frac{50,000}{(x+1)} \\
& 50,000(x+1)-2500 x(x+1)=50,000 x \\
& 50,000 x+50,000-2500 x^{2}-2500 x=50,000 x \\
& -2500 x^{2}+47,500 x+50,000=50,000 x \\
& -2500 x^{2}-2500 x+50,000=0 \\
& -2500\left(x^{2}+x-20\right)=0 \\
& -2500(x+5)(x-4)=0 \\
& x+5=0 \quad \text { or } \quad x-4=0 \\
& x=-5 \quad x=4 \\
& \text { This is the equation } \\
& \text { that models the } \\
& \text { problem's conditions. } \\
& \text { Multiply both sides by } \\
& x(x+1) \text {, the LCD. } \\
& \text { Use the distributive } \\
& \text { property and divide out } \\
& \text { common factors. } \\
& \text { Simplify. } \\
& \text { Use the distributive } \\
& \text { property. } \\
& \text { Combine like terms: } \\
& \text { 50,000x }-2500 x= \\
& \text { 47,500x. } \\
& \text { Write the quadratic } \\
& \text { equation in general } \\
& \text { form, subtracting } \\
& \text { 50,000x from both } \\
& \text { sides. } \\
& \text { Factor out-2500. } \\
& \text { Factor completely. } \\
& \text { Set each variable factor } \\
& \text { equal to zero. } \\
& \text { Solve the resulting } \\
& \text { equations. }
\end{aligned}
$$

Because x represents the number of people in the original group, x cannot be negative. Thus, there were four people in the original group.
Step 5 Check the proposed solution in the original wording of the problem.

$$
\begin{array}{ll}
\text { original cost per person } & =\frac{\$ 50,000}{4}=\$ 12,500 \\
\text { final cost per person } & =\frac{\$ 50,000}{5}=\$ 10,000
\end{array}
$$

We see that each person's share is reduced by $\$ 12,500-\$ 10,000$, or $\$ 2500$, as specified by the problem's conditions.

Check Point 7 A group of people share equally in a $\$ 5,000,000$ lottery. Before the money is divided, three more winning ticket holders are declared. As a result, each person's share is reduced by $\$ 375,000$. How many people were in the original group of winners?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. According to the U.S. Office of Management and Budget, the 2011 budget for defense exceeded the budget for education by $\$ 658.6$ billion. If x represents the budget for education, in billions of dollars, the budget for defense can be represented by
2. In $2000,31 \%$ of U.S. adults viewed a college education as essential for success. For the period from 2000 through 2010, this percentage increased by approximately 2.4 each year. The percentage of U.S. adults who viewed a college education as essential for success x years after 2000 can be represented by
3. I purchased a computer after a 15% price reduction. If x represents the computer's original price, the reduced price can be represented by \qquad .
4. The length of a rectangle is 5 feet more than the width. If x represents the width, in feet, the length is represented by \qquad .The perimeter of the rectangle is represented by \qquad The area of the rectangle is represented by \qquad _.
5. A triangle with one angle measuring 90° is called a/an ___ triangle. The side opposite the 90° angle is called the \qquad .The other sides are called \qquad
6. The Pythagorean Theorem states that in any triangle, the sum of the squares of the lengths of the _ equals \qquad _.
7. If x people equally share the cost of a $\$ 10,000$ boat, the cost per person is represented by \qquad -.
If two more people share the cost, the cost per person is represented by \qquad . -.

EXERCISE SET P. 8

Practice and Application Exercises

How will you spend your average life expectancy of 78 years? The bar graph shows the average number of years you will devote to each of your most time-consuming activities. Exercises 1-2 are based on the data displayed by the graph.

How You Will Spend Your Average Life Expectancy of 78 Years

Source: U.S. Bureau of Labor Statistics

1. According to the American Bureau of Labor Statistics, you will devote 37 years to sleeping and watching TV. The number of years sleeping will exceed the number of years watching TV by 19. Over your lifetime, how many years will you spend on each of these activities?
2. According to the American Bureau of Labor Statistics, you will devote 32 years to sleeping and eating. The number of years sleeping will exceed the number of years eating by 24. Over your lifetime, how many years will you spend on each of these activities?

The bar graph shows average yearly earnings in the United States for people with a college education, by final degree earned. Exercises 3-4 are based on the data displayed by the graph.

Average Earnings of Full-Time Workers in the U.S., by Final Degree Earned

Source: U.S. Census Bureau
3. The average yearly salary of an American whose final degree is a master's is $\$ 49$ thousand less than twice that of an American whose final degree is a bachelor's. Combined, two people with each of these educational attainments earn $\$ 116$ thousand. Find the average yearly salary of Americans with each of these final degrees.
4. The average yearly salary of an American whose final degree is a doctorate is $\$ 39$ thousand less than twice that of an American whose final degree is a bachelor's. Combined, two people with each of these educational attainments earn $\$ 126$ thousand. Find the average yearly salary of Americans with each of these final degrees.

Even as Americans increasingly view a college education as essential for success, many believe that a college education is becoming less available to qualified students. Exercises 5-6 are based on the data displayed by the graph.

Source: Public Agenda
5. In $2000,31 \%$ of U.S. adults viewed a college education as essential for success. For the period 2000 through 2010, the percentage viewing a college education as essential for success increased on average by approximately 2.4 each year. If this trend continues, by which year will 67% of all American adults view a college education as essential for success?
6. The data displayed by the graph indicate that in 2000 , 45% of U.S. adults believed most qualified students get to attend college. For the period from 2000 through 2010, the percentage who believed that a college education is available to most qualified students decreased by approximately 1.7 each year. If this trend continues, by which year will only 11% of all American adults believe that most qualified students get to attend college?
7. A new car worth $\$ 24,000$ is depreciating in value by $\$ 3000$ per year.
a. Write a formula that models the car's value, y, in dollars, after x years.
b. Use the formula from part (a) to determine after how many years the car's value will be $\$ 9000$.
8. A new car worth $\$ 45,000$ is depreciating in value by $\$ 5000$ per year.
a. Write a formula that models the car's value, y, in dollars, after x years.
b. Use the formula from part (a) to determine after how many years the car's value will be $\$ 10,000$.
9. In 2010 , there were 13,300 students at college A, with a projected enrollment increase of 1000 students per year. In the same year, there were 26,800 students at college B, with a projected enrollment decline of 500 students per year. According to these projections, when will the colleges have the same enrollment? What will be the enrollment in each college at that time?
10. In 2000, the population of Greece was $10,600,000$, with projections of a population decrease of 28,000 people per year. In the same year, the population of Belgium was $10,200,000$, with projections of a population decrease of 12,000 people per
year. (Source: United Nations) According to these projections, when will the two countries have the same population? What will be the population at that time?
11. After a 20% reduction, you purchase a television for $\$ 336$. What was the television's price before the reduction?
12. After a 30% reduction, you purchase a dictionary for $\$ 30.80$. What was the dictionary's price before the reduction?
13. Including 8% sales tax, an inn charges $\$ 162$ per night. Find the inn's nightly cost before the tax is added.
14. Including 5% sales tax, an inn charges $\$ 252$ per night. Find the inn's nightly cost before the tax is added.
Exercises 15-16 involve markup, the amount added to the dealer's cost of an item to arrive at the selling price of that item.
15. The selling price of a refrigerator is $\$ 584$. If the markup is 25% of the dealer's cost, what is the dealer's cost of the refrigerator?
16. The selling price of a scientific calculator is $\$ 15$. If the markup is 25% of the dealer's cost, what is the dealer's cost of the calculator?
17. A rectangular soccer field is twice as long as it is wide. If the perimeter of the soccer field is 300 yards, what are its dimensions?
18. A rectangular swimming pool is three times as long as it is wide. If the perimeter of the pool is 320 feet, what are its dimensions?
19. The length of the rectangular tennis court at Wimbledon is 6 feet longer than twice the width. If the court's perimeter is 228 feet, what are the court's dimensions?
20. The length of a rectangular pool is 6 meters less than twice the width. If the pool's perimeter is 126 meters, what are its dimensions?
21. The rectangular painting in the figure shown measures 12 inches by 16 inches and includes a frame of uniform width around the four edges. The perimeter of the rectangle formed by the painting and its frame is 72 inches. Determine the width of the frame.

22. The rectangular swimming pool in the figure shown measures 40 feet by 60 feet and includes a path of uniform width around the four edges. The perimeter of the rectangle formed by the pool and the surrounding path is 248 feet. Determine the width of the path.

23. The length of a rectangular sign is 3 feet longer than the width. If the sign's area is 54 square feet, find its length and width.
24. A rectangular parking lot has a length that is 3 yards greater than the width. The area of the parking lot is 180 square yards. Find the length and the width.
25. Each side of a square is lengthened by 3 inches. The area of this new, larger square is 64 square inches. Find the length of a side of the original square.
26. Each side of a square is lengthened by 2 inches. The area of this new, larger square is 36 square inches. Find the length of a side of the original square.
27. A pool measuring 10 meters by 20 meters is surrounded by a path of uniform width. If the area of the pool and the path combined is 600 square meters, what is the width of the path?
28. A vacant rectangular lot is being turned into a community vegetable garden measuring 15 meters by 12 meters. A path of uniform width is to surround the garden. If the area of the lot is 378 square meters, find the width of the path surrounding the garden.
29. As part of a landscaping project, you put in a flower bed measuring 20 feet by 30 feet. To finish off the project, you are putting in a uniform border of pine bark around the outside of the rectangular garden. You have enough pine bark to cover 336 square feet. How wide should the border be?
30. As part of a landscaping project, you put in a flower bed measuring 10 feet by 12 feet. You plan to surround the bed with a uniform border of low-growing plants that require 1 square foot each when mature. If you have 168 of these plants, how wide a strip around the flower bed should you prepare for the border?
31. A 20 -foot ladder is 15 feet from a house. How far up the house, to the nearest tenth of a foot, does the ladder reach?
32. The base of a 30 -foot ladder is 10 feet from a building. If the ladder reaches the flat roof, how tall, to the nearest tenth of a foot, is the building?
33. A tree is supported by a wire anchored in the ground 5 feet from its base. The wire is 1 foot longer than the height that it reaches on the tree. Find the length of the wire.
34. A tree is supported by a wire anchored in the ground 15 feet from its base. The wire is 4 feet longer than the height that it reaches on the tree. Find the length of the wire.
35. A rectangular piece of land whose length its twice its width has a diagonal distance of 64 yards. How many yards, to the nearest tenth of a yard, does a person save by walking diagonally across the land instead of walking its length and its width?
36. A rectangular piece of land whose length is three times its width has a diagonal distance of 92 yards. How many yards, to the nearest tenth of a yard, does a person save by walking diagonally across the land instead of walking its length and its width?
37. A group of people share equally in a $\$ 20,000,000$ lottery. Before the money is divided, two more winning ticket holders are declared. As a result, each person's share is reduced by $\$ 500,000$. How many people were in the original group of winners?
38. A group of friends agrees to share the cost of a $\$ 480,000$ vacation condominium equally. Before the purchase is made, four more people join the group and enter the agreement. As a result, each person's share is reduced by $\$ 32,000$. How many people were in the original group?
In Exercises 39-42, use the formula

$$
\text { Time traveled }=\frac{\text { Distance traveled }}{\text { Average velocity }}
$$

39. A car can travel 300 miles in the same amount of time it takes a bus to travel 180 miles. If the average velocity of the bus is 20 miles per hour slower than the average velocity of the car, find the average velocity for each.
40. A passenger train can travel 240 miles in the same amount of time it takes a freight train to travel 160 miles. If the average velocity of the freight train is 20 miles per hour slower than the average velocity of the passenger train, find the average velocity of each.
41. You ride your bike to campus a distance of 5 miles and return home on the same route. Going to campus, you ride mostly downhill and average 9 miles per hour faster than on your return trip home. If the round trip takes one hour and ten minutes-that is $\frac{7}{6}$ hours-what is your average velocity on the return trip?
42. An engine pulls a train 140 miles. Then a second engine, whose average velocity is 5 miles per hour faster than the first engine, takes over and pulls the train 200 miles. The total time required for both engines is 9 hours. Find the average velocity of each engine.
43. An automobile repair shop charged a customer $\$ 448$, listing $\$ 63$ for parts and the remainder for labor. If the cost of labor is $\$ 35$ per hour, how many hours of labor did it take to repair the car?
44. A repair bill on a sailboat came to $\$ 1603$, including $\$ 532$ for parts and the remainder for labor. If the cost of labor is $\$ 63$ per hour, how many hours of labor did it take to repair the sailboat?
45. An HMO pamphlet contains the following recommended weight for women: "Give yourself 100 pounds for the first 5 feet plus 5 pounds for every inch over 5 feet tall." Using this description, what height corresponds to a recommended weight of 135 pounds?
46. A job pays an annual salary of $\$ 33,150$, which includes a holiday bonus of $\$ 750$. If paychecks are issued twice a month, what is the gross amount for each paycheck?
47. You have 35 hits in 140 times at bat. Your batting average is $\frac{35}{140}$, or 0.25 . How many consecutive hits must you get to increase your batting average to 0.30 ?
48. You have 30 hits in 120 times at bat. Your batting average is $\frac{30}{120}$, or 0.25 . How many consecutive hits must you get to increase your batting average to 0.28 ?

Writing in Mathematics

49. In your own words, describe a step-by-step approach for solving algebraic word problems.
50. Write an original word problem that can be solved using an equation. Then solve the problem.
51. In your own words, state the Pythagorean Theorem.
52. In the 1939 movie The Wizard of $O z$, upon being presented with a Th.D. (Doctor of Thinkology), the Scarecrow proudly exclaims, "The sum of the square roots of any two sides of an isosceles triangle is equal to the square root of the remaining side." (Source: The Wizard of Oz, © 1939, Warner Bros.) Did the Scarecrow get the Pythagorean Theorem right? In particular, describe four errors in the Scarecrow's statement.

Critical Thinking Exercises

Make Sense? In Exercises 53-56, determine whether statement makes sense or does not make sense, and explain reasoning.
53. By modeling attitudes of college freshmen from 1969 through 2006, I can make precise predictions about the attitudes of the freshman class of 2020.
54. I find the hardest part in solving a word problem is writing the equation that models the verbal conditions.
55. After a 35% reduction, a computer's price is $\$ 780$, so I determined the original price, x, by solving $x-0.35=780$.
56. When I use the square root property to determine the length of a right triangle's side, I don't even bother to list the negative square root.
57. The perimeter of a plot of land in the shape of a right triangle is 12 miles. If one leg of the triangle exceeds the other leg by 1 mile, find the length of each boundary of the land.
58. The price of a dress is reduced by 40%. When the dress still does not sell, it is reduced by 40% of the reduced price. If the price of the dress after both reductions is $\$ 72$, what was the original price?
59. In a film, the actor Charles Coburn plays an elderly "uncle" character criticized for marrying a woman when he is 3 times her age. He wittily replies, "Ah, but in 20 years time I shall only be twice her age." How old is the "uncle" and the woman?
60. Suppose that we agree to pay you $8 \not \subset$ for every problem in this chapter that you solve correctly and fine you 5ϕ for every problem done incorrectly. If at the end of 26 problems we do not owe each other any money, how many problems did you solve correctly?
61. It was wartime when the Ricardos found out Mrs. Ricardo was pregnant. Ricky Ricardo was drafted and made out a will, deciding that $\$ 14,000$ in a savings account was to be divided between his wife and his child-to-be. Rather strangely, and certainly with gender bias, Ricky stipulated that if the child were a boy, he would get twice the amount of the mother's portion. If it were a girl, the mother would get twice the amount the girl was to receive. We'll never know what Ricky was thinking of, for (as fate would have it) he did not return from war. Mrs. Ricardo gave birth to twins - a boy and a girl. How was the money divided?
62. A thief steals a number of rare plants from a nursery. On the way out, the thief meets three security guards, one after another. To each security guard, the thief is forced to give one-half the plants that he still has, plus 2 more. Finally, the thief leaves the nursery with 1 lone palm. How many plants were originally stolen?

Group Exercise

63. One of the best ways to learn how to solve a word problem in algebra is to design word problems of your own. Creating a word problem makes you very aware of precisely how much information is needed to solve the problem. You must also focus on the best way to present information to a reader and on how much information to give. As you write your problem, you gain skills that will help you solve problems created by others.

The group should design five different word problems that can be solved using equations. All of the problems should be on different topics. For example, the group should not have more than one problem on the perimeter of a rectangle. The group should turn in both the problems and their algebraic solutions.

Preview Exercises

Exercises 64-66 will help you prepare for the material covered in the next section.
64. Is -1 a solution of $3-2 x \leq 11$?
65. Solve: $-2 x-4=x+5$.
66. Solve: $\frac{x+3}{4}=\frac{x-2}{3}+\frac{1}{4}$.

SECTION P. 9

Objectives

Use interval notation.
2 Find intersections and unions of intervals.Solve linear inequalities.
4
Solve compound inequalities.
(5) Solve absolute value inequalities.

1
Use interval notation.

Linear Inequalities and Absolute Value Inequalities

Rent-a-Heap, a car rental company, charges $\$ 125$ per week plus $\$ 0.20$ per mile to rent one of their cars. Suppose you are limited by how much money you can spend for the week: You can spend at most $\$ 335$. If we let x represent the number of miles you drive the heap in a week, we can write an inequality that models the given conditions:

Placing an inequality symbol between a polynomial of degee 1 and a constant results in a linear inequality in one variable. In this section, we will study how to solve linear inequalities such as $125+0.20 x \leq 335$. Solving an inequality is the process of finding the set of numbers that make the inequality a true statement. These numbers are called the solutions of the inequality and we say that they satisfy the inequality. The set of all solutions is called the solution set of the inequality. Set-builder notation and a new notation, called interval notation, are used to represent these solution sets. We begin this section by looking at interval notation.

Interval Notation

Some sets of real numbers can be represented using interval notation. Suppose that a and b are two real numbers such that $a<b$.
Interval Notation
The open interval (a, b) represents the
numbers between, but not including, a

$$
(a, b)=\{x \mid a<x<b\}
$$

x is greater than $a(a<x)$
and
x is less than $b(x<b)$.

The closed interval $[a, b]$ represents the set of real numbers between, and including, a and b.

$$
\begin{aligned}
& {[a, b]=\{x \mid a \leq x \leq b\}} \\
& x \text { is greater than or equal to } a(a \leq x) \\
& x \text { is less than or equal to } b(x \leq b) .
\end{aligned}
$$

The infinite interval (a, ∞) represents the set of real numbers that are greater than a.

$$
(a, \infty)=\{x \mid x>a\}
$$

The infinity symbol does not represent a real number. It indicates that the interval extends indefinitely to the right.

The parenthesis indicates that a is excluded from the interval.

The infinite interval $(-\infty, b]$ represents the set of real numbers that are less than or equal to b.

$$
\begin{aligned}
& (-\infty, b]=\{x \mid x \leq b\} \\
& \begin{array}{c}
\text { The negative infinity symbol } \\
\text { indicates that the interval } \\
\text { extends indefinitely to the left. }
\end{array}
\end{aligned}
$$

Parentheses and Brackets in Interval Notation

Parentheses indicate endpoints that are not included in an interval. Square brackets indicate endpoints that are included in an interval. Parentheses are always used with ∞ or $-\infty$.

Table P. 7 lists nine possible types of intervals used to describe subsets of real numbers.

Table P. 7 Intervals on the Real Number Line
Let a and b be real numbers such that $a<b$.

Interval
 Notation

(a, b)	$\{x \mid a<x<b\}$
$[a, b]$	$\{x \mid a \leq x \leq b\}$
$[a, b)$	$\{x \mid a \leq x<b\}$
$(a, b]$	$\{x \mid a<x \leq b\}$
(a, ∞)	$\{x \mid x>a\}$
$[a, \infty)$	$\{x \mid x \geq a\}$
$(-\infty, b)$	$\{x \mid x<b\}$
$(-\infty, b]$	$\{x \mid x \leq b\}$
$(-\infty, \infty)$	$\{x \mid x$ is a real number $\}$ or \mathbb{R} $($ set of real numbers $)$

$$
\{x \mid a<x<b\}
$$

$$
\{x \mid a \leq x \leq b\}
$$

$[a, b)$
$\{x \mid a \leq x<b\}$
$\{x \mid a<x \leq b\}$
(a, ∞)
$\{x \mid x>a\}$
$[a, \infty)$
$\{x \mid x<b\}$
$(-\infty, b]$
$\{x \mid x$ is a real number $\}$ or \mathbb{R} (set of real numbers)

Graph

EXAMPLE 1 Using Interval Notation

Express each interval in set-builder notation and graph:
a. $(-1,4]$
b. $[2.5,4]$
c. $(-4, \infty)$.

SOLUTION

a. $(-1,4]=\{x \mid-1<x \leq 4\}$
b. $[2.5,4]=\{x \mid 2.5 \leq x \leq 4\}$

c. $(-4, \infty)=\{x \mid x>-4\}$

Check Point 1 Express each interval in set-builder notation and graph:
a. $[-2,5)$
b. $[1,3.5]$
c. $(-\infty,-1)$.

Intersections and Unions of Intervals

In Section P.1, we learned how to find intersections and unions of sets. Recall that $A \cap B(A$ intersection $B)$ is the set of elements common to both set A and set B. By contrast, $A \cup B(A$ union $B)$ is the set of elements in set A or in set B or in both sets.

Because intervals represent sets, it is possible to find their intersections and unions. Graphs are helpful in this process.

Finding Intersections and Unions of Two Intervals

1. Graph each interval on a number line.
2. a. To find the intersection, take the portion of the number line that the two graphs have in common.
b. To find the union, take the portion of the number line representing the total collection of numbers in the two graphs.

EXAMPLE 2 Finding Intersections and Unions of Intervals

Use graphs to find each set:
a. $(1,4) \cap[2,8]$
b. $(1,4) \cup[2,8]$.

SOLUTION

a. $(1,4) \cap[2,8]$, the intersection of the intervals $(1,4)$ and $[2,8]$, consists of the numbers that are in both intervals.

To find $(1,4) \cap[2,8]$, take the portion of the number line that the two graphs have in common.

Thus, $(1,4) \cap[2,8]=[2,4)$.
b. $(1,4) \cup[2,8]$, the union of the intervals $(1,4)$ and $[2,8]$, consists of the numbers that are in either one interval or the other (or both).

To find $(1,4) \cup[2,8]$, take the portion of the number line representing the total collection of numbers in the two graphs.

Numbers in either
$(1,4)$ or $[2,8]$ or both:

The numbers in either one interval or the other (or both) are those that are greater than 1 and less than or equal to 8: $(1,8]$.

Thus, $(1,4) \cup[2,8]=(1,8]$.
$\$$ Check Point 2 Use graphs to find each set:
a. $[1,3] \cap(2,6)$
b. $[1,3] \cup(2,6)$.

GREAT QUESTION!

What are some common English phrases and sentences that I can model with inequalities?
English phrases such as "at least" and "at most" can be represented by inequalities.

English Sentence	Inequality
x is at least 5.	$x \geq 5$
x is at most 5.	$x \leq 5$
x is between 5 and 7.	$5<x<7$
x is no more than 5.	$x \leq 5$
x is no less than 5.	$x \geq 5$

Solving Linear Inequalities in One Variable

We know that a linear equation in x can be expressed as $a x+b=0$. A linear inequality in \boldsymbol{x} can be written in one of the following forms:

$$
a x+b<0, a x+b \leq 0, a x+b>0, a x+b \geq 0
$$

In each form, $a \neq 0$.
Back to our question that opened this section: How many miles can you drive your Rent-a-Heap car if you can spend at most $\$ 335$? We answer the question by solving

$$
0.20 x+125 \leq 335
$$

for x. The solution procedure is nearly identical to that for solving

$$
0.20 x+125=335
$$

Our goal is to get x by itself on the left side. We do this by subtracting 125 from both sides to isolate $0.20 x$:

$$
\begin{aligned}
0.20 x+125 & \leq 335 & & \text { This is the given inequality. } \\
0.20 x+125-125 & \leq 335-125 & & \text { Subtract } 125 \text { from both sides. } \\
0.20 x & \leq 210 . & & \text { Simplify. }
\end{aligned}
$$

Finally, we isolate x from $0.20 x$ by dividing both sides of the inequality by 0.20 :

$$
\begin{aligned}
\frac{0.20 x}{0.20} & \leq \frac{210}{0.20} & & \text { Divide both sides by } 0.20 . \\
x & \leq 1050 . & & \text { Simplify. }
\end{aligned}
$$

With at most $\$ 335$ to spend, you can travel at most 1050 miles.
We started with the inequality $0.20 x+125 \leq 335$ and obtained the inequality $x \leq 1050$ in the final step. These inequalities have the same solution set, namely $\{x \mid x \leq 1050\}$. Inequalities such as these, with the same solution set, are said to be equivalent.

We isolated x from $0.20 x$ by dividing both sides of $0.20 x \leq 210$ by 0.20 , a positive number. Let's see what happens if we divide both sides of an inequality by a negative number. Consider the inequality $10<14$. Divide 10 and 14 by -2 :

$$
\frac{10}{-2}=-5 \quad \text { and } \quad \frac{14}{-2}=-7
$$

Because -5 lies to the right of -7 on the number line, -5 is greater than -7 :

$$
-5>-7
$$

Notice that the direction of the inequality symbol is reversed:

In general, when we multiply or divide both sides of an inequality by a negative number, the direction of the inequality symbol is reversed. When we reverse the direction of the inequality symbol, we say that we change the sense of the inequality.

We can isolate a variable in a linear inequality in the same way we isolate a variable in a linear equation. The properties on the next page are used to create equivalent inequalities.

Properties of Inequalities

Property
The Addition Property of Inequality
If $a<b$, then $a+c<b+c$.
If $a<b$, then $a-c<b-c$.
The Positive Multiplication Property of
Inequality

If $a<b$ and c is positive, then $a c<b c$. If $a<b$ and c is positive, then $\frac{a}{c}<\frac{b}{c}$.

The Negative Multiplication Property of Inequality

If $a<b$ and c is negative, then $a c>b c$. If $a<b$ and c is negative, then $\frac{a}{c}>\frac{b}{c}$.

The Property in Words \quad Example
If the same quantity is added to or subtracted from both sides of an inequality, the resulting inequality is equivalent to the original one.

If we multiply or divide both sides of an inequality by the same positive quantity, the resulting inequality is equivalent to the original one.

If we multiply or divide both sides of an inequality by the same negative quantity and reverse the direction of the inequality symbol, the resulting inequality is equivalent to the original one.

$$
2 x+3<7
$$

Subtract 3:

$$
2 x+3-3<7-3
$$

Simplify:

$$
\begin{aligned}
& 2 x<4 \\
& 2 x<4
\end{aligned}
$$

Divide by 2 :

$$
\frac{2 x}{2}<\frac{4}{2} .
$$

Simplify:

$$
\begin{gathered}
x<2 \\
-4 x<20
\end{gathered}
$$

Divide by -4 and change the sense of the inequality:

$$
\frac{-4 x}{-4}>\frac{20}{-4}
$$

Simplify:

$$
x>-5
$$

EXAMPLE 3 Solving a Linear Inequality

Solve and graph the solution set on a number line:

$$
3-2 x \leq 11
$$

SOLUTION

$$
\begin{array}{rlrl}
3-2 x & \leq 11 & & \text { This is the given inequality. } \\
3-2 x-3 & \leq 11-3 & & \text { Subtract } 3 \text { from both sides. } \\
-2 x & \leq 8 & & \text { Simplify. } \\
\frac{-2 x}{-2} & \geq \frac{8}{-2} & & \text { Divide both sides by }-2 \text { and } \\
x & \geq-4 & & \text { change the sense of the inequality. } \\
\text { Simplify. }
\end{array}
$$

The solution set consists of all real numbers that are greater than or equal to -4 , expressed as $\{x \mid x \geq-4\}$ in set-builder notation. The interval notation for this solution set is $[-4, \infty)$. The graph of the solution set is shown as follows:

Check Point 3 Solve and graph the solution set on a number line:

$$
2-3 x \leq 5
$$

EXAMPLE 4 Solving a Linear Inequality

Solve and graph the solution set on a number line:

$$
-2 x-4>x+5
$$

SOLUTION

Step 1 Simplify each side. Because each side is already simplified, we can skip this step.

GREAT QUESTION!

Do I have to solve the inequality in Example 4 by isolating the variable on the left?
No. You can solve

$$
-2 x-4>x+5
$$

by isolating x on the right side. Add $2 x$ to both sides.

$$
\begin{aligned}
-2 x-4+2 x & >x+5+2 x \\
-4 & >3 x+5
\end{aligned}
$$

Now subtract 5 from both sides.

$$
\begin{aligned}
-4-5 & >3 x+5-5 \\
-9 & >3 x
\end{aligned}
$$

Finally, divide both sides by 3 .

$$
\begin{aligned}
\frac{-9}{3} & >\frac{3 x}{3} \\
-3 & >x
\end{aligned}
$$

This last inequality means the same thing as $x<-3$.

Step 2 Collect variable terms on one side and constant terms on the other side. We will collect variable terms of $-2 x-4>x+5$ on the left and constant terms on the right.

$$
\begin{aligned}
-2 x-4 & >x+5 & & \text { This is the given inequality. } \\
-2 x-4-x & >x+5-x & & \text { Subtract } \mathrm{x} \text { from both sides. } \\
-3 x-4 & >5 & & \text { Simplify. } \\
-3 x-4+4 & >5+4 & & \text { Add 4 to both sides. } \\
-3 x & >9 & & \text { Simplify. }
\end{aligned}
$$

Step 3 Isolate the variable and solve. We isolate the variable, x, by dividing both sides by -3 . Because we are dividing by a negative number, we must reverse the inequality symbol.

$$
\begin{aligned}
\frac{-3 x}{-3}<\frac{9}{-3} & \begin{array}{l}
\text { Divide both sides by }-3 \text { and } \\
\text { change the sense of the inequality. } \\
x
\end{array}<-3
\end{aligned} \begin{aligned}
& \text { Simplify. }
\end{aligned}
$$

Step 4 Express the solution set in set-builder or interval notation and graph the set on a number line. The solution set consists of all real numbers that are less than -3 , expressed in set-builder notation as $\{x \mid x<-3\}$. The interval notation for this solution set is $(-\infty,-3)$. The graph of the solution set is shown as follows:

Check Point 4 Solve and graph the solution set on a number line: $3 x+1>7 x-15$.

If an inequality contains fractions with constants in the denominators, begin by multiplying both sides by the least common denominator. This will clear the inequality of fractions.

EXAMPLE 5 Solving a Linear Inequality Containing Fractions

Solve and graph the solution set on a number line:

$$
\frac{x+3}{4} \geq \frac{x-2}{3}+\frac{1}{4}
$$

SOLUTION

The denominators are 4,3 , and 4 . The least common denominator is 12 . We begin by multiplying both sides of the inequality by 12 .

$$
\begin{array}{rlrl}
\frac{x+3}{4} & \geq \frac{x-2}{3}+\frac{1}{4} & & \text { This is the given inequality. } \\
12\left(\frac{x+3}{4}\right) & \geq 12\left(\frac{x-2}{3}+\frac{1}{4}\right) & \begin{array}{l}
\text { Multiply both sides by 12. Multiplying } \\
\text { by a positive number preserves the } \\
\text { sense of the inequality. }
\end{array} \\
\frac{12}{1} \cdot \frac{x+3}{4} & \geq \frac{12}{1} \cdot \frac{x-2}{3}+\frac{12}{1} \cdot \frac{1}{4} & \begin{array}{l}
\text { Multiply each term by 12. Use the } \\
\text { distributive property on the right side. }
\end{array} \\
\frac{12}{1} \cdot \frac{x+3}{4} & \geq \frac{1^{4}}{1} \cdot \frac{x-2}{8}+\frac{12}{1} \cdot \frac{1}{4} & \begin{array}{l}
\text { Divide out common factors in each } \\
\text { multiplication. }
\end{array} \\
3(x+3) & \geq 4(x-2)+3 & \text { The fractions are now cleared. }
\end{array}
$$

Now that the fractions have been cleared, we follow the four steps that we used in the previous example.

Step 1 Simplify each side.

$$
\begin{array}{rlrl}
3(x+3) & \geq 4(x-2)+3 & & \begin{array}{l}
\text { This is the inequality with the } \\
\text { fractions cleared. }
\end{array} \\
3 x+9 \geq 4 x-8+3 & & \text { Use the distributive property. } \\
3 x+9 \geq 4 x-5 & & \text { Simplify. }
\end{array}
$$

Step 2 Collect variable terms on one side and constant terms on the other side. We will collect variable terms on the left and constant terms on the right.

$$
\begin{aligned}
3 x+9-4 x & \geq 4 x-5-4 x & & \text { Subtract } 4 x \text { from both sides. } \\
-x+9 & \geq-5 & & \text { Simplify. } \\
-x+9-9 & \geq-5-9 & & \text { Subtract } 9 \text { from both sides. } \\
-x & \geq-14 & & \text { Simplify. }
\end{aligned}
$$

Step 3 Isolate the variable and solve. To isolate x, we must eliminate the negative sign in front of the x. Because $-x$ means $-1 x$, we can do this by multiplying (or dividing) both sides of the inequality by -1 . We are multiplying by a negative number. Thus, we must reverse the direction of the inequality symbol.

$$
\begin{array}{cl}
(-1)(-x) \leq(-1)(-14) & \text { Multiply both sides by }-1 \text { and change } \\
x \leq 14 & \text { the sense of the inequality. } \\
\text { Simplify. }
\end{array}
$$

Step 4 Express the solution set in set-builder or interval notation and graph the set on a number line. The solution set consists of all real numbers that are less than or equal to 14 , expressed in set-builder notation as $\{x \mid x \leq 14\}$. The interval notation for this solution set is $(-\infty, 14]$. The graph of the solution set is shown as follows:

$\$$ Check Point 5 Solve and graph the solution set on a number line:

$$
\frac{x-4}{2} \geq \frac{x-2}{3}+\frac{5}{6}
$$

Solving Compound Inequalities

We now consider two inequalities such as

$$
-3<2 x+1 \quad \text { and } 2 x+1 \leq 3
$$

expressed as a compound inequality

$$
-3<2 x+1 \leq 3 .
$$

The word and does not appear when the inequality is written in the shorter form, although intersection is implied.The shorter form enables us to solve both inequalities at once. By performing each operation on all three parts of the inequality, our goal is to isolate \boldsymbol{x} in the middle.

EXAMPLE 6 Solving a Compound Inequality

Solve and graph the solution set on a number line:

$$
-3<2 x+1 \leq 3
$$

SOLUTION

We would like to isolate x in the middle. We can do this by first subtracting 1 from all three parts of the compound inequality. Then we isolate x from $2 x$ by dividing all three parts of the inequality by 2 .

$$
\begin{aligned}
-3 & <2 x+1 \leq 3 & & \text { This is the given inequality. } \\
-3-1 & <2 x+1-1 \leq 3-1 & & \text { Subtract 1 from all three parts. } \\
-4 & <2 x \leq 2 & & \text { Simplify. } \\
\frac{-4}{2} & <\frac{2 x}{2} \leq \frac{2}{2} & & \text { Divide each part by } 2 . \\
-2 & <x \leq 1 & & \text { Simplify. }
\end{aligned}
$$

The solution set consists of all real numbers greater than -2 and less than or equal to 1 , represented by $\{x \mid-2<x \leq 1\}$ in set-builder notation and ($-2,1$] in interval notation. The graph is shown as follows:

W Check Point 6 Solve and graph the solution set on a number line: $1 \leq 2 x+3<11$.

FIGURE P. $19|x|<2$, so $-2<x<2$.

FIGURE P. $20|x|>2$, so
$x<-2$ or $x>2$.

GREAT QUESTION!

The box on the right shows how to rewrite absolute value inequalities without absolute value bars. Once I've done this, how many inequalities do I need to solve?
In the $|u|<c$ case, we have one compound inequality to solve. In the $|u|>c$ case, we have two separate inequalities to solve.

Solving Inequalities with Absolute Value

We know that $|x|$ describes the distance of x from zero on a real number line. We can use this geometric interpretation to solve an inequality such as

$$
|x|<2
$$

This means that the distance of x from 0 is less than 2, as shown in Figure P.19. The interval shows values of x that lie less than 2 units from 0 . Thus, x can lie between -2 and 2. That is, x is greater than -2 and less than 2. We write $(-2,2)$ or $\{x \mid-2<x<2\}$.

Some absolute value inequalities use the "greater than" symbol. For example, $|x|>2$ means that the distance of x from 0 is greater than 2, as shown in Figure P. 20. Thus, x can be less than -2 or greater than 2. We write $x<-2$ or $x>2$. This can be expressed in interval notation as $(-\infty,-2) \cup(2, \infty)$.

These observations suggest the following principles for solving inequalities with absolute value.

Solving an Absolute Value Inequality

If u is an algebraic expression and c is a positive number,

1. The solutions of $|u|<c$ are the numbers that satisfy $-c<u<c$.
2. The solutions of $|u|>c$ are the numbers that satisfy $u<-c$ or $u>c$.

These rules are valid if $<$ is replaced by \leq and $>$ is replaced by \geq.

EXAMPLE 7 Solving an Absolute Value Inequality

Solve and graph the solution set on a number line: $|x-4|<3$.

SOLUTION

We rewrite the inequality without absolute value bars.

$$
\begin{array}{r}
|u|<c \text { means }-c<u<c . \\
|x-4|<3 \text { means }-3<x-4<3 .
\end{array}
$$

We solve the compound inequality by adding 4 to all three parts.

$$
\begin{aligned}
-3 & <x-4<3 \\
-3+4 & <x-4+4<3+4 \\
1 & <x<7
\end{aligned}
$$

The solution set of $1<x<7$ consists of all real numbers greater than 1 and less than 7 , denoted by $\{x \mid 1<x<7\}$ or (1,7). The graph of the solution set is shown as follows:

$\$$ Check Point 7 Solve and graph the solutionseton a numberline: $|x-2|<5$.

EXAMPLE 8 Solving an Absolute Value Inequality

Solve and graph the solution set on a number line: $-2|3 x+5|+7 \geq-13$.

SOLUTION

$$
-2|3 x+5|+7 \geq-13 \quad \text { This is the given inequality. }
$$

We need to isolate $|3 x+5|$, the absolute value expression.

$$
\begin{array}{rlrl}
-2|3 x+5|+7-7 & \geq-13-7 & & \text { Subtract } 7 \text { from both sides. } \\
-2|3 x+5| & \geq-20 & & \text { Simplify. } \\
\frac{-2|3 x+5|}{-2} \leq \frac{-20}{-2} & & \text { Divide both sides by }-2 \text { and change the sense of } \\
|3 x+5| \leq 10 & & \text { the inequality. } \\
-10 \leq 3 x+5 \leq 10 & & \text { Simplify. } \\
& & \text { Rewrite without absolute value bars: } \\
& |u| \leq c \text { means }-c \leq u \leq c .
\end{array}
$$

Now we need to isolate

 x in the middle.$$
\begin{array}{rlrl}
-10-5 \leq 3 x+5-5 & \leq 10-5 & & \text { Subtract } 5 \text { from all three parts. } \\
-15 & \leq 3 x & \leq 5 & \\
\frac{-15}{3} \leq \frac{3 x}{3} & \leq \frac{5}{3} & & \text { Simplify. } \\
-5 & \leq x & \leq \frac{5}{3} & \\
\text { Divide each part by 3. }
\end{array}
$$

The solution set is $\left\{x \left\lvert\,-5 \leq x \leq \frac{5}{3}\right.\right\}$ in set-builder notation and $\left[-5, \frac{5}{3}\right]$ in interval notation. The graph is shown as follows:

W Check Point 8 Solve and graph the solution set on a number line: $-3|5 x-2|+20 \geq-19$.

EXAMPLE 9 Solving an Absolute Value Inequality

Solve and graph the solution set on a number line: $7<|5-2 x|$.

SOLUTION

We begin by expressing the inequality with the absolute value expression on the left side:

$$
|5-2 x|>7 . \quad \begin{aligned}
& c<|u| \text { means the same thing } \\
& \text { as }|u|>c \text {. In both cases, the } \\
& \text { inequality symbol points to } c .
\end{aligned}
$$

and when is it the union of two intervals?
If u is a linear expression and $c>0$, the graph of the solution set for $|u|>c$ will be two intervals whose union cannot be represented as a single interval. The graph of the solution set for $|u|<c$ will be a single interval. Avoid the common error of rewriting $|u|>c$ as $-c<u>c$.

GREAT QUESTION!

The graph of the solution set in Example 9 consists of two intervals. When is the graph of the solution set of an absolute value inequality a single interval

We rewrite this inequality without absolute value bars.

Because $|5-2 x|>7$ means $5-2 x<-7$ or $5-2 x>7$, we solve $5-2 x<-7$ and $5-2 x>7$ separately. Then we take the union of their solution sets.

$$
\begin{aligned}
& 5-2 x<-7 \text { or } 5-2 x>7 \quad \text { These are the inequalities without } \\
& \text { absolute value bars. } \\
& 5-5-2 x<-7-5 \quad 5-5-2 x>7-5 \text { Subtract } 5 \text { from both sides. } \\
& -2 x<-12 \quad-2 x>2 \quad \text { Simplify. } \\
& \frac{-2 x}{-2}>\frac{-12}{-2} \quad \frac{-2 x}{-2}<\frac{2}{-2} \quad \begin{array}{l}
\text { Divide both sides by }-2 \text { and change } \\
\text { the sense of each inequality. }
\end{array} \\
& x>6 \\
& x<-1 \quad \text { Simplify. }
\end{aligned}
$$

The solution set consists of all numbers that are less than -1 or greater than 6 . The solution set is $\{x \mid x<-1$ or $x>6\}$, or, in interval notation $(-\infty,-1) \cup(6, \infty)$. The graph of the solution set is shown as follows:

- -

Check Point 9 Solve and graph the solution set on a number line: $18<|6-3 x|$.

Applications

Our next example shows how to use an inequality to select the better deal between two pricing options. We use our strategy for solving word problems, modeling the verbal conditions of the problem with a linear inequality.

EXAMPLE 10 Selecting the Better Deal

Acme Car rental agency charges $\$ 4$ a day plus $\$ 0.15$ per mile, whereas Interstate rental agency charges $\$ 20$ a day and $\$ 0.05$ per mile. How many miles must be driven to make the daily cost of an Acme rental a better deal than an Interstate rental?

SOLUTION

Step 1 Let \boldsymbol{x} represent one of the unknown quantities. We are looking for the number of miles that must be driven in a day to make Acme the better deal. Thus,

$$
\text { let } x=\text { the number of miles driven in a day. }
$$

Step 2 Represent other unknown quantities in terms of \boldsymbol{x}. We are not asked to find another quantity, so we can skip this step.

Step 3 Write an inequality in \boldsymbol{x} that models the conditions. Acme is a better deal than Interstate if the daily cost of Acme is less than the daily cost of Interstate.

Step 4 Solve the inequality and answer the question.

$$
\begin{aligned}
4+0.15 x & <20+0.05 x & & \begin{array}{l}
\text { This is the inequality that models the } \\
\text { verbal conditions. }
\end{array} \\
4+0.15 x-0.05 x & <20+0.05 x-0.05 x & & \text { Subtract } 0.05 x \text { from both sides. } \\
4+0.1 x & <20 & & \text { Simplify. } \\
4+0.1 x-4 & <20-4 & & \text { Subtract } 4 \text { from both sides. } \\
0.1 x & <16 & & \text { Simplify. } \\
\frac{0.1 x}{0.1} & <\frac{16}{0.1} & & \text { Divide both sides by 0.1. } \\
x & <160 & & \text { Simplify. }
\end{aligned}
$$

Thus, driving fewer than 160 miles per day makes Acme the better deal.
Step 5 Check the proposed solution in the original wording of the problem. One way to do this is to take a mileage less than 160 miles per day to see if Acme is the better deal. Suppose that 150 miles are driven in a day.

$$
\begin{aligned}
\text { Cost for Acme } & =4+0.15(150)=26.50 \\
\text { Cost for Interstate } & =20+0.05(150)=27.50
\end{aligned}
$$

Acme has a lower daily cost, making Acme the better deal.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. In interval notation, $[2,5)$ represents the set of real numbers between \qquad and \qquad , including \qquad but not including \qquad .
2. In interval notation, $(-2, \infty)$ represents the set of real numbers \qquad -2 .
3. In interval notation, $(-\infty,-1]$ represents the set of real numbers \qquad -1 .
4. The set of elements common to both $(-\infty, 9)$ and $(-\infty, 12)$ is \qquad .This represents the \qquad of these intervals.
5. The set of elements in $(-\infty, 9)$ or $(-\infty, 12)$ or in both sets is \qquad This represents the \qquad of these intervals.
6. The linear inequality $-3 x-4>5$ can be solved by first \qquad to both sides and then \qquad both sides by \qquad , which changes the \qquad of the inequality symbol from \qquad to
7. The way to solve $-7<3 x-4 \leq 5$ is to isolate x in the \qquad
8. If $c>0,|u|<c$ is equivalent to \qquad $<u<$ \qquad
9. If $c>0,|u|>c$ is equivalent to $u<$ \qquad or $u>$.
10. $|x-7|<2$ can be rewritten without absolute value bars as \qquad
11. $|x-7|>2$ can be rewritten without absolute value bars as \qquad

EXERCISE SET P. 9

Practice Exercises

In Exercises 1-14, express each interval in set-builder notation and graph the interval on a number line.

1. $(1,6]$
2. $(-2,4]$
3. $[-5,2)$
4. $[-4,3)$
5. $[-3,1]$
6. $[-2,5]$
7. $(2, \infty)$
8. $(3, \infty)$
9. $[-3, \infty)$
10. $[-5, \infty)$
11. $(-\infty, 3)$
12. $(-\infty, 2)$
13. $(-\infty, 5.5)$
14. $(-\infty, 3.5]$

In Exercises 15-26, use graphs to find each set.
15. $(-3,0) \cap[-1,2]$
16. $(-4,0) \cap[-2,1]$
17. $(-3,0) \cup[-1,2]$
18. $(-4,0) \cup[-2,1]$
19. $(-\infty, 5) \cap[1,8)$
20. $(-\infty, 6) \cap[2,9)$
21. $(-\infty, 5) \cup[1,8)$
22. $(-\infty, 6) \cup[2,9)$
23. $[3, \infty) \cap(6, \infty)$
24. $[2, \infty) \cap(4, \infty)$
25. $[3, \infty) \cup(6, \infty)$
26. $[2, \infty) \cup(4, \infty)$

In all exercises, other than \varnothing, use interval notation to express solution sets and graph each solution set on a number line.
In Exercises 27-48, solve each linear inequality.
27. $5 x+11<26$
28. $2 x+5<17$
29. $3 x-7 \geq 13$
30. $8 x-2 \geq 14$
31. $-9 x \geq 36$
32. $-5 x \leq 30$
33. $8 x-11 \leq 3 x-13$
34. $18 x+45 \leq 12 x-8$
35. $4(x+1)+2 \geq 3 x+6$
36. $8 x+3>3(2 x+1)+x+5$
37. $2 x-11<-3(x+2)$
38. $-4(x+2)>3 x+20$
39. $1-(x+3) \geq 4-2 x$
40. $5(3-x) \leq 3 x-1$
41. $\frac{x}{4}-\frac{3}{2} \leq \frac{x}{2}+1$
42. $\frac{3 x}{10}+1 \geq \frac{1}{5}-\frac{x}{10}$
43. $1-\frac{x}{2}>4$
44. $7-\frac{4}{5} x<\frac{3}{5}$
45. $\frac{x-4}{6} \geq \frac{x-2}{9}+\frac{5}{18}$
46. $\frac{4 x-3}{6}+2 \geq \frac{2 x-1}{12}$
47. $3[3(x+5)+8 x+7]+5[3(x-6)-2(3 x-5)]$ $<2(4 x+3)$
48. $5[3(2-3 x)-2(5-x)]-6[5(x-2)-2(4 x-3)]$ $<3 x+19$

In Exercises 49-56, solve each compound inequality.
49. $6<x+3<8$
50. $7<x+5<11$
51. $-3 \leq x-2<1$
52. $-6<x-4 \leq 1$
53. $-11<2 x-1 \leq-5$
54. $3 \leq 4 x-3<19$
55. $-3 \leq \frac{2}{3} x-5<-1$
56. $-6 \leq \frac{1}{2} x-4<-3$

In Exercises 57-92, solve each absolute value inequality.
57. $|x|<3$
58. $|x|<5$
59. $|x-1| \leq 2$
60. $|x+3| \leq 4$
61. $|2 x-6|<8$
62. $|3 x+5|<17$
63. $|2(x-1)+4| \leq 8$
64. $|3(x-1)+2| \leq 20$
65. $\left|\frac{2 x+6}{3}\right|<2$
66. $\left|\frac{3(x-1)}{4}\right|<6$
67. $|x|>3$
68. $|x|>5$
69. $|x-1| \geq 2$
70. $|x+3| \geq 4$
71. $|3 x-8|>7$
72. $|5 x-2|>13$
73. $\left|\frac{2 x+2}{4}\right| \geq 2$
74. $\left|\frac{3 x-3}{9}\right| \geq 1$
75. $\left|3-\frac{2}{3} x\right|>5$
76. $\left|3-\frac{3}{4} x\right|>9$
77. $3|x-1|+2 \geq 8$
78. $5|2 x+1|-3 \geq 9$
79. $-2|x-4| \geq-4$
80. $-3|x+7| \geq-27$
81. $-4|1-x|<-16$
82. $-2|5-x|<-6$
83. $3 \leq|2 x-1|$
84. $9 \leq|4 x+7|$
85. $5>|4-x|$
86. $2>|11-x|$
87. $1<|2-3 x|$
88. $4<|2-x|$
89. $12<\left|-2 x+\frac{6}{7}\right|+\frac{3}{7}$
90. $1<\left|x-\frac{11}{3}\right|+\frac{7}{3}$
91. $4+\left|3-\frac{x}{3}\right| \geq 9$
92. $\left|2-\frac{x}{2}\right|-1 \leq 1$

Practice Plus

In Exercises 93-96, use interval notation to represent all values of x satisfying the given conditions.
93. $y=1-(x+3)+2 x$ and y is at least 4 .
94. $y=2 x-11+3(x+2)$ and y is at most 0 .
95. $y=7-\left|\frac{x}{2}+2\right| \quad$ and y is at most 4.
96. $y=8-|5 x+3|$ and y is at least 6 .
97. When 3 times a number is subtracted from 4, the absolute value of the difference is at least 5 . Use interval notation to express the set of all numbers that satisfy this condition.
98. When 4 times a number is subtracted from 5, the absolute value of the difference is at most 13 . Use interval notation to express the set of all numbers that satisfy this condition.

Application Exercises

The graphs show that the three components of love, namely, passion, intimacy, and commitment, progress differently over time. Passion peaks early in a relationship and then declines. By contrast, intimacy and commitment build gradually. Use the graphs to solve Exercises 99-106.

Source: R. J. Sternberg. A Triangular Theory of Love, Psychological Review, 93, 119-135.
(In Exercises 99-106, be sure to refer to the graphs at the bottom of the previous page.)
99. Use interval notation to write an inequality that expresses for which years in a relationship intimacy is greater than commitment.
100. Use interval notation to write an inequality that expresses for which years in a relationship passion is greater than or equal to intimacy.
101. What is the relationship between passion and intimacy on the interval $[5,7)$?
102. What is the relationship between intimacy and commitment on the interval $[4,7)$?
103. What is the relationship between passion and commitment for $\{x \mid 6<x<8\}$?
104. What is the relationship between passion and commitment for $\{x \mid 7<x<9\}$?
105. What is the maximum level of intensity for passion? After how many years in a relationship does this occur?
106. After approximately how many years do levels of intensity for commitment exceed the maximum level of intensity for passion?
In more U.S. marriages, spouses have different faiths. The bar graph shows the percentage of households with an interfaith marriage in 1988 and 2008. Also shown is the percentage of households in which a person of faith is married to someone with no religion.

Source: General Social Survey, University of Chicago
The formula

$$
I=\frac{1}{4} x+26
$$

models the percentage of U.S. households with an interfaith marriage, I, x years after 1988. The formula

$$
N=\frac{1}{4} x+6
$$

models the percentage of U.S. households in which a person of faith is married to someone with no religion, N, x years after 1988. Use these models to solve Exercises 107-108.
107. a. In which years will more than 33% of U.S. households have an interfaith marriage?
b. In which years will more than 14% of U.S. households have a person of faith married to someone with no religion?
c. Based on your answers to parts (a) and (b), in which years will more than 33% of households have an interfaith marriage and more than 14% have a faith/no religion marriage?
d. Based on your answers to parts (a) and (b), in which years will more than 33% of households have an interfaith marriage or more than 14% have a faith/no religion marriage?
108. a. In which years will more than 34% of U.S. households have an interfaith marriage?
b. In which years will more than 15% of U.S. households have a person of faith married to someone with no religion?
c. Based on your answers to parts (a) and (b), in which years will more than 34% of households have an interfaith marriage and more than 15% have a faith/no religion marriage?
d. Based on your answers to parts (a) and (b), in which years will more than 34% of households have an interfaith marriage or more than 15% have a faith/no religion marriage?
109. A basic cellphone plan costs $\$ 20$ per month for 60 calling minutes. Additional time costs $\$ 0.40$ per minute. The formula

$$
C=20+0.40(x-60)
$$

gives the monthly cost for this plan, C, for x calling minutes, where $x>60$. How many calling minutes are possible for a monthly cost of at least $\$ 28$ and at most $\$ 40$?
110. The formula for converting Fahrenheit temperature, F, to Celsius temperature, C, is

$$
C=\frac{5}{9}(F-32) .
$$

If Celsius temperature ranges from 15° to 35°, inclusive, what is the range for the Fahrenheit temperature? Use interval notation to express this range.
111. If a coin is tossed 100 times, we would expect approximately 50 of the outcomes to be heads. It can be demonstrated that a coin is unfair if h, the number of outcomes that result in heads, satisfies $\left|\frac{h-50}{5}\right| \geq 1.645$. Describe the number of outcomes that determine an unfair coin that is tossed 100 times.

In Exercises 112-123, use the strategy for solving word problems, modeling the verbal conditions of the problem with a linear inequality.

112. A truck can be rented from Basic Rental for $\$ 50$ per day plus $\$ 0.20$ per mile. Continental charges $\$ 20$ per day plus $\$ 0.50$ per mile to rent the same truck. How many miles must be driven in a day to make the rental cost for Basic Rental a better deal than Continental's?
113. You are choosing between two texting plans. Plan A has a monthly fee of $\$ 15$ with a charge of $\$ 0.08$ per text. Plan B has a monthly fee of $\$ 3$ with a charge of $\$ 0.12$ per text. How many text messages in a month make plan A the better deal?
114. A city commission has proposed two tax bills. The first bill requires that a homeowner pay $\$ 1800$ plus 3% of the assessed home value in taxes. The second bill requires taxes of $\$ 200$ plus 8% of the assessed home value. What price range of home assessment would make the first bill a better deal?
115. A local bank charges $\$ 8$ per month plus 5ϕ per check. The credit union charges $\$ 2$ per month plus 8ϕ per check. How many checks should be written each month to make the credit union a better deal?
116. A company manufactures and sells blank audiocassette tapes. The weekly fixed cost is $\$ 10,000$ and it costs $\$ 0.40$ to produce each tape. The selling price is $\$ 2.00$ per tape. How many tapes must be produced and sold each week for the company to generate a profit?
117. A company manufactures and sells personalized stationery. The weekly fixed cost is $\$ 3000$ and it costs $\$ 3.00$ to produce each package of stationery. The selling price is $\$ 5.50$ per package. How many packages of stationery must be produced and sold each week for the company to generate a profit?
118. An elevator at a construction site has a maximum capacity of 2800 pounds. If the elevator operator weighs 265 pounds and each cement bag weighs 65 pounds, how many bags of cement can be safely lifted on the elevator in one trip?
119. An elevator at a construction site has a maximum capacity of 3000 pounds. If the elevator operator weighs 245 pounds and each cement bag weighs 95 pounds, how many bags of cement can be safely lifted on the elevator in one trip?
120. To earn an A in a course, you must have a final average of at least 90%. On the first four examinations, you have grades of $86 \%, 88 \%, 92 \%$, and 84%. If the final examination counts as two grades, what must you get on the final to earn an A in the course?
121. On two examinations, you have grades of 86 and 88 . There is an optional final examination, which counts as one grade. You decide to take the final in order to get a course grade of A, meaning a final average of at least 90 .
a. What must you get on the final to earn an A in the course?
b. By taking the final, if you do poorly, you might risk the B that you have in the course based on the first two exam grades. If your final average is less than 80 , you will lose your B in the course. Describe the grades on the final that will cause this to happen.
122. Parts for an automobile repair cost $\$ 175$. The mechanic charges $\$ 34$ per hour. If you receive an estimate for at least $\$ 226$ and at most $\$ 294$ for fixing the car, what is the time interval that the mechanic will be working on the job?
123. The toll to a bridge is $\$ 3.00$. A three-month pass costs $\$ 7.50$ and reduces the toll to $\$ 0.50$. A six-month pass costs $\$ 30$ and permits crossing the bridge for no additional fee. How many crossings per three-month period does it take for the threemonth pass to be the best deal?

Writing in Mathematics

124. When graphing the solutions of an inequality, what does a parenthesis signify? What does a square bracket signify?
125. Describe ways in which solving a linear inequality is similar to solving a linear equation.
126. Describe ways in which solving a linear inequality is different than solving a linear equation.
127. What is a compound inequality and how is it solved?
128. Describe how to solve an absolute value inequality involving the symbol $<$. Give an example.
129. Describe how to solve an absolute value inequality involving the symbol $>$. Give an example.
130. Explain why $|x|<-4$ has no solution.
131. Describe the solution set of $|x|>-4$.

Critical Thinking Exercises

Make Sense? In Exercises 132-135, determine whether each statement makes sense or does not make sense, and explain your reasoning.
132. I prefer interval notation over set-builder notation because it takes less space to write solution sets.
133. I can check inequalities by substituting 0 for the variable: When 0 belongs to the solution set, I should obtain a true statement, and when 0 does not belong to the solution set, I should obtain a false statement.
134. In an inequality such as $5 x+4<8 x-5$, I can avoid division by a negative number depending on which side I collect the variable terms and on which side I collect the constant terms.
135. I'll win the contest if I can complete the crossword puzzle in 20 minutes plus or minus 5 minutes, so my winning time, x, is modeled by $|x-20| \leq 5$.

In Exercises 136-139, determine whether each statement is true

 or false. If the statement is false, make the necessary change(s) to produce a true statement.136. $(-\infty,-1] \cap[-4, \infty)=[-4,-1]$
137. $(-\infty, 3) \cup(-\infty,-2)=(-\infty,-2)$
138. The inequality $3 x>6$ is equivalent to $2>x$.
139. All irrational numbers satisfy $|x-4|>0$.
140. What's wrong with this argument? Suppose x and y represent two real numbers, where $x>y$.

$$
\begin{aligned}
2 & >1 & & \text { This is a true statement. } \\
2(y-x) & >1(y-x) & & \text { Multiply both sides by } \mathrm{y}-\mathrm{x} . \\
2 y-2 x & >y-x & & \text { Use the distributive property. } \\
y-2 x & >-x & & \text { Subtract } y \text { from both sides. } \\
y & >x & & \text { Add } 2 x \text { to both sides. }
\end{aligned}
$$

The final inequality, $y>x$, is impossible because we were initially given $x>y$.
141. Write an absolute value inequality for which the interval shown is the solution.

Group Exercise

142. Each group member should research one situation that provides two different pricing options. These can involve areas such as public transportation options (with or without discount passes), cellphone plans, long-distance telephone plans, or anything of interest. Be sure to bring in all the details for each option. At a second group meeting, select the two pricing situations that are most interesting and relevant. Using each situation, write a word problem about selecting the better of the two options. The word problem should be one that can be solved using a linear inequality. The group should turn in the two problems and their solutions.

Preview Exercises

Exercises 143-145 will help you prepare for the material covered in the first section of the next chapter.
143. If $y=4-x$, find the value of y that corresponds to values of x for each integer starting with -3 and ending with 3 .
144. If $y=4-x^{2}$, find the value of y that corresponds to values of x for each integer starting with -3 and ending with 3 .
145. If $y=|x+1|$, find the value of y that corresponds to values of x for each integer starting with -4 and ending with 2 .

CHAPTER P

Summary, Review, and Test

SUMMARY: BASIC FORMULAS

Definition of Absolute Value

$|x|=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$

Distance between Points \boldsymbol{a} and \boldsymbol{b} on a Number Line

$|a-b|$ or $|b-a|$

Properties of Real Numbers

Commutative

$$
\begin{aligned}
a+b & =b+a \\
a b & =b a
\end{aligned}
$$

Associative $\quad(a+b)+c=a+(b+c)$

$$
(a b) c=a(b c)
$$

Distributive $\quad a(b+c)=a b+a c$
Identity

$$
a+0=a
$$

$$
a \cdot 1=a
$$

Inverse

$$
a+(-a)=0
$$

$$
a \cdot \frac{1}{a}=1, a \neq 0
$$

Properties of Exponents

$$
\begin{aligned}
b^{-n} & =\frac{1}{b^{n}}, \quad b^{0}=1, \quad b^{m} \cdot b^{n}=b^{m+n}, \\
\left(b^{m}\right)^{n} & =b^{m n}, \quad \frac{b^{m}}{b^{n}}=b^{m-n}, \quad(a b)^{n}=a^{n} b^{n}, \quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
\end{aligned}
$$

Product and Quotient Rules for \boldsymbol{n} th Roots

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}, \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

Rational Exponents

$a^{\frac{1}{n}}=\sqrt[n]{a}, \quad a^{-\frac{1}{n}}=\frac{1}{a^{\frac{1}{n}}}=\frac{1}{\sqrt[n]{a}}$,
$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}, \quad a^{-\frac{m}{n}}=\frac{1}{a^{\frac{m}{n}}}$

Special Products

$$
\begin{aligned}
(A+B)(A-B) & =A^{2}-B^{2} \\
(A+B)^{2} & =A^{2}+2 A B+B^{2} \\
(A-B)^{2} & =A^{2}-2 A B+B^{2} \\
(A+B)^{3} & =A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \\
(A-B)^{3} & =A^{3}-3 A^{2} B+3 A B^{2}-B^{3}
\end{aligned}
$$

Factoring Formulas

$$
\begin{aligned}
A^{2}-B^{2} & =(A+B)(A-B) \\
A^{2}+2 A B+B^{2} & =(A+B)^{2} \\
A^{2}-2 A B+B^{2} & =(A-B)^{2} \\
A^{3}+B^{3} & =(A+B)\left(A^{2}-A B+B^{2}\right) \\
A^{3}-B^{3} & =(A-B)\left(A^{2}+A B+B^{2}\right)
\end{aligned}
$$

Absolute Value Equations and Inequalities

1. If $c>0$, then $|u|=c$ is equivalent to $u=c$ or $u=-c$.
2. If $c>0$, then $|u|<c$ is equivalent to $-c<u<c$.
3. If $c>0$, then $|u|>c$ is equivalent to $u<-c$ or $u>c$.

The Quadratic Formula

All quadratic equations

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

can be solved by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

REVIEW EXERCISES

You can use these review exercises, like the review exercises at the end of each chapter, to test your understanding of the chapter's topics. However, you can also use these exercises as a prerequisite test to check your mastery of the fundamental algebra skills needed in this book.

P. 1

In Exercises 1-2, evaluate each algebraic expression for the given value or values of the variable(s).

1. $3+6(x-2)^{3}$ for $x=4$
2. $x^{2}-5(x-y)$ for $x=6$ and $y=2$
3. You are riding along an expressway traveling x miles per hour. The formula

$$
S=0.015 x^{2}+x+10
$$

models the recommended safe distance, S, in feet, between your car and other cars on the expressway. What is the recommended safe distance when your speed is 60 miles per hour?

In Exercises 4-7, let $A=\{a, b, c\}, B=\{a, c, d, e\}$, and $C=\{a, d, f, g\}$. Find the indicated set.
4. $A \cap B$
5. $A \cup B$
6. $A \cup C$
7. $C \cap A$
8. Consider the set:

$$
\left\{-17,-\frac{9}{13}, 0,0.75, \sqrt{2}, \pi, \sqrt{81}\right\}
$$

List all numbers from the set that are a. natural numbers, b. whole numbers, c. integers, d. rational numbers, e. irrational numbers, f. real numbers.

In Exercises 9-11, rewrite each expression without absolute value bars.
9. $|-103|$
10. $|\sqrt{2}-1|$
11. $|3-\sqrt{17}|$
12. Express the distance between the numbers -17 and 4 using absolute value. Then evaluate the absolute value.

In Exercises 13-18, state the name of the property illustrated.
13. $3+17=17+3$
14. $(6 \cdot 3) \cdot 9=6 \cdot(3 \cdot 9)$
15. $\sqrt{3}(\sqrt{5}+\sqrt{3})=\sqrt{15}+3$
16. $(6 \cdot 9) \cdot 2=2 \cdot(6 \cdot 9)$
17. $\sqrt{3}(\sqrt{5}+\sqrt{3})=(\sqrt{5}+\sqrt{3}) \sqrt{3}$
18. $(3 \cdot 7)+(4 \cdot 7)=(4 \cdot 7)+(3 \cdot 7)$

In Exercises 19-22, simplify each algebraic expression.
19. $5(2 x-3)+7 x$
20. $\frac{1}{5}(5 x)+[(3 y)+(-3 y)]-(-x)$
21. $3(4 y-5)-(7 y+2)$
22. $8-2[3-(5 x-1)]$
23. The diversity index, from 0 (no diversity) to 100 , measures the chance that two randomly selected people are a different race or ethnicity. The diversity index in the United States varies widely from region to region, from as high as 81 in Hawaii to as low as 11 in Vermont. The bar graph at the top of the next column shows the national diversity index for the United States for four years in the period from 1980 through 2010.

Chance That Two Randomly Selected Americans Are a Different Race or Ethnicity

Source: USA Today
The data in the graph can be modeled by the formula

$$
D=0.005 x^{2}+0.55 x+34,
$$

where D is the national diversity index in the United States x years after 1980. According to the formula, what was the U.S. diversity index in 2010? How does this compare with the index displayed by the bar graph?

P. 2

Evaluate each exponential expression in Exercises 24-27.
24. $(-3)^{3}(-2)^{2}$
25. $2^{-4}+4^{-1}$
26. $5^{-3} \cdot 5$
27. $\frac{3^{3}}{3^{6}}$

Simplify each exponential expression in Exercises 28-31.
28. $\left(-2 x^{4} y^{3}\right)^{3}$
29. $\left(-5 x^{3} y^{2}\right)\left(-2 x^{-11} y^{-2}\right)$
30. $\left(2 x^{3}\right)^{-4}$
31. $\frac{7 x^{5} y^{6}}{28 x^{15} y^{-2}}$

In Exercises 32-33, write each number in decimal notation.
32. 3.74×10^{4}
33. 7.45×10^{-5}

In Exercises 34-35, write each number in scientific notation.
34. $3,590,000$
35. 0.00725

In Exercises 36-37, perform the indicated operation and write the answer in decimal notation.
36. $\left(3 \times 10^{3}\right)\left(1.3 \times 10^{2}\right)$
37. $\frac{6.9 \times 10^{3}}{3 \times 10^{5}}$

In 2009, the United States government spent more than it had collected in taxes, resulting in a budget deficit of $\$ 1.35$ trillion. In Exercises 38-40, you will use scientific notation to put a number like 1.35 trillion in perspective. Use 10^{12} for 1 trillion.
38. Express 1.35 trillion in scientific notation.
39. There are approximately $32,000,000$ seconds in a year. Express this number in scientific notation.
40. Use your scientific notation answers from Exercises 38 and 39 to answer this question: How many years is 1.35 trillion seconds? Round to the nearest year. (Note: 1.35 trillion seconds would take us back in time to a period when Neanderthals were using stones to make tools.)

P. 3

Use the product rule to simplify the expressions in Exercises 41-44. In Exercises 43-44, assume that variables represent nonnegative real numbers.
41. $\sqrt{300}$
42. $\sqrt{12 x^{2}}$
43. $\sqrt{10 x} \cdot \sqrt{2 x}$
44. $\sqrt{r^{3}}$

Use the quotient rule to simplify the expressions in Exercises 45-46.
45. $\sqrt{\frac{121}{4}}$ -
46. $\frac{\sqrt{96 x^{3}}}{\sqrt{2 x}}$ (Assume that $x>0$.)

In Exercises 47-49, add or subtract terms whenever possible.
47. $7 \sqrt{5}+13 \sqrt{5}$
48. $2 \sqrt{50}+3 \sqrt{8}$
49. $4 \sqrt{72}-2 \sqrt{48}$

In Exercises 50-53, rationalize the denominator.
50. $\frac{30}{\sqrt{5}}$
51. $\frac{\sqrt{2}}{\sqrt{3}}$
52. $\frac{5}{6+\sqrt{3}}$
53. $\frac{14}{\sqrt{7}-\sqrt{5}}$

Evaluate each expression in Exercises 54-57 or indicate that the root is not a real number.
54. $\sqrt[3]{125}$
55. $\sqrt[5]{-32}$
56. $\sqrt[4]{-125}$
57. $\sqrt[4]{(-5)^{4}}$

Simplify the radical expressions in Exercises 58-62.
58. $\sqrt[3]{81}$
59. $\sqrt[3]{y^{5}}$
60. $\sqrt[4]{8} \cdot \sqrt[4]{10}$
61. $4 \sqrt[3]{16}+5 \sqrt[3]{2}$
62. $\frac{\sqrt[4]{32 x^{5}}}{\sqrt[4]{16 x}}($ Assume that $x>0$.)

In Exercises 63-68, evaluate each expression.
63. $16^{\frac{1}{2}}$
64. $25^{-\frac{1}{2}}$
65. $125^{\frac{1}{3}}$
66. $27^{-\frac{1}{3}}$
67. $64^{\frac{2}{3}}$
68. $27^{-\frac{4}{3}}$

In Exercises 69-71, simplify using properties of exponents.
69. $\left(5 x^{\frac{2}{3}}\right)\left(4 x^{\frac{1}{4}}\right)$
70. $\frac{15 x^{\frac{3}{4}}}{5 x^{\frac{1}{2}}}$
71. $\left(125 x^{6}\right)^{\frac{2}{3}}$
$5 x^{2}$
72. Simplify by reducing the index of the radical: $\sqrt[6]{y^{3}}$.

P. 4

In Exercises 73-74, perform the indicated operations. Write the resulting polynomial in standard form and indicate its degree.
73. $\left(-6 x^{3}+7 x^{2}-9 x+3\right)+\left(14 x^{3}+3 x^{2}-11 x-7\right)$
74. $\left(13 x^{4}-8 x^{3}+2 x^{2}\right)-\left(5 x^{4}-3 x^{3}+2 x^{2}-6\right)$

In Exercises 75-81, find each product.
75. $(3 x-2)\left(4 x^{2}+3 x-5\right)$
76. $(3 x-5)(2 x+1)$
77. $(4 x+5)(4 x-5)$
78. $(2 x+5)^{2}$
79. $(3 x-4)^{2}$
80. $(2 x+1)^{3}$
81. $(5 x-2)^{3}$

In Exercises 82-83, perform the indicated operations. Indicate the degree of the resulting polynomial.
82. $\left(7 x^{2}-8 x y+y^{2}\right)+\left(-8 x^{2}-9 x y-4 y^{2}\right)$
83. $\left(13 x^{3} y^{2}-5 x^{2} y-9 x^{2}\right)-\left(-11 x^{3} y^{2}-6 x^{2} y+3 x^{2}-4\right)$

In Exercises 84-88, find each product.
84. $(x+7 y)(3 x-5 y)$
85. $(3 x-5 y)^{2}$
86. $\left(3 x^{2}+2 y\right)^{2}$
87. $(7 x+4 y)(7 x-4 y)$
88. $(a-b)\left(a^{2}+a b+b^{2}\right)$

P. 5

In Exercises 89-105, factor completely, or state that the polynomial is prime.
89. $15 x^{3}+3 x^{2}$
90. $x^{2}-11 x+28$
91. $15 x^{2}-x-2$
92. $64-x^{2}$
93. $x^{2}+16$
94. $3 x^{4}-9 x^{3}-30 x^{2}$
95. $20 x^{7}-36 x^{3}$
96. $x^{3}-3 x^{2}-9 x+27$
97. $16 x^{2}-40 x+25$
98. $x^{4}-16$
99. $y^{3}-8$
100. $x^{3}+64$
101. $3 x^{4}-12 x^{2}$
102. $27 x^{3}-125$
103. $x^{5}-x$
104. $x^{3}+5 x^{2}-2 x-10$
105. $x^{2}+18 x+81-y^{2}$

In Exercises 106-108, factor and simplify each algebraic expression.
106. $16 x^{-\frac{3}{4}}+32 x^{\frac{1}{4}}$
107. $\left(x^{2}-4\right)\left(x^{2}+3\right)^{\frac{1}{2}}-\left(x^{2}-4\right)^{2}\left(x^{2}+3\right)^{\frac{3}{2}}$
108. $12 x^{-\frac{1}{2}}+6 x^{-\frac{3}{2}}$

P. 6

In Exercises 109-111, simplify each rational expression. Also, list all numbers that must be excluded from the domain.
109. $\frac{x^{3}+2 x^{2}}{x+2}$
110. $\frac{x^{2}+3 x-18}{x^{2}-36}$
111. $\frac{x^{2}+2 x}{x^{2}+4 x+4}$

In Exercises 112-114, multiply or divide as indicated.
112. $\frac{x^{2}+6 x+9}{x^{2}-4} \cdot \frac{x+3}{x-2}$
113. $\frac{6 x+2}{x^{2}-1} \div \frac{3 x^{2}+x}{x-1}$
114. $\frac{x^{2}-5 x-24}{x^{2}-x-12} \div \frac{x^{2}-10 x+16}{x^{2}+x-6}$

In Exercises 115-118, add or subtract as indicated.
115. $\frac{2 x-7}{x^{2}-9}-\frac{x-10}{x^{2}-9} \quad$ 116. $\frac{3 x}{x+2}+\frac{x}{x-2}$
117. $\frac{x}{x^{2}-9}+\frac{x-1}{x^{2}-5 x+6}$
118. $\frac{4 x-1}{2 x^{2}+5 x-3}-\frac{x+3}{6 x^{2}+x-2}$

In Exercises 119-122, simplify each complex rational expression.
119. $\frac{\frac{1}{x}-\frac{1}{2}}{\frac{1}{3}-\frac{x}{6}}$
120. $\frac{3+\frac{12}{x}}{1-\frac{16}{x^{2}}}$
121. $\frac{3-\frac{1}{x+3}}{3+\frac{1}{x+3}}$
122. $\frac{\sqrt{25-x^{2}}+\frac{x^{2}}{\sqrt{25-x^{2}}}}{25-x^{2}}$
P. 7

In Exercises 123-136, solve each equation.
123. $1-2(6-x)=3 x+2$
124. $2(x-4)+3(x+5)=2 x-2$
125. $2 x-4(5 x+1)=3 x+17$
126. $\frac{1}{x-1}-\frac{1}{x+1}=\frac{2}{x^{2}-1}$
127. $\frac{4}{x+2}+\frac{2}{x-4}=\frac{30}{x^{2}-2 x-8}$
128. $-4|2 x+1|+12=0$
129. $2 x^{2}-11 x+5=0$
130. $(3 x+5)(x-3)=5$
131. $3 x^{2}-7 x+1=0$
132. $x^{2}-9=0$
133. $(x-3)^{2}-24=0$
134. $\frac{2 x}{x^{2}+6 x+8}=\frac{x}{x+4}-\frac{2}{x+2}$
135. $\sqrt{8-2 x}-x=0$
136. $\sqrt{2 x-3}+x=3$

In Exercises 137-138, solve each formula for the specified variable.
137. $v t+g t^{2}=s$ for $g \quad$ 138. $T=\frac{A-P}{P r}$ for P

In Exercises 139-140, without solving the given quadratic equation, determine the number and type of solutions.
139. $x^{2}=2 x-19$ 140. $9 x^{2}-30 x+25=0$
P. 8

In Exercises 141-150, use the five-step strategy for solving word problems.
141. Destined for Gory. Body Count in Wes Craven's As sequels to horror films increase, so does the body count. Wes Craven's slasher Scream series adheres to that axiom.

Whether it's knife to the back, knife to the gut, or knife to the head, the body count in Scream 2 exceeds the departed in Scream by 2. Appropriately, the number of
 characters killed off in Scream 3 exceeds the departed in Scream by 3. The total body count in the four Scream films shown in the graphic is 33 . Find the body count in Scream, Scream 2, and Scream 3.
142. The bar graph shows the average price of a movie ticket for selected years from 1980 through 2010. The graph indicates that in 1980 , the average movie ticket price was $\$ 2.69$. For the period from 1980 through 2010, the price increased by approximately $\$ 0.15$ per year. If this trend continues, by which year will the average price of a movie ticket be $\$ 8.69$?

Sources: Motion Picture Association of America, National Association of Theater Owners (NATO), and Bureau of Labor Statistics (BLS)
143. After a 20% price reduction, a cordless phone sold for $\$ 48$. What was the phone's price before the reduction?
144. A salesperson earns $\$ 300$ per week plus 5% commission of sales. How much must be sold to earn $\$ 800$ in a week?
145. The length of a rectangular field is 6 yards less than triple the width. If the perimeter of the field is 340 yards, what are its dimensions?
146. In 2010 , there were 14,100 students at college A, with a projected enrollment increase of 1500 students per year. In the same year, there were 41,700 students at college B, with a projected enrollment decline of 800 students per year. In which year will the colleges have the same enrollment? What will be the enrollment in each college at that time?
147. An architect is allowed 15 square yards of floor space to add a small bedroom to a house. Because of the room's design in relationship to the existing structure, the width of the rectangular floor must be 7 yards less than two times the length. Find the length and width of the rectangular floor that the architect is permitted.
148. A building casts a shadow that is double the length of its height. If the distance from the end of the shadow to the top of the building is 300 meters, how high is the building? Round to the nearest meter.
149. A painting measuring 10 inches by 16 inches is surrounded by a frame of uniform width. If the combined area of the painting and frame is 280 square inches, determine the width of the frame.
150. Club members equally share the cost of $\$ 1500$ to charter a fishing boat. Shortly before the boat is to leave, four people decide not to go due to rough seas. As a result, the cost per person is increased by $\$ 100$. How many people originally intended to go on the fishing trip?

P. 9

In Exercises 151-153, express each interval in set-builder notation and graph the interval on a number line.
151. $[-3,5)$
152. $(-2, \infty)$
153. $(-\infty, 0]$

In Exercises 154-157, use graphs to find each set.
154. $(-2,1] \cap[-1,3)$
155. $(-2,1] \cup[-1,3)$
156. $[1,3) \cap(0,4)$
157. $[1,3) \cup(0,4)$

In Exercises 158-167, solve each inequality. Use interval notation to express solution sets and graph each solution set on a number line.
158. $-6 x+3 \leq 15$
159. $6 x-9 \geq-4 x-3$
160. $\frac{x}{3}-\frac{3}{4}-1>\frac{x}{2}$
161. $6 x+5>-2(x-3)-25$
162. $3(2 x-1)-2(x-4) \geq 7+2(3+4 x)$
163. $7<2 x+3 \leq 9$
164. $|2 x+3| \leq 15$
165. $\left|\frac{2 x+6}{3}\right|>2$
166. $|2 x+5|-7 \geq-6$
167. $-4|x+2|+5 \leq-7$
168. A car rental agency rents a certain car for $\$ 40$ per day with unlimited mileage or $\$ 24$ per day plus $\$ 0.20$ per mile. How far can a customer drive this car per day for the $\$ 24$ option to cost no more than the unlimited mileage option?
169. To receive a B in a course, you must have an average of at least 80% but less than 90% on five exams. Your grades on the first four exams were $95 \%, 79 \%, 91 \%$, and 86%. What range of grades on the fifth exam will result in a B for the course?

CHAPTER P TEST

In Exercises 1-18, simplify the given expression or perform the indicated operation (and simplify, if possible), whichever is appropriate.

1. $5\left(2 x^{2}-6 x\right)-\left(4 x^{2}-3 x\right)$
2. $7+2[3(x+1)-2(3 x-1)]$
3. $\{1,2,5\} \cap\{5, a\}$
4. $\{1,2,5\} \cup\{5, a\}$
5. $\frac{30 x^{3} y^{4}}{6 x^{9} y^{-4}}$
6. $\sqrt{6 r} \sqrt{3 r}$ (Assume that $r \geq 0$.)
7. $4 \sqrt{50}-3 \sqrt{18}$
8. $\frac{3}{5+\sqrt{2}}$
9. $\sqrt[3]{16 x^{4}}$
10. $\frac{x^{2}+2 x-3}{x^{2}-3 x+2}$
11. $\frac{5 \times 10^{-6}}{20 \times 10^{-8}}$ (Express the answer in scientific notation.)
12. $(2 x-5)\left(x^{2}-4 x+3\right)$
13. $(5 x+3 y)^{2}$
14. $\frac{2 x+8}{x-3} \div \frac{x^{2}+5 x+4}{x^{2}-9}$
15. $\frac{x}{x+3}+\frac{5}{x-3}$
16. $\frac{2 x+3}{x^{2}-7 x+12}-\frac{2}{x-3}$
17. $\frac{1-\frac{x}{x+2}}{1+\frac{1}{x}}$

In Exercises 19-24, factor completely, or state that the polynomial is prime.
19. $x^{2}-9 x+18$
20. $x^{3}+2 x^{2}+3 x+6$
21. $25 x^{2}-9$
23. $y^{3}-125$
22. $36 x^{2}-84 x+49$
24. $x^{2}+10 x+25-9 y^{2}$
25. Factor and simplify:

$$
x(x+3)^{-\frac{3}{5}}+(x+3)^{\frac{2}{5}}
$$

26. List all the rational numbers in this set:

$$
\left\{-7,-\frac{4}{5}, 0,0.25, \sqrt{3}, \sqrt{4}, \frac{22}{7}, \pi\right\} .
$$

In Exercises 27-28, state the name of the property illustrated.
27. $3(2+5)=3(5+2)$
28. $6(7+4)=6 \cdot 7+6 \cdot 4$
29. Express in scientific notation: 0.00076 .
30. Evaluate: $27^{-\frac{5}{3}}$.
31. In 2007, world population was approximately 6.6×10^{9}. By some projections, world population will double by 2040. Express the population at that time in scientific notation.
32. Big (Lack of) Men on Campus In 2007, 135 women received bachelor's degrees for every 100 men. According to the U.S. Department of Education, that gender imbalance will widen in the coming years, as shown by the bar graph.

Percentage of Bachelor's Degrees Awarded to United States Men and Women

Me
\square Women

Source: U.S. Department of Education

The data for bachelor's degrees can be described by the following mathematical models:

a. According to the first formula, what percentage of bachelor's degrees were awarded to men in 2003? Does this underestimate or overestimate the actual percent shown by the bar graph on the previous page? By how much?
b. Use the given formulas to write a new formula with a rational expression that models the ratio of the percentage of bachelor's degrees received by men to the percentage received by women n years after 1989. Name this new mathematical model R, for ratio.
c. Use the formula for R to find the projected ratio of bachelor's degrees received by men to degrees received by women in 2014. According to the model, how many women will receive bachelor's degrees for every two men in 2014? How well does this describe the projections shown by the graph on the previous page?

In Exercises 33-47, solve each equation or inequality. Use interval notation to express solution sets of inequalities and graph these solution sets on a number line.
33. $7(x-2)=4(x+1)-21$
34. $\frac{2 x-3}{4}=\frac{x-4}{2}-\frac{x+1}{4}$
35. $\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x^{2}-9}$
36. $2 x^{2}-3 x-2=0$
37. $(3 x-1)^{2}=75$
38. $x(x-2)=4$
39. $\sqrt{x-3}+5=x$
40. $\sqrt{8-2 x}-x=0$
41. $\left|\frac{2}{3} x-6\right|=2$
42. $-3|4 x-7|+15=0$
43. $\frac{2 x}{x^{2}+6 x+8}+\frac{2}{x+2}=\frac{x}{x+4}$
44. $3(x+4) \geq 5 x-12$
45. $\frac{x}{6}+\frac{1}{8} \leq \frac{x}{2}-\frac{3}{4}$
46. $-3 \leq \frac{2 x+5}{3}<6$
47. $|3 x+2| \geq 3$

In Exercises 48-50, solve each formula for the specified variable.
48. $V=\frac{1}{3} l w h$ for h
49. $y-y_{1}=m\left(x-x_{1}\right)$ for x
50. $R=\frac{a s}{a+s}$ for a

The graphs show the amount being paid in Social Security benefits and the amount going into the system. All data are expressed in billions of dollars. Amounts from 2012 through 2024 are projections.

Source: 2004 Social Security Trustees Report

Exercises 51-53 are based on the data shown by the graphs.
51. In 2004, the system's income was $\$ 575$ billion, projected to increase at an average rate of $\$ 43$ billion per year. In which year will the system's income be $\$ 1177$ billion?
52. The data for the system's outflow can be modeled by the formula

$$
B=0.07 x^{2}+47.4 x+500
$$

where B represents the amount paid in benefits, in billions of dollars, x years after 2004. According to this model, when will the amount paid in benefits be $\$ 1177$ billion? Round to the nearest year.
53. How well do your answers to Exercises 51 and 52 model the data shown by the graphs?
54. Here's Looking at You. According to University of Texas economist Daniel Hamermesh (Beauty Pays: Why Attractive People Are More Successful), strikingly attractive and goodlooking men and women can expect to earn an average of $\$ 230,000$ more in a lifetime than a person who is homely or plain. (Your author feels the need to start affirmative action for the beauty-bereft, consoled by the reality that looks are only one of many things that matter.) The bar graph shows the distribution of looks for American men and women, ranging from homely to strikingly attractive.

The percentage of average-looking men exceeds the percentage of strikingly attractive men by 57 . The percentage of good-looking men exceeds the percentage of strikingly attractive men by 25 . A total of 88% of American men range between average looking, good-looking, and strikingly attractive. Find the percentage of men who fall within each of these three categories of looks.

Source: Time, August 22, 2011
55. The costs for two different kinds of heating systems for a small home are given in the following table. After how many years will total costs for solar heating and electric heating be the same? What will be the cost at that time?

System	Cost to Install	Operating Cost/Year
Solar	$\$ 29,700$	$\$ 150$
Electric	$\$ 5000$	$\$ 1100$

56. The length of a rectangular carpet is 4 feet greater than twice its width. If the area is 48 square feet, find the carpet's length and width.
57. A vertical pole is to be supported by a wire that is 26 feet long and anchored 24 feet from the base of the pole. How far up the pole should the wire be attached?
58. After a 60% reduction, a jacket sold for $\$ 20$. What was the jacket's price before the reduction?
59. A group of people would like to buy a vacation cabin for $\$ 600,000$, sharing the cost equally. If they could find five more people to join them, each person's share would be reduced by $\$ 6000$. How many people are in the group?
60. You are choosing between two texting plans. Plan A charges $\$ 25$ per month for unlimited texting. Plan B has a monthly fee of $\$ 13$ with a charge of $\$ 0.06$ per text. How many text messages in a month make plan A the better deal?

FUNCTIONS AND GRAPHS

CHAPTER 1

A vast expanse of open water at the top of our morld was once covered with ice. The melting of the Arctic ice caps has forced polar bears to swim as far as 40 miles, causing them to drown in significant numbers. Such deaths were rare in the past.

There is strong scientific consensus that human activities are changing the Earth's climate. Scientists now believe that there is a striking correlation between atmospheric carbon dioxide concentration and global temperature. As both of these variables increase at significant rates, there are warnings of a planetary emergency that threatens to condemn coming generations to a catastrophically diminished future.*

In this chapter, you'll learn to approach our climate crisis mathematically by creating formulas, called functions, that model data for average global temperature and carbon dioxide concentration over time. Understanding the concept of a function will give you a new perspective on many situations, ranging from global warming to using mathematics in a way that is similar to making a movie.
*Sources: Al Gore, An Inconvenient Truth, Rodale, 2006; Time, April 3, 2006

SECTION 1.1

Obyectives

(1)

Plot points in the rectangular coordinate system.
2. Graph equations in the rectangular coordinate system.
(3) Interpret information about a graphing utility's viewing rectangle or table.
(4) Use a graph to determine intercepts.
(5) Interpret information given by graphs.
(1) Plot points in the rectangular coordinate system.

FIGURE 1.1 The rectangular coordinate system

GREAT QUESTION!

What's the significance of the word "ordered" when describing a pair of real numbers?
The phrase ordered pair is used because order is important. The order in which coordinates appear makes a difference in a point's location. This is illustrated in
Figure 1.2.

Graphs and Graphing Utilities

The beginning of the seventeenth century was a time of innovative ideas and enormous intellectual progress in Europe. English theatergoers enjoyed a succession of exciting new plays by Shakespeare. William Harvey proposed the radical notion that the heart was a pump for blood rather than the center of emotion. Galileo, with his newfangled invention called the telescope, supported the theory of Polish astronomer Copernicus that the sun, not the Earth, was the center
 of the solar system. Monteverdi was writing the world's first grand operas. French mathematicians Pascal and Fermat invented a new field of mathematics called probability theory.

Into this arena of intellectual electricity stepped French aristocrat René Descartes (1596-1650). Descartes (pronounced "day cart"), propelled by the creativity surrounding him, developed a new branch of mathematics that brought together algebra and geometry in a unified way - a way that visualized numbers as points on a graph, equations as geometric figures, and geometric figures as equations. This new branch of mathematics, called analytic geometry, established Descartes as one of the founders of modern thought and among the most original mathematicians and philosophers of any age. We begin this section by looking at Descartes's deceptively simple idea, called the rectangular coordinate system or (in his honor) the Cartesian coordinate system.

Points and Ordered Pairs

Descartes used two number lines that intersect at right angles at their zero points, as shown in Figure 1.1. The horizontal number line is the \boldsymbol{x}-axis. The vertical number line is the \boldsymbol{y}-axis. The point of intersection of these axes is their zero points, called the origin. Positive numbers are shown to the right and above the origin. Negative numbers are shown to the left and below the origin. The axes divide the plane into four quarters, called quadrants. The points located on the axes are not in any quadrant.

Each point in the rectangular coordinate system corresponds to an ordered pair of real numbers, (x, y). Examples of such pairs are $(-5,3)$ and $(3,-5)$. The first number in each pair, called the \boldsymbol{x}-coordinate, denotes the distance and direction from the origin along the x-axis. The second number in each pair, called the \boldsymbol{y}-coordinate, denotes vertical distance and direction along a line parallel to the y-axis or along the y-axis itself.

Figure 1.2 shows how we plot, or locate, the points corresponding to the ordered pairs $(-5,3)$ and $(3,-5)$. We plot $(-5,3)$ by going 5 units from 0 to the left along the x-axis. Then we go 3 units up parallel to the y-axis. We plot $(3,-5)$ by going 3 units from 0 to the right along the x-axis and 5 units down parallel to the y-axis. The phrase "the points corresponding to the ordered pairs $(-5,3)$ and $(3,-5)$ " is often abbreviated as "the points $(-5,3)$ and $(3,-5)$."

FIGURE 1.2 Plotting $(-5,3)$ and $(3,-5)$

EXAMPLE 1 Plotting Points in the Rectangular Coordinate System

Plot the points: $\quad A(-3,5), B(2,-4), C(5,0), D(-5,-3), E(0,4)$, and $F(0,0)$.

SOLUTION

See Figure 1.3. We move from the origin and plot the points in the following way:
$A(-3,5): \quad 3$ units left, 5 units up
$B(2,-4)$: 2 units right, 4 units down
$C(5,0)$: 5 units right, 0 units up or down
$D(-5,-3): 5$ units left, 3 units down
$E(0,4)$: 0 units right or left, 4 units up
$F(0,0)$: $\quad 0$ units right or left, 0 units up or down

FIGURE 1.3 Plotting points

GREAT QUESTION!

Why is it so important to work each of the book's Check Points?

You learn best by doing. Do not simply look at the worked examples and conclude that you know how to solve them. To be sure you understand the worked examples, try each Check Point. Check your answer in the answer section before continuing your reading. Expect to read this book with pencil and paper handy to work the Check Points.

2) Graph equations in the rectangular coordinate system.

S Check Point 1 Plot the points: $A(-2,4), B(4,-2), C(-3,0)$, and $D(0,-3)$.

Graphs of Equations

A relationship between two quantities can be expressed as an equation in two variables, such as

$$
y=4-x^{2}
$$

A solution of an equation in two variables, x and y, is an ordered pair of real numbers with the following property: When the x-coordinate is substituted for x and the y-coordinate is substituted for y in the equation, we obtain a true statement. For example, consider the equation $y=4-x^{2}$ and the ordered pair $(3,-5)$. When 3 is substituted for x and -5 is substituted for y, we obtain the statement $-5=4-3^{2}$, or $-5=4-9$, or $-5=-5$. Because this statement is true, the ordered pair $(3,-5)$ is a solution of the equation $y=4-x^{2}$. We also say that $(3,-5)$ satisfies the equation.

We can generate as many ordered-pair solutions as desired to $y=4-x^{2}$ by substituting numbers for x and then finding the corresponding values for y. For example, suppose we let $x=3$:

The graph of an equation in two variables is the set of all points whose coordinates satisfy the equation. One method for graphing such equations is the point-plotting method. First, we find several ordered pairs that are solutions of the equation. Next, we plot these ordered pairs as points in the rectangular coordinate system. Finally, we connect the points with a smooth curve or line. This often gives us a picture of all ordered pairs that satisfy the equation.

FIGURE 1.4 The graph of $y=4-x^{2}$

FIGURE 1.5 The graph of $y=|x|$

EXAMPLE 2 Graphing an Equation Using the Point-Plotting Method
Graph $y=4-x^{2}$. Select integers for x, starting with -3 and ending with 3 .

SOLUTION

For each value of x, we find the corresponding value for y.

Now we plot the seven points and join them with a smooth curve, as shown in Figure 1.4. The graph of $y=4-x^{2}$ is a curve where the part of the graph to the right of the y-axis is a reflection of the part to the left of it and vice versa. The arrows on the left and the right of the curve indicate that it extends indefinitely in both directions.

Check Point 2 Graph $y=4-x$. Select integers for x, starting with -3 and ending with 3.

EXAMPLE 3 Graphing an Equation Using the Point-Plotting Method

Graph $y=|x|$. Select integers for x, starting with -3 and ending with 3 .

SOLUTION

For each value of x, we find the corresponding value for y.

\boldsymbol{x}	$\boldsymbol{y}=\|\boldsymbol{x}\|$	Ordered Pair $(\boldsymbol{x}, \boldsymbol{y})$
-3	$y=\|-3\|=3$	$(-3,3)$
-2	$y=\|-2\|=2$	$(-2,2)$
-1	$y=\|-1\|=1$	$(-1,1)$
0	$y=\|0\|=0$	$(0,0)$
1	$y=\|1\|=1$	$(1,1)$
2	$y=\|2\|=2$	$(2,2)$
3	$y=\|3\|=3$	$(3,3)$

We plot the points and connect them, resulting in the graph shown in Figure 1.5. The graph is V -shaped and centered at the origin. For every point (x, y) on the graph, the point $(-x, y)$ is also on the graph. This shows that the absolute value of a positive number is the same as the absolute value of its opposite.
\int Check Point 3 Graph $y=|x+1|$. Select integers for x, starting with -4 and ending with 2.

Interpret information about a graphing utility's viewing rectangle or table.

GREAT QUESTION!

I'm not using a graphing

 calculator, so should I skip this part of the section?Even if you are not using a graphing utility in the course, read this part of the section. Knowing about viewing rectangles will enable you to understand the graphs that we display in the technology boxes throughout the book.

FIGURE 1.7 A $[-2,3,0.5]$ by [$-10,20,5$] viewing rectangle

Graphing Equations and Creating Tables Using a Graphing Utility

Graphing calculators and graphing software packages for computers are referred to as graphing utilities or graphers. A graphing utility is a powerful tool that quickly generates the graph of an equation in two variables. Figures 1.6(a) and $\mathbf{1 . 6 (b)}$ show two such graphs for the equations in Examples 2 and 3.

FIGURE 1.6(a) The graph of $y=4-x^{2}$

FIGURE 1.6(b) The graph of $y=|x|$

What differences do you notice between these graphs and the graphs that we drew by hand? They do seem a bit "jittery." Arrows do not appear on the left and right ends of the graphs. Furthermore, numbers are not given along the axes. For both graphs in Figure 1.6, the x-axis extends from -10 to 10 and the y-axis also extends from -10 to 10 . The distance represented by each consecutive tick mark is one unit. We say that the viewing rectangle, or the viewing window, is $[-10,10,1]$ by $[-10,10,1]$.

To graph an equation in x and y using a graphing utility, enter the equation and specify the size of the viewing rectangle. The size of the viewing rectangle sets minimum and maximum values for both the x - and y-axes. Enter these values, as well as the values representing the distances between consecutive tick marks, on the respective axes. The $[-10,10,1]$ by $[-10,10,1]$ viewing rectangle used in Figure 1.6 is called the standard viewing rectangle.

EXAMPLE 4 Understanding the Viewing Rectangle

What is the meaning of a $[-2,3,0.5]$ by $[-10,20,5]$ viewing rectangle?

SOLUTION

We begin with $[-2,3,0.5]$, which describes the x-axis. The minimum x-value is -2 and the maximum x-value is 3 . The distance between consecutive tick marks is 0.5 .

Next, consider $[-10,20,5]$, which describes the y-axis. The minimum y-value is -10 and the maximum y-value is 20 . The distance between consecutive tick marks is 5 .

Figure 1.7 illustrates a $[-2,3,0.5]$ by $[-10,20,5]$ viewing rectangle. To make things clearer, we've placed numbers by each tick mark. These numbers do not appear on the axes when you use a graphing utility to graph an equation. ...

Check Point 4 What is the meaning of a $[-100,100,50]$ by $[-100,100,10]$ viewing rectangle? Create a figure like the one in Figure 1.7 that illustrates this viewing rectangle.

On most graphing utilities, the display screen is two-thirds as high as it is wide. By using a square setting, you can equally space the x and y tick marks. (This does not occur in the standard viewing rectangle.) Graphing utilities can also zoom in and zoom out.

When you zoom in, you see a smaller portion of the graph, but you do so in greater detail. When you zoom out, you see a larger portion of the graph. Thus, zooming out may help you to develop a better understanding of the overall character of the graph. With practice, you will become more comfortable with graphing equations in two variables using your graphing utility. You will also develop a better sense of the size of the viewing rectangle that will reveal needed information about a particular graph.

Graphing utilities can also be used to create tables showing solutions of equations in two variables. Use the Table Setup function to choose the starting value of x and to input the increment, or change, between the consecutive x-values. The corresponding y-values are calculated based on the equation(s) in two variables in the $\mathrm{Y}=$ screen. In Figure 1.8, we used a TI-84 Plus to create a table for $y=4-x^{2}$ and $y=|x|$, the equations in Examples 2 and 3.

FIGURE 1.8 Creating a table for $y_{1}=4-x^{2}$ and $y_{2}=|x|$

Intercepts

An \boldsymbol{x}-intercept of a graph is the x-coordinate of a point where the graph intersects the x-axis. For example, look at the graph of $y=4-x^{2}$ in Figure 1.9. The graph crosses the x-axis at $(-2,0)$ and $(2,0)$. Thus, the x-intercepts are -2 and 2 . The y-coordinate corresponding to an \boldsymbol{x}-intercept is always zero.

A \boldsymbol{y}-intercept of a graph is the y-coordinate of a point where the graph intersects the y-axis. The graph of $y=4-x^{2}$ in Figure 1.9 shows that the graph crosses the y-axis at $(0,4)$. Thus, the y-intercept is 4 . The \boldsymbol{x}-coordinate corresponding to a \boldsymbol{y}-intercept is always zero.

FIGURE 1.9 Intercepts of $y=4-x^{2}$

GREAT QUESTION!

Are single numbers the only way to represent intercepts? Can ordered pairs also be used?
Mathematicians tend to use two ways to describe intercepts. Did you notice that we are using single numbers? If a is an x-intercept of a graph, then the graph passes through the point $(a, 0)$. If b is a y-intercept of a graph, then the graph passes through the point $(0, b)$.

Some books state that the x-intercept is the point $(a, 0)$ and the x-intercept is at a on the x-axis. Similarly, the y-intercept is the point $(0, b)$ and the y-intercept is at b on the y-axis. In these descriptions, the intercepts are the actual points where the graph intersects the axes. Although we'll describe intercepts as single numbers, we'll immediately state the point on the x - or y-axis that the graph passes through. Here's the important thing to keep in mind:
x-intercept: The corresponding value of y is 0 .
y-intercept: The corresponding value of x is 0 .

EXAMPLE 5 Identifying Intercepts

Identify the x - and y-intercepts.
a.

b.

c.

SOLUTION

a. The graph crosses the x-axis at $(-1,0)$. Thus, the x-intercept is -1 . The graph crosses the y-axis at $(0,2)$. Thus, the y-intercept is 2 .
b. The graph crosses the x-axis at $(3,0)$, so the x-intercept is 3 . This vertical line does not cross the y-axis. Thus, there is no y-intercept.
c. This graph crosses the x - and y-axes at the same point, the origin. Because the graph crosses both axes at $(0,0)$, the x-intercept is 0 and the y-intercept is 0 .
$\$$ Check Point 5 Identify the x - and y-intercepts.
a.

b.

c.

Figure 1.10 illustrates that a graph may have no intercepts or several intercepts.

FIGURE 1.10

No x-intercept One y-intercept
5) Interpret information given by graphs.

One x-intercept No y-intercept

No intercepts

One x-intercept Three y-intercepts

The same x-intercept and y-intercept

Interpreting Information Given by Graphs

Line graphs are often used to illustrate trends over time. Some measure of time, such as months or years, frequently appears on the horizontal axis. Amounts are generally listed on the vertical axis. Points are drawn to represent the given information. The graph is formed by connecting the points with line segments.

A line graph displays information in the first quadrant of a rectangular coordinate system. By identifying points on line graphs and their coordinates, you can interpret specific information given by the graph.

EXAMPLE 6 Age at Marriage and the Probability of Divorce

Divorce rates are considerably higher for couples who marry in their teens. The line graphs in Figure 1.11 show the percentages of marriages ending in divorce based on the wife's age at marriage.

FIGURE 1.11
Source: B. E. Pruitt et al., Human Sexuality, Prentice Hall, 2007.

Here are two mathematical models that approximate the data displayed by the line graphs:

$$
\begin{gathered}
\begin{array}{c}
\text { Wife is over } 25 \\
\text { at time of marriage. }
\end{array} \\
d=2.3 n+1.5 .
\end{gathered}
$$

In each model, the variable n is the number of years after marriage and the variable d is the percentage of marriages ending in divorce.
a. Use the appropriate formula to determine the percentage of marriages ending in divorce after 10 years when the wife is over 25 at the time of marriage.
b. Use the appropriate line graph in Figure $\mathbf{1 . 1 1}$ to determine the percentage of marriages ending in divorce after 10 years when the wife is over 25 at the time of marriage.
c. Does the value given by the mathematical model underestimate or overestimate the actual percentage of marriages ending in divorce after 10 years as shown by the graph? By how much?

SOLUTION

a. Because the wife is over 25 at the time of marriage, we use the formula on the right, $d=2.3 n+1.5$. To find the percentage of marriages ending in divorce after 10 years, we substitute 10 for n and evaluate the formula.

$$
\begin{array}{ll}
d=2.3 n+1.5 & \begin{array}{l}
\text { This is one of the two given } \\
\text { mathematical models. }
\end{array} \\
d=2.3(10)+1.5 & \text { Replace } n \text { with } 10 . \\
d=23+1.5 & \text { Multiply: } 2.3(10)=23 . \\
d=24.5 & \text { Add. }
\end{array}
$$

The model indicates that 24.5% of marriages end in divorce after 10 years when the wife is over 25 at the time of marriage.
b. Now let's use the line graph that shows the percentage of marriages ending in divorce when the wife is over 25 at the time of marriage. The graph is shown again in Figure 1.12. To find the percentage of marriages ending in divorce after 10 years:

- Locate 10 on the horizontal axis and locate the point above 10.
- Read across to the corresponding percent on the vertical axis.

Locate 10 on the horizontal axis and locate the point above 10.

FIGURE 1.12

The actual data displayed by the graph indicate that 25% of these marriages end in divorce after 10 years.

GREAT QUESTION!

What am I supposed to do with

 the exercises in the Concept and Vocabulary Check?It is impossible to learn algebra and trigonometry without knowing their special language. The exercises in the Concept and Vocabulary Check, mainly fill-in-the-blank and true/false items, test your understanding of the definitions and concepts presented in each section. Work all of the exercises in the Concept and Vocabulary Check regardless of which exercises your professor assigns in the Exercise Set that follows.
c. The value obtained by evaluating the mathematical model, 24.5%, is close to, but slightly less than, the actual percentage of divorces, 25.0%. The difference between these percents is $25.0 \%-24.5 \%$, or 0.5%. The value given by the mathematical model, 24.5%, underestimates the actual percent, 25%, by only 0.5 , providing a fairly accurate description of the data. \ldots.

Check Point 6

a. Use the appropriate formula from Example 6 to determine the percentage of marriages ending in divorce after 15 years when the wife is under 18 at the time of marriage.
b. Use the appropriate line graph in Figure $\mathbf{1 . 1 1}$ to determine the percentage of marriages ending in divorce after 15 years when the wife is under 18 at the time of marriage.
c. Does the value given by the mathematical model underestimate or overestimate the actual percentage of marriages ending in divorce after 15 years as shown by the graph? By how much?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. In the rectangular coordinate system, the horizontal number line is called the \qquad .
2. In the rectangular coordinate system, the vertical number line is called the \qquad
3. In the rectangular coordinate system, the point of intersection of the horizontal axis and the vertical axis is called the \qquad .
4. The axes of the rectangular coordinate system divide the plane into regions, called \qquad .There are \qquad of these regions.
5. The first number in an ordered pair such as $(8,3)$ is called the \qquad .The second number in such an ordered pair is called the \qquad -.
6. The ordered pair $(4,19)$ is a/an \qquad of the equation $y=x^{2}+3$ because when 4 is substituted for x and 19 is substituted for y, we obtain a true statement. We also say that $(4,19)$ \qquad the equation.
7. The x-coordinate of a point where a graph crosses the x-axis is called a/an \qquad The y-coordinate of such a point is always \qquad .

EXERCISE SET 1.1

Practice Exercises

In Exercises 1-12, plot the given point in a rectangular coordinate system.

1. $(1,4)$
2. $(2,5)$
3. $(-2,3)$
4. $(-1,4)$
5. $(-3,-5)$
6. $(-4,-2)$
7. $(4,-1)$
8. $(3,-2)$
9. $(-4,0)$
10. $(0,-3)$
11. $\left(\frac{7}{2},-\frac{3}{2}\right)$
12. $\left(-\frac{5}{2}, \frac{3}{2}\right)$

Graph each equation in Exercises 13-28. Let $x=-3,-2,-1,0$, 1,2 , and 3.
13. $y=x^{2}-2$
14. $y=x^{2}+2$
15. $y=x-2$
16. $y=x+2$
17. $y=2 x+1$
18. $y=2 x-4$
19. $y=-\frac{1}{2} x$
20. $y=-\frac{1}{2} x+2$
21. $y=2|x|$
22. $y=-2|x|$
23. $y=|x|+1$
24. $y=|x|-1$
25. $y=9-x^{2}$
26. $y=-x^{2}$
27. $y=x^{3}$
28. $y=x^{3}-1$

In Exercises 29-32, match the viewing rectangle with the correct figure. Then label the tick marks in the figure to illustrate this viewing rectangle.
29. $[-5,5,1]$ by $[-5,5,1]$
30. $[-10,10,2]$ by $[-4,4,2]$
31. $[-20,80,10]$ by $[-30,70,10]$
32. $[-40,40,20]$ by $[-1000,1000,100]$
a.

b.

c.

d.

The table of values was generated by a graphing utility with a TABLE feature. Use the table to solve Exercises 33-40.

र	Y1	Yz
-	9	5
-2	4	4
${ }^{-1}$	1	$\stackrel{3}{2}$
1	1	1
$\frac{2}{3}$	4	${ }_{0}^{0}$
3	9	-1

8. The y-coordinate of a point where a graph crosses the y-axis is called a/an \qquad The x-coordinate of such a point is always \qquad -

\qquad
正
.
9. Which equation corresponds to Y_{2} in the table?
a. $y_{2}=x+8$
b. $y_{2}=x-2$
c. $y_{2}=2-x$
d. $y_{2}=1-2 x$
10. Which equation corresponds to Y_{1} in the table?
a. $y_{1}=-3 x$
b. $y_{1}=x^{2}$
c. $y_{1}=-x^{2}$
d. $y_{1}=2-x$
11. Does the graph of Y_{2} pass through the origin?
12. Does the graph of Y_{1} pass through the origin?
13. At which point does the graph of Y_{2} cross the x-axis?
14. At which point does the graph of Y_{2} cross the y-axis?
15. At which points do the graphs of Y_{1} and Y_{2} intersect?
16. For which values of x is $\mathrm{Y}_{1}=\mathrm{Y}_{2}$?

In Exercises 41-46, use the graph to a. determine the x-intercepts, if any; b. determine the y-intercepts, if any. For each graph, tick marks along the axes represent one unit each.
41.

42.

43.

44.

45.

46.

Practice Plus

In Exercises 47-50, write each English sentence as an equation in two variables. Then graph the equation.
47. The y-value is four more than twice the x-value.
48. The y-value is the difference between four and twice the x-value.
49. The y-value is three decreased by the square of the x-value.
50. The y-value is two more than the square of the x-value.

In Exercises 51-54, graph each equation.
51. $y=5$ (Let $x=-3,-2,-1,0,1,2$, and 3.)
52. $y=-1$ (Let $x=-3,-2,-1,0,1,2$, and 3 .)
53. $y=\frac{1}{x}\left(\right.$ Let $x=-2,-1,-\frac{1}{2},-\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, 1$, and 2.)
54. $y=-\frac{1}{x}\left(\right.$ Let $x=-2,-1,-\frac{1}{2},-\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, 1$, and 2 .)

Application Exercises

The graphs show the percentage of high school seniors who used alcohol or marijuana during the 30 days prior to being surveyed for the University of Michigan's Monitoring the Future study.

Source: U.S. Department of Health and Human Services
The data can be described by the following mathematical models:

Use this information to solve Exercises 55-56.
55. a. Use the appropriate line graph to determine the percentage of seniors who used marijuana in 2005.
b. Use the appropriate formula to determine the percentage of seniors who used marijuana in 2005. Does the formula underestimate or overestimate the actual percentage displayed by the graph? By how much?
c. Use the appropriate line graph to estimate the percentage of seniors who used alcohol in 2005.
d. Use the appropriate formula to determine the percentage of seniors who used alcohol in 2005. How does this compare with your estimate in part (c)?
e. For the period from 1980 through 2009 , in which year was marijuana use by seniors at a minimum? Estimate the percentage of seniors who used marijuana in that year.
56. a. Use the appropriate line graph to determine the percentage of seniors who used alcohol in 2000.
b. Use the appropriate formula to determine the percentage of seniors who used alcohol in 2000. Does the formula underestimate or overestimate the actual percentage displayed by the graph? By how much?
c. Use the appropriate line graph to estimate the percentage of seniors who used marijuana in 2000.
d. Use the appropriate formula to determine the percentage of seniors who used marijuana in 2000. How does this compare with your estimate in part (c)?
e. For the period from 1980 through 2009, in which year was alcohol use by seniors at a maximum? Estimate the percentage of seniors who used alcohol in that year.

Contrary to popular belief, older people do not need less sleep than younger adults. However, the line graphs show that they awaken more often during the night. The numerous awakenings are one reason why some elderly individuals report that sleep is less restful than it had been in the past. Use the line graphs to solve Exercises 57-60.

Source: Stephen Davis and Joseph Palladino, Psychology, 5th Edition, Prentice Hall, 2007.
57. At which age, estimated to the nearest year, do women have the least number of awakenings during the night? What is the average number of awakenings at that age?
58. At which age do men have the greatest number of awakenings during the night? What is the average number of awakenings at that age?
59. Estimate, to the nearest tenth, the difference between the average number of awakenings during the night for 25-yearold men and 25-year-old women.
60. Estimate, to the nearest tenth, the difference between the average number of awakenings during the night for 18 -yearold men and 18-year-old women.

Writing in Mathematics

61. What is the rectangular coordinate system?
62. Explain how to plot a point in the rectangular coordinate system. Give an example with your explanation.
63. Explain why $(5,-2)$ and $(-2,5)$ do not represent the same point.
64. Explain how to graph an equation in the rectangular coordinate system.
65. What does a $[-20,2,1]$ by $[-4,5,0.5]$ viewing rectangle mean?

Technology Exercise

66. Use a graphing utility to verify each of your hand-drawn graphs in Exercises 13-28. Experiment with the settings for the viewing rectangle to make the graph displayed by the graphing utility resemble your hand-drawn graph as much as possible.

Critical Thinking Exercises

Make Sense? In Exercises 67-70, determine whether each statement makes sense or does not make sense, and explain your reasoning.
67. The rectangular coordinate system provides a geometric picture of what an equation in two variables looks like.
68. There is something wrong with my graphing utility because it is not displaying numbers along the x - and y-axes.
69. I used the ordered pairs $(-2,2),(0,0)$, and $(2,2)$ to graph a straight line.
70. I used the ordered pairs
(time of day, calories that I burned)
to obtain a graph that is a horizontal line.
In Exercises 71-74, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
71. If the product of a point's coordinates is positive, the point must be in quadrant I.
72. If a point is on the x-axis, it is neither up nor down, so $x=0$.
73. If a point is on the y-axis, its x-coordinate must be 0 .
74. The ordered pair $(2,5)$ satisfies $3 y-2 x=-4$.

In Exercises 75-78, list the quadrant or quadrants satisfying each condition.
75. $x y>0$
76. $\frac{y}{x}<0$
77. $x^{3}>0$ and $y^{3}<0$
78. $x^{3}<0$ and $y^{3}>0$

In Exercises 79-82, match the story with the correct figure. The figures are labeled (a), (b), (c), and (d).
79. As the blizzard got worse, the snow fell harder and harder.
80. The snow fell more and more softly.
81. It snowed hard, but then it stopped. After a short time, the snow started falling softly.
82. It snowed softly, and then it stopped. After a short time, the snow started falling hard.
a.

b.

c.

d.

In Exercises 83-86, select the graph that best illustrates each story.
83. An airplane flew from Miami to San Francisco.
a.

b.

c.

d.

84. At noon, you begin to breathe in.
a.

b.

c.

d.

85. Measurements are taken of a person's height from birth to age 100.
a.

b.

c.

d.

86. You begin your bike ride by riding down a hill. Then you ride up another hill. Finally, you ride along a level surface before coming to a stop.
a.

b.

c.

d.

Preview Exercises

Exercises 87-89 will help you prepare for the material covered in the first section of the next chapter.
87. Here are two sets of ordered pairs:

$$
\begin{aligned}
& \text { set } 1:\{(1,5),(2,5)\} \\
& \text { set } 2:\{(5,1),(5,2)\} .
\end{aligned}
$$

In which set is each x-coordinate paired with only one y-coordinate?
88. Graph $y=2 x$ and $y=2 x+4$ in the same rectangular coordinate system. Select integers for x, starting with -2 and ending with 2 .
89. Use the following graph to solve this exercise.

a. What is the y-coordinate when the x-coordinate is 2 ?
b. What are the x-coordinates when the y-coordinate is 4 ?
c. Describe the x-coordinates of all points on the graph.
d. Describe the y-coordinates of all points on the graph.

SECTION 1.2

Objectives

(1) Find the domain and range of a relation.
(2) Determine whether a relation is a function.
(3) Determine whether an equation represents a function.
(4) Evaluate a function.
(5) Graph functions by plotting points.
6 Use the vertical line test to identify functions.
(7) Obtain information about a function from its graph.
8 Identify the domain and range of a function from its graph.
(9) Identify intercepts from a function's graph.

Find the domain and range of a relation.

Basics of Functions and Their Graphs

Magnified 6000 times, this color-scanned image shows a T-lymphocyte blood cell (green) infected with the HIV virus (red). Depletion of the number of T cells causes destruction of the immune system.

The average number of T cells in a person with HIV is a function of time after infection. In this section, you will be introduced to the basics of functions and their graphs. We will analyze the graph of a function using an example that illustrates the progression of HIV and T cell count. Much of our work in this course will be devoted to the important topic of functions and how they model your world.

Relations

Forbes magazine published a list of the highest-paid TV celebrities between June 2010 and June 2011. The results are shown in Figure 1.13.

Highest Paid TV Celebrities between June 2010 and June 2011

FIGURE 1.13
Source: Forbes
The graph indicates a correspondence between a TV celebrity and that person's earnings, in millions of dollars. We can write this correspondence using a set of ordered pairs:
\{(Winfrey, 315), (Cowell, 80), (McGraw, 80), (DeGeneres, 55), (Seacrest, 51) \}.

The mathematical term for a set of ordered pairs is a relation.

Definition of a Relation

A relation is any set of ordered pairs. The set of all first components of the ordered pairs is called the domain of the relation and the set of all second components is called the range of the relation.

EXAMPLE 1 Finding the Domain and Range of a Relation

Find the domain and range of the relation:
$\{($ Winfrey, 315), (Cowell, 80), (McGraw, 80), (DeGeneres, 55), (Seacrest, 51)\}.

SOLUTION

The domain is the set of all first components. Thus, the domain is

$$
\text { \{Winfrey, Cowell, McGraw, DeGeneres, Seacrest\}. }
$$

The range is the set of all second components. Thus, the range is
$\{315,80,55,51\}$.

Although Cowell and McGraw both earned $\$ 80$ million, it is not necessary to list 80 twice.

$\$$ Check Point 1 Find the domain and range of the relation:
 $$
\{(0,9.1),(10,6.7),(20,10.7),(30,13.2),(40,21.2)\} .
$$

As you worked Check Point 1, did you wonder if there was a rule that assigned the "inputs" in the domain to the "outputs" in the range? For example, for the ordered pair ($30,13.2$), how does the output 13.2 depend on the input 30 ? The ordered pair is based on the data in Figure 1.14(a), which shows the percentage of first-year U.S. college students claiming no religious affiliation.

FIGURE 1.14(a) Data for women and men Source: John Macionis, Sociology, Fourteenth Edition, Pearson, 2012.

FIGURE 1.14(b) Visually representing the relation for the women's data

FIGURE 1.14(b) (repeated)
Visually representing the relation for the women's data

In Figure 1.14(b), we used the data for college women to create the following ordered pairs:

$$
\left(\begin{array}{ll}
\text { years after 1970, } & \begin{array}{l}
\text { percentage of first-year college } \\
\text { women claiming no religious } \\
\text { affiliation }
\end{array}
\end{array}\right)
$$

Consider, for example, the ordered pair $(30,13.2)$.
30 years after 1970,

or in 2000, \quad| 13.2% of first-year college women |
| :---: |
| claimed no religious affiliation. |

The five points in Figure 1.14(b) visually represent the relation formed from the women's data. Another way to visually represent the relation is as follows:

Functions

Table 1.1, based on our earlier discussion, shows the highest-paid TV celebrities and their earnings between June 2010 and June 2011, in millions of dollars. We've used this information to define two relations.

Figure 1.15(a) shows a correspondence between celebrities and their earnings. Figure 1.15(b) shows a correspondence between earnings and celebrities.

FIGURE 1.15(a) Celebrities correspond to earnings.

FIGURE 1.15(b) Earnings correspond to celebrities.

A relation in which each member of the domain corresponds to exactly one member of the range is a function. Can you see that the relation in Figure 1.15(a) is a function? Each celebrity in the domain corresponds to exactly one earnings amount in the range: If we know the celebrity, we can be sure of his or her earnings. Notice that more than one element in the domain can correspond to the same element in the range: Cowell and McGraw both earned $\$ 80$ million.

Is the relation in Figure 1.15(b) a function? Does each member of the domain correspond to precisely one member of the range? This relation is not a function because there is a member of the domain that corresponds to two different members of the range:

$$
(80, \text { Cowell }) \quad(80, \text { McGraw }) .
$$

The member of the domain 80 corresponds to both Cowell and McGraw in the range. If we know that earnings are $\$ 80$ million, we cannot be sure of the celebrity. Because a function is a relation in which no two ordered pairs have the same first component and different second components, the ordered pairs (80, Cowell) and (80, McGraw) are not ordered pairs of a function.

FIGURE 1.16(b)

GREAT QUESTION!

If I reverse a function's components, will this new relation be a function?

If a relation is a function, reversing the components in each of its ordered pairs may result in a relation that is not a function.

Definition of a Function

A function is a correspondence from a first set, called the domain, to a second set, called the range, such that each element in the domain corresponds to exactly one element in the range.

In Check Point 1, we considered a relation that gave a correspondence between years after 1970 and the percentage of first-year college women claiming no religious affiliation. Can you see that this relation is a function?

However, Example 2 illustrates that not every correspondence between sets is a function.

EXAMPLE 2 Determining Whether a Relation Is a Function

Determine whether each relation is a function:
a. $\{(1,6),(2,6),(3,8),(4,9)\}$
b. $\{(6,1),(6,2),(8,3),(9,4)\}$.

SOLUTION

We begin by making a figure for each relation that shows the domain and the range (Figure 1.16).
a. Figure 1.16(a) shows that every element in the domain corresponds to exactly one element in the range. The element 1 in the domain corresponds to the element 6 in the range. Furthermore, 2 corresponds to 6,3 corresponds to 8 , and 4 corresponds to 9 . No two ordered pairs in the given relation have the same first component and different second components. Thus, the relation is a function.
b. Figure 1.16(b) shows that 6 corresponds to both 1 and 2. If any element in the domain corresponds to more than one element in the range, the relation is not a function. This relation is not a function; two ordered pairs have the same first component and different second components.

Different second components

Look at Figure 1.16(a) again. The fact that 1 and 2 in the domain correspond to the same number, 6 , in the range does not violate the definition of a function. A function can have two different first components with the same second component. By contrast, a relation is not a function when two different ordered pairs have the same first component and different second components. Thus, the relation in Figure 1.16(b) is not a function.

0 Check Point 2 Determine whether each relation is a function:
a. $\{(1,2),(3,4),(5,6),(5,8)\}$
b. $\{(1,2),(3,4),(6,5),(8,5)\}$.
(3) Determine whether an equation represents a function.

Functions as Equations

Functions are usually given in terms of equations rather than as sets of ordered pairs. For example, here is an equation that models the percentage of first-year college women claiming no religious affiliation as a function of time:

$$
y=0.014 x^{2}-0.24 x+8.8
$$

The variable x represents the number of years after 1970. The variable y represents the percentage of first-year college women claiming no religious affiliation. The variable y is a function of the variable x. For each value of x, there is one and only one value of y. The variable x is called the independent variable because it can be assigned any value from the domain. Thus, x can be assigned any nonnegative integer representing the number of years after 1970. The variable y is called the dependent variable because its value depends on x. The percentage claiming no religious affiliation depends on the number of years after 1970. The value of the dependent variable, y, is calculated after selecting a value for the independent variable, x.

We have seen that not every set of ordered pairs defines a function. Similarly, not all equations with the variables x and y define functions. If an equation is solved for y and more than one value of y can be obtained for a given x, then the equation does not define y as a function of x.

EXAMPLE 3 Determining Whether an Equation Represents a Function

Determine whether each equation defines y as a function of x :
a. $x^{2}+y=4$
b. $x^{2}+y^{2}=4$.

SOLUTION

Solve each equation for y in terms of x. If two or more values of y can be obtained for a given x, the equation is not a function.

$$
\text { a. } \begin{aligned}
x^{2}+y & =4 & & \text { This is the given equation. } \\
x^{2}+y-x^{2} & =4-x^{2} & & \text { Solve for } y \text { by subtracting } x^{2} \text { from both sides. } \\
y & =4-x^{2} & & \text { Simplify. }
\end{aligned}
$$

From this last equation we can see that for each value of x, there is one and only one value of y. For example, if $x=1$, then $y=4-1^{2}=3$. The equation defines y as a function of x.
b. $\quad x^{2}+y^{2}=4$
$x^{2}+y^{2}-x^{2}=4-x^{2}$
$y^{2}=4-x^{2}$
$y= \pm \sqrt{4-x^{2}} \quad$ Apply the square root property: If $u^{2}=d$, then $u= \pm \sqrt{d}$.

The \pm in this last equation shows that for certain values of x (all values between -2 and 2), there are two values of y. For example, if $x=1$, then $y= \pm \sqrt{4-1^{2}}= \pm \sqrt{3}$. For this reason, the equation does not define y as a function of x.

FIGURE 1.17 A "function machine" with inputs and outputs

GREAT QUESTION!

Doesn't $f(x)$ indicate that I need to multiply f and x ?

The notation $f(x)$ does not mean " f times x." The notation describes the value of the function at x.

FIGURE 1.18 A function machine at work

Function Notation

If an equation in x and y gives one and only one value of y for each value of x, then the variable y is a function of the variable x. When an equation represents a function, the function is often named by a letter such as f, g, h, F, G, or H. Any letter can be used to name a function. Suppose that f names a function. Think of the domain as the set of the function's inputs and the range as the set of the function's outputs. As shown in Figure 1.17, input is represented by x and the output by $f(x)$. The special notation $\boldsymbol{f}(\boldsymbol{x})$, read " f of x " or " f at x," represents the value of the function at the number \boldsymbol{x}.

Let's make this clearer by considering a specific example. We know that the equation

$$
y=0.014 x^{2}-0.24 x+8.8
$$

defines y as a function of x. We'll name the function f. Now, we can apply our new function notation.

Suppose we are interested in finding $f(30)$, the function's output when the input is 30 . To find the value of the function at 30 , we substitute 30 for x. We are evaluating the function at 30 .

$$
\begin{array}{rlrl}
f(x) & =0.014 x^{2}-0.24 x+8.8 & & \text { This is the given function. } \\
f(30) & =0.014(30)^{2}-0.24(30)+8.8 & & \text { Replace each occurrence of } x \text { with } 30 . \\
& =0.014(900)-0.24(30)+8.8 & & \text { Evaluate the exponential expression: } \\
& =12.6-7.2+8.8 & & 30^{2}=30 \cdot 30=900 . \\
f(30) & =14.2 & & \text { Perform the multiplications. } \\
& & \text { Subtract and add from left to right. }
\end{array}
$$

The statement $f(30)=14.2$, read " f of 30 equals 14.2 ," tells us that the value of the function at 30 is 14.2 . When the function's input is 30 , its output is 14.2. Figure $\mathbf{1 . 1 8}$ illustrates the input and output in terms of a function machine.

$$
f(30)=14.2
$$

We have seen that in 2000, 13.2% actually claimed nonaffiliation, so our function that models the data slightly overestimates the percent for 2000.

TECHNOLOGY

Graphing utilities can be used to evaluate functions. The screens below show the evaluation of

$$
f(x)=0.014 x^{2}-0.24 x+8.8
$$

at 30 on a TI-84 Plus graphing calculator. The function f is named Y_{1}.

We used $f(x)=0.014 x^{2}-0.24 x+8.8$ to find $f(30)$. To find other function values, such as $f(40)$ or $f(55)$, substitute the specified input value, 40 or 55 , for x in the function's equation.

If a function is named f and x represents the independent variable, the notation $f(x)$ corresponds to the y-value for a given x. Thus,

$$
f(x)=0.014 x^{2}-0.24 x+8.8 \quad \text { and } \quad y=0.014 x^{2}-0.24 x+8.8
$$

define the same function. This function may be written as

$$
y=f(x)=0.014 x^{2}-0.24 x+8.8
$$

EXAMPLE 4 Evaluating a Function

If $f(x)=x^{2}+3 x+5$, evaluate each of the following:
a. $f(2)$
b. $f(x+3)$
c. $f(-x)$.

SOLUTION

We substitute $2, x+3$, and $-x$ for x in the equation for f. When replacing x with a variable or an algebraic expression, you might find it helpful to think of the function's equation as

$$
f(x)=x^{2}+3 x+5
$$

a. We find $f(2)$ by substituting 2 for x in the equation.

$$
f(2)=2^{2}+3 \cdot 2+5=4+6+5=15
$$

Thus, $f(2)=15$.
b. We find $f(x+3)$ by substituting $x+3$ for x in the equation.

$$
f(x+3)=(x+3)^{2}+3(x+3)+5
$$

Equivalently,

$$
\begin{array}{rlrl}
f(x+3) & =(x+3)^{2}+3(x+3)+5 & & \\
& =x^{2}+6 x+9+3 x+9+5 & & \text { Square } x+3 \text { using } \\
& & (A+B)^{2}=A^{2}+2 A B+B^{2} . \\
& =x^{2}+9 x+23 . & & \text { Distribute } 3 \text { throughout the parentheses. }
\end{array}
$$

c. We find $f(-x)$ by substituting $-x$ for x in the equation.

$$
f(-x)=(-x)^{2}+3(-x)+5
$$

Equivalently,

$$
\begin{aligned}
f(-x) & =(-x)^{2}+3(-x)+5 \\
& =x^{2}-3 x+5
\end{aligned}
$$

5) Graph functions by plotting points.

FIGURE 1.19

Check Point 4 If $f(x)=x^{2}-2 x+7$, evaluate each of the following:
a. $f(-5)$
b. $f(x+4)$
c. $f(-x)$.

Graphs of Functions

The graph of a function is the graph of its ordered pairs. For example, the graph of $f(x)=2 x$ is the set of points (x, y) in the rectangular coordinate system satisfying $y=2 x$. Similarly, the graph of $g(x)=2 x+4$ is the set of points (x, y) in the rectangular coordinate system satisfying the equation $y=2 x+4$. In the next example, we graph both of these functions in the same rectangular coordinate system.

EXAMPLE 5 Graphing Functions

Graph the functions $f(x)=2 x$ and $g(x)=2 x+4$ in the same rectangular coordinate system. Select integers for x, starting with -2 and ending with 2 .

SOLUTION

We begin by setting up a partial table of coordinates for each function. Then we plot the five points in each table and connect them, as shown in Figure 1.19. The graph of each function is a straight line. Do you see a relationship between the two graphs? The graph of g is the graph of f shifted vertically up by 4 units.

\boldsymbol{x}	$f(x)=2 x$	$\begin{gathered} (x, y) \\ \text { or }(x, f(x)) \end{gathered}$	\boldsymbol{x}	$g(x)=2 x+4$	$\begin{gathered} (x, y) \\ \text { or }(x, g(x)) \end{gathered}$
-2	$f(-2)=2(-2)=-4$	$(-2,-4)$	-2	$g(-2)=2(-2)+4=0$	$(-2,0)$
-1	$f(-1)=2(-1)=-2$	$(-1,-2)$	-1	$g(-1)=2(-1)+4=2$	$(-1,2)$
0	$f(0)=2 \cdot 0=0$	$(0,0)$	0	$g(0)=2 \cdot 0+4=4$	$(0,4)$
1	$f(1)=2 \cdot 1=2$	$(1,2)$	1	$g(1)=2 \cdot 1+4=6$	$(1,6)$
$\begin{aligned} & 2 \\ & \Lambda \end{aligned}$	$f(2)=2 \cdot 2=4$	$(2,4)$	2	$g(2)=2 \cdot 2+4=8$	$(2,8)$
Choose x.	Compute $f(x)$ by evaluating f at x.	the ordered pair.		x. Compute $g(x)$ by evaluating g at x.	Form the ordered pair.

The graphs in Example 5 are straight lines. All functions with equations of the form $f(x)=m x+b$ graph as straight lines. Such functions, called linear functions, will be discussed in detail in Section 1.4.

TECHNOLOGY

We can use a graphing utility to check the tables and the graphs in Example 5 for the functions

$$
f(x)=2 x \quad \text { and } \quad g(x)=2 x+4
$$

$$
\begin{gathered}
\text { Enter } y_{1}=2 x \\
\text { in the } y=\text { screen. }
\end{gathered}
$$

Checking Tables

Checking Graphs

We selected this viewing rectangle, or window, to match Figure 1.19.

6 Use the vertical line test to identify functions.

FIGURE $1.20 y$ is not a function of x because 0 is paired with three values of y, namely, 1,0 , and -1 .

The Vertical Line Test

Not every graph in the rectangular coordinate system is the graph of a function. The definition of a function specifies that no value of x can be paired with two or more different values of y. Consequently, if a graph contains two or more different points with the same first coordinate, the graph cannot represent a function. This is illustrated in Figure 1.20. Observe that points sharing a common first coordinate are vertically above or below each other.

This observation is the basis of a useful test for determining whether a graph defines y as a function of x. The test is called the vertical line test.

The Vertical Line Test for Functions

If any vertical line intersects a graph in more than one point, the graph does not define y as a function of x.

EXAMPLE 6 Using the Vertical Line Test

Use the vertical line test to identify graphs in which y is a function of x.
a.

b.

c.

d.

SOLUTION

y is a function of x for the graphs in (b) and (c).
a.

b.

c.

d.

y is not a function of x.
Two values of y correspond to an x-value.

[^2]Check Point 6 Use the vertical line test to identify graphs in which y is a
function of x.
a.

b.

c.

d.

7 Obtain information about a function from its graph.

Obtaining Information from Graphs

You can obtain information about a function from its graph. At the right or left of a graph, you will find closed dots, open dots, or arrows.

- A closed dot indicates that the graph does not extend beyond this point and the point belongs to the graph.
- An open dot indicates that the graph does not extend beyond this point and the point does not belong to the graph.
- An arrow indicates that the graph extends indefinitely in the direction in which the arrow points.

EXAMPLE 7 Analyzing the Graph of a Function

The human immunodeficiency virus, or HIV, infects and kills helper T cells. Because T cells stimulate the immune system to produce antibodies, their destruction disables the body's defenses against other pathogens. By counting the number of T cells that remain active in the body, the progression of HIV can be monitored. The fewer helper T cells, the more advanced the disease. Figure $\mathbf{1 . 2 1}$ shows a graph that is used to monitor the average progression of the disease. The average number of T cells, $f(x)$, is a function of time after infection, x.

FIGURE 1.21
Source: B. E. Pruitt et al., Human Sexuality, Prentice Hall, 2007.
a. Explain why f represents the graph of a function.
b. Use the graph to find $f(8)$.
c. For what value of x is $f(x)=350$?
d. Describe the general trend shown by the graph.

FIGURE 1.22 Finding $f(8)$

SOLUTION

a. No vertical line can be drawn that intersects the graph of f more than once. By the vertical line test, f represents the graph of a function.
b. To find $f(8)$, or f of 8 , we locate 8 on the x-axis. Figure $\mathbf{1 . 2 2}$ shows the point on the graph of f for which 8 is the first coordinate. From this point, we look to the y-axis to find the corresponding y-coordinate. We see that the y-coordinate is 200. Thus,

$$
f(8)=200
$$

When the time after infection is 8 years, the average T cell count is 200 cells per milliliter of blood. (AIDS clinical diagnosis is given at a T cell count of 200 or below.)
c. To find the value of x for which $f(x)=350$, we find the approximate location of 350 on the y-axis. Figure $\mathbf{1 . 2 3}$ shows that there is one point on the graph of f for which 350 is the second coordinate. From this point, we look to the x-axis to find the corresponding x-coordinate. We see that the x-coordinate is 6 . Thus,

$$
f(x)=350 \text { for } x=6
$$

An average T cell count of 350 occurs 6 years after infection.

FIGURE 1.23 Finding x for which $f(x)=350$
d. Figure 1.24 uses voice balloons to describe the general trend shown by the graph.

FIGURE 1.24 Describing changing T cell count over time in a person infected with HIV

$\$$ Check Point 7

a. Use the graph of f in Figure 1.21 on page 163 to find $f(5)$.
b. For what value of x is $f(x)=100$?
c. Estimate the minimum average T cell count during the asymptomatic stage.
8. Identify the domain and range of a function from its graph.

FIGURE 1.26 Domain and range of f

Identifying Domain and Range from a Function's Graph GREAT QUESTION!

I peeked below and saw that you are using interval notation. What should I already know about this notation?
Recall that square brackets indicate endpoints that are included in an interval. Parentheses indicate endpoints that are not included in an interval. Parentheses are always used with ∞ or $-\infty$. For more detail on interval notation, see Section P.9, pages 120-121.

Figure 1.25 illustrates how the graph of a function is used to determine the function's domain and its range.

Domain: set of inputs

Found on the x-axis
Range: set of outputs

Found on the y-axis

FIGURE 1.25 Domain and range of f

Let's apply these ideas to the graph of the function shown in Figure 1.26. To find the domain, look for all the inputs on the x-axis that correspond to points on the graph. Can you see that they extend from -4 to 2 , inclusive? The function's domain can be represented as follows:

Using Set-Builder Notation

Using Interval Notation

To find the range, look for all the outputs on the y-axis that correspond to points on the graph. They extend from 1 to 4, inclusive. The function's range can be represented as follows:

Using Set-Builder Notation

$$
\{y \mid 1 \leq y \leq 4\}
$$

| The set
 of all y such
 that | y is greater than or equal to
 1 and less than or equal to 4. |
| :--- | :--- | :--- |

Using Interval Notation
$[1,4]$.

The square brackets indicate 1 and 4 are included. Note the square brackets on the y-axis in Figure 1.26.

EXAMPLE 8 Identifying the Domain and Range of a Function from Its Graph

Use the graph of each function to identify its domain and its range.

b.

c.

d.

e.

SOLUTION

For the graph of each function, the domain is highlighted in purple on the x-axis and the range is highlighted in green on the y-axis.
a.

Domain $=\{x \mid-2 \leq x \leq 1\}$ or $[-2,1]$
Range $=\{y \mid 0 \leq y \leq 3\}$ or $[0,3]$

GREAT QUESTION!

The range in Example 8(e) was identified as $\{y \mid y=1,2,3\}$. Why didn't you also use interval notation like you did in the other parts of Example 8?
Interval notation is not appropriate for describing a set of distinct numbers such as $\{1,2,3\}$. Interval notation, [1, 3], would mean that numbers such as 1.5 and 2.99 are in the range, but they are not. That's why we only used set-builder notation.
b.

Domain $=\{x \mid-3<x \leq 2\}$ or (-3,2]
Range $=\{y \mid 1<y \leq 2\}$ or (1,2]
d.

Domain $=\{x \mid x \leq 4\}$ or $(-\infty, 4]$
Range $=\{y \mid y \geq 0\}$ or $[0, \infty)$
c.

Domain $=\{x \mid-2 \leq x<1\}$ or $[-2,1)$
Range $=\{y \mid 1 \leq y \leq 5\}$ or $[1,5]$
e.

Domain $=\{x \mid 1 \leq x<4\}$ or $[1,4)$
Range $=\{y \mid y=1,2,3\}$

Check Point 8 Use the graph of each function to identify its domain and its range.

a.

b.

c.

Identifying Intercepts from a Function's Graph

Figure 1.27 illustrates how we can identify intercepts from a function's graph. To find the x-intercepts, look for the points at which the graph crosses the x-axis. There are three such points: $(-2,0),(3,0)$, and $(5,0)$. Thus, the x-intercepts are $-2,3$, and 5 . We express this in function notation by writing $f(-2)=0, f(3)=0$, and $f(5)=0$. We say that $-2,3$, and 5 are the zeros of the function. The zeros of a function f are the x-values for which $f(x)=0$. Thus, the real zeros are the x-intercepts.

To find the y-intercept, look for the point at which the graph crosses the y-axis. This occurs at $(0,3)$. Thus, the y-intercept is 3 . We express this in function notation by writing $f(0)=3$.

By the definition of a function, for each value of x we can have at most one value for y. What does this mean in terms of intercepts? A function can have more than one \boldsymbol{x}-intercept but at most one \boldsymbol{y}-intercept.

FIGURE 1.27 Identifying intercepts

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Any set of ordered pairs is called a/an The set of all first components of the ordered pairs is called the \qquad The set of all second components of the ordered pairs is called the
2. A set of ordered pairs in which each member of the set of first components corresponds to exactly one member of the set of second components is called a/an \qquad
3. The notation $f(x)$ describes the value of \qquad at
4. True or false: $y=x^{2}-1$ defines y as a function of x. \qquad
5. True or false : $y= \pm \sqrt{x^{2}-1}$ defines y as a function of x. \qquad
6. If $f(x)=x^{2}-5 x+4$, we can find $f(x+6)$ by replacing each occurrence of \qquad by \qquad
7. The graph of a function is the graph of its
\qquad -.
8. If any vertical line intersects a graph \qquad , the graph does not define y as a/an \qquad of x.
9. The shaded set of numbers shown on the x-axis can be expressed in interval notation as \qquad This set represents the function's \qquad .

10. The shaded set of numbers shown on the y-axis can be expressed in interval notation as \qquad This set represents the function's \qquad

11. If the x-intercepts of a function are -1 and 3 , then $f(-1)=$ \qquad and $f(3)=$ \qquad The x-intercepts, -1 and 3 , are called the \qquad of the function.
12. True or false: A function can have more than one y-intercept.

EXERCISE SET 1.2

Practice Exercises

In Exercises 1-10, determine whether each relation is a function. Give the domain and range for each relation.

1. $\{(1,2),(3,4),(5,5)\}$
2. $\{(4,5),(6,7),(8,8)\}$
3. $\{(3,4),(3,5),(4,4),(4,5)\}$
4. $\{(5,6),(5,7),(6,6),(6,7)\}$
5. $\{(3,-2),(5,-2),(7,1),(4,9)\}$
6. $\{(10,4),(-2,4),(-1,1),(5,6)\}$
7. $\{(-3,-3),(-2,-2),(-1,-1),(0,0)\}$
8. $\{(-7,-7),(-5,-5),(-3,-3),(0,0)\}$
9. $\{(1,4),(1,5),(1,6)\}$
10. $\{(4,1),(5,1),(6,1)\}$

In Exercises 11-26, determine whether each equation defines y as a function of x.
11. $x+y=16$
12. $x+y=25$
13. $x^{2}+y=16$
14. $x^{2}+y=25$
15. $x^{2}+y^{2}=16$
16. $x^{2}+y^{2}=25$
17. $x=y^{2}$
18. $4 x=y^{2}$
19. $y=\sqrt{x+4}$
20. $y=-\sqrt{x+4}$
21. $x+y^{3}=8$
22. $x+y^{3}=27$
23. $x y+2 y=1$
24. $x y-5 y=1$
25. $|x|-y=2$
26. $|x|-y=5$

In Exercises 27-38, evaluate each function at the given values of the independent variable and simplify
27. $f(x)=4 x+5$
a. $f(6)$
b. $f(x+1)$
c. $f(-x)$
28. $f(x)=3 x+7$
a. $f(4)$
b. $f(x+1)$
c. $f(-x)$
29. $g(x)=x^{2}+2 x+3$
a. $g(-1)$
b. $g(x+5)$
c. $g(-x)$
30. $g(x)=x^{2}-10 x-3$
a. $g(-1)$
b. $g(x+2)$
c. $g(-x)$
31. $h(x)=x^{4}-x^{2}+1$
a. $h(2)$
b. $h(-1)$
c. $h(-x)$
d. $h(3 a)$
32. $h(x)=x^{3}-x+1$
a. $h(3)$
b. $h(-2)$
c. $h(-x)$
d. $h(3 a)$
33. $f(r)=\sqrt{r+6}+3$
a. $f(-6)$
b. $f(10)$
c. $f(x-6)$
34. $f(r)=\sqrt{25-r}-6$
a. $f(16)$
b. $f(-24)$
c. $f(25-2 x)$
35. $f(x)=\frac{4 x^{2}-1}{x^{2}}$
a. $f(2)$
b. $f(-2)$
c. $f(-x)$
36. $f(x)=\frac{4 x^{3}+1}{x^{3}}$
a. $f(2)$
b. $f(-2)$
c. $f(-x)$
37. $f(x)=\frac{x}{|x|}$
a. $f(6)$
b. $f(-6)$
c. $f\left(r^{2}\right)$
38. $f(x)=\frac{|x+3|}{x+3}$
a. $f(5)$
b. $f(-5)$
c. $f(-9-x)$

In Exercises 39-50, graph the given functions, f and g, in the same rectangular coordinate system. Select integers for x, starting with -2 and ending with 2 . Once you have obtained your graphs, describe how the graph of g is related to the graph of f.
39. $f(x)=x, g(x)=x+3$
40. $f(x)=x, g(x)=x-4$
41. $f(x)=-2 x, g(x)=-2 x-1$
42. $f(x)=-2 x, g(x)=-2 x+3$
43. $f(x)=x^{2}, g(x)=x^{2}+1$
44. $f(x)=x^{2}, g(x)=x^{2}-2$
45. $f(x)=|x|, g(x)=|x|-2$
46. $f(x)=|x|, g(x)=|x|+1$
47. $f(x)=x^{3}, g(x)=x^{3}+2$
48. $f(x)=x^{3}, g(x)=x^{3}-1$
49. $f(x)=3, g(x)=5$
50. $f(x)=-1, g(x)=4$

In Exercises 51-54, graph the given square root functions, f and g, in the same rectangular coordinate system. Use the integer values of x given to the right of each function to obtain ordered pairs. Because only nonnegative numbers have square roots that are real numbers, be sure that each graph appears only for values of x that cause the expression under the radical sign to be greater than or equal to zero. Once you have obtained your graphs, describe how the graph of g is related to the graph of f.
51. $f(x)=\sqrt{x} \quad(x=0,1,4,9)$ and $g(x)=\sqrt{x}-1 \quad(x=0,1,4,9)$
52. $f(x)=\sqrt{x} \quad(x=0,1,4,9)$ and $g(x)=\sqrt{x}+2 \quad(x=0,1,4,9)$
53. $f(x)=\sqrt{x} \quad(x=0,1,4,9)$ and $g(x)=\sqrt{x-1} \quad(x=1,2,5,10)$
54. $f(x)=\sqrt{x} \quad(x=0,1,4,9)$ and $g(x)=\sqrt{x+2} \quad(x=-2,-1,2,7)$

In Exercises 55-64, use the vertical line test to identify graphs in which y is a function of x.
55.

56.

57.

59.

63.

In Exercises 65-70, use the graph of f to find each indicated function value.
65. $f(-2)$
66. $f(2)$
67. $f(4)$
68. $f(-4)$
69. $f(-3)$
70. $f(-1)$
60.

61.

62.

64.

Use the graph of g to solve Exercises 71-76.
71. Find $g(-4)$.
72. Find $g(2)$.
73. Find $g(-10)$.
74. Find $g(10)$.
75. For what value of x is $g(x)=1$?
76. For what value of x is $g(x)=-1$?

In Exercises 77-92, use the graph to determine a. the function's domain; \mathbf{b}. the function's range; \mathbf{c}. the x-intercepts, if any; d. the y-intercept, if any; and \mathbf{e}. the missing function values, indicated by question marks, below each graph.
77.

79.

$$
f(-1)=? f(3)=?
$$

81.

$f(3)=$?
83.

$f(4)=$?
85.

$f(-1)=$?
78.

80.

82.

$f(-4)=$?
84.

$f(3)=$?
86.

87.

$f(-4)=$? $f(4)=$?
88.

95. Find $\sqrt{f(-1)-f(0)}-[g(2)]^{2}+f(-2) \div g(2) \cdot g(-1)$.
96. Find $|f(1)-f(0)|-[g(1)]^{2}+g(1) \div f(-1) \cdot g(2)$.

In Exercises 97-98, find $f(-x)-f(x)$ for the given function f. Then simplify the expression.
97. $f(x)=x^{3}+x-5$
98. $f(x)=x^{2}-3 x+7$

Application Exercises

The bar graph shows minimum legal ages for sex and marriage in five selected countries. Use this information to solve Exercises 99-100. (We did not include data for the United States because the legal age of sexual consent varies according to state law. Furthermore, women are allowed to marry younger than men: 16 for women and 18 for men.)

Source: Mitchell Beazley, Snapshot: The Visual Almanac for Our World Today. Octopus Publishing, 2009
99. a. Write a set of five ordered pairs in which countries correspond to the minimum legal age of sexual consent. Each ordered pair should be in the form
(country, minimum legal age of sexual consent).
b. Is the relation in part (a) a function? Explain your answer.
c. Write a set of five ordered pairs in which the minimum legal age of sexual consent corresponds to a country. Each ordered pair should be in the form

> (minimum legal age of sexual consent, country).
d. Is the relation in part (c) a function?
100. a. Write a set of five ordered pairs in which countries correspond to the minimum legal age of marriage with parental consent. Each ordered pair should be in the form
(country, minimum legal age of marriage with parental consent).
b. Is the relation in part (a) a function? Explain your answer.
c. Write a set of five ordered pairs in which the minimum legal age of marriage with parental consent corresponds to a country. Each ordered pair should be in the form

> (minimum legal age of marriage with parental consent, country).
d. Is the relation in part (c) a function?

The bar graph shows your chances of surviving to various ages once you reach 60 .

Chances of 60 -Year-Olds Surviving to Various Ages

Source: National Center for Health Statistics

The functions

$$
\begin{aligned}
f(x) & =-2.9 x+286 \\
\text { and } \quad g(x) & =0.01 x^{2}-4.9 x+370
\end{aligned}
$$

model the chance, as a percent, that a 60-year-old will survive to age x. Use this information to solve Exercises 101-102.
101. a. Find and interpret $f(70)$.
b. Find and interpret $g(70)$.
c. Which function serves as a better model for the chance of surviving to age 70 ?
102. a. Find and interpret $f(90)$.
b. Find and interpret $g(90)$.
c. Which function serves as a better model for the chance of surviving to age 90 ?

The wage gap is used to compare the status of women's earnings relative to men's. The wage gap is expressed as a percent and is calculated by dividing the median, or middlemost, annual earnings for women by the median annual earnings for men. The bar graph shows the wage gap for selected years from 1980 through 2010.

Source: Bureau of Labor Statistics
The function $G(x)=-0.01 x^{2}+x+60$ models the wage gap, as a percent, x years after 1980. The graph of function G is shown to the right of the actual data. Use this information to solve Exercises 103-104.
103. a. Find and interpret $G(30)$. Identify this information as a point on the graph of the function.
b. Does $G(30)$ overestimate or underestimate the actual data shown by the bar graph? By how much?
104. a. Find and interpret $G(10)$. Identify this information as a point on the graph of the function.
b. Does $G(10)$ overestimate or underestimate the actual data shown by the bar graph? By how much?

In Exercises 105-108, you will be developing functions that model given conditions.

105. A company that manufactures bicycles has a fixed cost of $\$ 100,000$. It costs $\$ 100$ to produce each bicycle. The total cost for the company is the sum of its fixed cost and variable costs. Write the total cost, C, as a function of the number of bicycles produced, x. Then find and interpret $C(90)$.
106. A car was purchased for $\$ 22,500$. The value of the car decreased by $\$ 3200$ per year for the first six years. Write a function that describes the value of the car, V, after x years, where $0 \leq x \leq 6$. Then find and interpret $V(3)$.
107. You commute to work a distance of 40 miles and return on the same route at the end of the day. Your average rate on the return trip is 30 miles per hour faster than your average rate on the outgoing trip. Write the total time, T, in hours, devoted to your outgoing and return trips as a function of your rate on the outgoing trip, x. Then find and interpret $T(30)$. Hint:

$$
\text { Time traveled }=\frac{\text { Distance traveled }}{\text { Rate of travel }}
$$

108. A chemist working on a flu vaccine needs to mix a 10% sodium-iodine solution with a 60% sodium-iodine solution to obtain a 50 -milliliter mixture. Write the amount of sodium iodine in the mixture, S, in milliliters, as a function of the number of milliliters of the 10% solution used, x. Then find and interpret $S(30)$.

Writing in Mathematics

109. What is a relation? Describe what is meant by its domain and its range.
110. Explain how to determine whether a relation is a function. What is a function?
111. How do you determine if an equation in x and y defines y as a function of x ?
112. Does $f(x)$ mean f times x when referring to a function f ? If not, what does $f(x)$ mean? Provide an example with your explanation.
113. What is the graph of a function?
114. Explain how the vertical line test is used to determine whether a graph represents a function.
115. Explain how to identify the domain and range of a function from its graph.
116. For people filing a single return, federal income tax is a function of adjusted gross income because for each value of adjusted gross income there is a specific tax to be paid. By contrast, the price of a house is not a function of the lot size on which the house sits because houses on same-sized lots can sell for many different prices.
a. Describe an everyday situation between variables that is a function.
b. Describe an everyday situation between variables that is not a function.

Technology Exercise

117. Use a graphing utility to verify any five pairs of graphs that you drew by hand in Exercises 39-54.

Critical Thinking Exercises

Make Sense? In Exercises 118-121, determine whether each statement makes sense or does not make sense, and explain your reasoning.
118. My body temperature is a function of the time of day.
119. Using $f(x)=3 x+2$, I found $f(50)$ by applying the distributive property to $(3 x+2) 50$.
120. I graphed a function showing how paid vacation days depend on the number of years a person works for a company. The domain was the number of paid vacation days.
121. I graphed a function showing how the average number of annual physician visits depends on a person's age. The domain was the average number of annual physician visits.
Use the graph of f to determine whether each statement in
Exercises 122-125 is true or false.

122. The domain of f is $[-4,-1) \cup(-1,4]$.
123. The range of f is $[-2,2]$.
124. $f(-1)-f(4)=2$
125. $f(0)=2.1$
126. If $f(x)=3 x+7$, find $\frac{f(a+h)-f(a)}{h}$.
127. Give an example of a relation with the following characteristics: The relation is a function containing two ordered pairs. Reversing the components in each ordered pair results in a relation that is not a function.
128. If $f(x+y)=f(x)+f(y)$ and $f(1)=3$, find $f(2), f(3)$, and $f(4)$. Is $f(x+y)=f(x)+f(y)$ for all functions?

Preview Exercises

Exercises 129-131 will help you prepare for the material covered in the next section.
129. The function $C(t)=20+0.40(t-60)$ describes the monthly cost, $C(t)$, in dollars, for a cellphone plan for t calling minutes, where $t>60$. Find and interpret $C(100)$.
130. Use point plotting to graph $f(x)=x+2$ if $x \leq 1$.
131. Simplify: $2(x+h)^{2}+3(x+h)+5-\left(2 x^{2}+3 x+5\right)$.

SECTION 1.3
 More on Functions and Their Graphs

Objectives

(1) Identify intervals on which a function increases, decreases, or is constant.
(2) Use graphs to locate relative maxima or minima.
(3) Identify even or odd functions and recognize their symmetries.
4. Understand and use piecewise functions.
(5) Find and simplify a function's difference quotient.

FIGURE 1.28
Source: U.S. Department of Transportation

You are probably familiar with the words used to describe the graph in Figure 1.28:

In this section, you will enhance your intuitive understanding of ways of describing graphs by viewing these descriptions from the perspective of functions.
(1) Identify intervals on which a function increases, decreases, or is constant.

Increasing and Decreasing Functions

Too late for that flu shot now! It's only 8 a.m. and you're feeling lousy. Your temperature is $101^{\circ} \mathrm{F}$. Fascinated by the way that algebra models the world (your author is projecting a bit here), you decide to construct graphs showing your body temperature as a function of the time of day. You decide to let x represent the number of hours after 8 A.м. and $f(x)$ your temperature at time x.

At 8 a.m. your temperature is $101^{\circ} \mathrm{F}$ and you are not feeling well. However, your temperature starts to decrease. It reaches normal $\left(98.6^{\circ} \mathrm{F}\right)$ by 11 A.m. Feeling energized, you construct the graph shown on the right, indicating decreasing temperature for $\{x \mid 0<x<3\}$, or on the interval $(0,3)$.

Did creating that first graph drain you of your energy? Your temperature starts to rise after 11 A.M. By 1 P.M., 5 hours after 8 A.M., your temperature reaches 100° F. However, you keep plotting points on your graph. At the right, we can see that your temperature increases for $\{x \mid 3<x<5\}$, or on the interval $(3,5)$.

The graph of f is decreasing to the left of $x=3$ and increasing to the right of $x=3$. Thus, your temperature 3 hours after 8 A.M. was at its lowest point. Your relative minimum temperature was 98.6°.

By 3 p.м., your temperature is no worse than it was at 1 p.м.: It is still $100^{\circ} \mathrm{F}$. (Of course, it's no better, either.) Your temperature remained the same, or constant, for $\{x \mid 5<x<7\}$, or on the interval (5, 7).

The time-temperature flu scenario illustrates that a function f is increasing when its graph rises from left to right, decreasing when its graph falls from left to right, and remains constant when it neither rises nor falls. Let's now provide a more precise algebraic description for these intuitive concepts.

Temperature remains constant at 100° on $(5,7)$.

Increasing, Decreasing, and Constant Functions

1. A function is increasing on an open interval, I, if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ for any x_{1} and x_{2} in the interval.
2. A function is decreasing on an open interval, I, if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ for any x_{1} and x_{2} in the interval.
3. A function is constant on an open interval, I, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for any x_{1} and x_{2} in the interval.

GREAT QUESTION!

Do you use \boldsymbol{x}-coordinates or y-coordinates when describing where functions increase, decrease, or are constant?
The open intervals describing where functions increase, decrease, or are constant use x-coordinates and not y-coordinates. Furthermore, points are not used in these descriptions.

2 Use graphs to locate relative maxima or minima.

EXAMPLE 1 Intervals on Which a Function Increases, Decreases,

 or Is ConstantState the intervals on which each given function is increasing, decreasing, or constant.
a.

b.

SOLUTION

a. The function is decreasing on the interval $(-\infty, 0)$, increasing on the interval $(0,2)$, and decreasing on the interval $(2, \infty)$.
b. Although the function's equations are not given, the graph indicates that the function is defined in two pieces. The part of the graph to the left of the y-axis shows that the function is constant on the interval $(-\infty, 0)$. The part to the right of the y-axis shows that the function is increasing on the interval ($0, \infty$).

Relative Maxima and Relative Minima

The points at which a function changes its increasing or decreasing behavior can be used to find any relative maximum or relative minimum values of the function.

Definitions of Relative Maximum and Relative Minimum

1. A function value $f(a)$ is a relative maximum of f if there exists an open interval containing a such that $f(a)>f(x)$ for all $x \neq a$ in the open interval.
2. A function value $f(b)$ is a relative minimum of f if there exists an open interval containing b such that $f(b)<f(x)$ for all $x \neq b$ in the open interval.

The word local is sometimes used instead of relative when describing maxima or minima.

FIGURE 1.29 Using a graph to locate where a function has a relative maximum or minimum
3. Identify even or odd functions and recognize their symmetries.

FIGURE 1.30 To most people, an attractive face is one in which each half is an almost perfect mirror image of the other half.

GREAT QUESTION!

What's the difference between where a function has a relative maximum or minimum and the relative maximum or minimum?

- If $f(a)$ is greater than all other values of f near a, then f has a relative maximum at the input value, a. The relative maximum is the output value, $f(a)$. Equivalently, $f(a)$ is a relative maximum value of the function.
- If $f(b)$ is less than all other values of f near b, then f has a relative minimum at the input value, b. The relative minimum is the output value, $f(b)$. Equivalently, $f(b)$ is a relative minimum value of the function.

If the graph of a function is given, we can often visually locate the number(s) at which the function has a relative maximum or a relative minimum. For example, the graph of f in Figure 1.29 shows that

- f has a relative maximum at $\frac{\pi}{2}$.

The relative maximum is $f\left(\frac{\pi}{2}\right)=1$.

- f has a relative minimum at $-\frac{\pi}{2}$.

The relative minimum is $f\left(-\frac{\pi}{2}\right)=-1$.
Notice that f does not have a relative maximum or minimum at $-\pi, 0$, and π, the x-intercepts, or zeros, of the function.

Even and Odd Functions and Symmetry

Is beauty in the eye of the beholder? Or are there certain objects (or people) that are so well balanced and proportioned that they are universally pleasing to the eye? What constitutes an attractive human face? In Figure 1.30, we've drawn lines between paired features and marked the midpoints. Notice how the features line up almost perfectly. Each half of the face is a mirror image of the other half through the white vertical line.

Did you know that graphs of some equations exhibit exactly the kind of symmetry shown by the attractive face in Figure 1.30? The word symmetry comes from the Greek symmetria, meaning "the same measure." We can identify a function whose graph has symmetry by looking at the function's equation and determining if the function is even or odd.

Definitions of Even and Odd Functions

The function f is an even function if

$$
f(-x)=f(x) \quad \text { for all } x \text { in the domain of } f
$$

The right side of the equation of an even function does not change if x is replaced with $-x$.

The function f is an odd function if

$$
f(-x)=-f(x) \quad \text { for all } x \text { in the domain of } f
$$

Every term on the right side of the equation of an odd function changes sign if x is replaced with $-x$.

EXAMPLE 2 Identifying Even or Odd Functions

Determine whether each of the following functions is even, odd, or neither:
a. $f(x)=x^{3}-6 x$
b. $g(x)=x^{4}-2 x^{2}$
c. $h(x)=x^{2}+2 x+1$.

SOLUTION

In each case, replace x with $-x$ and simplify. If the right side of the equation stays the same, the function is even. If every term on the right side changes sign, the function is odd.
a. We use the given function's equation, $f(x)=x^{3}-6 x$, to find $f(-x)$.

Use $f(x)=x^{3}-6 x$.

Replace x with $-x$.

$$
f(-x)=(-x)^{3}-6(-x)=(-x)(-x)(-x)-6(-x)=-x^{3}+6 x
$$

There are two terms on the right side of the given equation, $f(x)=x^{3}-6 x$, and each term changed sign when we replaced x with $-x$. Because $f(-x)=-f(x), f$ is an odd function.
b. We use the given function's equation, $g(x)=x^{4}-2 x^{2}$, to find $g(-x)$.

Use $g(x)=x^{4}-2 x^{2}$.
Replace x with $-x$.

$$
\begin{aligned}
g(-x)=(-x)^{4}-2(-x)^{2} & =(-x)(-x)(-x)(-x)-2(-x)(-x) \\
& =x^{4}-2 x^{2}
\end{aligned}
$$

The right side of the equation of the given function, $g(x)=x^{4}-2 x^{2}$, did not change when we replaced x with $-x$. Because $g(-x)=g(x), g$ is an even function.
c. We use the given function's equation, $h(x)=x^{2}+2 x+1$, to find $h(-x)$.

Use $h(x)=x^{2}+2 x+1$.
Replace x with $-x$.

$$
h(-x)=(-x)^{2}+2(-x)+1=x^{2}-2 x+1
$$

The right side of the equation of the given function, $h(x)=x^{2}+2 x+1$, changed when we replaced x with $-x$. Thus, $h(-x) \neq h(x)$, so h is not an even function. The sign of each of the three terms in the equation for $h(x)$ did not change when we replaced x with $-x$. Only the second term changed signs. Thus, $h(-x) \neq-h(x)$, so h is not an odd function. We conclude that h is neither an even nor an odd function.

FIGURE $1.31 y$-axis symmetry with $f(-x)=f(x)$

Now, let's see what even and odd functions tell us about a function's graph. Begin with the even function $f(x)=x^{2}-4$, shown in Figure 1.31. The function is even because

$$
f(-x)=(-x)^{2}-4=x^{2}-4=f(x)
$$

Examine the pairs of points shown, such as $(3,5)$ and $(-3,5)$. Notice that we obtain the same y-coordinate whenever we evaluate the function at a value of x and the value of its opposite, $-x$. Like the attractive face, each half of the graph is a mirror image of the other half through the y-axis. If we were to fold the paper along the y-axis, the two halves of the graph would coincide. This is what it means for the graph to be symmetric with respect to the y-axis. A graph is symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph. All even functions have graphs with this kind of symmetry.

FIGURE 1.32 Origin symmetry with $f(-x)=-f(x)$

Understand and use piecewise functions.

FIGURE 1.33

Even Functions and y-Axis Symmetry

The graph of an even function in which $f(-x)=f(x)$ is symmetric with respect to the y-axis.

Now, consider the graph of the function $f(x)=x^{3}$, shown in Figure 1.32. The function is odd because

$$
f(-x)=(-x)^{3}=(-x)(-x)(-x)=-x^{3}=-f(x) .
$$

Although the graph in Figure $\mathbf{1 . 3 2}$ is not symmetric with respect to the y-axis, it is symmetric in another way. Look at the pairs of points, such as $(2,8)$ and $(-2,-8)$. For each point (x, y) on the graph, the point $(-x,-y)$ is also on the graph. The points $(2,8)$ and $(-2,-8)$ are reflections of one another through the origin. This means that the origin is the midpoint of the line segment connecting the points.

A graph is symmetric with respect to the origin if, for every point (x, y) on the graph, the point $(-x,-y)$ is also on the graph. Observe that the first- and thirdquadrant portions of $f(x)=x^{3}$ are reflections of one another with respect to the origin. Notice that $f(x)$ and $f(-x)$ have opposite signs, so that $f(-x)=-f(x)$. All odd functions have graphs with origin symmetry.

Odd Functions and Origin Symmetry

The graph of an odd function in which $f(-x)=-f(x)$ is symmetric with respect to the origin.

Piecewise Functions

A cellphone company offers the following plan:

- $\$ 20$ per month buys 60 minutes.
- Additional time costs $\$ 0.40$ per minute.

We can represent this plan mathematically by writing the total monthly cost, C, as a function of the number of calling minutes, t.

$$
\left.\begin{array}{c}
C(t)=\left\{\begin{array}{l|l}
20 & \text { if } 0 \leq t \leq 60 \\
20+0.40(t-60) & \text { if } t>60
\end{array}\right. \\
\begin{array}{c}
\text { The cost is } \$ 20 \text { for up to and } \\
\text { including } 60 \text { calling minutes. }
\end{array} \\
\text { The cost is } \$ 20 \text { plus } \$ 0.40 \\
\text { per minute for additional time } \\
\text { for more than } 60 \text { calling } \\
\text { minutes. }
\end{array}\right\}
$$

A function that is defined by two (or more) equations over a specified domain is called a piecewise function. Many cellphone plans can be represented with piecewise functions. The graph of the piecewise function described above is shown in Figure 1.33.

EXAMPLE 3 Evaluating a Piecewise Function

Use the function that describes the cellphone plan

$$
C(t)= \begin{cases}20 & \text { if } 0 \leq t \leq 60 \\ 20+0.40(t-60) & \text { if } t>60\end{cases}
$$

to find and interpret each of the following:
a. $C(30)$
b. $C(100)$.

SOLUTION

a. To find $C(30)$, we let $t=30$. Because 30 lies between 0 and 60 , we use the first line of the piecewise function.

$$
\begin{aligned}
C(t)=20 & \text { This is the function's equation for } 0 \leq t \leq 60 . \\
C(30)=20 & \text { Replace } t \text { with 30. Regardless of this function's } \\
& \text { input, the constant output is } 20 .
\end{aligned}
$$

This means that with 30 calling minutes, the monthly cost is $\$ 20$. This can be visually represented by the point $(30,20)$ on the first piece of the graph in Figure 1.33.
b. To find $C(100)$, we let $t=100$. Because 100 is greater than 60 , we use the second line of the piecewise function.

$$
\begin{aligned}
C(t) & =20+0.40(t-60) & & \text { This is the function's equation for } t>60 . \\
C(100) & =20+0.40(100-60) & & \text { Replace } t \text { with } 100 . \\
& =20+0.40(40) & & \text { Subtract within parentheses: } 100-60=40 . \\
& =20+16 & & \text { Multiply: } 0.40(40)=16 . \\
& =36 & & \text { Add: } 20+16=36 .
\end{aligned}
$$

Thus, $C(100)=36$. This means that with 100 calling minutes, the monthly cost is $\$ 36$. This can be visually represented by the point $(100,36)$ on the second piece of the graph in Figure 1.33.
$\$$ Check Point 3 Use the function in Example 3 to find and interpret each of the following:
a. $C(40)$
b. $C(80)$.

Identify your solutions by points on the graph in Figure 1.33.

EXAMPLE 4 Graphing a Piecewise Function

Graph the piecewise function defined by

$$
f(x)=\left\{\begin{array}{lll}
x+2 & \text { if } & x \leq 1 \\
4 & \text { if } & x>1 .
\end{array}\right.
$$

SOLUTION

We graph f in two parts, using a partial table of coordinates to create each piece. The tables of coordinates and the completed graph are shown in Figure 1.34.

Graph $f(x)=4$ for $x>1$. Domain $=(1, \infty)$

\boldsymbol{x} $(\boldsymbol{x}>\mathbf{1})$	$\boldsymbol{f}(\boldsymbol{x})=\mathbf{4}$	$(\boldsymbol{x}, \boldsymbol{f (x))}$
1.5	$f(1.5)=4$	$(1.5,4)$
2	$f(2)=4$	$(2,4)$
3	$f(3)=4$	$(3,4)$
4	$f(4)=4$	$(4,4)$
5	$f(5)=4$	$(5,4)$

$$
\begin{gathered}
\text { Graph } f(x)=x+2 \text { for } x \leq 1 . \\
\text { Domain }=(-\infty, 1]
\end{gathered}
$$

\boldsymbol{x} $(\boldsymbol{x} \leq \mathbf{1})$	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{2}$	$(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$
1	$f(1)=1+2=3$	$(1,3)$
0	$f(0)=0+2=2$	$(0,2)$
-1	$f(-1)=-1+2=1$	$(-1,1)$
-2	$f(-2)=-2+2=0$	$(-2,0)$
-3	$f(-3)=-3+2=-1$	$(-3,-1)$
-4	$f(-4)=-4+2=-2$	$(-4,-2)$

Is my graph ok?

No. You incorrectly ignored the domain for each piece of the function and graphed each equation as if its domain was $(-\infty, \infty)$.

When I graphed the function in

 Example 4, here's what I got: (∞, ∞)

FIGURE 1.34 (repeated)

FIGURE 1.35 The graph of the greatest integer function
(5) Find and simplify a function's
difference quotient.

We can use the graph of the piecewise function in Figure 1.34 to find the range of f. The range of the blue piece on the left is $\{y \mid y \leq 3\}$. The range of the red horizontal piece on the right is $\{y \mid y=4\}$. Thus, the range of f is

$$
\{y \mid y \leq 3\} \cup\{y \mid y=4\}, \text { or }(-\infty, 3] \cup\{4\}
$$

W Check Point 4 Graph the piecewise function defined by

$$
f(x)= \begin{cases}3 & \text { if } \quad x \leq-1 \\ x-2 & \text { if } \quad x>-1\end{cases}
$$

Some piecewise functions are called step functions because their graphs form discontinuous steps. One such function is called the greatest integer function, symbolized by $\operatorname{int}(x)$ or $\llbracket x \rrbracket$, where

$$
\operatorname{int}(x)=\text { the greatest integer that is less than or equal to } x
$$

For example,

$$
\operatorname{int}(1)=1, \quad \operatorname{int}(1.3)=1, \quad \operatorname{int}(1.5)=1, \quad \operatorname{int}(1.9)=1
$$

1 is the greatest integer that is less than or equal to $1,1.3,1.5$, and 1.9 .
Here are some additional examples:

$$
\operatorname{int}(2)=2, \quad \operatorname{int}(2.3)=2, \quad \operatorname{int}(2.5)=2, \quad \operatorname{int}(2.9)=2
$$

2 is the greatest integer that is less than or equal to 2, 2.3, 2.5, and 2.9.
Notice how we jumped from 1 to 2 in the function values for $\operatorname{int}(x)$. In particular,

$$
\begin{aligned}
& \text { If } 1 \leq x<2, \quad \text { then } \quad \operatorname{int}(x)=1 \\
& \text { If } 2 \leq x<3, \quad \text { then } \quad \operatorname{int}(x)=2
\end{aligned}
$$

The graph of $f(x)=\operatorname{int}(x)$ is shown in Figure 1.35. The graph of the greatest integer function jumps vertically one unit at each integer. However, the graph is constant between each pair of consecutive integers. The rightmost horizontal step shown in the graph illustrates that

$$
\text { If } 5 \leq x<6, \text { then } \operatorname{int}(x)=5
$$

In general,

$$
\text { If } n \leq x<n+1 \text {, where } n \text { is an integer, then } \operatorname{int}(x)=n
$$

Functions and Difference Quotients

In Section 1.5, we will be studying the average rate of change of a function. A ratio, called the difference quotient, plays an important role in understanding the rate at which functions change.

Definition of the Difference Quotient of a Function

The expression

$$
\frac{f(x+h)-f(x)}{h}
$$

for $h \neq 0$ is called the difference quotient of the function f.

EXAMPLE 5 Evaluating and Simplifying a Difference Quotient

If $f(x)=2 x^{2}-x+3$, find and simplify each expression:
a. $f(x+h)$
b. $\frac{f(x+h)-f(x)}{h}, h \neq 0$.

SOLUTION

a. We find $f(x+h)$ by replacing x with $x+h$ each time that x appears in the equation.

$f(x)$	$=2 x^{2}-\quad x$	+3	
Replace x with $x+h$.	Replace x with $x+h$.	Replace x with $x+h$.	Copy the 3. There is no x in this term.
$f(x+h)$	$=2(x+h)^{2}-(x+h) \quad+3$		
	$=2\left(x^{2}+2 x h+h^{2}\right)-x-h+3$		
	$=2 x^{2}+4 x h+2 h^{2}-x-h+3$		

b. Using our result from part (a), we obtain the following:

$\$$ Check Point 5 If $f(x)=-2 x^{2}+x+5$, find and simplify each expression:
a. $f(x+h)$
b. $\frac{f(x+h)-f(x)}{h}, h \neq 0$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Assume that f is a function defined on an open interval I and x_{1} and x_{2} are any elements in the interval I. f is increasing on I if $f\left(x_{1}\right)$ \qquad when $x_{1}<x_{2}$. f is decreasing on I if $f\left(x_{1}\right)$ \qquad when $x_{1}<x_{2}$. f is constant on I if $f\left(x_{1}\right)$ \qquad
2. If $f(a)>f(x)$ in an open interval containing $a, x \neq a$, then the function value $f(a)$ is a relative \qquad of f. If $f(b)<f(x)$ in an open interval containing $b, x \neq b$, then the function value $f(b)$ is a relative \qquad of f.
3. If f is an even function, then $f(-x)=\ldots$. Such a function is symmetric with respect to the
4. If f is an odd function, then $f(-x)=$ \qquad .The graph of such a function is symmetric with respect to the \qquad
5. A function defined by two or more equations over a specified domain is called a/an \qquad function.
6. The greatest integer function is defined by $\operatorname{int}(x)=$ the greatest integer that is
For example, $\operatorname{int}(2.5)=\ldots, \operatorname{int}(-2.5)=_$, and $\operatorname{int}(0.5)=$
7. The expression

$$
\frac{f(x+h)-f(x)}{h}, h \neq 0,
$$

is called the \qquad of the function f. We find this expression by replacing x with \qquad each time x appears in the function's equation. Then we subtract \qquad After simplifying, we factor ___ from the numerator and divide out identical factors of \qquad in the numerator and denominator.
8. True or false: $f(x+h)=f(x)+h$
9. True or false: $f(x+h)=f(x)+f(h)$

EXERCISE SET 1.3

Practice Exercises

In Exercises 1-12, use the graph to determine
a. intervals on which the function is increasing, if any.
b. intervals on which the function is decreasing, if any.
c. intervals on which the function is constant, if any.
1.

2.

3.

4.

5.

7.

9.

6.

8.

10.

11.

12.

In Exercises 13-16, the graph of a function f is given. Use the graph to find each of the following:
a. The numbers, if any, at which f has a relative maximum. What are these relative maxima?
b. The numbers, if any, at which f has a relative minimum. What are these relative minima?
13.

14.

15.
$f(x)=2 x^{3}+3 x^{2}-12 x+1$

$[-4,4,1]$ by $[-15,25,5]$
16. $f(x)=2 x^{3}-15 x^{2}+24 x+19$

$[-2,6,1]$ by $[-15,35,5]$

In Exercises 17-28, determine whether each function is even, odd, or neither.
17. $f(x)=x^{3}+x$
18. $f(x)=x^{3}-x$
19. $g(x)=x^{2}+x$
20. $g(x)=x^{2}-x$
21. $h(x)=x^{2}-x^{4}$
22. $h(x)=2 x^{2}+x^{4}$
23. $f(x)=x^{2}-x^{4}+1$
24. $f(x)=2 x^{2}+x^{4}+1$
25. $f(x)=\frac{1}{5} x^{6}-3 x^{2}$
26. $f(x)=2 x^{3}-6 x^{5}$
27. $f(x)=x \sqrt{1-x^{2}}$
28. $f(x)=x^{2} \sqrt{1-x^{2}}$

In Exercises 29-32, use possible symmetry to determine whether each graph is the graph of an even function, an odd function, or a function that is neither even nor odd.
29.

30.

31.

32.

33. Use the graph of f to determine each of the following. Where applicable, use interval notation.

a. the domain of f
b. the range of f
c. the x-intercepts
d. the y-intercept
e. intervals on which f is increasing
f. intervals on which f is decreasing
g. intervals on which f is constant
h. the number at which f has a relative minimum
i. the relative minimum of f
j. $f(-3)$
k. the values of x for which $f(x)=-2$
I. Is f even, odd, or neither?
34. Use the graph of f to determine each of the following. Where applicable, use interval notation.

i. the relative maxima of f
j. $f(-2)$
k. the values of x for which $f(x)=0$

1. Is f even, odd, or neither?
2. Use the graph of f to determine each of the following. Where applicable, use interval notation.

a. the domain of f
b. the range of f
c. the zeros of f
d. $f(0)$
e. intervals on which f is increasing
f. intervals on which f is decreasing
g. values of x for which $f(x) \leq 0$
h. any relative maxima and the numbers at which they occur
i. the value of x for which $f(x)=4$
j. Is $f(-1)$ positive or negative?
3. Use the graph of f to determine each of the following. Where applicable, use interval notation.

a. the domain of f
b. the range of f
c. the zeros of f
d. $f(0)$
e. intervals on which f is increasing
f. intervals on which f is decreasing
g. intervals on which f is constant
h. values of x for which $f(x)>0$
i. values of x for which $f(x)=-2$
j. Is $f(4)$ positive or negative?
k. Is f even, odd, or neither?
l. Is $f(2)$ a relative maximum?

In Exercises 37-42, evaluate each piecewise function at the given values of the independent variable.
37. $f(x)=\left\{\begin{array}{lll}3 x+5 & \text { if } & x<0 \\ 4 x+7 & \text { if } & x \geq 0\end{array}\right.$
a. $f(-2)$
b. $f(0)$
c. $f(3)$
38. $f(x)=\left\{\begin{array}{lll}6 x-1 & \text { if } & x<0 \\ 7 x+3 & \text { if } & x \geq 0\end{array}\right.$
a. $f(-3)$
b. $f(0)$
c. $f(4)$
39. $g(x)= \begin{cases}x+3 & \text { if } \quad x \geq-3 \\ -(x+3) & \text { if } \quad x<-3\end{cases}$
a. $g(0)$
b. $g(-6)$
c. $g(-3)$
40. $g(x)= \begin{cases}x+5 & \text { if } \quad x \geq-5 \\ -(x+5) & \text { if } \quad x<-5\end{cases}$
a. $g(0)$
b. $g(-6)$
c. $g(-5)$
41. $h(x)=\left\{\begin{array}{ccc}\frac{x^{2}-9}{x-3} & \text { if } & x \neq 3 \\ 6 & \text { if } & x=3\end{array}\right.$
a. $h(5)$
b. $h(0)$
c. $h(3)$
42. $h(x)=\left\{\begin{array}{ccc}\frac{x^{2}-25}{x-5} & \text { if } & x \neq 5 \\ 10 & \text { if } & x=5\end{array}\right.$
a. $h(7)$
b. $h(0)$
c. $h(5)$

In Exercises 43-54, the domain of each piecewise function is $(-\infty, \infty)$.
a. Graph each function.
b. Use your graph to determine the function's range.
43. $f(x)=\left\{\begin{array}{rll}-x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{array}\right.$
44. $f(x)=\left\{\begin{array}{rll}x & \text { if } & x<0 \\ -x & \text { if } & x \geq 0\end{array}\right.$
45. $f(x)=\left\{\begin{array}{rll}2 x & \text { if } & x \leq 0 \\ 2 & \text { if } & x>0\end{array}\right.$
46. $f(x)=\left\{\begin{array}{ccc}\frac{1}{2} x & \text { if } & x \leq 0 \\ 3 & \text { if } & x>0\end{array}\right.$
47. $f(x)=\left\{\begin{array}{lll}x+3 & \text { if } & x<-2 \\ x-3 & \text { if } & x \geq-2\end{array}\right.$
48. $f(x)=\left\{\begin{array}{lll}x+2 & \text { if } & x<-3 \\ x-2 & \text { if } & x \geq-3\end{array}\right.$
49. $f(x)=\left\{\begin{array}{rll}3 & \text { if } & x \leq-1 \\ -3 & \text { if } & x>-1\end{array}\right.$
50. $f(x)=\left\{\begin{array}{rll}4 & \text { if } & x \leq-1 \\ -4 & \text { if } & x>-1\end{array}\right.$
51. $f(x)=\left\{\begin{array}{cll}\frac{1}{2} x^{2} & \text { if } & x<1 \\ 2 x-1 & \text { if } & x \geq 1\end{array}\right.$
52. $f(x)=\left\{\begin{array}{rll}-\frac{1}{2} x^{2} & \text { if } & x<1 \\ 2 x+1 & \text { if } & x \geq 1\end{array}\right.$
53. $f(x)=\left\{\begin{array}{clc}0 & \text { if } & x<-4 \\ -x & \text { if } & -4 \leq x<0 \\ x^{2} & \text { if } & x \geq 0\end{array}\right.$
54. $f(x)=\left\{\begin{array}{ccc}0 & \text { if } & x<-3 \\ -x & \text { if } & -3 \leq x<0 \\ x^{2}-1 & \text { if } & x \geq 0\end{array}\right.$

In Exercises 55-76, find and simplify the difference quotient

$$
\frac{f(x+h)-f(x)}{h}, h \neq 0
$$

for the given function.
55. $f(x)=4 x$
57. $f(x)=3 x+7$
56. $f(x)=7 x$
59. $f(x)=x^{2}$
61. $f(x)=x^{2}-4 x+3$
58. $f(x)=6 x+1$
63. $f(x)=2 x^{2}+x-1$
62. $f(x)=x^{2}-5 x+8$
65. $f(x)=-x^{2}+2 x+4$
64. $f(x)=3 x^{2}+x+5$
67. $f(x)=-2 x^{2}+5 x+7$
66. $f(x)=-x^{2}-3 x+1$
69. $f(x)=-2 x^{2}-x+3$
68. $f(x)=-3 x^{2}+2 x-1$
71. $f(x)=6$
70. $f(x)=-3 x^{2}+x-1$
73. $f(x)=\frac{1}{x}$
72. $f(x)=7$
75. $f(x)=\sqrt{x}$
74. $f(x)=\frac{1}{2 x}$
76. $f(x)=\sqrt{x-1}$

Practice Plus

In Exercises 77-78, let f be defined by the following graph:

77. Find

$$
\sqrt{f(-1.5)+f(-0.9)}-[f(\pi)]^{2}+f(-3) \div f(1) \cdot f(-\pi)
$$

78. Find

$$
\sqrt{f(-2.5)-f(1.9)}-[f(-\pi)]^{2}+f(-3) \div f(1) \cdot f(\pi)
$$

A cellphone company offers the following plans. Also given are the piecewise functions that model these plans. Use this information to solve Exercises 79-80.

Plan A

- $\$ 30$ per month buys 120 minutes.
- Additional time costs $\$ 0.30$ per minute.

$$
C(t)= \begin{cases}30 & \text { if } \quad 0 \leq t \leq 120 \\ 30+0.30(t-120) & \text { if } \quad t>120\end{cases}
$$

Plan B

- $\$ 40$ per month buys 200 minutes.
- Additional time costs $\$ 0.30$ per minute.

$$
C(t)= \begin{cases}40 & \text { if } \quad 0 \leq t \leq 200 \\ 40+0.30(t-200) & \text { if } t>200\end{cases}
$$

79. Simplify the algebraic expression in the second line of the piecewise function for plan A . Then use point-plotting to graph the function.
80. Simplify the algebraic expression in the second line of the piecewise function for plan B. Then use point-plotting to graph the function.

In Exercises 81-82, write a piecewise function that models each cellphone billing plan. Then graph the function.
81. $\$ 50$ per month buys 400 minutes. Additional time costs $\$ 0.30$ per minute.
82. $\$ 60$ per month buys 450 minutes. Additional time costs $\$ 0.35$ per minute.

Application Exercises

With aging, body fat increases and muscle mass declines. The line graphs show the percent body fat in adult women and men as they age from 25 to 75 years. Use the graphs to solve Exercises 83-90.

Source: Thompson et al., The Science of Nutrition, Benjamin Cummings, 2008
83. State the intervals on which the graph giving the percent body fat in women is increasing and decreasing.
84. State the intervals on which the graph giving the percent body fat in men is increasing and decreasing.
85. For what age does the percent body fat in women reach a maximum? What is the percent body fat for that age?
86. At what age does the percent body fat in men reach a maximum? What is the percent body fat for that age?
87. Use interval notation to give the domain and the range for the graph of the function for women.
88. Use interval notation to give the domain and the range for the graph of the function for men.
89. The function $p(x)=-0.002 x^{2}+0.15 x+22.86$ models percent body fat, $p(x)$, where x is the number of years a person's age exceeds 25 . Use the graphs to determine whether this model describes percent body fat in women or in men.
90. The function $p(x)=-0.004 x^{2}+0.25 x+33.64$ models percent body fat, $p(x)$, where x is the number of years a person's age exceeds 25 . Use the graphs to determine whether this model describes percent body fat in women or in men.

Here is the 2011 Federal Tax Rate Schedule X that specifies the tax owed by a single taxpayer.

If Your Taxable Income Is Over	But Not Over	The Tax You Owe Is	Of the Amount Over
\$ 0	\$ 8500	10\%	\$ 0
\$ 8500	\$ 34,500	\$ $850.00+15 \%$	\$ 8500
\$ 34,500	\$ 83,600	\$ $4750.00+25 \%$	\$ 34,500
\$ 83,600	\$174,400	\$ 17,025.00 + 28\%	\$ 83,600
\$174,400	\$379,150	\$ 42,449.00 + 33\%	\$174,400
\$379,150	-	\$110,016.50 + 35\%	\$379,150

The preceding tax table can be modeled by a piecewise function, where x represents the taxable income of a single taxpayer and $T(x)$ is the tax owed:

$$
T(x)=\left\{\begin{array}{ccc}
0.10 x & \text { if } & 0<x \leq 8500 \\
850.00+0.15(x-8500) & \text { if } & 8500<x \leq 34,500 \\
4750.00+0.25(x-34,500) & \text { if } & 34,500<x \leq 83,600 \\
17,025.00+0.28(x-83,600) & \text { if } & 83,600<x \leq 174,400 \\
? & \text { if } & 174,400<x \leq 379,150 \\
? ? & \text { if } & x>379,150 .
\end{array}\right.
$$

Use this information to solve Exercises 91-94.
91. Find and interpret $T(20,000)$.
92. Find and interpret $T(50,000)$.

In Exercises 93-94, refer to the preceding tax table.
93. Find the algebraic expression for the missing piece of $T(x)$ that models tax owed for the domain $(174,400,379,150]$.
94. Find the algebraic expression for the missing piece of $T(x)$ that models tax owed for the domain $(379,150, \infty)$.

The figure shows the cost of mailing a first-class letter, $f(x)$, as a function of its weight, x, in ounces. Use the graph to solve Exercises 95-98.

Source: Lynn E. Baring, Postmaster, Inverness, CA
95. Find $f(3)$. What does this mean in terms of the variables in this situation?
96. Find $f(3.5)$. What does this mean in terms of the variables in this situation?
97. What is the cost of mailing a letter that weighs 1.5 ounces?
98. What is the cost of mailing a letter that weighs 1.8 ounces?
99. Furry Finances A pet insurance policy has a monthly rate that is a function of the age of the insured dog or cat. For pets whose age does not exceed 4 , the monthly cost is $\$ 20$. The cost then increases by $\$ 2$ for each successive year of the pet's age.

Age Not Exceeding	Monthly Cost
4	$\$ 20$
5	$\$ 22$
6	$\$ 24$

The cost schedule continues in this manner for ages not exceeding 10. The cost for pets whose ages exceed 10 is $\$ 40$. Use this information to create a graph that shows the monthly cost of the insurance, $f(x)$, for a pet of age x, where the function's domain is $[0,14]$.

Writing in Mathematics

100. What does it mean if a function f is increasing on an interval?
101. Suppose that a function f whose graph contains no breaks or gaps on (a, c) is increasing on (a, b), decreasing on (b, c), and defined at b. Describe what occurs at $x=b$. What does the function value $f(b)$ represent?
102. If you are given a function's equation, how do you determine if the function is even, odd, or neither?
103. If you are given a function's graph, how do you determine if the function is even, odd, or neither?
104. What is a piecewise function?
105. Explain how to find the difference quotient of a function f, $\frac{f(x+h)-f(x)}{h}$, if an equation for f is given.

Technology Exercises

106. The function

$$
f(x)=-0.00002 x^{3}+0.008 x^{2}-0.3 x+6.95
$$

models the number of annual physician visits, $f(x)$, by a person of age x. Graph the function in a $[0,100,5]$ by [$0,40,2$] viewing rectangle. What does the shape of the graph indicate about the relationship between one's age and the number of annual physician visits? Use the TABLE or minimum function capability to find the coordinates of the minimum point on the graph of the function. What does this mean?

In Exercises 107-112, use a graphing utility to graph each function. Use a $[-5,5,1]$ by $[-5,5,1]$ viewing rectangle. Then find the intervals on which the function is increasing, decreasing, or constant.
107. $f(x)=x^{3}-6 x^{2}+9 x+1$
108. $g(x)=\left|4-x^{2}\right|$
109. $h(x)=|x-2|+|x+2|$
110. $f(x)=x^{\frac{1}{3}}(x-4)$
111. $g(x)=x^{\frac{2}{3}}$
112. $h(x)=2-x^{\frac{2}{5}}$
113. a. Graph the functions $f(x)=x^{n}$ for $n=2,4$, and 6 in a $[-2,2,1]$ by $[-1,3,1]$ viewing rectangle.
b. Graph the functions $f(x)=x^{n}$ for $n=1,3$, and 5 in a $[-2,2,1]$ by $[-2,2,1]$ viewing rectangle.
c. If n is positive and even, where is the graph of $f(x)=x^{n}$ increasing and where is it decreasing?
d. If n is positive and odd, what can you conclude about the graph of $f(x)=x^{n}$ in terms of increasing or decreasing behavior?
e. Graph all six functions in a $[-1,3,1]$ by $[-1,3,1]$ viewing rectangle. What do you observe about the graphs in terms of how flat or how steep they are?

Critical Thinking Exercises

Make Sense? In Exercises 114-117, determine whether each statement makes sense or does not make sense, and explain your reasoning.
114. My graph is decreasing on $(-\infty, a)$ and increasing on (a, ∞), so $f(a)$ must be a relative maximum.
115. This work by artist Scott Kim (1955-) has the same kind of symmetry as an even function.

116. I graphed

$$
f(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \neq 4 \\
3 & \text { if } & x=4
\end{array}\right.
$$

and one piece of my graph is a single point.
117. I noticed that the difference quotient is always zero if $f(x)=c$, where c is any constant.
118. Sketch the graph of f using the following properties. (More than one correct graph is possible.) f is a piecewise function that is decreasing on $(-\infty, 2), f(2)=0, f$ is increasing on $(2, \infty)$, and the range of f is $[0, \infty)$.
119. Define a piecewise function on the intervals $(-\infty, 2],(2,5)$, and $[5, \infty)$ that does not "jump" at 2 or 5 such that one piece is a constant function, another piece is an increasing function, and the third piece is a decreasing function.
120. Suppose that $h(x)=\frac{f(x)}{g(x)}$. The function f can be even, odd, or neither. The same is true for the function g.
a. Under what conditions is h definitely an even function?
b. Under what conditions is h definitely an odd function?

Group Exercise

121. (For assistance with this exercise, refer to the discussion of piecewise functions beginning on page 178, as well as to Exercises 79-80.) Group members who have cellphone plans should describe the total monthly cost of the plan as follows:

$$
\begin{aligned}
& \$ _ \text {per month buys ___ minutes. Additional } \\
& \text { time costs } \$ \ldots \text { per minute. }
\end{aligned}
$$

(For simplicity, ignore other charges.) The group should select any three plans, from "basic" to "premier." For each plan selected, write a piecewise function that describes the plan and graph the function. Graph the three functions in the same rectangular coordinate system. Now examine the graphs. For any given number of calling minutes, the best plan is the one whose graph is lowest at that point. Compare the three calling plans. Is one plan always a better deal than the other two? If not, determine the interval of calling minutes for which each plan is the best deal. (You can check out cellphone plans by visiting www.point.com.)

Preview Exercises

Exercises 122-124 will help you prepare for the material covered in the next section.
122. If $\left(x_{1}, y_{1}\right)=(-3,1)$ and $\left(x_{2}, y_{2}\right)=(-2,4)$, find $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
123. Find the ordered pairs \qquad , 0) and (0 , \qquad) satisfying $4 x-3 y-6=0$.
124. Solve for $y: 3 x+2 y-4=0$.

SECTION 1.4

Linear Functions and Slope

Objectives

(1) Calculate a line's slope.
(2) Write the point-slope form of the equation of a line.
(3) Write and graph the slope-intercept form of the equation of a line.
(4) Graph horizontal or vertical lines.
(5) Recognize and use the general form of a line's equation.
6 Use intercepts to graph the general form of a line's equation.
(7) Model data with linear functions and make predictions.

Calculate a line's slope.

FIGURE 1.36
Source: United Nations
Data presented in a visual form as a set of points is called a scatter plot. Also shown in Figure $\mathbf{1 . 3 6}$ is a line that passes through or near the points. A line that best fits the data points in a scatter plot is called a regression line. By writing the equation of this line, we can obtain a model for the data and make predictions about child mortality based on the percentage of literate adult females in a country.

Data often fall on or near a line. In this section, we will use functions to model such data and make predictions. We begin with a discussion of a line's steepness.

The Slope of a Line

Mathematicians have developed a useful measure of the steepness of a line, called the slope of the line. Slope compares the vertical change (the rise) to the horizontal change (the run) when moving from one fixed point to another along the line. To calculate the slope of a line, we use a ratio that compares the change in y (the rise) to the corresponding change in x (the run).

Definition of Slope

The slope of the line through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\begin{aligned}
\frac{\text { Change in } y}{\text { Change in } x} & =\frac{\text { Rise }}{\text { Run }}=\text { Horticizal change } \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}},
\end{aligned}
$$

where $x_{2}-x_{1} \neq 0$.

FIGURE 1.37 Visualizing a slope of 5

FIGURE 1.38 Visualizing a slope of $-\frac{6}{5}$

GREAT QUESTION!

Is it OK to say that a vertical line has no slope?
Always be clear in the way you use language, especially in mathematics. For example, it's not a good idea to say that a line has "no slope." This could mean that the slope is zero or that the slope is undefined.

It is common notation to let the letter m represent the slope of a line. The letter m is used because it is the first letter of the French verb monter, meaning "to rise" or "to ascend."

EXAMPLE 1 Using the Definition of Slope

Find the slope of the line passing through each pair of points:
a. $(-3,-1)$ and $(-2,4)$
b. $(-3,4)$ and $(2,-2)$.

SOLUTION

a. Let $\left(x_{1}, y_{1}\right)=(-3,-1)$ and $\left(x_{2}, y_{2}\right)=(-2,4)$. We obtain the slope as follows:

$$
m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-1)}{-2-(-3)}=\frac{4+1}{-2+3}=\frac{5}{1}=5
$$

The situation is illustrated in Figure 1.37. The slope of the line is 5. For every vertical change, or rise, of 5 units, there is a corresponding horizontal change, or run, of 1 unit. The slope is positive and the line rises from left to right.

GREAT QUESTION!

When using the definition of slope, how do I know which point to call $\left(x_{1}, y_{1}\right)$ and which point to call $\left(x_{2}, y_{2}\right)$?
When computing slope, it makes no difference which point you call $\left(x_{1}, y_{1}\right)$ and which point you call $\left(x_{2}, y_{2}\right)$. If we let $\left(x_{1}, y_{1}\right)=(-2,4)$ and $\left(x_{2}, y_{2}\right)=(-3,-1)$, the slope is still 5:

$$
m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-4}{-3-(-2)}=\frac{-5}{-1}=5 .
$$

However, you should not subtract in one order in the numerator $\left(y_{2}-y_{1}\right)$ and then in a different order in the denominator $\left(x_{1}-x_{2}\right)$.

$$
\frac{-1-4}{-2-(-3)}=\frac{-5}{1}=-5 . \text { Incorrect! The slope is not }-5 \text {. }
$$

b. To find the slope of the line passing through $(-3,4)$ and $(2,-2)$, we can let $\left(x_{1}, y_{1}\right)=(-3,4)$ and $\left(x_{2}, y_{2}\right)=(2,-2)$. The slope of the line is computed as follows:

$$
m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-4}{2-(-3)}=\frac{-6}{5}=-\frac{6}{5}
$$

The situation is illustrated in Figure 1.38. The slope of the line is $-\frac{6}{5}$. For every vertical change of -6 units (6 units down), there is a corresponding horizontal change of 5 units. The slope is negative and the line falls from left to right.

Check Point 1 Find the slope of the line passing through each pair of points:
a. $(-3,4)$ and $(-4,-2)$
b. $(4,-2)$ and $(-1,5)$.

Example 1 illustrates that a line with a positive slope is increasing and a line with a negative slope is decreasing. By contrast, a horizontal line is a constant function and has a slope of zero. A vertical line has no horizontal change, so $x_{2}-x_{1}=0$ in the formula for slope. Because we cannot divide by zero, the slope of a vertical line is undefined. This discussion is summarized in Table $\mathbf{1 . 2}$ at the top of the next page.

Table 1.2 Possibilities for a Line's Slope

(2) Write the point-slope form of the equation of a line.

FIGURE 1.39 A line passing through $\left(x_{1}, y_{1}\right)$ with slope m

The Point-Slope Form of the Equation of a Line

We can use the slope of a line to obtain various forms of the line's equation. For example, consider a nonvertical line that has slope m and that contains the point $\left(x_{1}, y_{1}\right)$.

The line in Figure 1.39 has slope m and contains the point $\left(x_{1}, y_{1}\right)$. Let (x, y) represent any other point on the line.

Regardless of where the point (x, y) is located, the steepness of the line in Figure 1.39 remains the same. Thus, the ratio for the slope stays a constant m. This means that for all points (x, y) along the line

We can clear the fraction by multiplying both sides by $x-x_{1}$, the least common denominator.

$$
\begin{aligned}
m & =\frac{y-y_{1}}{x-x_{1}} & \text { This is the slope of the line in Figure 1.39. } \\
m\left(x-x_{1}\right) & =\frac{y-y_{1}}{x-x_{1}} \cdot\left(x-x_{1}\right) & \text { Multiply both sides by } x-x_{1} . \\
m\left(x-x_{1}\right) & =y-y_{1} & \text { Simplify: } \frac{y-y_{1}}{x-x_{1}} \cdot\left(x-x_{1}\right)=y-y_{1} .
\end{aligned}
$$

Now, if we reverse the two sides, we obtain the point-slope form of the equation of a line.

Point-Slope Form of the Equation of a Line

The point-slope form of the equation of a nonvertical line with slope m that passes through the point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

For example, the point-slope form of the equation of the line passing through $(1,5)$ with slope $2(m=2)$ is

$$
y-5=2(x-1) .
$$

We will soon be expressing the equation of a nonvertical line in function notation. To do so, we need to solve the point-slope form of a line's equation for y. Example 2 illustrates how to isolate y on one side of the equal sign.

EXAMPLE 2 Writing an Equation for a Line in Point-Slope Form

Write an equation in point-slope form for the line with slope 4 that passes through the point $(-1,3)$. Then solve the equation for y.

SOLUTION

We use the point-slope form of the equation of a line with $m=4, x_{1}=-1$, and $y_{1}=3$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \text { This is the point-slope form of the equation. } \\
& y-3=4[x-(-1)] \\
& \begin{array}{l}
\text { Substitute the given values: } m=4 \text { and } \\
\left(x_{1}, y_{1}\right)=(-1,3) .
\end{array} \\
& y-3=4(x+1) \begin{array}{l}
\text { We now have an equation in point-slope form } \\
\text { for the given line. }
\end{array}
\end{aligned}
$$

Now we solve this equation for y.

We need to isolate y.	$y-3$	$=4(x+1)$	
$y-3$	$=4 x+4$		
y	$=4 x+7$		This is the point-slope form of the equation.
Use the distributive property.			

0 Check Point 2 Write an equation in point-slope form for the line with slope 6 that passes through the point $(2,-5)$. Then solve the equation for y.

EXAMPLE 3 Writing an Equation for a Line in Point-Slope Form

Write an equation in point-slope form for the line passing through the points $(4,-3)$ and $(-2,6)$. (See Figure 1.40.) Then solve the equation for y.

SOLUTION

To use the point-slope form, we need to find the slope. The slope is the change in the y-coordinates divided by the corresponding change in the x-coordinates.

$$
m=\frac{6-(-3)}{-2-4}=\frac{9}{-6}=-\frac{3}{2} \quad \begin{aligned}
& \text { This is the definition of slope using } \\
& (4,-3) \text { and }(-2,6)
\end{aligned}
$$

We can take either point on the line to be $\left(x_{1}, y_{1}\right)$. Let's use $\left(x_{1}, y_{1}\right)=(4,-3)$. Now, we are ready to write the point-slope form of the equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \quad \text { This is the point-slope form of the equation. } \\
y-(-3) & =-\frac{3}{2}(x-4) \quad \text { Substitute: }\left(x_{1}, y_{1}\right)=(4,-3) \text { and } m=-\frac{3}{2} . \\
y+3 & =-\frac{3}{2}(x-4) \quad \text { Simplify. }
\end{aligned}
$$

We now have an equation in point-slope form for the line shown in Figure 1.40. Now, we solve this equation for y.

$$
\begin{array}{rlrl}
\begin{array}{c}
\text { We need to } \\
\text { isolate } y .
\end{array} & y+3 & =-\frac{3}{2}(x-4) \\
y+3 & =-\frac{3}{2} x+6 & & \text { This is the point-slope form of the equation. } \\
y & =-\frac{3}{2} x+3 & & \text { Use the distributive property. }
\end{array}
$$

Check Point 3 Write an equation in point-slope form for the line passing through the points $(-2,-1)$ and $(-1,-6)$. Then solve the equation for y.
(3) Write and graph the slope-intercept form of the equation of a line.

FIGURE 1.41 A line with slope m and y-intercept b

The Slope-Intercept Form of the Equation of a Line

Let's write the point-slope form of the equation of a nonvertical line with slope m and y-intercept b. The line is shown in Figure 1.41. Because the y-intercept is b, the line passes through $(0, b)$. We use the point-slope form with $x_{1}=0$ and $y_{1}=b$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\text { Let } y_{1}=b . \quad \text { Let } x_{1}=0 .
$$

We obtain

$$
y-b=m(x-0) .
$$

Simplifying on the right side gives us

$$
y-b=m x .
$$

Finally, we solve for y by adding b to both sides.

$$
y=m x+b
$$

Thus, if a line's equation is written with y isolated on one side, the coefficient of x is the line's slope and the constant term is the y-intercept. This form of a line's equation is called the slope-intercept form of the line.

Slope-Intercept Form of the Equation of a Line

The slope-intercept form of the equation of a nonvertical line with slope m and y-intercept b is

$$
y=m x+b .
$$

The slope-intercept form of a line's equation, $y=m x+b$, can be expressed in function notation by replacing y with $f(x)$:

$$
f(x)=m x+b
$$

We have seen that functions in this form are called linear functions. Thus, in the equation of a linear function, the coefficient of x is the line's slope and the constant term is the y-intercept. Here are two examples:

$$
\begin{aligned}
& f(x)=\frac{1}{2} x+2 \text {. } \\
& \text { The slope is } \frac{1}{2} \text {. The } y \text {-intercept is } 2 \text {. }
\end{aligned}
$$

If a linear function's equation is in slope-intercept form, we can use the y-intercept and the slope to obtain its graph.

Graphing $y=m x+b$ Using the Slope and y-Intercept

1. Plot the point containing the y-intercept on the y-axis. This is the point $(0, b)$.
2. Obtain a second point using the slope, m. Write m as a fraction, and use rise over run, starting at the point containing the y-intercept, to plot this point.
3. Use a straightedge to draw a line through the two points. Draw arrowheads at the ends of the line to show that the line continues indefinitely in both directions.

EXAMPLE 4 Graphing Using the Slope and y-Intercept

Graph the linear function: $f(x)=-\frac{3}{2} x+2$.

FIGURE 1.42 The graph of $f(x)=-\frac{3}{2} x+2$

SOLUTION

The equation of the line is in the form $f(x)=m x+b$. We can find the slope, m, by identifying the coefficient of x. We can find the y-intercept, b, by identifying the constant term.

$$
f(x)=-\frac{3}{2} x+2
$$

Now that we have identified the slope, $-\frac{3}{2}$, and the y-intercept, 2 , we use the three-step procedure to graph the equation.
Step 1 Plot the point containing the \boldsymbol{y}-intercept on the \boldsymbol{y}-axis. The y-intercept is 2 . We plot (0, 2), shown in Figure 1.42.
Step 2 Obtain a second point using the slope, m. Write m as a fraction, and use rise over run, starting at the point containing the \boldsymbol{y}-intercept, to plot this point. The slope, $-\frac{3}{2}$, is already written as a fraction.

$$
m=-\frac{3}{2}=\frac{-3}{2}=\frac{\text { Rise }}{\text { Run }}
$$

We plot the second point on the line by starting at $(0,2)$, the first point. Based on the slope, we move 3 units down (the rise) and 2 units to the right (the run). This puts us at a second point on the line, $(2,-1)$, shown in Figure 1.42.
Step 3 Use a straightedge to draw a line through the two points. The graph of the linear function $f(x)=-\frac{3}{2} x+2$ is shown as a blue line in Figure 1.42.

Check Point 4 Graph the linear function: $f(x)=\frac{3}{5} x+1$.

Equations of Horizontal and Vertical Lines

If a line is horizontal, its slope is zero: $m=0$. Thus, the equation $y=m x+b$ becomes $y=b$, where b is the y-intercept. All horizontal lines have equations of the form $y=b$.

EXAMPLE 5 Graphing a Horizontal Line

Graph $y=-4$ in the rectangular coordinate system.

SOLUTION

All ordered pairs that are solutions of $y=-4$ have a value of y that is always -4 . Any value can be used for x. In the table on the right, we have selected three of the possible values for $x:-2,0$, and 3 . The table shows that three ordered pairs that are solutions of $y=-4$ are $(-2,-4),(0,-4)$, and $(3,-4)$. Drawing a line that passes through the three points gives the horizontal line shown in Figure 1.43.

FIGURE 1.43 The graph of $y=-4$ or $f(x)=-4$
\circlearrowleft Check Point 5 Graph $y=3$ in the rectangular coordinate system.

FIGURE 1.44 The graph of $x=2$

Equation of a Horizontal Line

A horizontal line is given by an equation of the form

$$
y=b
$$

where b is the y-intercept of the line. The slope of a horizontal line is zero.

Because any vertical line can intersect the graph of a horizontal line $y=b$ only once, a horizontal line is the graph of a function. Thus, we can express the equation $y=b$ as $f(x)=b$. This linear function is often called a constant function.

Next, let's see what we can discover about the graph of an equation of the form $x=a$ by looking at an example.

EXAMPLE 6 Graphing a Vertical Line

Graph the linear equation: $x=2$.

SOLUTION

All ordered pairs that are solutions of $x=2$ have a value of x that is always 2 . Any value can be used for y. In the table on the right, we have selected three of the possible values for $y:-2,0$, and 3 . The table shows that three ordered pairs that are solutions of $x=2$ are $(2,-2),(2,0)$, and $(2,3)$. Drawing a line that passes through the three points gives the vertical line shown in Figure 1.44.

Equation of a Vertical Line

A vertical line is given by an equation of the form

$$
x=a
$$

where a is the x-intercept of the line. The slope of a vertical line is undefined.
 vertical line is undefined.

Does a vertical line represent the graph of a linear function? No. Look at the graph of $x=2$ in Figure 1.44. A vertical line drawn through $(2,0)$ intersects the graph infinitely many times. This shows that infinitely many outputs are associated with the input 2 . No vertical line represents a linear function.
S Check Point 6 Graph the linear equation: $x=-3$.

The General Form of the Equation of a Line

The vertical line whose equation is $x=5$ cannot be written in slope-intercept form, $y=m x+b$, because its slope is undefined. However, every line has an equation that can be expressed in the form $A x+B y+C=0$. For example, $x=5$ can be expressed as $1 x+0 y-5=0$, or $x-5=0$. The equation $A x+B y+C=0$ is called the general form of the equation of a line.

GREAT QUESTION!

In the general form $A x+B y+C=0$, can I immediately determine that the slope is \boldsymbol{A} and the \boldsymbol{y}-intercept is \boldsymbol{B} ?
No. Avoid this common error. You need to solve $A x+B y+C=0$ for y before finding the slope and the y-intercept.
(6) Use intercepts to graph the general form of a line's equation.

General Form of the Equation of a Line

Every line has an equation that can be written in the general form

$$
A x+B y+C=0
$$

where A, B, and C are real numbers, and A and B are not both zero.

If the equation of a nonvertical line is given in general form, it is possible to find the slope, m, and the y-intercept, b, for the line. We solve the equation for y, transforming it into the slope-intercept form $y=m x+b$. In this form, the coefficient of x is the slope of the line and the constant term is its y-intercept.

EXAMPLE 7 Finding the Slope and the y-Intercept

Find the slope and the y-intercept of the line whose equation is $3 x+2 y-4=0$.

SOLUTION

The equation is given in general form. We begin by rewriting it in the form $y=m x+b$. We need to solve for y.

The coefficient of $x,-\frac{3}{2}$, is the slope and the constant term, 2 , is the y-intercept. This is the form of the equation that we graphed in Figure $\mathbf{1 . 4 2}$ on page 193.

8 Check Point 7 Find the slope and the y-intercept of the line whose equation is $3 x+6 y-12=0$. Then use the y-intercept and the slope to graph the equation.

Using Intercepts to Graph $\mathbf{A x}+\mathbf{B y}+\mathbf{C}=\mathbf{0}$
Example 7 and Check Point 7 illustrate that one way to graph the general form of a line's equation is to convert to slope-intercept form, $y=m x+b$. Then use the slope and the y-intercept to obtain the graph.

A second method for graphing $A x+B y+C=0$ uses intercepts. This method does not require rewriting the general form in a different form.

$$
\text { Using Intercepts to Graph } A x+B y+C=0
$$

1. Find the x-intercept. Let $y=0$ and solve for x. Plot the point containing the x-intercept on the x-axis.
2. Find the y-intercept. Let $x=0$ and solve for y. Plot the point containing the y-intercept on the y-axis.
3. Use a straightedge to draw a line through the two points containing the intercepts. Draw arrowheads at the ends of the line to show that the line continues indefinitely in both directions.

FIGURE 1.45 The graph of $4 x-3 y-6=0$
(7) Model data with linear functions and make predictions.

EXAMPLE 8 Using Intercepts to Graph a Linear Equation

Graph using intercepts: $4 x-3 y-6=0$.

SOLUTION

Step 1 Find the \boldsymbol{x}-intercept. Let $\boldsymbol{y}=0$ and solve for \boldsymbol{x}.

$$
\begin{aligned}
4 x-3 \cdot 0-6 & =0 & & \text { Replace } y \text { with } 0 \text { in } 4 x-3 y-6=0 . \\
4 x-6 & =0 & & \text { Simplify. } \\
4 x & =6 & & \text { Add } 6 \text { to both sides. } \\
x & =\frac{6}{4}=\frac{3}{2} & & \text { Divide both sides by } 4 .
\end{aligned}
$$

The x-intercept is $\frac{3}{2}$, so the line passes through $\left(\frac{3}{2}, 0\right)$ or $(1.5,0)$, as shown in Figure 1.45.
Step 2 Find the \boldsymbol{y}-intercept. Let $\boldsymbol{x}=0$ and solve for \boldsymbol{y}.

$$
\begin{aligned}
4 \cdot 0-3 y-6 & =0 & & \text { Replace } x \text { with } 0 \text { in } 4 x-3 y-6=0 . \\
-3 y-6 & =0 & & \text { Simplify. } \\
-3 y & =6 & & \text { Add } 6 \text { to both sides. } \\
y & =-2 & & \text { Divide both sides by }-3 .
\end{aligned}
$$

The y-intercept is -2 , so the line passes through $(0,-2)$, as shown in Figure 1.45.
Step 3 Graph the equation by drawing a line through the two points containing the intercepts. The graph of $4 x-3 y-6=0$ is shown in Figure 1.45.

Check Point 8 Graph using intercepts: $3 x-2 y-6=0$.

We've covered a lot of territory. Let's take a moment to summarize the various forms for equations of lines.

Equations of Lines

1. Point-slope form	$y-y_{1}=m\left(x-x_{1}\right)$
2. Slope-intercept form	$y=m x+b$ or $f(x)=m x+b$
3. Horizontal line	$y=b$
4. Vertical line	$x=a$
5. General form	$A x+B y+C=0$

Applications

Linear functions are useful for modeling data that fall on or near a line.

EXAMPLE 9 Modeling Global Warming

The amount of carbon dioxide in the atmosphere, measured in parts per million, has been increasing as a result of the burning of oil and coal. The buildup of gases and particles traps heat and raises the planet's temperature. The bar graph in Figure 1.46(a) at the top of the next page gives the average atmospheric concentration of carbon dioxide and the average global temperature for six selected years. The data are displayed as a set of six points in a rectangular coordinate system in Figure 1.46(b).

FIGURE 1.46(a)
FIGURE 1.46(b)

Source: National Oceanic and Atmospheric Administration
a. Shown on the scatter plot in Figure 1.46(b) is a line that passes through or near the six points. Write the slope-intercept form of this equation using function notation.
b. The preindustrial concentration of atmospheric carbon dioxide was 280 parts per million. The United Nations' Intergovernmental Panel on Climate Change predicts global temperatures will rise between $2^{\circ} \mathrm{F}$ and $5^{\circ} \mathrm{F}$ if carbon dioxide concentration doubles from the preindustrial level. Compared to the average global temperature of $57.99^{\circ} \mathrm{F}$ for 2009 , how well does the function from part (a) model this prediction?

SOLUTION

a. The line in Figure 1.46(b) passes through $(326,57.06)$ and $(385,57.99)$. We start by finding its slope.

$$
m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{57.99-57.06}{385-326}=\frac{0.93}{59} \approx 0.02
$$

The slope indicates that for each increase of one part per million in carbon dioxide concentration, the average global temperature is increasing by approximately $0.02^{\circ} \mathrm{F}$.

Now we write the line's equation in slope-intercept form.

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) & \text { Begin with the point-slope form. } \\
y-57.06=0.02(x-326) & \text { Either ordered pair can be } \\
& \left(x_{1}, y_{1}\right) . \text { Let }\left(x_{1}, y_{1}\right)=(326,57.06) \\
& \text { From above, } m=0.02 . \\
y-57.06=0.02 x-6.52 & \begin{array}{l}
\text { Apply the distributive property: } \\
\\
\\
\\
\\
0.02(326)=6.52 .
\end{array} \\
y=0.02 x+50.54 & \text { Add } 57.06 \text { to both sides and solve for } y .
\end{aligned}
$$

TECHNOLOGY

You can use a graphing utility to obtain a model for a scatter plot in which the data points fall on or near a straight line. After entering the data in Figure 1.46(a) on the previous page, a graphing utility displays a scatter plot of the data and the regression line, that is, the line that best fits the data.

[310, 390, 10] by [56.8, 58.4, 0.2]
Also displayed is the regression line's equation.

A linear function that models average global temperature, $f(x)$, for an atmospheric carbon dioxide concentration of x parts per million is

$$
f(x)=0.02 x+50.54
$$

b. If carbon dioxide concentration doubles from its preindustrial level of 280 parts per million, which many experts deem very likely, the concentration will reach 280×2, or 560 parts per million. We use the linear function to predict average global temperature at this concentration.

$$
\begin{aligned}
f(x) & =0.02 x+50.54 & & \text { Use the function from part (a). } \\
f(560) & =0.02(560)+50.54 & & \text { Substitute } 560 \text { for } x . \\
& =11.2+50.54=61.74 & &
\end{aligned}
$$

Our model projects an average global temperature of $61.74^{\circ} \mathrm{F}$ for a carbon dioxide concentration of 560 parts per million. Compared to the average global temperature of 57.99° for 2009 shown in Figure 1.46(a) on the previous page, this is an increase of

$$
61.74^{\circ} \mathrm{F}-57.99^{\circ} \mathrm{F}=3.75^{\circ} \mathrm{F}
$$

This is consistent with a rise between $2^{\circ} \mathrm{F}$ and $5^{\circ} \mathrm{F}$ as predicted by the Intergovernmental Panel on Climate Change.

Check Point 9 Use the data points $(317,57.04)$ and $(354,57.64)$, shown, but not labeled, in Figure 1.46(b) on the previous page to obtain a linear function that models average global temperature, $f(x)$, for an atmospheric carbon dioxide concentration of x parts per million. Round m to three decimal places and b to one decimal place. Then use the function to project average global temperature at a concentration of 600 parts per million.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Data presented in a visual form as a set of points is called a/an \qquad A line that best fits this set of points is called a/an \qquad line.
2. The slope, m, of a line through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula $m=$ \qquad
3. If a line rises from left to right, the line has \qquad slope.
4. If a line falls from left to right, the line has \qquad slope.
5. The slope of a horizontal line is \qquad -
6. The slope of a vertical line is \qquad —.
7. The point-slope form of the equation of a nonvertical line with slope m that passes through the point $\left(x_{1}, y_{1}\right)$ is \qquad —.
8. The slope-intercept form of the equation of a line is \qquad , where m represents the \qquad and b represents the \qquad -.
9. In order to graph the line whose equation is $y=\frac{2}{5} x+3$, begin by plotting the point \qquad From this point, we move \qquad units up (the rise) and \qquad units to the right (the run).
10. The graph of the equation $y=3$ is a / an \qquad line.
11. The graph of the equation $x=-2$ is a/an \qquad line.
12. The equation $A x+B y+C=0$, where A and B are not both zero, is called the \qquad form of the equation of a line.

EXERCISE SET 1.4

Practice Exercises

In Exercises 1-10, find the slope of the line passing through each pair of points or state that the slope is undefined. Then indicate whether the line through the points rises, falls, is horizontal, or is vertical.

1. $(4,7)$ and $(8,10)$
2. $(2,1)$ and $(3,4)$
3. $(-2,1)$ and $(2,2)$
4. $(-1,3)$ and $(2,4)$
5. $(4,-2)$ and $(3,-2)$
6. $(4,-1)$ and $(3,-1)$
7. $(-2,4)$ and $(-1,-1)$
8. $(6,-4)$ and $(4,-2)$
9. $(5,3)$ and $(5,-2)$
10. $(3,-4)$ and $(3,5)$

In Exercises 11-38, use the given conditions to write an equation for each line in point-slope form and slope-intercept form.
11. Slope $=2$, passing through $(3,5)$
12. Slope $=4$, passing through $(1,3)$
13. Slope $=6$, passing through $(-2,5)$
14. Slope $=8$, passing through $(4,-1)$
15. Slope $=-3$, passing through $(-2,-3)$
16. Slope $=-5$, passing through $(-4,-2)$
17. Slope $=-4$, passing through $(-4,0)$
18. Slope $=-2$, passing through $(0,-3)$
19. Slope $=-1$, passing through $\left(-\frac{1}{2},-2\right)$
20. Slope $=-1$, passing through $\left(-4,-\frac{1}{4}\right)$
21. Slope $=\frac{1}{2}$, passing through the origin
22. Slope $=\frac{1}{3}$, passing through the origin
23. Slope $=-\frac{2}{3}$, passing through $(6,-2)$
24. Slope $=-\frac{3}{5}$, passing through $(10,-4)$
25. Passing through $(1,2)$ and $(5,10)$
26. Passing through $(3,5)$ and $(8,15)$
27. Passing through $(-3,0)$ and $(0,3)$
28. Passing through $(-2,0)$ and $(0,2)$
29. Passing through $(-3,-1)$ and $(2,4)$
30. Passing through $(-2,-4)$ and $(1,-1)$
31. Passing through $(-3,-2)$ and $(3,6)$
32. Passing through $(-3,6)$ and $(3,-2)$
33. Passing through $(-3,-1)$ and $(4,-1)$
34. Passing through $(-2,-5)$ and $(6,-5)$
35. Passing through $(2,4)$ with x-intercept $=-2$
36. Passing through $(1,-3)$ with x-intercept $=-1$
37. x-intercept $=-\frac{1}{2}$ and y-intercept $=4$
38. x-intercept $=4$ and y-intercept $=-2$

In Exercises 39-48, give the slope and y-intercept of each line whose equation is given. Then graph the linear function.
39. $y=2 x+1$
40. $y=3 x+2$
41. $f(x)=-2 x+1$
42. $f(x)=-3 x+2$
43. $f(x)=\frac{3}{4} x-2$
44. $f(x)=\frac{3}{4} x-3$
45. $y=-\frac{3}{5} x+7$
46. $y=-\frac{2}{5} x+6$
47. $g(x)=-\frac{1}{2} x$
48. $g(x)=-\frac{1}{3} x$

In Exercises 49-58, graph each equation in a rectangular coordinate system.
49. $y=-2$
50. $y=4$
51. $x=-3$
52. $x=5$
53. $y=0$
54. $x=0$
55. $f(x)=1$
56. $f(x)=3$
57. $3 x-18=0$
58. $3 x+12=0$

In Exercises 59-66,
a. Rewrite the given equation in slope-intercept form.
b. Give the slope and y-intercept.
c. Use the slope and y-intercept to graph the linear function.
59. $3 x+y-5=0$
60. $4 x+y-6=0$
61. $2 x+3 y-18=0$
62. $4 x+6 y+12=0$
63. $8 x-4 y-12=0$
64. $6 x-5 y-20=0$
65. $3 y-9=0$
66. $4 y+28=0$

In Exercises 67-72, use intercepts to graph each equation.
67. $6 x-2 y-12=0$
68. $6 x-9 y-18=0$
69. $2 x+3 y+6=0$
70. $3 x+5 y+15=0$
71. $8 x-2 y+12=0$
72. $6 x-3 y+15=0$

Practice Plus

In Exercises 73-76, find the slope of the line passing through each pair of points or state that the slope is undefined. Assume that all variables represent positive real numbers. Then indicate whether the line through the points rises, falls, is horizontal, or is vertical.
73. $(0, a)$ and $(b, 0)$
74. $(-a, 0)$ and $(0,-b)$
75. (a, b) and $(a, b+c)$
76. $(a-b, c)$ and $(a, a+c)$

In Exercises 77-78, give the slope and y-intercept of each line whose equation is given. Assume that $B \neq 0$.
77. $A x+B y=C$
78. $A x=B y-C$

In Exercises 79-80, find the value of y if the line through the two given points is to have the indicated slope.
79. $(3, y)$ and $(1,4), m=-3$
80. $(-2, y)$ and $(4,-4), m=\frac{1}{3}$

In Exercises 81-82, graph each linear function.
81. $3 x-4 f(x)-6=0$
82. $6 x-5 f(x)-20=0$
83. If one point on a line is $(3,-1)$ and the line's slope is -2 , find the y-intercept.
84. If one point on a line is $(2,-6)$ and the line's slope is $-\frac{3}{2}$, find the y-intercept.
Use the figure to make the lists in Exercises 85-86.

85. List the slopes m_{1}, m_{2}, m_{3}, and m_{4} in order of decreasing size.
86. List the y-intercepts b_{1}, b_{2}, b_{3}, and b_{4} in order of decreasing size.

Application Exercises

Americans are getting married later in life or not getting married at all. In 2008, nearly half of Americans ages 25 through 29 were unmarried. The following bar graph shows the percentage of never-married men and women in this age group. The data are displayed as two sets of four points each, one scatter plot for the percentage of never-married American men and one for the percentage of never-married American women. Also shown for each scatter plot is a line that passes through or near the four points. Use these lines to solve Exercises 87-88.

Percentage of United States Population Never Married, Ages 25-29

Source: U.S. Census Bureau
87. In this exercise, you will use the blue line for the women shown on the scatter plot to develop a model for the percentage of never-married American females ages 25-29.
a. Use the two points whose coordinates are shown by the voice balloons to find the point-slope form of the equation of the line that models the percentage of never-married American females ages 25-29, y, x years after 1980.
b. Write the equation from part (a) in slope-intercept form. Use function notation.
c. Use the linear function to predict the percentage of never-married American females, ages 25-29, in 2020.

The bar graph gives the life expectancy for American men and women born in six selected years. In Exercises 89-90, you will use the data to obtain models for life expectancy and make predictions about how long American men and women will live in the future.

Life Expectancy in the United States, by Year of Birth

Source: National Center for Health Statistics

88. In this exercise, you will use the red line for the men shown on the scatter plot to develop a model for the percentage of never-married American males ages 25-29.
a. Use the two points whose coordinates are shown by the voice balloons to find the point-slope form of the equation of the line that models the percentage of never-married American males ages 25-29, y, x years after 1980.
b. Write the equation from part (a) in slope-intercept form. Use function notation.
c. Use the linear function to predict the percentage of never-married American males, ages 25-29, in 2015.
89. Use the data for males shown in the bar graph at the bottom of the previous column to solve this exercise.
a. Let x represent the number of birth years after 1960 and let y represent male life expectancy. Create a scatter plot that displays the data as a set of six points in a rectangular coordinate system.
b. Draw a line through the two points that show male life expectancies for 1980 and 2000. Use the coordinates of these points to write a linear function that models life expectancy, $E(x)$, for American men born x years after 1960.
c. Use the function from part (b) to project the life expectancy of American men born in 2020.
90. Use the data for females shown in the bar graph at the bottom of the previous column to solve this exercise.
a. Let x represent the number of birth years after 1960 and let y represent female life expectancy. Create a scatter plot that displays the data as a set of six points in a rectangular coordinate system.
b. Draw a line through the two points that show female life expectancies for 1970 and 2000. Use the coordinates of these points to write a linear function that models life expectancy, $E(x)$, for American women born x years after 1960. Round the slope to two decimal places.
c. Use the function from part (b) to project the life expectancy of American women born in 2020.
91. Shown, again, is the scatter plot that indicates a relationship between the percentage of adult females in a country who are literate and the mortality of children under five. Also shown is a line that passes through or near the points. Find a linear function that models the data by finding the slope-intercept form of the line's equation. Use the function to make a prediction about child mortality based on the percentage of adult females in a country who are literate.

Source: United Nations
92. Just as money doesn't buy happiness for individuals, the two don't necessarily go together for countries either. However, the scatter plot does show a relationship between a country's annual per capita income and the percentage of people in that country who call themselves "happy."

Source: Richard Layard, Happiness: Lessons from a New Science, Penguin, 2005

Draw a line that fits the data so that the spread of the data points around the line is as small as possible. Use the coordinates of two points along your line to write the slope-intercept form of its equation. Express the equation in function notation and use the linear function to make a prediction about national happiness based on per capita income.

Writing in Mathematics

93. What is the slope of a line and how is it found?
94. Describe how to write the equation of a line if the coordinates of two points along the line are known.
95. Explain how to derive the slope-intercept form of a line's equation, $y=m x+b$, from the point-slope form

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

96. Explain how to graph the equation $x=2$. Can this equation be expressed in slope-intercept form? Explain.
97. Explain how to use the general form of a line's equation to find the line's slope and y-intercept.
98. Explain how to use intercepts to graph the general form of a line's equation.
99. Take another look at the scatter plot in Exercise 91. Although there is a relationship between literacy and child mortality, we cannot conclude that increased literacy causes child mortality to decrease. Offer two or more possible explanations for the data in the scatter plot.

Technology Exercises

Use a graphing utility to graph each equation in Exercises 100-103. Then use the TRACE feature to trace along the line and find the coordinates of two points. Use these points to compute the line's slope. Check your result by using the coefficient of x in the line's equation.
100. $y=2 x+4$
101. $y=-3 x+6$
102. $y=-\frac{1}{2} x-5$
103. $y=\frac{3}{4} x-2$
104. Is there a relationship between wine consumption and deaths from heart disease? The table gives data from 19 developed countries.

Country	A	B	C	D	E	F	G
Liters of alcohol from drinking wine, per person per year (\boldsymbol{x})	2.5	3.9	2.9	2.4	2.9	0.8	9.1
Deaths from heart disease, per 100,000 people per year (\boldsymbol{y})	211	167	131	191	220	297	71

U.S.

Country	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(\boldsymbol{x})	0.8	0.7	7.9	1.8	1.9	0.8	6.5	1.6	5.8	1.3	1.2	2.7
(\boldsymbol{y})	211	300	107	167	266	227	86	207	115	285	199	172

Source: New York Times
a. Use the statistical menu of your graphing utility to enter the 19 ordered pairs of data items shown in the table.
b. Use the scatter plot capability to draw a scatter plot of the data.
c. Select the linear regression option. Use your utility to obtain values for a and b for the equation of the regression line, $y=a x+b$. You may also be given a correlation coefficient, r. Values of r close to 1 indicate that the points can be described by a linear relationship and the regression line has a positive slope. Values of r close to -1 indicate that the points can be described by a linear relationship and the regression line has a negative slope. Values of r close to 0 indicate no linear relationship between the variables. In this case, a linear model does not accurately describe the data.
d. Use the appropriate sequence (consult your manual) to graph the regression equation on top of the points in the scatter plot.

Critical Thinking Exercises

Make Sense? In Exercises 105-108, determine whether each statement makes sense or does not make sense, and explain your reasoning.
105. The graph of my linear function at first increased, reached a maximum point, and then decreased.
106. A linear function that models tuition and fees at public four-year colleges from 2000 through 2012 has negative slope.
107. Because the variable m does not appear in $A x+B y+C=0$, equations in this form make it impossible to determine the line's slope.
108. The federal minimum wage was $\$ 5.15$ per hour from 1997 through 2006 , so $f(x)=5.15$ models the minimum wage, $f(x)$, in dollars, for the domain $\{1997,1998,1999, \ldots, 2006\}$.
In Exercises 109-112, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
109. The equation $y=m x+b$ shows that no line can have a y-intercept that is numerically equal to its slope.
110. Every line in the rectangular coordinate system has an equation that can be expressed in slope-intercept form.
111. The graph of the linear function $5 x+6 y-30=0$ is a line passing through the point $(6,0)$ with slope $-\frac{5}{6}$.
112. The graph of $x=7$ in the rectangular coordinate system is the single point $(7,0)$.

In Exercises 113-114, find the coefficients that must be placed in each shaded area so that the function's graph will be a line satisfying the specified conditions.
113. $\quad x+\square y-12=0 ; x$-intercept $=-2 ; y$-intercept $=4$
114. $x+\square y-12=0 ; y$-intercept $=-6$; slope $=\frac{1}{2}$
115. Prove that the equation of a line passing through $(a, 0)$ and $(0, b)(a \neq 0, b \neq 0)$ can be written in the form $\frac{x}{a}+\frac{y}{b}=1$. Why is this called the intercept form of a line?
116. Excited about the success of celebrity stamps, post office officials were rumored to have put forth a plan to institute two new types of thermometers. On these new scales, ${ }^{\circ} E$ represents degrees Elvis and ${ }^{\circ} M$ represents degrees Madonna. If it is known that $40^{\circ} \mathrm{E}=25^{\circ} \mathrm{M}, 280^{\circ} \mathrm{E}=125^{\circ} \mathrm{M}$, and degrees Elvis is linearly related to degrees Madonna, write an equation expressing E in terms of M.

Group Exercise

117. In Exercises 87-88, we used the data in a bar graph to develop linear functions that modeled the percentage of never-married American females and males, ages 25-29. For this group exercise, you might find it helpful to pattern your work after Exercises 87 and 88. Group members should begin by consulting an almanac, newspaper, magazine, or the Internet to find data that appear to lie approximately on or near a line. Working by hand or using a graphing utility, group members should construct scatter plots for the data that were assembled. If working by hand, draw a line that approximately fits the data in each scatter plot and then write its equation as a function in slope-intercept form. If using a graphing utility, obtain the equation of each regression line. Then use each linear function's equation to make predictions about what might occur in the future. Are there circumstances that might affect the accuracy of the prediction? List some of these circumstances.

Preview Exercises

Exercises 118-120 will help you prepare for the material covered in the next section.
118. Write the slope-intercept form of the equation of the line passing through $(-3,1)$ whose slope is the same as the line whose equation is $y=2 x+1$.
119. Write an equation in general form of the line passing through $(3,-5)$ whose slope is the negative reciprocal (the reciprocal with the opposite sign) of $-\frac{1}{4}$.
120. If $f(x)=x^{2}$, find

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

where $x_{1}=1$ and $x_{2}=4$.

SECTION 1.5

Objectives

(1) Find slopes and equations of parallel and perpendicular lines.
(2) Interpret slope as rate of change.
(3) Find a function's average rate of change.

(1) Find slopes and equations of parallel and perpendicular lines.

More on Slope

FIGURE 1.47
Source: U.S. Census Bureau

A best guess at the future of our nation indicates that the numbers of men and women living alone will increase each year. Figure $\mathbf{1 . 4 7}$ shows that in 2008, 14.7 million men and 18.3 million women lived alone, an increase over the numbers displayed in the graph for 1990.

Take a second look at Figure 1.47. Can you tell that the green graph representing men has a greater slope than the red graph representing women? This indicates a greater rate of change in the number of men living alone than in the number of women living alone over the period from 1990 through 2008. In this section, you will learn to interpret slope as a rate of change. You will also explore the relationships between slopes of parallel and perpendicular lines.

Parallel and Perpendicular Lines

Two nonintersecting lines that lie in the same plane are parallel. If two lines do not intersect, the ratio of the vertical change to the horizontal change is the same for both lines. Because two parallel lines have the same "steepness," they must have the same slope.

Slope and Parallel Lines

1. If two nonvertical lines are parallel, then they have the same slope.
2. If two distinct nonvertical lines have the same slope, then they are parallel.
3. Two distinct vertical lines, both with undefined slopes, are parallel.

EXAMPLE 1 Writing Equations of a Line Parallel to a Given Line

Write an equation of the line passing through $(-3,1)$ and parallel to the line whose equation is $y=2 x+1$. Express the equation in point-slope form and slope-intercept form.

FIGURE 1.49 Slopes of perpendicular lines

SOLUTION

The situation is illustrated in Figure 1.48. We are looking for the equation of the red line passing through $(-3,1)$ and parallel to the blue line whose equation is $y=2 x+1$. How do we obtain the equation of this red line? Notice that the line passes through the point $(-3,1)$. Using the pointslope form of the line's equation, we have $x_{1}=-3$ and $y_{1}=1$.

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y_{1}=1 \quad x_{1}=-3
\end{array}
$$

With $\left(x_{1}, y_{1}\right)=(-3,1)$, the only thing missing from the equation of the red line is m, the slope. Do we know anything about the slope of either

The equation of this line is given: $y=2 x+1$.

FIGURE 1.48 line in Figure 1.48? The answer is yes; we know the slope of the blue line on the right, whose equation is given.

$$
y=2 x+1
$$

The slope of the blue line on

the right in Figure 1.48 is 2.
Parallel lines have the same slope. Because the slope of the blue line is 2, the slope of the red line, the line whose equation we must write, is also 2 : $m=2$. We now have values for x_{1}, y_{1}, and m for the red line.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y_{1}=1 \quad m=2 \quad x_{1}=-3
\end{aligned}
$$

The point-slope form of the red line's equation is

$$
\begin{aligned}
& y-1=2[x-(-3)] \text { or } \\
& y-1=2(x+3)
\end{aligned}
$$

Solving for y, we obtain the slope-intercept form of the equation.

$$
\begin{aligned}
y-1=2 x+6 & \text { Apply the distributive property. } \\
y=2 x+7 & \begin{array}{l}
\text { Add } 1 \text { to both sides. This is the slope-intercept } \\
\\
\\
\\
\\
\\
\\
\\
\text { norm, } y=m x+b, \text { of the equation. the equation is } f(x)=2 x+7 .
\end{array}
\end{aligned}
$$

\int Check Point 1 Write an equation of the line passing through $(-2,5)$ and parallel to the line whose equation is $y=3 x+1$. Express the equation in point-slope form and slope-intercept form.

Two lines that intersect at a right angle $\left(90^{\circ}\right)$ are said to be perpendicular, shown in Figure 1.49. The relationship between the slopes of perpendicular lines is not as obvious as the relationship between parallel lines. Figure 1.49 shows line $A B$, with slope $\frac{c}{d}$. Rotate line $A B$ counterclockwise 90° to the left to obtain line $A^{\prime} B^{\prime}$, perpendicular to line $A B$. The figure indicates that the rise and the run of the new line are reversed from the original line, but the former rise, the new run, is now negative. This means that the slope of the new line is $-\frac{d}{c}$. Notice that the product of the slopes of the two perpendicular lines is -1 :

$$
\left(\frac{c}{d}\right)\left(-\frac{d}{c}\right)=-1
$$

This relationship holds for all perpendicular lines and is summarized in the box at the top of the next page.

Slope and Perpendicular Lines

1. If two nonvertical lines are perpendicular, then the product of their slopes is -1 .
2. If the product of the slopes of two lines is -1 , then the lines are perpendicular.
3. A horizontal line having zero slope is perpendicular to a vertical line having undefined slope.

An equivalent way of stating this relationship is to say that one line is perpendicular to another line if its slope is the negative reciprocal of the slope of the other line. For example, if a line has slope 5 , any line having slope $-\frac{1}{5}$ is perpendicular to it. Similarly, if a line has slope $-\frac{3}{4}$, any line having slope $\frac{4}{3}$ is perpendicular to it.

EXAMPLE 2 Writing Equations of a Line Perpendicular to a Given Line

a. Find the slope of any line that is perpendicular to the line whose equation is $x+4 y-8=0$.
b. Write the equation of the line passing through $(3,-5)$ and perpendicular to the line whose equation is $x+4 y-8=0$. Express the equation in general form.

SOLUTION

a. We begin by writing the equation of the given line, $x+4 y-8=0$, in slope-intercept form. Solve for y.

$$
\begin{aligned}
x+4 y-8 & =0 & & \text { This is the given equation. } \\
4 y & =-x+8 & & \text { To isolate the } y \text {-term, subtract } x \text { and add } 8 \text { on both sides. } \\
y & =-\frac{1}{4} x+2 & & \text { Divide both sides by } 4 . \\
& \text { Slope is }-\frac{1}{4} . & &
\end{aligned}
$$

The given line has slope $-\frac{1}{4}$. Any line perpendicular to this line has a slope that is the negative reciprocal of $-\frac{1}{4}$. Thus, the slope of any perpendicular line is 4 .
b. Let's begin by writing the point-slope form of the perpendicular line's equation. Because the line passes through the point $(3,-5)$, we have $x_{1}=3$ and $y_{1}=-5$. In part (a), we determined that the slope of any line perpendicular to $x+4 y-8=0$ is 4 , so the slope of this particular perpendicular line must also be 4 : $m=4$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y_{1}=-5 \quad m=4 \quad x_{1}=3
\end{aligned}
$$

The point-slope form of the perpendicular line's equation is

$$
\begin{aligned}
y-(-5) & =4(x-3) \text { or } \\
y+5 & =4(x-3) .
\end{aligned}
$$

How can we express this equation, $y+5=4(x-3)$, in general form $(A x+B y+C=0)$? We need to obtain zero on one side of the equation. Let's do this and keep A, the coefficient of x, positive.

$$
\begin{aligned}
y+5 & =4(x-3) & & \begin{array}{l}
\text { This is the point-slope form of the } \\
\text { line's equation. }
\end{array} \\
y+5 & =4 x-12 & & \text { Apply the distributive property. } \\
y-y+5-5 & =4 x-y-12-5 & & \begin{array}{l}
\text { Too obtain } 0 \text { on the left, subtract y } \\
\text { and subtract } 5 \text { on both sides. }
\end{array} \\
00 & =4 x-y-17 & & \begin{array}{l}
\text { Simplify. }
\end{array}
\end{aligned}
$$

In general form, the equation of the perpendicular line is $4 x-y-17=0$.

$\$$ Check Point 2

a. Find the slope of any line that is perpendicular to the line whose equation is $x+3 y-12=0$.
b. Write the equation of the line passing through $(-2,-6)$ and perpendicular to the line whose equation is $x+3 y-12=0$. Express the equation in general form.

Slope as Rate of Change

Slope is defined as the ratio of a change in y to a corresponding change in x. It describes how fast y is changing with respect to x. For a linear function, slope may be interpreted as the rate of change of the dependent variable per unit change in the independent variable.

Our next example shows how slope can be interpreted as a rate of change in an applied situation. When calculating slope in applied problems, keep track of the units in the numerator and the denominator.

EXAMPLE 3 Slope as a Rate of Change

The line graphs for the number of women and men living alone are shown again in
Figure 1.50. Find the slope of the line segment for the women. Describe what this slope represents.

SOLUTION

We let x represent a year and y the number of women living alone in that year. The two points shown on the line segment for women have the following coordinates:
$\$$ Check Point 3 Use the ordered pairs in Figure 1.50 to find the slope of the green line segment for the men. Express the slope correct to two decimal places and describe what it represents.

In Check Point 3, did you find that the slope of the line segment for the men is different from that of the women? The rate of change for the number of men living alone is greater than the rate of change for the number of women living alone. The green line segment representing men in Figure $\mathbf{1 . 5 0}$ is steeper than the red line segment representing women. If you extend the line segments far enough, the resulting lines will intersect. They are not parallel.
3. Find a function's average rate of change.

The Average Rate of Change of a Function

If the graph of a function is not a straight line, the average rate of change between any two points is the slope of the line containing the two points. This line is called a secant line. For example, Figure $\mathbf{1 . 5 1}$ shows the graph of a particular man's height, in inches, as a function of his age, in years. Two points on the graph are labeled: $(13,57)$ and $(18,76)$. At age 13 , this man was 57 inches tall and at age 18 , he was 76 inches tall.

FIGURE 1.51 Height as a function of age
The man's average growth rate between ages 13 and 18 is the slope of the secant line containing $(13,57)$ and $(18,76)$:

$$
m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{76-57}{18-13}=\frac{19}{5}=3 \frac{4}{5} .
$$

This man's average rate of change, or average growth rate, from age 13 to age 18 was $3 \frac{4}{5}$, or 3.8 , inches per year.

The Average Rate of Change of a Function

Let $\left(x_{1}, f\left(x_{1}\right)\right)$ and ($\left.x_{2}, f\left(x_{2}\right)\right)$ be distinct points on the graph of a function f. (See Figure 1.52.) The average rate of change of \boldsymbol{f} from x_{1} to x_{2}, denoted by $\frac{\Delta y}{\Delta x}$ (read "delta y divided by delta x " or "change in y devided by change in x "), is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} .
$$

FIGURE 1.52

EXAMPLE 4 Finding the Average Rate of Change

Find the average rate of change of $f(x)=x^{2}$ from
a. $x_{1}=0$ to $x_{2}=1$
b. $x_{1}=1$ to $x_{2}=2$
c. $x_{1}=-2$ to $x_{2}=0$.

SOLUTION

a. The average rate of change of $f(x)=x^{2}$ from $x_{1}=0$ to $x_{2}=1$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(1)-f(0)}{1-0}=\frac{1^{2}-0^{2}}{1}=1 .
$$

Figure 1.53(a) shows the secant line of $f(x)=x^{2}$ from $x_{1}=0$ to $x_{2}=1$. The average rate of change is positive and the function is increasing on the interval $(0,1)$.
b. The average rate of change of $f(x)=x^{2}$ from $x_{1}=1$ to $x_{2}=2$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(2)-f(1)}{2-1}=\frac{2^{2}-1^{2}}{1}=3 .
$$

Figure 1.53(b) shows the secant line of $f(x)=x^{2}$ from $x_{1}=1$ to $x_{2}=2$. The average rate of change is positive and the function is increasing on the interval $(1,2)$. Can you see that the graph rises more steeply on the interval $(1,2)$ than on $(0,1)$? This is because the average rate of change from $x_{1}=1$ to $x_{2}=2$ is greater than the average rate of change from $x_{1}=0$ to $x_{2}=1$.
c. The average rate of change of $f(x)=x^{2}$ from $x_{1}=-2$ to $x_{2}=0$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(0)-f(-2)}{0-(-2)}=\frac{0^{2}-(-2)^{2}}{2}=\frac{-4}{2}=-2 .
$$

Figure 1.53(c) shows the secant line of $f(x)=x^{2}$ from $x_{1}=-2$ to $x_{2}=0$. The average rate of change is negative and the function is decreasing on the interval $(-2,0)$.

FIGURE 1.53(a) The secant line of $f(x)=x^{2}$ from $x_{1}=0$ to $x_{2}=1$

FIGURE 1.53(b) The secant line of $f(x)=x^{2}$ from $x_{1}=1$ to $x_{2}=2$

FIGURE 1.53(c) The secant line of $f(x)=x^{2}$ from $x_{1}=-2$ to $x_{2}=0 \quad \oplus$ 。
\int Check Point 4 Find the average rate of change of $f(x)=x^{3}$ from
a. $x_{1}=0$ to $x_{2}=1$
b. $x_{1}=1$ to $x_{2}=2$
c. $x_{1}=-2$ to $x_{2}=0$.

FIGURE 1.54 Concentration of a drug as a function of time

Suppose we are interested in the average rate of change of f from $x_{1}=x$ to $x_{2}=x+h$. In this case, the average rate of change is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{h} .
$$

Do you recognize the last expression? It is the difference quotient that you used in Section 1.3. Thus, the difference quotient gives the average rate of change of a function from x to $x+h$. In the difference quotient, h is thought of as a number very close to 0 . In this way, the average rate of change can be found for a very short interval.

EXAMPLE 5 Finding the Average Rate of Change

When a person receives a drug injected into a muscle, the concentration of the drug in the body, measured in milligrams per 100 milliliters, is a function of the time elapsed after the injection, measured in hours. Figure $\mathbf{1 . 5 4}$ shows the graph of such a function, where x represents hours after the injection and $f(x)$ is the drug's concentration at time x. Find the average rate of change in the drug's concentration between 3 and 7 hours.

SOLUTION

At 3 hours, the drug's concentration is 0.05 and at 7 hours, the concentration is 0.02 . The average rate of change in its concentration between 3 and 7 hours is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(7)-f(3)}{7-3}=\frac{0.02-0.05}{7-3}=\frac{-0.03}{4}=-0.0075
$$

The average rate of change is -0.0075 . This means that the drug's concentration is decreasing at an average rate of 0.0075 milligram per 100 milliliters per hour. ©๑॰

GREAT QUESTION!

Can you clarify how you determine the units that you use when describing slope as a rate of change?
Units used to describe x and y tend to "pile up" when expressing the rate of change of y with respect to x. The unit used to express the rate of change of y with respect to x is
the unit used
to describe $y \quad$ per \quad the unit used
to describe x.

Blitzer Bonus || How Calculus Studies Change

Take a rapid sequence of still photographs of a moving scene and project them onto a screen at thirty shots a second or faster. Our eyes see the results as continuous motion. The small difference between one frame and the next cannot be detected by the human visual system. The idea of calculus likewise regards continuous motion as made up of a sequence of still configurations. Calculus masters the mystery of movement by "freezing the frame" of a continuous changing process, instant by instant. For example, Figure $\mathbf{1 . 5 5}$ shows a male's changing height over intervals of time. Over the period of time from P to D, his average rate of growth is his change in height - that is, his height at time D minus his height at time P-divided by the change in time from P to D. This is the slope of secant line $P D$.

The secant lines $P D, P C, P B$, and $P A$ shown in Figure 1.55 have slopes that show average growth rates for successively shorter periods of time. Calculus makes these time frames so small that they approach a single point - that is, a single instant in time. This point is shown as point P in Figure 1.55. The slope of the line that touches the graph at P gives the male's growth rate at one instant in time, P.

FIGURE 1.55 Analyzing continuous growth over intervals of time and at an instant in time

The average velocity of an object is its change in position divided by the change in time between the starting and ending positions. If a function expresses an object's position in terms of time, the function's average rate of change describes the object's average velocity.

Average Velocity of an Object

Suppose that a function expresses an object's position, $s(t)$, in terms of time, t. The average velocity of the object from t_{1} to t_{2} is

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

EXAMPLE 6 Finding Average Velocity

The distance, $s(t)$, in feet, traveled by a ball rolling down a ramp is given by the function

$$
s(t)=5 t^{2}
$$

where t is the time, in seconds, after the ball is released. Find the ball's average velocity from
a. $t_{1}=2$ seconds to $t_{2}=3$ seconds.
b. $t_{1}=2$ seconds to $t_{2}=2.5$ seconds.
c. $t_{1}=2$ seconds to $t_{2}=2.01$ seconds.

SOLUTION

a. The ball's average velocity between 2 and 3 seconds is

$$
\frac{\Delta s}{\Delta t}=\frac{s(3)-s(2)}{3 \mathrm{sec}-2 \mathrm{sec}}=\frac{5 \cdot 3^{2}-5 \cdot 2^{2}}{1 \mathrm{sec}}=\frac{45 \mathrm{ft}-20 \mathrm{ft}}{1 \mathrm{sec}}=25 \mathrm{ft} / \mathrm{sec}
$$

b. The ball's average velocity between 2 and 2.5 seconds is

$$
\frac{\Delta s}{\Delta t}=\frac{s(2.5)-s(2)}{2.5 \mathrm{sec}-2 \mathrm{sec}}=\frac{5(2.5)^{2}-5 \cdot 2^{2}}{0.5 \mathrm{sec}}=\frac{31.25 \mathrm{ft}-20 \mathrm{ft}}{0.5 \mathrm{sec}}=22.5 \mathrm{ft} / \mathrm{sec}
$$

c. The ball's average velocity between 2 and 2.01 seconds is

$$
\frac{\Delta s}{\Delta t}=\frac{s(2.01)-s(2)}{2.01 \mathrm{sec}-2 \mathrm{sec}}=\frac{5(2.01)^{2}-5 \cdot 2^{2}}{0.01 \mathrm{sec}}=\frac{20.2005 \mathrm{ft}-20 \mathrm{ft}}{0.01 \mathrm{sec}}=20.05 \mathrm{ft} / \mathrm{sec}
$$

In Example 6, observe that each calculation begins at 2 seconds and involves shorter and shorter time intervals. In calculus, this procedure leads to the concept of instantaneous, as opposed to average, velocity. Instantaneous velocity is discussed in the introduction to calculus in Chapter 11.
\oint Check Point 6 The distance, $s(t)$, in feet, traveled by a ball rolling down a ramp is given by the function

$$
s(t)=4 t^{2}
$$

where t is the time, in seconds, after the ball is released. Find the ball's average velocity from
a. $t_{1}=1$ second to $t_{2}=2$ seconds.
b. $t_{1}=1$ second to $t_{2}=1.5$ seconds.
c. $t_{1}=1$ second to $t_{2}=1.01$ seconds.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. If two nonvertical lines are parallel, then they have
\qquad slope.
2. If two nonvertical lines are perpendicular, then the product of their slopes is \qquad
3. Consider the line whose equation is $y=-\frac{1}{3} x+5$. The slope of any line that is parallel to this line is \qquad The slope of any line that is perpendicular to this line is \qquad
4. Consider the line whose equation is $2 x+y-6=0$. The slope of any line that is parallel to this line is \ldots _The slope of any line that is perpendicular to this line is \qquad -. .
5. The slope of the line through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be interpreted as the rate of change in \qquad with respect to \qquad
6. If $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ are distinct points on the graph of a function f, the average rate of change of f from x_{1} to x_{2} is $\frac{\Delta y}{\Delta x}=$ \qquad .
7. A function expresses an object's position, $s(t)$, in terms of time, t. The average velocity of the object from $t_{1}=3$ seconds to $t_{2}=6$ seconds is $\frac{\Delta s}{\Delta t}=$ \qquad

EXERCISE SET 1.5

Practice Exercises

In Exercises 1-4, write an equation for line L in point-slope form and slope-intercept form.
1.

L is parallel to $y=2 x$.
2.

L is parallel to $y=-2 x$.
3.

L is perpendicular to $y=2 x$.

L is perpendicular to $y=-2 x$.

In Exercises 5-8, use the given conditions to write an equation for each line in point-slope form and slope-intercept form.
5. Passing through $(-8,-10)$ and parallel to the line whose equation is $y=-4 x+3$
6. Passing through $(-2,-7)$ and parallel to the line whose equation is $y=-5 x+4$
7. Passing through $(2,-3)$ and perpendicular to the line whose equation is $y=\frac{1}{5} x+6$
8. Passing through $(-4,2)$ and perpendicular to the line whose equation is $y=\frac{1}{3} x+7$
In Exercises 9-12, use the given conditions to write an equation for each line in point-slope form and general form.
9. Passing through $(-2,2)$ and parallel to the line whose equation is $2 x-3 y-7=0$
10. Passing through $(-1,3)$ and parallel to the line whose equation is $3 x-2 y-5=0$
11. Passing through $(4,-7)$ and perpendicular to the line whose equation is $x-2 y-3=0$
12. Passing through $(5,-9)$ and perpendicular to the line whose equation is $x+7 y-12=0$
In Exercises 13-18, find the average rate of change of the function from x_{1} to x_{2}.
13. $f(x)=3 x$ from $x_{1}=0$ to $x_{2}=5$
14. $f(x)=6 x$ from $x_{1}=0$ to $x_{2}=4$
15. $f(x)=x^{2}+2 x$ from $x_{1}=3$ to $x_{2}=5$
16. $f(x)=x^{2}-2 x$ from $x_{1}=3$ to $x_{2}=6$
17. $f(x)=\sqrt{x}$ from $x_{1}=4$ to $x_{2}=9$
18. $f(x)=\sqrt{x}$ from $x_{1}=9$ to $x_{2}=16$

In Exercises 19-20, suppose that a ball is rolling down a ramp. The distance traveled by the ball is given by the function in each exercise, where t is the time, in seconds, after the ball is released, and $s(t)$ is measured in feet. For each given function, find the ball's average velocity from
a. $t_{1}=3$ to $t_{2}=4$.
b. $t_{1}=3$ to $t_{2}=3.5$.
c. $t_{1}=3$ to $t_{2}=3.01$.
d. $t_{1}=3$ to $t_{2}=3.001$.
19. $s(t)=10 t^{2}$
20. $s(t)=12 t^{2}$

Practice Plus

In Exercises 21-26, write an equation in slope-intercept form of a linear function f whose graph satisfies the given conditions.
21. The graph of f passes through $(-1,5)$ and is perpendicular to the line whose equation is $x=6$.
22. The graph of f passes through $(-2,6)$ and is perpendicular to the line whose equation is $x=-4$.
23. The graph of f passes through $(-6,4)$ and is perpendicular to the line that has an x-intercept of 2 and a y-intercept of -4 .
24. The graph of f passes through $(-5,6)$ and is perpendicular to the line that has an x-intercept of 3 and a y-intercept of -9 .
25. The graph of f is perpendicular to the line whose equation is $3 x-2 y-4=0$ and has the same y-intercept as this line.
26. The graph of f is perpendicular to the line whose equation is $4 x-y-6=0$ and has the same y-intercept as this line.

Application Exercises

The bar graph shows that as costs changed over the decades, Americans devoted less of their budget to groceries and more to health care.

Percentage of Total Spending in the United States on Food and Health Care

Source: Time, October 10, 2011
In Exercises 27-28, find a linear function in slope-intercept form that models the given description. Each function should model the percentage of total spending, $p(x)$, by Americans x years after 1950 .
27. In 1950, Americans spent 22% of their budget on food. This has decreased at an average rate of approximately 0.25% per year since then.
28. In 1950, Americans spent 3% of their budget on health care. This has increased at an average rate of approximately 0.22% per year since then.

The stated intent of the 1994 "don't ask, don't tell" policy was to reduce the number of discharges of gay men and lesbians from the military. Nearly 14,000 active-duty gay servicemembers were dismissed under the policy, which officially ended in 2011, after 18 years. The line graph shows the number of discharges under "don't ask, don't tell" from 1994 through 2010. Use the data displayed by the graph to solve Exercises 29-30.

Source: General Accountability Office
(In Exercises 29-30, be sure to refer to the graph at the bottom of the previous page.)
29. Find the average rate of change, rounded to the nearest whole number, from 1994 through 1998. Describe what this means.
30. Find the average rate of change, rounded to the nearest whole number, from 2001 through 2006. Describe what this means.

The function $f(x)=1.1 x^{3}-35 x^{2}+264 x+557$ models the number of discharges, $f(x)$, under "don't ask, don't tell" x years after 1994. Use this model and its graph, shown on the domain [0,12], to solve Exercises 31-32.

31. a. Find the slope of the secant line, rounded to the nearest whole number, from $x_{1}=0$ to $x_{2}=4$.
b. Does the slope from part (a) underestimate or overestimate the average yearly increase that you determined in Exercise 29? By how much?
32. a. Find the slope of the secant line, rounded to the nearest whole number, from $x_{1}=7$ to $x_{2}=12$.
b. Does the slope from part (b) underestimate or overestimate the average yearly decrease that you determined in Exercise 30? By how much?

Writing in Mathematics

33. If two lines are parallel, describe the relationship between their slopes.
34. If two lines are perpendicular, describe the relationship between their slopes.
35. If you know a point on a line and you know the equation of a line perpendicular to this line, explain how to write the line's equation.
36. A formula in the form $y=m x+b$ models the average retail price, y, of a new car x years after 2000. Would you expect m to be positive, negative, or zero? Explain your answer.
37. What is a secant line?
38. What is the average rate of change of a function?

Technology Exercise

39. a. Why are the lines whose equations are $y=\frac{1}{3} x+1$ and $y=-3 x-2$ perpendicular?
b. Use a graphing utility to graph the equations in a $[-10,10,1]$ by $[-10,10,1]$ viewing rectangle. Do the lines appear to be perpendicular?
c. Now use the zoom square feature of your utility. Describe what happens to the graphs. Explain why this is so.

Critical Thinking Exercises

Make Sense? In Exercises 40-43, determine whether each statement makes sense or does not make sense, and explain your reasoning.
40. Some of the steel girders in this photo of the Eiffel Tower appear to have slopes that are negative reciprocals of each other.

41. I have linear functions that model changes for men and women over the same time period. The functions have the same slope, so their graphs are parallel lines, indicating that the rate of change for men is the same as the rate of change for women.
42. The graph of my function is not a straight line, so I cannot use slope to analyze its rates of change.
43. According to the Blitzer Bonus on page 210, calculus studies change by analyzing slopes of secant lines over successively shorter intervals.
44. What is the slope of a line that is perpendicular to the line whose equation is $A x+B y+C=0, A \neq 0$ and $B \neq 0$?
45. Determine the value of A so that the line whose equation is $A x+y-2=0$ is perpendicular to the line containing the points $(1,-3)$ and $(-2,4)$.

Preview Exercises

Exercises 46-48 will help you prepare for the material covered in the next section. In each exercise, graph the functions in parts (a) and (b) in the same rectangular coordinate system.
46. a. Graph $f(x)=|x|$ using the ordered pairs $(-3, f(-3))$, $(-2, f(-2)),(-1, f(-1)),(0, f(0)),(1, f(1)),(2, f(2)), \quad$ and $(3, f(3))$.
b. Subtract 4 from each y-coordinate of the ordered pairs in part (a). Then graph the ordered pairs and connect them with two linear pieces.
c. Describe the relationship between the graph in part (b) and the graph in part (a).
47. a. Graph $f(x)=x^{2}$ using the ordered pairs $(-3, f(-3))$, $(-2, f(-2)),(-1, f(-1)),(0, f(0)),(1, f(1)),(2, f(2)), \quad$ and (3, f(3)).
b. Add 2 to each x-coordinate of the ordered pairs in part (a). Then graph the ordered pairs and connect them with a smooth curve.
c. Describe the relationship between the graph in part (b) and the graph in part (a).
48. a. Graph $f(x)=x^{3}$ using the ordered pairs $(-2, f(-2))$, $(-1, f(-1)),(0, f(0)),(1, f(1))$, and $(2, f(2))$.
b. Replace each x-coordinate of the ordered pairs in part (a) with its opposite, or additive inverse. Then graph the ordered pairs and connect them with a smooth curve.
c. Describe the relationship between the graph in part (b) and the graph in part (a).

CHAPTER 1
 Mid-Chapter Check Point

WHAT YOU KNOW: We learned that a function is a relation in which no two ordered pairs have the same first component and different second components. We represented functions as equations and used function notation. We graphed functions and applied the vertical line test to identify graphs of functions. We determined the domain and range of a function from its graph, using inputs on the x-axis for the domain and outputs on the y-axis for the range. We used graphs to identify intervals on which functions increase, decrease, or are constant, as well as to locate relative maxima or minima. We identified even functions $[f(-x)=f(x)$: y-axis symmetry] and odd functions $[f(-x)=-f(x)$: origin symmetry]. Finally, we studied linear functions and slope, using slope (change in y divided by change in x) to develop various forms for equations of lines:

We saw that parallel lines have the same slope and that perpendicular lines have slopes that are negative reciprocals. For linear functions, slope was interpreted as the rate of change of the dependent variable per unit change in the independent variable. For nonlinear functions, the slope of the secant line between $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ described the average rate of change of f from x_{1} to $x_{2}: \frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$.

In Exercises 1-6, determine whether each relation is a function. Give the domain and range for each relation.

1. $\{(2,6),(1,4),(2,-6)\}$
2. $\{(0,1),(2,1),(3,4)\}$

3.

5.

6.

In Exercises 7-8, determine whether each equation defines y as a function of x.
7. $x^{2}+y=5$
8. $x+y^{2}=5$

Use the graph of f to solve Exercises 9-24. Where applicable, use interval notation.

9. Explain why f represents the graph of a function.
10. Find the domain of f.
11. Find the range of f.
12. Find the x-intercept(s).
13. Find the y-intercept.
14. Find the interval(s) on which f is increasing.
15. Find the interval(s) on which f is decreasing.
16. At what number does f have a relative maximum?
17. What is the relative maximum of f ?
18. Find $f(-4)$.
19. For what value or values of x is $f(x)=-2$?
20. For what value or values of x is $f(x)=0$?
21. For what values of x is $f(x)>0$?
22. Is $f(100)$ positive or negative?
23. Is f even, odd, or neither?
24. Find the average rate of change of f from $x_{1}=-4$ to $x_{2}=4$.

In Exercises 25-36, graph each equation in a rectangular coordinate system.
25. $y=-2 x$
26. $y=-2$
27. $x+y=-2$
28. $y=\frac{1}{3} x-2$
29. $x=3.5$
30. $4 x-2 y=8$
31. $f(x)=x^{2}-4$
32. $f(x)=x-4$
33. $f(x)=|x|-4$
34. $5 y=-3 x$
35. $5 y=20$
36. $f(x)=\left\{\begin{array}{lll}-1 & \text { if } & x \leq 0 \\ 2 x+1 & \text { if } & x>0\end{array}\right.$
37. Let $f(x)=-2 x^{2}+x-5$.
a. Find $f(-x)$. Is f even, odd, or neither?
b. Find $\frac{f(x+h)-f(x)}{h}, h \neq 0$.
38. Let $C(x)=\left\{\begin{array}{lll}30 & \text { if } & 0 \leq x \leq 200 \\ 30+0.40(x-200) & \text { if } & x>200\end{array}\right.$
a. Find $C(150)$.
b. Find $C(250)$.

In Exercises 39-42, write a function in slope-intercept form whose graph satisfies the given conditions.
39. Slope $=-2$, passing through $(-4,3)$
40. Passing through $(-1,-5)$ and $(2,1)$
41. Passing through $(3,-4)$ and parallel to the line whose equation is $3 x-y-5=0$
42. Passing through $(-4,-3)$ and perpendicular to the line whose equation is $2 x-5 y-10=0$
43. Determine whether the line through $(2,-4)$ and $(7,0)$ is parallel to a second line through $(-4,2)$ and $(1,6)$.
44. Exercise is useful not only in preventing depression, but also as a treatment. The following graphs show the percentage of patients with depression in remission when exercise (brisk walking) was used as a treatment. (The control group that engaged in no exercise had 11% of the patients in remission.)
a. Find the slope of the line passing through the two points shown by the voice balloons. Express the slope as a decimal.

Exercise and Percentage of Patients with Depression in Remission

Source: Newsweek, March 26, 2007
b. Use your answer from part (a) to complete this statement: For each minute of brisk walking, the percentage of patients with depression in remission increased by \qquad \%. The rate of change is \qquad \% per \qquad
45. Find the average rate of change of $f(x)=3 x^{2}-x$ from $x_{1}=-1$ to $x_{2}=2$.

SECTION 1.6

Objectives

(1) Recognize graphs of common functions.
(2) Use vertical shifts to graph functions.
(3) Use horizontal shifts to graph functions.
4. Use reflections to graph functions.
(5) Use vertical stretching and shrinking to graph functions.
6 Use horizontal stretching and shrinking to graph functions.
(7) Graph functions involving a sequence of transformations.

Transformations of Functions

Have you seen Terminator 2, The Mask, or The Matrix? These were among the first films to use spectacular effects in which a character or object having one shape was transformed in a fluid fashion into a quite different shape. The name for such a transformation is morphing. The effect allows a real actor to be seamlessly transformed into a computergenerated animation. The animation can be made to perform impossible feats before it is morphed back to the conventionally filmed image.

Like transformed movie images, the graph of one function can be turned into the graph of a different function. To do this, we need to rely on a function's equation. Knowing that a graph is a transformation
 of a familiar graph makes graphing easier.

Recognize graphs of common functions.

Graphs of Common Functions

Table 1.3 gives names to seven frequently encountered functions in algebra. The table shows each function's graph and lists characteristics of the function. Study the shape of each graph and take a few minutes to verify the function's characteristics from its graph. Knowing these graphs is essential for analyzing their transformations into more complicated graphs.

Table 1.3 Algebra's Common Graphs

DISCOVERY

The study of how changing a function's equation can affect its graph can be explored with a graphing utility. Use your graphing utility to verify the hand-drawn graphs as you read this section.

Use vertical shifts to graph functions.

Vertical Shifts

Let's begin by looking at three graphs whose shapes are the same. Figure $\mathbf{1 . 5 6}$ on the next page shows the graphs. The black graph in the middle is the standard quadratic function, $f(x)=x^{2}$. Now, look at the blue graph on the top. The equation of this graph, $g(x)=x^{2}+2$, adds 2 to the right side of $f(x)=x^{2}$. The y-coordinate of each

FIGURE 1.56 Vertical shifts

GREAT QUESTION!

If I'm using the graph of a familiar function, how do I actually obtain the graph of a transformation?
To keep track of transformations and obtain their graphs, identify a number of points on the given function's graph. Then analyze what happens to the coordinates of these points with each transformation.
point of g is 2 more than the corresponding y-coordinate of each point of f. What effect does this have on the graph of f ? It shifts the graph vertically up by 2 units.

$$
\begin{aligned}
& \qquad g(x)=x^{2}+2=f(x)+2 \\
& \text { The graph of } g \quad \text { shifts the graph of } f \text { up } 2 \text { units. }
\end{aligned}
$$

Finally, look at the red graph on the bottom in Figure 1.56. The equation of this graph, $h(x)=x^{2}-3$, subtracts 3 from the right side of $f(x)=x^{2}$. The y-coordinate of each point of h is 3 less than the corresponding y-coordinate of each point of f. What effect does this have on the graph of f ? It shifts the graph vertically down by 3 units.

$$
h(x)=x^{2}-3=f(x)-3
$$

The graph of $h \quad$ shifts the graph of f down 3 units.
In general, if c is positive, $y=f(x)+c$ shifts the graph of f upward c units and $y=f(x)-c$ shifts the graph of f downward c units. These are called vertical shifts of the graph of f.

Vertical Shifts

Let f be a function and c a positive real number.

- The graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted c units vertically upward.
- The graph of $y=f(x)-c$ is the graph of $y=f(x)$ shifted c units vertically downward.

EXAMPLE 1 Vertical Shift Downward

Use the graph of $f(x)=|x|$ to obtain the graph of $g(x)=|x|-4$.

SOLUTION

The graph of $g(x)=|x|-4$ has the same shape as the graph of $f(x)=|x|$. However, it is shifted down vertically 4 units.

(3)

Use horizontal shifts to graph functions.

FIGURE 1.57 Horizontal shifts

GREAT QUESTION!

Using my intuition, it seems that $f(x+c)$ should cause a shift to the right and $f(x-c)$ should cause a shift to the left. Is my intuition on target when it comes to these horizontal shifts?
No. On a number line, if x represents a number and c is positive, then $x+c$ lies c units to the right of x and $x-c$ lies c units to the left of x. This orientation does not apply to horizontal shifts: $f(x+c)$ causes a shift of c units to the left and $f(x-c)$ causes a shift of c units to the right.

3 Check Point 1 Use the graph of $f(x)=|x|$ to obtain the graph of
$g(x)=|x|+3$.

Horizontal Shifts

We return to the graph of $f(x)=x^{2}$, the standard quadratic function. In Figure 1.57, the graph of function f is in the middle of the three graphs. By contrast to the vertical shift situation, this time there are graphs to the left and to the right of the graph of f. Look at the blue graph on the right. The equation of this graph, $g(x)=(x-3)^{2}$, subtracts 3 from each value of x before squaring it. What effect does this have on the graph of $f(x)=x^{2}$? It shifts the graph horizontally to the right by 3 units.

$$
\begin{aligned}
& \qquad g(x)=(x-3)^{2}=f(x-3) \\
& \text { The graph of } g \text { shifts the graph of } f 3 \text { units to the right. }
\end{aligned}
$$

Does it seem strange that subtracting 3 in the domain causes a shift of 3 units to the right? Perhaps a partial table of coordinates for each function will numerically convince you of this shift.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$
-2	$(-2)^{2}=4$
-1	$(-1)^{2}=1$
0	$0^{2}=0$
1	$1^{2}=1$
2	$2^{2}=4$

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})=(\boldsymbol{x}-\mathbf{3})^{\mathbf{2}}$
1	$(1-3)^{2}=(-2)^{2}=4$
2	$(2-3)^{2}=(-1)^{2}=1$
3	$(3-3)^{2}=\quad 0^{2}=0$
4	$(4-3)^{2}=\quad 1^{2}=1$
5	$(5-3)^{2}=\quad 2^{2}=4$

Notice that for the values of $f(x)$ and $g(x)$ to be the same, the values of x used in graphing g must each be 3 units greater than those used to graph f. For this reason, the graph of g is the graph of f shifted 3 units to the right.

Now, look at the red graph on the left in Figure 1.57. The equation of this graph, $h(x)=(x+2)^{2}$, adds 2 to each value of x before squaring it. What effect does this have on the graph of $f(x)=x^{2}$? It shifts the graph horizontally to the left by 2 units.

$$
h(x)=(x+2)^{2}=f(x+2)
$$

The graph of $h \quad$ shifts the graph of $f 2$ units to the left.

In general, if c is positive, $y=f(x+c)$ shifts the graph of f to the left c units and $y=f(x-c)$ shifts the graph of f to the right c units. These are called horizontal shifts of the graph of f.

Horizontal Shifts

Let f be a function and c a positive real number.

- The graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
- The graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.

EXAMPLE 2 Horizontal Shift to the Left

Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $g(x)=\sqrt{x+5}$.

SOLUTION

Compare the equations for $f(x)=\sqrt{x}$ and $g(x)=\sqrt{x+5}$. The equation for g adds 5 to each value of x before taking the square root.

$$
y=g(x)=\sqrt{x+5}=f(x+5)
$$

The graph of g shifts the graph of $f 5$ units to the left.

The graph of $g(x)=\sqrt{x+5}$ has the same shape as the graph of $f(x)=\sqrt{x}$. However, it is shifted horizontally to the left 5 units.

GREAT QUESTION!

What's the difference between $f(x)+c$ and $f(x+c)$?

- $y=f(x)+c$ shifts the graph of $y=f(x) c$ units vertically upward.
- $y=f(x+c)$ shifts the graph of $y=f(x) c$ units horizontally to the left.

There are analogous differences between $f(x)-c$ and $f(x-c)$.

Check Point 2 Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $g(x)=\sqrt{x-4}$.

Some functions can be graphed by combining horizontal and vertical shifts. These functions will be variations of a function whose equation you know how to graph, such as the standard quadratic function, the standard cubic function, the square root function, the cube root function, or the absolute value function.

In our next example, we will use the graph of the standard quadratic function, $f(x)=x^{2}$, to obtain the graph of $h(x)=(x+1)^{2}-3$. We will graph three functions:

$$
f(x)=x^{2} \quad g(x)=(x+1)^{2} \quad h(x)=(x+1)^{2}-3
$$

EXAMPLE 3 Combining Horizontal and Vertical Shifts

Use the graph of $f(x)=x^{2}$ to obtain the graph of $h(x)=(x+1)^{2}-3$.

SOLUTION

DISCOVERY

Work Example 3 by first shifting the graph of $f(x)=x^{2}$ three units down, graphing $g(x)=x^{2}-3$. Now, shift this graph one unit left to graph $h(x)=(x+1)^{2}-3$. Did you obtain the last graph shown in the solution of Example 3? What can you conclude?

Check Point 3 Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $h(x)=\sqrt{x-1}-2$.
(4) Use reflections to graph functions.

FIGURE 1.58 Reflection about the x-axis

Reflections of Graphs

This photograph shows a reflection of an old bridge in a Maryland river. This perfect reflection occurs because the surface of the water is absolutely still. A mild breeze rippling the water's surface would distort the reflection.

Is it possible for graphs to have mirror-like qualities? Yes. Figure 1.58 shows the graphs of $f(x)=x^{2}$ and $g(x)=-x^{2}$. The graph of g is a reflection about the \boldsymbol{x}-axis of the graph of f. For corresponding values of x, the y-coordinates of g are the opposites of the y-coordinates of f. In general, the graph of $y=-f(x)$ reflects the graph of f about the x-axis. Thus, the graph of g is a reflection of the graph of f about the x-axis because

$$
g(x)=-x^{2}=-f(x) .
$$

Reflection about the x-Axis

The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the x-axis.

EXAMPLE 4 Reflection about the x-Axis

Use the graph of $f(x)=\sqrt[3]{x}$ to obtain the graph of $g(x)=-\sqrt[3]{x}$.

SOLUTION

Compare the equations for $f(x)=\sqrt[3]{x}$ and $g(x)=-\sqrt[3]{x}$. The graph of g is a reflection about the x-axis of the graph of f because

$$
g(x)=-\sqrt[3]{x}=-f(x)
$$

It is also possible to reflect graphs about the y-axis.

Reflection about the y-Axis

The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis.
For each point (x, y) on the graph of $y=f(x)$, the point $(-x, y)$ is on the graph of $y=f(-x)$.

EXAMPLE 5 Reflection about the y-Axis

Use the graph of $f(x)=\sqrt{x}$ to obtain the graph of $h(x)=\sqrt{-x}$.

SOLUTION

Compare the equations for $f(x)=\sqrt{x}$ and $h(x)=\sqrt{-x}$. The graph of h is a reflection about the y-axis of the graph of f because

$$
h(x)=\sqrt{-x}=f(-x)
$$

5 Check Point 5 Use the graph of $f(x)=\sqrt[3]{x}$ to obtain the graph of $h(x)=\sqrt[3]{-x}$.

FIGURE 1.59 Vertically stretching and shrinking $f(x)=x^{2}$

GREAT QUESTION!

Does vertical stretching or shrinking change a graph's shape?
Yes. A vertical stretch moves a function's graph away from the x-axis. A vertical shrink compresses a function's graph toward the x-axis. The other transformations we have discussed (vertical shifts, horizontal shifts, and reflections) change only the position of a function's graph without changing the shape of the basic graph.

Vertical Stretching and Shrinking

Morphing does much more than move an image horizontally, vertically, or about an axis. An object having one shape is transformed into a different shape. Horizontal shifts, vertical shifts, and reflections do not change the basic shape of a graph. Graphs remain rigid and proportionally the same when they undergo these transformations. How can we shrink and stretch graphs, thereby altering their basic shapes?

Look at the three graphs in Figure 1.59. The black graph in the middle is the graph of the standard quadratic function, $f(x)=x^{2}$. Now, look at the blue graph on the top. The equation of this graph is $g(x)=2 x^{2}$, or $g(x)=2 f(x)$. Thus, for each x, the y-coordinate of g is two times as large as the corresponding y-coordinate on the graph of f. The result is a narrower graph because the values of y are rising faster. We say that the graph of g is obtained by vertically stretching the graph of f. Now, look at the red graph on the bottom. The equation of this graph is $h(x)=\frac{1}{2} x^{2}$, or $h(x)=\frac{1}{2} f(x)$. Thus, for each x, the y-coordinate of h is one-half as large as the corresponding y-coordinate on the graph of f. The result is a wider graph because the values of y are rising more slowly. We say that the graph of h is obtained by vertically shrinking the graph of f.

These observations can be summarized as follows:

Vertically Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If $c>1$, the graph of $y=c f(x)$ is the graph of $y=f(x)$ vertically stretched by multiplying each of its y-coordinates by c.
- If $0<c<1$, the graph of $y=c f(x)$ is the graph of $y=f(x)$ vertically shrunk by multiplying each of its y-coordinates by c.

Stretching : $c>1$

Shrinking : $0<c<1$

EXAMPLE 6 Vertically Shrinking a Graph

Use the graph of $f(x)=x^{3}$ to obtain the graph of $h(x)=\frac{1}{2} x^{3}$.

SOLUTION

The graph of $h(x)=\frac{1}{2} x^{3}$ is obtained by vertically shrinking the graph of $f(x)=x^{3}$.

(6) Use horizontal stretching and shrinking to graph functions.

GREAT QUESTION!

How does horizontal shrinking or stretching change a graph's shape?
A horizontal shrink compresses a function's graph toward the y-axis. A horizontal stretch moves a function's graph away from the y-axis.

FIGURE 1.60

Horizontal Stretching and Shrinking

It is also possible to stretch and shrink graphs horizontally.

Horizontally Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If $c>1$, the graph of $y=f(c x)$ is the graph of $y=f(x)$ horizontally shrunk by dividing each of its x-coordinates by c.
- If $0<c<1$, the graph of $y=f(c x)$ is the graph of $y=f(x)$ horizontally stretched by dividing each of its x-coordinates by c.

Shrinking : $c>1$

Stretching : $0<c<1$

EXAMPLE 7 Horizontally Stretching and Shrinking a Graph

Use the graph of $y=f(x)$ in Figure 1.60 to obtain each of the following graphs:
a. $g(x)=f(2 x)$
b. $h(x)=f\left(\frac{1}{2} x\right)$.

SOLUTION

a. The graph of $g(x)=f(2 x)$ is obtained by horizontally shrinking the graph of $y=f(x)$.

b. The graph of $h(x)=f\left(\frac{1}{2} x\right)$ is obtained by horizontally stretching the graph of $y=f(x)$.

FIGURE 1.61

Check Point 7 Use the graph of $y=f(x)$ in Figure $\mathbf{1 . 6 1}$ to obtain each of the following graphs:
a. $g(x)=f(2 x)$
b. $h(x)=f\left(\frac{1}{2} x\right)$.

Sequences of Transformations

Table 1.4 summarizes the procedures for transforming the graph of $y=f(x)$.

Table 1.4 Summary of Transformations
In each case, c represents a positive real number.

To Graph:

Draw the Graph of f and:
Changes in the Equation of $y=f(x)$

Vertical shifts
$y=f(x)+c$
$y=f(x)-c$
Horizontal shifts
$y=f(x+c)$
$y=f(x-c)$
Reflection about the x-axis
$y=-f(x)$
Reflection about the y-axis
$y=f(-x)$
Vertical stretching or shrinking
$y=c f(x), c>1$
$y=c f(x), 0<c<1$
Horizontal stretching or shrinking
$y=f(c x), c>1$
$y=f(c x), 0<c<1$

Raise the graph of f by c units.
Lower the graph of f by c units.

Shift the graph of f to the left c units.
Shift the graph of f to the right c units.
Reflect the graph of f about the x-axis.

Reflect the graph of f about the y-axis.

Multiply each y-coordinate of $y=f(x)$ by c, vertically stretching the graph of f.
Multiply each y-coordinate of $y=f(x)$ by c, vertically shrinking the graph of f.

Divide each x-coordinate of $y=f(x)$ by c, horizontally shrinking the graph of f.
Divide each x-coordinate of $y=f(x)$ by c, horizontally stretching the graph of f.
c is added to $f(x)$.
c is subtracted from $f(x)$.
x is replaced with $x+c$.
x is replaced with $x-c$.
$f(x)$ is multiplied by -1 .
x is replaced with $-x$.
$f(x)$ is multiplied by $c, c>1$.
$f(x)$ is multiplied by $c, 0<c<1$.
x is replaced with $c x, c>1$.
x is replaced with $c x, 0<c<1$.

A function involving more than one transformation can be graphed by performing transformations in the following order:

1. Horizontal shifting
2. Stretching or shrinking
3. Reflecting
4. Vertical shifting

EXAMPLE 8 Graphing Using a Sequence of Transformations

Use the graph of $y=f(x)$ given in Figure $\mathbf{1 . 6 0}$ of Example 7 on page 223, and repeated below, to graph $y=-\frac{1}{2} f(x-1)+3$.

SOLUTION

Our graphs will evolve in the following order:

1. Horizontal shifting: Graph $y=f(x-1)$ by shifting the graph of $y=f(x)$ 1 unit to the right.
2. Shrinking: Graph $y=\frac{1}{2} f(x-1)$ by shrinking the previous graph by a factor of $\frac{1}{2}$.
3. Reflecting: Graph $y=-\frac{1}{2} f(x-1)$ by reflecting the previous graph about the x-axis.
4. Vertical shifting: Graph $y=-\frac{1}{2} f(x-1)+3$ by shifting the previous graph up 3 units.

> The graph of $y=f(x)$ with five points identified

Check Point 8 Use the graph of $y=f(x)$ given in Figure $\mathbf{1 . 6 1}$ of Check Point 7 on page 224 to graph $y=-\frac{1}{3} f(x+1)-2$.

EXAMPLE 9 Graphing Using a Sequence of Transformations

Use the graph of $f(x)=x^{2}$ to graph $g(x)=2(x+3)^{2}-1$.

SOLUTION

Our graphs will evolve in the following order:

1. Horizontal shifting: Graph $y=(x+3)^{2}$ by shifting the graph of $f(x)=x^{2}$ three units to the left.
2. Stretching: Graph $y=2(x+3)^{2}$ by stretching the previous graph by a factor of 2 .
3. Vertical shifting: Graph $g(x)=2(x+3)^{2}-1$ by shifting the previous graph down 1 unit.

> The graph of $f(x)=x^{2}$ with three points identified

The graph of $y=(x+3)^{2}$

Graph $y=2(x+3)^{2}$. Stretch vertically by a factor of 2. Multiply each y-coordinate by 2.

Graph $g(x)=2(x+3)^{2}-1$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The graph of $y=f(x)-5$ is obtained by a/an
\qquad shift of the graph of $y=f(x)$ \qquad a distance of 5 units.
2. The graph of $y=f(x-5)$ is obtained by a/an _ shift of the graph of $y=f(x)$ \qquad a distance of 5 units.
3. The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the \qquad -.
4. The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the \qquad -.
5. The graph of $y=5 f(x)$ is obtained by a/an \qquad stretch of the graph of $y=f(x)$ by multiplying each of its \qquad -coordinates by 5 .
6. The graph of $y=f\left(\frac{1}{5} x\right)$ is obtained by a/an \qquad stretch of the graph of $y=f(x)$ by multiplying each of its \qquad -coordinates by 5 .
7. True or false: The graph of $g(x)=\sqrt{x+4}$ is the graph of $f(x)=\sqrt{x}$ shifted horizontally to the right by 4 units. \qquad

EXERCISE SET 1.6

Practice Exercises

In Exercises 1-16, use the graph of $y=f(x)$ to graph each function g.

1. $g(x)=f(x)+1$
2. $g(x)=f(x)-1$
3. $g(x)=f(x+1)$
4. $g(x)=f(x-1)$
5. $g(x)=f(x-1)-2$
6. $g(x)=f(x+1)+2$
7. $g(x)=f(-x)$
8. $g(x)=-f(x)$
9. $g(x)=-f(x)+3$
10. $g(x)=f(-x)+3$
11. $g(x)=\frac{1}{2} f(x)$
12. $g(x)=2 f(x)$
13. $g(x)=f\left(\frac{1}{2} x\right)$
14. $g(x)=f(2 x)$
15. $g(x)=-f\left(\frac{1}{2} x\right)+1$
16. $g(x)=-f(2 x)-1$

In Exercises 17-32, use the graph of $y=f(x)$ to graph each function g.

17. $g(x)=f(x)-1$
18. $g(x)=f(x)+1$
19. $g(x)=f(x-1)$
20. $g(x)=f(x+1)$
21. $g(x)=f(x-1)+2$
22. $g(x)=f(x+1)-2$
23. $g(x)=-f(x)$
24. $g(x)=f(-x)$
25. $g(x)=f(-x)+1$
26. $g(x)=-f(x)+1$
27. $g(x)=2 f(x)$
28. $g(x)=\frac{1}{2} f(x)$
29. $g(x)=f(2 x)$
30. $g(x)=f\left(\frac{1}{2} x\right)$
31. $g(x)=2 f(x+2)+1$
32. $g(x)=2 f(x+2)-1$

In Exercises 33-44, use the graph of $y=f(x)$ to graph each function g.

33. $g(x)=f(x)+2$
35. $g(x)=f(x+2)$
34. $g(x)=f(x)-2$
37. $g(x)=-f(x+2)$
36. $g(x)=f(x-2)$
39. $g(x)=-\frac{1}{2} f(x+2)$
38. $g(x)=-f(x-2)$
41. $g(x)=-\frac{1}{2} f(x+2)-2$
40. $g(x)=-\frac{1}{2} f(x-2)$
43. $g(x)=\frac{1}{2} f(2 x)$
42. $g(x)=-\frac{1}{2} f(x-2)+2$
44. $g(x)=2 f\left(\frac{1}{2} x\right)$

In Exercises 45-52, use the graph of $y=f(x)$ to graph each function g.

45. $g(x)=f(x-1)-1$
46. $g(x)=f(x+1)+1$
47. $g(x)=-f(x-1)+1$
48. $g(x)=-f(x+1)-1$
49. $g(x)=2 f\left(\frac{1}{2} x\right)$
50. $g(x)=\frac{1}{2} f(2 x)$
51. $g(x)=\frac{1}{2} f(x+1)$
52. $g(x)=2 f(x-1)$

In Exercises 53-66, begin by graphing the standard quadratic function, $f(x)=x^{2}$. Then use transformations of this graph to graph the given function.
53. $g(x)=x^{2}-2$
54. $g(x)=x^{2}-1$
55. $g(x)=(x-2)^{2}$
56. $g(x)=(x-1)^{2}$
57. $h(x)=-(x-2)^{2}$
58. $h(x)=-(x-1)^{2}$
59. $h(x)=(x-2)^{2}+1$
60. $h(x)=(x-1)^{2}+2$
61. $g(x)=2(x-2)^{2}$
62. $g(x)=\frac{1}{2}(x-1)^{2}$
63. $h(x)=2(x-2)^{2}-1$
64. $h(x)=\frac{1}{2}(x-1)^{2}-1$
65. $h(x)=-2(x+1)^{2}+1$
66. $h(x)=-2(x+2)^{2}+1$

In Exercises 67-80, begin by graphing the square root function, $f(x)=\sqrt{x}$. Then use transformations of this graph to graph the given function.
67. $g(x)=\sqrt{x}+2$
68. $g(x)=\sqrt{x}+1$
69. $g(x)=\sqrt{x+2}$
70. $g(x)=\sqrt{x+1}$
71. $h(x)=-\sqrt{x+2}$
72. $h(x)=-\sqrt{x+1}$
73. $h(x)=\sqrt{-x+2}$
74. $h(x)=\sqrt{-x+1}$
75. $g(x)=\frac{1}{2} \sqrt{x+2}$
76. $g(x)=2 \sqrt{x+1}$
77. $h(x)=\sqrt{x+2}-2$
78. $h(x)=\sqrt{x+1}-1$
79. $g(x)=2 \sqrt{x+2}-2$
80. $g(x)=2 \sqrt{x+1}-1$

In Exercises 81-94, begin by graphing the absolute value function, $f(x)=|x|$. Then use transformations of this graph to graph the given function.
81. $g(x)=|x|+4$
82. $g(x)=|x|+3$
83. $g(x)=|x+4|$
84. $g(x)=|x+3|$
85. $h(x)=|x+4|-2$
86. $h(x)=|x+3|-2$
87. $h(x)=-|x+4|$
88. $h(x)=-|x+3|$
89. $g(x)=-|x+4|+1$
90. $g(x)=-|x+4|+2$
91. $h(x)=2|x+4|$
92. $h(x)=2|x+3|$
93. $g(x)=-2|x+4|+1$
94. $g(x)=-2|x+3|+2$

In Exercises 95-106, begin by graphing the standard cubic function, $f(x)=x^{3}$. Then use transformations of this graph to graph the given function.
95. $g(x)=x^{3}-3$
96. $g(x)=x^{3}-2$
97. $g(x)=(x-3)^{3}$
98. $g(x)=(x-2)^{3}$
99. $h(x)=-x^{3}$
100. $h(x)=-(x-2)^{3}$
101. $h(x)=\frac{1}{2} x^{3}$
102. $h(x)=\frac{1}{4} x^{3}$
103. $r(x)=(x-3)^{3}+2$
104. $r(x)=(x-2)^{3}+1$
105. $h(x)=\frac{1}{2}(x-3)^{3}-2$
106. $h(x)=\frac{1}{2}(x-2)^{3}-1$

In Exercises 107-118, begin by graphing the cube root function, $f(x)=\sqrt[3]{x}$. Then use transformations of this graph to graph the given function.
107. $g(x)=\sqrt[3]{x}+2$
108. $g(x)=\sqrt[3]{x}-2$
109. $g(x)=\sqrt[3]{x+2}$
110. $g(x)=\sqrt[3]{x-2}$
111. $h(x)=\frac{1}{2} \sqrt[3]{x+2}$
112. $h(x)=\frac{1}{2} \sqrt[3]{x-2}$
113. $r(x)=\frac{1}{2} \sqrt[3]{x+2}-2$
114. $r(x)=\frac{1}{2} \sqrt[3]{x-2}+2$
115. $h(x)=-\sqrt[3]{x+2}$
116. $h(x)=-\sqrt[3]{x-2}$
117. $g(x)=\sqrt[3]{-x-2}$
118. $g(x)=\sqrt[3]{-x+2}$

Practice Plus

In Exercises 119-122, use transformations of the graph of the greatest integer function, $f(x)=\operatorname{int}(x)$, to graph each function.
(The graph of $f(x)=\operatorname{int}(x)$ is shown in Figure 1.35 on page 180.)
119. $g(x)=2$ int $(x+1)$
120. $g(x)=3$ int $(x-1)$
121. $h(x)=\operatorname{int}(-x)+1$
122. $h(x)=\operatorname{int}(-x)-1$

In Exercises 123-126, write a possible equation for the function whose graph is shown. Each graph shows a transformation of a common function.
123.

124.

$[-3,3,1]$ by $[-6,6,1]$
125.

$[-5,3,1]$ by $[-5,10,1]$
126.

Application Exercises

127. The function $f(x)=2.9 \sqrt{x}+20.1$ models the median height, $f(x)$, in inches, of boys who are x months of age. The graph of f is shown.

Source: Laura Walther Nathanson, The Portable Pediatrician for Parents
a. Describe how the graph can be obtained using transformations of the square root function $f(x)=\sqrt{x}$.
b. According to the model, what is the median height of boys who are 48 months, or four years, old? Use a calculator and round to the nearest tenth of an inch. The actual median height for boys at 48 months is 40.8 inches. How well does the model describe the actual height?
(This exercise continues on the next page.)
c. Use the model to find the average rate of change, in inches per month, between birth and 10 months. Round to the nearest tenth.
d. Use the model to find the average rate of change, in inches per month, between 50 and 60 months. Round to the nearest tenth. How does this compare with your answer in part (c)? How is this difference shown by the graph?
128. The function $f(x)=3.1 \sqrt{x}+19$ models the median height, $f(x)$, in inches, of girls who are x months of age. The graph of f is shown.

Girls' Heights

Source: Laura Walther Nathanson, The Portable Pediatrician for Parents
a. Describe how the graph can be obtained using transformations of the square root function $f(x)=\sqrt{x}$.
b. According to the model, what is the median height of girls who are 48 months, or 4 years, old? Use a calculator and round to the nearest tenth of an inch. The actual median height for girls at 48 months is 40.2 inches. How well does the model describe the actual height?
c. Use the model to find the average rate of change, in inches per month, between birth and 10 months. Round to the nearest tenth.
d. Use the model to find the average rate of change, in inches per month, between 50 and 60 months. Round to the nearest tenth. How does this compare with your answer in part (c)? How is this difference shown by the graph?

Writing in Mathematics

129. What must be done to a function's equation so that its graph is shifted vertically upward?
130. What must be done to a function's equation so that its graph is shifted horizontally to the right?
131. What must be done to a function's equation so that its graph is reflected about the x-axis?
132. What must be done to a function's equation so that its graph is reflected about the y-axis?
133. What must be done to a function's equation so that its graph is stretched vertically?
134. What must be done to a function's equation so that its graph is shrunk horizontally?

Technology Exercises

135. a. Use a graphing utility to graph $f(x)=x^{2}+1$.
b. Graph $f(x)=x^{2}+1, g(x)=f(2 x), h(x)=f(3 x)$, and $k(x)=f(4 x)$ in the same viewing rectangle.
c. Describe the relationship among the graphs of f, g, h, and k, with emphasis on different values of x for points on all four graphs that give the same y-coordinate.
d. Generalize by describing the relationship between the graph of f and the graph of g, where $g(x)=f(c x)$ for $c>1$.
e. Try out your generalization by sketching the graphs of $f(c x)$ for $c=1, c=2, c=3$, and $c=4$ for a function of your choice.
136. a. Use a graphing utility to graph $f(x)=x^{2}+1$.
b. Graph $f(x)=x^{2}+1, g(x)=f\left(\frac{1}{2} x\right)$, and $h(x)=f\left(\frac{1}{4} x\right)$ in the same viewing rectangle.
c. Describe the relationship among the graphs of f, g, and h, with emphasis on different values of x for points on all three graphs that give the same y-coordinate.
d. Generalize by describing the relationship between the graph of f and the graph of g, where $g(x)=f(c x)$ for $0<c<1$.
e. Try out your generalization by sketching the graphs of $f(c x)$ for $c=1$, and $c=\frac{1}{2}$, and $c=\frac{1}{4}$ for a function of your choice.

Critical Thinking Exercises

Make Sense? During the winter, you program your home thermostat so that at midnight, the temperature is 55°. This temperature is maintained until 6 A.m. Then the house begins to warm up so that by 9 A.M. the temperature is 65°. At 6 P.m. the house begins to cool. By 9 P.m., the temperature is again 55°. The graph illustrates home temperature, $f(t)$, as a function of hours after midnight, t.

In Exercises 137-140, determine whether each statement makes sense or does not make sense, and explain your reasoning. If the statement makes sense, graph the new function on the domain [0,24]. If the statement does not make sense, correct the function in the statement and graph the corrected function on the domain [0, 24].
137. I decided to keep the house 5° warmer than before, so I reprogrammed the thermostat to $y=f(t)+5$.
138. I decided to keep the house 5° cooler than before, so I reprogrammed the thermostat to $y=f(t)-5$.
139. I decided to change the heating schedule to start one hour earlier than before, so I reprogrammed the thermostat to $y=f(t-1)$.
140. I decided to change the heating schedule to start one hour later than before, so I reprogrammed the thermostat to $y=f(t+1)$.

In Exercises 141-144, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
141. If $f(x)=|x|$ and $g(x)=|x+3|+3$, then the graph of g is a translation of the graph of f three units to the right and three units upward.
142. If $f(x)=-\sqrt{x}$ and $g(x)=\sqrt{-x}$, then f and g have identical graphs.
143. If $f(x)=x^{2}$ and $g(x)=5\left(x^{2}-2\right)$, then the graph of g can be obtained from the graph of f by stretching f five units followed by a downward shift of two units.
144. If $f(x)=x^{3}$ and $g(x)=-(x-3)^{3}-4$, then the graph of g can be obtained from the graph of f by moving f three units to the right, reflecting about the x-axis, and then moving the resulting graph down four units.

In Exercises 145-148, functions f and g are graphed in the same rectangular coordinate system. If g is obtained from f through a sequence of transformations, find an equation for g.
145.

146.

147.

148.

For Exercises 149-152, assume that (a, b) is a point on the graph of f. What is the corresponding point on the graph of each of the following functions?
149. $y=f(-x)$
150. $y=2 f(x)$
151. $y=f(x-3)$
152. $y=f(x)-3$

Preview Exercises

Exercises 153-155 will help you prepare for the material covered in the next section.

In Exercises 153-154, perform the indicated operation or operations.
153. $(2 x-1)\left(x^{2}+x-2\right)$
154. $(f(x))^{2}-2 f(x)+6$, where $f(x)=3 x-4$
155. Simplify: $\frac{2}{\frac{3}{x}-1}$.

SECTION 1.7

Combinations of Functions; Composite Functions

Objectives

(1) Find the domain of a function.
2. Combine functions using the algebra of functions, specifying domains.
(3) Form composite functions.
(4) Determine domains for composite functions.
(5) Write functions as compositions.
(1) Find the domain of a function.

We're born. We die. Figure 1.62 quantifies these statements by showing the number of births and deaths in the United States from 2000 through 2009.

Number of Births and Deaths in the United States

FIGURE 1.62
Source: U.S. Department of Health and Human Services

In this section, we look at these data from the perspective of functions. By considering the yearly change in the U.S. population, you will see that functions can be subtracted using procedures that will remind you of combining algebraic expressions.

The Domain of a Function

We begin with two functions that model the data in Figure 1.62.

$$
\begin{array}{cc}
B(x)=-2.6 x^{2}+49 x+3994 & D(x)=-0.6 x^{2}+7 x+2412 \\
\begin{array}{c}
\text { Number of births, } B(x) \text {, in } \\
\text { thousands, } x \text { years after 2000 }
\end{array} & \begin{array}{c}
\text { Number of deaths, } D(x) \text {, in } \\
\text { thousands, } x \text { years after 2000 }
\end{array}
\end{array}
$$

The years in Figure 1.62 extend from 2000 through 2009. Because x represents the number of years after 2000,

$$
\text { Domain of } B=\{0,1,2,3, \ldots, 9\}
$$

and

$$
\text { Domain of } D=\{0,1,2,3, \ldots, 9\} \text {. }
$$

GREAT QUESTION!

Despite the voice balloons, the notation for the domain of f on the right is a mouthful! Will you be using set operations with interval notation in this section? What should I already know?
Yes, you'll be seeing the intersection and the union of sets that are expressed in interval notation. Recall that the intersection of sets A and B, written $A \cap B$, is the set of elements common to both set A and set B. When sets A and B are in interval notation, to find the intersection, graph each interval and take the portion of the number line that the two graphs have in common. We will also be using notation involving the union of sets A and $B, A \cup B$, meaning the set of elements in A or in B or in both. For more detail, see Section P.1, pages 5-6 and Section P.9, pages 121-122.

Functions that model data often have their domains explicitly given with the function's equation. However, for most functions, only an equation is given and the domain is not specified. In cases like this, the domain of a function f is the largest set of real numbers for which the value of $f(x)$ is a real number. For example, consider the function

$$
f(x)=\frac{1}{x-3}
$$

Because division by 0 is undefined, the denominator, $x-3$, cannot be 0 . Thus, x cannot equal 3. The domain of the function consists of all real numbers other than 3, represented by

$$
\text { Domain of } f=\{x \mid x \text { is a real number and } x \neq 3\} .
$$

Using interval notation,

$$
\text { Domain of } f=(-\infty, 3) \cup(3, \infty)
$$

Now consider a function involving a square root:

$$
g(x)=\sqrt{x-3}
$$

Because only nonnegative numbers have square roots that are real numbers, the expression under the square root sign, $x-3$, must be nonnegative. We can use inspection to see that $x-3 \geq 0$ if $x \geq 3$. The domain of g consists of all real numbers that are greater than or equal to 3 :

$$
\text { Domain of } g=\{x \mid x \geq 3\} \text { or }[3, \infty)
$$

Finding a Function's Domain

If a function f does not model data or verbal conditions, its domain is the largest set of real numbers for which the value of $f(x)$ is a real number. Exclude from a function's domain real numbers that cause division by zero and real numbers that result in an even root, such as a square root, of a negative number.

EXAMPLE 1 Finding the Domain of a Function

Find the domain of each function:
a. $f(x)=x^{2}-7 x$
b. $g(x)=\frac{3 x+2}{x^{2}-2 x-3}$
c. $h(x)=\sqrt{3 x+12}$
d. $j(x)=\frac{3 x+2}{\sqrt{14-2 x}}$.

SOLUTION

The domain is the set of all real numbers, $(-\infty, \infty)$, unless x appears in a denominator or in an even root, such as a square root.
a. The function $f(x)=x^{2}-7 x$ contains neither division nor a square root. For every real number, x, the algebraic expression $x^{2}-7 x$ represents a real number. Thus, the domain of f is the set of all real numbers.

$$
\text { Domain of } f=(-\infty, \infty)
$$

b. The function $g(x)=\frac{3 x+2}{x^{2}-2 x-3}$ contains division. Because division by 0 is undefined, we must exclude from the domain the values of x that cause the denominator, $x^{2}-2 x-3$, to be 0 . We can identify these values by setting $x^{2}-2 x-3$ equal to 0 .

$[-10,10,1]$ by $[-10,10,1]$
FIGURE 1.63
(2) Combine functions using the algebra of functions, specifying domains.

$$
\begin{array}{rlrlrl}
x^{2}-2 x-3 & =0 & & \text { Set the function's denominator equal to } O . \\
(x+1)(x-3) & =0 & & \text { Factor. } \\
x+1=0 & \text { or } x-3 & =0 & & \text { Set each factor equal to } 0 . \\
x=-1 & x & =3 & & \text { Solve the resulting equations. }
\end{array}
$$

We must exclude -1 and 3 from the domain of $g(x)=\frac{3 x+2}{x^{2}-2 x-3}$.

$$
\text { Domain of } g=(-\infty,-1) \cup(-1,3) \cup(3, \infty)
$$

GREAT QUESTION!

When finding the domain of a function, when do I have to factor?
In parts (a) and (b), observe when to factor and when not to factor a polynomial.

$$
\text { - } f(x)=x^{2}-7 x \quad \bullet g(x)=\frac{3 x+2}{x^{2}-2 x-3}
$$

Do not factor $x^{2}-7 x$ and set it equal to zero. No values of x need be excluded from the domain.

Do factor $x^{2}-2 x-3$ and set it equal to zero.
We must exclude values of x that cause this denominator to be zero.
c. The function $h(x)=\sqrt{3 x+12}$ contains an even root. Because only nonnegative numbers have real square roots, the quantity under the radical sign, $3 x+12$, must be greater than or equal to 0 .

$$
\begin{aligned}
3 x+12 \geq 0 & \text { Set the function's radicand greater than or equal to } 0 . \\
3 x \geq-12 & \begin{array}{l}
\text { Subtract } 12 \text { from both sides. } \\
x \geq-4
\end{array} \\
& \begin{array}{l}
\text { Divide both sides by } 3 . \text { Division by a positive number } \\
\text { preserves the sense of the inequality. }
\end{array}
\end{aligned}
$$

The domain of h consists of all real numbers greater than or equal to -4 .

$$
\text { Domain of } h=[-4, \infty)
$$

The domain is highlighted on the x-axis in Figure 1.63.
d. The function $j(x)=\frac{3 x+2}{\sqrt{14-2 x}}$ contains both an even root and division. Because only nonnegative numbers have real square roots, the quantity under the radical sign, $14-2 x$, must be greater than or equal to 0 . But wait, there's more! Because division by 0 is undefined, $14-2 x$ cannot equal 0 . Thus, $14-2 x$ must be strictly greater than 0 .

$$
\begin{array}{rll}
14-2 x & >0 & \text { Set the function's radicand greater than } 0 . \\
-2 x>-14 & & \text { Subtract } 14 \text { from both sides. } \\
x<7 & \begin{array}{l}
\text { Divide both sides by }-2 . \text { Division by a negative } \\
\end{array} & \begin{array}{ll}
\text { number reverses the direction of the inequality. }
\end{array}
\end{array}
$$

The domain of j consists of all real numbers less than 7.

$$
\text { Domain of } j=(-\infty, 7)
$$

8 Check Point 1 Find the domain of each function:
a. $f(x)=x^{2}+3 x-17$
b. $g(x)=\frac{5 x}{x^{2}-49}$
c. $h(x)=\sqrt{9 x-27}$
d. $j(x)=\frac{5 x}{\sqrt{24-3 x}}$.

The Algebra of Functions

We can combine functions using addition, subtraction, multiplication, and division by performing operations with the algebraic expressions that appear on the right side of the equations. For example, the functions $f(x)=2 x$ and $g(x)=x-1$ can be combined to form the sum, difference, product, and quotient of f and g. Here's how it's done:

The domain for each of these functions consists of all real numbers that are common to the domains of f and g. Using D_{f} to represent the domain of f and D_{g} to represent the domain of g, the domain for each function is $D_{f} \cap D_{g}$. In the case of the quotient function $\frac{f(x)}{g(x)}$, we must remember not to divide by 0 , so we add the further restriction that $g(x) \neq 0$.

The Algebra of Functions: Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions. The sum $f+g$, the difference $f-g$, the product $f g$, and the quotient $\frac{f}{g}$ are functions whose domains are the set of all real numbers common to the domains of f and $g\left(D_{f} \cap D_{g}\right)$, defined as follows:

1. Sum:

$$
(f+g)(x)=f(x)+g(x)
$$

2. Difference: $\quad(f-g)(x)=f(x)-g(x)$
3. Product:

$$
(f g)(x)=f(x) \cdot g(x)
$$

4. Quotient:

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \text { provided } g(x) \neq 0
$$

EXAMPLE 2 Combining Functions

Let $f(x)=2 x-1$ and $g(x)=x^{2}+x-2$. Find each of the following functions:
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $\left(\frac{f}{g}\right)(x)$.

Determine the domain for each function.

SOLUTION

a. $(f+g)(x)=f(x)+g(x)$

$$
\begin{aligned}
& =(2 x-1)+\left(x^{2}+x-2\right) \\
& =x^{2}+3 x-3
\end{aligned}
$$

b. $(f-g)(x)=f(x)-g(x)$
$=(2 x-1)-\left(x^{2}+x-2\right)$
$=2 x-1-x^{2}-x+2$

$$
=-x^{2}+x+1
$$

This is the definition of the sum $f+g$.
Substitute the given functions.
Remove parentheses and combine like terms.

This is the definition of the difference $f-g$.
Substitute the given functions.
Remove parentheses and change the sign of each term in the second set of parentheses.

Combine like terms and arrange terms in descending powers of x.

GREAT QUESTION!

Should I simplify a quotient

 function before finding its domain?No. If the function $\frac{f}{g}$ can be simplified, determine the domain before simplifying. All values of x for which $g(x)=0$ must be excluded from the domain.

Example:

$$
\begin{gathered}
f(x)=x^{2}-4 \text { and } \\
g(x)=x-2 \\
\left(\frac{f}{g}\right)(x)=\frac{x^{2}-4}{x-2} \\
x \neq 2 . \text { The domain of } \\
\frac{f}{g} \text { is }(-\infty, 2) \cup(2, \infty) . \\
=\frac{(x+2)(x-2)}{(x) 2)}=x+2
\end{gathered}
$$

c. $(f g)(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
& =(2 x-1)\left(x^{2}+x-2\right) \\
& =2 x\left(x^{2}+x-2\right)-1\left(x^{2}+x-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{3}+2 x^{2}-4 x-x^{2}-x+2 \\
& =2 x^{3}+\left(2 x^{2}-x^{2}\right)+(-4 x-x)+2
\end{aligned}
$$

$$
=2 x^{3}+x^{2}-5 x+2
$$

$$
\text { d. }\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad \text { This is the definition of the quotient } \frac{f}{g} \text {. }
$$

$$
=\frac{2 x-1}{x^{2}+x-2} \quad \begin{aligned}
& \text { Substitute the given functions. This rational expression } \\
& \text { cannot be simplified. }
\end{aligned}
$$

Because the equations for f and g do not involve division or contain even roots, the domain of both f and g is the set of all real numbers. Thus, the domain of $f+g, f-g$, and $f g$ is the set of all real numbers, $(-\infty, \infty)$.

The function $\frac{f}{g}$ contains division. We must exclude from its domain values of x that cause the denominator, $x^{2}+x-2$, to be 0 . Let's identify these values.

$$
\begin{array}{rlrl}
x^{2}+x-2 & =0 & & \text { Set the denominator of } \frac{f}{g} \text { equal to } 0 . \\
(x+2)(x-1) & =0 & & \text { Factor. } \\
x+2=0 & \text { or } x-1 & =0 & \\
\text { Set each factor equal to } 0 . \\
x=-2 & x & =1 & \\
\text { Solve the resulting equations. }
\end{array}
$$

We must exclude -2 and 1 from the domain of $\frac{f}{g}$.

$$
\text { Domain of } \frac{f}{g}=(-\infty,-2) \cup(-2,1) \cup(1, \infty)
$$

\oint Check Point 2 Let $f(x)=x-5$ and $g(x)=x^{2}-1$. Find each of the following functions:
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $\left(\frac{f}{g}\right)(x)$.

Determine the domain for each function.

EXAMPLE 3 Adding Functions and Determining the Domain

Let $f(x)=\sqrt{x+3}$ and $g(x)=\sqrt{x-2}$. Find each of the following:
a. $(f+g)(x)$
b. the domain of $f+g$.

SOLUTION

a. $(f+g)(x)=f(x)+g(x)=\sqrt{x+3}+\sqrt{x-2}$
b. The domain of $f+g$ is the set of all real numbers that are common to the domain of f and the domain of g. Thus, we must find the domains of f and g before finding their intersection.

$$
\begin{array}{lc}
f(x)=\sqrt{x+3} & \bullet g(x)=\sqrt{x-2} \\
& x+3 \text { must be nonnegative: } \\
x+3 \geq 0 . D_{f}=[-3, \infty) & x-2 \text { must be nonnegative: } \\
& x-2 \geq 0 . D_{g}=[2, \infty)
\end{array}
$$

FIGURE 1.64 Finding the domain of the $\operatorname{sum} f+g$

Now, we can use a number line to determine $D_{f} \cap D_{g}$, the domain of $f+g$. Figure 1.64 shows the domain of f in blue and the domain of g in red. Can you see that all real numbers greater than or equal to 2 are common to both domains? This is shown in purple on the number line. Thus, the domain of $f+g$ is $[2, \infty)$.

TECHNOLOGY

Graphic Connections

The graph on the left is the graph of

$$
y=\sqrt{x+3}+\sqrt{x-2}
$$

in a $[-3,10,1]$ by $[0,8,1]$ viewing rectangle. The graph reveals what we discovered algebraically in Example 3(b). The domain of this function is $[2, \infty)$.
\int Check Point 3 Let $f(x)=\sqrt{x-3}$ and $g(x)=\sqrt{x+1}$. Find each of the following:
a. $(f+g)(x)$
b. the domain of $f+g$.

EXAMPLE 4 Applying the Algebra of Functions

We opened the section with functions that model the number of births and deaths in the United States from 2000 through 2009:

$$
B(x)=-2.6 x^{2}+49 x+3994 \quad D(x)=-0.6 x^{2}+7 x+2412
$$

Number of births, $B(x)$, in
thousands, x years after 2000

Number of deaths, $D(x)$, in thousands, x years after 2000
a. Write a function that models the change in U.S. population for the years from 2000 through 2009.
b. Use the function from part (a) to find the change in U.S. population in 2008.
c. Does the result in part (b) overestimate or underestimate the actual population change in 2008 obtained from the data in Figure 1.62 on page 231? By how much?

SOLUTION

a. The change in population is the number of births minus the number of deaths. Thus, we will find the difference function, $B-D$.

$$
\begin{array}{ll}
(B-D)(x) & \\
=B(x)-D(x) & \\
=\left(-2.6 x^{2}+49 x+3994\right)-\left(-0.6 x^{2}+7 x+2412\right) & \text { Substitute the given functions. } \\
=-2.6 x^{2}+49 x+3994+0.6 x^{2}-7 x-2412 & \begin{array}{l}
\text { Remove parentheses and } \\
\text { change the sign of each term in }
\end{array} \\
=\left(-2.6 x^{2}+0.6 x^{2}\right)+(49 x-7 x)+(3994-2412) & \text { the second set of parentheses. } \\
=-2 x^{2}+42 x+1582 & \text { Group like terms. } \\
\text { Combine like terms. }
\end{array}
$$

The function

$$
(B-D)(x)=-2 x^{2}+42 x+1582
$$

models the change in U.S. population, in thousands, x years after 2000 .
b. Because 2008 is 8 years after 2000, we substitute 8 for x in the difference function $(B-D)(x)$.

$$
\begin{aligned}
(B-D)(x) & =-2 x^{2}+42 x+1582 & & \text { Use the difference function } B-D . \\
(B-D)(8) & =-2(8)^{2}+42(8)+1582 & & \text { Substitute } 8 \text { for } x . \\
& =-2(64)+42(8)+1582 & & \text { Evaluate the exponential expression: } 8^{2}=64 . \\
& =-128+336+1582 & & \text { Perform the multiplications. } \\
& =1790 & & \text { Add from left to right. }
\end{aligned}
$$

We see that $(B-D)(8)=1790$. The model indicates that there was a population increase of 1790 thousand, or approximately $1,790,000$ people, in 2008.
c. The data for 2008 in Figure 1.62 on page 231 show 4247 thousand births and 2453 thousand deaths.

$$
\begin{aligned}
\text { population change } & =\text { births }- \text { deaths } \\
& =4247-2453=1794
\end{aligned}
$$

The actual population increase was 1794 thousand, or $1,794,000$. Our model gave us an increase of 1790 thousand. Thus, the model underestimates the actual increase by $1794-1790$, or 4 thousand people.

6 Check Point 4 Use the birth and death models from Example 4.
a. Write a function that models the total number of births and deaths in the United States for the years from 2000 through 2009.
b. Use the function from part (a) to find the total number of births and deaths in the United States in 2003.
c. Does the result in part (b) overestimate or underestimate the actual number of total births and deaths in 2003 obtained from the data in Figure $\mathbf{1 . 6 2}$ on page 231? By how much?
(3) Form composite functions.

Composite Functions

There is another way of combining two functions. To help understand this new combination, suppose that your local computer store is having a sale. The models that are on sale cost either $\$ 300$ less than the regular price or 85% of the regular price. If x represents the computer's regular price, the discounts can be modeled with the following functions:
$f(x)=x-300$
The computer is on
sale for $\$ 300$ less than its regular price.
$g(x)=0.85 x$.

$$
\begin{aligned}
& \text { The computer is on } \\
& \text { sale for } 85 \% \text { of its } \\
& \text { regular price. }
\end{aligned}
$$

At the store, you bargain with the salesperson. Eventually, she makes an offer you can't refuse. The sale price will be 85% of the regular price followed by a $\$ 300$ reduction:

In terms of the functions f and g, this offer can be obtained by taking the output of $g(x)=0.85 x$, namely, $0.85 x$, and using it as the input of f :

$$
f(x)=x-300
$$

$$
\text { Replace } x \text { with } 0.85 x \text {, the output of } g(x)=0.85 x \text {. }
$$

$$
f(0.85 x)=0.85 x-300 .
$$

Because $0.85 x$ is $g(x)$, we can write this last equation as

$$
f(g(x))=0.85 x-300 .
$$

We read this equation as " f of g of x is equal to $0.85 x-300$." We call $f(g(x))$ the composition of the function \boldsymbol{f} with \boldsymbol{g}, or a composite function. This composite function is written $f \circ g$. Thus,

$$
(f \circ g)(x)=f(g(x))=0.85 x-300 .
$$

$$
\begin{aligned}
& \text { This can be read " } f \text { of } g \text { of } x \text { " } \\
& \text { or " } f \text { composed with } g \text { of } x \text {." }
\end{aligned}
$$

Like all functions, we can evaluate $f \circ g$ for a specified value of x in the function's domain. For example, here's how to find the value of the composite function describing the offer you cannot refuse at 1400 :

$$
\begin{gathered}
(f \circ g)(x)=0.85 x-300 \\
\text { Replace } x \text { with } 1400 . \\
(f \circ g)(1400)=0.85(1400)-300=1190-300=890 .
\end{gathered}
$$

This means that a computer that regularly sells for $\$ 1400$ is on sale for $\$ 890$ subject to both discounts. We can use a partial table of coordinates for each of the discount functions, g and f, to verify this result numerically.

Using these tables, we can find $(f \circ g)(1400)$:

The table for g shows that $g(1400)=1190$.

The table for f shows that $f(1190)=890$.

This verifies that a computer that regularly sells for $\$ 1400$ is on sale for $\$ 890$ subject to both discounts.

Before you run out to buy a computer, let's generalize our discussion of the computer's double discount and define the composition of any two functions.

The Composition of Functions

The composition of the function \boldsymbol{f} with \boldsymbol{g} is denoted by $f \circ g$ and is defined by the equation

$$
(f \circ g)(x)=f(g(x)) .
$$

The domain of the composite function $f \circ g$ is the set of all x such that

1. x is in the domain of g and
2. $g(x)$ is in the domain of f.

The composition of f with $g, f \circ g$, is illustrated in Figure 1.65.
Step 1 Input x into g.
Step 2 Input $g(x)$ into f.

FIGURE 1.65
The figure reinforces the fact that the inside function g in $f(g(x))$ is done first.

EXAMPLE 5 Forming Composite Functions

Given $f(x)=3 x-4$ and $g(x)=x^{2}-2 x+6$, find each of the following:
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(g \circ f)(1)$.

SOLUTION

a. We begin with $(f \circ g)(x)$, the composition of f with g. Because $(f \circ g)(x)$ means $f(g(x))$, we must replace each occurrence of x in the equation for f with $g(x)$.

$$
f(x)=3 x-4
$$

This is the given equation for f.

Replace x with $g(x)$.

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =3 g(x)-4 & & \\
& =3\left(x^{2}-2 x+6\right)-4 & & \text { Because } g(x)=x^{2}-2 x+6 \\
& =3 x^{2}-6 x+18-4 & & \text { replace } g(x) \text { with } x^{2}-2 x+6 . \\
& =3 x^{2}-6 x+14 & & \text { Simplify. }
\end{aligned}
$$

Thus, $(f \circ g)(x)=3 x^{2}-6 x+14$.
b. Next, we find $(g \circ f)(x)$, the composition of g with f. Because $(g \circ f)(x)$ means $g(f(x))$, we must replace each occurrence of x in the equation for g with $f(x)$.

$$
g(x)=x^{2}-2 x+6
$$

This is the equation for g.

Replace x with $f(x)$.

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =(f(x))^{2}-2 f(x)+6 \\
& =(3 x-4)^{2}-2(3 x-4)+6
\end{aligned}
$$

$$
\begin{array}{ll}
=9 x^{2}-24 x+16-6 x+8+6 & \text { Use }(A-B)^{2}= \\
& A^{2}-2 A B+B^{2} \\
& \text { to square } 3 x-4 . \\
& \text { Simplify: } \\
& -24 x-6 x=-30 x \\
& \text { and } 16+8+6=30 .
\end{array}
$$

Thus, $(g \circ f)(x)=9 x^{2}-30 x+30$. Notice that $(f \circ g)(x)$ is not the same function as $(g \circ f)(x)$.
c. We can use $(g \circ f)(x)$ to find $(g \circ f)(1)$.

It is also possible to find $(g \circ f)(1)$ without determining $(g \circ f)(x)$.

$$
(g \circ f)(1)=g(f(1))=g(-1)=9
$$

First find $f(1)$.
$f(x)=3 x-4$, so
$f(1)=3 \cdot 1-4=-1$.

$$
\begin{gathered}
\text { Next find } g(-1) . \\
g(x)=x^{2}-2 x+6 \text {, so } \\
g(-1)=(-1)^{2}-2(-1)+6 \\
\\
=1+2+6=9 .
\end{gathered}
$$

Determine domains for composite functions.

GREAT QUESTION!

Can you remind me of how you simplified the complex fraction on the right?
One method for simplifying complex fractions is to find the least common denominator of all the rational expressions in the numerator and the denominator. Then multiply each term in the numerator and denominator by this least common denominator. The procedures for simplifying complex fractions can be found in Section P.6, pages 78-80.
\oint Check Point 5 Given $f(x)=5 x+6$ and $g(x)=2 x^{2}-x-1$, find each of the following:
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(f \circ g)(-1)$.

We need to be careful in determining the domain for a composite function.

Excluding Values from the Domain of $(f \circ g)(x)=f(g(x))$

The following values must be excluded from the input x :

- If x is not in the domain of g, it must not be in the domain of $f \circ g$.
- Any x for which $g(x)$ is not in the domain of f must not be in the domain of $f \circ g$.

EXAMPLE 6 Forming a Composite Function and Finding Its Domain

 Given $f(x)=\frac{2}{x-1}$ and $g(x)=\frac{3}{x}$, find each of the following:a. $(f \circ g)(x)$
b. the domain of $f \circ g$.

SOLUTION

a. Because $(f \circ g)(x)$ means $f(g(x))$, we must replace x in $f(x)=\frac{2}{x-1}$ with $g(x)$.

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=\frac{2}{g(x)-1}=\frac{2}{\frac{3}{x}-1}=\frac{2}{\frac{3}{x}-1} \cdot \frac{x}{x}=\frac{2 x}{3-x} \\
g(x)=\frac{3}{x} \quad \begin{array}{c}
\text { Simplify the complex } \\
\text { fraction by multiplying } \\
\text { by } \frac{x}{x}, \text { or } 1 .
\end{array}
\end{gathered}
$$

Thus, $(f \circ g)(x)=\frac{2 x}{3-x}$.
b. We determine values to exclude from the domain of $(f \circ g)(x)$ in two steps.

Rules for Excluding Numbers from the Domain of $(f \circ g)(x)=f(g(x))$

If x is not in the domain of g, it must not be in the domain of $f \circ g$.

Any x for which $g(x)$ is not in the domain of f must not be in the domain of $f \circ g$.

Applying the Rules to

$$
f(x)=\frac{2}{x-1} \text { and } g(x)=\frac{3}{x}
$$

Because $g(x)=\frac{3}{x}, 0$ is not in the
domain of g. Thus, 0 must be excluded from the domain of $f \circ g$.
Because $f(g(x))=\frac{2}{g(x)-1}$, we must exclude from the domain of $f \circ g$ any x for which $g(x)=1$.

$$
\begin{array}{lll}
\frac{3}{x} & =1 & \\
\text { Set } g(x) \text { equal to } 1 \\
3 & =x & \\
\text { Multiply both sides by } x .
\end{array}
$$

3 must be excluded from the domain of $f \circ g$.

We see that 0 and 3 must be excluded from the domain of $f \circ g$. The domain of $f \circ g$ is

$$
(-\infty, 0) \cup(0,3) \cup(3, \infty)
$$

\oint Check Point 6 Given $f(x)=\frac{4}{x+2}$ and $g(x)=\frac{1}{x}$, find each of the following:
a. $(f \circ g)(x)$
b. the domain of $f \circ g$.

Decomposing Functions

When you form a composite function, you "compose" two functions to form a new function. It is also possible to reverse this process. That is, you can "decompose" a given function and express it as a composition of two functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind first. For example, consider the function h defined by

$$
h(x)=\left(3 x^{2}-4 x+1\right)^{5}
$$

The function h takes $3 x^{2}-4 x+1$ and raises it to the power 5 . A natural way to write h as a composition of two functions is to raise the function $g(x)=3 x^{2}-4 x+1$ to the power 5. Thus, if we let

$$
\begin{aligned}
f(x) & =x^{5} \text { and } g(x)=3 x^{2}-4 x+1, \text { then } \\
(f \circ g)(x) & =f(g(x))=f\left(3 x^{2}-4 x+1\right)=\left(3 x^{2}-4 x+1\right)^{5}
\end{aligned}
$$

EXAMPLE 7 Writing a Function as a Composition

Express $h(x)$ as a composition of two functions:

$$
h(x)=\sqrt[3]{x^{2}+1}
$$

SOLUTION

The function h takes $x^{2}+1$ and takes its cube root. A natural way to write h as a composition of two functions is to take the cube root of the function $g(x)=x^{2}+1$. Thus, we let

$$
f(x)=\sqrt[3]{x} \text { and } g(x)=x^{2}+1
$$

We can check this composition by finding $(f \circ g)(x)$. This should give the original function, namely, $h(x)=\sqrt[3]{x^{2}+1}$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}+1\right)=\sqrt[3]{x^{2}+1}=h(x)
$$

$\$$ Check Point 7 Express $h(x)$ as a composition of two functions:

$$
h(x)=\sqrt{x^{2}+5} .
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. We exclude from a function's domain real numbers that cause division by \qquad -.
2. We exclude from a function's domain real numbers that result in a square root of a/an \qquad number.
3. $(f+g)(x)=$ \qquad
4. $(f-g)(x)=$ \qquad
5. $(f g)(x)=$ \qquad
6. $\frac{f}{g}(x)=$ \qquad provided \qquad $\neq 0$
7. The domain of $f(x)=5 x+7$ consists of all real numbers, represented in interval notation as \qquad .
8. The domain of $g(x)=\frac{3}{x-2}$ consists of all real numbers except 2 , represented in interval notation as $(-\infty, 2) \cup$ \qquad —.
9. The domain of $h(x)=\frac{1}{x}+\frac{7}{x-3}$ consists of all real numbers except 0 and 3 , represented in interval notation as $(-\infty, 0) \cup$ \qquad \cup \qquad —.
10. The notation $f \circ g$, called the \qquad of the function f with g, is defined by $(f \circ g)(x)=$ \qquad
11. I find $(f \circ g)(x)$ by replacing each occurrence of x in the equation for \qquad with \qquad -.
12. The notation $g \circ f$, called the \qquad of the function g with f, is defined by $(g \circ f)(x)=$ \qquad
13. I find $(g \circ f)(x)$ by replacing each occurrence of x in the equation for \qquad with \qquad —.
14. True or false: $f \circ g$ is the same function as $g \circ f$. \qquad
15. True or false: $f(g(x))=f(x) \cdot g(x)$
16. If $f(g(x))=\frac{3}{g(x)-4}$ and $g(x)=\frac{8}{x}$, then 0 and \qquad must be excluded from the domain of $f \circ g$.

EXERCISE SET 1.7

Practice Exercises

In Exercises 1-30, find the domain of each function.

1. $f(x)=3(x-4)$
2. $f(x)=2(x+5)$
3. $g(x)=\frac{3}{x-4}$
4. $g(x)=\frac{2}{x+5}$
5. $f(x)=x^{2}-2 x-15$
6. $f(x)=x^{2}+x-12$
7. $g(x)=\frac{3}{x^{2}-2 x-15}$
8. $g(x)=\frac{2}{x^{2}+x-12}$
9. $f(x)=\frac{1}{x+7}+\frac{3}{x-9}$
10. $f(x)=\frac{1}{x+8}+\frac{3}{x-10}$
11. $g(x)=\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1}$
12. $g(x)=\frac{1}{x^{2}+4}-\frac{1}{x^{2}-4}$
13. $h(x)=\frac{4}{\frac{3}{x}-1}$
14. $h(x)=\frac{5}{\frac{4}{x}-1}$
15. $f(x)=\frac{1}{\frac{4}{x-1}-2}$
16. $f(x)=\frac{1}{\frac{4}{x-2}-3}$
17. $f(x)=\sqrt{x-3}$
18. $f(x)=\sqrt{x+2}$
19. $g(x)=\frac{1}{\sqrt{x-3}}$
20. $g(x)=\frac{1}{\sqrt{x+2}}$
21. $g(x)=\sqrt{5 x+35}$
22. $g(x)=\sqrt{7 x-70}$
23. $f(x)=\sqrt{24-2 x}$
24. $f(x)=\sqrt{84-6 x}$
25. $h(x)=\sqrt{x-2}+\sqrt{x+3}$
26. $h(x)=\sqrt{x-3}+\sqrt{x+4}$
27. $g(x)=\frac{\sqrt{x-2}}{x-5}$
28. $g(x)=\frac{\sqrt{x-3}}{x-6}$
29. $f(x)=\frac{2 x+7}{x^{3}-5 x^{2}-4 x+20}$
30. $f(x)=\frac{7 x+2}{x^{3}-2 x^{2}-9 x+18}$

In Exercises 31-50, find $f+g, f-g$, $f g$, and $\frac{f}{\bar{g}}$. Determine the domain for each function.
31. $f(x)=2 x+3, g(x)=x-1$
32. $f(x)=3 x-4, g(x)=x+2$
33. $f(x)=x-5, g(x)=3 x^{2}$
34. $f(x)=x-6, g(x)=5 x^{2}$
35. $f(x)=2 x^{2}-x-3, g(x)=x+1$
36. $f(x)=6 x^{2}-x-1, g(x)=x-1$
37. $f(x)=3-x^{2}, g(x)=x^{2}+2 x-15$
38. $f(x)=5-x^{2}, g(x)=x^{2}+4 x-12$
39. $f(x)=\sqrt{x}, g(x)=x-4$
40. $f(x)=\sqrt{x}, g(x)=x-5$
41. $f(x)=2+\frac{1}{x}, g(x)=\frac{1}{x}$
42. $f(x)=6-\frac{1}{x}, g(x)=\frac{1}{x}$
43. $f(x)=\frac{5 x+1}{x^{2}-9}, g(x)=\frac{4 x-2}{x^{2}-9}$
44. $f(x)=\frac{3 x+1}{x^{2}-25}, g(x)=\frac{2 x-4}{x^{2}-25}$
45. $f(x)=\frac{8 x}{x-2}, g(x)=\frac{6}{x+3}$
46. $f(x)=\frac{9 x}{x-4}, g(x)=\frac{7}{x+8}$
47. $f(x)=\sqrt{x+4}, g(x)=\sqrt{x-1}$
48. $f(x)=\sqrt{x+6}, g(x)=\sqrt{x-3}$
49. $f(x)=\sqrt{x-2}, g(x)=\sqrt{2-x}$
50. $f(x)=\sqrt{x-5}, g(x)=\sqrt{5-x}$

In Exercises 51-66, find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(f \circ g)(2)$
d. $(g \circ f)(2)$.
51. $f(x)=2 x, g(x)=x+7$
52. $f(x)=3 x, g(x)=x-5$
53. $f(x)=x+4, g(x)=2 x+1$
54. $f(x)=5 x+2, g(x)=3 x-4$
55. $f(x)=4 x-3, g(x)=5 x^{2}-2$
56. $f(x)=7 x+1, g(x)=2 x^{2}-9$
57. $f(x)=x^{2}+2, g(x)=x^{2}-2$
58. $f(x)=x^{2}+1, g(x)=x^{2}-3$
59. $f(x)=4-x, g(x)=2 x^{2}+x+5$
60. $f(x)=5 x-2, g(x)=-x^{2}+4 x-1$
61. $f(x)=\sqrt{x}, g(x)=x-1$
62. $f(x)=\sqrt{x}, g(x)=x+2$
63. $f(x)=2 x-3, g(x)=\frac{x+3}{2}$
64. $f(x)=6 x-3, g(x)=\frac{x+3}{6}$
65. $f(x)=\frac{1}{x}, g(x)=\frac{1}{x}$
66. $f(x)=\frac{2}{x}, g(x)=\frac{2}{x}$

In Exercises 67-74, find
a. $(f \circ g)(x)$
b. the domain of $f \circ g$.
72. $f(x)=\sqrt{x}, g(x)=x-3$
73. $f(x)=x^{2}+4, g(x)=\sqrt{1-x}$
74. $f(x)=x^{2}+1, g(x)=\sqrt{2-x}$

In Exercises 75-82, express the given function h as a composition of two functions f and g so that $h(x)=(f \circ g)(x)$.
75. $h(x)=(3 x-1)^{4}$
76. $h(x)=(2 x-5)^{3}$
77. $h(x)=\sqrt[3]{x^{2}-9}$
78. $h(x)=\sqrt{5 x^{2}+3}$
79. $h(x)=|2 x-5|$
80. $h(x)=|3 x-4|$
81. $h(x)=\frac{1}{2 x-3}$
82. $h(x)=\frac{1}{4 x+5}$

Practice Plus

Use the graphs of f and g to solve Exercises 83-90.

83. Find $(f+g)(-3)$.
84. Find $(g-f)(-2)$.
85. Find $(f g)(2)$.
86. Find $\left(\frac{g}{f}\right)(3)$.
87. Find the domain of $f+g$.
88. Find the domain of $\frac{f}{g}$.
89. Graph $f+g$.
90. Graph $f-g$.

In Exercises 91-94, use the graphs of f and g to evaluate each composite function.

91. $(f \circ g)(-1)$
92. $(f \circ g)(1)$
93. $(g \circ f)(0)$
94. $(g \circ f)(-1)$

In Exercises 95-96, find all values of x satisfying the given conditions.
95. $f(x)=2 x-5, g(x)=x^{2}-3 x+8$, and $(f \circ g)(x)=7$.
96. $f(x)=1-2 x, g(x)=3 x^{2}+x-1$, and $(f \circ g)(x)=-5$.

Application Exercises

The bar graph shows the population of the United States, in millions, for six selected years.

Source: U.S. Census Bureau
Here are two functions that model the data:

$$
\begin{array}{lc}
& \begin{array}{c}
\text { Male U.S. population, } \\
M(x) \text {, in millions, } \\
x \text { years after } 1985
\end{array} \\
M(x)=1.53 x+114.8 & \begin{array}{c}
\text { Female U.S. population, } \\
F(x), \text { in millions, } \\
x \text { years after 1985 }
\end{array}
\end{array}
$$

Use the functions to solve Exercises 97-98.
97. a. Write a function that models the total U.S. population for the yearsshown in the bar graph.
b. Use the function from part (a) to find the total U.S. population in 2005.
c. Does the result in part (b) overestimate or underestimate the actual total U.S. population in 2005 shown by the bar graph? By how much?
98. a. Write a function that models the difference between the female U.S. population and the male U.S. population for the years shown in the bar graph.
b. Use the function from part (a) to find how many more women than men there were in the U.S. population in 2005.
c. Does the result in part (b) overestimate or underestimate the actual difference between the female and male population in 2005 shown by the bar graph? By how much?
99. A company that sells radios has yearly fixed costs of $\$ 600,000$. It costs the company $\$ 45$ to produce each radio. Each radio will sell for $\$ 65$. The company's costs and revenue are modeled by the following functions, where x represents the number of radios produced and sold:

$$
\begin{array}{ll}
C(x)=600,000+45 x & \begin{array}{l}
\text { This function models the } \\
\text { company's costs. }
\end{array} \\
R(x)=65 x . & \begin{array}{l}
\text { This function models the } \\
\text { company's revenue. }
\end{array}
\end{array}
$$

Find and interpret $(R-C)(20,000),(R-C)(30,000)$, and $(R-C)(40,000)$.
100. A department store has two locations in a city. From 2008 through 2012, the profits for each of the store's two branches are modeled by the functions $f(x)=-0.44 x+13.62$ and $g(x)=0.51 x+11.14$. In each model, x represents the number of years after 2008, and f and g represent the profit, in millions of dollars.
a. What is the slope of f ? Describe what this means.
b. What is the slope of g ? Describe what this means.
c. Find $f+g$. What is the slope of this function? What does this mean?
101. The regular price of a computer is x dollars. Let $f(x)=x-400$ and $g(x)=0.75 x$.
a. Describe what the functions f and g model in terms of the price of the computer.
b. Find $(f \circ g)(x)$ and describe what this models in terms of the price of the computer.
c. Repeat part (b) for $(g \circ f)(x)$.
d. Which composite function models the greater discount on the computer, $f \circ g$ or $g \circ f$? Explain.
102. The regular price of a pair of jeans is x dollars. Let $f(x)=x-5$ and $g(x)=0.6 x$.
a. Describe what functions f and g model in terms of the price of the jeans.
b. Find $(f \circ g)(x)$ and describe what this models in terms of the price of the jeans.
c. Repeat part (b) for $(g \circ f)(x)$.
d. Which composite function models the greater discount on the jeans, $f \circ g$ or $g \circ f$? Explain.

Writing in Mathematics

103. If a function is defined by an equation, explain how to find its domain.
104. If equations for f and g are given, explain how to find $f-g$.
105. If equations for two functions are given, explain how to obtain the quotient function and its domain.
106. Describe a procedure for finding $(f \circ g)(x)$. What is the name of this function?
107. Describe the values of x that must be excluded from the domain of $(f \circ g)(x)$.

Technology Exercises

108. Graph $y_{1}=x^{2}-2 x, y_{2}=x$, and $y_{3}=y_{1} \div y_{2}$ in the same $[-10,10,1]$ by $[-10,10,1]$ viewing rectangle. Then use the TRACE feature to trace along y_{3}. What happens at $x=0$? Explain why this occurs.
109. Graph $y_{1}=\sqrt{2-x}, y_{2}=\sqrt{x}$, and $y_{3}=\sqrt{2-y_{2}}$ in the same $[-4,4,1]$ by $[0,2,1]$ viewing rectangle. If y_{1} represents f and y_{2} represents g, use the graph of y_{3} to find the domain of $f \circ g$. Then verify your observation algebraically.

Critical Thinking Exercises

Make Sense? In Exercises 110-113, determine whether each statement makes sense or does not make sense, and explain your reasoning.
110. I used a function to model data from 1980 through 2005. The independent variable in my model represented the number of years after 1980, so the function's domain was $\{x \mid x=0,1,2,3, \ldots, 25\}$.
111. I have two functions. Function f models total world population x years after 2000 and function g models population of the world's more-developed regions x years after 2000. I can use $f-g$ to determine the population of the world's less-developed regions for the years in both function's domains.
112. I must have made a mistake in finding the composite functions $f \circ g$ and $g \circ f$, because I notice that $f \circ g$ is not the same function as $g \circ f$.
113. This diagram illustrates that $f(g(x))=x^{2}+4$.

In Exercises 114-119, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
114. If $f(x)=x^{2}-4$ and $g(x)=\sqrt{x^{2}-4}$, then $(f \circ g)(x)=-x^{2}$ and $(f \circ g)(5)=-25$.
115. There can never be two functions f and g, where $f \neq g$, for which $(f \circ g)(x)=(g \circ f)(x)$.
116. If $f(7)=5$ and $g(4)=7$, then $(f \circ g)(4)=35$.
117. If $f(x)=\sqrt{x}$ and $g(x)=2 x-1$, then $(f \circ g)(5)=g(2)$.
118. Prove that if f and g are even functions, then $f g$ is also an even function.
119. Define two functions f and g so that $f \circ g=g \circ f$.

Preview Exercises

Exercises 120-122 will help you prepare for the material covered in the next section.
120. Consider the function defined by

$$
\{(-2,4),(-1,1),(1,1),(2,4)\} .
$$

Reverse the components of each ordered pair and write the resulting relation. Is this relation a function?
121. Solve for y : $x=\frac{5}{y}+4$.
122. Solve for $y: \quad x=y^{2}-1, y \geq 0$.

SECTION 1.8

Inverse Functions

Objectives

(1) Verify inverse functions.
(2) Find the inverse of a function.
(3) Use the horizontal line test to determine if a function has an inverse function.
4. Use the graph of a one-to-one function to graph its inverse function.
(5) Find the inverse of a function and graph both functions on the same axes.

Based on Shakespeare's Romeo and Juliet, the film West Side Story swept the 1961 Academy Awards with ten Oscars. The top four movies to win the most Oscars are shown in Table 1.5.

Table 1.5 Films Winning the Most Oscars

Movie	Year	Number of Academy Awards
Ben-Hur	1960	11
Titanic	1998	11
The Lord of the Rings: The Return of the King	2003	11
West Side Story	1961	10

[^3]We can use the information in Table $\mathbf{1 . 5}$ to define a function. Let the domain of the function be the set of four movies shown in the table. Let the range be the number of Academy Awards for each of the respective films. The function can be written as follows:
$f:\{($ Ben-Hur, 11), (Titanic, 11), (The Lord of the Rings, 11), (West Side Story, 10) $\}$.
Now let's "undo" f by interchanging the first and second components in each of the ordered pairs. Switching the inputs and outputs of f, we obtain the following relation:

Same first component

Undoing $f:\{(11$, Ben-Hur $),(11$, Titanic $),(11$, The Lord of the Rings), (10, West Side Story) $\}$.

Different second components

Can you see that this relation is not a function? Three of its ordered pairs have the same first component and different second components. This violates the definition of a function.

If a function f is a set of ordered pairs, (x, y), then the changes produced by f can be "undone" by reversing the components of all the ordered pairs. The resulting relation, (y, x), may or may not be a function. In this section, we will develop these ideas by studying functions whose compositions have a special "undoing" relationship.

Inverse Functions

Here are two functions that describe situations related to the price of a computer, x :

$$
f(x)=x-300 \quad g(x)=x+300
$$

Function f subtracts $\$ 300$ from the computer's price and function g adds $\$ 300$ to the computer's price. Let's see what $f(g(x))$ does. Put $g(x)$ into f :

$$
f(x)=x-300 \quad \text { This is the given equation for } f .
$$

Replace x with $g(x)$.

$$
\begin{array}{rlr}
f(g(x)) & =g(x)-300 & \\
& =x+300-300 & \begin{array}{l}
\text { Because } g(x)=x+300 \\
\text { replace } g(x) \text { with } x+300 .
\end{array} \\
& =x . \quad \begin{array}{c}
\text { This is the computer's } \\
\text { original price. }
\end{array} &
\end{array}
$$

Using $f(x)=x-300$ and $g(x)=x+300$, we see that $f(g(x))=x$. By putting $g(x)$ into f and finding $f(g(x))$, the computer's price, x, went through two changes: the first, an increase; the second, a decrease:

$$
x+300-300 .
$$

The final price of the computer, x, is identical to its starting price, x.
In general, if the changes made to x by a function g are undone by the changes made by a function f, then

$$
f(g(x))=x .
$$

Assume, also, that this "undoing" takes place in the other direction:

$$
g(f(x))=x
$$

Uder these conditions, we say that each function is the inverse function of the other, The fact that g is the inverse of f is expressed by renaming g as f^{-1}, read " f-inverse." For example, the inverse functions

$$
f(x)=x-300 \quad g(x)=x+300
$$

are usually named as follows:

$$
f(x)=x-300 \quad f^{-1}(x)=x+300 .
$$

We can use partial tables of coordinates for f and f^{-1} to gain numerical insight into the relationship between a function and its inverse function.

Ordered pairs for f :
$(1200,900),(1300,1000),(1400,1100)$

Ordered pairs for f^{-1} :
(900, 1200), $(1000,1300),(1100,1400)$

The tables illustrate that if a function f is the set of ordered pairs (x, y), then its inverse, f^{-1}, is the set of ordered pairs (y, x). Using these tables, we can see how one function's changes to x are undone by the other function:

The final price of the computer, $\$ 1300$, is identical to its starting price, $\$ 1300$.
With these ideas in mind, we present the formal definition of the inverse of a function:

Definition of the Inverse of a Function
Let f and g be two functions such that

$$
f(g(x))=x \quad \text { for every } x \text { in the domain of } g
$$

and

$$
g(f(x))=x \quad \text { for every } x \text { in the domain of } f .
$$

The function g is the inverse of the function \boldsymbol{f} and is denoted by f^{-1} (read " f-inverse"). Thus, $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$. The domain of f is equal to the range of f^{-1}, and vice versa.

EXAMPLE 1 Verifying Inverse Functions

Show that each function is the inverse of the other:

$$
f(x)=3 x+2 \text { and } g(x)=\frac{x-2}{3}
$$

SOLUTION

To show that f and g are inverses of each other, we must show that $f(g(x))=x$ and $g(f(x))=x$. We begin with $f(g(x))$.

FIGURE $1.66 f^{-1}$ undoes the changes produced by f.

$$
f(x)=3 x+2 \quad \text { This is the equation for } f .
$$

Replace x with $g(x)$.

$$
\begin{gathered}
f(g(x))=3 g(x)+2=3\left(\frac{x-2}{3}\right)+2=x-2+2=x \\
g(x)=\frac{x-2}{3}
\end{gathered}
$$

Next, we find $g(f(x))$.

$$
g(x)=\frac{x-2}{3} \text { This is the equation for } g \text {. }
$$

Replace x with $f(x)$.

$$
g(f(x))=\frac{f(x)-2}{3}=\frac{(3 x+2)-2}{3}=\frac{3 x}{3}=x
$$

Because g is the inverse of f (and vice versa), we can use inverse notation and write

$$
f(x)=3 x+2 \quad \text { and } \quad f^{-1}(x)=\frac{x-2}{3} .
$$

Notice how f^{-1} undoes the changes produced by $f: f$ changes x by multiplying by 3 and adding 2 , and f^{-1} undoes this by subtracting 2 and dividing by 3.This "undoing" process is illustrated in Figure 1.66.

Check Point 1 Show that each function is the inverse of the other:

$$
f(x)=4 x-7 \quad \text { and } \quad g(x)=\frac{x+7}{4} .
$$

Finding the Inverse of a Function

The definition of the inverse of a function tells us that the domain of f is equal to the range of f^{-1}, and vice versa. This means that if the function f is the set of ordered pairs (x, y), then the inverse of f is the set of ordered pairs (y, x). If a function is defined by an equation, we can obtain the equation for f^{-1}, the inverse of f, by interchanging the role of x and y in the equation for the function f.

Finding the Inverse of a Function

The equation for the inverse of a function f can be found as follows:

1. Replace $f(x)$ with y in the equation for $f(x)$.
2. Interchange x and y.
3. Solve for y. If this equation does not define y as a function of x, the function f does not have an inverse function and this procedure ends. If this equation does define y as a function of x, the function f has an inverse function.
4. If f has an inverse function, replace y in step 3 by $f^{-1}(x)$. We can verify our result by showing that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

The procedure for finding a function's inverse uses a switch-and-solve strategy. Switch x and y, and then solve for y.

DISCOVERY

In Example 2, we found that if $f(x)=7 x-5$, then

$$
f^{-1}(x)=\frac{x+5}{7}
$$

Verify this result by showing that

$$
f\left(f^{-1}(x)\right)=x
$$

and

$$
f^{-1}(f(x))=x .
$$

EXAMPLE 2 Finding the Inverse of a Function

Find the inverse of $f(x)=7 x-5$.

SOLUTION

Step 1 Replace $f(x)$ with y :

$$
y=7 x-5
$$

Step 2 Interchange \boldsymbol{x} and \boldsymbol{y} :

$$
x=7 y-5 . \text { This is the inverse function. }
$$

Step 3 Solve for \boldsymbol{y} :

$$
\begin{array}{ll}
x+5=7 y & \\
\frac{x+5}{7}=y . & \text { Add } 5 \text { to both sides. } \\
\text { Divide both sides by } 7
\end{array}
$$

Step 4 Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=\frac{x+5}{7} . \begin{aligned}
& \text { The equation is written } \\
& \text { with } f^{-1} \text { on the left. }
\end{aligned}
$$

Thus, the inverse of $f(x)=7 x-5$ is $f^{-1}(x)=\frac{x+5}{7}$.
The inverse function, f^{-1}, undoes the changes produced by $f . f$ changes x by multiplying by 7 and subtracting $5 . f^{-1}$ undoes this by adding 5 and dividing by 7 .
\int Check Point 2 Find the inverse of $f(x)=2 x+7$.

EXAMPLE 3 Finding the Inverse of a Function

Find the inverse of $f(x)=x^{3}+1$.

SOLUTION

Step 1 Replace $\boldsymbol{f}(\boldsymbol{x})$ with $y: y=x^{3}+1$.
Step 2 Interchange \boldsymbol{x} and $\boldsymbol{y}: x=y^{3}+1$.
Step 3 Solve for \boldsymbol{y} :

$$
\begin{array}{cc}
& \begin{array}{c}
\text { Our goal is to isolate y. } \\
\text { Because } \sqrt[3]{y^{3}}=y, \text { we will } \\
\text { take the cube root of both } \\
\text { sides of the equation. }
\end{array} \\
x-1=y^{3} & \text { Subtract } 1 \text { from both sides. } \\
\sqrt[3]{x-1}=\sqrt[3]{y^{3}} & \text { Take the cube root on both sides. } \\
\sqrt[3]{x-1}=y . & \text { Simplify. }
\end{array}
$$

Step 4 Replace \boldsymbol{y} with $\boldsymbol{f}^{-1}(\boldsymbol{x}): f^{-1}(x)=\sqrt[3]{x-1}$.
Thus, the inverse of $f(x)=x^{3}+1$ is $f^{-1}(x)=\sqrt[3]{x-1}$.
3 Check Point 3 Find the inverse of $f(x)=4 x^{3}-1$.

EXAMPLE 4 Finding the Inverse of a Function

Find the inverse of $f(x)=\frac{5}{x}+4$.

SOLUTION

Step 1 Replace $f(x)$ with y :

$$
y=\frac{5}{x}+4
$$

Step 2 Interchange x and y :

$$
x=\frac{5}{y}+4
$$

Our goal is to isolate y. To get y out of the denominator, we will multiply both sides of the equation by $y, y \neq 0$.

Step 3 Solve for y :

$$
\begin{aligned}
x & =\frac{5}{y}+4 & & \text { This is the equation from step } 2 \\
x y & =\left(\frac{5}{y}+4\right) y & & \text { Multiply both sides by } \mathrm{y}, \mathrm{y} \neq 0 \\
x y & =\frac{5}{y} \cdot y+4 y & & \text { Use the distributive property. } \\
x y & =5+4 y & & \text { Simplify: } \frac{5}{y} \cdot y=5 . \\
x y-4 y & =5 & & \text { Subtract } 4 y \text { from both sides. } \\
y(x-4) & =5 & & \text { Factor out } y \text { from } x y-4 y \text { to obtain } \\
\frac{y(x-4)}{x-4} & =\frac{\text { a single occurrence of } y .}{x-4} & & \text { Divide both sides by } x-4, x \neq 4 . \\
y & =\frac{5}{x-4} . & & \text { Simplify. }
\end{aligned}
$$

Step 4 Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=\frac{5}{x-4}
$$

Thus, the inverse of $f(x)=\frac{5}{x}+4$ is $f^{-1}(x)=\frac{5}{x-4}$.
0 Check Point 4 Find the inverse of $f(x)=\frac{3}{x}-1$.
3. Use the horizontal line test to determine if a function has an inverse function.

The Horizontal Line Test and One-to-One Functions

Let's see what happens if we try to find the inverse of the standard quadratic function, $f(x)=x^{2}$.
Step 1 Replace $f(x)$ with $y: y=x^{2}$.
Step 2 Interchange \boldsymbol{x} and $\boldsymbol{y}: x=y^{2}$.
Step 3 Solve for y : We apply the square root property to solve $y^{2}=x$ for y. We obtain

$$
y= \pm \sqrt{x}
$$

The \pm in $y= \pm \sqrt{x}$ shows that for certain values of x (all positive real numbers), there are two values of y. Because this equation does not represent y as a function of x, the standard quadratic function $f(x)=x^{2}$ does not have an inverse function.

FIGURE 1.67 The horizontal line intersects the graph twice.

DISCOVERY

How might you restrict the domain of $f(x)=x^{2}$, graphed in Figure 1.67, so that the remaining portion of the graph passes the horizontal line test?

We can use a few of the solutions of $y=x^{2}$ to illustrate numerically that this function does not have an inverse:

The input 1 is associated
with two outputs, -1 and 1 .

The input 4 is associated with two outputs, $\mathbf{- 2}$ and 2.

A function provides exactly one output for each input. Thus, the ordered pairs in the bottom row do not define a function.

Can we look at the graph of a function and tell if it represents a function with an inverse? Yes. The graph of the standard quadratic function $f(x)=x^{2}$ is shown in Figure 1.67. Four units above the x-axis, a horizontal line is drawn. This line intersects the graph at two of its points, $(-2,4)$ and $(2,4)$. Inverse functions have ordered pairs with the coordinates reversed. We just saw what happened when we interchanged x and y. We obtained $(4,-2)$ and $(4,2)$, and these ordered pairs do not define a function.

If any horizontal line, such as the one in Figure 1.67, intersects a graph at two or more points, the set of these points will not define a function when their coordinates are reversed. This suggests the horizontal line test for inverse functions.

The Horizontal Line Test for Inverse Functions

A function f has an inverse that is a function, f^{-1}, if there is no horizontal line that intersects the graph of the function f at more than one point.

EXAMPLE 5 Applying the Horizontal Line Test

Which of the following graphs represent functions that have inverse functions?

(a)

(b)

(c)

(d)

SOLUTION

Notice that horizontal lines can be drawn in graphs (b) and (c) that intersect the graphs more than once. These graphs do not pass the horizontal line test. These are not the graphs of functions with inverse functions. By contrast, no horizontal line can be drawn in graphs (a) and (d) that intersects the graphs more than once. These graphs pass the horizontal line test. Thus, the graphs in parts (a) and (d) represent functions that have inverse functions.

Has an inverse function
(a)

No inverse function
(b)

No inverse function
(c)

Has an inverse function
(d)

4 Use the graph of a one-to-one function to graph its inverse function.

FIGURE 1.69
$\$$ Check Point 5 Which of the following graphs represent functions that have inverse functions?

(a)

(b)

(c)

A function passes the horizontal line test when no two different ordered pairs have the same second component. This means that if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Such a function is called a one-to-one function. Thus, a one-to-one function is a function in which no two different ordered pairs have the same second component. Only one-to-one functions have inverse functions. Any function that passes the horizontal line test is a one-to-one function. Any one-to-one function has a graph that passes the horizontal line test.

Graphs of \boldsymbol{f} and $\boldsymbol{f}^{\mathbf{- 1}}$

There is a relationship between the graph of a one-to-one function, f, and its inverse, f^{-1}. Because inverse functions have ordered pairs with the coordinates interchanged, if the point (a, b) is on the graph of f, then the point (b, a) is on the graph of f^{-1}. The points (a, b) and (b, a) are symmetric with respect to the line $y=x$. Thus, the graph of \boldsymbol{f}^{-1} is a reflection of the graph of \boldsymbol{f} about the line $\boldsymbol{y}=\boldsymbol{x}$. This is illustrated in Figure 1.68.

FIGURE 1.68 The graph of f^{-1} is a reflection of the graph of f about $y=x$.

EXAMPLE 6 Graphing the Inverse Function

Use the graph of f in Figure 1.69 to draw the graph of its inverse function.

SOLUTION

We begin by noting that no horizontal line intersects the graph of f at more than one point, so f does have an inverse function. Because the points $(-3,-2),(-1,0)$, and $(4,2)$ are on the graph of f, the graph of the inverse function, f^{-1}, has points with these ordered pairs reversed. Thus, $(-2,-3),(0,-1)$, and $(2,4)$ are on the graph of f^{-1}. We can use these points to graph f^{-1}. The graph of f^{-1} is shown in green in Figure 1.70. Note that the green graph of f^{-1} is

FIGURE 1.70 The graphs of f and f^{-1} the reflection of the blue graph of f about the line $y=x$.
\int Check Point 6 The graph of function f consists of two line segments, one segment from $(-2,-2)$ to $(-1,0)$ and a second segment from $(-1,0)$ to $(1,2)$. Graph f and use the graph to draw the graph of its inverse function.

5 Find the inverse of a function and graph both functions on the same axes.

FIGURE 1.71

FIGURE 1.72

In our final example, we will first find f^{-1}. Then we will graph f and f^{-1} in the same rectangular coordinate system.

EXAMPLE 7 Finding the Inverse of a Domain-Restricted Function

Find the inverse of $f(x)=x^{2}-1$ if $x \geq 0$. Graph f and f^{-1} in the same rectangular coordinate system.

SOLUTION

The graph of $f(x)=x^{2}-1$ is the graph of the standard quadratic function shifted vertically down 1 unit. Figure 1.71 shows the function's graph. This graph fails the horizontal line test, so the function $f(x)=x^{2}-1$ does not have an inverse function. By restricting the domain to $x \geq 0$, as given, we obtain a new function whose graph is shown in red in Figure 1.71. This red portion of the graph is increasing on the interval $(0, \infty)$ and passes the horizontal line test. This tells us that $f(x)=x^{2}-1$ has an inverse function if we restrict its domain to $x \geq 0$. We use our four-step procedure to find this inverse function. Begin with $f(x)=x^{2}-1, x \geq 0$.
Step 1 Replace $\boldsymbol{f}(\boldsymbol{x})$ with $y: y=x^{2}-1, x \geq 0$.
Step 2 Interchange \boldsymbol{x} and $\boldsymbol{y}: x=y^{2}-1, y \geq 0$.
Step 3 Solve for \boldsymbol{y} :

$$
\begin{aligned}
x & =y^{2}-1, y \geq 0 & & \text { This is the equation from step } 2 . \\
x+1 & =y^{2} & & \text { Add } 1 \text { to both sides. } \\
\sqrt{x+1} & =y & & \text { Apply the square root property. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Because } y \geq 0 \text {, take only } \\
& \text { the principal square root and } \\
& \text { not the negative square root. }
\end{aligned}
$$

Step 4 Replace \boldsymbol{y} with $\boldsymbol{f}^{-1}(\boldsymbol{x}): f^{-1}(x)=\sqrt{x+1}$.
Thus, the inverse of $f(x)=x^{2}-1, x \geq 0$, is $f^{-1}(x)=\sqrt{x+1}$. The graphs of f and f^{-1} are shown in Figure 1.72. We obtained the graph of $f^{-1}(x)=\sqrt{x+1}$ by shifting the graph of the square root function, $y=\sqrt{x}$, horizontally to the left 1 unit. Note that the green graph of f^{-1} is the reflection of the red graph of f about the line $y=x$.

0 Check Point 7 Find the inverse of $f(x)=x^{2}+1$ if $x \geq 0$. Graph f and f^{-1} in the same rectangular coordinate system.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The notation f^{-1} means the \qquad of the function f.
2. If the function g is the inverse of the function f, then $f(g(x))=$ \qquad and $g(f(x))=$ \qquad -.
3. A function f has an inverse that is a function if there is no \qquad line that intersects the graph of f at more than one point. Such a function is called a/an \qquad function.
4. The graph of f^{-1} is a reflection of the graph of f about the line whose equation is \qquad

EXERCISE SET 1.8

Practice Exercises

In Exercises 1-10, find $f(g(x))$ and $g(f(x))$ and determine whether each pair of functions f and g are inverses of each other.

1. $f(x)=4 x$ and $g(x)=\frac{x}{4}$
2. $f(x)=6 x$ and $g(x)=\frac{x}{6}$
3. $f(x)=3 x+8$ and $g(x)=\frac{x-8}{3}$
4. $f(x)=4 x+9$ and $g(x)=\frac{x-9}{4}$
5. $f(x)=5 x-9$ and $g(x)=\frac{x+5}{9}$
6. $f(x)=3 x-7$ and $g(x)=\frac{x+3}{7}$
7. $f(x)=\frac{3}{x-4}$ and $g(x)=\frac{3}{x}+4$
8. $f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$
9. $f(x)=-x$ and $g(x)=-x$
10. $f(x)=\sqrt[3]{x-4}$ and $g(x)=x^{3}+4$

The functions in Exercises 11-28 are all one-to-one. For each function,
a. Find an equation for $f^{-1}(x)$, the inverse function.
b. Verify that your equation is correct by showing that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
11. $f(x)=x+3$
12. $f(x)=x+5$
13. $f(x)=2 x$
14. $f(x)=4 x$
15. $f(x)=2 x+3$
16. $f(x)=3 x-1$
17. $f(x)=x^{3}+2$
18. $f(x)=x^{3}-1$
19. $f(x)=(x+2)^{3}$
20. $f(x)=(x-1)^{3}$
21. $f(x)=\frac{1}{x}$
22. $f(x)=\frac{2}{x}$
23. $f(x)=\sqrt{x}$
24. $f(x)=\sqrt[3]{x}$
25. $f(x)=\frac{7}{x}-3$
26. $f(x)=\frac{4}{x}+9$
27. $f(x)=\frac{2 x+1}{x-3}$
28. $f(x)=\frac{2 x-3}{x+1}$

Which graphs in Exercises 29-34 represent functions that have inverse functions?
29.

30.

31.

32.

33.

34.

In Exercises 35-38, use the graph of f to draw the graph of its inverse function.
35.

36.

37.

38.

In Exercises 39-52,
a. Find an equation for $f^{-1}(x)$.
b. Graph f and f^{-1} in the same rectangular coordinate system.
c. Use interval notation to give the domain and the range of f and f^{-1}.
39. $f(x)=2 x-1$
40. $f(x)=2 x-3$
41. $f(x)=x^{2}-4, x \geq 0$
42. $f(x)=x^{2}-1, x \leq 0$
43. $f(x)=(x-1)^{2}, x \leq 1$
44. $f(x)=(x-1)^{2}, x \geq 1$
45. $f(x)=x^{3}-1$
46. $f(x)=x^{3}+1$
47. $f(x)=(x+2)^{3}$
48. $f(x)=(x-2)^{3}$
(Hint for Exercises 49-52: To solve for a variable involving an nth root, raise both sides of the equation to the nth power: $(\sqrt[n]{y})^{n}=y$.)
49. $f(x)=\sqrt{x-1}$
50. $f(x)=\sqrt{x}+2$
51. $f(x)=\sqrt[3]{x}+1$
52. $f(x)=\sqrt[3]{x-1}$

Practice Plus

In Exercises 53-58, f and g are defined by the following tables. Use the tables to evaluate each composite function.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	\boldsymbol{x}	$\boldsymbol{g (x)}$	53.$f(g(1))$
-1	1	-1	0	54. $f(g(4))$
0	4	1	1	55. $(g \circ f)(-1)$ 1$\| 5$
	4	2	56. $(g \circ f)(0)$	
2	-1	10	-1	57. $f^{-1}(g(10))$

In Exercises 59-64, let

$$
\begin{aligned}
& f(x)=2 x-5 \\
& g(x)=4 x-1 \\
& h(x)=x^{2}+x+2
\end{aligned}
$$

Evaluate the indicated function without finding an equation for the function.
59. $(f \circ g)(0)$
60. $(g \circ f)(0)$
61. $f^{-1}(1)$
62. $g^{-1}(7)$
63. $g(f[h(1)])$
64. $f(g[h(1)])$

Application Exercises

In most societies, women say they prefer to marry men who are older than themselves, whereas men say they prefer women who are younger. The bar graph shows the preferred age difference in a mate in five selected countries. Use this information to solve Exercises 65-66.

Source: Carole Wade and Carol Tavris, Psychology, 6th Edition, Prentice Hall, 2000.
65. a. Consider a function, f, whose domain is the set of the five countries shown in the graph. Let the range be the set of the average number of years women in each of the respective countries prefer men who are older than themselves. Write the function f as a set of ordered pairs.
b. Write the relation that is the inverse of f as a set of ordered pairs. Based on these ordered pairs, is f a one-to-one function? Explain your answer.
66. a. Consider a function, g, whose domain is the set of the five countries shown in the graph. Let the range be the set of negative numbers representing the average number of years men in each of the respective countries prefer women who are younger than themselves. Write the function g as a set of ordered pairs.
b. Write the relation that is the inverse of g as a set of ordered pairs. Based on these ordered pairs, is g a one-to-one function? Explain your answer.
67. The graph represents the probability of two people in the same room sharing a birthday as a function of the number of people in the room. Call the function f.

a. Explain why f has an inverse that is a function.
b. Describe in practical terms the meaning of $f^{-1}(0.25), f^{-1}(0.5)$, and $f^{-1}(0.7)$.
68. A study of 900 working women in Texas showed that their feelings changed throughout the day. As the graph indicates, the women felt better as time passed, except for a blip (that's slang for relative maximum) at lunchtime.

Average Level of Happiness at Different Times of Day

Source: D. Kahneman et al., "A Survey Method for Characterizing Daily Life Experience," Science.
a. Does the graph have an inverse that is a function? Explain your answer.
b. Identify two or more times of day when the average happiness level is 3 . Express your answers as ordered pairs.
c. Do the ordered pairs in part (b) indicate that the graph represents a one-to-one function? Explain your answer.
69. The formula

$$
y=f(x)=\frac{9}{5} x+32
$$

is used to convert from x degrees Celsius to y degrees Fahrenheit. The formula

$$
y=g(x)=\frac{5}{9}(x-32)
$$

is used to convert from x degrees Fahrenheit to y degrees Celsius. Show that f and g are inverse functions.

Writing in Mathematics

70. Explain how to determine if two functions are inverses of each other.
71. Describe how to find the inverse of a one-to-one function.
72. What is the horizontal line test and what does it indicate?
73. Describe how to use the graph of a one-to-one function to draw the graph of its inverse function.
74. How can a graphing utility be used to visually determine if two functions are inverses of each other?
75. What explanations can you offer for the trends shown by the graph in Exercise 68?

Technology Exercises

In Exercises 76-83, use a graphing utility to graph the function. Use the graph to determine whether the function has an inverse that is a function (that is, whether the function is one-to-one).
76. $f(x)=x^{2}-1$
77. $f(x)=\sqrt[3]{2-x}$
78. $f(x)=\frac{x^{3}}{2}$
79. $f(x)=\frac{x^{4}}{4}$
80. $f(x)=\operatorname{int}(x-2)$
81. $f(x)=|x-2|$
82. $f(x)=(x-1)^{3}$

In Exercises 84-86, use a graphing utility to graph f and g in the same viewing rectangle. In addition, graph the line $y=x$ and visually determine if f and g are inverses.
84. $f(x)=4 x+4, g(x)=0.25 x-1$
85. $f(x)=\frac{1}{x}+2, g(x)=\frac{1}{x-2}$
86. $f(x)=\sqrt[3]{x}-2, g(x)=(x+2)^{3}$

Critical Thinking Exercises

Make Sense? In Exercises 87-90, determine whether each statement makes sense or does not make sense, and explain your reasoning.
87. I found the inverse of $f(x)=5 x-4$ in my head: The reverse of multiplying by 5 and subtracting 4 is adding 4 and dividing by 5 , so $f^{-1}(x)=\frac{x+4}{5}$.
88. I'm working with the linear function $f(x)=3 x+5$ and I do not need to find f^{-1} in order to determine the value of $\left(f \circ f^{-1}\right)(17)$.
Exercises 89-90 are based on the following cartoon.

© John L. Hart FLP. All rights reserved.
89. Assuming that there is no such thing as metric crickets, I modeled the information in the first frame of the cartoon with the function

$$
T(n)=\frac{n}{4}+40
$$

where $T(n)$ is the temperature, in degrees Fahrenheit, and n is the number of cricket chirps per minute.
90. I used the function in Exercise 89 and found an equation for T^{-1}, which expresses the number of cricket chirps per minute as a function of Fahrenheit temperature.

In Exercises 91-94, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
91. The inverse of $\{(1,4),(2,7)\}$ is $\{(2,7),(1,4)\}$.
92. The function $f(x)=5$ is one-to-one.
93. If $f(x)=3 x$, then $f^{-1}(x)=\frac{1}{3 x}$.
94. The domain of f is the same as the range of f^{-1}.
95. If $f(x)=3 x$ and $g(x)=x+5$, find $(f \circ g)^{-1}(x)$ and $\left(g^{-1} \circ f^{-1}\right)(x)$.
96. Show that

$$
f(x)=\frac{3 x-2}{5 x-3}
$$

is its own inverse.
97. Freedom 7 was the spacecraft that carried the first American into space in 1961. Total flight time was 15 minutes and the spacecraft reached a maximum height of 116 miles. Consider a function, s, that expresses Freedom 7's height, $s(t)$, in miles, after t minutes. Is s a one-to-one function? Explain your answer.
98. If $f(2)=6$, and f is one-to-one, find x satisfying $8+f^{-1}(x-1)=10$.

Group Exercise

99. In Tom Stoppard's play Arcadia, the characters dream and talk about mathematics, including ideas involving graphing, composite functions, symmetry, and lack of symmetry in things that are tangled, mysterious, and unpredictable. Group members should read the play. Present a report on the ideas discussed by the characters that are related to concepts that we studied in this chapter. Bring in a copy of the play and read appropriate excerpts.

Preview Exercises

Exercises 100-102 will help you prepare for the material covered in the next section.
100. Let $\left(x_{1}, y_{1}\right)=(7,2)$ and $\left(x_{2}, y_{2}\right)=(1,-1)$. Find $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. Express the answer in simplified radical form.
101. Use a rectangular coordinate system to graph the circle with center $(1,-1)$ and radius 1 .
102. Solve by completing the square: $y^{2}-6 y-4=0$.

SECTION 1.9

Objectives

(1) Find the distance between two points.
(2) Find the midpoint of a line segment.
(3) Write the standard form of a circle's equation.
(4) Give the center and radius of a circle whose equation is in standard form.
(5) Convert the general form of a circle's equation to standard form.
(1) Find the distance between two points.

FIGURE 1.73

Distance and Midpoint Formulas; Circles

It's a good idea to know your way around a circle. Clocks, angles, maps, and compasses are based on circles. Circles occur everywhere in nature: in ripples on water, patterns on a butterfly's wings, and cross sections of trees. Some consider the circle to be the most pleasing of all shapes.

The rectangular coordinate system gives us a unique way of knowing a circle. It enables us to translate a circle's geometric definition into an algebraic equation. To do this, we must first develop a formula for the distance between any two points in rectangular coordinates.

The Distance Formula

Using the Pythagorean Theorem, we can find the distance between the two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ in the rectangular coordinate system. The two points are illustrated in Figure 1.73.

The distance that we need to find is represented by d and shown in blue. Notice that the distance between the two points on the dashed horizontal line is the absolute value of the difference between the x-coordinates of the points. This distance, $\left|x_{2}-x_{1}\right|$, is shown in pink. Similarly, the distance between the two points on the dashed vertical line is the absolute value of the difference between the y-coordinates of the points. This distance, $\left|y_{2}-y_{1}\right|$, is also shown in pink.

Because the dashed lines are horizontal and vertical, a right triangle is formed. Thus, we can use the Pythagorean Theorem to find the distance d. Squaring the lengths of the triangle's sides results in positive numbers, so absolute value notation is not necessary.

$$
\begin{aligned}
d^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
\end{aligned} \begin{aligned}
& \text { Apply the Pythagorean Theorem to the right } \\
& \text { triangle in Figure 1.73. }
\end{aligned}
$$

This result is called the distance formula.

The Distance Formula

The distance, d, between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the rectangular coordinate system is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

To compute the distance between two points, find the square of the difference between the x-coordinates plus the square of the difference between the y-coordinates. The principal square root of this sum is the distance.

FIGURE 1.74 Finding the distance between two points

When using the distance formula, it does not matter which point you call $\left(x_{1}, y_{1}\right)$ and which you call $\left(x_{2}, y_{2}\right)$.

EXAMPLE 1 Using the Distance Formula

Find the distance between $(-1,4)$ and $(3,-2)$. Express the answer in simplified radical form and then round to two decimal places.

SOLUTION

We will let $\left(x_{1}, y_{1}\right)=(-1,4)$ and $\left(x_{2}, y_{2}\right)=(3,-2)$.

$$
\begin{array}{rlrl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Use the distance formula. } \\
& =\sqrt{[3-(-1)]^{2}+(-2-4)^{2}} & & \text { Substitute the given values. } \\
& =\sqrt{4^{2}+(-6)^{2}} & & \begin{array}{l}
\text { Perform operations inside grouping symbols: } \\
3-(-1)=3+1=4 \text { and }-2-4=-6 .
\end{array} \\
& =\sqrt{16+36} \quad \begin{array}{c}
\text { Caution: This } \\
\text { does not equal } \\
\text { n }
\end{array} \\
& =\sqrt{52} & & \text { Square } 4 \text { and }-6 . \\
& =\sqrt{4 \cdot 13}=2 \sqrt{13} \approx 7.21 & & \sqrt{52}=\sqrt{4 \cdot 13}=\sqrt{4} \sqrt{13}=2 \sqrt{13}
\end{array}
$$

The distance between the given points is $2 \sqrt{13}$ units, or approximately 7.21 units. The situation is illustrated in Figure 1.74.

3 Check Point 1 Find the distance between $(-1,-3)$ and $(2,3)$. Express the answer in simplified radical form and then round to two decimal places.

The Midpoint Formula

The distance formula can be used to derive a formula for finding the midpoint of a line segment between two given points. The formula is given as follows:

The Midpoint Formula

Consider a line segment whose endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. The coordinates of the segment's midpoint are

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

To find the midpoint, take the average of the two x-coordinates and the average of the two y-coordinates.

GREAT QUESTION!

Do I add or subtract coordinates when applying the midpoint and distance formulas?
The midpoint formula requires finding the sum of coordinates. By contrast, the distance formula requires finding the difference of coordinates:

It's easy to confuse the two formulas. Be sure to use addition, not subtraction, when applying the midpoint formula.

FIGURE 1.75 Finding a line segment's midpoint

EXAMPLE 2 Using the Midpoint Formula

Find the midpoint of the line segment with endpoints $(1,-6)$ and $(-8,-4)$.

SOLUTION

To find the coordinates of the midpoint, we average the coordinates of the endpoints.

$$
\text { Midpoint }=\left(\frac{1+(-8)}{2}, \frac{-6+(-4)}{2}\right)=\left(\frac{-7}{2}, \frac{-10}{2}\right)=\left(-\frac{7}{2},-5\right)
$$

Average the
Average the
-coordinates.
y-coordinates.

Figure 1.75 illustrates that the point $\left(-\frac{7}{2},-5\right)$ is midway between the points $(1,-6)$ and ($-8,-4$).
$\$$ Check Point 2 Find the midpoint of the line segment with endpoints $(1,2)$ and (7, -3).

Circles

Our goal is to translate a circle's geometric definition into an equation. We begin with this geometric definition.

Definition of a Circle

A circle is the set of all points in a plane that are equidistant from a fixed point, called the center. The fixed distance from the circle's center to any point on the circle is called the radius.

Figure $\mathbf{1 . 7 6}$ is our starting point for obtaining a circle's equation. We've placed the circle into a rectangular coordinate system. The circle's center is (h, k) and its radius is r. We let (x, y) represent the coordinates of any point on the circle.

What does the geometric definition of a circle tell us about the point (x, y) in Figure 1.76? The point is on the circle if and only if its distance from the center is r. We can use the distance formula to express this idea algebraically:

$$
\begin{aligned}
& \begin{array}{c}
\text { The distance between } \\
(x, y) \text { and }(h, k)
\end{array} \\
& \sqrt{(x-h)^{2}+(y-k)^{2}}=r
\end{aligned}
$$

Squaring both sides of $\sqrt{(x-h)^{2}+(y-k)^{2}}=r$ yields the standard form of the equation of a circle.

The Standard Form of the Equation of a Circle

The standard form of the equation of a circle with center (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

EXAMPLE 3 Finding the Standard Form of a Circle's Equation

Write the standard form of the equation of the circle with center $(0,0)$ and radius 2. Graph the circle.

FIGURE 1.77 The graph of $x^{2}+y^{2}=4$

SOLUTION

The center is $(0,0)$. Because the center is represented as (h, k) in the standard form of the equation, $h=0$ and $k=0$. The radius is 2 , so we will let $r=2$ in the equation.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} \\
(x-0)^{2}+(y-0)^{2} & =2^{2}
\end{aligned} \quad \begin{aligned}
& \text { This is the standard form of a circle's equation. } \\
& x^{2}+y^{2}
\end{aligned}=4 \quad \text { Simplify. } \quad \text { Sor } h, O \text { for } k \text {, and } 2 \text { for } r . ~ \$
$$

The standard form of the equation of the circle is $x^{2}+y^{2}=4$. Figure $\mathbf{1 . 7 7}$ shows the graph.

0 Check Point 3 Write the standard form of the equation of the circle with center $(0,0)$ and radius 4 .

TECHNOLOGY

To graph a circle with a graphing utility, first solve the equation for y.

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
y^{2} & =4-x^{2} \\
y & = \pm \sqrt{4-x^{2}} \quad \begin{array}{c}
y \text { is not a } \\
\text { function of } x .
\end{array}
\end{aligned}
$$

Graph the two equations

$$
y_{1}=\sqrt{4-x^{2}} \quad \text { and } \quad y_{2}=-\sqrt{4-x^{2}}
$$

in the same viewing rectangle. The graph of $y_{1}=\sqrt{4-x^{2}}$ is the top semicircle because y is always positive. The graph of $y_{2}=-\sqrt{4-x^{2}}$ is the bottom semicircle because y is always negative. Use a ZOOM SQUARE setting so that the circle looks like a circle. (Many graphing utilities have problems connecting the two semicircles because the segments directly to the left and to the right of the center become nearly vertical.)

Example 3 and Check Point 3 involved circles centered at the origin. The standard form of the equation of all such circles is $x^{2}+y^{2}=r^{2}$, where r is the circle's radius. Now, let's consider a circle whose center is not at the origin.

EXAMPLE 4 Finding the Standard Form of a Circle's Equation

Write the standard form of the equation of the circle with center $(-2,3)$ and radius 4.

SOLUTION

The center is $(-2,3)$. Because the center is represented as (h, k) in the standard form of the equation, $h=-2$ and $k=3$. The radius is 4 , so we will let $r=4$ in the equation.

$$
\begin{array}{rlrl}
(x-h)^{2}+(y-k)^{2} & =r^{2} & \text { This is the standard form of a circle's equation. } \\
{[x-(-2)]^{2}+(y-3)^{2}} & =4^{2} & & \text { Substitute }-2 \text { for } h, 3 \text { for } k \text {, and } 4 \text { for } r . \\
(x+2)^{2}+(y-3)^{2} & =16 & \text { Simplify. }
\end{array}
$$

The standard form of the equation of the circle is $(x+2)^{2}+(y-3)^{2}=16$
3 Check Point 4 Write the standard form of the equation of the circle with center $(0,-6)$ and radius 10 .
(4) Give the center and radius of a circle whose equation is in standard form.

FIGURE 1.78 The graph of $(x-2)^{2}+(y+4)^{2}=9$

EXAMPLE 5 Using the Standard Form of a Circle's Equation to Graph the Circle

a. Find the center and radius of the circle whose equation is

$$
(x-2)^{2}+(y+4)^{2}=9
$$

b. Graph the equation.
c. Use the graph to identify the relation's domain and range.

SOLUTION

a. We begin by finding the circle's center, (h, k), and its radius, r. We can find the values for h, k, and r by comparing the given equation to the standard form of the equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$.

$$
\begin{aligned}
& \quad(x-2)^{2}+(y+4)^{2}=9 \\
& \quad(x-2)^{2}+(y-(-4))^{2}=3^{2} \\
& \begin{array}{c}
\text { This is }(x-h)^{2}, \\
\text { with } h=2 .
\end{array} \begin{array}{c}
\text { This is }(y-k)^{2}, \\
\text { with } k=-4 .
\end{array} \begin{array}{l}
\text { This is } r^{2}, \\
\text { with } r=3 .
\end{array}
\end{aligned}
$$

We see that $h=2, k=-4$, and $r=3$. Thus, the circle has center $(h, k)=(2,-4)$ and a radius of 3 units.
b. To graph this circle, first locate the center $(2,-4)$. Because the radius is 3 , you can locate at least four points on the circle by going out three units to the right, to the left, up, and down from the center.

The points three units to the right and to the left of $(2,-4)$ are $(5,-4)$ and $(-1,-4)$, respectively. The points three units up and down from $(2,-4)$ are $(2,-1)$ and $(2,-7)$, respectively.

Using these points, we obtain the graph in Figure 1.78.
c. The four points that we located on the circle can be used to determine the relation's domain and range. The points $(-1,-4)$ and $(5,-4)$ show that values of x extend from -1 to 5 , inclusive:

$$
\text { Domain }=[-1,5]
$$

The points $(2,-7)$ and $(2,-1)$ show that values of y extend from -7 to -1 , inclusive:

$$
\text { Range }=[-7,-1]
$$

GREAT QUESTION!

What's the bottom line when identifying h and k in the standard form of a circle's equation?
It's easy to make sign errors when finding h and k, the coordinates of a circle's center, (h, k). Keep in mind that h and k are the numbers that follow the subtraction signs in a circle's equation:

$$
\begin{array}{r}
(x-2)^{2}+(y+4)^{2}=9 \\
(x-2)^{2}+(y-(-4))^{2}=9
\end{array}
$$

[^4]
\oint Check Point 5

a. Find the center and radius of the circle whose equation is

$$
(x+3)^{2}+(y-1)^{2}=4
$$

b. Graph the equation.
c. Use the graph to identify the relation's domain and range.

If we square $x-2$ and $y+4$ in the standard form of the equation in Example 5, we obtain another form for the circle's equation.

$$
\begin{aligned}
&(x-2)^{2}+(y+4)^{2}=9 \begin{array}{l}
\text { This is the standard form of the equation in } \\
\\
x^{2}-4 x+4+y^{2}+8 y+16=9
\end{array} \\
& \text { Example } 5 . \\
& x^{2}+y^{2}-4 x+8 y+20=9 \text { Square } x-2 \text { and } y+4 . \\
& x^{2}+y^{2}-4 x+8 y+11=0 \text { Subtract } 9 \text { from both sides. }
\end{aligned}
$$

This result suggests that an equation in the form $x^{2}+y^{2}+D x+E y+F=0$ can represent a circle. This is called the general form of the equation of a circle.

The General Form of the Equation of a Circle

The general form of the equation of a circle is

$$
x^{2}+y^{2}+D x+E y+F=0
$$

where D, E, and F are real numbers.

We can convert the general form of the equation of a circle to the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$. We do so by completing the square on x and y. Let's see how this is done.

EXAMPLE 6 Converting the General Form of a Circle's Equation to Standard Form and Graphing the Circle

Write in standard form and graph: $x^{2}+y^{2}+4 x-6 y-23=0$.

SOLUTION

Because we plan to complete the square on both x and y, let's rearrange the terms so that x-terms are arranged in descending order, y-terms are arranged in descending order, and the constant term appears on the right.

$$
\begin{aligned}
x^{2}+y^{2}+4 x-6 y-23 & =0 & \begin{array}{l}
\text { This is the given equation. } \\
\left(x^{2}+4 x\right)+\left(y^{2}-6 y\right)
\end{array} \\
\left(x^{2}+4 x+4\right)+\left(y^{2}-6 y+9\right)=23+4+9 & \begin{array}{l}
\text { Rewrite in anticipation of completing } \\
\text { the square. } \\
\text { Complete the square on } x: \frac{1}{2} \cdot 4=2 \\
\text { and } 2^{2}=4, \text { so add } 4 \text { to both } \\
\text { sides. Complete the square on } y: \\
\begin{array}{l}
\text { Remember that numbers added on the left } \\
\text { side must also be added on the right side. }
\end{array} \\
\begin{array}{l}
\frac{1}{2}(-6)=-3 \text { and }(-3)^{2}=9, \text { so } \\
\text { add } 9 \text { to both sides. }
\end{array} \\
(x+2)^{2}+(y-3)^{2}=36
\end{array} & \begin{array}{l}
\text { Factor on the left and add on } \\
\text { the right. }
\end{array}
\end{aligned}
$$

FIGURE 1.79 The graph of $(x+2)^{2}+(y-3)^{2}=36$

This last equation, $(x+2)^{2}+(y-3)^{2}=36$, is in standard form. We can identify the circle's center and radius by comparing this equation to the standard form of the equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$.

$$
\begin{gathered}
\quad(x+2)^{2}+(y-3)^{2}=36 \\
(x-(-2))^{2}+(y-3)^{2}=6^{2} \\
\begin{array}{c}
\text { This is }(x-h)^{2}, \\
\text { with } h=-2 .
\end{array} \begin{array}{l}
\text { This is }(y-k)^{2}, \\
\text { with } k=3 .
\end{array} \begin{array}{l}
\text { This is } r^{2}, \\
\text { with } r=6 .
\end{array}
\end{gathered}
$$

We use the center, $(h, k)=(-2,3)$, and the radius, $r=6$, to graph the circle. The graph is shown in Figure 1.79.

TECHNOLOGY

To graph $x^{2}+y^{2}+4 x-6 y-23=0$, the general form of the circle's equation given in Example 6 , rewrite the equation as a quadratic equation in y.

$$
y^{2}-6 y+\left(x^{2}+4 x-23\right)=0
$$

Now solve for y using the quadratic formula, with $a=1, b=-6$, and $c=x^{2}+4 x-23$.

$$
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 \cdot 1\left(x^{2}+4 x-23\right)}}{2 \cdot 1}=\frac{6 \pm \sqrt{36-4\left(x^{2}+4 x-23\right)}}{2}
$$

Because we will enter these equations, there is no need to simplify. Enter

$$
y_{1}=\frac{6+\sqrt{36-4\left(x^{2}+4 x-23\right)}}{2}
$$

and

$$
y_{2}=\frac{6-\sqrt{36-4\left(x^{2}+4 x-23\right)}}{2} .
$$

Use a ZOOM SQUARE setting. The graph is shown on the right.

$\$$ Check Point 6 Write in standard form and graph:

$$
x^{2}+y^{2}+4 x-4 y-1=0 .
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The distance, d, between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the rectangular coordinate system is $d=$ \qquad
2. The midpoint of a line segment whose endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $($ \qquad
\qquad _).
3. The set of all points in a plane that are equidistant from a fixed point is a/an \qquad .The fixed point is called the \qquad .The distance from this fixed point to any point on the geometric figure is called the \qquad -.
4. The standard form of the equation of a circle with center (h, k) and radius r is \qquad —.
5. The equation $x^{2}+y^{2}+D x+E y+F=0$ is called the \qquad form of the equation of a circle.
6. In the equation $\left(x^{2}+4 x\right)+\left(y^{2}-8 y \quad\right)=5$, we complete the square on x by adding \qquad to both sides. We complete the square on y by adding \qquad to both sides.

EXERCISE SET 1.9

Practice Exercises

In Exercises 1-18, find the distance between each pair of points. If necessary, round answers to two decimals places.

1. $(2,3)$ and $(14,8)$
2. $(5,1)$ and $(8,5)$
3. $(4,-1)$ and $(-6,3)$
4. $(2,-3)$ and $(-1,5)$
5. $(0,0)$ and $(-3,4)$
6. $(0,0)$ and $(3,-4)$
7. $(-2,-6)$ and $(3,-4)$
8. $(-4,-1)$ and $(2,-3)$
9. $(0,-3)$ and $(4,1)$
10. $(0,-2)$ and $(4,3)$
11. $(2.6,1.3)$ and $(1.6,-5.7)$
12. $(3.5,8.2)$ and $(-0.5,6.2)$
13. $(0,-\sqrt{3})$ and $(\sqrt{5}, 0)$
14. $(0,-\sqrt{2})$ and $(\sqrt{7}, 0)$
15. $(3 \sqrt{3}, \sqrt{5})$ and $(-\sqrt{3}, 4 \sqrt{5})$
16. $(2 \sqrt{3}, \sqrt{6})$ and $(-\sqrt{3}, 5 \sqrt{6})$
17. $\left(\frac{7}{3}, \frac{1}{5}\right)$ and $\left(\frac{1}{3}, \frac{6}{5}\right)$
18. $\left(-\frac{1}{4},-\frac{1}{7}\right)$ and $\left(\frac{3}{4}, \frac{6}{7}\right)$

In Exercises 19-30, find the midpoint of each line segment with the given endpoints.
19. $(6,8)$ and $(2,4)$
20. $(10,4)$ and $(2,6)$
21. $(-2,-8)$ and $(-6,-2)$
22. $(-4,-7)$ and $(-1,-3)$
23. $(-3,-4)$ and $(6,-8)$
24. $(-2,-1)$ and $(-8,6)$
25. $\left(-\frac{7}{2}, \frac{3}{2}\right)$ and $\left(-\frac{5}{2},-\frac{11}{2}\right)$
26. $\left(-\frac{2}{5}, \frac{7}{15}\right)$ and $\left(-\frac{2}{5},-\frac{4}{15}\right)$
27. $(8,3 \sqrt{5})$ and $(-6,7 \sqrt{5})$
28. $(7 \sqrt{3},-6)$ and $(3 \sqrt{3},-2)$
29. $(\sqrt{18},-4)$ and $(\sqrt{2}, 4)$
30. $(\sqrt{50},-6)$ and $(\sqrt{2}, 6)$

In Exercises 31-40, write the standard form of the equation of the circle with the given center and radius.
31. Center $(0,0), r=7$
32. Center $(0,0), r=8$
33. Center $(3,2), r=5$
34. Center $(2,-1), r=4$
35. Center $(-1,4), r=2$
36. Center $(-3,5), r=3$
37. Center $(-3,-1), r=\sqrt{3}$
38. Center $(-5,-3), r=\sqrt{5}$
39. Center $(-4,0), r=10$
40. Center $(-2,0), r=6$

In Exercises 41-52, give the center and radius of the circle described by the equation and graph each equation. Use the graph to identify the relation's domain and range.
41. $x^{2}+y^{2}=16$
42. $x^{2}+y^{2}=49$
43. $(x-3)^{2}+(y-1)^{2}=36$
44. $(x-2)^{2}+(y-3)^{2}=16$
45. $(x+3)^{2}+(y-2)^{2}=4$
46. $(x+1)^{2}+(y-4)^{2}=25$
47. $(x+2)^{2}+(y+2)^{2}=4$
48. $(x+4)^{2}+(y+5)^{2}=36$
49. $x^{2}+(y-1)^{2}=1$
50. $x^{2}+(y-2)^{2}=4$
51. $(x+1)^{2}+y^{2}=25$
52. $(x+2)^{2}+y^{2}=16$

In Exercises 53-64, complete the square and write the equation in standard form. Then give the center and radius of each circle and graph the equation.
53. $x^{2}+y^{2}+6 x+2 y+6=0$
54. $x^{2}+y^{2}+8 x+4 y+16=0$
55. $x^{2}+y^{2}-10 x-6 y-30=0$
56. $x^{2}+y^{2}-4 x-12 y-9=0$
57. $x^{2}+y^{2}+8 x-2 y-8=0$
58. $x^{2}+y^{2}+12 x-6 y-4=0$
59. $x^{2}-2 x+y^{2}-15=0$
60. $x^{2}+y^{2}-6 y-7=0$
61. $x^{2}+y^{2}-x+2 y+1=0$
62. $x^{2}+y^{2}+x+y-\frac{1}{2}=0$
63. $x^{2}+y^{2}+3 x-2 y-1=0$
64. $x^{2}+y^{2}+3 x+5 y+\frac{9}{4}=0$

Practice Plus

In Exercises 65-66, a line segment through the center of each circle intersects the circle at the points shown.
a. Find the coordinates of the circle's center.
b. Find the radius of the circle.
c. Use your answers from parts (a) and (b) to write the standard form of the circle's equation.
65.

In Exercises 67-70, graph both equations in the same rectangular coordinate system and find all points of intersection. Then show that these ordered pairs satisfy the equations.
67. $x^{2}+y^{2}=16$

$$
x-y=4
$$

68. $x^{2}+y^{2}=9$

$$
x-y=3
$$

69. $(x-2)^{2}+(y+3)^{2}=4$

$$
y=x-3
$$

70. $(x-3)^{2}+(y+1)^{2}=9$

$$
y=x-1
$$

Application Exercises

The cellphone screen shows coordinates of six cities from a rectangular coordinate system placed on North America by long-distance telephone companies. Each unit in this system represents $\sqrt{0.1}$ mile.

In Exercises 71-72, use this information to find the distance, to the nearest mile, between each pair of cities.
71. Boston and San Francisco
72. New Orleans and Houston
73. A rectangular coordinate system with coordinates in miles is placed with the origin at the center of Los Angeles. The figure indicates that the University of Southern California is located 2.4 miles west and 2.7 miles south of central Los Angeles. A seismograph on the campus shows that a small earthquake occurred. The quake's epicenter is estimated to be approximately 30 miles from the university. Write the standard form of the equation for the set of points that could be the epicenter of the quake.

74. The Ferris wheel in the figure has a radius of 68 feet. The clearance between the wheel and the ground is 14 feet. The rectangular coordinate system shown has its origin on the ground directly below the center of the wheel. Use the coordinate system to write the equation of the circular wheel.

Writing in Mathematics

75. In your own words, describe how to find the distance between two points in the rectangular coordinate system.
76. In your own words, describe how to find the midpoint of a line segment if its endpoints are known.
77. What is a circle? Without using variables, describe how the definition of a circle can be used to obtain a form of its equation.
78. Give an example of a circle's equation in standard form. Describe how to find the center and radius for this circle.
79. How is the standard form of a circle's equation obtained from its general form?
80. Does $(x-3)^{2}+(y-5)^{2}=0$ represent the equation of a circle? If not, describe the graph of this equation.
81. Does $(x-3)^{2}+(y-5)^{2}=-25$ represent the equation of a circle? What sort of set is the graph of this equation?
82. Write and solve a problem about the flying time between a pair of cities shown on the cellphone screen for Exercises $71-72$. Do not use the pairs in Exercise 71 or Exercise 72. Begin by determining a reasonable average speed, in miles per hour, for a jet flying between the cities.

Technology Exercises

In Exercises 83-85, use a graphing utility to graph each circle whose equation is given.
83. $x^{2}+y^{2}=25$
84. $(y+1)^{2}=36-(x-3)^{2}$
85. $x^{2}+10 x+y^{2}-4 y-20=0$

Critical Thinking Exercises

Make Sense? In Exercises 86-89, determine whether each statement makes sense or does not make sense, and explain your reasoning.
86. I've noticed that in mathematics, one topic often leads logically to a new topic:

87. To avoid sign errors when finding h and k, I place parentheses around the numbers that follow the subtraction signs in a circle's equation.
88. I used the equation $(x+1)^{2}+(y-5)^{2}=-4$ to identify the circle's center and radius.
89. My graph of $(x-2)^{2}+(y+1)^{2}=16$ is my graph of $x^{2}+y^{2}=16$ translated two units right and one unit down.
In Exercises 90-93, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
90. The equation of the circle whose center is at the origin with radius 16 is $x^{2}+y^{2}=16$.
91. The graph of $(x-3)^{2}+(y+5)^{2}=36$ is a circle with radius 6 centered at $(-3,5)$.
92. The graph of $(x-4)+(y+6)=25$ is a circle with radius 5 centered at $(4,-6)$.
93. The graph of $(x-3)^{2}+(y+5)^{2}=-36$ is a circle with radius 6 centered at $(3,-5)$.
94. Show that the points $A(1,1+d), B(3,3+d)$, and $C(6,6+d)$ are collinear (lie along a straight line) by showing that the distance from A to B plus the distance from B to C equals the distance from A to C.
95. Prove the midpoint formula by using the following procedure.
a. Show that the distance between $\left(x_{1}, y_{1}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ is equal to the distance between $\left(x_{2}, y_{2}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
b. Use the procedure from Exercise 94 and the distances from part (a) to show that the points $\left(x_{1}, y_{1}\right)$, $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$, and $\left(x_{2}, y_{2}\right)$ are collinear.
96. Find the area of the donut-shaped region bounded by the graphs of $(x-2)^{2}+(y+3)^{2}=25 \quad$ and $(x-2)^{2}+(y+3)^{2}=36$.
97. A tangent line to a circle is a line that intersects the circle at exactly one point. The tangent line is perpendicular to the radius of the circle at this point of contact. Write an equation in point-slope form for the line tangent to the circle whose equation is $x^{2}+y^{2}=25$ at the point $(3,-4)$.

Preview Exercises

Exercises 98-100 will help you prepare for the material covered in the next section.
98. Write an algebraic expression for the fare increase if a $\$ 200$ plane ticket is increased to x dollars.
99. Find the perimeter and the area of each rectangle with the given dimensions:
a. 40 yards by 30 yards
b. 50 yards by 20 yards.
100. Solve for $h: \pi r^{2} h=22$. Then rewrite $2 \pi r^{2}+2 \pi r h$ in terms of r.

Objectives

(1) Construct functions from verbal descriptions.
2. Construct functions from formulas.

GREAT QUESTION!

Will I be using the modeling techniques in this section when I take calculus?

Yes. In calculus, you will solve problems involving maximum or minimum values of functions. Such problems often require creating the function that is to be maximized or minimized. Quite often, the calculus is fairly routine. It is the algebraic setting up of the function that causes difficulty. That is why the material in this section is so important.

A can of Coca-Cola is sold every six seconds throughout the world.

In 2005, to curb consumption of sugared soda, the Center for Science in the Public Interest (CSPI) urged the FDA to slap cigarettestyle warning labels on these drinks, calling them "liquid candy." Despite the variety of its reputations throughout the world, the soft drink industry has spent far more time reducing the amount of aluminum in its cylindrical cans than addressing the problems of the nutritional disaster floating within its packaging. In the 1960s, one pound of aluminum made fewer than 20 cans; today, almost 30 cans come out of the same amount. The thickness of the can wall is less than five-thousandths of an inch, about the same as a magazine cover.

Many real-world problems involve constructing mathematical models that are functions. The problem of minimizing the amount of aluminum needed to manufacture a 12-ounce soft-drink can first requires that we express the surface area of all such cans as a function of their radius. In constructing such a function, we must be able to translate a verbal description into a mathematical representation-that is, a mathematical model.

In Chapter P, Section P.8, we reviewed how to obtain equations that modeled problems' verbal conditions. Earlier in this chapter, we used real-world data to obtain models that were linear functions. In this section, you will learn to use verbal descriptions and formulas to obtain models involving both linear and nonlinear functions.

(1) Construct functions from verbal descriptions.

Functions from Verbal Descriptions

There is no rigid step-by-step procedure that can be used to construct a function from a verbal description. Read the problem carefully. Attempt to write a critical sentence that describes the function's conditions in terms of its independent variable, x. In the following examples, we will use voice balloons that show these critical sentences, or verbal models. Then translate the verbal model into the algebraic notation used to represent a function's equation.

EXAMPLE 1 Modeling Costs of Text Message Plans

You are choosing between two texting plans. Plan A has a monthly fee of $\$ 20$ with a charge of $\$ 0.05$ per text. Plan B has a monthly fee of $\$ 5$ with a charge of $\$ 0.10$ per text.
a. Express the monthly cost for plan A, f, as a function of the number of text messages in a month, x.
b. Express the monthly cost for plan B, g, as a function of the number of text messages in a month, x.
c. For how many text messages will the costs for the two plans be the same?

SOLUTION

a. The monthly cost for plan A is the monthly fee, $\$ 20$, plus the per-text charge, $\$ 0.05$, times the number of text messages, x.

The function $f(x)=0.05 x+20$, expressed in slope-intercept form, models the monthly cost, in dollars, in terms of the number of text messages, x.
b. The monthly cost for plan B is the monthly fee, $\$ 5$, plus the per-text charge, $\$ 0.10$, times the number of text messages, x.

The function $g(x)=0.10 x+5$, expressed in slope-intercept form, models the monthly cost, g, in dollars, in terms of the number of text messages, x.
c. We are interested in how many text messages, x, result in the same monthly costs, f and g, for the two plans. Thus, we must set the equations for f and g equal to each other. We then solve the resulting linear equation for x.

The costs for the two plans will be the same with 300 text messages. Take a moment to verify that $f(300)=g(300)=35$. Thus, the cost for each plan will be $\$ 35$.

In Example 1, the functions modeling the costs for the two plans are both linear functions of the form $f(x)=m x+b$. Based on the meaning of the functions' variables, we can interpret the slopes and y-intercepts as follows:

Plan A

$$
f(x)=0.05 x+20
$$

The slope indicates that the rate of change in the plan's cost is $\$ 0.05$ per text.

The y-intercept indicates the starting cost with no text messages is $\$ 20$.

Plan B

$$
g(x)=0.10 x+5
$$

The slope indicates that the rate of change in the plan's cost is $\$ 0.10$ per text.

The y-intercept indicates the starting cost with no text messages is $\$ 5$.

TECHNOLOGY

Numeric and Graphic Connections

We can use a graphing utility to numerically or graphically verify our work in Example 1(c). Enter the linear functions that model the costs for the two plans.

The monthly cost for plan A	must equal	the monthly cost for plan B.
$20+0.05 x$	$=$	$5+0.10 x$

Numeric Check

Display a table for y_{1} and y_{2}.

Graphic Check

Display graphs for y_{1} and y_{2}. Use the intersection feature.

	X	11	$Y z$
	1000	25	15
When $x=300, y_{1}$ and y_{2} have	150	$\underline{27.5}$	20
the same value, 35 . With 300	E¢00	30	25
text messages, costs are the	Enim	35	35
same, $\$ 35$, for both plans.	350	37.5	40
same, \$35, for both plans.	4000	40	45

$[0,500,100]$ by $[0,50,5]$

Check Point 1 You are choosing between two texting plans. Plan A has a monthly fee of $\$ 15$ with a charge of $\$ 0.08$ per text. Plan B has a monthly fee of $\$ 3$ with a charge of $\$ 0.12$ per text.
a. Express the monthly cost for plan A, f, as a function of the number of text messages in a month, x.
b. Express the monthly cost for plan B, g, as a function of the number of text messages in a month, x.
c. For how many text messages will the costs for the two plans be the same?

EXAMPLE 2 Modeling the Number of Customers and Revenue

On a certain route, an airline carries 6000 passengers per month, each paying $\$ 200$. A market survey indicates that for each $\$ 1$ increase in the ticket price, the airline will lose 100 passengers.
a. Express the number of passengers per month, N, as a function of the ticket price, x.
b. The airline's monthly revenue for the route is the product of the number of passengers and the ticket price. Express the monthly revenue, R, as a function of the ticket price, x.

SOLUTION

a. The number of passengers, N, depends on the ticket price, x. In particular, the number of passengers is the original number, 6000 , minus the number lost to the fare increase. The following table shows how to find the number lost to the fare increase:

English Phrase

Ticket price
Amount of fare increase:
ticket price minus original ticket price

Decrease in passengers due to the fare increase:

100 times the dollar amount of the fare increase

Algebraic Translation

x

$x-200$
The original ticket price was $\$ 200$.

100 passengers are lost for each dollar of fare increase.

The number of passengers per month, N, is the original number of passengers, 6000 , minus the decrease due to the fare increase.

The linear function $N(x)=-100 x+26,000$ models the number of passengers per month, N, in terms of the price per ticket, x. The linear function's slope, -100 , indicates that the rate of change is a loss of 100 passengers per dollar of fare increase.
b. The monthly revenue for the route is the number of passengers, $-100 x+26,000$, times the ticket price, x.

The function $R(x)=-100 x^{2}+26,000 x$ models the airline's monthly revenue for the route, R, in terms of the ticket price, x.

The revenue function in Example 2 is of the form $f(x)=a x^{2}+b x+c$. Any function of this form, where $a \neq 0$, is called a quadratic function. In this chapter, we used the bowl-shaped graph of the standard quadratic function, $f(x)=x^{2}$, to graph various transformations. In the next chapter, you will study quadratic functions in detail, including where maximum or minimum values occur.

0 Check Point 2 On a certain route, an airline carries 8000 passengers per month, each paying $\$ 100$. A market survey indicates that for each $\$ 1$ increase in ticket price, the airline will lose 100 passengers.
a. Express the number of passengers per month, N, as a function of the ticket price, x.
b. Express the monthly revenue for the route, R, as a function of the ticket price, x.

Functions from Formulas

In Chapter P, Section P.8, we used basic geometric formulas to obtain equations that modeled geometric situations. Formulas for area, perimeter, and volume are given in Table P. 6 on page 111. Obtaining functions that model geometric situations requires a knowledge of these formulas. Take a moment to turn to page 111 and be sure that you are familiar with the 13 formulas given in the table.

In our next example, we will obtain a function using the formula for the volume of a rectangular solid, $V=l w h$. A rectangular solid's volume is the product of its length, width, and height.

EXAMPLE 3 Obtaining a Function from a Geometric Formula

A machine produces open boxes using square sheets of metal measuring 12 inches on each side. The machine cuts equal-sized squares from each corner. Then it shapes the metal into an open box by turning up the sides.
a. Express the volume of the box, V, in cubic inches, as a function of the length of the side of the square cut from each corner, x, in inches.
b. Find the domain of V.

FIGURE 1.80 Producing open boxes using square sheets of metal

SOLUTION

a. The situation is illustrated in Figure 1.80. The volume of the box in the lower portion of the figure is the product of its length, width, and height. The height of the box is the same as the side of the square cut from each corner, x. Because the 12 -inch square has x inches cut from each corner, the length of the resulting box is $12-x-x$, or $12-2 x$. Similarly, the width of the resulting box is also $12-2 x$.

The function $V(x)=x(12-2 x)^{2}$ models the volume of the box, V, in terms of the length of the side of the square cut from each corner, x.
b. The formula for V involves a polynomial, $x(12-2 x)^{2}$, which is defined for any real number, x. However, in the function $V(x)=x(12-2 x)^{2}$, x represents the number of inches cut from each corner of the 12 -inch square. Thus, $x>0$. To produce an open box, the machine must cut less than 6 inches from each corner of the 12 -inch square. Thus, $x<6$. The domain of V is $\{x \mid 0<x<6\}$, or, in interval notation, $(0,6)$.

TECHNOLOGY

Graphic Connections

The graph of the function $V(x)=x(12-2 x)^{2}$, the model for the volume of the box in Figure 1.80, is shown in a $[0,6,1]$ by $[0,130,13]$ viewing rectangle. The graphing utility's maximum function feature indicates that the volume of the box is a maximum, 128 cubic inches, when the side of the square cut from each corner of the metal sheet is 2 inches.

Check Point 3 A machine produces open boxes using rectangular sheets of metal measuring 15 inches by 8 inches. The machine cuts equal-sized squares from each corner. Then it shapes the metal into an open box by turning up the sides.
a. Express the volume of the box, V, in cubic inches, as a function of the length of the side of the square cut from each corner, x, in inches.
b. Find the domain of V.

In many situations, the conditions of the problem result in a function whose equation contains more than one variable. If this occurs, use the given information to write an equation among these variables. Then use this equation to eliminate all but one of the variables in the function's expression.

EXAMPLE 4 Modeling the Area of a Rectangle with a Fixed Perimeter

You have 140 yards of fencing to enclose a rectangular garden. Express the area of the garden, A, as a function of one of its dimensions, x.

FIGURE 1.82

SOLUTION

Because you have 140 yards of fencing, Figure 1.81 illustrates three of your options for enclosing the garden. In each case, the perimeter of the rectangle, twice the length plus twice the width, is 140 yards. By contrast, the area, length times width, varies according to the length of a side, x.

FIGURE 1.81 Rectangles with a fixed perimeter and varying areas
As specified, x represents one of the dimensions of the rectangle. In particular, let

$$
\begin{aligned}
& x=\text { the length of the garden } \\
& y=\text { the width of the garden. }
\end{aligned}
$$

The area, A, of the garden is the product of its length and its width:

$$
A=x y
$$

There are two variables in this formula - the garden's length, x, and its width, y. We need to transform this into a function in which A is represented by one variable, x, the garden's length. Thus, we must express the width, y, in terms of the length, x. We do this using the information that you have 140 yards of fencing.

$$
\begin{aligned}
2 x+2 y & =140 & & \begin{array}{l}
\text { The perimeter, twice the length plus twice the } \\
\text { width, is } 140 \text { yards. }
\end{array} \\
2 y & =140-2 x & & \text { Subtract } 2 x \text { from both sides. } \\
y & =\frac{140-2 x}{2} & & \text { Divide both sides by } 2 . \\
y & =70-x & & \text { Divide each term in the numerator by } 2 .
\end{aligned}
$$

Now we substitute $70-x$ for y in the formula for area.

$$
A=x y=x(70-x)
$$

The rectangle and its dimensions are illustrated in Figure 1.82. Because A is a function of x, we can write

$$
A(x)=x(70-x) \quad \text { or } \quad A(x)=70 x-x^{2}
$$

This function models the area, A, of a rectangular garden with a perimeter of 140 yards in terms of the length of a side, x.

TECHNOLOGY

Graphic Connections

The graph of the function

$$
A(x)=x(70-x)
$$

the model for the area of the garden in Example 4 , is shown in a $[0,70,5]$ by $[0,1400,100]$ viewing rectangle. The graph shows that as the length of a side increases, the enclosed area increases, then decreases. The area of the garden is a maximum, 1225 square yards, when the length of one of its sides is 35 yards.
© Check Point 4 You have 200 feet of fencing to enclose a rectangular garden. Express the area of the garden, A, as a function of one of its dimensions, x.

In order to save on production costs, manufacturers need to use the least amount of material for containers that are required to hold a specified volume of their product. Using the least amount of material involves minimizing the surface area of the container. Formulas for surface area, A, are given in Table 1.6.

Table 1.6 Common Formulas for Surface Area

Cube	Rectangular Solid	Circular Cylinder	Sphere
$A=6 s^{2}$	$A=2 l w+2 l h+2 w h$	$A=2 \pi r^{2}+2 \pi r h$	$A=4 \pi r^{2}$

EXAMPLE 5 Modeling the Surface Area of a Soft-Drink Can with Fixed Volume

Figure $\mathbf{1 . 8 3}$ shows a cylindrical soft-drink can. The can is to have a volume of 12 fluid ounces, approximately 22 cubic inches. Express the surface area of the can, A, in square inches, as a function of its radius, r, in inches.

SOLUTION

The surface area, A, of the cylindrical can in Figure $\mathbf{1 . 8 3}$ is given by

FIGURE 1.83

$$
A=2 \pi r^{2}+2 \pi r h
$$

There are two variables in this formula-the can's radius, r, and its height, h. We need to transform this into a function in which A is represented by one variable, r, the radius of the can. Thus, we must express the height, h, in terms of the radius, r. We do this using the information that the can's volume, $V=\pi r^{2} h$, must be 22 cubic inches.

$$
\begin{aligned}
\pi r^{2} h & =22 & \text { The volume of the can is } 22 \text { cubic inches. } \\
h & =\frac{22}{\pi r^{2}} \quad & \text { Divide both sides by } \pi r^{2} \text { and solve for } h .
\end{aligned}
$$

Now we substitute $\frac{22}{\pi r^{2}}$ for h in the formula for surface area.

$$
A=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r\left(\frac{22}{\pi r^{2}}\right)=2 \pi r^{2}+\frac{44}{r}
$$

Because A is a function of r, the can's radius, we can express the surface area of the can as

$$
A(r)=2 \pi r^{2}+\frac{44}{r} .
$$

Check Point 5 A cylindrical can is to hold 1 liter, or 1000 cubic centimeters, of oil. Express the surface area of the can, A, in square centimeters, as a function of its radius, r, in centimeters.

Our next example involves constructing a function that models simple interest. The annual simple interest that an investment earns is given by the formula

$$
I=P r,
$$

where I is the simple interest, P is the principal, and r is the simple interest rate, expressed in decimal form. Suppose, for example, that you deposit \$2000 ($P=2000$) in an account that has a simple interest rate of $3 \%(r=0.03)$. The annual simple interest is computed as follows:

$$
I=\operatorname{Pr}=(2000)(0.03)=60 .
$$

The annual interest is $\$ 60$.

EXAMPLE 6 Modeling Simple Interest

You inherit $\$ 16,000$ with the stipulation that for the first year the money must be placed in two investments expected to pay 6% and 8% annual interest. Express the expected interest, I, as a function of the amount of money invested at $6 \%, x$.

SOLUTION

As specified, x represents the amount invested at 6%. We will let y represent the amount invested at 8%. The expected interest, I, on the two investments combined is the expected interest on the 6% investment plus the expected interest on the 8% investment.

There are two variables in this formula-the amount invested at $6 \%, x$, and the amount invested at $8 \%, y$. We need to transform this into a function in which I is represented by one variable, x, the amount invested at 6%. Thus, we must express the amount invested at $8 \%, y$, in terms of the amount invested at $6 \%, x$. We do this using the information that you have $\$ 16,000$ to invest.

$$
\begin{aligned}
x+y & =16,000 \quad & & \text { The sum of the amounts invested at each rate must be } \$ 16,000 . \\
y & =16,000-x & & \text { Subtract } x \text { from both sides and solve for } y .
\end{aligned}
$$

Now we substitute $16,000-x$ for y in the formula for interest.

$$
I=0.06 x+0.08 y=0.06 x+0.08(16,000-x) .
$$

Because I is now a function of x, the amount invested at 6%, the expected interest can be expressed as

$$
I(x)=0.06 x+0.08(16,000-x)
$$

S Check Point 6 You place $\$ 25,000$ in two investments expected to pay 7% and 9% annual interest. Express the expected interest, I, as a function of the amount of money invested at $7 \%, x$.

Our next example involves constructing a function using the distance formula. In the previous section, we saw that the distance between two points in the rectangular coordinate system is the square root of the difference between their x-coordinates squared plus the difference between their y-coordinates squared.

TECHNOLOGY

Graphic Connections

The graph of the function

$$
\begin{aligned}
d(x) & =\sqrt{x^{4}-x^{2}+1}, \text { or } \\
y & =\sqrt{x^{4}-x^{2}+1},
\end{aligned}
$$

the model for the distance, d, shown in Figure 1.84, was obtained with a graphing utility.

Using a graphing utility's minimum function feature, it can be shown that when $x \approx-0.71$ and when $x \approx 0.71$, the value of d is smallest ($d \approx 0.87$ is a relative minimum). Examine Figure 1.84. The graph's y-axis symmetry indicates that there are two points on $y=1-x^{2}$ whose distance to the origin is smallest.

EXAMPLE 7 Modeling the Distance from the Origin to a Point on a Graph

Figure 1.84 shows that $P(x, y)$ is a point on the graph of $y=1-x^{2}$. Express the distance, d, from P to the origin as a function of the point's x-coordinate.

SOLUTION

We use the distance formula to find the distance, d, from $P(x, y)$ to the origin, $(0,0)$.

$$
d=\sqrt{(x-0)^{2}+(y-0)^{2}}=\sqrt{x^{2}+y^{2}}
$$

There are two variables in this formula - the point's x-coordinate and its y-coordinate. We need to transform this into a function in which d is represented by one variable, x, the point's x-coordinate. Thus, we must express y in terms of x. We do this using the information shown in Figure 1.84, namely that $P(x, y)$ is a point on the graph of $y=1-x^{2}$. This means that we can replace y with $1-x^{2}$ in our formula for d.

FIGURE 1.84

$$
\begin{gathered}
d=\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+\left(1-x^{2}\right)^{2}}=\sqrt{x^{2}+1-2 x^{2}+x^{4}}=\sqrt{x^{4}-x^{2}+1} \\
\text { Square } 1-x^{2} \text { using }(A-B)^{2}=A^{2}-2 A B+B^{2} .
\end{gathered}
$$

The distance, d, from $P(x, y)$ to the origin can be expressed as a function of the point's x-coordinate as

$$
d(x)=\sqrt{x^{4}-x^{2}+1}
$$

Check Point 7 Let $P(x, y)$ be a point on the graph of $y=x^{3}$. Express the distance, d, from P to the origin as a function of the point's x-coordinate.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A text message plan costs $\$ 4$ per month plus $\$ 0.15$ per text. The monthly cost, $f(x)$, for x text messages can be modeled by the function $f(x)=$ \qquad
2. An airline increases its ticket price from $\$ 300$ to x dollars. The dollar amount of the fare increase can be represented by \qquad For each $\$ 1$ increase in the ticket price, the airline will lose 50 passengers, so the decrease in passengers due to the fare increase can be represented by \qquad If the airline carried 5000 passengers per month before the fare increase, the number of passengers per month, $N(x)$, after the fare increase can be represented by the function $N(x)=$ \qquad - \qquad .
3. A machine produces open boxes using square sheets of metal measuring 10 inches on each side. The machine cuts equal squares from each corner. Then it shapes the metal into an open box by turning up the sides. The figure shows that the length of the side of the square cut from each corner is represented by x inches.

The length of the box on the right is represented by
\qquad Its width is represented by \qquad Its height is represented by \qquad The volume of the box, $V(x)$, in cubic inches is $V(x)=$ \qquad - \qquad - \qquad -
4. Consider a rectangle with length x and width y.

The area, A, of the rectangle is $A=$ \qquad .The perimeter of the rectangle, P, is $P=$ \qquad If the perimeter of the rectangle is 180 inches, then $y=$ \qquad . Substituting this expression for y in the formula for area, the area of the rectangle can be expressed as $A(x)=$ \qquad —.

EXERCISE SET 1.10

Practice and Application Exercises

1. A car rental agency charges $\$ 200$ per week plus $\$ 0.15$ per mile to rent a car.
a. Express the weekly cost to rent the car, f, as a function of the number of miles driven during the week, x.
b. How many miles did you drive during the week if the weekly cost to rent the car was $\$ 320$?
2. A car rental agency charges $\$ 180$ per week plus $\$ 0.25$ per mile to rent a car.
a. Express the weekly cost to rent the car, f, as a function of the number of miles driven during the week, x.
b. How many miles did you drive during the week if the weekly cost to rent the car was $\$ 395$?
3. One yardstick for measuring how steadily-if slowlyathletic performance has improved is the mile run. In 1954, Roger Bannister of Britain cracked the 4-minute mark, setting the record for running a mile in 3 minutes, 59.4 seconds, or 239.4 seconds. In the half-century since then, the record has decreased by 0.3 second per year.
a. Express the record time for the mile run, M, as a function of the number of years after 1954, x.
b. If this trend continues, in which year will someone run a 3-minute, or 180 -second, mile?
4. According to the National Center for Health Statistics, in 1990, 28 \% of babies in the United States were born to parents who were not married. Throughout the 1990s, this percentage increased by approximately 0.6 per year.
a. Express the percentage of babies born out of wedlock, P, as a function of the number of years after 1990, x.
b. If this trend continues, in which year will 40% of babies be born out of wedlock?
5. The bus fare in a city is $\$ 1.25$. People who use the bus have the option of purchasing a monthly discount pass for $\$ 21.00$. With the discount pass, the fare is reduced to $\$ 0.50$.
a. Express the total monthly cost to use the bus without a discount pass, f, as a function of the number of times in a month the bus is used, x.
b. Express the total monthly cost to use the bus with a discount pass, g, as a function of the number of times in a month the bus is used, x.
6. The combined interest on x dollars invested at 12% and y dollars invested at 9% is $I=$ \qquad If you have $\$ 30,000$ to invest, then $x+y=30,000$. Solving for y, we obtain $y=$ \qquad . Substituting this expression for y in the formula for combined interest, the interest can be expressed as $I(x)=$ \qquad
7. The distance, d, from (x, y) to the origin is $d=\ldots$. If (x, y) lies on the graph of $y=x^{3}$, we can replace y with x^{3} in the formula for d. Thus, $d(x)=$ \qquad -.
c. Determine the number of times in a month the bus must be used so that the total monthly cost without the discount pass is the same as the total monthly cost with the discount pass. What will be the monthly cost for each option?
8. A discount pass for a bridge costs $\$ 21$ per month. The toll for the bridge is normally $\$ 2.50$, but it is reduced to $\$ 1$ for people who have purchased the discount pass.
a. Express the total monthly cost to use the bridge without a discount pass, f, as a function of the number of times in a month the bridge is crossed, x.
b. Express the total monthly cost to use the bridge with a discount pass, g, as a function of the number of times in a month the bridge is crossed, x.
c. Determine the number of times in a month the bridge must be crossed so that the total monthly cost without the discount pass is the same as the total monthly cost with the discount pass. What will be the monthly cost for each option?
9. You are choosing between two plans at a discount warehouse. Plan A offers an annual membership of $\$ 100$ and you pay 80% of the manufacturer's recommended list price. Plan B offers an annual membership fee of $\$ 40$ and you pay 90% of the manufacturer's recommended list price.
a. Express the total yearly amount paid to the warehouse under plan A, f, as a function of the dollars of merchandise purchased during the year, x.
b. Express the total yearly amount paid to the warehouse under plan B, g, as a function of the dollars of merchandise purchased during the year, x.
c. How many dollars of merchandise would you have to purchase in a year to pay the same amount under both plans? What will be the total yearly amount paid to the warehouse for each plan?
10. You are choosing between two plans at a discount warehouse. Plan A offers an annual membership fee of $\$ 300$ and you pay 70% of the manufacturer's recommended list price. Plan B offers an annual membership fee of $\$ 40$ and you pay 90% of the manufacturer's recommended list price.
a. Express the total yearly amount paid to the warehouse under plan A, f, as a function of the dollars of merchandise purchased during the year, x.
b. Express the total yearly amount paid to the warehouse under plan B, g, as a function of the dollars of merchandise purchased during the year, x.
c. How many dollars of merchandise would you have to purchase in a year to pay the same amount under both plans? What will be the total yearly amount paid to the warehouse for each plan?
11. A football team plays in a large stadium. With a ticket price of $\$ 20$, the average attendance at recent games has been 30,000 . A market survey indicates that for each $\$ 1$ increase in the ticket price, attendance decreases by 500 .
a. Express the number of spectators at a football game, N, as a function of the ticket price, x.
b. Express the revenue from a football game, R, as a function of the ticket price, x.
12. A baseball team plays in a large stadium. With a ticket price of $\$ 15$, the average attendance at recent games has been 20,000 . A market survey indicates that for each $\$ 1$ increase in the ticket price, attendance decreases by 400 .
a. Express the number of spectators at a baseball game, N, as a function of the ticket price, x.
b. Express the revenue from a baseball game, R, as a function of the ticket price, x.
13. On a certain route, an airline carries 9000 passengers per month, each paying $\$ 150$. A market survey indicates that for each $\$ 1$ decrease in the ticket price, the airline will gain 50 passengers.
a. Express the number of passengers per month, N, as a function of the ticket price, x.
b. Express the monthly revenue for the route, R, as a function of the ticket price, x.
14. On a certain route, an airline carries 7000 passengers per month, each paying $\$ 90$. A market survey indicates that for each $\$ 1$ decrease in the ticket price, the airline will gain 60 passengers.
a. Express the number of passengers per month, N, as a function of the ticket price, x.
b. Express the monthly revenue for the route, R, as a function of the ticket price, x.
15. The annual yield per lemon tree is fairly constant at 320 pounds per tree when the number of trees per acre is 50 or fewer. For each additional tree over 50, the annual yield per tree for all trees on the acre decreases by 4 pounds due to overcrowding.
a. Express the yield per tree, Y, in pounds, as a function of the number of lemon trees per acre, x.
b. Express the total yield for an acre, T, in pounds, as a function of the number of lemon trees per acre, x.
16. The annual yield per orange tree is fairly constant at 270 pounds per tree when the number of trees per acre is 30 or fewer. For each additional tree over 30, the annual yield per tree for all trees on the acre decreases by 3 pounds due to overcrowding.
a. Express the yield per tree, Y, in pounds, as a function of the number of orange trees per acre, x.
b. Express the total yield for an acre, T, in pounds, as a function of the number of orange trees per acre, x.
17. An open box is made from a square piece of cardboard 24 inches on a side by cutting identical squares from the corners and turning up the sides.
a. Express the volume of the box, V, as a function of the length of the side of the square cut from each corner, x.
b. Find and interpret $V(2), V(3), V(4), V(5)$, and $V(6)$. What is happening to the volume of the box as the length of the side of the square cut from each corner increases?
c. Find the domain of V.
18. An open box is made from a square piece of cardboard 30 inches on a side by cutting identical squares from the corners and turning up the sides.
a. Express the volume of the box, V, as a function of the length of the side of the square cut from each corner, x.
b. Find and interpret $V(3), V(4), V(5), V(6)$, and $V(7)$. What is happening to the volume of the box as the length of the side of the square cut from each corner increases?
c. Find the domain of V.
19. A rain gutter is made from sheets of aluminum that are 20 inches wide. As shown in the figure, the edges are turned up to form right angles. Express the cross-sectional area of the gutter, A, as a function of its depth, x.

20. A piece of wire is 8 inches long. The wire is cut into two pieces and then each piece is bent into a square. Express the sum of the areas of these squares, A, as a function of the length of the cut, x.

21. The sum of two numbers is 66 . Express the product of the numbers, P, as a function of one of the numbers, x.
22. The sum of two numbers is 50 . Express the product of the numbers, P, as a function of one of the numbers, x.
23. You have 800 feet of fencing to enclose a rectangular field. Express the area of the field, A, as a function of one of its dimensions, x.
24. You have 600 feet of fencing to enclose a rectangular field. Express the area of the field, A, as a function of one of its dimensions, x.
25. As in Exercise 21, you have 800 feet of fencing to enclose a rectangular field. However, one side of the field lies along a canal and requires no fencing. Express the area of the field, A, as a function of one of its dimensions, x.
26. As in Exercise 22, you have 600 feet of fencing to enclose a rectangular field. However, one side of the field lies along a canal and requires no fencing. Express the area of the field, A, as a function of one of its dimensions, x.
27. You have 1000 feet of fencing to enclose a rectangular playground and subdivide it into two smaller playgrounds by placing the fencing parallel to one of the sides. Express the area of the playground, A, as a function of one of its dimensions, x.

28. You have 1200 feet of fencing to enclose a rectangular region and subdivide it into three smaller rectangular regions by placing two fences parallel to one of the sides. Express the area of the enclosed rectangular region, A, as a function of one of its dimensions, x.

29. A new running track is to be constructed in the shape of a rectangle with semicircles at each end. The track is to be 440 yards long. Express the area of the region enclosed by the track, A, as a function of its radius, r.

30. Work Exercise 27 if the length of the track is increased to 880 yards.
31. A contractor is to build a warehouse whose rectangular floor will have an area of 4000 square feet. The warehouse will be separated into two rectangular rooms by an interior wall. The cost of the exterior walls is $\$ 175$ per linear foot and the cost of the interior wall is $\$ 125$ per linear foot. Express the contractor's cost for building the walls, C, as a function of one of the dimensions of the warehouse's rectangular floor, x.
32. The area of a rectangular garden is 125 square feet. The garden is to be enclosed on three sides by a brick wall costing $\$ 20$ per foot and on one side by a fence costing $\$ 9$ per foot. Express the cost to enclose the garden, C, as a function of one of its dimensions, x.
33. The figure shows an open box with a square base. The box is to have a volume of 10 cubic feet. Express the amount of material needed to construct the box, A, as a function of the length of a side of its square base, x.

34. The figure shows an open box with a square base and a partition down the middle. The box is to have a volume of 400 cubic inches. Express the amount of material needed to construct the box, A, as a function of the length of a side of its square base, x.

35. The figure shows a package whose front is a square. The length plus girth (the distance around) of the package is 300 inches. (This is the maximum length plus girth permitted by Federal Express for its overnight service.) Express the volume of the package, V, as a function of the length of a side of its square front, x.

36. Work Exercise 33 if the length plus girth of the package is 108 inches.
37. Your grandmother needs your help. She has $\$ 50,000$ to invest. Part of this money is to be invested in noninsured bonds paying 15% annual interest. The rest of this money is to be invested in a government-insured certificate of deposit paying 7\% annual interest.
a. Express the interest from both investments, I, as a function of the amount of money invested in noninsured bonds, x.
b. Your grandmother told you that she requires $\$ 6000$ per year in extra income from both these investments. How much money should be placed in each investment?
38. You inherit $\$ 18,750$ with the stipulation that for the first year the money must be placed in two investments expected to pay 10% and 12% annual interest.
a. Express the expected interest from both investments, I, as a function of the amount of money invested at $10 \%, x$.
b. If the total interest earned for the year was $\$ 2117$, how much money was invested at each rate?
39. You invested $\$ 8000$, part of it in a stock that paid 12% annual interest. However, the rest of the money suffered a 5% loss. Express the total annual income from both investments, I, as a function of the amount invested in the 12% stock, x.
40. You invested $\$ 12,000$, part of it in a stock that paid 14% annual interest. However, the rest of the money suffered a 6% loss. Express the total annual income from both investments, I, as a function of the amount invested in the 14% stock, x.
41. Let $P(x, y)$ be a point on the graph of $y=x^{2}-4$. Express the distance, d, from P to the origin as a function of the point's x-coordinate.
42. Let $P(x, y)$ be a point on the graph of $y=x^{2}-8$. Express the distance, d, from P to the origin as a function of the point's x-coordinate.
43. Let $P(x, y)$ be a point on the graph of $y=\sqrt{x}$. Express the distance, d, from P to $(1,0)$ as a function of the point's x-coordinate.
44. Let $P(x, y)$ be a point on the graph of $y=\sqrt{x}$. Express the distance, d, from P to $(2,0)$ as a function of the point's x-coordinate.
45. The figure shows a rectangle with two vertices on a semicircle of radius 2 and two vertices on the x-axis. Let $P(x, y)$ be the vertex that lies in the first quadrant.

a. Express the area of the rectangle, A, as a function of x.
b. Express the perimeter of the rectangle, P, as a function of x.
46. The figure shows a rectangle with two vertices on a semicircle of radius 3 and two vertices on the x-axis. Let $P(x, y)$ be the vertex that lies in the first quadrant.

$$
y=\sqrt{9-x^{2}}
$$

a. Express the area of the rectangle, A, as a function of x.
b. Express the perimeter of the rectangle, P, as a function of x.
45. Two vertical poles of length 6 feet and 8 feet, respectively, stand 10 feet apart. A cable reaches from the top of one pole to some point on the ground between the poles and then to the top of the other pole. Express the amount of cable used, f, as a function of the distance from the 6 -foot pole to the point where the cable touches the ground, x.

46. Towns A and B are located 6 miles and 3 miles, respectively, from a major expressway. The point on the expressway closest to town A is 12 miles from the point on the expressway closest to town B. Two new roads are to be built from A to the expressway and then to B. Express the combined lengths of the new roads, f, as a function of x as shown in the figure.

Practice Plus

In Exercises 47-48, express the area of each figure, A, as a function of one of its dimensions, x. Write the function's equation as a polynomial in standard form.
47.

48.

In Exercises 49-50, express the volume of each figure, V, as a function of one of its dimensions, x. Write the function's equation as a polynomial in standard form.
49.

50.

Writing in Mathematics

51. Throughout this section, we started with familiar formulas and created functions by substitution. Describe a specific situation in which we obtained a function using this technique.
52. Describe what should be displayed on the screen of a graphing utility to illustrate the solution that you obtained in Exercise 5(c) or Exercise 6(c).
53. In Exercise 9(b) or Exercise 10(b), describe what important information the team owners could learn from the revenue function.
54. In Exercise 13(b) or 14(b), describe what important information the growers could learn from the total-yield function.
55. In Exercise 31 or 32, describe what important information the box manufacturer could learn from the surface area function.
56. In calculus, you will learn powerful tools that reveal how functions behave. However, before applying these tools, there will be situations in which you are first required to obtain these functions from verbal descriptions. This is why your work in this section is so important. Because there is no rigid step-by-step procedure for modeling from verbal conditions, you might have had some difficulties obtaining functions for the assigned exercises. Discuss what you did if this happened to you. Did your course of action enhance your ability to model with functions?

Technology Exercises

57. Use a graphing utility to graph the function that you obtained in Exercise 1 or Exercise 2. Then use the TRACE or ZOOM feature to verify your answer in part (b) of the exercise.
58. Use a graphing utility to graph the two functions, f and g, that you obtained in any one exercise from Exercises 5-8. Then use the TRACE or INTERSECTION feature to verify your answer in part (c) of the exercise.
59. Use a graphing utility to graph the volume-of-the-box function, V, that you obtained in Exercise 15 or Exercise 16. Then use the TRACE or maximum function feature to find the length of the side of the square that should be cut from each corner of the cardboard to create a box with the greatest possible volume. What is the maximum volume of the open box?
60. Use a graphing utility to graph the area function, A, that you obtained in Exercise 21 or Exercise 22. Then use an appropriate feature on your graphing utility to find the dimensions of the field that result in the greatest possible area. What is the maximum area?
61. Use a graphing utility to graph the area function, A, that you obtained in Exercise 25 or Exercise 26. Then use an appropriate feature on your graphing utility to find the dimensions that result in the greatest possible area. What is the maximum area?
62. Use the maximum or minimum function feature of a graphing utility to provide useful numerical information to any one of the following: the manufacturer of the rain gutters in Exercise 17; the person enclosing the playground in Exercise 25; the contractor in Exercise 29; the manufacturer of the cylindrical cans in Check Point 5 (page 273).

Critical Thinking Exercises

Make Sense? In Exercises 63-66, determine whether each statement makes sense or does not make sense, and explain your reasoning.
63. The function $f(x)=30 x+0.08$ is a reasonable model for the monthly cost, f, in dollars, for a text message plan in terms of the number of monthly text messages, x.
64. For each $\$ 1$ increase in the price of a $\$ 300$ plane ticket, an airline will lose 60 passengers, so if the ticket price is increased to $\$ x$, the decrease in passengers is modeled by 60(300 - x).
65. I know the perimeter of a rectangle, so I also know its area.
66. I encountered a number of problems where I had to solve an equation for a variable in order to express a function's equation in one variable.
67. You are on an island 2 miles from the nearest point P on a straight shoreline, as shown in the figure. Six miles down the shoreline from point P is a restaurant, shown as point R. To reach the restaurant, you first row from the island to point Q, averaging 2 miles per hour. Then you jog the distance from Q to R, averaging 5 miles per hour. Express the time, T, it takes to go from the island to the restaurant as a function of the distance, x, from P, where you land the boat.

68. A pool measuring 20 meters by 10 meters is surrounded by a path of uniform width, as shown in the figure. Express the area of the path, A, in square meters, as a function of its width, x, in meters.

69. The figure shows a Norman window that has the shape of a rectangle with a semicircle attached at the top. The diameter of the semicircle is equal to the width of the rectangle. The window has a perimeter of 12 feet. Express the area of the window, A, as a function of its radius, r.

70. The figure shows water running into a container in the shape of a cone. The radius of the cone is 6 feet and its height is 12 feet. Express the volume of the water in the cone, V, as a function of the height of the water, h.

Preview Exercises

Exercises 71-73 will help you prepare for the material covered in the first section of the next chapter.
71. Multiply: $(7-3 x)(-2-5 x)$.
72. Simplify: $\sqrt{18}-\sqrt{8}$.
73. Rationalize the denominator: $\frac{7+4 \sqrt{2}}{2-5 \sqrt{2}}$.

CHAPTER 1
 Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

1.1 Graphs and Graphing Utilities

a. The rectangular coordinate system consists of a horizontal number line, the x-axis, and a vertical number line, the y-axis, intersecting at their zero points, the origin. Each point in the system corresponds to an ordered pair of real numbers (x, y). The first number in the pair is the x-coordinate; the second number is the y-coordinate. See Figure 1.1 on page 142.
b. An ordered pair is a solution of an equation in two variables if replacing the variables by the corresponding coordinates results in a true statement. The ordered pair is said to satisfy the equation. The graph of the equation is the set of all points whose coordinates satisfy the equation. One method for graphing an equation is to plot ordered-pair solutions and connect them with a smooth curve or line.
c. An x-intercept of a graph is the x-coordinate of a point where the graph intersects the x-axis. The y-coordinate corresponding to an x-intercept is always zero.
A y-intercept of a graph is the y-coordinate of a point where the graph intersects the y-axis. The x-coordinate corresponding to a y-intercept is always zero.

Ex. 2, p. 144;
Ex. 3, p. 144

Ex. 5, p. 147

DEFINITIONS AND CONCEPTS

1.2 Basics of Functions and Their Graphs

a. A relation is any set of ordered pairs. The set of first components is the domain of the relation and the set of second components is the range.
b. A function is a correspondence from a first set, called the domain, to a second set, called the range, such that each element in the domain corresponds to exactly one element in the range. If any element in a relation's domain corresponds to more than one element in the range, the relation is not a function.
c. Functions are usually given in terms of equations involving x and y, in which x is the independent variable and y is the dependent variable. If an equation is solved for y and more than one value of y can be obtained for a given x, then the equation does not define y as a function of x. If an equation defines a function, the value of the function at $x, f(x)$, often replaces y.
d. The graph of a function is the graph of its ordered pairs.
e. The vertical line test for functions: If any vertical line intersects a graph in more than one point, the graph does not define y as a function of x.
f. The graph of a function can be used to determine the function's domain and its range. To find the domain, look for all the inputs on the x-axis that correspond to points on the graph. To find the range, look for all the outputs on the y-axis that correspond to points on the graph.
g. The zeros of a function, f, are the values of x for which $f(x)=0$. At the real zeros, the graph of f has x-intercepts. The graph of a function can have more than one x-intercept but at most one y-intercept.

Ex. 1, p. 155

Ex. 2, p. 157

Ex. 3, p. 158;
Ex. 4, p. 160

Ex. 5, p. 161
Ex. 6, p. 162

Ex. 8, p. 165

Figure 1.27,
p. 167

1.3 More on Functions and Their Graphs

a. A function is increasing on intervals where its graph rises, decreasing on intervals where it falls, and constant on intervals where it neither rises nor falls. Precise definitions are given in the box on page 174.
b. If the graph of a function is given, we can often visually locate the number(s) at which the function has a relative maximum or relative minimum. Precise definitions are given in the box on page 175.
c. The graph of an even function in which $f(-x)=f(x)$ is symmetric with respect to the y-axis. The graph of an odd function in which $f(-x)=-f(x)$ is symmetric with respect to the origin.
d. Piecewise functions are defined by two (or more) equations over a specified domain. Some piecewise functions are called step functions because their graphs form discontinuous steps. An example is $f(x)=\operatorname{int}(x)$, where $\operatorname{int}(x)$ is the greatest integer that is less than or equal to x.
e. The difference quotient of a function f is

$$
\frac{f(x+h)-f(x)}{h}, h \neq 0 .
$$

1.4 Linear Functions and Slope

a. The slope, m, of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
b. Equations of lines include point-slope form, $y-y_{1}=m\left(x-x_{1}\right)$, slope-intercept form, $y=m x+b$, and general form, $A x+B y+C=0$. The equation of a horizontal line is $y=b$; a vertical line is $x=a$. A vertical line is not a linear function.
c. Linear functions in the form $f(x)=m x+b$ can be graphed using the slope, m, and the y-intercept, b. (See the box on page 192.) Linear equations in the general form $A x+B y+C=0$ can be solved for y and graphed using the slope and the y-intercept. Intercepts can also be used to graph $A x+B y+C=0$. (See the box at the bottom of page 195.)

1.5 More on Slope

a. Parallel lines have equal slopes. Perpendicular lines have slopes that are negative reciprocals.
b. The slope of a linear function is the rate of change of the dependent variable per unit change of the independent variable.
c. The average rate of change of f from x_{1} to x_{2} is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

d. If a function expresses an object's position, $s(t)$, in terms of time, t, the average velocity of the object from t_{1} to t_{2} is

Ex. 1, p. 189
Ex. 2, p. 191;
Ex. 3, p. 191;
Ex. 5, p. 193;
Ex. 6, p. 194
Ex. 4, p. 192;
Ex. 7, p. 195;
Ex. 8, p. 196

Ex. 1, p. 203;
Ex. 2, p. 205
Ex. 3, p. 206
Ex. 4, p. 208;
Ex. 5, p. 209
Ex. 6, p. 210

$$
\frac{\Delta s}{\Delta t}=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

DEFINITIONS AND CONCEPTS

1.6 Transformations of Functions

a. Table 1.3 on page 216 shows the graphs of the constant function, $f(x)=c$, the identity function, $f(x)=x$, the absolute value function, $f(x)=|x|$, the standard quadratic function, $f(x)=x^{2}$, the square root function, $f(x)=\sqrt{x}$, the standard cubic function, $f(x)=x^{3}$, and the cube root function, $f(x)=\sqrt[3]{x}$. The table also lists characteristics of each function.
b. Table 1.4 on page 224 summarizes how to graph a function using vertical shifts, $y=f(x) \pm c$, horizontal shifts, $y=f(x \pm c)$, reflections about the x-axis, $y=-f(x)$, reflections about the y-axis, $y=f(-x)$, vertical stretching, $y=c f(x), c>1$, vertical shrinking, $y=c f(x), 0<c<1$, horizontal shrinking, $y=f(c x), c>1$, and horizontal stretching, $y=f(c x), 0<c<1$.
c. A function involving more than one transformation can be graphed in the following order: (1) horizontal shifting; (2) stretching or shrinking; (3) reflecting; (4) vertical shifting.

Ex. 1, p. 217;
Ex. 2, p. 219;
Ex. 3, p. 220;
Ex. 4, p. 221;
Ex. 5, p. 221;
Ex. 6, p. 222;
Ex. 7, p. 223
Ex. 8, p. 225;
Ex. 9, p. 226

1.7 Combinations of Functions; Composite Functions

a. If a function f does not model data or verbal conditions, its domain is the largest set of real numbers for which the value of $f(x)$ is a real number. Exclude from a function's domain real numbers that cause division by zero and real numbers that result in an even root of a negative number.
b. When functions are given as equations, they can be added, subtracted, multiplied, or divided by performing operations with the algebraic expressions that appear on the right side of the equations. Definitions for the sum $f+g$, the difference $f-g$, the product $f g$, and the quotient $\frac{f}{g}$ functions, with domains $D_{f} \cap D_{g}$, and $g(x) \neq 0$ for the quotient function, are given in the box on page 234.
c. The composition of functions f and $g, f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$. The domain of the composite function $f \circ g$ is given in the box on page 239. This composite function is obtained by replacing each occurrence of x in the equation for f with $g(x)$.
d. Expressing a given function as a composition of two functions is called decomposing the given function.

Ex. 1, p. 232

Ex. 2, p. 234;
Ex. 3, p. 235;
Ex. 4, p. 236
Ex. 5, p. 239;
Ex. 6, p. 240
Ex. 7,p. 241

1.8 Inverse Functions

a. If $f(g(x))=x$ and $g(f(x))=x$, function g is the inverse of function f, denoted f^{-1} and read " f-inverse." Thus, to show that f and g are inverses of each other, one must show that $f(g(x))=x$ and $g(f(x))=x$.
b. The procedure for finding a function's inverse uses a switch-and-solve strategy. Switch x and y, and then solve for y. The procedure is given in the box on page 248 .
c. The horizontal line test for inverse functions: A function f has an inverse that is a function, f^{-1}, if there is no horizontal line that intersects the graph of the function f at more than one point.
d. A one-to-one function is one in which no two different ordered pairs have the same second component. Only one-to-one functions have inverse functions.
e. If the point (a, b) is on the graph of f, then the point (b, a) is on the graph of f^{-1}. The graph of f^{-1} is a reflection of the graph of f about the line $y=x$.

Ex. 1, p. 247
Ex. 2, p. 249;
Ex. 3, p. 249;
Ex. 4, p. 250
Ex. 5, p. 251

Ex. 6, p. 252;
Ex. 7, p. 253

1.9 Distance and Midpoint Formulas; Circles

a. The distance, d, between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
b. The midpoint of the line segment whose endpoints are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point with coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
c. The standard form of the equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
d. The general form of the equation of a circle is $x^{2}+y^{2}+D x+E y+F=0$.
e. To convert from the general form to the standard form of a circle's equation, complete the square on x and y.

Ex. 2, p. 259

Ex. 3, p. 259;
Ex. 4, p. 260;
Ex. 5, p. 261

Ex. 6, p. 262

DEFINITIONS AND CONCEPTS

1.10 Modeling with Functions

a. Verbal models are often helpful in obtaining functions from verbal descriptions.
b. Functions can be constructed from formulas, such as formulas for area, perimeter and volume (Table P. 6 on page 111) and formulas for surface area (Table 1.6 on page 273).
c. If a problem's conditions are modeled by a function whose equation contains more than one variable, use the given information to write an equation among these variables. Then use this equation to eliminate all but one of the variables in the function's expression.

Ex. 1, p. 267;
Ex. 2, p. 269
Ex. 3, p. 270

Ex. 4, p. 271;
Ex. 5, p. 273;
Ex. 6, p. 274;
Ex. 7, p. 275

REVIEW EXERCISES

1.1

Graph each equation in Exercises 1-4. Let $x=-3,-2,-1,0,1$, 2 , and 3.

1. $y=2 x-2$
2. $y=x^{2}-3$
3. $y=x$
4. $y=|x|-2$
5. What does a $[-20,40,10]$ by $[-5,5,1]$ viewing rectangle mean? Draw axes with tick marks and label the tick marks to illustrate this viewing rectangle.

In Exercises 6-8, use the graph and determine the x-intercepts if any, and the y-intercepts if any. For each graph, tick marks along the axes represent one unit each.
6.

7.

8.

Salary after College. In 2010, MonsterCollege surveyed 1250 U.S. college students expecting to graduate in the next several years. Respondents were asked the following question:

What do you think your starting salary will be at your first job after college?
The line graph shows the percentage of college students who anticipated various starting salaries. Use the graph to solve Exercises 9-14.

Source: MonsterCollege ${ }^{\mathrm{TM}}$
9. What are the coordinates of point A ? What does this mean in terms of the information given by the graph?
10. What starting salary was anticipated by the greatest percentage of college students? Estimate the percentage of students who anticipated this salary.
11. What starting salary was anticipated by the least percentage of college students? Estimate the percentage of students who anticipated this salary.
12. What starting salaries were anticipated by more than 20% of college students?
13. Estimate the percentage of students who anticipated a starting salary of $\$ 40$ thousand.
14. The mathematical model

$$
p=-0.01 s^{2}+0.8 s+3.7
$$

describes the percentage of college students, p, who anticipated a starting salary s, in thousands of dollars Use this formula to find the percentage of students who anticipated a starting salary of $\$ 40$ thousand. How does this compare with your estimate in Exercise 13?

1.2 and 1.3

In Exercises 15-17, determine whether each relation is a function. Give the domain and range for each relation.
15. $\{(2,7),(3,7),(5,7)\}$
16. $\{(1,10),(2,500),(13, \pi)\}$
17. $\{(12,13),(14,15),(12,19)\}$

In Exercises 18-20, determine whether each equation defines y as a function of x.
18. $2 x+y=8$
19. $3 x^{2}+y=14$
20. $2 x+y^{2}=6$

In Exercises 21-24, evaluate each function at the given values of the independent variable and simplify.
21. $f(x)=5-7 x$
a. $f(4)$
b. $f(x+3)$
c. $f(-x)$
22. $g(x)=3 x^{2}-5 x+2$
a. $g(0)$
b. $g(-2)$
c. $g(x-1)$
d. $g(-x)$
23. $g(x)= \begin{cases}\sqrt{x-4} & \text { if } x \geq 4 \\ 4-x & \text { if } x<4\end{cases}$
a. $g(13)$
b. $g(0)$
c. $g(-3)$
24. $f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 12 & \text { if } x=1\end{cases}$
a. $f(-2)$
b. $f(1)$
c. $f(2)$

In Exercises 25-30, use the vertical line test to identify graphs in which y is a function of x.
25.

26.

27.

28.

29.

30.

In Exercises 31-33, use the graph to determine a. the function's domain; b. the function's range; c. the x-intercepts if any; d. the y-intercept, if there is one; e. intervals on which the function is increasing, decreasing, or constant; and f. the missing function values, indicated by question marks, below each graph.
31.

32.

33.

In Exercises 34-35, find each of the following:
a. The numbers, if any, at which f has a relative maximum. What are these relative maxima?
b. The numbers, if any, at which f has a relative minimum. What are these relative minima?
34. Use the graph in Exercise 31.
35. Use the graph in Exercise 32.

In Exercises 36-38, determine whether each function is even, odd, or neither. State each function's symmetry. If you are using a graphing utility, graph the function and verify its possible symmetry.
36. $f(x)=x^{3}-5 x$
37. $f(x)=x^{4}-2 x^{2}+1$
38. $f(x)=2 x \sqrt{1-x^{2}}$

In Exercises 39-40, the domain of each piecewise function is $(-\infty, \infty)$.
a. Graph each function.
b. Use the graph to determine the function's range.
39. $f(x)=\left\{\begin{array}{rll}5 & \text { if } & x \leq-1 \\ -3 & \text { if } & x>-1\end{array}\right.$
40. $f(x)=\left\{\begin{array}{rll}2 x & \text { if } & x<0 \\ -x & \text { if } & x \geq 0\end{array}\right.$

In Exercises 41-42, find and simplify the difference quotient

$$
\frac{f(x+h)-f(x)}{h}, \quad h \neq 0
$$

for the given function.
41. $f(x)=8 x-11$
42. $f(x)=-2 x^{2}+x+10$
43. The graph shows the height, in meters, of an eagle in terms of its time, in seconds, in flight.

a. Is the eagle's height a function of time? Use the graph to explain why or why not.
b. On which interval is the function decreasing? Describe what this means in practical terms.
c. On which intervals is the function constant? What does this mean for each of these intervals?
d. On which interval is the function increasing? What does this mean?
44. A cargo service charges a flat fee of $\$ 5$ plus $\$ 1.50$ for each pound or fraction of a pound. Graph shipping cost, $C(x)$, in dollars, as a function of weight, x, in pounds, for $0<x \leq 5$.

1.4 and 1.5

In Exercises 45-48, find the slope of the line passing through each pair of points or state that the slope is undefined. Then indicate whether the line through the points rises, falls, is horizontal, or is vertical.
45. $(3,2)$ and $(5,1)$
46. $(-1,-2)$ and $(-3,-4)$
47. $\left(-3, \frac{1}{4}\right)$ and $\left(6, \frac{1}{4}\right)$
48. $(-2,5)$ and $(-2,10)$

In Exercises 49-52, use the given conditions to write an equation for each line in point-slope form and slope-intercept form.
49. Passing through $(-3,2)$ with slope -6
50. Passing through $(1,6)$ and $(-1,2)$
51. Passing through $(4,-7)$ and parallel to the line whose equation is $3 x+y-9=0$
52. Passing through $(-3,6)$ and perpendicular to the line whose equation is $y=\frac{1}{3} x+4$
53. Write an equation in general form for the line passing through $(-12,-1)$ and perpendicular to the line whose equation is $6 x-y-4=0$.

In Exercises 54-57, give the slope and y-intercept of each line whose equation is given. Then graph the line.
54. $y=\frac{2}{5} x-1$
55. $f(x)=-4 x+5$
56. $2 x+3 y+6=0$
57. $2 y-8=0$
58. Graph using intercepts: $2 x-5 y-10=0$.
59. Graph: $2 x-10=0$.
60. The points in the scatter plot show the number of firearms per 100 persons and the number of deaths per 100,000 persons for industrialized countries with the highest death rates.

Source: International Action Network on Small Arms
a. Use the two points whose coordinates are shown by the voice balloons to find an equation in point-slope form for the line that models deaths per 100,000 persons, y, as a function of firearms per 100 persons, x.
b. Write the equation in part (a) in slope-intercept form. Use function notation.
c. France has 32 firearms per 100 persons. Use the appropriate point in the scatter plot to estimate that country's deaths per 100,000 persons.
d. Use the function from part (b) to find the number of deaths per 100,000 persons for France. Round to one decimal place. Does the function underestimate or overestimate the deaths per 100,000 persons that you estimated in part (c)? How is this shown by the line in the scatter plot?
61. In a 2010 survey of more than 200,000 freshmen at 279 colleges, only 52% rated their emotional health high or above average, a drop from 64% in 1985.

Percentage of U.S. College Freshmen Rating Their Emotional Health High or Above Average

Source: UCLA Higher Education Research Institute
a. Find the slope of the line passing through the two points shown by the voice ballons at the bottom of the previous page.
b. Use your answer from part (a) to complete this statement: For each year from 1985 through 2010, the percentage of U.S. college freshmen rating their emotional health high or above average decreased by \qquad The rate of change was \qquad per \qquad .
62. Find the average rate of change of $f(x)=x^{2}-4 x$ from $x_{1}=5$ to $x_{2}=9$.
63. A person standing on the roof of a building throws a ball directly upward. The ball misses the rooftop on its way down and eventually strikes the ground. The function

$$
s(t)=-16 t^{2}+64 t+80
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it was thrown.
a. Find the ball's average velocity between the time it was thrown and 2 seconds later.
b. Find the ball's average velocity between 2 and 4 seconds after it was thrown.
c. What do the signs in your answers to parts (a) and (b) mean in terms of the direction of the ball's motion?

1.6

In Exercises 64-68, use the graph of $y=f(x)$ to graph each function g.

64. $g(x)=f(x+2)+3$
65. $g(x)=\frac{1}{2} f(x-1)$
66. $g(x)=-f(2 x)$
67. $g(x)=2 f\left(\frac{1}{2} x\right)$
68. $g(x)=-f(-x)-1$

In Exercises 69-72, begin by graphing the standard quadratic function, $f(x)=x^{2}$. Then use transformations of this graph to graph the given function.
69. $g(x)=x^{2}+2$
70. $h(x)=(x+2)^{2}$
71. $r(x)=-(x+1)^{2}$
72. $y(x)=\frac{1}{2}(x-1)^{2}+1$

In Exercises 73-75, begin by graphing the square root function, $f(x)=\sqrt{x}$. Then use transformations of this graph to graph the given function.
73. $g(x)=\sqrt{x+3}$
74. $h(x)=\sqrt{3-x}$
75. $r(x)=2 \sqrt{x+2}$

In Exercises 76-78, begin by graphing the absolute value function, $f(x)=|x|$. Then use transformations of this graph to graph the given function.
76. $g(x)=|x+2|-3$
77. $h(x)=-|x-1|+1$
78. $r(x)=\frac{1}{2}|x+2|$

In Exercises 79-81, begin by graphing the standard cubic function, $f(x)=x^{3}$. Then use transformations of this graph to graph the given function.
79. $g(x)=\frac{1}{2}(x-1)^{3}$
80. $h(x)=-(x+1)^{3}$
81. $r(x)=\frac{1}{4} x^{3}-1$
106.

107.

108.

109. Use the graph of f in the figure shown to draw the graph of its inverse function.

In Exercises 110-111, find an equation for $f^{-1}(x)$. Then graph f and f^{-1} in the same rectangular coordinate system.
110. $f(x)=1-x^{2}, x \geq 0 \quad$ 111. $f(x)=\sqrt{x}+1$
1.9

In Exercises 112-113, find the distance between each pair of points. If necessary, round answers to two decimal places.
112. $(-2,3)$ and $(3,-9)$
113. $(-4,3)$ and $(-2,5)$

In Exercises 114-115, find the midpoint of each line segment with the given endpoints.
114. $(2,6)$ and $(-12,4)$
115. $(4,-6)$ and $(-15,2)$

In Exercises 116-117, write the standard form of the equation of the circle with the given center and radius.
116. Center $(0,0), r=3$
117. Center $(-2,4), r=6$

In Exercises 118-120, give the center and radius of each circle and graph its equation. Use the graph to identify the relation's domain and range.
118. $x^{2}+y^{2}=1$
119. $(x+2)^{2}+(y-3)^{2}=9$
120. $x^{2}+y^{2}-4 x+2 y-4=0$

1.10

121. In 2000 , the average weekly salary for workers in the United States was $\$ 567$. This amount has increased by approximately $\$ 15$ per year.
a. Express the average weekly salary for U.S. workers, W, as a function of the number of years after 2000, x.
b. If this trend continues, in which year will the average weekly salary be $\$ 702$?
122. You are choosing between two texting plans. Plan A has a monthly fee of $\$ 15$ with a charge of $\$ 0.05$ per text. Plan B has a monthly fee of $\$ 5$ with a charge of $\$ 0.07$ per text.
a. Express the monthly cost for plan A, f, as a function of the number of text messages in a month, x.
b. Express the monthly cost for plan B, g, as a function of the number of text messages in a month, x.
c. For how many text messages will the costs for the two plans be the same?
123. A 400 -room hotel can rent every one of its rooms at $\$ 120$ per room. For each $\$ 1$ increase in rent, two fewer rooms are rented.
a. Express the number of rooms rented, N, as a function of the rent, x.
b. Express the hotel's revenue, R, as a function of the rent, x.
124. An open box is made by cutting identical squares from the corners of a 16 -inch by 24 -inch piece of cardboard and then turning up the sides.
a. Express the volume of the box, V, as a function of the length of the side of the square cut from each corner, x.
b. Find the domain of V.
125. You have 400 feet of fencing to enclose a rectangular lot and divide it in two by another fence that is parallel to one side of the lot. Express the area of the rectangular lot, A, as a function of the length of the fence that divides the rectangular lot, x.
126. The figure shows a box with a square base and a square top. The box is to have a volume of 8 cubic feet. Express the surface area of the box, A, as a function of the length of a side of its square base, x.

127. You inherit $\$ 10,000$ with the stipulation that for the first year the money must be placed in two investments expected to earn 8% and 12% annual interest. Express the expected interest from both investments, I, as a function of the amount of money invested at $8 \%, x$.

CHAPTER 1 TEST

1. List by letter all relations that are not functions.
a. $\{(7,5),(8,5),(9,5)\}$
b. $\{(5,7),(5,8),(5,9)\}$
c.

d. $x^{2}+y^{2}=100$
e.

2. Use the graph of $y=f(x)$ to solve this exercise.

a. What is $f(4)-f(-3)$?
b. What is the domain of f ?
c. What is the range of f ?
d. On which interval or intervals is f increasing?
e. On which interval or intervals is f decreasing?
f. For what number does f have a relative maximum? What is the relative maximum?
g. For what number does f have a relative minimum? What is the relative minimum?
h. What are the x-intercepts?
i. What is the y-intercept?
3. Use the graph of $y=f(x)$ to solve this exercise.

a. What are the zeros of f ?
b. Find the value(s) of x for which $f(x)=-1$.
c. Find the value(s) of x for which $f(x)=-2$.
d. Is f even, odd, or neither?
e. Does f have an inverse function?
f. Is $f(0)$ a relative maximum, a relative minimum, or neither?
g. Graph $g(x)=f(x+1)-1$.
h. Graph $h(x)=\frac{1}{2} f\left(\frac{1}{2} x\right)$.
i. Graph $r(x)=-f(-x)+1$.
j. Find the average rate of change of f from $x_{1}=-2$ to $x_{2}=1$.
In Exercises 4-15, graph each equation in a rectangular coordinate system. If two functions are indicated, graph both in the same system. Then use your graphs to identify each relation's domain and range.
4. $x+y=4$
5. $x^{2}+y^{2}=4$
6. $f(x)=4$
7. $f(x)=-\frac{1}{3} x+2$
8. $(x+2)^{2}+(y-1)^{2}=9$
9. $f(x)= \begin{cases}2 & \text { if } x \leq 0 \\ -1 & \text { if } x>0\end{cases}$
10. $x^{2}+y^{2}+4 x-6 y-3=0$
11. $f(x)=|x|$ and $g(x)=\frac{1}{2}|x+1|-2$
12. $f(x)=x^{2}$ and $g(x)=-(x-1)^{2}+4$
13. $f(x)=2 x-4$ and f^{-1}
14. $f(x)=x^{3}-1$ and f^{-1}
15. $f(x)=x^{2}-1, x \geq 0$, and f^{-1}

In Exercises 16-23, let $f(x)=x^{2}-x-4$ and $g(x)=2 x-6$.
16. Find $f(x-1)$.
17. Find $\frac{f(x+h)-f(x)}{h}$.
18. Find $(g-f)(x)$.
19. Find $\left(\frac{f}{g}\right)(x)$ and its domain.
20. Find $(f \circ g)(x)$.
21. Find $(g \circ f)(x)$.
22. Find $g(f(-1))$.
23. Find $f(-x)$. Is f even, odd, or neither?

In Exercises 24-25, use the given conditions to write an equation for each line in point-slope form and slope-intercept form.
24. Passing through $(2,1)$ and $(-1,-8)$
25. Passing through $(-4,6)$ and perpendicular to the line whose equation is $y=-\frac{1}{4} x+5$
26. Write an equation in general form for the line passing through $(-7,-10)$ and parallel to the line whose equation is $4 x+2 y-5=0$.
27. Studies show that texting while driving is as risky as driving with a 0.08 blood alcohol level, the standard for drunk driving. The bar graph shows the number of fatalities in the United States involving distracted driving from 2004 through 2008. Although the distracted category involves such activities as talking on cellphones, conversing with passengers, and eating, experts at the National Highway Traffic Safety Administration claim that texting while driving is the clearest menace because it requires looking away from the road.

Source: National Highway Traffic Safety Administration
a. Shown to the right of the bar graph is a scatter plot with a line passing through two of the data points. Use the two points whose coordinates are shown by the voice balloons to write the point-slope form of an equation that models the number of highway fatalities involving distracted driving, y, in the United States x years after 2004.
b. Write the equation from part (a) in slope-intercept form. Use function notation.
c. In 2010, surveys showed overwhelming public support to ban texting while driving, although at that time only 19 states and Washington, D.C., outlawed the practice. Without additional laws that penalize texting drivers, use the linear function you obtained from part (b) to project the number of fatalities in the United States in 2014 involving distracted driving.
28. Find the average rate of change of $f(x)=3 x^{2}-5$ from $x_{1}=6$ to $x_{2}=10$.
29. If $g(x)=\left\{\begin{array}{ll}\sqrt{x-3} & \text { if } x \geq 3 \\ 3-x & \text { if } x<3\end{array}\right.$, find $g(-1)$ and $g(7)$.

In Exercises 30-31, find the domain of each function.
30. $f(x)=\frac{3}{x+5}+\frac{7}{x-1}$
31. $f(x)=3 \sqrt{x+5}+7 \sqrt{x-1}$
32. If $f(x)=\frac{7}{x-4}$ and $g(x)=\frac{2}{x}$, find $(f \circ g)(x)$ and the domain of $f \circ g$.
33. Express $h(x)=(2 x+3)^{7}$ as a composition of two functions f and g so that $h(x)=(f \circ g)(x)$.
34. Find the length and the midpoint of the line segment whose endpoints are $(2,-2)$ and $(5,2)$.
35. In 1980, the winning time for women in the Olympic 500 -meter speed skating event was 41.78 seconds. The average rate of decrease in the winning time has been about 0.19 second per year.
a. Express the winning time, T, in this event as a function of the number of years after 1980, x.
b. According to the function, when was winning time 35.7 seconds?
36. The annual yield per walnut tree is fairly constant at 50 pounds per tree when the number of trees per acre is 30 or fewer. For each additional tree over 30, the annual yield per tree for all trees on the acre decreases by 1.5 pounds due to overcrowding.
a. Express the yield per tree, Y, in pounds, as a function of the number of walnut trees per acre, x.
b. Express the total yield for an acre, T, in pounds, as a function of the number of walnut trees per acre, x.
37. You have 600 yards of fencing to enclose a rectangular field. Express the area of the field, A, as a function of one of its dimensions, x.
38. A closed rectangular box with a square base has a volume of 8000 cubic centimeters. Express the surface area of the box, A, as a function of the length of a side of its square base, x.

POLYNOMIAL AND RATIONAL FUNCTIONS

SECTION 2.1

Objectives

(1) Add and subtract complex numbers.
(2) Multiply complex numbers.
(3) Divide complex numbers.
4. Perform operations with square roots of negative numbers.
(5) Solve quadratic equations with complex imaginary solutions.

FIGURE 2.1 The complex number system

Complex Numbers

Who is this kid warning us about our eyeballs turning black if we attempt to find the square root of -9 ? Don't believe what you hear on the street. Although square roots of negative numbers are not real numbers, they do play a significant role in algebra. In this section, we move beyond the real numbers and discuss square roots with negative radicands.

The Imaginary Unit i

In this section, we will study equations whose solutions may involve the square roots of negative numbers. Because the square of a real number is never negative, there is no real number x such that $x^{2}=-1$. To provide a setting in which such equations have solutions, mathematicians have invented an expanded system of numbers, the complex numbers. The imaginary number i, defined to be a solution of the equation $x^{2}=-1$, is the basis of this new number system.

The Imaginary Unit i

The imaginary unit \boldsymbol{i} is defined as

$$
i=\sqrt{-1}, \quad \text { where } i^{2}=-1
$$

Using the imaginary unit i, we can express the square root of any negative number as a real multiple of i. For example,

$$
\sqrt{-25}=\sqrt{-1} \sqrt{25}=i \sqrt{25}=5 i
$$

We can check this result by squaring $5 i$ and obtaining -25 .

$$
(5 i)^{2}=5^{2} i^{2}=25(-1)=-25
$$

A new system of numbers, called complex numbers, is based on adding multiples of i, such as $5 i$, to real numbers.

Complex Numbers and Imaginary Numbers

The set of all numbers in the form

$$
a+b i
$$

with real numbers a and b, and i, the imaginary unit, is called the set of complex numbers. The real number a is called the real part and the real number b is called the imaginary part of the complex number $a+b i$. If $b \neq 0$, then the complex number is called an imaginary number (Figure 2.1). An imaginary number in the form $b i$ is called a pure imaginary number.

Here are some examples of complex numbers. Each number can be written in the form $a+b i$.

Can you see that b, the imaginary part, is not zero in the first two complex numbers? Because $b \neq 0$, these complex numbers are imaginary numbers. Furthermore, the imaginary number $2 i$ is a pure imaginary number. By contrast, the imaginary part of the complex number on the right is zero. This complex number is not an imaginary number. The number 3 , or $3+0 i$, is a real number.

A complex number is said to be simplified if it is expressed in the standard form $a+b i$. If b contains a radical, we usually_write i before the radical. For example, we write $7+3 i \sqrt{5}$ rather than $7+3 \sqrt{5} i$, which could easily be confused with $7+3 \sqrt{5 i}$.

Expressed in standard form, two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.

Equality of Complex Numbers

$a+b i=c+d i$ if and only if $a=c$ and $b=d$.

Add and subtract complex numbers.

Operations with Complex Numbers

The form of a complex number $a+b i$ is like the binomial $a+b x$. Consequently, we

GREAT QUESTION!

Are operations with complex numbers similar to operations with polynomials?
Yes. The following examples, using the same integers as in Example 1, show how operations with complex numbers are just like operations with polynomials.
a. $(5-11 x)+(7+4 x)$ $=12-7 x$
b. $(-5+x)-(-11-6 x)$
$=-5+x+11+6 x$
$=6+7 x$ can add, subtract, and multiply complex numbers using the same methods we used for binomials, remembering that $i^{2}=-1$.

Adding and Subtracting Complex Numbers

1. $(a+b i)+(c+d i)=(a+c)+(b+d) i$

In words, this says that you add complex numbers by adding their real parts, adding their imaginary parts, and expressing the sum as a complex number.
2. $(a+b i)-(c+d i)=(a-c)+(b-d) i$

In words, this says that you subtract complex numbers by subtracting their real parts, subtracting their imaginary parts, and expressing the difference as a complex number.

EXAMPLE 1 Adding and Subtracting Complex Numbers

Perform the indicated operations, writing the result in standard form:
a. $(5-11 i)+(7+4 i)$
b. $(-5+i)-(-11-6 i)$.

SOLUTION

a. $(5-11 i)+(7+4 i)$

$$
\begin{array}{ll}
=5-11 i+7+4 i & \\
\text { Remove the parentheses. } \\
=5+7-11 i+4 i & \\
=(5+7)+(-11+4) i & \\
\text { Group real and imaginary terms. } \\
=12-7 i &
\end{array}
$$

b. $(-5+i)-(-11-6 i)$

$$
=-5+i+11+6 i \quad \text { Remove the parentheses. Change signs of real and }
$$

$$
=-5+11+i+6 i \quad \begin{array}{ll}
\text { imaginary parts in the complex number being subtracted. } \\
\text { Group real and imaginary terms. }
\end{array}
$$

$$
=(-5+11)+(1+6) i \quad \text { Add real parts and add imaginary parts. }
$$

$$
=6+7 i
$$

Simplify.

(2) Multiply complex numbers.

(3) Divide complex numbers.

Check Point 1 Perform the indicated operations, writing the result in standard form:
a. $(5-2 i)+(3+3 i)$
b. $(2+6 i)-(12-i)$.

Multiplication of complex numbers is performed the same way as multiplication of polynomials, using the distributive property and the FOIL method. After completing the multiplication, we replace any occurrences of i^{2} with -1 . This idea is illustrated in the next example.

EXAMPLE 2 Multiplying Complex Numbers

Find the products:
a. $4 i(3-5 i)$
b. $(7-3 i)(-2-5 i)$.

SOLUTION

a. $4 i(3-5 i)$

$$
\begin{array}{ll}
=4 i \cdot 3-4 i \cdot 5 i & \\
=12 i-20 i^{2} & \\
=12 i-20(-1) & \\
=20+12 i & \\
\text { Mistribute } 4 i \text { throughout the parentheses. } \\
=\text { Replace } i^{2} \text { with }-1 . \\
& \\
\text { Simplify to } 12 i+20 \text { and write in standard form. }
\end{array}
$$

b. $(7-3 i)(-2-5 i)$

$$
\begin{array}{lll}
& \text { F } \quad 0 \quad \text { L } & \\
=-14-35 i+6 i+15 i^{2} & & \text { Use the FOIL method. } \\
=-14-35 i+6 i+15(-1) & i^{2}=-1 \\
=-14-15-35 i+6 i & & \text { Group real and imaginary terms. } \\
=-29-29 i & & \text { Combine real and imaginary terms. }
\end{array}
$$

$\$$ Check Point 2 Find the products:
a. $7 i(2-9 i)$
b. $(5+4 i)(6-7 i)$.

Complex Conjugates and Division

It is possible to multiply imaginary numbers and obtain a real number. This occurs when we multiply $a+b i$ and $a-b i$.

$$
\begin{aligned}
(a+b i)(a-b i) & =a^{2}-a b i+a b i-b^{2} i^{2} & & \\
& =a^{2}-b^{2}(-1) & & i^{2}=-1 \\
& =a^{2}+b^{2} & & \text { Notice that this product method. } \\
& & & \text { liminates } i .
\end{aligned}
$$

For the complex number $a+b i$, we define its complex conjugate to be $a-b i$. The multiplication of complex conjugates results in a real number.

Conjugate of a Complex Number

The complex conjugate of the number $a+b i$ is $a-b i$, and the complex conjugate of $a-b i$ is $a+b i$. The multiplication of complex conjugates gives a real number.

$$
\begin{aligned}
& (a+b i)(a-b i)=a^{2}+b^{2} \\
& (a-b i)(a+b i)=a^{2}+b^{2}
\end{aligned}
$$

Complex conjugates are used to divide complex numbers. The goal of the division procedure is to obtain a real number in the denominator. This real number becomes the denominator of a and b in the quotient $a+b i$. By multiplying the numerator and the denominator of the division by the complex conjugate of the denominator, you will obtain this real number in the denominator.

EXAMPLE 3 Using Complex Conjugates to Divide

 Complex NumbersDivide and express the result in standard form: $\frac{7+4 i}{2-5 i}$.

SOLUTION

The complex conjugate of the denominator, $2-5 i$, is $2+5 i$. Multiplication of both the numerator and the denominator by $2+5 i$ will eliminate i from the denominator while maintaining the value of the expression.

$$
\frac{7+4 i}{2-5 i}=\frac{(7+4 i)}{(2-5 i)} \cdot \frac{(2+5 i)}{(2+5 i)} \quad \begin{aligned}
& \text { Multiply the numerator and the denominator by the } \\
& \text { complex conjugate of the denominator. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{14+35 i+8 i+20 i^{2}}{2^{2}+5^{2}} \\
& =\frac{14+43 i+20(-1)}{29} \\
& =\frac{-6+43 i}{29} \\
& =-\frac{\text { Use the FOIL method in the numerator and }}{\left(a-b_{i}\right)(a+b i)=a^{2}+b^{2} \text { in the denominator. }} \begin{array}{l}
\text { In the numerator, combine imaginary terms } \\
\text { and replace } i^{2} \text { with }-1 \text {. In the denominator, } \\
2^{2}+5^{2}=4+25=29 .
\end{array} \\
& =\begin{array}{l}
\text { Combine real terms in the numerator: } \\
14+20(-1)=14-20=-6 .
\end{array} \\
& \text { Express the answer in standard form. }
\end{aligned}
$$

Observe that the quotient is expressed in the standard form $a+b i$, with $a=-\frac{6}{29}$ and $b=\frac{43}{29}$.

3 Check Point 3 Divide and express the result in standard form: $\frac{5+4 i}{4-i}$.

Perform operations with square roots of negative numbers.

Roots of Negative Numbers

The square of $4 i$ and the square of $-4 i$ both result in -16 :

$$
(4 i)^{2}=16 i^{2}=16(-1)=-16 \quad(-4 i)^{2}=16 i^{2}=16(-1)=-16
$$

Consequently, in the complex number system -16 has two square roots, namely, $4 i$ and $-4 i$. We call $4 i$ the principal square root of -16 .

Principal Square Root of a Negative Number

For any positive real number b, the principal square root of the negative number $-b$ is defined by

$$
\sqrt{-b}=i \sqrt{b}
$$

Consider the multiplication problem

$$
5 i \cdot 2 i=10 i^{2}=10(-1)=-10 .
$$

This problem can also be given in terms of principal square roots of negative numbers:

$$
\sqrt{-25} \cdot \sqrt{-4}
$$

Because the product rule for radicals only applies to real numbers, multiplying radicands is incorrect. When performing operations with square roots of negative numbers, begin by expressing all square roots in terms of \boldsymbol{i}. Then perform the indicated operation.

Correct:

$$
\begin{aligned}
\sqrt{-25} \cdot \sqrt{-4} & =i \sqrt{25} \cdot i \sqrt{4} \\
& =5 i \cdot 2 i \\
& =10 i^{2}=10(-1)=-10
\end{aligned}
$$

Incorrect:

EXAMPLE 4 Operations Involving Square Roots of Negative Numbers

Perform the indicated operations and write the result in standard form:
a. $\sqrt{-18}-\sqrt{-8}$
b. $(-1+\sqrt{-5})^{2}$
c. $\frac{-25+\sqrt{-50}}{15}$.

SOLUTION

Begin by expressing all square roots of negative numbers in terms of i.
a. $\sqrt{-18}-\sqrt{-8}=i \sqrt{18}-i \sqrt{8}=i \sqrt{9 \cdot 2}-i \sqrt{4 \cdot 2}$

$$
=3 i \sqrt{2}-2 i \sqrt{2}=i \sqrt{2}
$$

$$
\left(A+\left.B\right|^{2}=A^{2}+2 A B+B^{2}\right.
$$

b. $(-1+\sqrt{-5})^{2}=(-1+i \sqrt{5})^{2}=(-1)^{2}+2(-1)(i \sqrt{5})+(i \sqrt{5})^{2}$

$$
=1-2 i \sqrt{5}+5 i^{2}
$$

$$
=1-2 i \sqrt{5}+5(-1)
$$

$$
=-4-2 i \sqrt{5}
$$

c. $\frac{-25+\sqrt{-50}}{15}$

$$
=\frac{-25+i \sqrt{50}}{15} \quad \sqrt{-b}=i \sqrt{b}
$$

$$
=\frac{-25+5 i \sqrt{2}}{15} \quad \sqrt{50}=\sqrt{25 \cdot 2}=5 \sqrt{2}
$$

$$
=\frac{-25}{15}+\frac{5 i \sqrt{2}}{15} \text { Write the complex number in standard form. }
$$

$$
=-\frac{5}{3}+i \frac{\sqrt{2}}{3} \quad \text { Simplify. }
$$

S Check Point 4 Perform the indicated operations and write the result in standard form:
a. $\sqrt{-27}+\sqrt{-48}$
b. $(-2+\sqrt{-3})^{2}$
c. $\frac{-14+\sqrt{-12}}{2}$.

5 Solve quadratic equations with complex imaginary solutions.

GREAT QUESTION!

Where can I review quadratic equations and how to solve them?
Read Section P.7, beginning on page 93.

Quadratic Equations with Complex Imaginary Solutions

We have seen that a quadratic equation can be expressed in the general form

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

All quadratic equations can be solved by the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Recall that the quantity $b^{2}-4 a c$, which appears under the radical sign in the quadratic formula, is called the discriminant. If the discriminant is negative, a quadratic equation has no real solutions. However, quadratic equations with negative discriminants do have two solutions. These solutions are imaginary numbers that are complex conjugates.

EXAMPLE 5 A Quadratic Equation with Imaginary Solutions

Solve using the quadratic formula: $3 x^{2}-2 x+4=0$.

SOLUTION

The given equation is in general form. Begin by identifying the values for a, b, and c.

$$
\begin{aligned}
& 3 x^{2}-2 x+4=0 \\
& a=3 \quad b=-2 \quad c=4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Use the quadratic formula. } \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(4)}}{2(3)} \quad \begin{array}{l}
\text { Substitute the values for } a, b \text {, and } c \text { : } \\
a=3, b=-2 \text {, and } c=4 .
\end{array} \\
& =\frac{2 \pm \sqrt{4-48}}{6} \quad-(-2)=2 \text { and }(-2)^{2}=(-2)(-2)=4 \text {. } \\
& =\frac{2 \pm \sqrt{-44}}{6} \quad \text { Subtract under the radical. Because the } \\
& \text { number under the radical sign is negative, the } \\
& \text { solutions will not be real numbers. } \\
& =\frac{2 \pm 2 i \sqrt{11}}{6} \\
& =\frac{2(1 \pm i \sqrt{11})}{6} \quad \text { Factor } 2 \text { from the numerator. } \\
& =\frac{1 \pm i \sqrt{11}}{3} \quad \text { Divide numerator and denominator by } 2 . \\
& =\frac{1}{3} \pm i \frac{\sqrt{11}}{3} \quad \text { Write the complex numbers in standard form. }
\end{aligned}
$$

The solutions are complex conjugates, and the solution set is

$$
\left\{\frac{1}{3}+i \frac{\sqrt{11}}{3}, \frac{1}{3}-i \frac{\sqrt{11}}{3}\right\} \text { or }\left\{\frac{1}{3} \pm i \frac{\sqrt{11}}{3}\right\} \text {. }
$$

$\$$ Check Point 5 Solve using the quadratic formula:

$$
x^{2}-2 x+2=0
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The imaginary unit i is defined as $i=$ \qquad where $i^{2}=$ \qquad
2. The set of all numbers in the form $a+b i$ is called the set of \qquad numbers. If $b \neq 0$, then the number is also called a/an \qquad number. If $b=0$, then the number is also called a/an \qquad number.
3. $-9 i+3 i=$ \qquad
4. $10 i-(-4 i)=$ \qquad
5. Consider the following multiplication problem:

$$
(3+2 i)(6-5 i) .
$$

Using the FOIL method, the product of the first terms is \qquad the product of the outside terms is \qquad and

EXERCISE SET 2.1

Practice Exercises

In Exercises 1-8, add or subtract as indicated and write the result in standard form.

1. $(7+2 i)+(1-4 i)$
2. $(-2+6 i)+(4-i)$
3. $(3+2 i)-(5-7 i)$
4. $(-7+5 i)-(-9-11 i)$
5. $6-(-5+4 i)-(-13-i)$
6. $7-(-9+2 i)-(-17-i)$
7. $8 i-(14-9 i)$
8. $15 i-(12-11 i)$

In Exercises 9-20, find each product and write the result in standard form.
9. $-3 i(7 i-5)$
10. $-8 i(2 i-7)$
11. $(-5+4 i)(3+i)$
12. $(-4-8 i)(3+i)$
13. $(7-5 i)(-2-3 i)$
14. $(8-4 i)(-3+9 i)$
15. $(3+5 i)(3-5 i)$
16. $(2+7 i)(2-7 i)$
17. $(-5+i)(-5-i)$
18. $(-7-i)(-7+i)$
19. $(2+3 i)^{2}$
20. $(5-2 i)^{2}$

In Exercises 21-28, divide and express the result in standard form.
21. $\frac{2}{3-i}$
22. $\frac{3}{4+i}$
23. $\frac{2 i}{1+i}$
24. $\frac{5 i}{2-i}$
25. $\frac{8 i}{4-3 i}$
26. $\frac{-6 i}{3+2 i}$
27. $\frac{2+3 i}{2+i}$
28. $\frac{3-4 i}{4+3 i}$

In Exercises 29-44, perform the indicated operations and write the result in standard form.
29. $\sqrt{-64}-\sqrt{-25}$
30. $\sqrt{-81}-\sqrt{-144}$
31. $5 \sqrt{-16}+3 \sqrt{-81}$
32. $5 \sqrt{-8}+3 \sqrt{-18}$
33. $(-2+\sqrt{-4})^{2}$
34. $(-5-\sqrt{-9})^{2}$
the product of the inside terms is \qquad The product of the last terms in terms of i^{2} is \qquad which simplifies to \qquad -.
6. The conjugate of $2-9 i$ is \qquad .
7. The division

$$
\frac{7+4 i}{2-5 i}
$$

is performed by multiplying the numerator and denominator by
8. $\sqrt{-20}=-\sqrt{20}=-\sqrt{4 \cdot 5}=$ \qquad
9. $x=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 2 \cdot 5}}{2 \cdot 2}$ simplifies to $x=$ \qquad .
35. $(-3-\sqrt{-7})^{2}$
36. $(-2+\sqrt{-11})^{2}$
37. $\frac{-8+\sqrt{-32}}{24}$
38. $\frac{-12+\sqrt{-28}}{32}$
39. $\frac{-6-\sqrt{-12}}{48}$
40. $\frac{-15-\sqrt{-18}}{33}$
41. $\sqrt{-8}(\sqrt{-3}-\sqrt{5})$
42. $\sqrt{-12}(\sqrt{-4}-\sqrt{2})$
43. $(3 \sqrt{-5})(-4 \sqrt{-12})$
44. $(3 \sqrt{-7})(2 \sqrt{-8})$

In Exercises 45-50, solve each quadratic equation using the quadratic formula. Express solutions in standard form.
45. $x^{2}-6 x+10=0$
46. $x^{2}-2 x+17=0$
47. $4 x^{2}+8 x+13=0$
48. $2 x^{2}+2 x+3=0$
49. $3 x^{2}=8 x-7$
50. $3 x^{2}=4 x-6$

Practice Plus

In Exercises 51-56, perform the indicated operation(s) and write the result in standard form.
51. $(2-3 i)(1-i)-(3-i)(3+i)$
52. $(8+9 i)(2-i)-(1-i)(1+i)$
53. $(2+i)^{2}-(3-i)^{2}$
54. $(4-i)^{2}-(1+2 i)^{2}$
55. $5 \sqrt{-16}+3 \sqrt{-81}$
56. $5 \sqrt{-8}+3 \sqrt{-18}$
57. Evaluate $x^{2}-2 x+2$ for $x=1+i$.
58. Evaluate $x^{2}-2 x+5$ for $x=1-2 i$.
59. Evaluate $\frac{x^{2}+19}{2-x}$ for $x=3 i$.
60. Evaluate $\frac{x^{2}+11}{3-x}$ for $x=4 i$.

Application Exercises

Complex numbers are used in electronics to describe the current in an electric circuit. Ohm's law relates the current in a circuit, I, in amperes, the voltage of the circuit, E, in volts, and the resistance of the circuit, R, in ohms, by the formula $E=I R$. Use this
formula to solve Exercises 61-62.
61. Find E, the voltage of a circuit, if $I=(4-5 i)$ amperes and $R=(3+7 i)$ ohms.
62. Find E, the voltage of a circuit, if $I=(2-3 i)$ amperes and $R=(3+5 i)$ ohms.
63. The mathematician Girolamo Cardano is credited with the first use (in 1545) of negative square roots in solving the now-famous problem, "Find two numbers whose sum is 10 and whose product is 40 ." Show that the complex numbers $5+i \sqrt{15}$ and $5-i \sqrt{15}$ satisfy the conditions of the problem. (Cardano did not use the symbolism $i \sqrt{15}$ or even $\sqrt{-15}$. He wrote R.m 15 for $\sqrt{-15}$, meaning "radix minus 15." He regarded the numbers $5+$ R.m 15 and $5-$ R.m 15 as "fictitious" or "ghost numbers," and considered the problem "manifestly impossible." But in a mathematically adventurous spirit, he exclaimed, "Nevertheless, we will operate.")

Writing in Mathematics

64. What is i ?
65. Explain how to add complex numbers. Provide an example with your explanation.
66. Explain how to multiply complex numbers and give an example.
67. What is the complex conjugate of $2+3 i$? What happens when you multiply this complex number by its complex conjugate?
68. Explain how to divide complex numbers. Provide an example with your explanation.
69. Explain each of the three jokes in the cartoon on page 292.
70. A stand-up comedian uses algebra in some jokes, including one about a telephone recording that announces "You have just reached an imaginary number. Please multiply by i and dial again." Explain the joke.

Explain the error in Exercises 71-72.
71. $\sqrt{-9}+\sqrt{-16}=\sqrt{-25}=i \sqrt{25}=5 i$
72. $(\sqrt{-9})^{2}=\sqrt{-9} \cdot \sqrt{-9}=\sqrt{81}=9$

Critical Thinking Exercises

Make Sense? In Exercises 73-76, determine whether each statement makes sense or does not make sense, and explain your reasoning.
73. The humor in the cartoon at the top of the next column is based on the fact that "rational" and "real" have different meanings in mathematics and in everyday speech.

74. The word imaginary in imaginary numbers tells me that these numbers are undefined.
75. By writing the imaginary number $5 i$, I can immediately see that 5 is the constant and i is the variable.
76. When I add or subtract complex numbers, I am basically combining like terms.

In Exercises 77-80, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
77. Some irrational numbers are not complex numbers.
78. $(3+7 i)(3-7 i)$ is an imaginary number.
79. $\frac{7+3 i}{5+3 i}=\frac{7}{5}$
80. In the complex number system, $x^{2}+y^{2}$ (the sum of two squares) can be factored as $(x+y i)(x-y i)$.

In Exercises 81-83, perform the indicated operations and write the result in standard form.
81. $\frac{4}{(2+i)(3-i)}$
82. $\frac{1+i}{1+2 i}+\frac{1-i}{1-2 i}$
83. $\frac{8}{1+\frac{2}{i}}$

Preview Exercises

Exercises 84-86 will help you prepare for the material covered in the next section.

In Exercises 84-85, solve each quadratic equation by the method of your choice.
84. $0=-2(x-3)^{2}+8$
85. $-x^{2}-2 x+1=0$
86. Use the graph of $f(x)=x^{2}$ to graph $g(x)=(x+3)^{2}+1$.

SECTION 2.2

Objectives

(1) Recognize characteristics of parabolas.
(2) Graph parabolas.
(3) Determine a quadratic function's minimum or maximum value.
(4) Solve problems involving a quadratic function's minimum or maximum value.
(1) Recognize characteristics of parabolas.

Many sports involve objects that are thrown, kicked, or hit, and then proceed with no additional force of their own. Such objects are called projectiles. Paths of projectiles, as well as their heights over time, can be modeled by quadratic functions. We have seen that a quadratic function is any function of the form

$$
f(x)=a x^{2}+b x+c
$$

where a, b, and c are real numbers, with $a \neq 0$. A quadratic function is a polynomial function whose greatest exponent is 2 . In this section, you will learn to use graphs of quadratic functions to gain
 a visual understanding of the algebra that describes football, baseball, basketball, the shot put, and other projectile sports.

Graphs of Quadratic Functions

The graph of any quadratic function is called a parabola. Parabolas are shaped like bowls or inverted bowls, as shown in Figure 2.2. If the coefficient of x^{2} (the value of a in $a x^{2}+b x+c$) is positive, the parabola opens upward. If the coefficient of x^{2} is negative, the parabola opens downward. The vertex (or turning point) of the parabola is the lowest point on the graph when it opens upward and the highest point on the graph when it opens downward.

$a>0$: Parabola opens upward.

$a<0$: Parabola opens downward.

FIGURE 2.2 Characteristics of graphs of quadratic functions
Look at the unusual image of the word mirror shown here. The artist, Scott Kim, has created the image so that the two halves of the whole are mirror images of each other. A parabola shares this kind of symmetry, in which a vertical line through the vertex divides the figure in half. Parabolas are symmetric with respect to this line, called the axis of symmetry. If a parabola is folded along its axis of symmetry, the two halves match exactly.

Graphing Quadratic Functions in Standard Form

In our earlier work with transformations, we applied a series of transformations to the graph of $f(x)=x^{2}$. The graph of this function is a parabola. The vertex for this parabola is $(0,0)$. In Figure 2.3(a), the graph of $f(x)=a x^{2}$ for $a>0$ is shown in black; it opens upward. In Figure 2.3(b), the graph of $f(x)=a x^{2}$ for $a<0$ is shown in black; it opens downward.

$$
\text { Transformations of } f(x)=a x^{2}
$$

FIGURE 2.3(a) $a>0$: Parabola opens upward.

FIGURE 2.3(b) $a<0$: Parabola opens downward.

Figure 2.3(a) and 2.3(b) also show the graph of $g(x)=a(x-h)^{2}+k$ in blue. Compare these graphs to those of $f(x)=a x^{2}$. Observe that h determines a horizontal shift and k determines a vertical shift of the graph of $f(x)=a x^{2}$:

Consequently, the vertex $(0,0)$ on the black graph of $f(x)=a x^{2}$ moves to the point (h, k) on the blue graph of $g(x)=a(x-h)^{2}+k$. The axis of symmetry is the vertical line whose equation is $x=h$.

The form of the expression for g is convenient because it immediately identifies the vertex of the parabola as (h, k). This is the standard form of a quadratic function.

The Standard Form of a Quadratic Function

The quadratic function

$$
f(x)=a(x-h)^{2}+k, \quad a \neq 0
$$

is in standard form. The graph of f is a parabola whose vertex is the point (h, k). The parabola is symmetric with respect to the line $x=h$. If $a>0$, the parabola opens upward; if $a<0$, the parabola opens downward.

FIGURE 2.4 The graph of $f(x)=-2(x-3)^{2}+8$

The sign of a in $f(x)=a(x-h)^{2}+k$ determines whether the parabola opens upward or downward. Furthermore, if $|a|$ is small, the parabola opens more flatly than if $|a|$ is large. Here is a general procedure for graphing parabolas whose equations are in standard form:

Graphing Quadratic Functions with Equations in Standard Form

To graph $f(x)=a(x-h)^{2}+k$,

1. Determine whether the parabola opens upward or downward. If $a>0$, it opens upward. If $a<0$, it opens downward.
2. Determine the vertex of the parabola. The vertex is (h, k).
3. Find any x-intercepts by solving $f(x)=0$. The function's real zeros are the x-intercepts.
4. Find the y-intercept by computing $f(0)$.
5. Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve that is shaped like a bowl or an inverted bowl.

In the graphs that follow, we will show each axis of symmetry as a dashed vertical line. Because this vertical line passes through the vertex, (h, k), its equation is $x=h$. The line is dashed because it is not part of the parabola.

EXAMPLE 1 Graphing a Quadratic Function in Standard Form

Graph the quadratic function $f(x)=-2(x-3)^{2}+8$.

SOLUTION

We can graph this function by following the steps in the preceding box. We begin by identifying values for a, h, and k.

Step 1 Determine how the parabola opens. Note that a, the coefficient of x^{2}, is -2 . Thus, $a<0$; this negative value tells us that the parabola opens downward.
Step 2 Find the vertex. The vertex of the parabola is at (h, k). Because $h=3$ and $k=8$, the parabola has its vertex at $(3,8)$.
Step 3 Find the \boldsymbol{x}-intercepts by solving $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. Replace $f(x)$ with 0 in $f(x)=-2(x-3)^{2}+8$.

$$
\begin{array}{rlrlrl}
0 & =-2(x-3)^{2}+8 & & \text { Find } x \text {-intercepts, setting } f(x) \text { equal to } 0 . \\
2(x-3)^{2} & =8 & & \text { Solve for } x \text {. Add } 2(x-3)^{2} \text { to both sides } 0 \\
(x-3)^{2} & =4 & & \text { the equation. } \\
x-3 & =\sqrt{4} \text { or } & x-3=-\sqrt{4} & & \begin{array}{l}
\text { Avide both sides by } 2 .
\end{array} \\
x-3 & =2 & x-3 & \text { Apply the square root property. } \\
x & =5 & & \sqrt{4}=2
\end{array}
$$

The x-intercepts are 1 and 5. The parabola passes through $(1,0)$ and $(5,0)$.
Step 4 Find the \boldsymbol{y}-intercept by computing $\boldsymbol{f}(0)$. Replace \boldsymbol{x} with 0 in $f(x)=-2(x-3)^{2}+8$.

$$
f(0)=-2(0-3)^{2}+8=-2(-3)^{2}+8=-2(9)+8=-10
$$

The y-intercept is -10 . The parabola passes through $(0,-10)$.
Step 5 Graph the parabola. With a vertex at $(3,8), x$-intercepts at 5 and 1 , and a y-intercept at -10 , the graph of f is shown in Figure 2.4. The axis of symmetry is the vertical line whose equation is $x=3$.

FIGURE 2.5 The graph of $f(x)=(x+3)^{2}+1$

EXAMPLE 2 Graphing a Quadratic Function in Standard Form

 Graph the quadratic function $f(x)=(x+3)^{2}+1$.
SOLUTION

We begin by finding values for a, h, and k.

$$
\begin{aligned}
& f(x)= a(x-h)^{2}+k \quad \text { Standard form of quadratic function } \\
& f(x)=(x+3)^{2}+1 \quad \text { Given function } \\
& f(x)=1(x-(-3))^{2}+1 \\
& a=1 \quad h=-3 \quad k=1
\end{aligned}
$$

Step 1 Determine how the parabola opens. Note that a, the coefficient of x^{2}, is 1 . Thus, $a>0$; this positive value tells us that the parabola opens upward.
Step 2 Find the vertex. The vertex of the parabola is at (h, k). Because $h=-3$ and $k=1$, the parabola has its vertex at $(-3,1)$.
Step 3 Find the \boldsymbol{x}-intercepts by solving $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. Replace $f(x)$ with 0 in $f(x)=(x+3)^{2}+1$. Because the vertex is at $(-3,1)$, which lies above the x-axis, and the parabola opens upward, it appears that this parabola has no x-intercepts. We can verify this observation algebraically.

$$
\begin{array}{rlrlrl}
0 & =(x+3)^{2}+1 & & \begin{array}{l}
\text { Find possible } x \text {-intercepts, } \\
-1
\end{array} & =(x+3)^{2} & \\
& f(x) \text { equal to } 0 .
\end{array}
$$

Because this equation has no real solutions, the parabola has no x-intercepts.
Step 4 Find the \boldsymbol{y}-intercept by computing $\boldsymbol{f}(\mathbf{0})$. Replace \boldsymbol{x} with 0 in $f(x)=(x+3)^{2}+1$.

$$
f(0)=(0+3)^{2}+1=3^{2}+1=9+1=10
$$

The y-intercept is 10 . The parabola passes through $(0,10)$.
Step 5 Graph the parabola. With a vertex at $(-3,1)$, no x-intercepts, and a y-intercept at 10 , the graph of f is shown in Figure 2.5. The axis of symmetry is the vertical line whose equation is $x=-3$.

GREAT QUESTION!

I'm confused about finding h from the equation $f(x)=a(x-h)^{2}+k$. Can you help me out?
It's easy to make a sign error when finding h, the x-coordinate of the vertex. In

$$
f(x)=a(x-h)^{2}+k,
$$

h is the number that follows the subtraction sign.

$$
\begin{aligned}
f(x)=-2(x-3)^{2}+8 \quad \text { - } f(x) & =(x+3)^{2}+1 \\
& =(x-(-3))^{2}+1
\end{aligned}
$$

The number after the subtraction is $3: h=3$.

The number after the subtraction is $-3: h=-3$.
$\$$ Check Point 2 Graph the quadratic function $f(x)=(x-2)^{2}+1$.

Graphing Quadratic Functions in the Form $f(x)=a x^{2}+b x+c$
Quadratic functions are frequently expressed in the form $f(x)=a x^{2}+b x+c$. How can we identify the vertex of a parabola whose equation is in this form? Completing the square provides the answer to this question.

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
&=a\left(x^{2}+\frac{b}{a} x\right)+c \\
&=a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+c-a\left(\frac{b^{2}}{4 a^{2}}\right) \\
& \begin{array}{l}
\begin{array}{l}
\text { Complete the square by } \\
\text { adding the square of half } \\
\text { the coefficient of } x .
\end{array} \\
\\
\end{array} \quad \begin{aligned}
\text { By completing the square, we added } \\
a \cdot \frac{b^{2}}{4 a^{2}} . \text { To avoid changing the } \\
\text { function's equation, we must } \\
\text { subtract this term. }
\end{aligned} \\
&\left.x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a} \begin{array}{l}
\text { Write the trinomial as the the } \\
\text { square of a binomial and } \\
\text { simplify the constant term. }
\end{array}
\end{aligned}
$$

Compare this form of the equation with a quadratic function's standard form.

$$
\begin{aligned}
& \text { Standard form } f(x)=a(x-h)^{2}+k \\
& \qquad h=-\frac{b}{2 a} \quad k=c-\frac{b^{2}}{4 a}
\end{aligned}
$$

Equation under discussion

$$
f(x)=a\left(x-\left(-\frac{b}{2 a}\right)\right)^{2}+c-\frac{b^{2}}{4 a}
$$

The important part of this observation is that h, the x-coordinate of the vertex, is $-\frac{b}{2 a}$. The y-coordinate can be found by evaluating the function at $-\frac{b}{2 a}$.

The Vertex of a Parabola Whose Equation Is $f(x)=a x^{2}+b x+c$

Consider the parabola defined by the quadratic function $f(x)=a x^{2}+b x+c$. The parabola's vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. The x-coordinate is $-\frac{b}{2 a}$. The y-coordinate is found by substituting the x-coordinate into the parabola's equation and evaluating the function at this value of x.

We can apply our five-step procedure to graph parabolas in the form $f(x)=a x^{2}+b x+c$.

Graphing Quadratic Functions with Equations in the Form

$f(x)=a x^{2}+b x+c$
To graph $f(x)=a x^{2}+b x+c$,

1. Determine whether the parabola opens upward or downward. If $a>0$, it opens upward. If $a<0$, it opens downward.
2. Determine the vertex of the parabola. The vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.
3. Find any x-intercepts by solving $f(x)=0$. The real solutions of $a x^{2}+b x+c=0$ are the x-intercepts.
4. Find the y-intercept by computing $f(0)$. Because $f(0)=c$ (the constant term in the function's equation), the y-intercept is c and the parabola passes through ($0, c$).
5. Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve.

EXAMPLE 3 Graphing a Quadratic Function in the Form $f(x)=a x^{2}+b x+c$

Graph the quadratic function $f(x)=-x^{2}-2 x+1$. Use the graph to identify the function's domain and its range.

SOLUTION

Step 1 Determine how the parabola opens. Note that a, the coefficient of x^{2}, is -1 . Thus, $a<0$; this negative value tells us that the parabola opens downward.
Step 2 Find the vertex. We know that the x-coordinate of the vertex is $x=-\frac{b}{2 a}$. We identify a, b, and c in $f(x)=a x^{2}+b x+c$.

$$
\begin{aligned}
& f(x)=-x^{2}-2 x+1 \\
& \quad a=-1 \quad b=-2 \quad c=1
\end{aligned}
$$

Substitute the values of a and b into the equation for the x-coordinate:

$$
x=-\frac{b}{2 a}=-\frac{-2}{2(-1)}=-\left(\frac{-2}{-2}\right)=-1 .
$$

The x-coordinate of the vertex is -1 . We substitute -1 for x in the equation of the function, $f(x)=-x^{2}-2 x+1$, to find the y-coordinate:

$$
f(-1)=-(-1)^{2}-2(-1)+1=-1+2+1=2 .
$$

The vertex is at $(-1,2)$.
Step 3 Find the \boldsymbol{x}-intercepts by solving $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. Replace $f(x)$ with 0 in $f(x)=-x^{2}-2 x+1$. We obtain $0=-x^{2}-2 x+1$. This equation cannot be solved by factoring. We will use the quadratic formula to solve it.

$$
\begin{gathered}
-x^{2}-2 x+1=0 \\
a=-1 \quad b=-2 \quad c=1 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(-1)(1)}}{2(-1)}=\frac{2 \pm \sqrt{4-(-4)}}{-2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { To locate the } x \text {-intercepts, we } \\
& \text { need decimal approximations. } \\
& \begin{array}{c}
\text { Thus, there is no need to simplify } \\
\text { the radical form of the solutions. }
\end{array}
\end{aligned} x=\frac{2+\sqrt{8}}{-2} \approx-2.4 \quad \text { or } \quad x=\frac{2-\sqrt{8}}{-2} \approx 0.4
$$

The x-intercepts are approximately -2.4 and 0.4 . The parabola passes through $(-2.4,0)$ and $(0.4,0)$.

Step 4 Find the \boldsymbol{y}-intercept by computing $\boldsymbol{f}(\mathbf{0})$. Replace x with 0 in $f(x)=-x^{2}-2 x+1$.

$$
f(0)=-0^{2}-2 \cdot 0+1=1
$$

The y-intercept is 1 , which is the constant term in the function's equation. The parabola passes through $(0,1)$.
Step 5 Graph the parabola. With a vertex at ($-1,2$), x-intercepts at approximately -2.4 and 0.4 , and a y-intercept at 1, the graph of f is shown in Figure 2.6(a). The axis of symmetry is the vertical line whose equation is $x=-1$.

FIGURE 2.6(a) The graph of $f(x)=-x^{2}-2 x+1$

FIGURE 2.6(b) Determining the domain and range of $f(x)=-x^{2}-2 x+1$

GREAT QUESTION!

Are there rules to find domains and ranges of quadratic functions?
Yes. The domain of any quadratic function includes all real numbers. If the vertex is the graph's highest point, the range includes all real numbers at or below the y-coordinate of the vertex. If the vertex is the graph's lowest point, the range includes all real numbers at or above the y-coordinate of the vertex.

[^5]Now we are ready to determine the domain and range of $f(x)=-x^{2}-2 x+1$. We can use the parabola, shown again in Figure 2.6(b), to do so. To find the domain, look for all the inputs on the x-axis that correspond to points on the graph. As the graph widens and continues to fall at both ends, can you see that these inputs include all real numbers?

$$
\text { Domain of } f \text { is }\{x \mid x \text { is a real number }\} \text { or }(-\infty, \infty)
$$

To find the range, look for all the outputs on the y-axis that correspond to points on the graph. Figure 2.6(b) shows that the parabola's vertex, $(-1,2)$, is the highest point on the graph. Because the y-coordinate of the vertex is 2 , outputs on the y-axis fall at or below 2 .

$$
\text { Range of } f \text { is }\{y \mid y \leq 2\} \text { or }(-\infty, 2]
$$

Check Point 3 Graph the quadratic function $f(x)=-x^{2}+4 x+1$. Use the graph to identify the function's domain and its range.

Minimum and Maximum Values of Quadratic Functions

Consider the quadratic function $f(x)=a x^{2}+b x+c$. If $a>0$, the parabola opens upward and the vertex is its lowest point. If $a<0$, the parabola opens downward and the vertex is its highest point. The x-coordinate of the vertex is $-\frac{b}{2 a}$. Thus, we can find the minimum or maximum value of f by evaluating the quadratic function at $x=-\frac{b}{2 a}$.

Minimum and Maximum: Quadratic Functions

Consider the quadratic function $f(x)=a x^{2}+b x+c$.

1. If $a>0$, then f has a minimum that occurs at $x=-\frac{b}{2 a}$. This minimum value is $f\left(-\frac{b}{2 a}\right)$.
2. If $a<0$, then f has a maximum that occurs at $x=-\frac{b}{2 a}$. This maximum value is $f\left(-\frac{b}{2 a}\right)$.
In each case, the value of x gives the location of the minimum or maximum value.
The value of y, or $f\left(-\frac{b}{2 a}\right)$, gives that minimum or maximum value.

EXAMPLE 4 Obtaining Information about a Quadratic Function from Its Equation

Consider the quadratic function $f(x)=-3 x^{2}+6 x-13$.
a. Determine, without graphing, whether the function has a minimum value or a maximum value.
b. Find the minimum or maximum value and determine where it occurs.
c. Identify the function's domain and its range.

SOLUTION

We begin by identifying a, b, and c in the function's equation:

$$
\begin{aligned}
& f(x)=-3 x^{2}+6 x-13 . \\
& a=-3 \quad b=6 \quad c=-13
\end{aligned}
$$

a. Because $a<0$, the function has a maximum value.
b. The maximum value occurs at

$$
x=-\frac{b}{2 a}=-\frac{6}{2(-3)}=-\frac{6}{-6}=-(-1)=1 .
$$

The maximum value occurs at $x=1$ and the maximum value of $f(x)=-3 x^{2}+6 x-13$ is

$$
f(1)=-3 \cdot 1^{2}+6 \cdot 1-13=-3+6-13=-10 .
$$

We see that the maximum is -10 at $x=1$.
c. Like all quadratic functions, the domain is $(-\infty, \infty)$. Because the function's maximum value is -10 , the range includes all real numbers at or below -10 . The range is $(-\infty,-10]$.
We can use the graph of $f(x)=-3 x^{2}+6 x-13$ to visualize the results of Example 4. Figure 2.7 shows the graph in a $[-6,6,1]$ by $[-50,20,10]$ viewing rectangle. The maximum function feature verifies that the function's maximum is -10 at $x=1$. Notice that x gives the location of the maximum and y gives the maximum value. Notice, too, that the maximum value is -10 and not the ordered pair $(1,-10)$.

Check Point 4 Repeat parts (a) through (c) of Example 4 using the quadratic function $f(x)=4 x^{2}-16 x+1000$.
(4) Solve problems involving a quadratic function's minimum or maximum value.

Applications of Quadratic Functions

Many applied problems involve finding the maximum or minimum value of a quadratic function, as well as where this value occurs.

EXAMPLE 5 The Parabolic Path of a Punted Football

FIGURE 2.8

Figure 2.8 shows that when a football is kicked, the nearest defensive player is 6 feet from the point of impact with the kicker's foot. The height of the punted football, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.01 x^{2}+1.18 x+2
$$

where x is the ball's horizontal distance, in feet, from the point of impact with the kicker's foot.
a. What is the maximum height of the punt and how far from the point of impact does this occur?
b. How far must the nearest defensive player, who is 6 feet from the kicker's point of impact, reach to block the punt?
c. If the ball is not blocked by the defensive player, how far down the field will it go before hitting the ground?
d. Graph the function that models the football's parabolic path.

SOLUTION
a. We begin by identifying the numbers a, b, and c in the function's equation.

$$
\begin{array}{r}
f(x)=-0.01 x^{2}+1.18 x+2 \\
\quad a=-0.01 \quad b=1.18 \quad c=2
\end{array}
$$

Because $a<0$, the function has a maximum that occurs at $x=-\frac{b}{2 a}$.

$$
x=-\frac{b}{2 a}=-\frac{1.18}{2(-0.01)}=-(-59)=59
$$

This means that the maximum height of the punt occurs 59 feet from the kicker's point of impact. The maximum height of the punt is

$$
f(59)=-0.01(59)^{2}+1.18(59)+2=36.81
$$

or 36.81 feet.
b. Figure 2.8 shows that the defensive player is 6 feet from the kicker's point of impact. To block the punt, he must touch the football along its parabolic path. This means that we must find the height of the ball 6 feet from the kicker. Replace x with 6 in the given function, $f(x)=-0.01 x^{2}+1.18 x+2$.

$$
f(6)=-0.01(6)^{2}+1.18(6)+2=-0.36+7.08+2=8.72
$$

The defensive player must reach 8.72 feet above the ground to block the punt.
c. Assuming that the ball is not blocked by the defensive player, we are interested in how far down the field it will go before hitting the ground. We are looking for the ball's horizontal distance, x, when its height above the ground, $f(x)$, is 0 feet. To find this x-intercept, replace $f(x)$ with 0 in $f(x)=-0.01 x^{2}+1.18 x+2$. We obtain $0=-0.01 x^{2}+1.18 x+2$, or $-0.01 x^{2}+1.18 x+2=0$. The equation cannot be solved by factoring. We will use the quadratic formula to solve it.

$$
\begin{aligned}
& -0.01 x^{2}+1.18 x+2=0 \\
& a=-0.01 \quad b=1.18 \quad c=2
\end{aligned}
$$

The equation for determining the ball's maximum horizontal distance
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1.18 \pm \sqrt{(1.18)^{2}-4(-0.01)(2)}}{2(-0.01)}=\frac{-1.18 \pm \sqrt{1.4724}}{-0.02}$
$x=\frac{-1.18+\sqrt{1.4724}}{-0.02} \quad$ or $\quad x=\frac{-1.18-\sqrt{1.4724}}{-0.02}$
$x \approx-1.7$
$x \approx 119.7 \quad \begin{aligned} & \text { Use a calculator to evaluate the radicand. } \\ & \text { nearest tenth. }\end{aligned}$

Reject this value. We are interested in

the football's height corresponding to horizontal distances from its point of impact onward, or $x \geq 0$.

If the football is not blocked by the defensive player, it will go approximately 119.7 feet down the field before hitting the ground.
d. In terms of graphing the model for the football's parabolic path, $f(x)=-0.01 x^{2}+1.18 x+2$, we have already determined the vertex and the approximate x-intercept.
vertex: $(59,36.81)$
The ball's maximum height, 36.81 feet, occurs at a horizontal distance of 59 feet.

The ball's maximum horizontal
x-intercept: 119.7 distance is approximately 119.7 feet.

Figure $\mathbf{2 . 8}$ indicates that the y-intercept is 2, meaning that the ball is kicked from a height of 2 feet. Let's verify this value by replacing x with 0 in $f(x)=-0.01 x^{2}+1.18 x+2$.

$$
f(0)=-0.01 \cdot 0^{2}+1.18 \cdot 0+2=0+0+2=2
$$

Using the vertex, $(59,36.81)$, the x-intercept, 119.7, and the y-intercept, 2, the graph of the equation that models the football's parabolic path is shown in Figure 2.9. The graph is shown only for $x \geq 0$, indicating horizontal distances that begin at the football's impact with the kicker's foot and end with the ball hitting the ground.

FIGURE 2.9 The parabolic path of a punted football

Check Point 5 An archer's arrow follows a parabolic path. The height of the arrow, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.005 x^{2}+2 x+5,
$$

where x is the arrow's horizontal distance, in feet.
a. What is the maximum height of the arrow and how far from its release does this occur?
b. Find the horizontal distance the arrow travels before it hits the ground. Round to the nearest foot.
c. Graph the function that models the arrow's parabolic path.

Quadratic functions can also be used to model verbal conditions. Once we have obtained a quadratic function, we can then use the x-coordinate of the vertex to determine its maximum or minimum value. Here is a step-by-step strategy for solving these kinds of problems:

Strategy for Solving Problems Involving Maximizing or Minimizing Quadratic Functions

1. Read the problem carefully and decide which quantity is to be maximized or minimized.
2. Use the conditions of the problem to express the quantity as a function in one variable.
3. Rewrite the function in the form $f(x)=a x^{2}+b x+c$.
4. Calculate $-\frac{b}{2 a}$. If $a>0, f$ has a minimum at $x=-\frac{b}{2 a}$. This minimum value is $f\left(-\frac{b}{2 a}\right)$. If $a<0, f$ has a maximum at $x=-\frac{b}{2 a}$. This maximum value is $f\left(-\frac{b}{2 a}\right)$.
5. Answer the question posed in the problem.

EXAMPLE 6 Minimizing a Product

Among all pairs of numbers whose difference is 10 , find a pair whose product is as small as possible. What is the minimum product?

SOLUTION

Step 1 Decide what must be maximized or minimized. We must minimize the product of two numbers. Calling the numbers x and y, and calling the product P, we must minimize

$$
P=x y .
$$

Step 2 Express this quantity as a function in one variable. In the formula $P=x y$, P is expressed in terms of two variables, x and y. However, because the difference of the numbers is 10 , we can write

$$
x-y=10 .
$$

We can solve this equation for y in terms of x (or vice versa), substitute the result into $P=x y$, and obtain P as a function of one variable.

$$
\begin{array}{cl}
-y=-x+10 & \text { Subtract } x \text { from both sides of } x-y=10 \\
y=x-10 & \text { Multiply both sides of the equation by }-1 \text { and solve for } y .
\end{array}
$$

Now we substitute $x-10$ for y in $P=x y$.

$$
P=x y=x(x-10)
$$

Because P is now a function of x, we can write

$$
P(x)=x(x-10)
$$

TECHNOLOGY

Numeric Connections
The TABLE feature of a graphing utility can be used to verify our work in Example 6.

FIGURE 2.10 What value of x will maximize the rectangle's area?

Step 3 Write the function in the form $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$. We apply the distributive property to obtain

$$
\begin{array}{r}
P(x)=x(x-10)=x^{2}-10 x \\
a=1 \quad b=-10
\end{array}
$$

Step 4 Calculate $-\frac{b}{2 \boldsymbol{a}}$. If $\boldsymbol{a}>\mathbf{0}$, the function has a minimum at this value. The voice balloons show that $a=1$ and $b=-10$.

$$
x=-\frac{b}{2 a}=-\frac{-10}{2(1)}=-(-5)=5
$$

This means that the product, P, of two numbers whose difference is 10 is a minimum when one of the numbers, x, is 5 .
Step 5 Answer the question posed by the problem. The problem asks for the two numbers and the minimum product. We found that one of the numbers, x, is 5 . Now we must find the second number, y.

$$
y=x-10=5-10=-5
$$

The number pair whose difference is 10 and whose product is as small as possible is $5,-5$. The minimum product is $5(-5)$, or -25 .

3 Check Point 6 Among all pairs of numbers whose difference is 8, find a pair whose product is as small as possible. What is the minimum product?

EXAMPLE 7 Maximizing Area

You have 100 yards of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?

SOLUTION

Step 1 Decide what must be maximized or minimized. We must maximize area. What we do not know are the rectangle's dimensions, x and y.
Step 2 Express this quantity as a function in one variable. Because we must maximize the area of a rectangle, we have $A=x y$. We need to transform this into a function in which A is represented by one variable. Because you have 100 yards of fencing, the perimeter of the rectangle is 100 yards. This means that

$$
2 x+2 y=100 .
$$

We can solve this equation for y in terms of x, substitute the result into $A=x y$, and obtain A as a function in one variable. We begin by solving for y.

$$
\begin{aligned}
2 y & =100-2 x & & \text { Subtract } 2 x \text { from both sides of } 2 x+2 y=100 . \\
y & =\frac{100-2 x}{2} & & \text { Divide both sides by } 2 . \\
y & =50-x & & \text { Divide each term in the numerator by } 2 .
\end{aligned}
$$

Now we substitute $50-x$ for y in $A=x y$.

$$
A=x y=x(50-x)
$$

The rectangle and its dimensions are illustrated in Figure 2.10. Because A is now a function of x, we can write

$$
A(x)=x(50-x)
$$

This function models the area, $A(x)$, of any rectangle whose perimeter is 100 yards in terms of one of its dimensions, x.

TECHNOLOGY

Graphic Connections

The graph of the area function

$$
A(x)=x(50-x)
$$

was obtained with a graphing utility using a [0, 50, 2] by [$0,700,25$] viewing rectangle. The maximum function feature verifies that a maximum area of 625 square yards occurs when one of the dimensions is 25 yards.

Step 3 Write the function in the form $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$. We apply the distributive property to obtain

$$
\begin{array}{r}
A(x)=x(50-x)=50 x-x^{2}=-x^{2}+50 x . \\
a=-1 \quad b=50
\end{array}
$$

Step 4 Calculate $-\frac{b}{2 \boldsymbol{a}}$. If $\boldsymbol{a}<\mathbf{0}$, the function has a maximum at this value. The voice balloons show that $a=-1$ and $b=50$.

$$
x=-\frac{b}{2 a}=-\frac{50}{2(-1)}=25
$$

This means that the area, $A(x)$, of a rectangle with perimeter 100 yards is a maximum when one of the rectangle's dimensions, x, is 25 yards.

FIGURE 2.10 (repeated)

Step 5 Answer the question posed by the problem. We found that $x=25$. Figure 2.10 shows that the rectangle's other dimension is $50-x=50-25=25$. The dimensions of the rectangle that maximize the enclosed area are 25 yards by 25 yards. The rectangle that gives the maximum area is actually a square with an area of 25 yards $\cdot 25$ yards, or 625 square yards.

7 Check Point 7 You have 120 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?

The ability to express a quantity to be maximized or minimized as a function in one variable plays a critical role in solving max-min problems. In calculus, you will learn a technique for maximizing or minimizing all functions, not only quadratic functions.

Blitzer Bonus || Addressing Stress Parabolically

Stress levels can help or hinder performance. The parabola in Figure 2.11 serves as a model that shows people under both low stress and high stress perform worse than their moderate-stress counterparts.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The quadratic function $f(x)=a(x-h)^{2}+k, a \neq 0$, is in \qquad form. The graph of f is called a/an \qquad whose vertex is the point \qquad _. The graph opens upward if a \qquad and opens downward if a \qquad _.
2. Consider the quadratic function $f(x)=a x^{2}+b x+c, a \neq 0$. If $a>0$, then f has a minimum that occurs at $x=$ \qquad This minimum
value is \qquad . If $a<0$, then f has a maximum that occurs at $x=$ \qquad This maximum value is
3. True or false: The graph of $f(x)=(x-2)^{2}+1$ opens upward
4. True or false: The graph of $f(x)=(x+5)^{2}+3$ has its vertex at $(5,3)$.
5. True or false: The y-coordinate of the vertex of $f(x)=4 x^{2}-16 x+300$ is $f(2)$.
6. The difference between two numbers is 8 . If one number is represented by x, the other number can be expressed as \qquad The product of the numbers, $P(x)$, expressed in the form $P(x)=a x^{2}+b x+c$, is $P(x)=$ \qquad -.

EXERCISE SET 2.2

Practice Exercises

In Exercises 1-4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options.

$$
\begin{array}{ll}
f(x)=(x+1)^{2}-1 & g(x)=(x+1)^{2}+1 \\
h(x)=(x-1)^{2}+1 & j(x)=(x-1)^{2}-1
\end{array}
$$

1.

2.

3.
4.

In Exercises 5-8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options.

$$
\begin{array}{ll}
f(x)=x^{2}+2 x+1 & g(x)=x^{2}-2 x+1 \\
h(x)=x^{2}-1 & j(x)=-x^{2}-1
\end{array}
$$

7.

8.

In Exercises 9-16, find the coordinates of the vertex for the parabola defined by the given quadratic function.
9. $f(x)=2(x-3)^{2}+1$
10. $f(x)=-3(x-2)^{2}+12$
11. $f(x)=-2(x+1)^{2}+5$
12. $f(x)=-2(x+4)^{2}-8$
13. $f(x)=2 x^{2}-8 x+3$
14. $f(x)=3 x^{2}-12 x+1$
15. $f(x)=-x^{2}-2 x+8$
16. $f(x)=-2 x^{2}+8 x-1$

In Exercises 17-38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range.
17. $f(x)=(x-4)^{2}-1$
18. $f(x)=(x-1)^{2}-2$
19. $f(x)=(x-1)^{2}+2$
20. $f(x)=(x-3)^{2}+2$
21. $y-1=(x-3)^{2}$
22. $y-3=(x-1)^{2}$
23. $f(x)=2(x+2)^{2}-1$
24. $f(x)=\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2}$
25. $f(x)=4-(x-1)^{2}$
26. $f(x)=1-(x-3)^{2}$
27. $f(x)=x^{2}-2 x-3$
28. $f(x)=x^{2}-2 x-15$
29. $f(x)=x^{2}+3 x-10$
30. $f(x)=2 x^{2}-7 x-4$
31. $f(x)=2 x-x^{2}+3$
32. $f(x)=5-4 x-x^{2}$
33. $f(x)=x^{2}+6 x+3$
34. $f(x)=x^{2}+4 x-1$
35. $f(x)=2 x^{2}+4 x-3$
36. $f(x)=3 x^{2}-2 x-4$
37. $f(x)=2 x-x^{2}-2$
38. $f(x)=6-4 x+x^{2}$

In Exercises 39-44, an equation of a quadratic function is given.
a. Determine, without graphing, whether the function has a minimum value or a maximum value.
b. Find the minimum or maximum value and determine where it occurs.
c. Identify the function's domain and its range.
39. $f(x)=3 x^{2}-12 x-1$
40. $f(x)=2 x^{2}-8 x-3$
41. $f(x)=-4 x^{2}+8 x-3$
42. $f(x)=-2 x^{2}-12 x+3$
43. $f(x)=5 x^{2}-5 x$
44. $f(x)=6 x^{2}-6 x$

Practice Plus

In Exercises 45-48, give the domain and the range of each quadratic function whose graph is described.
45. The vertex is $(-1,-2)$ and the parabola opens up.
46. The vertex is $(-3,-4)$ and the parabola opens down.
47. Maximum $=-6$ at $x=10$
48. Minimum $=18$ at $x=-6$

In Exercises 49-52, write an equation in standard form of the parabola that has the same shape as the graph of $f(x)=2 x^{2}$, but with the given point as the vertex.
49. $(5,3)$
50. $(7,4)$
51. $(-10,-5)$
52. $(-8,-6)$

In Exercises 53-56, write an equation in standard form of the parabola that has the same shape as the graph of $f(x)=3 x^{2}$ or $g(x)=-3 x^{2}$, but with the given maximum or minimum.
53. Maximum $=4$ at $x=-2$
54. Maximum $=-7$ at $x=5$
55. Minimum $=0$ at $x=11$
56. Minimum $=0$ at $x=9$

Application Exercises

An athlete whose event is the shot put releases the shot with the same initial velocity but at different angles. The figure shows the parabolic paths for shots released at angles of 35° and 65°. Exercises 57-58 are based on the functions that model the parabolic paths.

57. When the shot whose path is shown by the blue graph is released at an angle of 35°, its height, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.01 x^{2}+0.7 x+6.1
$$

where x is the shot's horizontal distance, in feet, from its point of release. Use this model to solve parts (a) through (c) and verify your answers using the blue graph.
a. What is the maximum height of the shot and how far from its point of release does this occur?
b. What is the shot's maximum horizontal distance, to the nearest tenth of a foot, or the distance of the throw?
c. From what height was the shot released?
58. When the shot whose path is shown by the red graph in the previous column is released at an angle of 65°, its height, $g(x)$, in feet, can be modeled by

$$
g(x)=-0.04 x^{2}+2.1 x+6.1
$$

where x is the shot's horizontal distance, in feet, from its point of release. Use this model to solve parts (a) through (c) and verify your answers using the red graph.
a. What is the maximum height, to the nearest tenth of a foot, of the shot and how far from its point of release does this occur?
b. What is the shot's maximum horizontal distance, to the nearest tenth of a foot, or the distance of the throw?
c. From what height was the shot released?
59. A ball is thrown upward and outward from a height of 6 feet. The height of the ball, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.8 x^{2}+2.4 x+6
$$

where x is the ball's horizontal distance, in feet, from where it was thrown.
a. What is the maximum height of the ball and how far from where it was thrown does this occur?
b. How far does the ball travel horizontally before hitting the ground? Round to the nearest tenth of a foot.
c. Graph the function that models the ball's parabolic path.
60. A ball is thrown upward and outward from a height of 6 feet. The height of the ball, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.8 x^{2}+3.2 x+6
$$

where x is the ball's horizontal distance, in feet, from where it was thrown.
a. What is the maximum height of the ball and how far from where it was thrown does this occur?
b. How far does the ball travel horizontally before hitting the ground? Round to the nearest tenth of a foot.
c. Graph the function that models the ball's parabolic path.
61. Among all pairs of numbers whose sum is 16 , find a pair whose product is as large as possible. What is the maximum product?
62. Among all pairs of numbers whose sum is 20 , find a pair whose product is as large as possible. What is the maximum product?
63. Among all pairs of numbers whose difference is 16 , find a pair whose product is as small as possible. What is the minimum product?
64. Among all pairs of numbers whose difference is 24 , find a pair whose product is as small as possible. What is the minimum product?
65. You have 600 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed?

66. You have 200 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed?

67. You have 50 yards of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?
68. You have 80 yards of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?
69. A rectangular playground is to be fenced off and divided in two by another fence parallel to one side of the playground. Six hundred feet of fencing is used. Find the dimensions of the playground that maximize the total enclosed area. What is the maximum area?
70. A rectangular playground is to be fenced off and divided in two by another fence parallel to one side of the playground. Four hundred feet of fencing is used. Find the dimensions of the playground that maximize the total enclosed area. What is the maximum area?
71. A rain gutter is made from sheets of aluminum that are 20 inches wide by turning up the edges to form right angles. Determine the depth of the gutter that will maximize its cross-sectional area and allow the greatest amount of water to flow. What is the maximum cross-sectional area?
72. A rain gutter is made from sheets of aluminum that are 12 inches wide by turning up the edges to form right angles. Determine the depth of the gutter that will maximize its cross-sectional area and allow the greatest amount of water to flow. What is the maximum cross-sectional area?

If you have difficulty obtaining the functions to be maximized in Exercises 73-76, read Example 2 in Section 1.10 on pages 269-270.
73. On a certain route, an airline carries 8000 passengers per month, each paying $\$ 50$. A market survey indicates that for each $\$ 1$ increase in the ticket price, the airline will lose 100 passengers. Find the ticket price that will maximize the airline's monthly revenue for the route. What is the maximum monthly revenue?
74. A car rental agency can rent every one of its 200 cars at $\$ 30$ per day. For each $\$ 1$ increase in rate, five fewer cars are rented. Find the rental amount that will maximize the agency's daily revenue. What is the maximum daily revenue?
75. The annual yield per walnut tree is fairly constant at 60 pounds per tree when the number of trees per acre is 20 or fewer. For each additional tree over 20 , the annual yield per tree for all trees on the acre decreases by 2 pounds due to overcrowding. How many walnut trees should be planted per acre to maximize the annual yield for the acre? What is the maximum number of pounds of walnuts per acre?
76. The annual yield per cherry tree is fairly constant at 50 pounds per tree when the number of trees per acre is 30 or fewer. For each additional tree over 30, the annual yield per tree for all trees on the acre decreases by 1 pound due to overcrowding. How many cherry trees should be planted per acre to maximize the annual yield for the acre? What is the maximum number of pounds of cherries per acre?

Writing in Mathematics

77. What is a quadratic function?
78. What is a parabola? Describe its shape.
79. Explain how to decide whether a parabola opens upward or downward.
80. Describe how to find a parabola's vertex if its equation is expressed in standard form. Give an example.
81. Describe how to find a parabola's vertex if its equation is in the form $f(x)=a x^{2}+b x+c$. Use $f(x)=x^{2}-6 x+8$ as an example.
82. A parabola that opens upward has its vertex at $(1,2)$. Describe as much as you can about the parabola based on this information. Include in your discussion the number of x-intercepts (if any) for the parabola.

Technology Exercises

83. Use a graphing utility to verify any five of your hand-drawn graphs in Exercises 17-38.
84. a. Use a graphing utility to graph $y=2 x^{2}-82 x+720$ in a standard viewing rectangle. What do you observe?
b. Find the coordinates of the vertex for the given quadratic function.
c. The answer to part (b) is $(20.5,-120.5)$. Because the leading coefficient, 2 , of the given function is positive, the vertex is a minimum point on the graph. Use this fact to help find a viewing rectangle that will give a relatively complete picture of the parabola. With an axis of symmetry at $x=20.5$, the setting for x should extend past this, so try $\mathrm{Xmin}=0$ and $\mathrm{Xmax}=30$. The setting for y should include (and probably go below) the y-coordinate of the graph's minimum y-value, so try Ymin $=-130$. Experiment with Ymax until your utility shows the parabola's major features.
d. In general, explain how knowing the coordinates of a parabola's vertex can help determine a reasonable viewing rectangle on a graphing utility for obtaining a complete picture of the parabola.
In Exercises 85-88, find the vertex for each parabola. Then determine a reasonable viewing rectangle on your graphing utility and use it to graph the quadratic function.
85. $y=-0.25 x^{2}+40 x$
86. $y=-4 x^{2}+20 x+160$
87. $y=5 x^{2}+40 x+600$
88. $y=0.01 x^{2}+0.6 x+100$
89. The bar graph shows the ratings of American Idol from season 1 (2002) through season 9 (2010).

Source: Nielsen
a. Let x represent American Idol's season number and let y represent the average number of viewers, in millions. Use a graphing utility to draw a scatter plot of the data. Explain why a quadratic function is appropriate for modeling these data.
b. Use the quadratic regression feature to find the quadratic function that best fits the data. Round all numbers to two decimal places.
c. Use the model in part (b) to determine the season in which American Idol had the greatest number of viewers. Round to the nearest whole number. According to the model, how many millions of viewers were there in that season? Round to one decimal place.
d. How do the results obtained from the model in part (c) compare with the data displayed by the graph?
e. Use a graphing utility to draw a scatter plot of the data and graph the quadratic function of best fit on the scatter plot. Can you see why projections based on the graph have the producers of American Idol looking for a shake-up?

Critical Thinking Exercises

Make Sense? In Exercises 90-93, determine whether each statement makes sense or does not make sense, and explain your reasoning.
90. I must have made an error when graphing this parabola because its axis of symmetry is the y-axis.
91. I like to think of a parabola's vertex as the point where it intersects its axis of symmetry.
92. I threw a baseball vertically upward and its path was a parabola.
93. Figure 2.8 on page 308 shows that a linear function provides a better description of the football's path than a quadratic function.

In Exercises 94-97, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
94. No quadratic functions have a range of $(-\infty, \infty)$.
95. The vertex of the parabola described by $f(x)=2(x-5)^{2}-1$ is at $(5,1)$.
96. The graph of $f(x)=-2(x+4)^{2}-8$ has one y-intercept and two x-intercepts.
97. The maximum value of y for the quadratic function $f(x)=-x^{2}+x+1$ is 1.

In Exercises 98-99, find the axis of symmetry for each parabola whose equation is given. Use the axis of symmetry to find a second point on the parabola whose y-coordinate is the same as the given point.
98. $f(x)=3(x+2)^{2}-5 ; \quad(-1,-2)$
99. $f(x)=(x-3)^{2}+2 ; \quad(6,11)$

In Exercises 100-101, write the equation of each parabola in standard form.
100. Vertex: $(-3,-4)$; The graph passes through the point $(1,4)$.
101. Vertex: $(-3,-1)$; The graph passes through the point $(-2,-3)$.
102. Find the point on the line whose equation is $2 x+y-2=0$ that is closest to the origin. Hint: Minimize the distance function by minimizing the expression under the square root.
103. A 300 -room hotel can rent every one of its rooms at $\$ 80$ per room. For each $\$ 1$ increase in rent, three fewer rooms are rented. Each rented room costs the hotel $\$ 10$ to service per day. How much should the hotel charge for each room to maximize its daily profit? What is the maximum daily profit?
104. A track and field area is to be constructed in the shape of a rectangle with semicircles at each end. The inside perimeter of the track is to be 440 yards. Find the dimensions of the rectangle that maximize the area of the rectangular portion of the field.

Group Exercise

105. Each group member should consult an almanac, newspaper, magazine, or the Internet to find data that initially increase and then decrease, or vice versa, and therefore can be modeled by a quadratic function. Group members should select the two sets of data that are most interesting and relevant. For each data set selected,
a. Use the quadratic regression feature of a graphing utility to find the quadratic function that best fits the data.
b. Use the equation of the quadratic function to make a prediction from the data. What circumstances might affect the accuracy of your prediction?
c. Use the equation of the quadratic function to write and solve a problem involving maximizing or minimizing the function.

Preview Exercises

Exercises 106-108 will help you prepare for the material covered in the next section.
106. Factor: $x^{3}+3 x^{2}-x-3$.
107. If $f(x)=x^{3}-2 x-5$, find $f(2)$ and $f(3)$. Then explain why the continuous graph of f must cross the x-axis between 2 and 3.
108. Determine whether $f(x)=x^{4}-2 x^{2}+1$ is even, odd, or neither. Describe the symmetry, if any, for the graph of f.

SECTION 2.3

Objectives

(1) Identify polynomial functions.
(2) Recognize characteristics of graphs of polynomial functions.
(3) Determine end behavior.
(4) Use factoring to find zeros of polynomial functions.
(5. Identify zeros and their multiplicities.
6 Use the Intermediate Value Theorem.
(7) Understand the relationship between degree and turning points.
(8) Graph polynomial functions.

Polynomial Functions and Their Graphs

In 1980, U.S. doctors diagnosed 41 cases of a rare form of cancer, Kaposi's sarcoma, that involved skin lesions, pneumonia, and severe immunological deficiencies. All cases involved gay men ranging in age from 26 to 51. By the end of 2008, approximately 1.1 million Americans, straight and gay, male and female, old and young, were infected with the HIV virus.

Modeling AIDS-related data and making predictions about the epidemic's havoc is serious business. Figure 2.12 on the next page shows the number of AIDS cases diagnosed in the United States from 1983 through 2008.

Basketball player Magic Johnson (1959-
) tested positive for HIV in 1991.

FIGURE 2.12
Source: Department of Health and Human Services
(1) Identify polynomial functions.

Changing circumstances and unforeseen events can result in models for AIDS-related data that are not particularly useful over long periods of time. For example, the function

$$
f(x)=-49 x^{3}+806 x^{2}+3776 x+2503
$$

models the number of AIDS cases diagnosed in the United States x years after 1983. The model was obtained using a portion of the data shown in Figure 2.12, namely cases diagnosed from 1983 through 1991, inclusive. Figure 2.13 shows the graph of f from 1983 through 1991. This function is an example of a polynomial function of degree 3 .

FIGURE 2.13 The graph of a function modeling the number of AIDS diagnoses from 1983 through 1991

Definition of a Polynomial Function

Let n be a nonnegative integer and let $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers, with $a_{n} \neq 0$. The function defined by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

is called a polynomial function of degree \boldsymbol{n}. The number a_{n}, the coefficient of the variable to the highest power, is called the leading coefficient.

Polynomial Functions

$$
f(x)=-3 x^{5}+\sqrt{2} x^{2}+5
$$

Polynomial function of degree 5

$$
\begin{aligned}
g(x) & =-3 x^{4}(x-2)(x+3) \\
& =-3 x^{4}\left(x^{2}+x-6\right) \\
& =-3 x^{6}-3 x^{5}+18 x^{4}
\end{aligned}
$$

Not Polynomial Functions

$$
\begin{aligned}
F(x) & =-3 \sqrt{x}+\sqrt{2} x^{2}+5 \\
& =-3 x^{\frac{1}{2}}+\sqrt{2} x^{2}+5
\end{aligned}
$$

The exponent on the variable is not an integer.

$$
\begin{aligned}
G(x) & =-\frac{3}{x^{2}}+\sqrt{2} x^{2}+5 \\
& =-3 x^{-2}+\sqrt{2} x^{2}+5
\end{aligned}
$$

The exponent on the variable is not a nonnegative integer.
2. Recognize characteristics of graphs of polynomial functions.

A constant function $f(x)=c$, where $c \neq 0$, is a polynomial function of degree 0 . A linear function $f(x)=m x+b$, where $m \neq 0$, is a polynomial function of degree 1 . A quadratic function $f(x)=a x^{2}+b x+c$, where $a \neq 0$, is a polynomial function of degree 2 . In this section, we focus on polynomial functions of degree 3 or higher.

Smooth, Continuous Graphs

Polynomial functions of degree 2 or higher have graphs that are smooth and continuous. By smooth, we mean that the graphs contain only rounded curves with no sharp corners. By continuous, we mean that the graphs have no breaks and can be drawn without lifting your pencil from the rectangular coordinate system. These ideas are illustrated in Figure 2.14.

Graphs of Polynomial Functions

Not Graphs of Polynomial Functions

FIGURE 2.14 Recognizing graphs of polynomial functions

(3) Determine end behavior.

[$0,22,1]$ by $[-10,000,85,000,5000]$
FIGURE 2.15 By extending the viewing rectangle, we see that y is eventually negative and the function no longer models the number of AIDS cases.

End Behavior of Polynomial Functions

Figure $\mathbf{2 . 1 5}$ shows the graph of the function

$$
f(x)=-49 x^{3}+806 x^{2}+3776 x+2503
$$

which models the number of U.S.AIDS diagnoses from 1983 through 1991. Look what happens to the graph when we extend the year up through 2005. By year 21 (2004), the values of y are negative and the function no longer models AIDS diagnoses. We've added an arrow to the graph at the far right to emphasize that it continues to decrease without bound. It is this far-right end behavior of the graph that makes it inappropriate for modeling AIDS cases into the future.

The behavior of the graph of a function to the far left or the far right is called its end behavior. Although the graph of a polynomial function may have intervals where it increases or decreases, the graph will eventually rise or fall without bound as it moves far to the left or far to the right.

How can you determine whether the graph of a polynomial function goes up or down at each end? The end behavior of a polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

depends upon the leading term $a_{n} x^{n}$, because when $|x|$ is large, the other terms are relatively insignificant in size. In particular, the sign of the leading coefficient, a_{n}, and the degree, n, of the polynomial function reveal its end behavior. In terms of end behavior, only the term of highest degree counts, as summarized by the Leading Coefficient Test.

The Leading Coefficient Test

As x increases or decreases without bound, the graph of the polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \quad\left(a_{n} \neq 0\right)
$$

eventually rises or falls. In particular,

1. For n odd:

If the leading coefficient is positive, the graph falls to the left and rises to the right. (\swarrow, \nearrow)

$$
a_{n}>0
$$

Odd degree; positive leading coefficient

If the leading coefficient is negative, the graph rises to the left and falls to the right. (\checkmark, \searrow)
$a_{n}<0$

Odd degree; negative leading coefficient
2. For n even:

If the leading coefficient is positive, the graph rises to the left and rises to the right. $(\mathbb{}, \nearrow)$
$a_{n}>0$

Even degree; positive leading coefficient

If the leading coefficient is negative, the graph falls to the left and falls to the right. (\swarrow, \searrow)

DISCOVERY

Verify each of the four cases of the Leading Coefficient Test by using a graphing utility to graph $f(x)=x^{3}, f(x)=-x^{3}, f(x)=x^{2}$, and $f(x)=-x^{2}$.

GREAT QUESTION:

What's the bottom line on the Leading Coefficient Test?

Odd-degree polynomial functions have graphs with opposite behavior at each end. Even-degree polynomial functions have graphs with the same behavior at each end. Here's a table to help you remember the details:

$$
\text { Leading Term: } a_{n} x^{n}
$$

EXAMPLE 1 Using the Leading Coefficient Test

Use the Leading Coefficient Test to determine the end behavior of the graph of

$$
f(x)=x^{3}+3 x^{2}-x-3
$$

SOLUTION

We begin by identifying the sign of the leading coefficient and the degree of the polynomial.

$$
f(x)=x^{3}+3 x^{2}-x-3
$$

The leading coefficient,
1 , is positive.

The degree of the polynomial, 3 , is odd.

FIGURE 2.16 The graph of $f(x)=x^{3}+3 x^{2}-x-3$

The degree of the function f is 3 , which is odd. Odd-degree polynomial functions have graphs with opposite behavior at each end. The leading coefficient, 1 , is positive. Thus, the graph falls to the left and rises to the right (\swarrow, \nearrow). The graph of f is shown in Figure 2.16.
$\$$ Check Point 1 Use the Leading Coefficient Test to determine the end behavior of the graph of $f(x)=x^{4}-4 x^{2}$.

EXAMPLE 2 Using the Leading Coefficient Test

Use the Leading Coefficient Test to determine the end behavior of the graph of

$$
f(x)=-4 x^{3}(x-1)^{2}(x+5) .
$$

SOLUTION
Although the equation for f is in factored form, it is not necessary to multiply to determine the degree of the function.

$$
f(x)=-4 x^{3}(x-1)^{2}(x+5)
$$

Degree of this	Degree of this	Degree of this
factor is 3.	factor is 2.	factor is 1.

When multiplying exponential expressions with the same base, we add the exponents. This means that the degree of f is $3+2+1$, or 6 , which is even. Even-degree polynomial functions have graphs with the same behavior at each end. Without multiplying out, you can see that the leading coefficient is -4 , which is negative. Thus, the graph of f falls to the left and falls to the right (\swarrow, \searrow). \ldots.
© Check Point 2 Use the Leading Coefficient Test to determine the end behavior of the graph of $f(x)=2 x^{3}(x-1)(x+5)$.

EXAMPLE 3 Using the Leading Coefficient Test

Use end behavior to explain why

$$
f(x)=-49 x^{3}+806 x^{2}+3776 x+2503
$$

is only an appropriate model for AIDS diagnoses for a limited time period.

SOLUTION

We begin by identifying the sign of the leading coefficient and the degree of the polynomial.

$$
f(x)=-49 x^{3}+806 x^{2}+3776 x+2503
$$

The leading coefficient, -49 , is negative.

The degree of the polynomial, 3, is odd.

The degree of f is 3 , which is odd. Odd-degree polynomial functions have graphs with opposite behavior at each end. The leading coefficient, -49 , is negative. Thus, the graph rises to the left and falls to the right (\checkmark, \searrow). The fact that the graph falls to the right indicates that at some point the number of AIDS diagnoses will be negative, an impossibility. If a function has a graph that decreases without bound over time, it will not be capable of modeling nonnegative phenomena over long time periods. Model breakdown will eventually occur.

FIGURE 2.17

$[-10,10,1]$ by $[-1000,750,250]$
FIGURE 2.18

FIGURE 2.19
(4)

Use factoring to find zeros of polynomial functions.

Check Point 3 The polynomial function

$$
f(x)=-0.27 x^{3}+9.2 x^{2}-102.9 x+400
$$

models the ratio of students to computers in U.S. public schools x years after 1980 . Use end behavior to determine whether this function could be an appropriate model for computers in the classroom well into the twenty-first century. Explain your answer.

If you use a graphing utility to graph a polynomial function, it is important to select a viewing rectangle that accurately reveals the graph's end behavior. If the viewing rectangle, or window, is too small, it may not accurately show a complete graph with the appropriate end behavior.

EXAMPLE 4 Using the Leading Coefficient Test

The graph of $f(x)=-x^{4}+8 x^{3}+4 x^{2}+2$ was obtained with a graphing utility using a $[-8,8,1]$ by $[-10,10,1]$ viewing rectangle. The graph is shown in Figure 2.17. Is this a complete graph that shows the end behavior of the function?

SOLUTION

We begin by identifying the sign of the leading coefficient and the degree of the polynomial.

$$
f(x)=-x^{4}+8 x^{3}+4 x^{2}+2
$$

The leading coefficient, $\quad \begin{gathered}\text { The degree of the } \\ -1, \text { is negative. }\end{gathered}$
polynomial, 4 , is even

The degree of f is 4 , which is even. Even-degree polynomial functions have graphs with the same behavior at each end. The leading coefficient, -1 , is negative. Thus, the graph should fall to the left and fall to the right (\llcorner, \searrow). The graph in Figure 2.17 is falling to the left, but it is not falling to the right. Therefore, the graph is not complete enough to show end behavior. A more complete graph of the function is shown in a larger viewing rectangle in Figure 2.18.
$\$$ Check Point 4 The graph of $f(x)=x^{3}+13 x^{2}+10 x-4$ is shown in a standard viewing rectangle in Figure 2.19. Use the Leading Coefficient Test to determine whether this is a complete graph that shows the end behavior of the function. Explain your answer.

Zeros of Polynomial Functions

If f is a polynomial function, then the values of x for which $f(x)$ is equal to 0 are called the zeros of f. These values of x are the roots, or solutions, of the polynomial equation $f(x)=0$. Each real root of the polynomial equation appears as an x-intercept of the graph of the polynomial function.

EXAMPLE 5 Finding Zeros of a Polynomial Function

Find all zeros of $f(x)=x^{3}+3 x^{2}-x-3$.

SOLUTION

By definition, the zeros are the values of x for which $f(x)$ is equal to 0 . Thus, we set $f(x)$ equal to 0 :

$$
f(x)=x^{3}+3 x^{2}-x-3=0 .
$$

FIGURE 2.20

We solve the polynomial equation $x^{3}+3 x^{2}-x-3=0$ for x as follows:

$$
\begin{array}{rlrl}
x^{3}+3 x^{2}-x-3 & =0 & & \begin{array}{l}
\text { This is the equation needed to find the } \\
\text { function's zeros. }
\end{array} \\
x^{2}(x+3)-1(x+3) & =0 & & \begin{array}{l}
\text { Factor } x^{2} \text { from the first two terms and }-1 \\
\text { from the last two terms. }
\end{array} \\
(x+3)\left(x^{2}-1\right) & =0 & & \text { A common factor of } x+3 \text { is factored from } \\
\text { the expression. } \\
x+3=0 \text { or } x^{2}-1 & =0 & & \text { Set each factor equal to } 0 . \\
x=-3 & & \text { Solve for } x .
\end{array}
$$

The zeros of f are $-3,-1$, and 1. The graph of f in Figure $\mathbf{2 . 2 0}$ shows that each zero is an x-intercept. The graph passes through the points $(-3,0),(-1,0)$, and $(1,0)$. \ldots

TECHNOLOGY

Graphic and Numeric Connections

A graphing utility can be used to verify that $-3,-1$, and 1 are the three real zeros of $f(x)=x^{3}+3 x^{2}-x-3$.

Numeric Check

Display a table for the function.

Graphic Check

Display a graph for the function. The x-intercepts indicate that $-3,-1$, and 1 are the real zeros.

The utility's ZERO feature on the graph of f also verifies that $-3,-1$, and 1 are the function's real zeros.

FIGURE 2.21 The zeros of $f(x)=-x^{4}+4 x^{3}-4 x^{2}$, namely 0 and 2 , are the x-intercepts for the graph of f.

EXAMPLE 6 Finding Zeros of a Polynomial Function

Find all zeros of $f(x)=-x^{4}+4 x^{3}-4 x^{2}$.

SOLUTION

We find the zeros of f by setting $f(x)$ equal to 0 and solving the resulting equation.

$$
\begin{array}{rlrl}
-x^{4}+4 x^{3}-4 x^{2} & =0 & & \text { We now have a polynomial equation. } \\
x^{4}-4 x^{3}+4 x^{2} & =0 & & \text { Multiply both sides by }-1 . \text { This step is optional. } \\
x^{2}\left(x^{2}-4 x+4\right) & =0 & & \text { Factor out } x^{2} . \\
x^{2}(x-2)^{2} & =0 & & \text { Factor completely. } \\
x^{2}=0 \text { or }(x-2)^{2} & =0 & & \text { Set each factor equal to } 0 . \\
x=0 & x & =2 & \\
\text { Solve for } x .
\end{array}
$$

The zeros of $f(x)=-x^{4}+4 x^{3}-4 x^{2}$ are 0 and 2 . The graph of f, shown in Figure 2.21, has x-intercepts at 0 and 2. The graph passes through the points $(0,0)$ and $(2,0)$.
(5) Identify zeros and their multiplicities.

FIGURE 2.21 (repeated) The graph of $f(x)=-x^{4}+4 x^{3}-4 x^{2}$
\oint Check Point 6 Find all zeros of $f(x)=x^{4}-4 x^{2}$.

GREAT QUESTION!

Can zeros of polynomial functions always be found using one or more of the factoring techniques that were reviewed in Section P.5?
No. You'll be learning additional strategies for finding zeros of polynomial functions in the next two sections of this chapter.

Multiplicities of Zeros

We can use the results of factoring to express a polynomial as a product of factors. For instance, in Example 6, we can use our factoring to express the function's equation as follows:

$$
\begin{aligned}
& f(x)=-x^{4}+4 x^{3}-4 x^{2}=-\left(x^{4}-4 x^{3}+4 x^{2}\right)=-x^{2}(x-2)^{2} . \\
& \begin{array}{r}
\text { The factor } x \\
\text { occurs twice: } \\
x^{2}=x \cdot x .
\end{array} \quad \text { The factor }(x-2) \\
& (x-2)^{2}=(x-2)(x-2) .
\end{aligned}
$$

Notice that each factor occurs twice. In factoring the equation for the polynomial function f, if the same factor $x-r$ occurs k times, but not $k+1$ times, we call r a zero with multiplicity \boldsymbol{k}. For the polynomial function

$$
f(x)=-x^{2}(x-2)^{2}
$$

0 and 2 are both zeros with multiplicity 2.
Multiplicity provides another connection between zeros and graphs. The multiplicity of a zero tells us whether the graph of a polynomial function touches the x-axis at the zero and turns around or if the graph crosses the x-axis at the zero. For example, look again at the graph of $f(x)=-x^{4}+4 x^{3}-4 x^{2}$ in Figure 2.21. Each zero, 0 and 2 , is a zero with multiplicity 2 . The graph of f touches, but does not cross, the x-axis at each of these zeros of even multiplicity. By contrast, a graph crosses the x-axis at zeros of odd multiplicity.

Multiplicity and x-Intercepts

If r is a zero of even multiplicity, then the graph touches the x-axis and turns around at r. If r is a zero of odd multiplicity, then the graph crosses the x-axis at r. Regardless of whether the multiplicity of a zero is even or odd, graphs tend to flatten out near zeros with multiplicity greater than one.

GREAT QUESTION!

If \boldsymbol{r} is a zero of even multiplicity, how come the graph of \boldsymbol{f} doesn't just cross the \boldsymbol{x}-axis at \boldsymbol{r} ? Because r is a zero of even multiplicity, the sign of $f(x)$ does not change from one side of r to the other side of r. This means that the graph must turn around at r. On the other hand, if r is a zero of odd multiplicity, the sign of $f(x)$ changes from one side of r to the other side. That's why the graph crosses the x-axis at r.

If a polynomial function's equation is expressed as a product of linear factors, we can quickly identify zeros and their multiplicities.

EXAMPLE 7 Finding Zeros and Their Multiplicities

Find the zeros of $f(x)=\frac{1}{2}(x+1)(2 x-3)^{2}$ and give the multiplicity of each zero. State whether the graph crosses the x-axis or touches the x-axis and turns around at each zero.

SOLUTION

We find the zeros of f by setting $f(x)$ equal to 0 :

$$
\frac{1}{2}(x+1)(2 x-3)^{2}=0
$$

(6) Use the Intermediate Value Theorem.

FIGURE 2.23 The graph must cross the x-axis at some value between a and b.

FIGURE 2.24

Set each variable factor equal to 0 .

$$
\left.\begin{array}{rlrl}
x+1 & =0 & 2 x-3 & =0 \\
x & =-1 & x & =\frac{3}{2}
\end{array}\right)
$$

> | This exponent is 1. | This exponent is 2 . |
| :---: | :---: |
| Thus, the multiplicity | Thus, the multiplicity |
| of -1 is 1. | of $\frac{3}{2}$ is 2 . |

The zeros of $f(x)=\frac{1}{2}(x+1)(2 x-3)^{2}$ are -1 , with multiplicity 1 , and $\frac{3}{2}$, with multiplicity 2 . Because the multiplicity of -1 is odd, the graph crosses the x-axis at -1 is odd, the graph crosses the x-axis at this zero. Because the multiplicity of $\frac{3}{2}$ is even, the graph touches the x-axis and turns around at this zero. These relationships are illustrated by the graph of f in Figure 2.22.

FIGURE 2.22 The graph of
$f(x)=\frac{1}{2}(x+1)(2 x-3)^{2}$

6 Check Point 7 Find the zeros of $f(x)=-4\left(x+\frac{1}{2}\right)^{2}(x-5)^{3}$ and give the multiplicity of each zero. State whether the graph crosses the x-axis or touches the x-axis and turns around at each zero.

The Intermediate Value Theorem

The Intermediate Value Theorem tells us of the existence of real zeros. The idea behind the theorem is illustrated in Figure 2.23. The figure shows that if $(a, f(a))$ lies below the x-axis and $(b, f(b))$ lies above the x-axis, the smooth, continuous graph of the polynomial function f must cross the x-axis at some value c between a and b. This value is a real zero for the function.

These observations are summarized in the Intermediate Value Theorem.

The Intermediate Value Theorem for Polynomial Functions

Let f be a polynomial function with real coefficients. If $f(a)$ and $f(b)$ have opposite signs, then there is at least one value of c between a and b for which $f(c)=0$. Equivalently, the equation $f(x)=0$ has at least one real root between a and b.

EXAMPLE 8 Using the Intermediate Value Theorem

Show that the polynomial function $f(x)=x^{3}-2 x-5$ has a real zero between 2 and 3.

SOLUTION

Let us evaluate f at 2 and at 3 . If $f(2)$ and $f(3)$ have opposite signs, then there is at least one real zero between 2 and 3 . Using $f(x)=x^{3}-2 x-5$, we obtain

$$
f(2)=2^{3}-2 \cdot 2-5=8-4-5=-1
$$

$f(2)$ is negative.

and

$$
f(3)=3^{3}-2 \cdot 3-5=27-6-5=16 .
$$

$$
f(3) \text { is positive. }
$$

Because $f(2)=-1$ and $f(3)=16$, the sign change shows that the polynomial function has a real zero between 2 and 3 . This zero is actually irrational and is approximated using a graphing utility's ZERO feature as 2.0945515 in Figure 2.24.
(7) Understand the relationship between degree and turning points.

FIGURE 2.25 Graph with four turning points

GREAT QUESTION!

When graphing a polynomial function, how do I determine the location of its turning points?
Without calculus, it is often impossible to give the exact location of turning points. However, you can obtain additional points satisfying the function to estimate how high the graph rises or how low it falls. To obtain these points, use values of x between (and to the left and right of) the x-intercepts.

Check Point 8 Show that the polynomial function $f(x)=3 x^{3}-10 x+9$ has a real zero between -3 and -2 .

Turning Points of Polynomial Functions

The graph of $f(x)=x^{5}-6 x^{3}+8 x+1$ is shown in Figure 2.25. The graph has four smooth turning points.

At each turning point in Figure 2.25, the graph changes direction from increasing to decreasing or vice versa. The given equation has 5 as its greatest exponent and is therefore a polynomial function of degree 5. Notice that the graph has four turning points. In general, if \boldsymbol{f} is a polynomial function of degree n, then the graph of \boldsymbol{f} has at most \boldsymbol{n} - $\mathbf{1}$ turning points.

Figure 2.25 illustrates that the y-coordinate of each turning point is either a relative maximum or a relative minimum of f. Without the aid of a graphing utility or a knowledge of calculus, it is difficult and often impossible to locate turning points of polynomial functions with degrees greater than 2. If necessary, test values can be taken between the x-intercepts to get a general idea of how high the graph rises or how low the graph falls. For the purpose of graphing in this section, a general estimate is sometimes appropriate and necessary.

A Strategy for Graphing Polynomial Functions

Here's a general strategy for graphing a polynomial function. A graphing utility is a valuable complement, but not a necessary component, to this strategy. If you are using a graphing utility, some of the steps listed in the following box will help you to select a viewing rectangle that shows the important parts of the graph.

Graphing a Polynomial Function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0
$$

1. Use the Leading Coefficient Test to determine the graph's end behavior.
2. Find x-intercepts by setting $f(x)=0$ and solving the resulting polynomial equation. If there is an x-intercept at r as a result of $(x-r)^{k}$ in the complete factorization of $f(x)$, then
a. If k is even, the graph touches the x-axis at r and turns around.
b. If k is odd, the graph crosses the x-axis at r.
c. If $k>1$, the graph flattens out near $(r, 0)$.
3. Find the y-intercept by computing $f(0)$.
4. Use symmetry, if applicable, to help draw the graph:
a. y-axis symmetry: $f(-x)=f(x)$
b. Origin symmetry: $f(-x)=-f(x)$.
5. Use the fact that the maximum number of turning points of the graph is $n-1$, where n is the degree of the polynomial function, to check whether it is drawn correctly.

EXAMPLE 9 Graphing a Polynomial Function

Graph: $f(x)=x^{4}-2 x^{2}+1$.

SOLUTION

Step 1 Determine end behavior. Identify the sign of a_{n}, the leading coefficient, and the degree, n, of the polynomial function.

FIGURE 2.26 The graph of $f(x)=x^{4}-2 x^{2}+1$

$$
f(x)=x^{4}-2 x^{2}+1
$$

The leading	
coefficient,	
1, is positive.	The degree of the polynomial function, 4, is even.

Because the degree, 4 , is even, the graph has the same behavior at each end. The leading coefficient, 1 , is positive. Thus, the graph rises to the left and rises to the right.
Step 2 Find x-intercepts (zeros of the function) by setting $f(x)=0$.

$$
\begin{array}{rlrl}
x^{4}-2 x^{2}+1 & =0 & & \text { Set } f(x) \text { equal to } 0 . \\
\left(x^{2}-1\right)\left(x^{2}-1\right) & =0 & & \text { Factor. } \\
(x+1)(x-1)(x+1)(x-1) & =0 & & \text { Factor completely. } \\
(x+1)^{2}(x-1)^{2} & =0 & & \text { Express the factorization in a more } \\
& & & \text { compact form. } \\
(x+1)^{2}=0 & \text { or }(x-1)^{2} & =0 & \\
\text { Set each factorization equal to } 0 . \\
x=-1 & x & =1 & \\
\text { Solve for } x .
\end{array}
$$

We see that -1 and 1 are both repeated zeros with multiplicity 2 . Because of the even multiplicity, the graph touches the x-axis at -1 and 1 and turns around. Furthermore, the graph tends to flatten out near these zeros with multiplicity greater than one.

Step 3 Find the \boldsymbol{y}-intercept by computing $\boldsymbol{f}(0)$. We use $f(x)=x^{4}-2 x^{2}+1$ and compute $f(0)$.

$$
f(0)=0^{4}-2 \cdot 0^{2}+1=1
$$

There is a y-intercept at 1 , so the graph passes through $(0,1)$.

Step 4 Use possible symmetry to help draw the graph. Our partial graph suggests y-axis symmetry. Let's verify this by finding $f(-x)$.

$$
\begin{aligned}
& f(x)=x^{4}-2 x^{2}+1 \\
& \text { Replace } x \text { with }-x . \\
& f(-x)=(-x)^{4}-2(-x)^{2}+1=x^{4}-2 x^{2}+1
\end{aligned}
$$

Because $f(-x)=f(x)$, the graph of f is symmetric with respect to the y-axis. Figure 2.26 shows the graph of $f(x)=x^{4}-2 x^{2}+1$.
Step 5 Use the fact that the maximum number of turning points of the graph is $\boldsymbol{n}-\mathbf{1}$ to check whether it is drawn correctly. Because $n=4$, the maximum number of turning points is $4-1$, or 3. Because the graph in Figure 2.26 has three turning points, we have not violated the maximum number possible. Can you see how this verifies that 1 is indeed a relative maximum and $(0,1)$ is a turning point? If the graph rose above 1 on either side of $x=0$, it would have to rise above 1 on the other side as well because of symmetry. This would require additional turning points to smoothly curve back to the x-intercepts. The graph already has three turning points, which is the maximum number for a fourth-degree polynomial function.
$\$$ Check Point 9 Use the five-step strategy to graph $f(x)=x^{3}-3 x^{2}$.

EXAMPLE 10 Graphing a Polynomial Function

Graph: $f(x)=-2(x-1)^{2}(x+2)$.

SOLUTION

Step 1 Determine end behavior. Identify the sign of a_{n}, the leading coefficient, and the degree, n, of the polynomial function.

$$
f(x)=\underbrace{-2 x^{2} \cdot x \text {, or }}_{\substack{\text { The leading term is } \\-2 x^{3} .}}
$$

Because the degree, 3 , is odd, the graph has opposite behavior at each end. The leading coefficient, -2 , is negative. Thus, the graph rises to the left and falls to the right.

Step 2 Find \boldsymbol{x}-intercepts (zeros of the function) by setting $f(x)=0$.

$$
\begin{array}{rlrlrl}
-2(x-1)^{2}(x+2) & =0 & & \text { Set } f(x) \text { equal to } 0 . \\
(x-1)^{2}=0 & \text { or } & x+2 & =0 & & \text { Set each variable factor equal to } 0 . \\
x=1 & x & =-2 & & \text { Solve for } x .
\end{array}
$$

We see that the zeros are 1 and -2 . The multiplicity of 1 is even, so the graph touches the x-axis at 1 , flattens, and turns around. The multiplicity of -2 is odd, so the graph crosses the x-axis at -2 .

Step 3 Find the \boldsymbol{y}-intercept by computing $\boldsymbol{f}(\mathbf{0})$. We use $f(x)=-2(x-1)^{2}(x+2)$ and compute $f(0)$.

$$
f(0)=-2(0-1)^{2}(0+2)=-2(1)(2)=-4
$$

There is a y-intercept at -4 , so the graph passes through $(0,-4)$.

Based on the note in the voice balloon, let's evaluate the function at $-1.5,-1,-0.5$, and 0.5 , as well as at $-3,2$, and 3 .

\boldsymbol{x}	-3	-1.5	-1	-0.5	0.5	2	3
$\boldsymbol{f}(\boldsymbol{x})=-\mathbf{2}(\boldsymbol{x}-\mathbf{1})^{\mathbf{2}}(\boldsymbol{x}+\mathbf{2)}$	32	-6.25	-8	-6.75	-1.25	-8	-40

In order to accommodate these points, we'll scale the y-axis from -50 to 50 , with each tick mark representing 10 units.
Step 4 Use possible symmetry to help draw the graph. Our partial graph illustrates that we have neither y-axis symmetry nor origin symmetry. Using end behavior, intercepts, and the points from our table, Figure 2.27 shows the graph of $f(x)=-2(x-1)^{2}(x+2)$.

FIGURE 2.27 The graph of $f(x)=-2(x-1)^{2}(x+2)$

Step 5 Use the fact that the maximum number of turning points of the graph is $\boldsymbol{n} \mathbf{- 1}$ to check whether it is drawn correctly. The leading term is $-2 x^{3}$, so $n=3$. The maximum number of turning points is $3-1$, or 2 . Because the graph in Figure 2.27 has two turning points, we have not violated the maximum number possible.

Check Point 10 Use the five-step strategy to graph $f(x)=2(x+2)^{2}(x-3)$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The degree of the polynomial function
$f(x)=-2 x^{3}(x-1)(x+5)$ is \qquad The leading coefficient is \qquad -.
2. True or false: Some polynomial functions of degree 2 or higher have breaks in their graphs.
3. The behavior of the graph of a polynomial function to the far left or the far right is called its \qquad behavior, which depends upon the \qquad term.
4. The graph of $f(x)=x^{3}$ \qquad to the left and _ to the right.
5. The graph of $f(x)=-x^{3}$ \qquad to the left and
\qquad to the right.
6. The graph of $f(x)=x^{2}$ \qquad to the left and \qquad to the right.
7. The graph of $f(x)=-x^{2}$ \qquad to the left and
\qquad to the right.
8. True or false: Odd-degree polynomial functions have graphs with opposite behavior at each end.
9. True or false: Even-degree polynomial functions have graphs with the same behavior at each end.
10. Every real zero of a polynomial function appears as a/an \qquad of the graph.
11. If r is a zero of even multiplicity, then the graph touches the x-axis and \qquad at r. If r is a zero of odd multiplicity, then the graph \qquad the x-axis at r.
12. If f is a polynomial function and $f(a)$ and $f(b)$ have opposite signs, then there must be at least one value of c between a and b for which $f(c)=$ \qquad This result is called the \qquad Theorem.
13. If f is a polynomial function of degree n, then the graph of f has at most \qquad turning points.

EXERCISE SET 2.3

Practice Exercises

In Exercises 1-10, determine which functions are polynomial functions. For those that are, identify the degree.

1. $f(x)=5 x^{2}+6 x^{3}$
2. $f(x)=7 x^{2}+9 x^{4}$
3. $g(x)=7 x^{5}-\pi x^{3}+\frac{1}{5} x$
4. $g(x)=6 x^{7}+\pi x^{5}+\frac{2}{3} x$
5. $h(x)=7 x^{3}+2 x^{2}+\frac{1}{x}$
6. $h(x)=8 x^{3}-x^{2}+\frac{2}{x}$
7. $f(x)=x^{\frac{1}{2}}-3 x^{2}+5$
8. $f(x)=x^{\frac{1}{3}}-4 x^{2}+7$
9. $f(x)=\frac{x^{2}+7}{x^{3}}$
10. $f(x)=\frac{x^{2}+7}{3}$

In Exercises 11-14, identify which graphs are not those of polynomial functions.
11.

12.

13.

14.

In Exercises 15-18, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function.
Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).]
15. $f(x)=-x^{4}+x^{2}$
16. $f(x)=x^{3}-4 x^{2}$
17. $f(x)=(x-3)^{2}$
18. $f(x)=-x^{3}-x^{2}+5 x-3$
a.

b.

c.

d.

In Exercises 19-24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function.
19. $f(x)=5 x^{3}+7 x^{2}-x+9$
20. $f(x)=11 x^{3}-6 x^{2}+x+3$
21. $f(x)=5 x^{4}+7 x^{2}-x+9$
22. $f(x)=11 x^{4}-6 x^{2}+x+3$
23. $f(x)=-5 x^{4}+7 x^{2}-x+9$
24. $f(x)=-11 x^{4}-6 x^{2}+x+3$

In Exercises 25-32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero.
25. $f(x)=2(x-5)(x+4)^{2}$
26. $f(x)=3(x+5)(x+2)^{2}$
27. $f(x)=4(x-3)(x+6)^{3}$
28. $f(x)=-3\left(x+\frac{1}{2}\right)(x-4)^{3}$
29. $f(x)=x^{3}-2 x^{2}+x$
30. $f(x)=x^{3}+4 x^{2}+4 x$
31. $f(x)=x^{3}+7 x^{2}-4 x-28$
32. $f(x)=x^{3}+5 x^{2}-9 x-45$

In Exercises 33-40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers.
33. $f(x)=x^{3}-x-1$; between 1 and 2
34. $f(x)=x^{3}-4 x^{2}+2$; between 0 and 1
35. $f(x)=2 x^{4}-4 x^{2}+1$; between -1 and 0
36. $f(x)=x^{4}+6 x^{3}-18 x^{2}$; between 2 and 3
37. $f(x)=x^{3}+x^{2}-2 x+1$; between -3 and -2
38. $f(x)=x^{5}-x^{3}-1$; between 1 and 2
39. $f(x)=3 x^{3}-10 x+9$; between -3 and -2
40. $f(x)=3 x^{3}-8 x^{2}+x+2$; between 2 and 3

In Exercises 41-64,

a. Use the Leading Coefficient Test to determine the graph's end behavior.
b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept.
c. Find the y-intercept.
d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither.
e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly.
41. $f(x)=x^{3}+2 x^{2}-x-2$
42. $f(x)=x^{3}+x^{2}-4 x-4$
43. $f(x)=x^{4}-9 x^{2}$
44. $f(x)=x^{4}-x^{2}$
45. $f(x)=-x^{4}+16 x^{2}$
46. $f(x)=-x^{4}+4 x^{2}$
47. $f(x)=x^{4}-2 x^{3}+x^{2}$
48. $f(x)=x^{4}-6 x^{3}+9 x^{2}$
49. $f(x)=-2 x^{4}+4 x^{3}$
50. $f(x)=-2 x^{4}+2 x^{3}$
51. $f(x)=6 x^{3}-9 x-x^{5}$
52. $f(x)=6 x-x^{3}-x^{5}$
53. $f(x)=3 x^{2}-x^{3}$
54. $f(x)=\frac{1}{2}-\frac{1}{2} x^{4}$
55. $f(x)=-3(x-1)^{2}\left(x^{2}-4\right)$
56. $f(x)=-2(x-4)^{2}\left(x^{2}-25\right)$
57. $f(x)=x^{2}(x-1)^{3}(x+2)$
58. $f(x)=x^{3}(x+2)^{2}(x+1)$
59. $f(x)=-x^{2}(x-1)(x+3)$
60. $f(x)=-x^{2}(x+2)(x-2)$
61. $f(x)=-2 x^{3}(x-1)^{2}(x+5)$
62. $f(x)=-3 x^{3}(x-1)^{2}(x+3)$
63. $f(x)=(x-2)^{2}(x+4)(x-1)$
64. $f(x)=(x+3)(x+1)^{3}(x+4)$

Practice Plus

In Exercises 65-72, complete graphs of polynomial functions whose zeros are integers are shown.
a. Find the zeros and state whether the multiplicity of each zero is even or odd.
b. Write an equation, expressed as the product of factors, of a polynomial function that might have each graph. Use a leading coefficient of 1 or -1 , and make the degree of f as small as possible.
c. Use both the equation in part (b) and the graph to find the y-intercept.
65.

67.

$[-3,6,1]$ by $[-10,10,1]$
69.

71.

$[-3,3,1]$ by $[-5,10,1]$
66.

68.

$[-3,3,1]$ by $[-10,10,1]$
70.

Application Exercises

Experts fear that without conservation efforts, tigers could disappear from the wild by 2022. Just one hundred years ago, there were at least 100,000 wild tigers. By 2010, the estimated world tiger population was 3200. The bar graph shows the estimated world tiger population for selected years from 1970 through 2010. Also shown is a polynomial function, with its graph, that models the data. Use this information to solve Exercises 73-74.

Source: World Wildlife Fund
73. a. Find and interpret $f(40)$. Identify this information as a point on the graph of f.
b. Does $f(40)$ overestimate or underestimate the actual data shown by the bar graph? By how much?
c. Use the Leading Coefficient Test to determine the end behavior to the right for the graph of f. Will this function be useful in modeling the world tiger population if conservation efforts to save wild tigers fail? Explain your answer.
74. a. Find and interpret $f(10)$. Identify this information as a point on the graph of f.
d. Does $f(10)$ overestimate or underestimate the actual data shown by the bar graph? By how much?
c. Use the Leading Coefficient Test to determine the end behavior to the right for the graph of f. Might this function be useful in modeling the world tiger population if conservation efforts to save wild tigers are successful? Explain your answer.
75. During a diagnostic evaluation, a 33-year-old woman experienced a panic attack a few minutes after she had been asked to relax her whole body. The graph shows the rapid increase in heart rate during the panic attack.

Heart Rate before and during a

 Panic Attack

Source: Davis and Palladino, Psychology, Fifth Edition, Prentice Hall, 2007.
a. For which time periods during the diagnostic evaluation was the woman's heart rate increasing?
b. For which time periods during the diagnostic evaluation was the woman's heart rate decreasing?
c. How many turning points (from increasing to decreasing or from decreasing to increasing) occurred for the woman's heart rate during the first 12 minutes of the diagnostic evaluation?
d. Suppose that a polynomial function is used to model the data displayed by the graph using
(time during the evaluation, heart rate).
Use the number of turning points to determine the degree of the polynomial function of best fit.
e. For the model in part (d), should the leading coefficient of the polynomial function be positive or negative? Explain your answer.
f. Use the graph to estimate the woman's maximum heart rate during the first 12 minutes of the diagnostic evaluation. After how many minutes did this occur?
g. Use the graph to estimate the woman's minimum heart rate during the first 12 minutes of the diagnostic evaluation. After how many minutes did this occur?
76. Volatility at the Pump The graph shows the average price per gallon of gasoline in the United States in January for the period from 2005 through 2011.

Source: U.S. Energy Information Administration
a. For which years was the average price per gallon in January increasing?
b. For which years was the average price per gallon in January decreasing?
c. How many turning points (from increasing to decreasing or from decreasing to increasing) does the graph have for the period shown?
d. Suppose that a polynomial function is used to model the data displayed by the graph using
(number of years after 2005, average January price per gallon).
Use the number of turning points to determine the degree of the polynomial function of best fit.
e. For the model in part (d), should the leading coefficient of the polynomial function be positive or negative? Explain your answer.
f. Use the graph to estimate the maximum average January price per gallon. In which year did this occur?
g. Use the graph to estimate the minimum average January price per gallon. In which year did this occur?

Writing in Mathematics

77. What is a polynomial function?
78. What do we mean when we describe the graph of a polynomial function as smooth and continuous?
79. What is meant by the end behavior of a polynomial function?
80. Explain how to use the Leading Coefficient Test to determine the end behavior of a polynomial function.
81. Why is a third-degree polynomial function with a negative leading coefficient not appropriate for modeling nonnegative real-world phenomena over a long period of time?
82. What are the zeros of a polynomial function and how are they found?
83. Explain the relationship between the multiplicity of a zero and whether or not the graph crosses or touches the x-axis at that zero.
84. If f is a polynomial function, and $f(a)$ and $f(b)$ have opposite signs, what must occur between a and b ? If $f(a)$ and $f(b)$ have the same sign, does it necessarily mean that this will not occur? Explain your answer.
85. Explain the relationship between the degree of a polynomial function and the number of turning points on its graph.
86. Can the graph of a polynomial function have no x-intercepts? Explain.
87. Can the graph of a polynomial function have no y-intercept? Explain.
88. Describe a strategy for graphing a polynomial function. In your description, mention intercepts, the polynomial's degree, and turning points.

Technology Exercises

89. Use a graphing utility to verify any five of the graphs that you drew by hand in Exercises 41-64.

Write a polynomial function that imitates the end behavior of each graph in Exercises 90-93. The dashed portions of the graphs indicate that you should focus only on imitating the left and right behavior of the graph and can be flexible about what occurs between the left and right ends. Then use your graphing utility to graph the polynomial function and verify that you imitated the end behavior shown in the given graph.
90.

91.

92.

93.

In Exercises 94-97, use a graphing utility with a viewing rectangle large enough to show end behavior to graph each polynomial function.
94. $f(x)=x^{3}+13 x^{2}+10 x-4$
95. $f(x)=-2 x^{3}+6 x^{2}+3 x-1$
96. $f(x)=-x^{4}+8 x^{3}+4 x^{2}+2$
97. $f(x)=-x^{5}+5 x^{4}-6 x^{3}+2 x+20$

In Exercises 98-99, use a graphing utility to graph f and g in the same viewing rectangle. Then use the ZOOM OUT feature to show that f and g have identical end behavior.
98. $f(x)=x^{3}-6 x+1, g(x)=x^{3}$
99. $f(x)=-x^{4}+2 x^{3}-6 x, \quad g(x)=-x^{4}$

Critical Thinking Exercises

Make Sense? In Exercises 100-103, determine whether each statement makes sense or does not make sense, and explain your reasoning.
100. When I'm trying to determine end behavior, it's the coefficient of the leading term of a polynomial function that I should inspect.
101. I graphed $f(x)=(x+2)^{3}(x-4)^{2}$, and the graph touched the x-axis and turned around at -2 .
102. I'm graphing a fourth-degree polynomial function with four turning points.
103. Although I have not yet learned techniques for finding the x-intercepts of $f(x)=x^{3}+2 x^{2}-5 x-6$, I can easily determine the y-intercept.
In Exercises 104-107, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
104. If $f(x)=-x^{3}+4 x$, then the graph of f falls to the left and falls to the right.
105. A mathematical model that is a polynomial of degree n whose leading term is $a_{n} x^{n}, n$ odd and $a_{n}<0$, is ideally suited to describe phenomena that have positive values over unlimited periods of time.
106. There is more than one third-degree polynomial function with the same three x-intercepts.
107. The graph of a function with origin symmetry can rise to the left and rise to the right.
Use the descriptions in Exercises 108-109 to write an equation of a polynomial function with the given characteristics. Use a graphing utility to graph your function to see if you are correct. If not, modify the function's equation and repeat this process.
108. Crosses the x-axis at $-4,0$, and 3 ; lies above the x-axis between -4 and 0 ; lies below the x-axis between 0 and 3
109. Touches the x-axis at 0 and crosses the x-axis at 2 ; lies below the x-axis between 0 and 2

Preview Exercises

Exercises 110-112 will help you prepare for the material covered in the next section.
110. Divide 737 by 21 without using a calculator. Write the answer as

$$
\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

111. Rewrite $4-5 x-x^{2}+6 x^{3}$ in descending powers of x.
112. Use

$$
\frac{2 x^{3}-3 x^{2}-11 x+6}{x-3}=2 x^{2}+3 x-2
$$

to factor $2 x^{3}-3 x^{2}-11 x+6$ completely.

SECTION 2.4

Objectives

(1) Use long division to divide polynomials.
2. Use synthetic division to divide polynomials.
(3) Evaluate a polynomial using the Remainder Theorem.
4. Use the Factor Theorem to solve a polynomial equation.
(1) Use long division to divide polynomials.

Dividing Polynomials; Remainder and Factor Theorems

A moth has moved into your closet. She appeared in your bedroom at night, but somehow her relatively stout body escaped your clutches. Within a few weeks, swarms of moths in your tattered wardrobe suggest that Mama Moth was in the family way. There must be at least 200 critters nesting in every crevice of your clothing.

Two hundred plus moth-tykes from one female moth-is this possible? Indeed it is. The number of eggs, $f(x)$, in a female moth is a function of her abdominal width, x, in millimeters, modeled by

$$
f(x)=14 x^{3}-17 x^{2}-16 x+34, \quad 1.5 \leq x \leq 3.5
$$

Because there are 200 moths feasting on your favorite sweaters, Mama's abdominal width can be estimated by finding the solutions of the polynomial equation

$$
14 x^{3}-17 x^{2}-16 x+34=200
$$

How can we solve such an equation? You might begin by subtracting 200 from both sides to obtain zero on one side. But then what? The factoring that we used in the previous section will not work in this situation.

In Section 2.5, we will present techniques for solving certain kinds of polynomial equations. These techniques will further enhance your ability to manipulate algebraically the polynomial functions that model your world. Because these techniques are based on understanding polynomial division, in this section we look at two methods for dividing polynomials. (We'll return to Mama Moth's abdominal width in the Exercise Set.)

Long Division of Polynomials and the Division Algorithm

We begin by looking at division by a polynomial containing more than one term, such as

$$
x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 }
$$

Divisor has two terms and is a binomial.

The polynomial dividend has three terms and is a trinomial.

When a divisor has more than one term, the four steps used to divide whole numbers-divide, multiply, subtract, bring down the next term-form the repetitive procedure for polynomial long division.

EXAMPLE 1 Long Division of Polynomials

Divide $x^{2}+10 x+21$ by $x+3$.

SOLUTION

The following steps illustrate how polynomial division is very similar to numerical division.

$$
x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 }
$$

Arrange the terms of the
dividend $\left(x^{2}+10 x+21\right)$ and the divisor $(x+3)$ in descending powers of x.

$$
x + 3 \longdiv { x } \frac { x } { x ^ { 2 } + 1 0 x + 2 1 }
$$

Divide x^{2} (the first term in the dividend) by x (the first term in the divisor): $\frac{x^{2}}{x}=x$. Align like terms.

$$
\begin{array}{r}
x (x + 3) = x ^ { 2 } + 3 x \quad x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x}{x^{2}+3 x}+3 x
\end{array}
$$ polynomial being subtracted.

$$
\begin{array}{r}
x \\
x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x^{2}+3 x}{7 x}+21 \\
x + 3 \longdiv { x ^ { 2 } + 1 0 x + 2 1 } \\
\frac{x^{2}+3 x}{7 x}+21
\end{array}
$$

Bring down 21 from the original dividend and add algebraically to form a new dividend.

Find the second term of the quotient. Divide the first term of $7 x+21$ by x, the first term of the divisor: $\frac{7 x}{x}=7$.

Multiply the divisor $(x+3)$
by 7 , aligning under like terms in the new dividend. Then subtract to obtain the remainder of O.

The quotient is $x+7$. Because the remainder is 0 , we can conclude that $x+3$ is a factor of $x^{2}+10 x+21$ and

$$
\frac{x^{2}+10 x+21}{x+3}=x+7
$$

$$
\$ \text { Check Point } 1 \text { Divide } x^{2}+14 x+45 \text { by } x+9
$$

Before considering additional examples, let's summarize the general procedure for dividing one polynomial by another.

Long Division of Polynomials

1. Arrange the terms of both the dividend and the divisor in descending powers of any variable.
2. Divide the first term in the dividend by the first term in the divisor. The result is the first term of the quotient.
3. Multiply every term in the divisor by the first term in the quotient. Write the resulting product beneath the dividend with like terms lined up.
4. Subtract the product from the dividend.
5. Bring down the next term in the original dividend and write it next to the remainder to form a new dividend.
6. Use this new expression as the dividend and repeat this process until the remainder can no longer be divided. This will occur when the degree of the remainder (the highest exponent on a variable in the remainder) is less than the degree of the divisor.

In our next long division, we will obtain a nonzero remainder.

EXAMPLE 2 Long Division of Polynomials

Divide $4-5 x-x^{2}+6 x^{3}$ by $3 x-2$.

SOLUTION

We begin by writing the dividend in descending powers of x.

$$
\begin{aligned}
& 4-5 x-x^{2}+6 x^{3}=6 x^{3}-x^{2}-5 x+4
\end{aligned}
$$

Now we divide $3 x^{2}$ by $3 x$ to obtain x, multiply x and the divisor, and subtract.

$$
x (3 x - \mathbf { 2 }) = 3 x ^ { 2 } - \mathbf { 2 x } \quad 3 x \frac { 2 x ^ { 2 } + x } { x ^ { 2 } - 5 x + 4 } 2 \longdiv { 6 x ^ { 3 } - x ^ { 2 } } \begin{array} { l }
{ \text { Divide: } \frac { 3 x ^ { 2 } } { 3 x } = x . }
\end{array}
$$

Now we divide $-3 x$ by $3 x$ to obtain -1 , multiply -1 and the divisor, and subtract.

Remainder
The quotient is $2 x^{2}+x-1$ and the remainder is 2 . When there is a nonzero remainder, as in this example, list the quotient, plus the remainder above the divisor. Thus,

$$
\frac{6 x^{3}-x^{2}-5 x+4}{3 x-2}=\underbrace{2 x^{2}+x-1}+\frac{2}{3 x-2} . \quad \begin{gathered}
\begin{array}{c}
\text { Remainder } \\
\text { above divisor }
\end{array} \\
\hline
\end{gathered}
$$

Quotient
An important property of division can be illustrated by clearing fractions in the equation that concluded Example 2. Multiplying both sides of this equation by $3 x-2$ results in the following equation:

$$
6 x^{3}-x^{2}-5 x+4=(3 x-2)\left(2 x^{2}+x-1\right)+2
$$

Dividend Divisor Quotient Remainder
Polynomial long division is checked by multiplying the divisor with the quotient and then adding the remainder. This should give the dividend. The process illustrates the Division Algorithm.

The Division Algorithm

If $f(x)$ and $d(x)$ are polynomials, with $d(x) \neq 0$, and the degree of $d(x)$ is less than or equal to the degree of $f(x)$, then there exist unique polynomials $q(x)$ and $r(x)$ such that

The remainder, $r(x)$, equals 0 or it is of degree less than the degree of $d(x)$. If $r(x)=0$, we say that $d(x)$ divides evenly into $f(x)$ and that $d(x)$ and $q(x)$ are factors of $f(x)$.
$\$$ Check Point 2 Divide $7-11 x-3 x^{2}+2 x^{3}$ by $x-3$. Express the result in the form quotient, plus remainder divided by divisor.

If a power of x is missing in either a dividend or a divisor, add that power of x with a coefficient of 0 and then divide. In this way, like terms will be aligned as you carry out the long division.

EXAMPLE 3 Long Division of Polynomials

Divide $6 x^{4}+5 x^{3}+3 x-5$ by $3 x^{2}-2 x$.

SOLUTION

We write the dividend, $6 x^{4}+5 x^{3}+3 x-5$, as $6 x^{4}+5 x^{3}+0 x^{2}+3 x-5$ to keep all like terms aligned.

$$
2 x^{2}\left(3 x^{2}-2 x\right)=6 x^{4}-4 x^{3}
$$

The division process is finished because the degree of $7 x-5$, which is 1 , is less than the degree of the divisor $3 x^{2}-2 x$, which is 2 . The answer is

$$
\frac{6 x^{4}+5 x^{3}+3 x-5}{3 x^{2}-2 x}=2 x^{2}+3 x+2+\frac{7 x-5}{3 x^{2}-2 x} .
$$

\bigcirc Check Point 3 Divide $2 x^{4}+3 x^{3}-7 x-10$ by $x^{2}-2 x$.

2 Use synthetic division to divide polynomials.

Dividing Polynomials Using Synthetic Division

We can use synthetic division to divide polynomials if the divisor is of the form $x-c$. This method provides a quotient more quickly than long division. Let's compare the two methods showing $x^{3}+4 x^{2}-5 x+5$ divided by $x-3$.

Long Division

Synthetic Division

Quotient

$$
\begin{aligned}
& \text { Remainder }
\end{aligned}
$$

Notice the relationship between the polynomials in the long division process and the numbers that appear in synthetic division.

Now let's look at the steps involved in synthetic division.

Synthetic Division

To divide a polynomial by $x-c$:

1. Arrange the polynomial in descending powers, with a 0 coefficient for any missing term.
2. Write c for the divisor, $x-c$. To the right, write the coefficients of the dividend.
3. Write the leading coefficient of the dividend on the bottom row.
4. Multiply c (in this case, 3) times the value just written on the bottom row. Write the product in the next column in the second row.
5. Add the values in this new column, writing the sum in the bottom row.
6. Repeat this series of multiplications and additions until all columns are filled in. write the quotient, plus the remainder above the divisor. The degree of the first term of the quotient is one less than the degree of the first term of the dividend. The final value in this row is the remainder.

Example

$$
x - 3 \longdiv { x ^ { 3 } + 4 x ^ { 2 } - 5 x + 5 }
$$

$$
\begin{array}{lllll}
3 & 1 & 4 & -5 & 5
\end{array}
$$

$$
\begin{array}{l|l|lr}
3 & \begin{array}{ccc}
1 & 4 & -5
\end{array} 5 \\
\\
& \downarrow & \text { Bring down } 1 . \\
\hline
\end{array}
$$

$$
\begin{array}{lllll}
3 & \begin{array}{llll}
1 & 4 & -5 & 5 \\
1 & 3
\end{array} \\
\text { Multiply by 3: 3:1 }=3 .
\end{array}
$$

Multiply by 3: 3-7=21.

Multiply by 3: 3-16=48.

$$
\begin{gathered}
\begin{array}{c}
\text { Written from } \\
171653 \\
\text { the last row of the synthetic division }
\end{array} \\
\sqrt{1 x^{2}+7 x+16+\frac{53}{x-3}} \\
x - 3 \longdiv { x ^ { 3 } + 4 x ^ { 2 } - 5 x + 5 }
\end{gathered}
$$

EXAMPLE 4 Using Synthetic Division

Use synthetic division to divide $5 x^{3}+6 x+8$ by $x+2$.

SOLUTION

The divisor must be in the form $x-c$. Thus, we write $x+2$ as $x-(-2)$. This means that $c=-2$. Writing a 0 coefficient for the missing x^{2}-term in the dividend, we can express the division as follows:

$$
x - (- 2) \longdiv { 5 x ^ { 3 } + 0 x ^ { 2 } + 6 x + 8 } .
$$

Now we are ready to set up the problem so that we can use synthetic division.

$$
x - (- 2) \longdiv { 5 x ^ { 3 } + 0 x ^ { 2 } + 6 x + 8 }
$$

The given division problem (repeated)

> Use the coefficients of the dividend
> $5 x^{3}+0 x^{2}+6 x+8$ in descending powers of x.

$$
\begin{array}{llllll}
\begin{array}{l}
\text { This is } s \text { in } \\
x-(-2) .
\end{array} & -2 & 5 & 0 & 6 & 8
\end{array}
$$

We begin the synthetic division process by bringing down 5 . This is followed by a series of multiplications and additions.

1. Bring down 5.

2. Add: $\mathbf{0}+(\mathbf{- 1 0)}=\mathbf{- 1 0}$.

$$
\begin{array}{ccc|cc}
-2 & & 5 & 0 \\
& & 68 \\
& & -10 \\
\text { Add. } \\
\hline
\end{array}
$$

5. Add: $6+20=26$.

$$
\begin{array}{c|rrr|c}
-2 & 5 & 0 & 6 \\
& -10 & 20
\end{array} \begin{gathered}
8 \\
\text { Add. } \\
\hline
\end{gathered}
$$

7. Add: $8+(-52)=-44$.

$$
\begin{aligned}
& -2 \left\lvert\, \begin{array}{rrrr}
5 & 0 & 6 & 8 \\
& -10 & 20 & -52 \\
& 5 & -10 & 26
\end{array}\right. \\
& \hline
\end{aligned}{ }^{-44} \text { Add. }
$$

Multiply 26 by $\mathbf{- 2}$.
The numbers in the last row represent the coefficients of the quotient and the remainder. The degree of the first term of the quotient is one less than that of the dividend. Because the degree of the dividend, $5 x^{3}+6 x+8$, is 3 , the degree of the quotient is 2 . This means that the 5 in the last row represents $5 x^{2}$.

$$
\begin{array}{c|rrrr}
-2 & 5 & 0 & 6 & 8 \\
\hline & & -10 & 20 & -52 \\
\hline 5 & -10 & 26 & -44 \\
& & \\
\begin{array}{c}
\text { The quotient is } \\
5 x^{2}-10 x+26 .
\end{array} & \begin{array}{c}
\text { The remainder } \\
\text { is }-44 .
\end{array}
\end{array}
$$

Thus,

$$
\begin{aligned}
& 5 x^{2}-10 x+26-\frac{44}{x+2} \\
& x + 2 \longdiv { 5 x ^ { 3 } + 6 x + 8 } .
\end{aligned}
$$

Check Point 4 Use synthetic division to divide $x^{3}-7 x-6$ by $x+2$.

3 Evaluate a polynomial using the Remainder Theorem.

The Remainder Theorem

Let's consider the Division Algorithm when the dividend, $f(x)$, is divided by $x-c$. In this case, the remainder must be a constant because its degree is less than one, the degree of $x-c$.

Now let's evaluate f at c.

$$
\begin{array}{ll}
f(c)=(c-c) q(c)+r & \text { Find } f(c) \text { by letting } x=c \text { in } f(x)=(x-c) q(x)+r . \\
f(c)=0 \cdot q(c)+r & \text { This will give an expression for } r . \\
f(c)=r & c-c=0 \\
& 0 \cdot q(c)=0 \text { and } 0+r=r .
\end{array}
$$

What does this last equation mean? If a polynomial is divided by $x-c$, the remainder is the value of the polynomial at c. This result is called the Remainder Theorem.

The Remainder Theorem

If the polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.

Example 5 shows how we can use the Remainder Theorem to evaluate a polynomial function at 2 . Rather than substituting 2 for x, we divide the function by $x-2$. The remainder is $f(2)$.

EXAMPLE 5 Using the Remainder Theorem to Evaluate a Polynomial Function

Given $f(x)=x^{3}-4 x^{2}+5 x+3$, use the Remainder Theorem to find $f(2)$.

SOLUTION

By the Remainder Theorem, if $f(x)$ is divided by $x-2$, then the remainder is $f(2)$. We'll use synthetic division to divide.

$$
\begin{array}{l|rrrll}
2 & 1-4 & 5 & 3 \\
& 2 & -4 & 2 \\
& \text { Remainder }
\end{array}
$$

The remainder, 5 , is the value of $f(2)$. Thus, $f(2)=5$. We can verify that this is correct by evaluating $f(2)$ directly. Using $f(x)=x^{3}-4 x^{2}+5 x+3$, we obtain

$$
f(2)=2^{3}-4 \cdot 2^{2}+5 \cdot 2+3=8-16+10+3=5
$$

$\$$ Check Point 5 Given $f(x)=3 x^{3}+4 x^{2}-5 x+3$, use the Remainder Theorem to find $f(-4)$.

4 Use the Factor Theorem to solve a polynomial equation.

The Factor Theorem

Let's look again at the Division Algorithm when the divisor is of the form $x-c$.

By the Remainder Theorem, the remainder r is $f(c)$, so we can substitute $f(c)$ for r :

$$
f(x)=(x-c) q(x)+f(c) .
$$

Notice that if $f(c)=0$, then

$$
f(x)=(x-c) q(x)
$$

so that $x-c$ is a factor of $f(x)$. This means that for the polynomial function $f(x)$, if $f(c)=0$, then $x-c$ is a factor of $f(x)$.

Let's reverse directions and see what happens if $x-c$ is a factor of $f(x)$. This means that

$$
f(x)=(x-c) q(x) .
$$

If we replace x in $f(x)=(x-c) q(x)$ with c, we obtain

$$
f(c)=(c-c) q(c)=0 \cdot q(c)=0
$$

Thus, if $x-c$ is a factor of $f(x)$, then $f(c)=0$.
We have proved a result known as the Factor Theorem.

The Factor Theorem
Let $f(x)$ be a polynomial.
a. If $f(c)=0$, then $x-c$ is a factor of $f(x)$.
b. If $x-c$ is a factor of $f(x)$, then $f(c)=0$.

The example that follows shows how the Factor Theorem can be used to solve a polynomial equation.

EXAMPLE 6 Using the Factor Theorem

Solve the equation $2 x^{3}-3 x^{2}-11 x+6=0$ given that 3 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$.

SOLUTION

We are given that 3 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$. This means that $f(3)=0$. Because $f(3)=0$, the Factor Theorem tells us that $x-3$ is a factor of $f(x)$. We'll use synthetic division to divide $f(x)$ by $x-3$.

TECHNOLOGY

Graphic Connections

Because the solution set of

$$
2 x^{3}-3 x^{2}-11 x+6=0
$$

is $\left\{-2, \frac{1}{2}, 3\right\}$, this implies that the polynomial function

$$
f(x)=2 x^{3}-3 x^{2}-11 x+6
$$

has x-intercepts (or zeros) at $-2, \frac{1}{2}$, and 3 . This is verified by the graph of f.

$[-10,10,1]$ by $[-15,15,1]$
$x - 3 \longdiv { 2 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 }$

Equivalently,

$$
2 x^{3}-3 x^{2}-11 x+6=(x-3)\left(2 x^{2}+3 x-2\right) .
$$

Now we can solve the polynomial equation.

$$
\begin{array}{rlrlrl}
2 x^{3}-3 x^{2}-11 x+6 & =0 & & \text { This is the given equation. } \\
(x-3)\left(2 x^{2}+3 x-2\right) & =0 & & \begin{array}{l}
\text { Factor using the result from the } \\
\text { synthetic division. }
\end{array} \\
(x-3)(2 x-1)(x+2) & =0 & & \text { Factor the trinomial. } \\
x-3=0 & \text { or } 2 x-1 & =0 & \text { or } & x+2=0 & \\
\text { Set each factor equal to } 0 . \\
x=3 & x & =\frac{1}{2} & & x=-2 & \\
\text { Solve for } x .
\end{array}
$$

The solution set is $\left\{-2, \frac{1}{2}, 3\right\}$.

Based on the Factor Theorem, the following statements are useful in solving polynomial equations:

1. If $f(x)$ is divided by $x-c$ and the remainder is zero, then c is a zero of f and c is a root of the polynomial equation $f(x)=0$.
2. If $f(x)$ is divided by $x-c$ and the remainder is zero, then $x-c$ is a factor of $f(x)$.

6 Check Point 6 Solve the equation $15 x^{3}+14 x^{2}-3 x-2=0$ given that -1 is a zero of $f(x)=15 x^{3}+14 x^{2}-3 x-2$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Consider the following long division problem:

$$
x + 4 \longdiv { 6 x - 4 + 2 x ^ { 3 } }
$$

We begin the division process by rewriting the dividend as \qquad
2. Consider the following long division problem:

$$
3 x - 1 \longdiv { 6 x ^ { 3 } + 7 x ^ { 2 } + 1 2 x - 5 } .
$$

We begin the division process by dividing \qquad by
\qquad We obtain \qquad We write this result above in the dividend.
3. In the following long division problem, the first step has been completed:

$$
5 x - 2 \longdiv { 2 x ^ { 2 } }
$$

The next step is to multiply \qquad and \qquad We obtain \qquad We write this result below \qquad
4. In the following long division problem, the first two steps have been completed:

$$
\begin{gathered}
3 x - 5 \longdiv { 6 x ^ { 2 } + 8 x - 4 } \\
6 x^{2}-10 x
\end{gathered}
$$

The next step is to subtract \qquad from \qquad $-$
We obtain \qquad Then we bring down \qquad and form the new dividend \qquad
5. In the following long division problem, most of the steps have been completed:

$$
\begin{array}{r}
3 x-5 \\
2 x + 1 \longdiv { 6 x ^ { 2 } - 7 x + 4 } \\
\frac{6 x^{2}+3 x}{-10 x}+4 \\
\frac{-10 x-5}{?}
\end{array}
$$

Completing the step designated by the question mark, we obtain \qquad Thus, the quotient is \qquad and the remainder is \qquad The answer to this long division problem is
6. After performing polynomial long division, the answer may be checked by multiplying the \qquad by the \qquad , and then adding the \qquad . You should obtain the \qquad
7. To divide $x^{3}+5 x^{2}-7 x+1$ by $x-4$ using synthetic division, the first step is to write
8. To divide $4 x^{3}-8 x-2$ by $x+5$ using synthetic division, the first step is to write
9. True or false:
$\begin{array}{lllll}-1 & 3 & -4 & 2 & -1\end{array}$

$$
\begin{array}{rrrr}
-3 & 7 & -9 \\
\hline 3 & -7 & 9 & -10
\end{array}
$$

$\frac{3 x^{3}-4 x^{2}+2 x-1}{x+1}=3 x^{2}-7 x+9-\frac{10}{x+1}$.
10. The Remainder Theorem states that if the polynomial $f(x)$ is divided by $x-c$, then the remainder is
11. The Factor Theorem states that if f is a polynomial function and $f(c)=0$, then \qquad is a factor of $f(x)$.

EXERCISE SET 2.4

Practice Exercises

In Exercises 1-16, divide using long division. State the quotient, $q(x)$, and the remainder, $r(x)$.

1. $\left(x^{2}+8 x+15\right) \div(x+5)$
2. $\left(x^{2}+3 x-10\right) \div(x-2)$
3. $\left(x^{3}+5 x^{2}+7 x+2\right) \div(x+2)$
4. $\left(x^{3}-2 x^{2}-5 x+6\right) \div(x-3)$
5. $\left(6 x^{3}+7 x^{2}+12 x-5\right) \div(3 x-1)$
6. $\left(6 x^{3}+17 x^{2}+27 x+20\right) \div(3 x+4)$
7. $\left(12 x^{2}+x-4\right) \div(3 x-2)$
8. $\left(4 x^{2}-8 x+6\right) \div(2 x-1)$
9．$\frac{2 x^{3}+7 x^{2}+9 x-20}{x+3}$
10．$\frac{3 x^{2}-2 x+5}{x-3}$
11．$\frac{4 x^{4}-4 x^{2}+6 x}{x-4}$
12．$\frac{x^{4}-81}{x-3}$
13．$\frac{6 x^{3}+13 x^{2}-11 x-15}{3 x^{2}-x-3}$
14．$\frac{x^{4}+2 x^{3}-4 x^{2}-5 x-6}{x^{2}+x-2}$
15．$\frac{18 x^{4}+9 x^{3}+3 x^{2}}{3 x^{2}+1}$
16．$\frac{2 x^{5}-8 x^{4}+2 x^{3}+x^{2}}{2 x^{3}+1}$

In Exercises 17－32，divide using synthetic division．
17．$\left(2 x^{2}+x-10\right) \div(x-2)$
18．$\left(x^{2}+x-2\right) \div(x-1)$
19．$\left(3 x^{2}+7 x-20\right) \div(x+5)$
20．$\left(5 x^{2}-12 x-8\right) \div(x+3)$
21．$\left(4 x^{3}-3 x^{2}+3 x-1\right) \div(x-1)$
22．$\left(5 x^{3}-6 x^{2}+3 x+11\right) \div(x-2)$
23．$\left(6 x^{5}-2 x^{3}+4 x^{2}-3 x+1\right) \div(x-2)$
24．$\left(x^{5}+4 x^{4}-3 x^{2}+2 x+3\right) \div(x-3)$
25．$\left(x^{2}-5 x-5 x^{3}+x^{4}\right) \div(5+x)$
26．$\left(x^{2}-6 x-6 x^{3}+x^{4}\right) \div(6+x)$
27．$\frac{x^{5}+x^{3}-2}{x-1}$
28．$\frac{x^{7}+x^{5}-10 x^{3}+12}{x+2}$
29．$\frac{x^{4}-256}{x-4}$
30．$\frac{x^{7}-128}{x-2}$
31．$\frac{2 x^{5}-3 x^{4}+x^{3}-x^{2}+2 x-1}{x+2}$
32．$\frac{x^{5}-2 x^{4}-x^{3}+3 x^{2}-x+1}{x-2}$
In Exercises 33－40，use synthetic division and the Remainder Theorem to find the indicated function value．

33．$f(x)=2 x^{3}-11 x^{2}+7 x-5 ; \quad f(4)$
34．$f(x)=x^{3}-7 x^{2}+5 x-6 ; \quad f(3)$
35．$f(x)=3 x^{3}-7 x^{2}-2 x+5 ; \quad f(-3)$
36．$f(x)=4 x^{3}+5 x^{2}-6 x-4 ; \quad f(-2)$
37．$f(x)=x^{4}+5 x^{3}+5 x^{2}-5 x-6 ; \quad f(3)$
38．$f(x)=x^{4}-5 x^{3}+5 x^{2}+5 x-6 ; \quad f(2)$
39．$f(x)=2 x^{4}-5 x^{3}-x^{2}+3 x+2 ; f\left(-\frac{1}{2}\right)$
40．$f(x)=6 x^{4}+10 x^{3}+5 x^{2}+x+1 ; \quad f\left(-\frac{2}{3}\right)$
41．Use synthetic division to divide

$$
f(x)=x^{3}-4 x^{2}+x+6 \text { by } x+1 .
$$

Use the result to find all zeros of f ．
42．Use synthetic division to divide

$$
f(x)=x^{3}-2 x^{2}-x+2 \text { by } x+1 .
$$

Use the result to find all zeros of f ．
43．Solve the equation $2 x^{3}-5 x^{2}+x+2=0$ given that 2 is a zero of $f(x)=2 x^{3}-5 x^{2}+x+2$ ．
44．Solve the equation $2 x^{3}-3 x^{2}-11 x+6=0$ given that -2 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$ ．

45．Solve the equation $12 x^{3}+16 x^{2}-5 x-3=0$ given that $-\frac{3}{2}$ is a root．
46．Solve the equation $3 x^{3}+7 x^{2}-22 x-8=0$ given that $-\frac{1}{3}$ is a root．

Practice Plus

In Exercises 47－50，use the graph or the table to determine a solution of each equation．Use synthetic division to verify that this number is a solution of the equation．Then solve the polynomial equation．
47．$x^{3}+2 x^{2}-5 x-6=0$

$[0,4,1]$ by $[-25,25,5]$
48． $2 x^{3}+x^{2}-13 x+6=0$

$[-4,0,1]$ by $[-25,25,5]$
49． $6 x^{3}-11 x^{2}+6 x-1=0$

$y_{1}=6 x^{3}-11 x^{2}+6 x-1$		
$\sqrt{ }$		
X	$Y 1$	
－8	－z日0	
－2	－105	
0^{-1}	－24	
1	$0{ }^{1}$	
$\underline{2}$	15	
3	日	
$=-3$		

50． $2 x^{3}+11 x^{2}-7 x-6=0$

$$
y_{1}=2 x^{3}+11 x^{2}-7 x-6
$$

X	$Y 1$	
－8	60	
-2 -1	謃	
${ }^{1}$	－6	
$\frac{1}{2}$	0	
3	186	

Application Exercises

51．a．Use synthetic division to show that 3 is a solution of the polynomial equation

$$
14 x^{3}-17 x^{2}-16 x-177=0
$$

b. Use the solution from part (a) to solve this problem. The number of eggs, $f(x)$, in a female moth is a function of her abdominal width, x, in millimeters, modeled by

$$
f(x)=14 x^{3}-17 x^{2}-16 x+34
$$

What is the abdominal width when there are 211 eggs?
52. a. Use synthetic division to show that 2 is a solution of the polynomial equation

$$
2 h^{3}+14 h^{2}-72=0
$$

b. Use the solution from part (a) to solve this problem. The width of a rectangular box is twice the height and the length is 7 inches more than the height. If the volume is 72 cubic inches, find the dimensions of the box.

In Exercises 53-54, write a polynomial that represents the length of each rectangle.
53.

54.

During the 1980s, the controversial economist Arthur Laffer promoted the idea that tax increases lead to a reduction in government revenue. Called supply-side economics, the theory uses functions such as

$$
f(x)=\frac{80 x-8000}{x-110}, 30 \leq x \leq 100 .
$$

This function models the government tax revenue, $f(x)$, in tens of billions of dollars, in terms of the tax rate, x. The graph of the function is shown. It illustrates tax revenue decreasing quite dramatically as the tax rate increases. At a tax rate of (gasp) 100%, the government takes all our money and no one has an incentive to work. With no income earned, zero dollars in tax revenue is generated.

Use function f and its graph to solve Exercises 55-56.
55. a. Find and interpret $f(30)$. Identify the solution as a point on the graph of the function.
b. Rewrite the function by using long division to perform

$$
(80 x-8000) \div(x-110)
$$

Then use this new form of the function to find $f(30)$. Do you obtain the same answer as you did in part (a)?
c. Is f a polynomial function? Explain your answer.
56. a. Find and interpret $f(40)$. Identify the solution as a point on the graph of the function.
b. Rewrite the function by using long division to perform

$$
(80 x-8000) \div(x-110)
$$

Then use this new form of the function to find $f(40)$. Do you obtain the same answer as you did in part (a)?
c. Is f a polynomial function? Explain your answer.

Writing in Mathematics

57. Explain how to perform long division of polynomials. Use $2 x^{3}-3 x^{2}-11 x+7$ divided by $x-3$ in your explanation.
58. In your own words, state the Division Algorithm.
59. How can the Division Algorithm be used to check the quotient and remainder in a long division problem?
60. Explain how to perform synthetic division. Use the division problem in Exercise 57 to support your explanation.
61. State the Remainder Theorem.
62. Explain how the Remainder Theorem can be used to find $f(-6)$ if $f(x)=x^{4}+7 x^{3}+8 x^{2}+11 x+5$. What advantage is there to using the Remainder Theorem in this situation rather than evaluating $f(-6)$ directly?
63. How can the Factor Theorem be used to determine if $x-1$ is a factor of $x^{3}-2 x^{2}-11 x+12$?
64. If you know that -2 is a zero of

$$
f(x)=x^{3}+7 x^{2}+4 x-12
$$

explain how to solve the equation

$$
x^{3}+7 x^{2}+4 x-12=0
$$

Technology Exercise

65. For each equation that you solved in Exercises 43-46, use a graphing utility to graph the polynomial function defined by the left side of the equation. Use end behavior to obtain a complete graph. Then use the graph's x-intercepts to verify your solutions.

Critical Thinking Exercises

Make Sense? In Exercises 66-69, determine whether each statement makes sense or does not make sense, and explain your reasoning.
66. When performing the division $\left(x^{5}+1\right) \div(x+1)$, there's no need for me to follow all the steps involved in polynomial long division because I can work the problem in my head and see that the quotient must be $x^{4}+1$.
67. Every time I divide polynomials using synthetic division, I am using a highly condensed form of the long division procedure where omitting the variables and exponents does not involve the loss of any essential data.

346

68. The only nongraphic method that I have for evaluating a function at a given value is to substitute that value into the function's equation.
69. I found the zeros of function f, but I still need to find the solutions of the equation $f(x)=0$.
In Exercises 70-73, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
70. If a trinomial in x of degree 6 is divided by a trinomial in x of degree 3 , the degree of the quotient is 2 .
71. Synthetic division can be used to find the quotient of $10 x^{3}-6 x^{2}+4 x-1$ and $x-\frac{1}{2}$.
72. Any problem that can be done by synthetic division can also be done by the method for long division of polynomials.
73. If a polynomial long-division problem results in a remainder that is a whole number, then the divisor is a factor of the dividend.
74. Find k so that $4 x+3$ is a factor of

$$
20 x^{3}+23 x^{2}-10 x+k
$$

75. When $2 x^{2}-7 x+9$ is divided by a polynomial, the quotient is $2 x-3$ and the remainder is 3 . Find the polynomial.
76. Find the quotient of $x^{3 n}+1$ and $x^{n}+1$.
77. Synthetic division is a process for dividing a polynomial by $x-c$. The coefficient of x in the divisor is 1 . How might synthetic division be used if you are dividing by $2 x-4$?
78. Use synthetic division to show that 5 is a solution of

$$
x^{4}-4 x^{3}-9 x^{2}+16 x+20=0
$$

Then solve the polynomial equation.

Preview Exercises

Exercises 79-81 will help you prepare for the material covered in the next section.
79. Solve: $x^{2}+4 x-1=0$.
80. Solve: $x^{2}+4 x+6=0$.
81. Let $f(x)=a_{n}\left(x^{4}-3 x^{2}-4\right)$. If $f(3)=-150$, determine the value of a_{n}.

SECTION 2.5

Zeros of Polynomial Functions

Objectives

(1) Use the Rational Zero Theorem to find possible rational zeros.
(2) Find zeros of a polynomial function.
(3) Solve polynomial equations.
4. Use the Linear Factorization Theorem to find polynomials with given zeros.
(5) Use Descartes's Rule of Signs.

You stole my formula!

$$
\begin{aligned}
& \text { Tartaglia's Secret Formula } \\
& \text { for One Solution of } \\
& x^{3}+m x=n \\
& x=\sqrt[3]{\sqrt{\left(\frac{n}{2}\right)^{2}+\left(\frac{m}{3}\right)^{3}}+\frac{n}{2}} \\
& -\sqrt[3]{\sqrt{\left(\frac{n}{2}\right)^{2}+\left(\frac{m}{3}\right)^{3}}-\frac{n}{2}}
\end{aligned}
$$

Popularizers of mathematics are sharing bizarre stories that are giving math a secure place in popular culture. One episode, able to compete with the wildest fare served up by television talk shows and the tabloids, involves three Italian mathematicians and, of all things, zeros of polynomial functions.

Tartaglia (1499-1557), poor and starving, has found a formula that gives a root for a third-degree polynomial equation. Cardano (1501-1576) begs Tartaglia to reveal the secret formula, wheedling it from him with the promise he will find the impoverished Tartaglia a patron. Then Cardano publishes his famous work Ars Magna, in which he presents Tartaglia's formula as his own. Cardano uses his most talented student, Ferrari (1522-1565), who derived a formula for a root of a fourth-degree polynomial equation, to falsely accuse Tartaglia of plagiarism. The dispute becomes violent and Tartaglia is fortunate to escape alive.

The noise from this "You Stole My Formula" episode is quieted by the work of French mathematician Evariste Galois (1811-1832). Galois proved that there is no general formula for finding roots of polynomial equations of degree 5 or higher. There are, however, methods for finding roots. In this section, we study methods for finding zeros of polynomial functions. We begin with a theorem that plays an important role in this process.

GREAT QUESTION!

When finding zeros of polynomial functions, what kinds of numbers can I get?
Here's a quick example that involves all possible kinds of zeros:

The Rational Zero Theorem

The Rational Zero Theorem provides us with a tool that we can use to make a list of all possible rational zeros of a polynomial function. Equivalently, the theorem gives all possible rational roots of a polynomial equation. Not every number in the list will be a zero of the function, but every rational zero of the polynomial function will appear somewhere in the list.

The Rational Zero Theorem

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ has integer coefficients and $\frac{p}{q}$ (where $\frac{p}{q}$ is reduced to lowest terms) is a rational zero of f, then p is a factor of the constant term, a_{0}, and q is a factor of the leading coefficient, a_{n}.

You can explore the "why" behind the Rational Zero Theorem in Exercise 92 of Exercise Set 2.5. For now, let's see if we can figure out what the theorem tells us about possible rational zeros. To use the theorem, list all the integers that are factors of the constant term, a_{0}. Then list all the integers that are factors of the leading coefficient, a_{n}. Finally, list all possible rational zeros:

$$
\text { Possible rational zeros }=\frac{\text { Factors of the constant term }}{\text { Factors of the leading coefficient }} .
$$

EXAMPLE 1 Using the Rational Zero Theorem

List all possible rational zeros of $f(x)=-x^{4}+3 x^{2}+4$.

SOLUTION

The constant term is 4 . We list all of its factors: $\pm 1, \pm 2, \pm 4$. The leading coefficient is -1 . Its factors are ± 1.

Factors of the constant term, $4: \quad \pm 1, \quad \pm 2, \quad \pm 4$
Factors of the leading coefficient, $-1: \quad \pm 1$

GREAT QUESTION!

What's the relationship among

 zeros, roots, and \boldsymbol{x}-intercepts?The zeros of a function f are the roots, or solutions, of the equation $f(x)=0$. Furthermore, the real zeros, or real roots, are the x-intercepts of the graph of f.
(2) Find zeros of a polynomial function.

Because

$$
\text { Possible rational zeros }=\frac{\text { Factors of the constant term }}{\text { Factors of the leading coefficient }},
$$

we must take each number in the first row, $\pm 1, \pm 2, \pm 4$, and divide by each number in the second row, ± 1.

Possible rational zeros $=\frac{\text { Factors of } 4}{\text { Factors of }-1}=\frac{ \pm 1, \pm 2, \pm 4}{ \pm 1}= \pm 1, \quad \pm 2, \quad \pm 4$
There are six possible rational zeros. The graph of $f(x)=-x^{4}+3 x^{2}+4$ is shown in Figure 2.28. The x-intercepts are -2 and 2. Thus, -2 and 2 are the actual rational zeros.

Check Point 1 List all possible rational zeros of

$$
f(x)=x^{3}+2 x^{2}-5 x-6
$$

FIGURE 2.28 The graph of
$f(x)=-x^{4}+3 x^{2}+4$ shows that -2 and 2 are rational zeros.

EXAMPLE 2 Using the Rational Zero Theorem

List all possible rational zeros of $f(x)=15 x^{3}+14 x^{2}-3 x-2$.

SOLUTION

The constant term is -2 and the leading coefficient is 15 .
Possible rational zeros $=\frac{\text { Factors of the constant term, }-2}{\text { Factors of the leading coefficient, } 15}=\frac{ \pm 1, \pm 2}{ \pm 1, \pm 3, \pm 5, \pm 15}$

$$
= \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{1}{15}, \pm \frac{2}{15}
$$

| Divide ± 1 Divide ± 1 Divide ± 1 Divide ± 1
 and ± 2 and ± 2 and ± 2 and ± 2
 by ± 1. by ± 3. by ± 5. by ± 15.${ }^{2}$ | | |
| :---: | :---: | :---: | :---: |

There are 16 possible rational zeros. The actual solution set of

$$
15 x^{3}+14 x^{2}-3 x-2=0
$$

is $\left\{-1,-\frac{1}{3}, \frac{2}{5}\right\}$, which contains three of the 16 possible zeros.

\oint Check Point 2 List all possible rational zeros of

$$
f(x)=4 x^{5}+12 x^{4}-x-3
$$

How do we determine which (if any) of the possible rational zeros are rational zeros of the polynomial function? To find the first rational zero, we can use a trial-and-error process involving synthetic division: If $f(x)$ is divided by $x-c$ and the remainder is zero, then c is a zero of f. After we identify the first rational zero, we use the result of the synthetic division to factor the original polynomial. Then we set each factor equal to zero to identify any additional rational zeros.

EXAMPLE 3 Finding Zeros of a Polynomial Function

Find all zeros of $f(x)=x^{3}+2 x^{2}-5 x-6$.

SOLUTION

We begin by listing all possible rational zeros.
Possible rational zeros

$$
=\frac{\text { Factors of the constant term, }-6}{\text { Factors of the leading coefficient, } 1}=\frac{ \pm 1, \pm 2, \pm 3, \pm 6}{ \pm 1}= \pm 1, \pm 2, \pm 3, \pm 6
$$

Divide the eight numbers in the numerator by ± 1.

Now we will use synthetic division to see if we can find a rational zero among the possible rational zeros $\pm 1, \pm 2, \pm 3, \pm 6$. Keep in mind that if $f(x)$ is divided by $x-c$ and the remainder is zero, then c is a zero of f. Let's start by testing 1. If 1 is not a rational zero, then we will test other possible rational zeros.

Test 1.

	Coefficients of $\begin{aligned} & f(x)=x^{3}+2 x^{2}-5 x-6 \end{aligned}$
Possible rational zero	$\text { 1) } 1 \quad 2-5-6$
	$13-2$
	$13-2-8$
	The nonzero remainder shows that 1 is not a zero.

Test 2.

	Coefficients of $f(x)=x^{3}+2 x^{2}-5 x-6$
Possible rational zero	2 1 $2-5$ -6
	286
	1430

> The zero remainder shows that 2 is a zero.

The zero remainder tells us that 2 is a zero of the polynomial function $f(x)=x^{3}+2 x^{2}-5 x-6$. Equivalently, 2 is a solution, or root, of the polynomial equation $x^{3}+2 x^{2}-5 x-6=0$. Thus, $x-2$ is a factor of the polynomial. The first three numbers in the bottom row of the synthetic division on the right, 1,4 , and 3 , give the coefficients of the other factor. This factor is $x^{2}+4 x+3$.

$$
\begin{array}{rlrlrl}
x^{3}+2 x^{2}-5 x-6 & =0 & & \begin{array}{l}
\text { Finding the zeros of } f(x)=x^{3}+2 x^{2}-5 x-6 \text { is } \\
\\
(x-2)\left(x^{2}+4 x+3\right)
\end{array} & =0 & \\
\text { the same as finding the roots of this equation. }
\end{array}
$$

The solution set is $\{-3,-1,2\}$. The zeros of f are $-3,-1$, and 2 .
Check Point 3 Find all zeros of

$$
f(x)=x^{3}+8 x^{2}+11 x-20
$$

Our work in Example 3 involved finding zeros of a third-degree polynomial function. The Rational Zero Theorem is a tool that allows us to rewrite such functions as products of two factors, one linear and one quadratic. Zeros of the quadratic factor are found by factoring, the quadratic formula, or the square root property.

EXAMPLE 4 Finding Zeros of a Polynomial Function

Find all zeros of $f(x)=x^{3}+7 x^{2}+11 x-3$.

SOLUTION

We begin by listing all possible rational zeros.
Possible rational zeros $=\frac{\text { Factors of the constant term, }-3}{\text { Factors of the leading coefficient, } 1}=\frac{ \pm 1, \pm 3}{ \pm 1}= \pm 1, \pm 3$

Now we will use synthetic division to see if we can find a rational zero among the four possible rational zeros, $\pm 1, \pm 3$, of $f(x)=x^{3}+7 x^{2}+11 x-3$.

The zero remainder when testing -3 tells us that -3 is a zero of the polynomial function $f(x)=x^{3}+7 x^{2}+11 x-3$. To find all zeros of f, we proceed as follows:

$$
\begin{array}{ll}
x^{3}+7 x^{2}+11 x-3=0 \quad & \begin{array}{l}
\text { Finding the zeros of } f \text { is the same thing as } \\
\text { finding the roots of } f(x)=0 .
\end{array} \\
(x+3)\left(x^{2}+4 x-1\right)=0 \quad \begin{array}{l}
\text { This result is from the last synthetic division, } \\
\text { shown above. The first three numbers in the } \\
\text { bottom row, } 1,4, \text { and }-1, \text { give the coefficients } \\
\text { of the second factor. }
\end{array} \\
x+3=0 \text { or } x^{2}+4 x-1=0 \quad \begin{array}{l}
\text { Set each factor equal to } 0 . \\
x=-3 .
\end{array} & \begin{array}{l}
\text { Solve the linear equation. }
\end{array}
\end{array}
$$

We can use the quadratic formula to solve $x^{2}+4 x-1=0$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \begin{array}{l}
\text { We use the quadratic formula because } \\
x^{2}+4 x-1 \text { cannot be factored. }
\end{array} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(1)(-1)}}{2(1)} & & \text { Let } a=1, b=4, \text { and } c=-1 . \\
& =\frac{-4 \pm \sqrt{20}}{2} & & \begin{array}{l}
\text { Multiply and subtract under the radical: } \\
4^{2}-4(1)(-1)=16-(-4)=16+4=20 .
\end{array} \\
& =\frac{-4 \pm 2 \sqrt{5}}{2} & & \sqrt{20}=\sqrt{4 \cdot 5}=2 \sqrt{5}
\end{aligned}
$$

$$
=-2 \pm \sqrt{5}
$$

The solution set is $\{-3,-2-\sqrt{5},-2 \pm \sqrt{5}\}$. The zeros of $f(x)=x^{3}+7 x^{2}+$ $11 x-3$ are $-3,-2-\sqrt{5}$, and $-2+\sqrt{5}$. Among these three real zeros, one zero is rational and two are irrational.

$\$$ Check Point 4 Find all zeros of $f(x)=x^{3}+x^{2}-5 x-2$.

If the degree of a polynomial function or equation is 4 or higher, it is often necessary to find more than one linear factor by synthetic division.

One way to speed up the process of finding the first zero is to graph the function. Any x-intercept is a zero.
(3) Solve polynomial equations.

EXAMPLE 5 Solving a Polynomial Equation

Solve: $x^{4}-6 x^{2}-8 x+24=0$.

SOLUTION

Recall that we refer to the zeros of a polynomial function and the roots of a polynomial equation. Because we are given an equation, we will use the word "roots," rather than "zeros," in the solution process. We begin by listing all possible rational roots.

FIGURE 2.29 The graph of $f(x)=x^{4}-6 x^{2}-8 x+24$ in a $[-1,5,1]$ by $[-2,10,1]$ viewing rectangle

$$
\begin{aligned}
\text { Possible rational roots } & =\frac{\text { Factors of the constant term, } 24}{\text { Factors of the leading coefficient, } 1} \\
& =\frac{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24}{ \pm 1} \\
& = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24
\end{aligned}
$$

Part of the graph of $f(x)=x^{4}-6 x^{2}-8 x+24$ is shown in Figure 2.29. Because the x-intercept is 2 , we will test 2 by synthetic division and show that it is a root of the given equation. Without the graph, the procedure would be to start the trial-and-error synthetic division with 1 and proceed until a zero remainder is found, as we did in Example 4.

Now we can rewrite the given equation in factored form.

$$
\begin{aligned}
x^{4}-6 x^{2}-8 x+24=0 & \text { This is the given equation. } \\
(x-2)\left(x^{3}+2 x^{2}-2 x-12\right)=0 & \begin{array}{l}
\text { This is the result obtained from the } \\
\\
\text { synthetic division. The first four } \\
\text { numbers in the bottom row, } 1,2,-2, \\
\\
\text { and }-12, \text { give the coefficients of the } \\
\text { second factor. }
\end{array} \\
x-2=0 \text { or } x^{3}+2 x^{2}-2 x-12=0 & \text { Set each factor equal to } 0 .
\end{aligned}
$$

We can use the same approach to look for rational roots of the polynomial equation $x^{3}+2 x^{2}-2 x-12=0$, listing all possible rational roots. Without the graph in Figure 2.29, the procedure would be to start testing possible rational roots by trial-and-error synthetic division. However, take a second look at the graph in Figure 2.29. Because the graph turns around at 2, this means that 2 is a root of even multiplicity. Thus, 2 must also be a root of $x^{3}+2 x^{2}-2 x-12=0$, confirmed by the following synthetic division.

Now we can solve the original equation as follows:

$$
\left.\begin{array}{rlrl}
x^{4}-6 x^{2}-8 x+24 & =0 & & \text { This is the given equartion. } \\
(x-2)\left(x^{3}+2 x^{2}-2 x-12\right)=0 & \begin{array}{ll}
\text { This factorization was obtained } \\
\text { from the first synthetic division. }
\end{array} \\
(x-2)(x-2)\left(x^{2}+4 x+6\right)=0 & \begin{array}{lll}
\text { This factorization was obtained } \\
\text { from the second synthetic division. } \\
& \text { The first three numbers in the } \\
\text { bottom row, } 1,4, \text { and } 6, ~ g i v e ~ t h e ~
\end{array} \\
\text { coefficients of the third factor. }
\end{array}\right\}
$$

FIGURE 2.29 (repeated) The graph of $f(x)=x^{4}-6 x^{2}-8 x+24$ in a $[-1,5,1]$ by $[-2,10,1]$ viewing rectangle

GREAT QUESTION!

Do all polynomial equations have at least one imaginary root?

No. As you read the Fundamental Theorem of Algebra, don't confuse complex root with imaginary root and conclude that every polynomial equation has at least one imaginary root. Recall that complex numbers, $a+b i$, include both real numbers ($b=0$) and imaginary numbers $(b \neq 0)$.

We can use the quadratic formula to solve $x^{2}+4 x+6=0$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \begin{array}{l}
\text { We use the quadratic formula because } \\
x^{2}+4 x+6 \text { cannot be factored. }
\end{array} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(1)(6)}}{2(1)} & & \text { Let } a=1, b=4, \text { and } c=6
\end{aligned} \quad \begin{array}{ll}
2 & \\
& =\frac{-4 \pm \sqrt{-8}}{2} \\
& =\frac{-4 \pm 2 i \sqrt{2}}{2} \\
& =-2 \pm i \sqrt{2} \\
4^{2}-4(1)(6)=16-24=-8 .
\end{array}
$$

The solution set of the original equation, $x^{4}-6 x^{2}-8 x+24=0$, is $\{2,-2-i \sqrt{2},-2+i \sqrt{2}\}$. Figure 2.29, repeated in the margin, shows that a graphing utility does not reveal the two imaginary roots.

In Example 5, 2 is a repeated root of the equation with multiplicity 2. Counting this multiple root separately, the fourth-degree equation $x^{4}-6 x^{2}-8 x+24=0$ has four roots: $2,2,-2+i \sqrt{2}$, and $-2-i \sqrt{2}$. The equation and its roots illustrate two general properties:

Properties of Roots of Polynomial Equations

1. If a polynomial equation is of degree n, then counting multiple roots separately, the equation has n roots.
2. If $a+b i$ is a root of a polynomial equation with real coefficients $(b \neq 0)$, then the imaginary number $a-b i$ is also a root. Imaginary roots, if they exist, occur in conjugate pairs.

Check Point 5 Solve: $x^{4}-6 x^{3}+22 x^{2}-30 x+13=0$.

The Fundamental Theorem of Algebra

The fact that a polynomial equation of degree n has n roots is a consequence of a theorem proved in 1799 by a 22 -year-old student named Carl Friedrich Gauss in his doctoral dissertation. His result is called the Fundamental Theorem of Algebra.

The Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree n, where $n \geq 1$, then the equation $f(x)=0$ has at least one complex root.

Suppose, for example, that $f(x)=0$ represents a polynomial equation of degree n. By the Fundamental Theorem of Algebra, we know that this equation has at least one complex root; we'll call it c_{1}. By the Factor Theorem, we know that $x-c_{1}$ is a factor of $f(x)$. Therefore, we obtain

$$
\begin{aligned}
\left(x-c_{1}\right) q_{1}(x) & =0 \quad \text { The degree of the polynomial } q_{1}(x) \text { is } n-1 . \\
x-c_{1}=0 & \text { or } \quad q_{1}(x)
\end{aligned}=0 . \quad \text { Set each factor equal to } 0 . ~ \$
$$

If the degree of $q_{1}(x)$ is at least 1 , by the Fundamental Theorem of Algebra, the equation $q_{1}(x)=0$ has at least one complex root. We'll call it c_{2}. The Factor Theorem gives us

$$
\begin{array}{rlrl}
q_{1}(x) & =0 & & \text { The degree of } q_{1}(x) \text { is } n-1 . \\
\left(x-c_{2}\right) q_{2}(x) & =0 & \text { The degree of } q_{2}(x) \text { is } n-2 . \\
x-c_{2}=0 & \text { or } \quad q_{2}(x) & =0 . & \text { Set each factor equal to } 0
\end{array}
$$

Let's see what we have up to this point and then continue the process.

$$
\begin{array}{rlrl}
f(x) & =0 & & \text { This is the original polynomial equation of degree } n . \\
\left(x-c_{1}\right) q_{1}(x)=0 & & \begin{array}{l}
\text { This is the result from our first application of the }
\end{array} \\
\left(x-c_{1}\right)\left(x-c_{2}\right) q_{2}(x)=0 & \begin{array}{l}
\text { Fundamental Theorem. }
\end{array} \\
& \begin{array}{l}
\text { This is the result from our second application of } \\
\text { the Fundamental Theorem. }
\end{array}
\end{array}
$$

By continuing this process, we will obtain the product of n linear factors. Setting each of these linear factors equal to zero results in n complex roots. Thus, if $f(x)$ is a polynomial of degree n, where $n \geq 1$, then $f(x)=0$ has exactly n roots, where roots are counted according to their multiplicity.

Use the Linear Factorization Theorem to find polynomials with given zeros.

The Linear Factorization Theorem

In Example 5, we found that $x^{4}-6 x^{2}-8 x+24=0$ has $\{2,-2 \pm i \sqrt{2}\}$ as a solution set, where 2 is a repeated root with multiplicity 2 . The polynomial can be factored over the complex nonreal numbers as follows:

This fourth-degree polynomial has four linear factors. Just as an n th-degree polynomial equation has n roots, an n th-degree polynomial has n linear factors. This is formally stated as the Linear Factorization Theorem.

The Linear Factorization Theorem

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where $n \geq 1$ and $a_{n} \neq 0$, then

$$
f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right),
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are complex numbers (possibly real and not necessarily distinct).
In words: An n th-degree polynomial can be expressed as the product of a nonzero constant and n linear factors, where each linear factor has a leading coefficient of 1 .

Many of our problems involving polynomial functions and polynomial equations dealt with the process of finding zeros and roots. The Linear Factorization Theorem enables us to reverse this process, finding a polynomial function when the zeros are given.

EXAMPLE 6 Finding a Polynomial Function with Given Zeros

Find a fourth-degree polynomial function $f(x)$ with real coefficients that has $-2,2$, and i as zeros and such that $f(3)=-150$.

SOLUTION

Because i is a zero and the polynomial has real coefficients, the conjugate, $-i$, must also be a zero. We can now use the Linear Factorization Theorem.

$$
\begin{aligned}
f(x) & =a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right)\left(x-c_{4}\right) \\
& =a_{n}(x+2)(x-2)(x-i)(x+i) \\
& =a_{n}\left(x^{2}-4\right)\left(x^{2}+1\right)
\end{aligned}
$$

TECHNOLOGY

Graphic Connections

The graph of
$f(x)=-3 x^{4}+9 x^{2}+12$, shown in a $[-3,3,1]$ by $[-200,20,20]$
viewing rectangle, verifies that -2 and 2 are real zeros. By tracing along the curve, we can check that $f(3)=-150$.

(5) Use Descartes's Rule of Signs.

"An equation can have as many true [positive] roots as it contains changes of sign, from plus to minus or from minus to plus." René Descartes (1596-1650) in La Géométrie (1637)

GREAT QUESTION!

Does Descartes's Rule of Signs

 include both rational and irrational zeros?Yes. The number of real zeros given by Descartes's Rule of Signs includes rational zeros from a list of possible rational zeros, as well as irrational zeros not on the list. It does not include any imaginary zeros.

$$
\begin{array}{rlrl}
f(x)=a_{n}\left(x^{4}-3 x^{2}-4\right) & & \begin{array}{l}
\text { Complete the multiplication for } \\
f(x)=a_{n}\left(x^{2}-4\right)\left(x^{2}+1\right) .
\end{array} \\
f(3)=a_{n}\left(3^{4}-3 \cdot 3^{2}-4\right) & =-150 & & \text { To find } a_{n}, \text { use the fact that } f(3)=-150 . \\
a_{n}(81-27-4) & =-150 & & \text { Solve for } a_{n} . \\
50 a_{n} & =-150 & & \text { Simplify: } 81-27-4=50 . \\
a_{n} & =-3 & & \text { Divide both sides by } 50 .
\end{array}
$$

Substituting -3 for a_{n} in the formula for $f(x)$, we obtain

$$
f(x)=-3\left(x^{4}-3 x^{2}-4\right)
$$

Equivalently

$$
f(x)=-3 x^{4}+9 x^{2}+12
$$

Check Point 6 Find a third-degree polynomial function $f(x)$ with real coefficients that has -3 and i as zeros and such that $f(1)=8$.

Descartes's Rule of Signs

Because an n th-degree polynomial equation might have roots that are imaginary numbers, we should note that such an equation can have at most n real roots. Descartes's Rule of Signs provides even more specific information about the number of real zeros that a polynomial can have. The rule is based on considering variations in sign between consecutive coefficients. For example, the function $f(x)=3 x^{7}-2 x^{5}-x^{4}+7 x^{2}+x-3$ has three sign changes:

Descartes's Rule of Signs

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial with real coefficients.

1. The number of positive real zeros of f is either
a. the same as the number of sign changes of $f(x)$
or
b. less than the number of sign changes of $f(x)$ by a positive even integer. If $f(x)$ has only one variation in sign, then f has exactly one positive real zero.
2. The number of negative real zeros of f is either
a. the same as the number of sign changes of $f(-x)$
or
b. less than the number of sign changes of $f(-x)$ by a positive even integer. If $f(-x)$ has only one variation in sign, then f has exactly one negative real zero.

GREAT QUESTION!

Does a polynomial function

 have to be written in descending powers of \boldsymbol{x} when counting sign changes?Yes. Be sure that the function's equation is in this form before using Descartes's Rule of signs.

Table 2.1 illustrates what Descartes's Rule of Signs tells us about the positive real zeros of various polynomial functions.
Table 2.1 Descartes's Rule of Signs and Positive Real Zeros

EXAMPLE 7 Using Descartes's Rule of Signs

Determine the possible numbers of positive and negative real zeros of $f(x)=x^{3}+2 x^{2}+5 x+4$.

SOLUTION

1. To find possibilities for positive real zeros, count the number of sign changes in the equation for $f(x)$. Because all the coefficients are positive, there are no variations in sign. Thus, there are no positive real zeros.
2. To find possibilities for negative real zeros, count the number of sign changes in the equation for $f(-x)$. We obtain this equation by replacing x with $-x$ in the given function.

$$
\begin{aligned}
f(x)= & x^{3}+2 x^{2}+5 x+4 \\
& \text { Replace } x \text { with }-x \\
f(-x)= & (-x)^{3}+2(-x)^{2}+5(-x)+4 \\
= & -x^{3}+2 x^{2}-5 x+4
\end{aligned}
$$

Now count the sign changes.

There are three variations in sign. The number of negative real zeros of f is either equal to the number of sign changes, 3 , or is less than this number by an even integer. This means that either there are 3 negative real zeros or there is $3-2=1$ negative real zero.

What do the results of Example 7 mean in terms of solving

$$
x^{3}+2 x^{2}+5 x+4=0 ?
$$

Without using Descartes's Rule of Signs, we list the possible rational roots as follows:
Possible rational roots

$$
=\frac{\text { Factors of the constant term, } 4}{\text { Factors of the leading coefficient, } 1}=\frac{ \pm 1, \pm 2, \pm 4}{ \pm 1}= \pm 1, \pm 2, \pm 4 .
$$

We see that the possible rational roots of $x^{3}+2 x^{2}+5 x+4=0$ are $\pm 1, \pm 2$, and ± 4. However, Descartes's Rule of Signs informed us that $f(x)=x^{3}+2 x^{2}+5 x+4$ has no positive real zeros. Thus, the polynomial equation $x^{3}+2 x^{2}+5 x+4=0$ has no positive real roots. This means that we can eliminate the positive numbers 1, 2 , and 4 from our list of possible rational roots. Possible rational roots include only $-1,-2$, and -4 . We can use synthetic division and test the first of these three possible rational roots of $x^{3}+2 x^{2}+5 x+4=0$ as follows:

$$
\begin{aligned}
& \begin{array}{lllllll}
\text { Test } & & -1 & 1 & 2 & 5 & 4
\end{array} \\
& \begin{array}{rrrr}
& -1 & -1 & -4 \\
\hline 1 & 1 & 4 & 0 .
\end{array}
\end{aligned}
$$

The zero remainder shows that -1 is a root.

By solving the equation $x^{3}+2 x^{2}+5 x+4=0$, you will find that this equation of degree 3 has three roots. One root is -1 and the other two roots are imaginary numbers in a conjugate pair. Verify this by completing the solution process.
Check Point 7 Determine the possible numbers of positive and negative real zeros of $f(x)=x^{4}-14 x^{3}+71 x^{2}-154 x+120$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Consider the polynomial function with integer coefficients

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0 .
$$

The Rational Zero Theorem states that if $\frac{p}{q}$ is a rational zero of f (where $\frac{p}{q}$ is reduced to lowest terms), then p is a factor of \qquad and q is a factor of \qquad .
2. True or false: $\frac{3}{2}$ is a possible rational zero of $f(x)=2 x^{3}+11 x^{2}-7 x-6$. \qquad
3. True or false: $\frac{1}{2}$ is a possible rational zero of $f(x)=3 x^{4}-3 x^{3}+x^{2}-x+1$.
4. If a polynomial equation is of degree n, then counting multiple roots separately, the equation has \qquad roots.
5. If $a+b i$ is a root of a polynomial equation with real coefficients, $b \neq 0$, then \qquad is also a root of the equation.
6. Consider solving $2 x^{3}+11 x^{2}-7 x-6=0$. The synthetic division shown below indicates that \qquad is a root.

$$
\begin{array}{l|rrrr}
-6 & 11 & -7 & -6 \\
& \begin{array}{rrrr}
12 & 6 & 6 \\
\hline 2 & -1 & -1 & 0
\end{array} \\
\hline 2
\end{array}
$$

Based on the synthetic division, $2 x^{3}+11 x^{2}-7 x-6=0$ can be written in factored form as
7. The Linear Factorization Theorem states that an n thdegree polynomial can be expressed as the product of a nonzero constant and ___ linear factors, where each linear factor has a leading coefficient of \qquad .
Use Descartes's Rule of Signs to determine whether each statement is true of false.
8. A polynomial function with four sign changes must have four positive real zeros. \qquad
9. A polynomial function with one sign change must have one positive real zero.
10. A polynomial function with seven sign changes can have one, three, five, or seven positive real zeros.

EXERCISE SET 2.5

Practice Exercises

In Exercises 1-8, use the Rational Zero Theorem to list all possible rational zeros for each given function.

1. $f(x)=x^{3}+x^{2}-4 x-4$
2. $f(x)=x^{3}+3 x^{2}-6 x-8$
3. $f(x)=3 x^{4}-11 x^{3}-x^{2}+19 x+6$
4. $f(x)=2 x^{4}+3 x^{3}-11 x^{2}-9 x+15$
5. $f(x)=4 x^{4}-x^{3}+5 x^{2}-2 x-6$
6. $f(x)=3 x^{4}-11 x^{3}-3 x^{2}-6 x+8$
7. $f(x)=x^{5}-x^{4}-7 x^{3}+7 x^{2}-12 x-12$
8. $f(x)=4 x^{5}-8 x^{4}-x+2$

In Exercises 9-16,

a. List all possible rational zeros.
b. Use synthetic division to test the possible rational zeros and find an actual zero.
c. Use the quotient from part (b) to find the remaining zeros of the polynomial function.
9. $f(x)=x^{3}+x^{2}-4 x-4$
10. $f(x)=x^{3}-2 x^{2}-11 x+12$
11. $f(x)=2 x^{3}-3 x^{2}-11 x+6$
12. $f(x)=2 x^{3}-5 x^{2}+x+2$
13. $f(x)=x^{3}+4 x^{2}-3 x-6$
14. $f(x)=2 x^{3}+x^{2}-3 x+1$
15. $f(x)=2 x^{3}+6 x^{2}+5 x+2$
16. $f(x)=x^{3}-4 x^{2}+8 x-5$

In Exercises 17-24,
a. List all possible rational roots.
b. Use synthetic division to test the possible rational roots and find an actual root.
c. Use the quotient from part (b) to find the remaining roots and solve the equation.
17. $x^{3}-2 x^{2}-11 x+12=0$
18. $x^{3}-2 x^{2}-7 x-4=0$
19. $x^{3}-10 x-12=0$
20. $x^{3}-5 x^{2}+17 x-13=0$
21. $6 x^{3}+25 x^{2}-24 x+5=0$
22. $2 x^{3}-5 x^{2}-6 x+4=0$
23. $x^{4}-2 x^{3}-5 x^{2}+8 x+4=0$
24. $x^{4}-2 x^{2}-16 x-15=0$

In Exercises 25-32, find an nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing utility, use it to graph the function and verify the real zeros and the given function value.
25. $n=3 ; 1$ and $5 i$ are zeros; $f(-1)=-104$
26. $n=3 ; 4$ and $2 i$ are zeros; $f(-1)=-50$
27. $n=3 ;-5$ and $4+3 i$ are zeros; $f(2)=91$
28. $n=3 ; 6$ and $-5+2 i$ are zeros; $f(2)=-636$
29. $n=4 ; i$ and $3 i$ are zeros; $f(-1)=20$
30. $n=4 ;-2,-\frac{1}{2}$, and i are zeros; $f(1)=18$
31. $n=4 ;-2,5$, and $3+2 i$ are zeros; $f(1)=-96$
32. $n=4 ;-4, \frac{1}{3}$, and $2+3 i$ are zeros; $f(1)=100$

In Exercises 33-38, use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros for each given function.
33. $f(x)=x^{3}+2 x^{2}+5 x+4$
34. $f(x)=x^{3}+7 x^{2}+x+7$
35. $f(x)=5 x^{3}-3 x^{2}+3 x-1$
36. $f(x)=-2 x^{3}+x^{2}-x+7$
37. $f(x)=2 x^{4}-5 x^{3}-x^{2}-6 x+4$
38. $f(x)=4 x^{4}-x^{3}+5 x^{2}-2 x-6$

In Exercises 39-52, find all zeros of the polynomial function or solve the given polynomial equation. Use the Rational Zero Theorem, Descartes's Rule of Signs, and possibly the graph of the polynomial function shown by a graphing utility as an aid in obtaining the first zero or the first root.
39. $f(x)=x^{3}-4 x^{2}-7 x+10$
40. $f(x)=x^{3}+12 x^{2}+21 x+10$
41. $2 x^{3}-x^{2}-9 x-4=0$
42. $3 x^{3}-8 x^{2}-8 x+8=0$
43. $f(x)=x^{4}-2 x^{3}+x^{2}+12 x+8$
44. $f(x)=x^{4}-4 x^{3}-x^{2}+14 x+10$
45. $x^{4}-3 x^{3}-20 x^{2}-24 x-8=0$
46. $x^{4}-x^{3}+2 x^{2}-4 x-8=0$
47. $f(x)=3 x^{4}-11 x^{3}-x^{2}+19 x+6$
48. $f(x)=2 x^{4}+3 x^{3}-11 x^{2}-9 x+15$
49. $4 x^{4}-x^{3}+5 x^{2}-2 x-6=0$
50. $3 x^{4}-11 x^{3}-3 x^{2}-6 x+8=0$
51. $2 x^{5}+7 x^{4}-18 x^{2}-8 x+8=0$
52. $4 x^{5}+12 x^{4}-41 x^{3}-99 x^{2}+10 x+24=0$

Practice Plus

Exercises 53-60 show incomplete graphs of given polynomial functions.
a. Find all the zeros of each function.
b. Without using a graphing utility, draw a complete graph of the function.
53. $f(x)=-x^{3}+x^{2}+16 x-16$

54. $f(x)=-x^{3}+3 x^{2}-4$

55. $f(x)=4 x^{3}-8 x^{2}-3 x+9$

$[-2,0,1]$ by $[-10,10,1]$
56. $f(x)=3 x^{3}+2 x^{2}+2 x-1$

57. $f(x)=2 x^{4}-3 x^{3}-7 x^{2}-8 x+6$

58. $f(x)=2 x^{4}+2 x^{3}-22 x^{2}-18 x+36$

$[0,4,1]$ by $[-50,50,10]$
59. $f(x)=3 x^{5}+2 x^{4}-15 x^{3}-10 x^{2}+12 x+8$

$[0,4,1]$ by $[-20,25,5]$
60. $f(x)=-5 x^{4}+4 x^{3}-19 x^{2}+16 x+4$

Application Exercises

A popular model of carry-on luggage has a length that is 10 inches greater than its depth. Airline regulations require that the sum of the length, width, and depth cannot exceed 40 inches. These conditions, with the assumption that this sum is 40 inches, can be modeled by a function that gives the volume of the luggage, V, in cubic inches, in terms of its depth, x, in inches.
Volume $=$ depth \cdot length \cdot width: $40-$ (depth + length $)$
$V(x)=x \cdot(x+10) \cdot[40-(x+x+10)]$
$V(x)=x(x+10)(30-2 x)$

Use function V to solve Exercises 61-62.
61. If the volume of the carry-on luggage is 2000 cubic inches, determine two possibilities for its depth. Where necessary, round to the nearest tenth of an inch.
62. If the volume of the carry-on luggage is 1500 cubic inches, determine two possibilities for its depth. Where necessary, round to the nearest tenth of an inch.

Use the graph of the function modeling the volume of the carry-on luggage to solve Exercises 63-64.

63. a. Identify your answers from Exercise 61 as points on the graph.
b. Use the graph to describe a realistic domain, x, for the volume function, where x represents the depth of the carry-on luggage.
64. a. Identify your answers from Exercise 62 as points on the graph.
b. Use the graph to describe a realistic domain, x, for the volume function, where x represents the depth of the carry-on luggage.

Writing in Mathematics

65. Describe how to find the possible rational zeros of a polynomial function.
66. How does the linear factorization of $f(x)$, that is,

$$
f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right),
$$

show that a polynomial equation of degree n has n roots?
67. Describe how to use Descartes's Rule of Signs to determine the possible number of positive real zeros of a polynomial function.
68. Describe how to use Descartes's Rule of Signs to determine the possible number of negative roots of a polynomial equation.
69. Why must every polynomial equation with real coefficients of degree 3 have at least one real root?
70. Explain why the equation $x^{4}+6 x^{2}+2=0$ has no rational roots.
71. Suppose $\frac{3}{4}$ is a root of a polynomial equation. What does this tell us about the leading coefficient and the constant term in the equation?

Technology Exercises

The equations in Exercises 72-75 have real roots that are rational. Use the Rational Zero Theorem to list all possible rational roots. Then graph the polynomial function in the given viewing rectangle to determine which possible rational roots are actual roots of the equation.
72. $2 x^{3}-15 x^{2}+22 x+15=0$; $[-1,6,1]$ by $[-50,50,10]$
73. $6 x^{3}-19 x^{2}+16 x-4=0$; $[0,2,1]$ by $[-3,2,1]$
74. $2 x^{4}+7 x^{3}-4 x^{2}-27 x-18=0 ;[-4,3,1]$ by $[-45,45,15]$
75. $4 x^{4}+4 x^{3}+7 x^{2}-x-2=0 ;[-2,2,1]$ by $[-5,5,1]$
76. Use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros of $f(x)=3 x^{4}+5 x^{2}+2$. What does this mean in terms of the graph of f ? Verify your result by using a graphing utility to graph f.
77. Use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros of $f(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-8$. Verify your result by using a graphing utility to graph f.
78. Write equations for several polynomial functions of odd degree and graph each function. Is it possible for the graph to have no real zeros? Explain. Try doing the same thing for polynomial functions of even degree. Now is it possible to have no real zeros?

Use a graphing utility to obtain a complete graph for each polynomial function in Exercises 79-82. Then determine the number of real zeros and the number of imaginary zeros for each function.
79. $f(x)=x^{3}-6 x-9$
80. $f(x)=3 x^{5}-2 x^{4}+6 x^{3}-4 x^{2}-24 x+16$
81. $f(x)=3 x^{4}+4 x^{3}-7 x^{2}-2 x-3$
82. $f(x)=x^{6}-64$

Critical Thinking Exercises

Make Sense? In Exercises 83-86, determine whether each statement makes sense or does not make sense, and explain your reasoning.
83. I've noticed that $f(-x)$ is used to explore the number of negative real zeros of a polynomial function, as well as to determine whether a function is even, odd, or neither.
84. By using the quadratic formula, I do not need to bother with synthetic division when solving polynomial equations of degree 3 or higher.
85. I'm working with a fourth-degree polynomial function with integer coefficients and zeros at 1 and $3+\sqrt{5}$. I'm certain that $3+\sqrt{2}$ cannot also be a zero of this function.
86. I'm working with the polynomial function $f(x)=x^{4}+3 x^{2}+2$ that has four possible rational zeros but no actual rational zeros.

In Exercises 87-90, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
87. The equation $x^{3}+5 x^{2}+6 x+1=0$ has one positive real root.
88. Descartes's Rule of Signs gives the exact number of positive and negative real roots for a polynomial equation.
89. Every polynomial equation of degree 3 with integer coefficients has at least one rational root.
90. Every polynomial equation of degree n has n distinct solutions.
91. If the volume of the solid shown in the figure is 208 cubic inches, find the value of x.

92. In this exercise, we lead you through the steps involved in the proof of the Rational Zero Theorem. Consider the polynomial equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}=0
$$

and let $\frac{p}{q}$ be a rational root reduced to lowest terms.
a. Substitute $\frac{p}{q}$ for x in the equation and show that the equation can be written as
$a_{n} p^{n}+a_{n-1} p^{n-1} q+a_{n-2} p^{n-2} q^{2}+\cdots+a_{1} p q^{n-1}=-a_{0} q^{n}$.
b. Why is p a factor of the left side of the equation?
c. Because p divides the left side, it must also divide the right side. However, because $\frac{p}{q}$ is reduced to lowest terms, p and q have no common factors other than -1 and 1. Because p does divide the right side and has no factors in common with q^{n}, what can you conclude?
d. Rewrite the equation from part (a) with all terms containing q on the left and the term that does not have a factor of q on the right. Use an argument that parallels parts (b) and (c) to conclude that q is a factor of a_{n}.

In Exercises 93-96, the graph of a polynomial function is given. What is the smallest degree that each polynomial could have?
93.

94.

95.

96.

97. Explain why a polynomial function of degree 20 cannot cross the x-axis exactly once.

Preview Exercises

Exercises 98-100 will help you prepare for the material covered in the next section. Use the graph of function f to solve each exercise.

98. For what values of x is the function undefined?
99. Write the equation of the vertical asymptote, or the vertical line that the graph of f approaches but does not touch.
100. Write the equation of the horizontal asymptote, or the horizontal line that the graph of f approaches but does not touch.

CHAPTER 2 Mid-Chapter Check Point

WHAT YOU KNOW: We performed operations with complex numbers and used the imaginary unit $i(i=\sqrt{-1}$, where $i^{2}=-1$) to represent solutions of quadratic equations with negative discriminants. Only real solutions correspond to x-intercepts. We graphed quadratic functions using vertices, intercepts, and additional points, as necessary. We learned that the vertex of $f(x)=a(x-h)^{2}+k$ is (h, k) and the vertex of $f(x)=a x^{2}+b x+c$ is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. We used the vertex to solve problems that involved minimizing or maximizing quadratic functions. We learned a number of techniques for finding the zeros of a polynomial function f of degree 3 or higher or, equivalently, finding the roots, or solutions, of the equation $f(x)=0$. For some functions, the zeros were found by factoring $f(x)$. For other functions, we listed possible rational zeros and used synthetic division and the Factor Theorem to determine the zeros. We saw that graphs cross the x-axis at zeros of odd multiplicity and touch the x-axis and turn around at zeros of even multiplicity. We learned to graph polynomial functions using zeros, the Leading Coefficient Test, intercepts, and symmetry. We checked graphs using the fact that a polynomial function of degree n has a graph with at most $n-1$ turning points. After finding zeros of polynomial functions, we reversed directions by using the Linear Factorization Theorem to find functions with given zeros.
In Exercises 1-6, perform the indicated operations and write the result in standard form.

1. $(6-2 i)-(7-i)$
2. $3 i(2+i)$
3. $(1+i)(4-3 i)$
4. $\frac{1+i}{1-i}$
5. $\sqrt{-75}-\sqrt{-12}$
6. $(2-\sqrt{-3})^{2}$
7. Solve and express solutions in standard form: $x(2 x-3)=-4$.

In Exercises 8-11, graph the given quadratic function. Give each function's domain and range.
8. $f(x)=(x-3)^{2}-4$
9. $f(x)=5-(x+2)^{2}$
10. $f(x)=-x^{2}-4 x+5$
11. $f(x)=3 x^{2}-6 x+1$

In Exercises 12-20, find all zeros of each polynomial function. Then graph the function.
12. $f(x)=(x-2)^{2}(x+1)^{3}$
13. $f(x)=-(x-2)^{2}(x+1)^{2}$
14. $f(x)=x^{3}-x^{2}-4 x+4$
15. $f(x)=x^{4}-5 x^{2}+4$
16. $f(x)=-(x+1)^{6}$
17. $f(x)=-6 x^{3}+7 x^{2}-1$
18. $f(x)=2 x^{3}-2 x$
19. $f(x)=x^{3}-2 x^{2}+26 x$
20. $f(x)=-x^{3}+5 x^{2}-5 x-3$

In Exercises 21-26, solve each polynomial equation.
21. $x^{3}-3 x+2=0$
22. $6 x^{3}-11 x^{2}+6 x-1=0$
23. $(2 x+1)(3 x-2)^{3}(2 x-7)=0$
24. $2 x^{3}+5 x^{2}-200 x-500=0$
25. $x^{4}-x^{3}-11 x^{2}=x+12$
26. $2 x^{4}+x^{3}-17 x^{2}-4 x+6=0$
27. A company manufactures and sells bath cabinets. The function

$$
P(x)=-x^{2}+150 x-4425
$$

models the company's daily profit, $P(x)$, when x cabinets are manufactured and sold per day. How many cabinets should be manufactured and sold per day to maximize the company's profit? What is the maximum daily profit?
28. Among all pairs of numbers whose sum is -18 , find a pair whose product is as large as possible. What is the maximum product?
29. The base of a triangle measures 40 inches minus twice the measure of its height. For what measure of the height does the triangle have a maximum area? What is the maximum area?
In Exercises 30-31, divide, using synthetic division if possible.
30. $\left(6 x^{4}-3 x^{3}-11 x^{2}+2 x+4\right) \div\left(3 x^{2}-1\right)$
31. $\left(2 x^{4}-13 x^{3}+17 x^{2}+18 x-24\right) \div(x-4)$

In Exercises 32-33, find an nth-degree polynomial function with real coefficients satisfying the given conditions.
32. $n=3 ; 1$ and i are zeros; $f(-1)=8$
33. $n=4 ; 2$ (with multiplicity 2) and $3 i$ are zeros; $f(0)=36$
34. Does $f(x)=x^{3}-x-5$ have a real zero between 1 and 2 ?

SECTION 2.6

Objectives

(1) Find the domains of rational functions.
(2) Use arrow notation.
(3) Identify vertical asymptotes.
(4) Identify horizontal asymptotes.
(5) Use transformations to graph rational functions.
6 Graph rational functions.
(7) Identify slant asymptotes.
(8) Solve applied problems involving rational functions.

Find the domains of rational functions.

Your grandmother appears to be slowing down. Enter ... Mechanical-Grandma! Japanese researchers have developed the robotic exoskeleton shown here to help the elderly and disabled walk and even lift heavy objects like the three 22-pound bags of rice in the photo. It's called the Hybrid Assistive Limb, or HAL. (The inventor has obviously never seen 2001: A Space Odyssey.) HAL's brain is a computer housed in a backpack that learns to mimic the wearer's gait and posture. Bioelectric sensors pick up signals transmitted from the brain to the muscles, so it can anticipate movements the moment the wearer thinks of them. A commercial version is available at a hefty cost ranging between $\$ 14,000$ and $\$ 20,000$. (Source: sanlab. kz.tsukuba.ac.jp)

The cost of manufacturing robotic exoskeletons can be modeled by rational functions. In this section, you will see that high production levels of HAL can eventually make this amazing invention more affordable for the elderly and people with disabilities.

Rational Functions

Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as

$$
f(x)=\frac{p(x)}{q(x)},
$$

where p and q are polynomial functions and $q(x) \neq 0$. The domain of a rational function is the set of all real numbers except the x-values that make the denominator zero. For example, the domain of the rational function

$$
f(x)=\frac{x^{2}+7 x+9}{x(x-2)(x+5)} \quad \text { This is } p(x) \text {. } q(x) .
$$

is the set of all real numbers except 0,2 , and -5 .

EXAMPLE 1 Finding the Domain of a Rational Function

Find the domain of each rational function:
a. $f(x)=\frac{x^{2}-9}{x-3}$
b. $g(x)=\frac{x}{x^{2}-9}$
c. $h(x)=\frac{x+3}{x^{2}+9}$.

SOLUTION

Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0 .
a. The denominator of $f(x)=\frac{x^{2}-9}{x-3}$ is 0 if $x=3$. Thus, x cannot equal 3 .

The domain of f consists of all real numbers except 3 . We can express the domain in set-builder or interval notation:

$$
\begin{aligned}
& \text { Domain of } f=\{x \mid x \neq 3\} \\
& \text { Domain of } f=(-\infty, 3) \cup(3, \infty) .
\end{aligned}
$$

GREAT QUESTION!

Other than observing the denominator, is there a procedure I can use to find the domain of a rational function?
Yes. Because the domain of a rational function is the set of all real numbers except those for which the denominator is 0 , you can identify such numbers by setting the denominator equal to 0 and solving for x. Exclude the resulting real values of x from the domain.

2 Use arrow notation.
b. The denominator of $g(x)=\frac{x}{x^{2}-9}$ is 0 if $x=-3$ or $x=3$. Thus, the domain of g consists of all real numbers except -3 and 3 . We can express the domain in set-builder or interval notation:

$$
\begin{aligned}
& \text { Domain of } g=\{x \mid x \neq-3, x \neq 3\} \\
& \text { Domain of } g=(-\infty,-3) \cup(-3,3) \cup(3, \infty) \text {. }
\end{aligned}
$$

c. No real numbers cause the denominator of $h(x)=\frac{x+3}{x^{2}+9}$ to equal 0 . The domain of h consists of all real numbers.

$$
\text { Domain of } h=(-\infty, \infty)
$$

Check Point 1 Find the domain of each rational function:
a. $f(x)=\frac{x^{2}-25}{x-5}$
b. $g(x)=\frac{x}{x^{2}-25}$
c. $h(x)=\frac{x+5}{x^{2}+25}$.

The most basic rational function is the reciprocal function, defined by $f(x)=\frac{1}{x}$. The denominator of the reciprocal function is zero when $x=0$, so the domain of f is the set of all real numbers except 0 .

Let's look at the behavior of f near the excluded value 0 . We start by evaluating $f(x)$ to the left of 0 .

x approaches 0 from the left.

\boldsymbol{x}	-1	-0.5	-0.1	-0.01	-0.001
$\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$	-1	-2	-10	-100	-1000

Mathematically, we say that " x approaches 0 from the left." From the table and the accompanying graph, it appears that as x approaches 0 from the left, the function values, $f(x)$, decrease without bound. We say that " $f(x)$ approaches negative infinity." We use a special arrow notation to describe this situation symbolically:

$$
\text { As } x \rightarrow 0^{-}, f(x) \rightarrow-\infty . \quad \begin{gathered}
\text { As } x \text { approaches } 0 \\
\text { from the left, } f(x) \text { approaches } \\
\text { negative infinity (that is, } \\
\text { the graph falls). }
\end{gathered}
$$

Observe that the minus (-) superscript on the $0\left(x \rightarrow 0^{-}\right)$is read "from the left."
Next, we evaluate $f(x)$ to the right of 0 .
x approaches 0 from the right.

\boldsymbol{x}	0.001	0.01	0.1	0.5	1
$\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$	1000	100	10	2	1

Mathematically, we say that " x approaches 0 from the right." From the table and the accompanying graph, it appears that as x approaches 0 from the right, the function values, $f(x)$, increase without bound. We say that " $f(x)$ approaches infinity." We again use a special arrow notation to describe this situation symbolically:

$$
\text { As } x \rightarrow 0^{+}, f(x) \rightarrow \infty . \quad \begin{gathered}
\text { As } x \text { approaches } 0 \\
\text { from the right, } f(x) \text { approaches } \\
\text { infinity (that is, the graph rises). }
\end{gathered}
$$

Observe that the plus $(+)$ superscript on the $0\left(x \rightarrow 0^{+}\right)$is read "from the right."

FIGURE $2.30 f(x)$ approaches 0 as x increases or decreases without bound.

FIGURE 2.31 The graph of the reciprocal function $f(x)=\frac{1}{x}$

Now let's see what happens to the function values of $f(x)=\frac{1}{x}$ as x gets farther away from the origin. The following tables suggest what happens to $f(x)$ as x increases or decreases without bound.

| \boldsymbol{x} increases without bound: | | | | | \boldsymbol{x} decreases without bound: | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{x} | 1 | 10 | 100 | 1000 | \boldsymbol{x} | -1 | -10 | -100 | -1000 | |
| $\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$ | 1 | 0.1 | 0.01 | 0.001 | | $\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$ | -1 | -0.1 | -0.01 | -0.001 |

It appears that as x increases or decreases without bound, the function values, $f(x)$, are getting progressively closer to 0 .

Figure 2.30 illustrates the end behavior of $f(x)=\frac{1}{x}$ as x increases or decreases without bound. The graph shows that the function values, $f(x)$, are approaching 0 . This means that as x increases or decreases without bound, the graph of f is approaching the horizontal line $y=0$ (that is, the x-axis). We use arrow notation to describe this situation:

Thus, as x approaches infinity $(x \rightarrow \infty)$ or as x approaches negative infinity $(x \rightarrow-\infty)$, the function values are approaching zero: $f(x) \rightarrow 0$.

The graph of the reciprocal function $f(x)=\frac{1}{x}$ is shown in Figure 2.31. Unlike the graph of a polynomial function, the graph of the reciprocal function has a break and is composed of two branches.

GREAT QUESTION!

What is the relationship between x and $\frac{1}{x}$ when x is far from 0 ? What happens if x is
close to 0 ? close to 0?
If x is far from 0 , then $\frac{1}{x}$ is close to 0 . By contrast, if x is close to 0 , then $\frac{1}{x}$ is far from 0 .

Blitzer Bonus || The Reciprocal Function as a Knuckle Tattoo

"I got the tattoo because I like the idea of math not being well behaved. That sounds lame and I really don't mean that in some kind of anarchy-type way. I just think that it's kind of nice that something as perfectly functional as math can kink up around the edges."

Kink up around the edges? On the next page, we'll describe the graphic behavior of the reciprocal function using asymptotes rather than kink. Asymptotes are lines that graphs approach but never touch. Asymptote comes from the Greek word asymptotos, meaning "not meeting."

The arrow notation used throughout our discussion of the reciprocal function is summarized in the following box:

Arrow Notation

Symbol	Meaning
$x \rightarrow a^{+}$	x approaches a from the right.
$x \rightarrow a^{-}$	x approaches a from the left.
$x \rightarrow \infty$	x approaches infinity; that is, x increases without bound.
$x \rightarrow-\infty$	x approaches negative infinity; that is, x decreases without bound.

Another basic rational function is $f(x)=\frac{1}{x^{2}}$. The graph of this even function, with y-axis symmetry and positive function values, is shown in
Figure 2.32. Like the reciprocal function, the graph has a break and is composed of two distinct branches.

In calculus, you will use limits to convey a function's end behavior or possible asymptotic behavior. In Figure 2.32, we can use limit notation to express end behavior to the right:

$$
\lim _{x \rightarrow \infty} f(x)=0 .
$$

The limit of $f(x)$ as x approaches infinity $=$ zero.

FIGURE 2.32 The graph of $f(x)=\frac{1}{x^{2}}$
(3) Identify vertical asymptotes.

Vertical Asymptotes of Rational Functions

Look again at the graph of $f(x)=\frac{1}{x^{2}}$ in Figure 2.32. The curve approaches, but does not touch, the y-axis. The y-axis, or $x=0$, is said to be a vertical asymptote of the graph. A rational function may have no vertical asymptotes, one vertical asymptote, or several vertical asymptotes. The graph of a rational function never intersects a vertical asymptote. We will use dashed lines to show asymptotes.

Definition of a Vertical Asymptote

The line $x=a$ is a vertical asymptote of the graph of a function f if $f(x)$ increases or decreases without bound as x approaches a.

$\begin{aligned} \text { As } x \rightarrow a^{+}, f(x) & \rightarrow \infty . \\ & \lim f(x)\end{aligned}=\infty$. $\lim _{x \rightarrow a^{+}} f(x)=\infty$

As $x \rightarrow a^{-}, f(x) \rightarrow \infty$.
$x_{x \rightarrow a^{+}}(x)=$
Thus, as x approaches a from either the left or the right, $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$.

If the graph of a rational function has vertical asymptotes, they can be located using the following theorem:

Locating Vertical Asymptotes

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function in which $p(x)$ and $q(x)$ have no common factors and a is a zero of $q(x)$, the denominator, then $x=a$ is a vertical asymptote of the graph of f.

EXAMPLE 2 Finding the Vertical Asymptotes of a Rational Function

Find the vertical asymptotes, if any, of the graph of each rational function:
a. $f(x)=\frac{x}{x^{2}-9}$
b. $g(x)=\frac{x+3}{x^{2}-9}$
c. $h(x)=\frac{x+3}{x^{2}+9}$.

SOLUTION

Factoring is usually helpful in identifying zeros of denominators and any common factors in the numerators and denominators.
a. $f(x)=\frac{x}{x^{2}-9}=\frac{x}{(x+3)(x-3)}$

$$
\begin{array}{l|}
\text { This factor is } \\
0 \text { if } x=-3 .
\end{array} \quad \text { This factor is } \quad 0 \text { if } x=3 \text {. }
$$

There are no common factors in the numerator and the denominator. The zeros of the denominator are -3 and 3. Thus, the lines $x=-3$ and $x=3$ are the vertical asymptotes for the graph of f. [See Figure 2.33(a).]
b. We will use factoring to see if there are common factors.

$$
g(x)=\frac{x+3}{x^{2}-9}=\frac{(x+3)}{(x+3)(x-3)}=\frac{1}{x-3}, \text { provided } x \neq-3
$$

There is a common factor, $x+3$, so simplify.

This denominator is 0 if $x=3$.

The only zero of the denominator of $g(x)$ in simplified form is 3 . Thus, the line $x=3$ is the only vertical asymptote of the graph of g. [See Figure 2.33(b).]
c. We cannot factor the denominator of $h(x)$ over the real numbers.

$$
h(x)=\frac{x+3}{x^{2}+9}
$$

No real numbers make this denominator 0 .

FIGURE 2.33(c) The graph of $h(x)=\frac{x+3}{x^{2}+9}$ has no vertical asymptotes.

Check Point 2 Find the vertical asymptotes, if any, of the graph of each rational function:
a. $f(x)=\frac{x}{x^{2}-1}$
b. $g(x)=\frac{x-1}{x^{2}-1}$
c. $h(x)=\frac{x-1}{x^{2}+1}$.

TECHNOLOGY

The graph of the rational function $f(x)=\frac{x}{x^{2}-9}$, drawn by hand in Figure 2.33(a) on the previous page, is graphed below in a $[-5,5,1]$ by $[-4,4,1]$ viewing rectangle. The graph is shown in connected mode and in dot mode. In connected mode, the graphing utility plots many points and connects the points with curves. In dot mode, the utility plots the same points but does not connect them.

The steep lines that may appear on some graphing utilities in connected mode and seem to be the vertical asymptotes $x=-3$ and $x=3$ are not part of the graph and do not represent the vertical asymptotes. The graphing utility has incorrectly connected the last point to the left of $x=-3$ with the first point to the right of $x=-3$. It has also incorrectly connected the last point to the left of $x=3$ with the first point to the right of $x=3$. The effect is to create two near-vertical segments that look like asymptotes. This erroneous effect does not appear using dot mode.

GREAT QUESTION!

Do I have to factor to identify a rational function's possible vertical asymptotes or holes?
Yes. It is essential to factor the numerator and the denominator of the rational function.

FIGURE 2.34 A graph with a hole corresponding to the denominator's zero
4. Identify horizontal asymptotes.

A value where the denominator of a rational function is zero does not necessarily result in a vertical asymptote. There is a hole corresponding to $x=a$, and not a vertical asymptote, in the graph of a rational function under the following conditions: The value a causes the denominator to be zero, but there is a reduced form of the function's equation in which a does not cause the denominator to be zero.

Consider, for example, the function

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

Because the denominator is zero when $x=2$, the function's domain is all real numbers except 2. However, there is a reduced form of the equation in which 2 does not cause the denominator to be zero:

$$
f(x)=\frac{x^{2}-4}{x-2}=\frac{(x+2)(x-2)}{x-2}=x+2, x \neq 2 .
$$

Denominator is
zero at $x=2$.

In this reduced form, 2 does not result in a zero denominator.

Figure 2.34 shows that the graph has a hole corresponding to $x=2$. Graphing utilities do not show this feature of the graph.

Horizontal Asymptotes of Rational Functions

Figure 2.31, repeated in the margin at the top of the next page, shows the graph of the reciprocal function $f(x)=\frac{1}{x}$. As $x \rightarrow \infty$ and as $x \rightarrow-\infty$, the function values are approaching 0: $f(x) \rightarrow 0$. The line $y=0$ (that is, the x-axis) is a horizontal asymptote of the graph. Many, but not all, rational functions have horizontal asymptotes.

FIGURE 2.31 The graph of $f(x)=\frac{1}{x}$ (repeated)

GREAT QUESTION!

Do I have to factor to identify a rational function's possible horizontal asymptote?
No. Unlike identifying possible vertical asymptotes or holes, we do not use factoring to determine a possible horizontal asymptote.

FIGURE 2.35(a) The horizontal asymptote of the graph is $y=0$.

FIGURE 2.35(b) The horizontal asymptote of the graph is $y=2$.

Definition of a Horizontal Asymptote

The line $y=b$ is a horizontal asymptote of the graph of a function f if $f(x)$ approaches b as x increases or decreases without bound.

As $x \rightarrow \infty, f(x) \rightarrow b$.

$$
\lim _{x \rightarrow \infty} f(x)=b
$$

As $x \rightarrow \infty, f(x) \rightarrow b$.
$\lim _{x \rightarrow \infty} f(x)=b$

As $x \rightarrow \infty, f(x) \rightarrow b$.

$$
\lim _{x \rightarrow \infty} f(x)=b
$$

Recall that a rational function may have several vertical asymptotes. By contrast, it can have at most one horizontal asymptote. Although a graph can never intersect a vertical asymptote, it may cross its horizontal asymptote.

If the graph of a rational function has a horizontal asymptote, it can be located using the following theorem:

Locating Horizontal Asymptotes

Let f be the rational function given by

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}, \quad a_{n} \neq 0, b_{m} \neq 0 .
$$

The degree of the numerator is n. The degree of the denominator is m.

1. If $n<m$, the x-axis, or $y=0$, is the horizontal asymptote of the graph of f.
2. If $n=m$, the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote of the graph of f.
3. If $n>m$, the graph of f has no horizontal asymptote.

EXAMPLE 3 Finding the Horizontal Asymptote of a Rational Function

Find the horizontal asymptote, if there is one, of the graph of each rational function:
a. $f(x)=\frac{4 x}{2 x^{2}+1}$
b. $g(x)=\frac{4 x^{2}}{2 x^{2}+1}$
c. $h(x)=\frac{4 x^{3}}{2 x^{2}+1}$.

SOLUTION

a. $f(x)=\frac{4 x}{2 x^{2}+1}$

The degree of the numerator, 1 , is less than the degree of the denominator, 2 . Thus, the graph of f has the x-axis as a horizontal asymptote. [See Figure 2.35(a).] The equation of the horizontal asymptote is $y=0$.
b. $g(x)=\frac{4 x^{2}}{2 x^{2}+1}$

The degree of the numerator, 2 , is equal to the degree of the denominator, 2 . The leading coefficients of the numerator and denominator, 4 and 2 , are used to obtain the equation of the horizontal asymptote. The equation of the horizontal asymptote is $y=\frac{4}{2}$ or $y=2$. [See Figure 2.35(b).]

FIGURE 2.35(c) The graph has no horizontal asymptote.
(5) Use transformations to graph rational functions.

Begin with $f(x)=\frac{1}{x^{2}}$.
We've identified two points and the asymptotes.
c. $h(x)=\frac{4 x^{3}}{2 x^{2}+1}$

The degree of the numerator, 3 , is greater than the degree of the denominator, 2. Thus, the graph of h has no horizontal asymptote. [See Figure 2.35(c).]
$\$$ Check Point 3 Find the horizontal asymptote, if there is one, of the graph of each rational function:
a. $f(x)=\frac{9 x^{2}}{3 x^{2}+1}$
b. $g(x)=\frac{9 x}{3 x^{2}+1}$
c. $h(x)=\frac{9 x^{3}}{3 x^{2}+1}$.

Using Transformations to Graph Rational Functions

Table 2.2 shows the graphs of two rational functions, $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$. The
dashed green lines indicate the asymptotes. dashed green lines indicate the asymptotes.
Table 2.2 Graphs of Common Rational Functions

$$
1 \text { 20 }
$$

- Odd function: $f(-x)=-f(x)$
- Origin symmetry

- Even function: $f(-x)=f(x)$
- y-axis symmetry

Some rational functions can be graphed using transformations (horizontal shifting, stretching or shrinking, reflecting, vertical shifting) of these two common graphs.

EXAMPLE 4 Using Transformations to Graph a Rational Function

Use the graph of $f(x)=\frac{1}{x^{2}}$ to graph $g(x)=\frac{1}{(x-2)^{2}}+1$.

SOLUTION

$$
\oint \text { Check Point } 4 \text { Use the graph of } f(x)=\frac{1}{x} \text { to graph } g(x)=\frac{1}{x+2}-1
$$

6) Graph rational functions.

Graphing Rational Functions

Rational functions that are not transformations of $f(x)=\frac{1}{x}$ or $f(x)=\frac{1}{x^{2}}$ can be
graphed using the following procedure: graphed using the following procedure:

Strategy for Graphing a Rational Function

The following strategy can be used to graph

$$
f(x)=\frac{p(x)}{q(x)},
$$

where p and q are polynomial functions with no common factors.

1. Determine whether the graph of f has symmetry.

$$
\begin{array}{ll}
f(-x)=f(x): & \\
f(-x)=-f(x): & \\
\text { origin symmmetry }
\end{array}
$$

2. Find the y-intercept (if there is one) by evaluating $f(0)$.
3. Find the x-intercepts (if there are any) by solving the equation $p(x)=0$.
4. Find any vertical asymptote(s) by solving the equation $q(x)=0$.
5. Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function.
6. Plot at least one point between and beyond each x-intercept and vertical asymptote.
7. Use the information obtained previously to graph the function between and beyond the vertical asymptotes.

EXAMPLE 5 Graphing a Rational Function

Graph: $f(x)=\frac{2 x-1}{x-1}$.

SOLUTION

Step 1 Determine symmetry.

$$
f(-x)=\frac{2(-x)-1}{-x-1}=\frac{-2 x-1}{-x-1}=\frac{2 x+1}{x+1}
$$

Because $f(-x)$ does not equal either $f(x)$ or $-f(x)$, the graph has neither y-axis symmetry nor origin symmetry.
Step 2 Find the \boldsymbol{y}-intercept. Evaluate $f(0)$.

$$
f(0)=\frac{2 \cdot 0-1}{0-1}=\frac{-1}{-1}=1
$$

The y-intercept is 1 , so the graph passes through $(0,1)$.
Step 3 Find \boldsymbol{x}-intercept(s). This is done by solving $p(x)=0$, where $p(x)$ is the numerator of $f(x)$.

$$
\begin{aligned}
2 x-1 & =0 & & \text { Set the numerator equal to } 0 . \\
2 x & =1 & & \text { Add } 1 \text { to both sides. } \\
x & =\frac{1}{2} & & \text { Divide both sides by } 2 .
\end{aligned}
$$

The x-intercept is $\frac{1}{2}$, so the graph passes through $\left(\frac{1}{2}, 0\right)$.

Step 4 Find the vertical asymptote(s). Solve $q(x)=0$, where $q(x)$ is the denominator of $f(x)$, thereby finding zeros of the denominator. (Note that the numerator and denominator of $f(x)=\frac{2 x-1}{x-1}$ have no common factors.)

$$
\begin{aligned}
x-1 & =0 & & \text { Set the denominator equal to } 0 . \\
x & =1 & & \text { Add } 1 \text { to both sides. }
\end{aligned}
$$

The equation of the vertical asymptote is $x=1$.
Step 5 Find the horizontal asymptote. Because the numerator and denominator of $f(x)=\frac{2 x-1}{x-1}$ have the same degree, 1 , the leading coefficients of the numerator and denominator, 2 and 1, respectively, are used to obtain the equation of the horizontal asymptote. The equation is

$$
y=\frac{2}{1}=2
$$

The equation of the horizontal asymptote is $y=2$.
Step 6 Plot points between and beyond each \boldsymbol{x}-intercept and vertical asymptote. With an x-intercept at $\frac{1}{2}$ and a vertical asymptote at $x=1$, we evaluate the function at $-2,-1, \frac{3}{4}, 2$, and 4 .

\boldsymbol{x}	-2	-1	$\frac{3}{4}$	2	4
$\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{2 x - 1}}{\boldsymbol{x}-\mathbf{1}}$	$\frac{5}{3}$	$\frac{3}{2}$	-2	3	$\frac{7}{3}$

Figure $\mathbf{2 . 3 6}$ shows these points, the y-intercept, the x-intercept, and the asymptotes.
Step 7 Graph the function. The graph of $f(x)=\frac{2 x-1}{x-1}$ is shown in Figure 2.37.

TECHNOLOGY

The graph of $y=\frac{2 x-1}{x-1}$, obtained using the dot mode in a $[-6,6,1]$ by $[-6,6,1]$ viewing rectangle, verifies that our hand-drawn graph in Figure 2.37 is correct.

FIGURE 2.36 Preparing to graph the rational function $f(x)=\frac{2 x-1}{x-1}$

FIGURE 2.37 The graph of $f(x)=\frac{2 x-1}{x-1}$
δ Check Point 5 Graph: $f(x)=\frac{3 x-3}{x-2}$.

EXAMPLE 6 Graphing a Rational Function

Graph: $f(x)=\frac{3 x^{2}}{x^{2}-4}$.

SOLUTION

Step 1 Determine symmetry. $f(-x)=\frac{3(-x)^{2}}{(-x)^{2}-4}=\frac{3 x^{2}}{x^{2}-4}=f(x)$: The graph of f is symmetric with respect to the y-axis.

GREAT QUESTION!

Do I have to evaluate $f(x)$ at all five of the values shown in the table for Step 6?

No. Because the graph has y-axis symmetry, it is not necessary to evaluate the even function at -3 and again at 3 .

$$
f(-3)=f(3)=\frac{27}{5}
$$

This also applies to evaluation at -1 and 1 .

TECHNOLOGY

The graph of $y=\frac{3 x^{2}}{x^{2}-4}$, generated by a graphing utility, verifies that our hand-drawn graph is correct.

$[-6,6,1]$ by $[-6,6,1]$

Step 2 Find the y-intercept. $f(0)=\frac{3 \cdot 0^{2}}{0^{2}-4}=\frac{0}{-4}=0$: The y-intercept is 0 , so the graph passes through the origin.
Step 3 Find the \boldsymbol{x}-intercept(s). $3 x^{2}=0$, so $x=0$: The x-intercept is 0 , verifying that the graph passes through the origin.
Step 4 Find the vertical asymptote(s). Set $q(x)=0$. (Note that the numerator and denominator of $f(x)=\frac{3 x^{2}}{x^{2}-4}$ have no common factors.)

$$
\begin{aligned}
x^{2}-4 & =0 & & \text { Set the denominator equal to } 0 . \\
x^{2} & =4 & & \text { Add } 4 \text { to both sides. } \\
x & = \pm 2 & & \text { Use the square root property. }
\end{aligned}
$$

The vertical asymptotes are $x=-2$ and $x=2$.
Step 5 Find the horizontal asymptote. Because the numerator and denominator of $f(x)=\frac{3 x^{2}}{x^{2}-4}$ have the same degree, 2 , their leading coefficients, 3 and 1 , are used to determine the equation of the horizontal asymptote. The equation is $y=\frac{3}{1}=3$.

Step 6 Plot points between and beyond each \boldsymbol{x}-intercept and vertical asymptote. With an x-intercept at 0 and vertical asymptotes at $x=-2$ and $x=2$, we evaluate the function at $-3,-1,1,3$, and 4 .

Figure 2.38 shows the points $\left(-3, \frac{27}{5}\right),(-1,-1),(1,-1),\left(3, \frac{27}{5}\right)$, and $(4,4)$, the y-intercept, the x-intercept, and the asymptotes.
Step 7 Graph the function. The graph of $f(x)=\frac{3 x^{2}}{x^{2}-4}$ is shown in Figure 2.39. The y-axis symmetry is now obvious.

FIGURE 2.38 Preparing to graph
$f(x)=\frac{3 x^{2}}{x^{2}-4}$

FIGURE 2.39 The graph of
$f(x)=\frac{3 x^{2}}{x^{2}-4}$

3 Check Point 6 Graph: $f(x)=\frac{2 x^{2}}{x^{2}-9}$.

Example 7 illustrates that not every rational function has vertical and horizontal asymptotes.

FIGURE 2.40 The graph of $f(x)=\frac{x^{4}}{x^{2}+1}$

FIGURE 2.41 The graph of $f(x)=\frac{x^{2}+1}{x-1}$ with a slant asymptote

EXAMPLE 7 Graphing a Rational Function

Graph: $f(x)=\frac{x^{4}}{x^{2}+1}$.

SOLUTION

Step 1 Determine symmetry. $f(-x)=\frac{(-x)^{4}}{(-x)^{2}+1}=\frac{x^{4}}{x^{2}+1}=f(x)$
The graph of f is symmetric with respect to the y-axis.
Step 2 Find the y-intercept. $f(0)=\frac{0^{4}}{0^{2}+1}=\frac{0}{1}=0$. The y-intercept is 0 .
Step 3 Find the \boldsymbol{x}-intercept(s). $x^{4}=0$, so $x=0$: The x-intercept is 0 .
Step 4 Find the vertical asymptote(s). Set $q(x)=0$.

$$
\begin{aligned}
x^{2}+1 & =0 & & \text { Set the denominator equal to } 0 . \\
x^{2} & =-1 & & \text { Subtract } 1 \text { from both sides. }
\end{aligned}
$$

Although this equation has imaginary roots $(x= \pm i)$, there are no real roots. Thus, the graph of f has no vertical asymptotes.
Step 5 Find the horizontal asymptote. Because the degree of the numerator, 4, is greater than the degree of the denominator, 2 , there is no horizontal asymptote.
Step 6 Plot points between and beyond each \boldsymbol{x}-intercept and vertical asymptote. With an x-intercept at 0 and no vertical asymptotes, let's look at function values at $-2,-1,1$, and 2 . You can evaluate the function at 1 and 2 . Use y-axis symmetry to obtain function values at -1 and -2 :

$$
f(-1)=f(1) \text { and } f(-2)=f(2)
$$

\boldsymbol{x}	-2	-1	1	2
$\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}^{4}}{\boldsymbol{x}^{2}+1}$	$\frac{16}{5}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{16}{5}$

Step 7 Graph the function. Figure $\mathbf{2 . 4 0}$ shows the graph of f using the points obtained from the table and y-axis symmetry. Notice that as x approaches infinity or negative infinity $(x \rightarrow \infty$ or $x \rightarrow-\infty)$, the function values, $f(x)$, are getting larger without bound $[f(x) \rightarrow \infty]$.

\int Check Point 7 Graph: $f(x)=\frac{x^{4}}{x^{2}+2}$.

Slant Asymptotes

Examine the graph of

$$
f(x)=\frac{x^{2}+1}{x-1}
$$

shown in Figure 2.41. Note that the degree of the numerator, 2, is greater than the degree of the denominator, 1 . Thus, the graph of this function has no horizontal asymptote. However, the graph has a slant asymptote, $y=x+1$.

The graph of a rational function has a slant asymptote if the degree of the numerator is one more than the degree of the denominator. The equation of the slant asymptote can be found by division. For example, to find the slant asymptote for the graph of $f(x)=\frac{x^{2}+1}{x-1}$, divide $x-1$ into $x^{2}+1$:

$$
\begin{aligned}
& 1 \\
& \begin{array}{lll}
1 & 0 & 1 \\
& 1 & 1 \\
1 & 1 & 2
\end{array} \\
& \\
&
\end{aligned}
$$

osserve that

$$
f(x)=\frac{x^{2}+1}{x-1}=\underbrace{x+1}+\frac{2}{x-1} .
$$

The equation of the slant asymptote is $y=x+1$.

As $|x| \rightarrow \infty$, the value of $\frac{2}{x-1}$ is approximately 0 . Thus, when $|x|$ is large, the function is very close to $y=x+1+0$. This means that as $x \rightarrow \infty$ or as $x \rightarrow-\infty$, the graph of f gets closer and closer to the line whose equation is $y=x+1$. The line $y=x+1$ is a slant asymptote of the graph.

In general, if $f(x)=\frac{p(x)}{q(x)}, p$ and q have no common factors, and the degree of p is one greater than the degree of q, find the slant asymptote by dividing $q(x)$ into $p(x)$. The division will take the form

$$
\frac{p(x)}{q(x)}=m x+b+\frac{\text { remainder }}{q(x)} .
$$

Slant asymptote:
$y=m x+b$

The equation of the slant asymptote is obtained by dropping the term with the remainder. Thus, the equation of the slant asymptote is $y=m x+b$.

EXAMPLE 8 Finding the Slant Asymptote of a Rational Function

Find the slant asymptote of $f(x)=\frac{x^{2}-4 x-5}{x-3}$.

SOLUTION

Because the degree of the numerator, 2 , is exactly one more than the degree of the denominator, 1 , and $x-3$ is not a factor of $x^{2}-4 x-5$, the graph of f has a slant asymptote. To find the equation of the slant asymptote, divide $x-3$ into $x^{2}-4 x-5$:

$$
\begin{aligned}
& \text { 3) } 1 \begin{array}{llll}
& -4 & -5
\end{array} \\
& \begin{array}{rrr}
& 3 & -3 \\
\hline 1 & -1 & -8
\end{array} \text { Remainder } \\
& 1 x-1-\frac{8}{x-3} \quad \begin{array}{c}
\text { Drop the remainder } \\
\text { term nad you'll have } \\
\text { the equation of } \\
\text { the slant asymptote. }
\end{array} \\
& x - 3 \longdiv { x ^ { 2 } - 4 x - 5 \quad \text { . } } \text {. } \begin{array}{c}
\text { the equation of } \\
\text { thent asymptote. }
\end{array}
\end{aligned}
$$

The equation of the slant asymptote is $y=x-1$. Using our strategy for graphing rational functions, the graph of $f(x)=\frac{x^{2}-4 x-5}{x-3}$ is shown in Figure 2.42. ...
$f(x)=\frac{x^{2}-4 x-5}{x-3}$
FIGURE 2.42 The graph of

$$
\begin{aligned}
& \text { Vertical asymptote: } \\
& x=3
\end{aligned}
$$

 $\rightarrow+0$

8 Solve applied problems involving rational functions.

Applications

There are numerous examples of asymptotic behavior in functions that model real-world phenomena. Let's consider an example from the business world. The cost function, C, for a business is the sum of its fixed and variable costs:

$$
C(x)=(\text { fixed cost })+c x .
$$

Cost per unit times the number of units produced, x

The average cost per unit for a company to produce x units is the sum of its fixed and variable costs divided by the number of units produced. The average cost function is a rational function that is denoted by \bar{C}. Thus,

$$
\bar{C}(x)=\frac{\begin{array}{c}
\text { Cost of producing } x \text { units: } \\
\text { fixed plus variable costs }
\end{array}}{x \quad \text { (fixed cost) }+c x} \begin{aligned}
& \text { Number of units produced }
\end{aligned}
$$

EXAMPLE 9 Average Cost for a Business

We return to the robotic exoskeleton described in the section opener. Suppose a company that manufactures this invention has a fixed monthly cost of $\$ 1,000,000$ and that it costs $\$ 5000$ to produce each robotic system.
a. Write the cost function, C, of producing x robotic systems.
b. Write the average cost function, \bar{C}, of producing x robotic systems.
c. Find and interpret $\bar{C}(1000), \bar{C}(10,000)$, and $\bar{C}(100,000)$.
d. What is the horizontal asymptote for the graph of the average cost function, \bar{C} ? Describe what this represents for the company.

SOLUTION

a. The cost function, C, is the sum of the fixed cost and the variable costs.

$$
C(x)=1,000,000+5000 x
$$

$$
\begin{array}{l|}
\text { Fixed cost is } \\
\$ 1,000,000 .
\end{array} \quad \text { Variable cost: } \$ 5000 \text { for } \text { robotic system produced }
$$

b. The average cost function, \bar{C}, is the sum of fixed and variable costs divided by the number of robotic systems produced.

$$
\bar{C}(x)=\frac{1,000,000+5000 x}{x} \text { or } \bar{C}(x)=\frac{5000 x+1,000,000}{x}
$$

c. We evaluate \bar{C} at $1000,10,000$, and 100,000 , interpreting the results.

$$
\bar{C}(1000)=\frac{5000(1000)+1,000,000}{1000}=6000
$$

The average cost per robotic system of producing 1000 systems per month is \$6000.

$$
\bar{C}(10,000)=\frac{5000(10,000)+1,000,000}{10,000}=5100
$$

The average cost per robotic system of producing 10,000 systems per month is $\$ 5100$.

$$
\bar{C}(100,000)=\frac{5000(100,000)+1,000,000}{100,000}=5010
$$

The average cost per robotic system of producing 100,000 systems per month is $\$ 5010$. Notice that with higher production levels, the cost of producing each robotic exoskeleton decreases.

FIGURE 2.43
d. We developed the average cost function

$$
\bar{C}(x)=\frac{5000 x+1,000,000}{x}
$$

in which the degree of the numerator, 1 , is equal to the degree of the denominator, 1 . The leading coefficients of the numerator and denominator, 5000 and 1 , are used to obtain the equation of the horizontal asymptote. The equation of the horizontal asymptote is

$$
y=\frac{5000}{1} \text { or } y=5000
$$

The horizontal asymptote is shown in Figure 2.43. This means that the more robotic systems produced each month, the closer the average cost per system for the company comes to $\$ 5000$. The least possible cost per robotic exoskeleton is approaching $\$ 5000$. Competitively low prices take place with high production levels, posing a major problem for small businesses.

Check Point 9 A company is planning to manufacture wheelchairs that are light, fast, and beautiful. The fixed monthly cost will be $\$ 500,000$ and it will cost $\$ 400$ to produce each radically innovative chair.
a. Write the cost function, C, of producing x wheelchairs.
b. Write the average cost function, \bar{C}, of producing x wheelchairs.
c. Find and interpret $\bar{C}(1000), \bar{C}(10,000)$, and $\bar{C}(100,000)$.
d. What is the horizontal asymptote for the graph of the average cost function, \bar{C} ? Describe what this represents for the company.

If an object moves at an average velocity v, the distance, s, covered in time t is given by the formula

$$
s=v t .
$$

Thus, distance $=$ velocity \cdot time . Objects that move in accordance with this formula are said to be in uniform motion. In Example 10, we use a rational function to model time, t, in uniform motion. Solving the uniform motion formula for t, we obtain

$$
t=\frac{s}{v}
$$

Thus, time is the quotient of distance and average velocity.

EXAMPLE 10 Time Involved in Uniform Motion

A commuter drove to work a distance of 40 miles and then returned again on the same route. The average velocity on the return trip was 30 miles per hour faster than the average velocity on the outgoing trip. Express the total time required to complete the round trip, T, as a function of the average velocity on the outgoing trip, x.

FIGURE 2.44 The graph of
$T(x)=\frac{40}{x}+\frac{40}{x+30}$. As average velocity increases, time for the trip decreases: $\lim _{x \rightarrow \infty} T(x)=0$.

SOLUTION

As specified, the average velocity on the outgoing trip is represented by x. Because the average velocity on the return trip was 30 miles per hour faster than the average velocity on the outgoing trip, let

$$
x+30=\text { the average velocity on the return trip. }
$$

The sentence that we use as a verbal model to write our rational function is

The function that expresses the total time required to complete the round trip is

$$
T(x)=\frac{40}{x}+\frac{40}{x+30}
$$

Once you have modeled a problem's conditions with a function, you can use a graphing utility to explore the function's behavior. For example, let's graph the function in Example 10. Because it seems unlikely that an average outgoing velocity exceeds 60 miles per hour with an average return velocity that is 30 miles per hour faster, we graph the function for $0 \leq x \leq 60$. Figure 2.44 shows the graph of $T(x)=\frac{40}{x}+\frac{40}{x+30}$ in a $[0,60,3]$ by $[0,10,1]$ viewing rectangle. Notice that the function is decreasing on the interval $(0,60)$. This shows decreasing times with increasing average velocities. Can you see that $x=0$, or the y-axis, is a vertical asymptote? This indicates that close to an outgoing average velocity of zero miles per hour, the round trip will take nearly forever: $\lim _{x \rightarrow 0^{+}} T(x)=\infty$.
0 Check Point 10 A commuter drove to work a distance of 20 miles and then returned again on the same route. The average velocity on the return trip was 10 miles per hour slower than the average velocity on the outgoing trip. Express the total time required to complete the round trip, T, as a function of the average velocity on the outgoing trip, x.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. All rational functions can be expressed as

$$
f(x)=\frac{p(x)}{q(x)}
$$

where p and q are \qquad functions and $q(x) \neq 0$.
2. True or false: The domain of every rational function is the set of all real numbers.
3. True or false: The graph of the reciprocal function $f(x)=\frac{1}{x}$ has a break and is composed of two distinct branches.
4. If the graph of a function f increases or decreases without bound as x approaches a, then the line $x=a$ is $a / a n$ \qquad of the graph of f. The equation of such a line for the graph of $f(x)=\frac{2}{x+5}$
is is \qquad
5. If the graph of a function f approaches b as x increases or decreases without bound, then the line $y=b$ is a/an \qquad of the graph of f. The equation of such a line for the graph of $y=\frac{x-10}{3 x^{2}+x+1}$ is $ـ$. The equation of such a line for the graph of $y=\frac{x^{2}-10}{3 x^{2}+x+1}$ is \qquad
6. True or false: If the degree of the numerator of a rational function equals the degree of the denominator, then setting y equal to the ratio of the leading coefficients gives the equation of the horizontal asymptote.
7. Compared with the graph of $f(x)=\frac{1}{x}$, the graph of $g(x)=\frac{1}{x+2}-1$ is shifted 2 units \qquad and
1 unit \qquad
8. The graph of a rational function has a slant asymptote if the degree of the numerator is \qquad the degree of the denominator.

EXERCISE SET 2.6

Practice Exercises

In Exercises 1-8, find the domain of each rational function.

1. $f(x)=\frac{5 x}{x-4}$
2. $f(x)=\frac{7 x}{x-8}$
3. $g(x)=\frac{3 x^{2}}{(x-5)(x+4)}$
4. $g(x)=\frac{2 x^{2}}{(x-2)(x+6)}$
5. $h(x)=\frac{x+7}{x^{2}-49}$
6. $h(x)=\frac{x+8}{x^{2}-64}$
7. $f(x)=\frac{x+7}{x^{2}+49}$
8. $f(x)=\frac{x+8}{x^{2}+64}$

Use the graph of the rational function in the figure shown to complete each statement in Exercises 9-14.

9. As $x \rightarrow-3^{-}, \quad f(x) \rightarrow$ \qquad -.
10. As $x \rightarrow-3^{+}$,
$f(x) \rightarrow$ \qquad -
11. As $x \rightarrow 1^{-}, \quad f(x) \rightarrow$ \qquad -
12. As $x \rightarrow 1^{+}, \quad f(x) \rightarrow$ \qquad -
13. As $x \rightarrow-\infty, \quad f(x) \rightarrow$ \qquad .
14. As $x \rightarrow \infty, \quad f(x) \rightarrow$ \qquad -.

Use the graph of the rational function in the figure shown to complete each statement in Exercises 15-20.

15. As $x \rightarrow 1^{+}, \quad f(x) \rightarrow$
16. As $x \rightarrow 1^{-}, \quad f(x) \rightarrow$ \qquad .
17. As $x \rightarrow-2^{+}, \quad f(x) \rightarrow$
18. As $x \rightarrow-2^{-}, \quad f(x) \rightarrow$ \qquad -
19. As $x \rightarrow \infty, \quad f(x) \rightarrow$ \qquad .
20. As $x \rightarrow-\infty, \quad f(x) \rightarrow$ \qquad .

In Exercises 21-36, find the vertical asymptotes, if any, and the values of x corresponding to holes, if any, of the graph of each rational function.
21. $f(x)=\frac{x}{x+4}$
22. $f(x)=\frac{x}{x-3}$
23. $g(x)=\frac{x+3}{x(x+4)}$
24. $g(x)=\frac{x+3}{x(x-3)}$
25. $h(x)=\frac{x}{x(x+4)}$
26. $h(x)=\frac{x}{x(x-3)}$
27. $r(x)=\frac{x}{x^{2}+4}$
28. $r(x)=\frac{x}{x^{2}+3}$
29. $f(x)=\frac{x^{2}-9}{x-3}$
30. $f(x)=\frac{x^{2}-25}{x-5}$
31. $g(x)=\frac{x-3}{x^{2}-9}$
32. $g(x)=\frac{x-5}{x^{2}-25}$
33. $h(x)=\frac{x+7}{x^{2}+4 x-21}$
34. $h(x)=\frac{x+6}{x^{2}+2 x-24}$
35. $r(x)=\frac{x^{2}+4 x-21}{x+7}$
36. $r(x)=\frac{x^{2}+2 x-24}{x+6}$

In Exercises 37-44, find the horizontal asymptote, if there is one, of the graph of each rational function.
37. $f(x)=\frac{12 x}{3 x^{2}+1}$
38. $f(x)=\frac{15 x}{3 x^{2}+1}$
39. $g(x)=\frac{12 x^{2}}{3 x^{2}+1}$
40. $g(x)=\frac{15 x^{2}}{3 x^{2}+1}$
41. $h(x)=\frac{12 x^{3}}{3 x^{2}+1}$
42. $h(x)=\frac{15 x^{3}}{3 x^{2}+1}$
43. $f(x)=\frac{-2 x+1}{3 x+5}$
44. $f(x)=\frac{-3 x+7}{5 x-2}$

In Exercises 45-56, use transformations of $f(x)=\frac{1}{x}$ or $f(x)=\frac{1}{x^{2}}$ to graph each rational function.
45. $g(x)=\frac{1}{x-1}$
46. $g(x)=\frac{1}{x-2}$
47. $h(x)=\frac{1}{x}+2$
48. $h(x)=\frac{1}{x}+1$
49. $g(x)=\frac{1}{x+1}-2$
50. $g(x)=\frac{1}{x+2}-2$
51. $g(x)=\frac{1}{(x+2)^{2}}$
52. $g(x)=\frac{1}{(x+1)^{2}}$
53. $h(x)=\frac{1}{x^{2}}-4$
54. $h(x)=\frac{1}{x^{2}}-3$
55. $h(x)=\frac{1}{(x-3)^{2}}+1$
56. $h(x)=\frac{1}{(x-3)^{2}}+2$

In Exercises 57-80, follow the seven steps on page 369 to graph each rational function.
57. $f(x)=\frac{4 x}{x-2}$
58. $f(x)=\frac{3 x}{x-1}$
59. $f(x)=\frac{2 x}{x^{2}-4}$
60. $f(x)=\frac{4 x}{x^{2}-1}$
61. $f(x)=\frac{2 x^{2}}{x^{2}-1}$
62. $f(x)=\frac{4 x^{2}}{x^{2}-9}$
63. $f(x)=\frac{-x}{x+1}$
64. $f(x)=\frac{-3 x}{x+2}$
65. $f(x)=-\frac{1}{x^{2}-4}$
66. $f(x)=-\frac{2}{x^{2}-1}$
67. $f(x)=\frac{2}{x^{2}+x-2}$
68. $f(x)=\frac{-2}{x^{2}-x-2}$
69. $f(x)=\frac{2 x^{2}}{x^{2}+4}$
70. $f(x)=\frac{4 x^{2}}{x^{2}+1}$
71. $f(x)=\frac{x+2}{x^{2}+x-6}$
72. $f(x)=\frac{x-4}{x^{2}-x-6}$
73. $f(x)=\frac{x-2}{x^{2}-4} \quad$ 74. $f(x)=\frac{x-3}{x^{2}-9}$
75. $f(x)=\frac{x^{4}}{x^{2}+2}$
76. $f(x)=\frac{2 x^{4}}{x^{2}+1}$
77. $f(x)=\frac{x^{2}+x-12}{x^{2}-4}$
78. $f(x)=\frac{x^{2}}{x^{2}+x-6}$
79. $f(x)=\frac{3 x^{2}+x-4}{2 x^{2}-5 x}$
80. $f(x)=\frac{x^{2}-4 x+3}{(x+1)^{2}}$

In Exercises 81-88, a. Find the slant asymptote of the graph of each rational function and \mathbf{b}. Follow the seven-step strategy and use the slant asymptote to graph each rational function.
81. $f(x)=\frac{x^{2}-1}{x}$
82. $f(x)=\frac{x^{2}-4}{x}$
83. $f(x)=\frac{x^{2}+1}{x}$
84. $f(x)=\frac{x^{2}+4}{x}$
85. $f(x)=\frac{x^{2}+x-6}{x-3}$
86. $f(x)=\frac{x^{2}-x+1}{x-1}$
87. $f(x)=\frac{x^{3}+1}{x^{2}+2 x}$
88. $f(x)=\frac{x^{3}-1}{x^{2}-9}$

Practice Plus

In Exercises 89-94, the equation for f is given by the simplified expression that results after performing the indicated operation. Write the equation for f and then graph the function.
89. $\frac{5 x^{2}}{x^{2}-4} \cdot \frac{x^{2}+4 x+4}{10 x^{3}}$
90. $\frac{x-5}{10 x-2} \div \frac{x^{2}-10 x+25}{25 x^{2}-1}$
91. $\frac{x}{2 x+6}-\frac{9}{x^{2}-9}$
92. $\frac{2}{x^{2}+3 x+2}-\frac{4}{x^{2}+4 x+3}$
93. $\frac{1-\frac{3}{x+2}}{1+\frac{1}{x-2}}$
94. $\frac{x-\frac{1}{x}}{x+\frac{1}{x}}$

In Exercises 95-98, use long division to rewrite the equation for g in the form

$$
\text { quotient }+\frac{\text { remainder }}{\text { divisor }} .
$$

Then use this form of the function's equation and transformations of $f(x)=\frac{1}{x}$ to graph g.
95. $g(x)=\frac{2 x+7}{x+3}$
96. $g(x)=\frac{3 x+7}{x+2}$
97. $g(x)=\frac{3 x-7}{x-2}$
98. $g(x)=\frac{2 x-9}{x-4}$

Application Exercises

99. A company is planning to manufacture mountain bikes. The fixed monthly cost will be $\$ 100,000$ and it will cost $\$ 100$ to produce each bicycle.
a. Write the cost function, C, of producing x mountain bikes.
b. Write the average cost function, \bar{C}, of producing x mountain bikes.
c. Find and interpret $\bar{C}(500), \bar{C}(1000), \bar{C}(2000)$, and $\bar{C}(4000)$.
d. What is the horizontal asymptote for the graph of the average cost function, \bar{C} ? Describe what this means in practical terms.
100. A company that manufactures running shoes has a fixed monthly cost of $\$ 300,000$. It costs $\$ 30$ to produce each pair of shoes.
a. Write the cost function, C, of producing x pairs of shoes.
b. Write the average cost function, \bar{C}, of producing x pairs of shoes.
c. Find and interpret $\bar{C}(1000), \bar{C}(10,000)$, and $\bar{C}(100,000)$.
d. What is the horizontal asymptote for the graph of the average cost function, \bar{C} ? Describe what this represents for the company.
101. The function

$$
f(x)=\frac{6.5 x^{2}-20.4 x+234}{x^{2}+36}
$$

models the pH level, $f(x)$, of the human mouth x minutes after a person eats food containing sugar. The graph of this function is shown in the figure.

a. Use the graph to obtain a reasonable estimate, to the nearest tenth, of the pH level of the human mouth 42 minutes after a person eats food containing sugar.
b. After eating sugar, when is the pH level the lowest? Use the function's equation to determine the pH level, to the nearest tenth, at this time.
c. According to the graph, what is the normal pH level of the human mouth?
d. What is the equation of the horizontal asymptote associated with this function? Describe what this means in terms of the mouth's pH level over time.
e. Use the graph to describe what happens to the pH level during the first hour.
102. A drug is injected into a patient and the concentration of the drug in the bloodstream is monitored.The drug's concentration, $C(t)$, in milligrams per liter, after t hours is modeled by

$$
C(t)=\frac{5 t}{t^{2}+1}
$$

The graph of this rational function, obtained with a graphing utility, is shown in the figure.

$[0,10,1]$ by $[0,3,1]$
a. Use the preceding graph to obtain a reasonable estimate of the drug's concentration after 3 hours.
b. Use the function's equation displayed in the voice balloon by the graph to determine the drug's concentration after 3 hours.
c. Use the function's equation to find the horizontal asymptote for the graph. Describe what this means about the drug's concentration in the patient's bloodstream as time increases.
Among all deaths from a particular disease, the percentage that is smoking related (21-39 cigarettes per day) is a function of the disease's incidence ratio. The incidence ratio describes the number of times more likely smokers are than nonsmokers to die from the disease. The following table shows the incidence ratios for heart disease and lung cancer for two age groups.

	Incidence Ratios	
	Heart Disease	Lung Cancer
Ages 55-64	1.9	10
Ages 65-74	1.7	9

Source: Alexander M. Walker, Observations and Inference, Epidemiology Resources Inc., 1991.

For example, the incidence ratio of 9 in the table means that smokers between the ages of 65 and 74 are 9 times more likely than nonsmokers in the same age group to die from lung cancer. The rational function

$$
P(x)=\frac{100(x-1)}{x}
$$

models the percentage of smoking-related deaths among all deaths from a disease, $P(x)$, in terms of the disease's incidence ratio, x. The graph of the rational function is shown. Use this function to solve Exercises 103-106.

The number of times more likely smokers are than nonsmokers to die from the disease
103. Find $P(10)$. Describe what this means in terms of the incidence ratio, 10 , given in the table. Identify your solution as a point on the graph.
104. Find $P(9)$. Round to the nearest percent. Describe what this means in terms of the incidence ratio, 9 , given in the table. Identify your solution as a point on the graph.
105. What is the horizontal asymptote of the graph? Describe what this means about the percentage of deaths caused by smoking with increasing incidence ratios.
106. According to the model and its graph, is there a disease for which all deaths are caused by smoking? Explain your answer.
107. The bar graph shows the amount, in billions of dollars, that the United States government spent on human resources and total budget outlays for six selected years. (Human resources include education, health, Medicare, Social Security, and veterans benefits and services.)

Source: Office of Management and Budget
The function $p(x)=1.75 x^{2}-15.9 x+160$ models the amount, $p(x)$, in billions of dollars, that the United States government spent on human resources x years after 1970 . The function $q(x)=2.1 x^{2}-3.5 x+296$ models total budget expenditures, $q(x)$, in billions of dollars, x years after 1970.
a. Use p and q to write a rational function that models the fraction of total budget outlays spent on human resources x years after 1970 .
b. Use the data displayed by the bar graph to find the percentage of federal expenditures spent on human resources in 2010. Round to the nearest percent.
c. Use the rational function from part (a) to find the percentage of federal expenditures spent on human resources in 2010. Round to the nearest percent. Does this underestimate or overestimate the actual percent that you found in part (b)? By how much?
d. What is the equation of the horizontal asymptote associated with the rational function in part (a)? If trends modeled by the function continue, what percentage of the federal budget will be spent on human resources over time? Round to the nearest percent.

Exercises 108-111 involve writing a rational function that models a problem's conditions.

108. You drive from your home to a vacation resort 600 miles away. You return on the same highway. The average velocity on the return trip is 10 miles per hour slower than the average velocity on the outgoing trip. Express the total time required to complete the round trip, T, as a function of the average velocity on the outgoing trip, x.
109. A tourist drives 90 miles along a scenic highway and then takes a 5-mile walk along a hiking trail. The average velocity driving is nine times that while hiking. Express the total time for driving and hiking, T, as a function of the average velocity on the hike, x.
110. A contractor is constructing the house shown in the figure. The cross section up to the roof is in the shape of a rectangle. The area of the rectangular floor of the house is 2500 square feet. Express the perimeter of the rectangular floor, P, as a function of the width of the rectangle, x.

111. The figure shows a page with 1 -inch margins at the top and the bottom and half-inch side margins. A publishing company is willing to vary the page dimensions subject to the condition that the printed area of the page is 50 square inches. Express the total area of the page, A, as a function of the width of the rectangle containing the print, x.

Writing in Mathematics

112. What is a rational function?
113. Use everyday language to describe the graph of a rational function f such that as $x \rightarrow-\infty, f(x) \rightarrow 3$.
114. Use everyday language to describe the behavior of a graph near its vertical asymptote if $f(x) \rightarrow \infty$ as $x \rightarrow-2^{-}$and $f(x) \rightarrow-\infty$ as $x \rightarrow-2^{+}$.
115. If you are given the equation of a rational function, explain how to find the vertical asymptotes, if there is one, of the function's graph.
116. If you are given the equation of a rational function, explain how to find the horizontal asymptote, if any, of the function's graph.
117. Describe how to graph a rational function.
118. If you are given the equation of a rational function, how can you tell if the graph has a slant asymptote? If it does, how do you find its equation?
119. Is every rational function a polynomial function? Why or why not? Does a true statement result if the two adjectives rational and polynomial are reversed? Explain.
120. Although your friend has a family history of heart disease, he smokes, on average, 25 cigarettes per day. He sees the table showing incidence ratios for heart disease (see Exercises 103-106) and feels comfortable that they are less than 2, compared to 9 and 10 for lung cancer. He claims that all family deaths have been from heart disease and decides not to give up smoking. Use the given function and its graph to describe some additional information not given in the table that might influence his decision.

Technology Exercises

121. Use a graphing utility to verify any five of your hand-drawn graphs in Exercises 45-88.
122. Use a graphing utility to graph $y=\frac{1}{x}, y=\frac{1}{x^{3}}$, and $\frac{1}{x^{5}}$ in the same viewing rectangle. For odd values of n, how does changing n affect the graph of $y=\frac{1}{x^{n}}$?
123. Use a graphing utility to graph $y=\frac{1}{x^{2}}, y=\frac{1}{x^{4}}$, and $y=\frac{1}{x^{6}}$ in the same viewing rectangle. For even values of n, how does changing n affect the graph of $y=\frac{1}{x^{n}}$?
124. Use a graphing utility to graph

$$
f(x)=\frac{x^{2}-4 x+3}{x-2} \quad \text { and } \quad g(x)=\frac{x^{2}-5 x+6}{x-2}
$$

What differences do you observe between the graph of f and the graph of g ? How do you account for these differences?
125. The rational function

$$
f(x)=\frac{27,725(x-14)}{x^{2}+9}-5 x
$$

models the number of arrests, $f(x)$, per 100,000 drivers, for driving under the influence of alcohol, as a function of a driver's age, x.
a. Graph the function in a $[0,70,5]$ by $[0,400,20]$ viewing rectangle.
b. Describe the trend shown by the graph.
c. Use the ZOOM and TRACE features or the maximum function feature of your graphing utility to find the age that corresponds to the greatest number of arrests. How many arrests, per 100,000 drivers, are there for this age group?

Critical Thinking Exercises

Make Sense? In Exercises 126-129, determine whether each statement makes sense or does not make sense, and explain your reasoning.
126. I've graphed a rational function that has two vertical asymptotes and two horizontal asymptotes.
127. My graph of $y=\frac{x-1}{(x-1)(x-2)}$ has vertical asymptotes at $x=1$ and $x=2$.
128. The function

$$
f(x)=\frac{1.96 x+3.14}{3.04 x+21.79}
$$

models the fraction of nonviolent prisoners in New York State prisons x years after 1980. I can conclude from this equation that over time the percentage of nonviolent prisoners will exceed 60%.
129. As production level increases, the average cost for a company to produce each unit of its product also increases.

In Exercises 130-133, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
130. The graph of a rational function cannot have both a vertical asymptote and a horizontal asymptote.
131. It is possible to have a rational function whose graph has no y-intercept.
132. The graph of a rational function can have three vertical asymptotes.
133. The graph of a rational function can never cross a vertical asymptote.
In Exercises 134-137, write the equation of a rational function $f(x)=\frac{p(x)}{q(x)}$ having the indicated properties, in which the degrees of p and q are as small as possible. More than one correct function may be possible. Graph your function using a graphing utility to verify that it has the required properties.
134. f has a vertical asymptote given by $x=3$, a horizontal asymptote $y=0, y$-intercept at -1 , and no x-intercept.
135. f has vertical asymptotes given by $x=-2$ and $x=2$, a horizontal asymptote $y=2$, y-intercept at $\frac{9}{2}, x$-intercepts at -3 and 3 , and y-axis symmetry.
136. f has a vertical asymptote given by $x=1$, a slant asymptote whose equation is $y=x, y$-intercept at 2 , and x-intercepts at -1 and 2 .
137. f has no vertical, horizontal, or slant asymptotes, and no x-intercepts.

Preview Exercises

Exercises 138-140 will help you prepare for the material covered in the next section.
138. Solve: $2 x^{2}+x=15$.
139. Solve: $x^{3}+x^{2}=4 x+4$.
140. Simplify: $\frac{x+1}{x+3}-2$.

SECTION 2.7

Objectives

Solve polynomial inequalities.
(2) Solve rational inequalities.
(3) Solve problems modeled by polynomial or rational inequalities.

© Warren Miller/The New Yorker Collection/Cartoonbank
Tailgaters beware: If your car is going 35 miles per hour on dry pavement, your required stopping distance is 160 feet, or the width of a football field. At 65 miles per hour, the distance required is 410 feet, or approximately the length of one and one-tenth football fields. Figure 2.45 at the top of the next page shows stopping distances for cars at various speeds on dry roads and on wet roads.

FIGURE 2.45
Source: National Highway Traffic Safety Administration

A car's required stopping distance, $f(x)$, in feet, on dry pavement traveling at x miles per hour can be modeled by the quadratic function

$$
f(x)=0.0875 x^{2}-0.4 x+66.6 .
$$

How can we use this function to determine speeds on dry pavement requiring stopping distances that exceed the length of one and one-half football fields, or 540 feet? We must solve the inequality

$$
0.0875 x^{2}-0.4 x+66.6>540
$$

Required stopping distance
exceeds $\quad 540$ feet.

We begin by subtracting 540 from both sides. This will give us zero on the right:

TECHNOLOGY

We used the statistical menu of a graphing utility and the quadratic regression program to obtain the quadratic function that models stopping distance on dry pavement. After entering the appropriate data from Figure 2.45, namely,
$(35,160),(45,225),(55,310)$, $(65,410)$,
we obtained the results shown in the screen.

```
DuadReg
    '=ax2+bx+c
        3=.0875
        b=-.4
    c=66.5625
```

$$
\begin{aligned}
0.0875 x^{2}-0.4 x+66.6-540 & >540-540 \\
0.0875 x^{2}-0.4 x-473.4 & >0 .
\end{aligned}
$$

The form of this inequality is $a x^{2}+b x+c>0$. Such a quadratic inequality is called a polynomial inequality.

Definition of a Polynomial Inequality

A polynomial inequality is any inequality that can be put into one of the forms

$$
f(x)<0, \quad f(x)>0, \quad f(x) \leq 0, \quad \text { or } \quad f(x) \geq 0,
$$

where f is a polynomial function.

In this section, we establish the basic techniques for solving polynomial inequalities. We will also use these techniques to solve inequalities involving rational functions.

Solving Polynomial Inequalities

Graphs can help us visualize the solutions of polynomial inequalities. For example, the graph of $f(x)=x^{2}-7 x+10$ is shown in Figure 2.46. The x-intercepts, 2 and 5, are boundary points between where the graph lies above the x-axis, shown in blue, and where the graph lies below the x-axis,

FIGURE 2.46 shown in red.

Locating the x-intercepts of a polynomial function, f, is an important step in finding the solution set for polynomial inequalities in the form $f(x)<0$ or $f(x)>0$. We use the x-intercepts of f as boundary points that divide the real number line into intervals. On each interval, the graph of f is either above the x-axis $[f(x)>0]$ or below the x-axis $[f(x)<0]$. For this reason, x-intercepts play a fundamental role in solving polynomial inequalities. The x-intercepts are found by solving the equation $f(x)=0$.

Procedure for Solving Polynomial Inequalities

1. Express the inequality in the form

$$
f(x)<0 \quad \text { or } \quad f(x)>0,
$$

where f is a polynomial function.
2. Solve the equation $f(x)=0$. The real solutions are the boundary points.
3. Locate these boundary points on a number line, thereby dividing the number line into intervals.
4. Choose one representative number, called a test value, within each interval and evaluate f at that number.
a. If the value of f is positive, then $f(x)>0$ for all numbers, x, in the interval.
b. If the value of f is negative, then $f(x)<0$ for all numbers, x, in the interval.
5. Write the solution set, selecting the interval or intervals that satisfy the given inequality.
This procedure is valid if $<$ is replaced by \leq or $>$ is replaced by \geq. However, if the inequality involves \leq or \geq, include the boundary points [the solutions of $f(x)=0]$ in the solution set.

EXAMPLE 1 Solving a Polynomial Inequality

Solve and graph the solution set on a real number line: $2 x^{2}+x>15$.

SOLUTION

Step 1 Express the inequality in the form $f(\boldsymbol{x})<\mathbf{0}$ or $f(\boldsymbol{x})>\mathbf{0}$. We begin by rewriting the inequality so that 0 is on the right side.

$$
\begin{aligned}
2 x^{2}+x & >15 & & \text { This is the given inequality. } \\
2 x^{2}+x-15 & >15-15 & & \text { Subtract } 15 \text { from both sides. } \\
2 x^{2}+x-15 & >0 & & \text { Simplify. }
\end{aligned}
$$

This inequality is equivalent to the one we wish to solve. It is in the form $f(x)>0$, where $f(x)=2 x^{2}+x-15$.
Step 2 Solve the equation $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. We find the x-intercepts of $f(x)=2 x^{2}+x-15$ by solving the equation $2 x^{2}+x-15=0$.

$$
\begin{array}{rlrlrl}
2 x^{2}+x-15 & =0 & & \begin{array}{l}
\text { This polynomial equation is a } \\
\text { quadratic equation. }
\end{array} \\
(2 x-5)(x+3) & =0 & & \text { Factor. } \\
2 x-5=0 & \text { or } x+3 & =0 & & \text { Set each factor equal to } 0 . \\
x=\frac{5}{2} & x & =-3 & & \text { Solve for } x .
\end{array}
$$

The x-intercepts of f are -3 and $\frac{5}{2}$. We will use these x-intercepts as boundary points on a number line.
Step 3 Locate the boundary points on a number line and separate the line into intervals. The number line with the boundary points is shown as follows:

The boundary points divide the number line into three intervals:

$$
(-\infty,-3) \quad\left(-3, \frac{5}{2}\right) \quad\left(\frac{5}{2}, \infty\right) .
$$

Step 4 Choose one test value within each interval and evaluate f at that number.

Interval	Test Value	Substitute into $\boldsymbol{f (x)}=\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x} \mathbf{- 1 5}$	Conclusion
$(-\infty,-3)$	-4	$f(-4)$ $=2(-4)^{2}+(-4)-15$ $=13$, positive	$f(x)>0$ for all x in $(-\infty,-3)$.
$\left(-3, \frac{5}{2}\right)$	0	$f(0)$ $=2 \cdot 0^{2}+0-15$ $=-15$, negative	
$\left(\frac{5}{2}, \infty\right)$	3	$f(3)$ $=2 \cdot 3^{2}+3-15$ $=6$, positive	$f(x)<0$ for all x in $\left(-3, \frac{5}{2}\right)$.

TECHNOLOGY

Graphic Connections

The solution set for

$$
2 x^{2}+x>15
$$

or, equivalently,

$$
2 x^{2}+x-15>0
$$

can be verified with a graphing utility. The graph of $f(x)=2 x^{2}+x-15$ was obtained using a $[-10,10,1]$ by $[-16,6,1]$ viewing rectangle.
The graph lies above the x-axis, representing $>$, for all x in $(-\infty,-3)$ or $\left(\frac{5}{2}, \infty\right)$.

Step 5 Write the solution set, selecting the interval or intervals that satisfy the given inequality. We are interested in solving $f(x)>0$, where $f(x)=2 x^{2}+x-15$. Based on our work in step 4 , we see that $f(x)>0$ for all x in $(-\infty,-3)$ or $\left(\frac{5}{2}, \infty\right)$. Thus, the solution set of the given inequality, $2 x^{2}+x>15$, or, equivalently, $2 x^{2}+x-15>0$, is

$$
(-\infty,-3) \cup\left(\frac{5}{2}, \infty\right) \text { or }\left\{x \mid x<-3 \text { or } x>\frac{5}{2}\right\}
$$

The graph of the solution set on a number line is shown as follows:

Check Point 1 Solve and graph the solution set: $x^{2}-x>20$.

EXAMPLE 2 Solving a Polynomial Inequality

Solve and graph the solution set on a real number line: $4 x^{2} \leq 1-2 x$.

SOLUTION

Step 1 Express the inequality in the form $f(x) \leq 0$ or $f(x) \geq 0$. We begin by rewriting the inequality so that 0 is on the right side.

$$
\begin{array}{cl}
4 x^{2} \leq 1-2 x & \text { This is the given inequality. } \\
4 x^{2}+2 x-1 \leq 1-2 x+2 x-1 & \text { Add } 2 \mathrm{x} \text { and subtract } 1 \text { on both sides. } \\
4 x^{2}+2 x-1 \leq 0 & \text { Simplify. }
\end{array}
$$

This inequality is equivalent to the one we wish to solve. It is in the form $f(x) \leq 0$, where $f(x)=4 x^{2}+2 x-1$.
Step 2 Solve the equation $\boldsymbol{f (x)}=\mathbf{0}$. We will find the x-intercepts of $f(x)=4 x^{2}+2 x-1$ by solving the equation $4 x^{2}+2 x-1=0$. This equation cannot be solved by factoring. We will use the quadratic formula to solve it.

$$
\begin{gathered}
4 x^{2}+2 x-1=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 4(-1)}}{2 \cdot 4}=\frac{-2 \pm \sqrt{4-(-16)}}{8} \\
=\frac{-2 \pm \sqrt{20}}{8}=\frac{-2 \pm \sqrt{4} \sqrt{5}}{8}=\frac{-2 \pm 2 \sqrt{5}}{8} \\
x=\frac{2(-1 \pm \sqrt{5})}{8}=\frac{-1 \pm \sqrt{5}}{4} \\
x=\frac{-1+\sqrt{5}}{4} \approx 0.3 \quad x=\frac{-1-\sqrt{5}}{4} \approx-0.8
\end{gathered}
$$

The x-intercepts of f are $\frac{-1+\sqrt{5}}{4}$ (approximately 0.3) and $\frac{-1-\sqrt{5}}{4}$ (approximately -0.8). We will use these x-intercepts as boundary points on a number line.

Step 3 Locate the boundary points on a number line and separate the line into intervals. The number line with the boundary points is shown as follows:

The boundary points divide the number line into three intervals:

$$
\left(-\infty, \frac{-1-\sqrt{5}}{4}\right)\left(\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right)\left(\frac{-1+\sqrt{5}}{4}, \infty\right) .
$$

Step 4 Choose one test value within each interval and evaluate f at that number.

Interval	Test Value	Substitute into $f(x)=4 x^{2}+2 x-1$	Conclusion
$\left(-\infty, \frac{-1-\sqrt{5}}{4}\right)$	-1	$\begin{aligned} f(-1) & =4(-1)^{2}+2(-1)-1 \\ & =1, \text { positive } \end{aligned}$	$f(x)>0$ for all x in $\left(-\infty, \frac{-1-\sqrt{5}}{4}\right)$.
$\left(\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right)$	0	$\begin{aligned} f(0) & =4 \cdot 0^{2}+2 \cdot 0-1 \\ & =-1, \text { negative } \end{aligned}$	$f(x)<0$ for all x in $\left(\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right)$.
$\left(\frac{-1+\sqrt{5}}{4}, \infty\right)$	1	$\begin{aligned} f(1) & =4 \cdot 1^{2}+2 \cdot 1-1 \\ & =5, \text { positive } \end{aligned}$	$f(x)>0 \text { for all } x \text { in }\left(\frac{-1+\sqrt{5}}{4}, \infty\right) .$

TECHNOLOGY

Graphic Connections

The solution set for

$$
4 x^{2} \leq 1-2 x
$$

or, equivalently,

$$
4 x^{2}+2 x-1 \leq 0
$$

can be verified with a graphing utility. The graph of $f(x)=4 x^{2}+2 x-1$ was obtained using a $[-2,2,1]$ by $[-10,10,1]$ viewing rectangle. The graph lies on or below the x-axis, representing \leq, for all x in

$$
\begin{gathered}
{\left[\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right]} \\
\approx[-0.8,0.3] .
\end{gathered}
$$

$[-2,2,1]$ by $[-10,10,1]$

Step 5 Write the solution set, selecting the interval or intervals that satisfy the given inequality. We are interested in solving $f(x) \leq 0$, where $f(x)=4 x^{2}+2 x-1$. Based on our work in step 4, we see that $f(x)<0$ for all x in $\left(\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right)$. However, because the inequality involves \leq (less than or equal to), we must also include the solutions of $4 x^{2}+2 x-1=0$, namely, $\frac{-1-\sqrt{5}}{4}$ and $\frac{-1+\sqrt{5}}{4}$, in the solution set. Thus, the solution set of the given inequality $4 x^{2} \leq 1-2 x$, or, equivalently, $4 x^{2}+2 x-1 \leq 0$, is

$$
\left[\frac{-1-\sqrt{5}}{4}, \frac{-1+\sqrt{5}}{4}\right] \text { or }\left\{x \left\lvert\, \frac{-1-\sqrt{5}}{4} \leq x \leq \frac{-1+\sqrt{5}}{4}\right.\right\} .
$$

The graph of the solution set on a number line is shown as follows:

Check Point 2 Solve and graph the solution set on a real number line: $2 x^{2} \leq-6 x-1$.

EXAMPLE 3 Solving a Polynomial Inequality

Solve and graph the solution set on a real number line: $x^{3}+x^{2} \leq 4 x+4$.

SOLUTION

Step 1 Express the inequality in the form $f(x) \leq \mathbf{0}$ or $\boldsymbol{f}(\boldsymbol{x}) \geq \mathbf{0}$. We begin by rewriting the inequality so that 0 is on the right side.

$$
\begin{aligned}
x^{3}+x^{2} \leq 4 x+4 & \text { This is the given inequality. } \\
x^{3}+x^{2}-4 x-4 \leq 4 x+4-4 x-4 & \text { Subtract } 4 x+4 \text { from both sides. } \\
x^{3}+x^{2}-4 x-4 \leq 0 & \text { Simplify. }
\end{aligned}
$$

This inequality is equivalent to the one we wish to solve. It is in the form $f(x) \leq 0$, where $f(x)=x^{3}+x^{2}-4 x-4$.

Step 2 Solve the equation $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. We find the x-intercepts of $f(x)=x^{3}+x^{2}-4 x-4$ by solving the equation $x^{3}+x^{2}-4 x-4=0$.

$$
\begin{array}{rlrl}
x^{3}+x^{2}-4 x-4 & =0 & & \text { This polynomial equation is of degree } 3 . \\
x^{2}(x+1)-4(x+1) & =0 & & \text { Factor } x^{2} \text { from the first two terms and } \\
& & -4 \text { from the last two terms. } \\
(x+1)\left(x^{2}-4\right) & =0 & & \text { A common factor of } x+1 \text { is factored } \\
& & \text { from the expression. } \\
(x+1)(x+2)(x-2) & =0 & & \text { Factor completely. } \\
x+1=0 & \text { or } & x+2=0 & \text { or } \\
x=-2 & x-0 & & \text { Set each factor equal to } 0 . \\
x=-1 & x=-2 & x & =2
\end{array} \begin{aligned}
& \text { Solve for } x .
\end{aligned}
$$

The x-intercepts of f are $-2,-1$, and 2 . We will use these x-intercepts as boundary points on a number line.
Step 3 Locate the boundary points on a number line and separate the line into intervals. The number line with the boundary points is shown as follows:

The boundary points divide the number line into four intervals:

$$
(-\infty,-2) \quad(-2,-1) \quad(-1,2) \quad(2, \infty)
$$

Step 4 Choose one test value within each interval and evaluate f at that number.

Interval	Test Value	Substitute into $f(x)=x^{3}+x^{2}-4 x-4$	Conclusion
$(-\infty,-2)$	-3	$\begin{aligned} f(-3) & =(-3)^{3}+(-3)^{2}-4(-3)-4 \\ & =-10, \text { negative } \end{aligned}$	$\begin{aligned} & f(x)<0 \text { for all } x \\ & \text { in }(-\infty,-2) . \end{aligned}$
$(-2,-1)$	-1.5	$\begin{aligned} f(-1.5) & =(-1.5)^{3}+(-1.5)^{2}-4(-1.5)-4 \\ & =0.875, \text { positive } \end{aligned}$	$\begin{aligned} & f(x)>0 \text { for all } x \\ & \text { in }(-2,-1) . \end{aligned}$
$(-1,2)$	0	$\begin{aligned} f(0) & =0^{3}+0^{2}-4 \cdot 0-4 \\ & =-4, \text { negative } \end{aligned}$	$\begin{aligned} & f(x)<0 \text { for all } x \\ & \text { in }(-1,2) . \end{aligned}$
$(2, \infty)$	3	$\begin{aligned} f(3) & =3^{3}+3^{2}-4 \cdot 3-4 \\ & =20, \text { positive } \end{aligned}$	$\begin{aligned} & f(x)>0 \text { for all } x \\ & \text { in }(2, \infty) \end{aligned}$

TECHNOLOGY

Graphic Connections

The solution set for

$$
x^{3}+x^{2} \leq 4 x+4
$$

or, equivalently,

$$
x^{3}+x^{2}-4 x-4 \leq 0
$$

can be verified with a graphing utility. The graph of $f(x)=x^{3}+x^{2}-4 x-4$ lies on or below the x-axis, representing \leq, for all x in $(-\infty,-2]$ or $[-1,2]$.

$[-4,4,1]$ by $[-7,3,1]$

Step 5 Write the solution set, selecting the interval or intervals that satisfy the given inequality. We are interested in solving $f(x) \leq 0$, where $f(x)=x^{3}+x^{2}-4 x-4$. Based on our work in step 4 , we see that $f(x)<0$ for all x in $(-\infty,-2)$ or $(-1,2)$. However, because the inequality involves \leq (less than or equal to), we must also include the solutions of $x^{3}+x^{2}-4 x-4=0$, namely $-2,-1$, and 2 , in the solution set. Thus, the solution set of the given inequality, $x^{3}+x^{2} \leq 4 x+4$, or, equivalently, $x^{3}+x^{2}-4 x-4 \leq 0$, is

$$
\begin{gathered}
\quad(-\infty,-2] \cup[-1,2] \\
\text { or } \quad\{x \mid x \leq-2 \text { or }-1 \leq x \leq 2\} .
\end{gathered}
$$

The graph of the solution set on a number line is shown as follows:

Check Point 3 Solve and graph the solution set on a real number line: $x^{3}+3 x^{2} \leq x+3$.
(2) Solve rational inequalities.

FIGURE 2.47 The graph of $f(x)=\frac{3 x+3}{2 x+4}$

GREAT QUESTION!

Can I begin solving

$$
\frac{x+1}{x+3} \geq 2
$$

by multiplying both sides
by $x+3$?
No. We do not know if $x+3$ is positive or negative. Thus, we do not know whether or not to change the sense of the inequality.

Solving Rational Inequalities

A rational inequality is any inequality that can be put into one of the forms

$$
f(x)<0, \quad f(x)>0, \quad f(x) \leq 0, \quad \text { or } \quad f(x) \geq 0,
$$

where f is a rational function. An example of a rational inequality is

$$
\frac{3 x+3}{2 x+4}>0 .
$$

This inequality is in the form $f(x)>0$, where f is the rational function given by

$$
f(x)=\frac{3 x+3}{2 x+4}
$$

The graph of f is shown in Figure 2.47.
We can find the x-intercept of f by setting the numerator equal to 0 :

$$
\begin{array}{rlr}
3 x+3 & =0 \\
3 x & =-3 \quad \begin{array}{l}
f \text { has an } x \text {-intercept } \\
\text { at }-1 \text { and passes } \\
\text { through }(-1,0) .
\end{array} \\
x & =-1 .
\end{array}
$$

We can determine where f is undefined by setting the denominator equal to 0 :

$$
\begin{aligned}
2 x+4 & =0 \\
2 x & =-4 \quad \begin{array}{l}
f \text { is undefined at }-2 . \\
\text { Figure } 3.45 \text { shows that } \\
\text { the function's vertical } \\
\text { asymptote is } x=-2 .
\end{array} \\
x & =-2 .
\end{aligned}
$$

By setting both the numerator and the denominator of f equal to 0 , we obtained -2 and -1 . These numbers separate the x-axis into three intervals: $(-\infty,-2),(-2,-1)$, and $(-1, \infty)$. On each interval, the graph of f is either above the x-axis $[f(x)>0]$ or below the x-axis $[f(x)<0]$.

Examine the graph in Figure $\mathbf{2 . 4 7}$ carefully. Can you see that it is above the x-axis for all x in $(-\infty,-2)$ or $(-1, \infty)$, shown in blue? Thus, the solution set of $\frac{3 x+3}{2 x+4}>0$ is $(-\infty,-2) \cup(-1, \infty)$. By contrast, the graph of f lies below the x-axis for all x in $(-2,-1)$, shown in red. Thus, the solution set of $\frac{3 x+3}{2 x+4}<0$ is $(-2,-1)$.

The first step in solving a rational inequality is to bring all terms to one side, obtaining zero on the other side. Then express the rational function on the nonzero side as a single quotient. The second step is to set the numerator and the denominator of the rational function f equal to zero. The solutions of these equations serve as boundary points that separate the real number line into intervals. At this point, the procedure is the same as the one we used for solving polynomial inequalities.

EXAMPLE 4 Solving a Rational Inequality

Solve and graph the solution set: $\frac{x+1}{x+3} \geq 2$.

SOLUTION

Step 1 Express the inequality so that one side is zero and the other side is a single quotient. We subtract 2 from both sides to obtain zero on the right.

$$
\begin{array}{rlrl}
\frac{x+1}{x+3} & \geq 2 & \text { This is the given inequality. } \\
\frac{x+1}{x+3}-2 \geq 0 & \begin{array}{l}
\text { Subtract } 2 \text { from both sides, obtaining } 0 \\
\text { on the right. }
\end{array} \\
\frac{x+1}{x+3}-\frac{2(x+3)}{x+3} \geq 0 & & \text { The least common denominator is } x+3 . \\
\frac{x+1-2(x+3)}{x+3} & \text { Express } 2 \text { in terms of this denominator. } \\
\frac{x+1-2 x-6}{x+3} & \geq 0 & \text { Subtract rational expressions. } \\
\frac{-x-5}{x+3} \geq 0 & \text { Apply the distributive property. }
\end{array}
$$

This inequality is equivalent to the one we wish to solve. It is in the form $f(x) \geq 0$, where $f(x)=\frac{-x-5}{x+3}$.
Step 2 Set the numerator and the denominator of \boldsymbol{f} equal to zero. The real solutions are the boundary points.

$$
\begin{array}{rl}
-x-5=0 & x+3=0 \quad \begin{array}{l}
\text { Set the numerator and denominator equal } \\
\text { to } O \text {. These are the values that make the } \\
\text { previous quotient zero or undefined. }
\end{array} \\
x=-5 & x=-3
\end{array}
$$

We will use these solutions as boundary points on a number line.
Step 3 Locate the boundary points on a number line and separate the line into intervals. The number line with the boundary points is shown as follows:

The boundary points divide the number line into three intervals:

$$
(-\infty,-5) \quad(-5,-3) \quad(-3, \infty) .
$$

Step 4 Choose one test value within each interval and evaluate f at that number.

GREAT QUESTION!

Which boundary points must I always exclude from the solution set of a rational inequality?
Never include values that cause a rational function's denominator to equal zero. Division by zero is undefined.

Interval	Test Value	Substitute into $f(x)=\frac{-x-5}{x+3}$	Conclusion
$(-\infty,-5)$	-6	$\begin{aligned} f(-6) & =\frac{-(-6)-5}{-6+3} \\ & =-\frac{1}{3}, \text { negative } \end{aligned}$	$\begin{aligned} & f(x)<0 \text { for all } \\ & x \text { in }(-\infty,-5) . \end{aligned}$
$(-5,-3)$	-4	$\begin{aligned} f(-4) & =\frac{-(-4)-5}{-4+3} \\ & =1, \text { positive } \end{aligned}$	$\begin{aligned} & f(x)>0 \text { for all } \\ & x \text { in }(-5,-3) . \end{aligned}$
$(-3, \infty)$	0	$\begin{aligned} f(0) & =\frac{-0-5}{0+3} \\ & =-\frac{5}{3}, \text { negative } \end{aligned}$	$\begin{aligned} & f(x)<0 \text { for all } \\ & x \text { in }(-3, \infty) . \end{aligned}$

Step 5 Write the solution set, selecting the interval or intervals that satisfy the given inequality. We are interested in solving $f(x) \geq 0$, where $f(x)=\frac{-x-5}{x+3}$. Based on our work in step 4 , we see that $f(x)>0$ for all x in $(-5,-3)$. However, because the inequality involves \geq (greater than or equal to), we must also include the solution of $f(x)=0$, namely, the value that we obtained when we set the

TECHNOLOGY

Graphic Connections

The solution set for

$$
\frac{x+1}{x+3} \geq 2
$$

or, equivalently,

$$
\frac{-x-5}{x+3} \geq 0
$$

can be verified with a graphing
utility. The graph of $f(x)=\frac{-x-5}{x+3}$ lies on or above the x-axis, representing \geq, for all x in $[-5,-3)$.

3 Solve problems modeled by polynomial or rational inequalities.

FIGURE 2.48 Throwing a ball from 190 feet with a velocity of 96 feet per second
numerator of f equal to zero. Thus, we must include -5 in the solution set. The solution set of the given inequality is

$$
[-5,-3) \text { or }\{x \mid-5 \leq x<-3\} .
$$

> -3 causes the denominator of f to equal zero
> It must be excluded from the solution set.

The graph of the solution set on a number line is shown as follows:

3 Check Point 4 solve and graph the solution set: $\frac{2 x}{x+1} \geq 1$.

Applications

If you throw an object directly upward, although its path is straight and vertical, its changing height over time can be described by a quadratic function.

The Position Function for a Free-Falling Object Near Earth's Surface

An object that is falling or vertically projected into the air has its height above the ground, $s(t)$, in feet, given by

$$
s(t)=-16 t^{2}+v_{0} t+s_{0}
$$

where v_{0} is the original velocity (initial velocity) of the object, in feet per second, t is the time that the object is in motion, in seconds, and s_{0} is the original height (initial height) of the object, in feet.

In Example 5, we solve a polynomial inequality in a problem about the position of a free-falling object.

EXAMPLE 5 Using the Position Function

A ball is thrown vertically upward from the top of the Leaning Tower of Pisa (190 feet high) with an initial velocity of 96 feet per second (Figure 2.48). During which time period will the ball's height exceed that of the tower?

SOLUTION

$s(t)=-16 t^{2}+v_{0} t+s_{0} \quad$ This is the position function for a free-falling object.
$s(t)=-16 t^{2}+96 t+190$
Because v_{O} (initial velocity) $=96$ and
$s_{0}($ initial position $)=190$, substitute these
values into the formula.

$-16 t^{2}+96 t+190>190$ This is the inequality that models the problem's question. We must find t.
$-16 t^{2}+96 t>0 \quad$ Subtract 190 from both sides. This inequality is in the
form $f(t)>0$, where $f(t)=-16 t^{2}+96 t$.
$-16 t^{2}+96 t=0 \quad$ Solve the equation $f(t)=0$.
$-16 t(t-6)=0 \quad$ Factor.
$-16 t=0$ or $t-6=0$ Set each factor equal to 0 .
$t=0 \quad t=6$ Solve for t. The boundary points are 0 and 6 .
Locate these values on a number line.

The intervals are $(-\infty, 0),(0,6)$, and $(6, \infty)$. For our purposes, the mathematical model is useful only from $t=0$ until the ball hits the ground. (By setting $-16 t^{2}+96 t+190$ equal to zero, we find $t \approx 7.57$; the ball hits the ground after approximately 7.57 seconds.) Thus, we use $(0,6)$ and $(6,7.57)$ for our intervals.

Interval	Test Value	Substitute into $f(t)=-16 t^{2}+96 t$	Conclusion
$(0,6)$	1	$\begin{aligned} f(1) & =-16 \cdot 1^{2}+96 \cdot 1 \\ & =80, \text { positive } \end{aligned}$	$\begin{aligned} & f(t)>0 \text { for all } \\ & t \text { in }(0,6) . \end{aligned}$
$(6,7.57)$	7	$\begin{aligned} f(7) & =-16 \cdot 7^{2}+96 \cdot 7 \\ & =-112, \text { negative } \end{aligned}$	$\begin{aligned} & f(t)<0 \text { for all } \\ & t \text { in }(6,7.57) . \end{aligned}$

We are interested in solving $f(t)>0$, where $f(t)=-16 t^{2}+96 t$. We see that $f(t)>0$ for all t in $(0,6)$. This means that the ball's height exceeds that of the tower between 0 and 6 seconds.

TECHNOLOGY

Graphic Connections

The graphs of

$$
y_{1}=-16 x^{2}+96 x+190
$$

and

$$
y_{2}=190
$$

are shown in a

viewing rectangle. The graphs show that the ball's height exceeds that of the tower between 0 and 6 seconds.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. We solve the polynomial inequality $x^{2}+8 x+15>0$ by first solving the equation \qquad The real solutions of this equation, -5 and -3 , shown on the number line, are called \qquad points.

2. The points at -5 and -3 shown in Exercise 1 divide the number line into three intervals:
3. True or false: A test value for the leftmost interval on the number line shown in Exercise 1 could be -10 .
4. True or false: A test value for the rightmost interval on the number line shown in Exercise 1 could be 0 .
5. Consider the rational inequality

$$
\frac{x-1}{x+2} \geq 0 .
$$

Setting the numerator and the denominator of $\frac{x-1}{x+2}$ equal to zero, we obtain $x=1$ and $x=-2$. These values are shown as points on the number line. Also shown is information about three test values.

Based on the information shown above, the solution set of $\frac{x-1}{x+2} \geq 0$ is \qquad

EXERCISE SET 2.7

Practice Exercises

Solve each polynomial inequality in Exercises 1-42 and graph the solution set on a real number line. Express each solution set in interval notation.

1. $(x-4)(x+2)>0$
2. $(x+3)(x-5)>0$
3. $(x-7)(x+3) \leq 0$
4. $(x+1)(x-7) \leq 0$
5. $x^{2}-5 x+4>0$
6. $x^{2}-4 x+3<0$
7. $x^{2}+5 x+4>0$
8. $x^{2}+x-6>0$
9. $x^{2}-6 x+9<0$
10. $x^{2}-2 x+1>0$
11. $3 x^{2}+10 x-8 \leq 0$
12. $9 x^{2}+3 x-2 \geq 0$
13. $2 x^{2}+x<15$
14. $6 x^{2}+x>1$
15. $4 x^{2}+7 x<-3$
16. $3 x^{2}+16 x<-5$
17. $5 x \leq 2-3 x^{2}$
18. $4 x^{2}+1 \geq 4 x$
19. $x^{2}-4 x \geq 0$
20. $x^{2}+2 x<0$
21. $2 x^{2}+3 x>0$
22. $3 x^{2}-5 x \leq 0$
23. $-x^{2}+x \geq 0$
24. $-x^{2}+2 x \geq 0$
25. $x^{2} \leq 4 x-2$
26. $x^{2} \leq 2 x+2$
27. $9 x^{2}-6 x+1<0$
28. $4 x^{2}-4 x+1 \geq 0$
29. $(x-1)(x-2)(x-3) \geq 0$
30. $(x+1)(x+2)(x+3) \geq 0$
31. $x(3-x)(x-5) \leq 0$
32. $x(4-x)(x-6) \leq 0$
33. $(2-x)^{2}\left(x-\frac{7}{2}\right)<0$
34. $(5-x)^{2}\left(x-\frac{13}{2}\right)<0$
35. $x^{3}+2 x^{2}-x-2 \geq 0$
36. $x^{3}+2 x^{2}-4 x-8 \geq 0$
37. $x^{3}-3 x^{2}-9 x+27<0$
38. $x^{3}+7 x^{2}-x-7<0$
39. $x^{3}+x^{2}+4 x+4>0$
40. $x^{3}-x^{2}+9 x-9>0$
41. $x^{3} \geq 9 x^{2}$
42. $x^{3} \leq 4 x^{2}$

Solve each rational inequality in Exercises 43-60 and graph the solution set on a real number line. Express each solution set in interval notation.
43. $\frac{x-4}{x+3}>0$
44. $\frac{x+5}{x-2}>0$
45. $\frac{x+3}{x+4}<0$
46. $\frac{x+5}{x+2}<0$
47. $\frac{-x+2}{x-4} \geq 0$
48. $\frac{-x-3}{x+2} \leq 0$
49. $\frac{4-2 x}{3 x+4} \leq 0$
50. $\frac{3 x+5}{6-2 x} \geq 0$
51. $\frac{x}{x-3}>0$
52. $\frac{x+4}{x}>0$
53. $\frac{(x+4)(x-1)}{x+2} \leq 0$
54. $\frac{(x+3)(x-2)}{x+1} \leq 0$
55. $\frac{x+1}{x+3}<2$
56. $\frac{x}{x-1}>2$
57. $\frac{x+4}{2 x-1} \leq 3$
58. $\frac{1}{x-3}<1$
59. $\frac{x-2}{x+2} \leq 2$
60. $\frac{x}{x+2} \geq 2$

Practice Plus
In Exercises 61-64, find the domain of each function.
61. $f(x)=\sqrt{2 x^{2}-5 x+2}$
62. $f(x)=\frac{1}{\sqrt{4 x^{2}-9 x+2}}$
63. $f(x)=\sqrt{\frac{2 x}{x+1}-1}$
64. $f(x)=\sqrt{\frac{x}{2 x-1}-1}$

Solve each inequality in Exercises 65-70 and graph the solution set on a real number line.
65. $\left|x^{2}+2 x-36\right|>12$
66. $\left|x^{2}+6 x+1\right|>8$
67. $\frac{3}{x+3}>\frac{3}{x-2}$
68. $\frac{1}{x+1}>\frac{2}{x-1}$
69. $\frac{x^{2}-x-2}{x^{2}-4 x+3}>0$
70. $\frac{x^{2}-3 x+2}{x^{2}-2 x-3}>0$

In Exercises 71-72, use the graph of the polynomial function to solve each inequality.

71. $2 x^{3}+11 x^{2} \geq 7 x+6$
72. $2 x^{3}+11 x^{2}<7 x+6$

In Exercises 73-74, use the graph of the rational function to solve each inequality.

73. $\frac{1}{4(x+2)} \leq-\frac{3}{4(x-2)}$
74. $\frac{1}{4(x+2)}>-\frac{3}{4(x-2)}$

Application Exercises

Use the position function

$$
s(t)=-16 t^{2}+v_{0} t+s_{0}
$$

($v_{0}=$ initial velocity, $s_{0}=$ initial position, $t=$ time)
to answer Exercises 75-76.
75. Divers in Acapulco, Mexico, dive headfirst at 8 feet per second from the top of a cliff 87 feet above the Pacific Ocean. During which time period will a diver's height exceed that of the cliff?
76. You throw a ball straight up from a rooftop 160 feet high with an initial velocity of 48 feet per second. During which time period will the ball's height exceed that of the rooftop?

The functions

$$
f(x)=0.0875 x^{2}-0.4 x+66.6
$$

Dry pavement
and

Wet pavement

$$
g(x)=0.0875 x^{2}+1.9 x+11.6
$$

model a car's stopping distance, $f(x)$ or $g(x)$, in feet, traveling at x miles per hour. Function f models stopping distance on dry pavement and function g models stopping distance on wet pavement. The graphs of these functions are shown for $\{x \mid x \geq 30\}$. Notice that the figure does not specify which graph is the model for dry roads and which is the model for wet roads. Use this information to solve Exercises 77-78.

77. a. Use the given functions to find the stopping distance on dry pavement and the stopping distance on wet pavement for a car traveling at 35 miles per hour. Round to the nearest foot.
b. Based on your answers to part (a), which rectangular coordinate graph shows stopping distances on dry pavement and which shows stopping distances on wet pavement?
c. How well do your answers to part (a) model the actual stopping distances shown in Figure 2.45 on page 382?
d. Determine speeds on dry pavement requiring stopping distances that exceed the length of one and one-half football fields, or 540 feet. Round to the nearest mile per hour. How is this shown on the appropriate graph of the models?
78. a. Use the given functions to find the stopping distance on dry pavement and the stopping distance on wet pavement for a car traveling at 55 miles per hour. Round to the nearest foot.
b. Based on your answers to part (a), which rectangular coordinate graph shows stopping distances on dry pavement and which shows stopping distances on wet pavement?
c. How well do your answers to part (a) model the actual stopping distances shown in Figure 2.45 on page 382?
d. Determine speeds on wet pavement requiring stopping distances that exceed the length of one and one-half football fields, or 540 feet. Round to the nearest mile per hour. How is this shown on the appropriate graph of the models?
79. The perimeter of a rectangle is 50 feet. Describe the possible lengths of a side if the area of the rectangle is not to exceed 114 square feet.
80. The perimeter of a rectangle is 180 feet. Describe the possible lengths of a side if the area of the rectangle is not to exceed 800 square feet.

Writing in Mathematics

81. What is a polynomial inequality?
82. What is a rational inequality?
83. If f is a polynomial or rational function, explain how the graph of f can be used to visualize the solution set of the inequality $f(x)<0$.

Technology Exercises

84. Use a graphing utility to verify your solution sets to any three of the polynomial inequalities that you solved algebraically in Exercises 1-42.
85. Use a graphing utility to verify your solution sets to any three of the rational inequalities that you solved algebraically in Exercises 43-60.
Solve each inequality in Exercises 86-91 using a graphing utility.
86. $x^{2}+3 x-10>0$
87. $2 x^{2}+5 x-3 \leq 0$
88. $x^{3}+x^{2}-4 x-4>0$
89. $\frac{x-4}{x-1} \leq 0$
90. $\frac{x+2}{x-3} \leq 2$
91. $\frac{1}{x+1} \leq \frac{2}{x+4}$

The graph shows stopping distances for trucks at various speeds on dry roads and on wet roads. Use this information to solve Exercises 92-93.

Source: National Highway Traffic Safety Administration
(In Exercises 92-93, be sure to refer to the graph at the bottom of the previous page.)
92. a. Use the statistical menu of your graphing utility and the quadratic regression program to obtain the quadratic function that models a truck's stopping distance, $f(x)$, in feet, on dry pavement traveling at x miles per hour. Round the x-coefficient and the constant term to one decimal place.
b. Use the function from part (a) to determine speeds on dry pavement requiring stopping distances that exceed 455 feet. Round to the nearest mile per hour.
93. a. Use the statistical menu of your graphing utility and the quadratic regression program to obtain the quadratic function that models a truck's stopping distance, $f(x)$, in feet, on wet pavement traveling at x miles per hour. Round the x-coefficient and the constant term to one decimal place.
b. Use the function from part (a) to determine speeds on wet pavement requiring stopping distances that exceed 446 feet.

Critical Thinking Exercises

Make Sense? In Exercises 94-97, determine whether each statement makes sense or does not make sense, and explain your reasoning.
94. When solving $f(x)>0$, where f is a polynomial function, I only pay attention to the sign of f at each test value and not the actual function value.
95. I'm solving a polynomial inequality that has a value for which the polynomial function is undefined.
96. Because it takes me longer to come to a stop on a wet road than on a dry road, graph (a) for Exercises 77-78 is the model for stopping distances on wet pavement and graph (b) is the model for stopping distances on dry pavement.
97. I began the solution of the rational inequality $\frac{x+1}{x+3} \geq 2$ by setting both $x+1$ and $x+3$ equal to zero.

In Exercises 98-101, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
98. The solution set of $x^{2}>25$ is $(5, \infty)$.
99. The inequality $\frac{x-2}{x+3}<2$ can be solved by multiplying both sides by $x+3$, resulting in the equivalent inequality $x-2<2(x+3)$.
100. $(x+3)(x-1) \geq 0$ and $\frac{x+3}{x-1} \geq 0$ have the same solution
set. set.
101. The inequality $\frac{x-2}{x+3}<2$ can be solved by multiplying both sides by $(x+3)^{2}, x \neq-3$, resulting in the equivalent inequality $(x-2)(x+3)<2(x+3)^{2}$.
102. Write a polynomial inequality whose solution set is $[-3,5]$.
103. Write a rational inequality whose solution set is $(-\infty,-4) \cup[3, \infty)$.

In Exercises 104-107, use inspection to describe each inequality's solution set. Do not solve any of the inequalities.
104. $(x-2)^{2}>0$
105. $(x-2)^{2} \leq 0$
106. $(x-2)^{2}<-1$
107. $\frac{1}{(x-2)^{2}}>0$
108. The graphing utility screen shows the graph of $y=4 x^{2}-8 x+7$.

a. Use the graph to describe the solution set of $4 x^{2}-8 x+7>0$.
b. Use the graph to describe the solution set of $4 x^{2}-8 x+7<0$.
c. Use an algebraic approach to verify each of your descriptions in parts (a) and (b).
109. The graphing utility screen shows the graph of $y=\sqrt{27-3 x^{2}}$. Write and solve a quadratic inequality that explains why the graph only appears for $-3 \leq x \leq 3$.

Preview Exercises

Exercises 110-112 will help you prepare for the material covered in the next section.
110. a. If $y=k x^{2}$, find the value of k using $x=2$ and $y=64$.
b. Substitute the value for k into $y=k x^{2}$ and write the resulting equation.
c. Use the equation from part (b) to find y when $x=5$.
111. a. If $y=\frac{k}{x}$, find the value of k using $x=8$ and $y=12$.
b. Substitute the value for k into $y=\frac{k}{x}$ and write the resulting equation.
c. Use the equation from part (b) to find y when $x=3$.
112. If $S=\frac{k A}{P}$, find the value of k using $A=60,000, P=40$, and $S=12,000$.

SECTION 2.8

Modeling Using Variation

Objectives

(1) Solve direct variation problems.
2. Solve inverse variation problems.
(3) Solve combined variation problems.
4) Solve problems involving joint variation.

Direct Variation

When you swim underwater, the pressure in your ears depends on the depth at which you are swimming. The formula

$$
p=0.43 d
$$

describes the water pressure, p, in pounds per square inch, at a depth of d feet. We can use this linear function to determine the pressure in your ears at various depths:

$$
\begin{aligned}
& \text { If } d=20, p=0.43(20)=8.6 . \\
& \text { If } d=40, p=0.43(40)=17.2 . \\
& \text { Doubling the depth doubles the pressure. }
\end{aligned} \begin{aligned}
& \text { At a depth of } 20 \text { feet, water pressure is } 8.6 \text { pounds } \\
& \text { per square inch. } \\
& \text { If } d 0 \text { feet, water pressure is } 17.2 \text { pounds } \\
& \text { Doubling the depth doubles the pressure. }
\end{aligned} \begin{aligned}
& \text { If } d=80, p=0.43(80)=34.4 .
\end{aligned} \begin{aligned}
& \text { At a depth of } 80 \text { feet, water pressure is } 34.4 \text { pounds } \\
& \text { per square inch. }
\end{aligned}
$$

The formula $p=0.43 d$ illustrates that water pressure is a constant multiple of your underwater depth. If your depth is doubled, the pressure is doubled; if your depth is tripled, the pressure is tripled; and so on. Because of this, the pressure in your ears is said to vary directly as your underwater depth. The equation of variation is

$$
p=0.43 \mathrm{~d} .
$$

Generalizing our discussion of pressure and depth, we obtain the following statement:

Direct Variation

If a situation is described by an equation in the form

$$
y=k x,
$$

where k is a nonzero constant, we say that \boldsymbol{y} varies directly as \boldsymbol{x} or \boldsymbol{y} is directly proportional to \boldsymbol{x}. The number k is called the constant of variation or the constant of proportionality.

Can you see that the direct variation equation, $y=k x$, is a special case of the linear function $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$? When $m=k$ and $b=0, y=m x+b \quad$ becomes $y=k x$. Thus, the slope of a direct variation equation is k, the constant of variation. Because b, the y-intercept, is 0 , the graph of a variation equation is a line passing through the origin. This is illustrated in Figure 2.49, which shows the graph of $p=0.43 d$: Water pressure varies directly as depth.

FIGURE 2.49 Water pressure at various depths

Problems involving direct variation can be solved using the following procedure. This procedure applies to direct variation problems, as well as to the other kinds of variation problems that we will discuss.

Solving Variation Problems

1. Write an equation that models the given English statement.
2. Substitute the given pair of values into the equation in step 1 and find the value of k, the constant of variation.
3. Substitute the value of k into the equation in step 1 .
4. Use the equation from step 3 to answer the problem's question.

EXAMPLE 1 Solving a Direct Variation Problem

The volume of blood, B, in a person's body varies directly as body weight, W. A person who weighs 160 pounds has approximately 5 quarts of blood. Estimate the number of quarts of blood in a person who weighs 200 pounds.

SOLUTION

Step 1 Write an equation. We know that y varies directly as x is expressed as

$$
y=k x
$$

By changing letters, we can write an equation that models the following English statement: The volume of blood, B, varies directly as body weight, W.

$$
B=k W
$$

Step 2 Use the given values to find \boldsymbol{k}. A person who weighs 160 pounds has approximately 5 quarts of blood. Substitute 160 for W and 5 for B in the direct variation equation. Then solve for k.

$$
\begin{aligned}
B & =k W & & \text { The volume of blood varies directly as body weight. } \\
5 & =k \cdot 160 & & \text { Substitute } 160 \text { for } W \text { and } 5 \text { for } B . \\
\frac{5}{160} & =\frac{k \cdot 160}{160} & & \text { Divide both sides by } 160 . \\
0.03125 & =k & & \text { Express } \frac{5}{160}, \text { or } \frac{1}{32,} \text { in decimal form. }
\end{aligned}
$$

Step 3 Substitute the value of \boldsymbol{k} into the equation.

$$
\begin{array}{ll}
B=k W & \text { Use the equation from step } 1 . \\
B=0.03125 W & \text { Replace } k, \text { the constant of variation, with } 0.03125
\end{array}
$$

Step 4 Answer the problem's question. We are interested in estimating the number of quarts of blood in a person who weighs 200 pounds. Substitute 200 for W in $B=0.03125 W$ and solve for B.

$$
\begin{aligned}
B & =0.03125 \mathrm{~W} & & \text { This is the equation from step } 3 . \\
B & =0.03125(200) & & \text { Substitute } 200 \text { for } W . \\
& =6.25 & & \text { Multiply. }
\end{aligned}
$$

A person who weighs 200 pounds has approximately 6.25 quarts of blood. \bullet.
Check Point 1 The number of gallons of water, W, used when taking a shower varies directly as the time, t, in minutes, in the shower. A shower lasting 5 minutes uses 30 gallons of water. How much water is used in a shower lasting 11 minutes?

The direct variation equation $\boldsymbol{y}=\boldsymbol{k x}$ is a linear function. If $\boldsymbol{k}>\mathbf{0}$, then the slope of the line is positive. Consequently, as \boldsymbol{x} increases, \boldsymbol{y} also increases.

A direct variation situation can involve variables to higher powers. For example, y can vary directly as $x^{2}\left(y=k x^{2}\right)$ or as $x^{3}\left(y=k x^{3}\right)$.

Direct Variation with Powers

\boldsymbol{y} varies directly as the \boldsymbol{n} th power of \boldsymbol{x} if there exists some nonzero constant k such that

$$
y=k x^{n} .
$$

We also say that \boldsymbol{y} is directly proportional to the \boldsymbol{n} th power of \boldsymbol{x}.

Direct variation with whole number powers is modeled by polynomial functions. In our next example, the graph of the variation equation is the familiar parabola.

EXAMPLE 2 Solving a Direct Variation Problem

The distance, s, that a body falls from rest varies directly as the square of the time, t, of the fall. If skydivers fall 64 feet in 2 seconds, how far will they fall in 4.5 seconds?

SOLUTION

Step 1 Write an equation. We know that y varies directly as the square of x is expressed as

$$
y=k x^{2} .
$$

By changing letters, we can write an equation that models the following English statement: Distance, s, varies directly as the square of time, t, of the fall.

$$
s=k t^{2}
$$

Step 2 Use the given values to find \boldsymbol{k}. Skydivers fall 64 feet in 2 seconds. Substitute 64 for s and 2 for t in the direct variation equation. Then solve for k.

$$
\begin{aligned}
s & =k t^{2} & & \text { Distance varies directly as the square of time. } \\
64 & =k \cdot 2^{2} & & \text { skydivers fall } 64 \text { feet in } 2 \text { seconds. } \\
64 & =4 k & & \text { Simplify: } 2^{2}=4 . \\
\frac{64}{4} & =\frac{4 k}{4} & & \text { Divide both sides by } 4 . \\
16 & =k & & \text { Simplify. }
\end{aligned}
$$

FIGURE 2.50 The graph of $s(t)=16 t^{2}$

FIGURE 2.51

Step 3 Substitute the value of \boldsymbol{k} into the equation.

$$
\begin{array}{ll}
s=k t^{2} & \text { Use the equation from step } 1 . \\
s=16 t^{2} & \text { Replace } k, \text { the constant of variation, with } 16 .
\end{array}
$$

Step 4 Answer the problem's question. How far will the skydivers fall in 4.5 seconds? Substitute 4.5 for t in $s=16 t^{2}$ and solve for s.

$$
s=16(4.5)^{2}=16(20.25)=324
$$

Thus, in 4.5 seconds, the skydivers will fall 324 feet.
We can express the variation equation from Example 2 in function notation, writing

$$
s(t)=16 t^{2} .
$$

The distance that a body falls from rest is a function of the time, t, of the fall. The parabola that is the graph of this quadratic function is shown in Figure 2.50. The graph increases rapidly from left to right, showing the effects of the acceleration of gravity.

0 C
Check Point 2 The weight of a great white shark varies directly as the cube of its length. A great white shark caught off Catalina Island, California, was 15 feet long and weighed 2025 pounds. What was the weight of the 25 -foot-long shark in the novel Jaws?

Inverse Variation

The distance from San Francisco to Los Angeles is 420 miles. The time that it takes to drive from San Francisco to Los Angeles depends on the rate at which one drives and is given by

$$
\text { Time }=\frac{420}{\text { Rate }} .
$$

For example, if you average 30 miles per hour, the time for the drive is

$$
\text { Time }=\frac{420}{30}=14,
$$

or 14 hours. If you average 50 miles per hour, the time for the drive is

$$
\text { Time }=\frac{420}{50}=8.4,
$$

or 8.4 hours. As your rate (or speed) increases, the time for the trip decreases and vice versa. This is illustrated by the graph in Figure 2.51.

We can express the time for the San Francisco-Los Angeles trip using t for time and r for rate:

$$
t=\frac{420}{r} .
$$

This equation is an example of an inverse variation equation. Time, t, varies inversely as rate, r. When two quantities vary inversely, one quantity increases as the other decreases and vice versa.

Generalizing, we obtain the following statement:

Inverse Variation

If a situation is described by an equation in the form

$$
y=\frac{k}{x},
$$

where k is a nonzero constant, we say that \boldsymbol{y} varies inversely as \boldsymbol{x} or \boldsymbol{y} is inversely proportional to \boldsymbol{x}. The number k is called the constant of variation.

FIGURE 2.52 The graph of the inverse variation equation

Doubling the pressure halves the volume.

Notice that the inverse variation equation

$$
y=\frac{k}{x}, \quad \text { or } \quad f(x)=\frac{k}{x},
$$

is a rational function. For $k>0$ and $x>0$, the graph of the function takes on the shape shown in Figure 2.52.

We use the same procedure to solve inverse variation problems as we did to solve direct variation problems. Example 3 illustrates this procedure.

EXAMPLE 3 Solving an Inverse Variation Problem

When you use a spray can and press the valve at the top, you decrease the pressure of the gas in the can. This decrease of pressure causes the volume of the gas in the can to increase. Because the gas needs more room than is provided in the can, it expands in spray form through the small hole near the valve. In general, if the temperature is constant, the pressure, P, of a gas in a container varies inversely as the volume, V, of the container. The pressure of a gas sample in a container whose volume is 8 cubic inches is 12 pounds per square inch. If the sample expands to a volume of 22 cubic inches, what is the new pressure of the gas?

SOLUTION

Step 1 Write an equation. We know that y varies inversely as x is expressed as

$$
y=\frac{k}{x} .
$$

By changing letters, we can write an equation that models the following English statement:The pressure, P, of a gas in a container varies inversely as the volume, V.

$$
P=\frac{k}{V}
$$

Step 2 Use the given values to find \boldsymbol{k}. The pressure of a gas sample in a container whose volume is 8 cubic inches is 12 pounds per square inch. Substitute 12 for P and 8 for V in the inverse variation equation. Then solve for k.

$$
\begin{aligned}
P & =\frac{k}{V} & & \text { Pressure varies inversely as volume. } \\
12 & =\frac{k}{8} & & \begin{array}{l}
\text { The pressure in an } 8 \text { cubic-inch } \\
\text { container is } 12 \text { pounds per square in }
\end{array} \\
12 \cdot 8 & =\frac{k}{8} \cdot 8 & & \text { Multiply both sides by } 8 . \\
96 & =k & & \text { Simplify. }
\end{aligned}
$$

Step 3 Substitute the value of \boldsymbol{k} into the equation.

$$
\begin{array}{ll}
P=\frac{k}{V} & \text { Use the equation from step 1. } \\
P=\frac{96}{V} & \begin{array}{l}
\text { Replace k, the constant of variation, } \\
\text { with } 96 .
\end{array}
\end{array}
$$

Step 4 Answer the problem's question. We need to find the pressure when the volume expands to 22 cubic inches. Substitute 22 for V and solve for P.

$$
P=\frac{96}{V}=\frac{96}{22}=\frac{48}{11}=4 \frac{4}{11}
$$

When the volume is 22 cubic inches, the pressure of the gas is $4 \frac{4}{11}$ pounds per square inch.
\int Check Point 3 The length of a violin string varies inversely as the frequency of its vibrations. A violin string 8 inches long vibrates at a frequency of 640 cycles per second. What is the frequency of a 10 -inch string?

Combined Variation

In combined variation, direct variation and inverse variation occur at the same time. For example, as the advertising budget, A, of a company increases, its monthly sales, S, also increase. Monthly sales vary directly as the advertising budget:

$$
S=k A
$$

By contrast, as the price of the company's product, P, increases, its monthly sales, S, decrease. Monthly sales vary inversely as the price of the product:

$$
S=\frac{k}{P}
$$

We can combine these two variation equations into one combined equation:

$$
S=\frac{k A}{P} . \quad \begin{gathered}
\text { Monthly sales, } S, \text { vary directly } \\
\text { as the advertising budget, } A, \\
\text { and inversely as the price of } \\
\text { the product, } P .
\end{gathered}
$$

The following example illustrates an application of combined variation.

EXAMPLE 4 Solving a Combined Variation Problem

The owners of Rollerblades Plus determine that the monthly sales, S, of their skates vary directly as their advertising budget, A, and inversely as the price of the skates, P. When $\$ 60,000$ is spent on advertising and the price of the skates is $\$ 40$, the monthly sales are 12,000 pairs of rollerblades.
a. Write an equation of variation that describes this situation.
b. Determine monthly sales if the amount of the advertising budget is increased to $\$ 70,000$.

SOLUTION

a. Write an equation.

$$
S=\frac{k A}{P} \quad \begin{aligned}
& \text { Translate "sales vary directly as } \\
& \text { the advertising budget and } \\
& \text { inversely as the skates' price." }
\end{aligned}
$$

Use the given values to find k.

$$
\begin{array}{rlrl}
12,000 & =\frac{k(60,000)}{40} \quad & & \begin{array}{ll}
\text { When } \$ 60,000 \text { is spent on advertising } \\
(A=60,000) \text { and the price is } \$ 40
\end{array} \\
& (P=40), \text { monthly sales are } 12,000 \text { units } \\
(S=12,000) .
\end{array} ~ \begin{array}{rlrl}
12,000 & =k \cdot 1500 \\
\frac{12,000}{1500} & =\frac{k \cdot 1500}{1500} \quad & & \text { Divide } 60,000 \text { by } 40 . \\
8 & =k & & \text { Divide both sides of the equation by } 1500 . \\
\text { Simplify. }
\end{array}
$$

Therefore, the equation of variation that models monthly sales is

$$
S=\frac{8 A}{P} . \quad \text { Substitute } 8 \text { for } k \text { in } S=\frac{k A}{P} .
$$

(4) Solve problems involving joint variation.
b. The advertising budget is increased to $\$ 70,000$, so $A=70,000$. The skates' price is still $\$ 40$, so $P=40$.

$$
\begin{array}{ll}
S=\frac{8 A}{P} & \text { This is the equation from part (a). } \\
S=\frac{8(70,000)}{40} & \text { Substitute } 70,000 \text { for } A \text { and } 40 \text { for } P . \\
S=14,000 & \text { Simplify. }
\end{array}
$$

With a $\$ 70,000$ advertising budget and $\$ 40$ price, the company can expect to sell 14,000 pairs of rollerblade in a month (up from 12,000). ...

Check Point 4 The number of minutes needed to solve an Exercise Set of variation problems varies directly as the number of problems and inversely as the number of people working to solve the problems. It takes 4 people 32 minutes to solve 16 problems. How many minutes will it take 8 people to solve 24 problems?

Joint Variation

Joint variation is a variation in which a variable varies directly as the product of two or more other variables. Thus, the equation $y=k x z$ is read " y varies jointly as x and $z . "$

Joint variation plays a critical role in Isaac Newton's formula for gravitation:

$$
F=G \frac{m_{1} m_{2}}{d^{2}} .
$$

The formula states that the force of gravitation, F, between two bodies varies
 jointly as the product of their masses, m_{1} and m_{2}, and inversely as the square of the distance between them, d. (G is the gravitational constant.) The formula indicates that gravitational force exists between any two objects in the universe, increasing as the distance between the bodies decreases. One practical result is that the pull of the moon on the oceans is greater on the side of Earth closer to the moon. This gravitational imbalance is what produces tides.

EXAMPLE 5 Modeling Centrifugal Force

The centrifugal force, C, of a body moving in a circle varies jointly with the radius of the circular path, r, and the body's mass, m, and inversely with the square of the time, t, it takes to move about one full circle. A 6 -gram body moving in a circle with radius 100 centimeters at a rate of 1 revolution in 2 seconds has a centrifugal force of 6000 dynes. Find the centrifugal force of an 18 -gram body moving in a circle with radius 100 centimeters at a rate of 1 revolution in 3 seconds.

SOLUTION

$$
\begin{aligned}
& C=\frac{k r m}{t^{2}} \\
& 6000=\frac{k(100)(6)}{2^{2}} \\
& 6000=150 k \quad \text { Simplify. } \\
& 40=k \\
& C=\frac{40 r m}{t^{2}} \\
& \begin{array}{l}
\text { Translate "Centrifugal force, } C \text {, varies jointly with } \\
\text { radius, } r \text {, and mass, } m \text {, and inversely with the } \\
\text { square of time, } t . \text { " } \\
\text { A } 6 \text {-gram body }(m=6) \text { moving in a circle with } \\
\text { radius } 100 \text { centimeters }(r=100) \text { at } 1 \text { revolution in } \\
2 \text { seconds }(t=2) \text { has a centrifugal force of } 6000 \\
\text { dynes }(C=6000) \text {. } \\
\text { Simplify. } \\
\text { Divide both sides by } 150 \text { and solve for } k \text {. } \\
\text { Substitute } 40 \text { for } k \text { in the model for centrifugal force. }
\end{array} \\
& \text { radius, } r \text {, and mass, } m \text {, and inversely with the } \\
& \text { square of time, } t \text {." } \\
& 6 \text {-gram body (} m=6 \text {) moving in a circle with } \\
& \text { radius } 100 \text { centimeters }(r=100) \text { at } 1 \text { revolution in } \\
& 2 \text { seconds }(t=2) \text { has a centrifugal force of } 6000 \\
& \text { dynes (} C=6000 \text {). } \\
& \text { Divide both sides by } 150 \text { and solve for } k \text {. } \\
& \text { Substitute } 40 \text { for } k \text { in the model for centrifugal force. }
\end{aligned}
$$

$$
\begin{aligned}
C & =\frac{40(100)(18)}{3^{2}} \quad & \begin{array}{l}
\text { Find centrifugal force, } C \text {, of an 18-gram body } \\
(m=18) \text { moving in a circle with radius } \\
100 \text { centimeters }(r=100)
\end{array} \\
& & \text { in } 3 \text { seconds }(t=3) .
\end{aligned}
$$

The centrifugal force is 8000 dynes.
$\$$ Check Point 5 The volume of a cone, V, varies jointly as its height, h, and the square of its radius, r. A cone with a radius measuring 6 feet and a height measuring 10 feet has a volume of 120π cubic feet. Find the volume of a cone having a radius of 12 feet and a height of 2 feet.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. y varies directly as x can be modeled by the equation \qquad , where k is called the
2. y varies directly as the nth power of x can be modeled by the equation \qquad
3. y varies inversely as x can be modeled by the equation
\qquad _.
4. y varies directly as x and inversely as z can be modeled by the equation \qquad .
5. y varies jointly as x and z can be modeled by the equation \qquad -.
6. In the equation $S=\frac{8 A}{P}$, S varies \qquad as A and \qquad as P.
7. In the equation $C=\frac{0.02 P_{1} P_{2}}{d^{2}}, C$ varies \qquad as P_{1} and P_{2} and \qquad as the square of d.

EXERCISE SET 2.8

Practice Exercises

Use the four-step procedure for solving variation problems given on page 395 to solve Exercises 1-10.

1. y varies directly as x. $y=65$ when $x=5$. Find y when $x=12$.
2. y varies directly as x. $y=45$ when $x=5$. Find y when $x=13$.
3. y varies inversely as $x . y=12$ when $x=5$. Find y when $x=2$.
4. y varies inversely as x. $y=6$ when $x=3$. Find y when $x=9$.
5. y varies directly as x and inversely as the square of $z . y=20$ when $x=50$ and $z=5$. Find y when $x=3$ and $z=6$.
6. a varies directly as b and inversely as the square of $c . a=7$ when $b=9$ and $c=6$. Find a when $b=4$ and $c=8$.
7. y varies jointly as x and $z . y=25$ when $x=2$ and $z=5$. Find y when $x=8$ and $z=12$.
8. C varies jointly as A and $T . C=175$ when $A=2100$ and $T=4$. Find C when $A=2400$ and $T=6$.
9. y varies jointly as a and b and inversely as the square root of $c . y=12$ when $a=3, b=2$, and $c=25$. Find y when $a=5, b=3$, and $c=9$.
10. y varies jointly as m and the square of n and inversely as p. $y=15$ when $m=2, n=1$, and $p=6$. Find y when $m=3, n=4$, and $p=10$.

Practice Plus

In Exercises 11-20, write an equation that expresses each relationship. Then solve the equation for y.
11. x varies jointly as y and z.
12. x varies jointly as y and the square of z.
13. x varies directly as the cube of z and inversely as y.
14. x varies directly as the cube root of z and inversely as y.
15. x varies jointly as y and z and inversely as the square root of w.
16. x varies jointly as y and z and inversely as the square of w.
17. x varies jointly as z and the sum of y and w.
18. x varies jointly as z and the difference between y and w.
19. x varies directly as z and inversely as the difference between y and w.
20. x varies directly as z and inversely as the sum of y and w.

Application Exercises

Use the four-step procedure for solving variation problems given on page 395 to solve Exercises 21-36.
21. An alligator's tail length, T, varies directly as its body length, B. An alligator with a body length of 4 feet has a tail length of 3.6 feet. What is the tail length of an alligator whose body length is 6 feet?

22. An object's weight on the moon, M, varies directly as its weight on Earth, E. Neil Armstrong, the first person to step on the moon on July 20, 1969, weighed 360 pounds on Earth (with all of his equipment on) and 60 pounds on the moon. What is the moon weight of a person who weighs 186 pounds on Earth?
23. The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches?
24. The distance that a spring will stretch varies directly as the force applied to the spring. A force of 12 pounds is needed to stretch a spring 9 inches. What force is required to stretch the spring 15 inches?
25. If all men had identical body types, their weight would vary directly as the cube of their height. Shown below is Robert Wadlow, who reached a record height of 8 feet 11 inches (107 inches) before his death at age 22. If a man who is 5 feet 10 inches tall (70 inches) with the same body type as Mr. Wadlow weighs 170 pounds, what was Robert Wadlow's weight shortly before his death?

26. The number of houses that can be served by a water pipe varies directly as the square of the diameter of the pipe. A water pipe that has a 10 -centimeter diameter can supply 50 houses.
a. How many houses can be served by a water pipe that has a 30-centimeter diameter?
b. What size water pipe is needed for a new subdivision of 1250 houses?
27. The figure shows that a bicyclist tips the cycle when making a turn. The angle B, formed by the vertical direction and the bicycle, is called the banking angle. The banking angle varies inversely as the cycle's turning radius. When the turning radius is 4 feet, the banking angle is 28°. What is the banking angle when the turning radius is 3.5 feet?

28. The water temperature of the Pacific Ocean varies inversely as the water's depth. At a depth of 1000 meters, the water temperature is 4.4° Celsius. What is the water temperature at a depth of 5000 meters?
29. Radiation machines, used to treat tumors, produce an intensity of radiation that varies inversely as the square of the distance from the machine. At 3 meters, the radiation intensity is 62.5 milliroentgens per hour. What is the intensity at a distance of 2.5 meters?
30. The illumination provided by a car's headlight varies inversely as the square of the distance from the headlight. A car's headlight produces an illumination of 3.75 footcandles at a distance of 40 feet. What is the illumination when the distance is 50 feet?
31. Body-mass index, or BMI, takes both weight and height into account when assessing whether an individual is underweight or overweight. BMI varies directly as one's weight, in pounds, and inversely as the square of one's height, in inches. In adults, normal values for the BMI are between 20 and 25 , inclusive. Values below 20 indicate that an individual is underweight and values above 30 indicate that an individual is obese. A person who weighs 180 pounds and is 5 feet, or 60 inches, tall has a BMI of 35.15 . What is the BMI, to the nearest tenth, for a 170 -pound person who is 5 feet 10 inches tall? Is this person overweight?
32. One's intelligence quotient, or IQ, varies directly as a person's mental age and inversely as that person's chronological age. A person with a mental age of 25 and a chronological age of 20 has an IQ of 125 . What is the chronological age of a person with a mental age of 40 and an IQ of 80 ?
33. The heat loss of a glass window varies jointly as the window's area and the difference between the outside and inside temperatures. A window 3 feet wide by 6 feet long loses 1200 Btu per hour when the temperature outside is 20° colder than the temperature inside. Find the heat loss through a glass window that is 6 feet wide by 9 feet long when the temperature outside is 10° colder than the temperature inside.
34. Kinetic energy varies jointly as the mass and the square of the velocity. A mass of 8 grams and velocity of 3 centimeters per second has a kinetic energy of 36 ergs. Find the kinetic energy for a mass of 4 grams and velocity of 6 centimeters per second.
35. Sound intensity varies inversely as the square of the distance from the sound source. If you are in a movie theater and you change your seat to one that is twice as far from the speakers, how does the new sound intensity compare to that of your original seat?
36. Many people claim that as they get older, time seems to pass more quickly. Suppose that the perceived length of a period of time is inversely proportional to your age. How long will a year seem to be when you are three times as old as you are now?
37. The average number of daily phone calls, C, between two cities varies jointly as the product of their populations, P_{1} and P_{2}, and inversely as the square of the distance, d, between them.
a. Write an equation that expresses this relationship.
b. The distance between San Francisco (population: 777,000) and Los Angeles (population: $3,695,000$) is 420 miles. If the average number of daily phone calls between the cities is 326,000 , find the value of k to two decimal places and write the equation of variation.
c. Memphis (population: 650,000) is 400 miles from New Orleans (population: 490,000). Find the average number of daily phone calls, to the nearest whole number, between these cities.
38. The force of wind blowing on a window positioned at a right angle to the direction of the wind varies jointly as the area of the window and the square of the wind's speed. It is known that a wind of 30 miles per hour blowing on a window measuring 4 feet by 5 feet exerts a force of 150 pounds. During a storm with winds of 60 miles per hour, should hurricane shutters be placed on a window that measures 3 feet by 4 feet and is capable of withstanding 300 pounds of force?
39. The table shows the values for the current, I, in an electric circuit and the resistance, R, of the circuit.

\boldsymbol{I} (amperes)	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
\boldsymbol{R} (ohms)	12.0	6.0	4.0	3.0	2.4	2.0	1.5	1.2

a. Graph the ordered pairs in the table of values, with values of I along the x-axis and values of R along the y-axis. Connect the eight points with a smooth curve.
b. Does current vary directly or inversely as resistance? Use your graph and explain how you arrived at your answer.
c. Write an equation of variation for I and R, using one of the ordered pairs in the table to find the constant of variation. Then use your variation equation to verify the other seven ordered pairs in the table.

Writing in Mathematics

40. What does it mean if two quantities vary directly?
41. In your own words, explain how to solve a variation problem.
42. What does it mean if two quantities vary inversely?
43. Explain what is meant by combined variation. Give an example with your explanation.
44. Explain what is meant by joint variation. Give an example with your explanation.

In Exercises 45-46, describe in words the variation shown by the given equation.
45. $z=\frac{k \sqrt{x}}{y^{2}}$
46. $z=k x^{2} \sqrt{y}$
47. We have seen that the daily number of phone calls between two cities varies jointly as their populations and inversely as the square of the distance between them. This model, used by telecommunication companies to estimate the line capacities needed among various cities, is called the gravity model. Compare the model to Newton's formula for gravitation on page 400 and describe why the name gravity model is appropriate.

Technology Exercise

48. Use a graphing utility to graph any three of the variation equations in Exercises 21-30. Then TRACE along each curve and identify the point that corresponds to the problem's solution.

Critical Thinking Exercises

Make Sense? In Exercises 49-52, determine whether each statement makes sense or does not make sense, and explain your reasoning.
49. I'm using an inverse variation equation and I need to determine the value of the dependent variable when the independent variable is zero.
50. The graph of this direct variation equation that has a positive constant of variation shows one variable increasing as the other variable decreases.
51. When all is said and done, it seems to me that direct variation equations are special kinds of linear functions and inverse variation equations are special kinds of rational functions.
52. Using the language of variation, I can now state the formula for the area of a trapezoid, $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$, as, "A trapezoid's area varies jointly with its height and the sum of its bases."
53. In a hurricane, the wind pressure varies directly as the square of the wind velocity. If wind pressure is a measure of a hurricane's destructive capacity, what happens to this destructive power when the wind speed doubles?
54. The illumination from a light source varies inversely as the square of the distance from the light source. If you raise a lamp from 15 inches to 30 inches over your desk, what happens to the illumination?
55. The heat generated by a stove element varies directly as the square of the voltage and inversely as the resistance. If the voltage remains constant, what needs to be done to triple the amount of heat generated?
56. Galileo's telescope brought about revolutionary changes in astronomy. A comparable leap in our ability to observe the universe took place as a result of the Hubble Space Telescope. The space telescope was able to see stars and galaxies whose brightness is $\frac{1}{50}$ of the faintest objects observable using ground-based telescopes. Use the fact that the brightness of a point source, such as a star, varies inversely as the square of its distance from an observer to show that the space telescope was able to see about seven times farther than a groundbased telescope.

Group Exercise

57. Begin by deciding on a product that interests the group because you are now in charge of advertising this product. Members were told that the demand for the product varies directly as the amount spent on advertising and inversely as the price of the product. However, as more money is spent on advertising, the price of your product rises. Under what conditions would members recommend an increased expense
in advertising? Once you've determined what your product is, write formulas for the given conditions and experiment with hypothetical numbers. What other factors might you take into consideration in terms of your recommendation? How do these factors affect the demand for your product?

Preview Exercises

Exercises 58-60 will help you prepare for the material covered in the first section of the next chapter.
58. Use point plotting to graph $f(x)=2^{x}$. Begin by setting up a partial table of coordinates, selecting integers from -3 to 3 , inclusive, for x. Because $y=0$ is a horizontal asymptote, your graph should approach, but never touch, the negative portion of the x-axis.
In Exercises 59-60, use transformations of your graph from Exercise 58 to graph each function.
59. $g(x)=f(-x)=2^{-x}$
60. $h(x)=f(x)+1=2^{x}+1$

CHAPTER 2

Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

2.1 Complex Numbers

a. The imaginary unit i is defined as

Figure 2.1, p. 292

The set of numbers in the form $a+b i$ is called the set of complex numbers; a is the real part and b is the imaginary part. If $b=0$, the complex number is a real number. If $b \neq 0$, the complex number is an imaginary number. Complex numbers in the form $b i$ are called pure imaginary numbers.
b. Rules for adding and subtracting complex numbers are given in the box on page 293.
c. To multiply complex numbers, multiply as if they are polynomials. After completing the multiplication, replace i^{2} with -1 and simplify.
d. The complex conjugate of $a+b i$ is $a-b i$ and vice versa. The multiplication of complex conjugates gives a real number:

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

e. To divide complex numbers, multiply the numerator and the denominator by the complex conjugate of the denominator.
f. When performing operations with square roots of negative numbers, begin by expressing all square roots in terms of i. The principal square root of $-b$ is defined by

$$
\sqrt{-b}=i \sqrt{b}
$$

g. Quadratic equations $\left(a x^{2}+b x+c=0, a \neq 0\right)$ with negative discriminants $\left(b^{2}-4 a c<0\right)$ have imaginary solutions that are complex conjugates.

2.2 Quadratic Functions

a. A quadratic function is of the form $f(x)=a x^{2}+b x+c, a \neq 0$.
b. The standard form of a quadratic function is $f(x)=a(x-h)^{2}+k, a \neq 0$.
c. The graph of a quadratic function is a parabola. The vertex is (h, k) or $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. A procedure for graphing a quadratic function in standard form is given in the box on page 302. A procedure for graphing a quadratic function in the form $f(x)=a x^{2}+b x+c$ is given in the box on page 305.

Ex. 1, p. 302;
Ex. 2, p. 303;
Ex. 3, p. 305

DEFINITIONS AND CONCEPTS

d. See the box on page 307 for minimum or maximum values of quadratic functions.
e. A strategy for solving problems involving maximizing or minimizing quadratic functions is given in the box on page 310 .

2.3 Polynomial Functions and Their Graphs

a. Polynomial Function of Degree $n: f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}, a_{n} \neq 0$
b. The graphs of polynomial functions are smooth and continuous.
c. The end behavior of the graph of a polynomial function depends on the leading term, given by the Leading Coefficient Test in the box on page 320. Odd-degree polynomial functions have graphs with opposite behavior at each end. Even-degree polynomial functions have graphs with the same behavior at each end.
d. The values of x for which $f(x)$ is equal to 0 are the zeros of the polynomial function f. These values are the roots, or solutions, of the polynomial equation $f(x)=0$.
e. If $x-r$ occurs k times in a polynomial function's factorization, r is a repeated zero with multiplicity k. If k is even, the graph touches the x-axis and turns around at r. If k is odd, the graph crosses the x-axis at r.
f. The Intermediate Value Theorem: If f is a polynomial function and $f(a)$ and $f(b)$ have opposite signs, there is at least one value of c between a and b for which $f(c)=0$.
g. If f is a polynomial of degree n, the graph of f has at most $n-1$ turning points.
h. A strategy for graphing a polynomial function is given in the box on page 326 .

2.4 Dividing Polynomials; Remainder and Factor Theorems

a. Long division of polynomials is performed by dividing, multiplying, subtracting, bringing down the next term, and repeating this process until the degree of the remainder is less than the degree of the divisor. The details are given in the box on page 336.
b. The Division Algorithm: $f(x)=d(x) q(x)+r(x)$. The dividend is the product of the divisor and the quotient plus the remainder.
c. Synthetic division is used to divide a polynomial by $x-c$. The details are given in the box on page 339 .
d. The Remainder Theorem: If a polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.
e. The Factor Theorem: If $x-c$ is a factor of a polynomial function $f(x)$, then c is a zero of f and a root of $f(x)=0$. If c is a zero of f or a root of $f(x)=0$, then $x-c$ is a factor of $f(x)$.

2.5 Zeros of Polynomial Functions

a. The Rational Zero Theorem states that the possible rational zeros of a polynomial function $=\frac{\text { Factors of the constant term }}{\text { Factors of the leading coefficient }}$. The theorem is stated in the box on page 347.
b. Number of roots: If $f(x)$ is a polynomial of degree $n \geq 1$, then, counting multiple roots separately, the equation $f(x)=0$ has n roots.
c. If $a+b i$ is a root of $f(x)=0$ with real coefficients, then $a-b i$ is also a root.
d. The Linear Factorization Theorem: An n th-degree polynomial can be expressed as the product of n linear factors. Thus, $f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right)$.
e. Descartes's Rule of Signs: The number of positive real zeros of f equals the number of sign changes of $f(x)$ or is less than that number by an even integer. The number of negative real zeros of f applies a similar statement to $f(-x)$.

2.6 Rational Functions and Their Graphs

a. Rational function: $f(x)=\frac{p(x)}{q(x)} ; p$ and q are polynomial functions and $q(x) \neq 0$. The domain of f is the set of all real numbers excluding values of x that make $q(x)$ zero.
b. Arrow notation is summarized in the box on page 364 .

Ex. 4, p. 307;
Ex. 5, p. 308
Ex. 6, p. 310;
Ex. 7, p. 311

Fig. 2.14,p. 319
Ex. 1, p. 320;
Ex. 2, p. 321;
Ex. 3, p. 321;
Ex. 4, p. 322
Ex. 5, p. 322;
Ex. 6, p. 323
Ex. 7, p. 324

Ex. 8, p. 325

Fig. 2.25, p. 326
Ex. 9, p. 326;
Ex. 10, p. 328

Ex. 1, p. 335;
Ex. 2, p 336;
Ex. 3, p. 337

Ex. 4, p. 339
Ex. 5, p. 341
Ex. 6, p. 342

Ex. 1, p. 347;
Ex. 2, p. 348;
Ex. 3, p. 348;
Ex. 4, p. 349;
Ex. 5, p. 350

Ex. 6, p. 353
Table 2.1, p. 355;
Ex. 7, p. 355

Ex. 1, p. 361

DEFINITIONS AND CONCEPTS

c. The line $x=a$ is a vertical asymptote of the graph of f if $f(x)$ increases or decreases without bound as x approaches a. Vertical asymptotes are located using the theorem in the box on page 365 .
d. The line $y=b$ is a horizontal asymptote of the graph of f if $f(x)$ approaches b as x increases or decreases without bound. Horizontal asymptotes are located using the theorem in the lower box on page 367.
e. Table 2.2 on page 368 shows the graphs of $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$. Some rational functions can be graphed using transformations of these common graphs.
f. A strategy for graphing rational functions is given in the box on page 369 .
g. The graph of a rational function has a slant asymptote when the degree of the numerator is one more than the degree of the denominator. The equation of the slant asymptote is found using division and dropping the remainder term.

2.7 Polynomial and Rational Inequalities

a. A polynomial inequality can be expressed as $f(x)<0, f(x)>0, f(x) \leq 0$, or $f(x) \geq 0$, where f is a polynomial function. A procedure for solving polynomial inequalities is given in the box on page 383.
b. A rational inequality can be expressed as $f(x)<0, f(x)>0, f(x) \leq 0$, or $f(x) \geq 0$, where f is a rational function. The procedure for solving such inequalities begins with expressing them so that one side is zero and the other side is a single quotient. Find boundary points by setting the numerator and denominator equal to zero. Then follow a procedure similar to that for solving polynomial inequalities.

Ex. 2, p. 365

Ex. 3, p. 367

Ex. 4, p. 368

Ex. 5, p. 369;
Ex. 6, p. 370;
Ex. 7, p. 372
Ex. 8, p. 373

Ex. 1, p. 383;
Ex. 2, p. 384;
Ex. 3, p. 385
Ex. 4, p. 387

2.8 Modeling Using Variation

a. A procedure for solving variation problems is given in the box on page 395.
b. English Statement
y varies directly as x.
y is directly proportional to x.
y varies directly as x^{n}.
y is directly proportional to x^{n}.
y varies inversely as x.
y is inversely proportional to x.
y varies inversely as x^{n}.
y is inversely proportional to x^{n}.
y varies jointly as x and z.

Equation

$$
y=k x
$$

$$
y=k x^{n}
$$

$$
y=\frac{k}{x}
$$

$$
y=\frac{k}{x^{n}}
$$

$$
y=k x z
$$

Ex. 1, p. 395

Ex. 2, p. 396

Ex. 3, p. 398;
Ex. 4, p. 399

Ex. 5, p. 400

REVIEW EXERCISES

2.1

In Exercises 1-10 perform the indicated operations and write the result in standard form.

1. $(8-3 i)-(17-7 i)$
2. $4 i(3 i-2)$
3. $(7-i)(2+3 i)$
4. $(3-4 i)^{2}$
5. $(7+8 i)(7-8 i)$
6. $\frac{6}{5+i}$
7. $\frac{3+4 i}{4-2 i}$
8. $\sqrt{-32}-\sqrt{-18}$
9. $(-2+\sqrt{-100})^{2}$
10. $\frac{4+\sqrt{-8}}{2}$

In Exercises 11-12, solve each quadratic equation using the quadratic formula. Express solutions in standard form.

2.2

In Exercises 13-16, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range.
13. $f(x)=-(x+1)^{2}+4$
14. $f(x)=(x+4)^{2}-2$
15. $f(x)=-x^{2}+2 x+3$
16. $f(x)=2 x^{2}-4 x-6$

In Exercises 17-18, use the function's equation, and not its graph, to find
a. the minimum or maximum value and where it occurs.
b. the function's domain and its range.
17. $f(x)=-x^{2}+14 x-106$
18. $f(x)=2 x^{2}+12 x+703$
19. A quarterback tosses a football to a receiver 40 yards downfield. The height of the football, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.025 x^{2}+x+6
$$

where x is the ball's horizontal distance, in yards, from the quarterback.
a. What is the ball's maximum height and how far from the quarterback does this occur?
b. From what height did the quarterback toss the football?
c. If the football is not blocked by a defensive player nor caught by the receiver, how far down the field will it go before hitting the ground? Round to the nearest tenth of a yard.
d. Graph the function that models the football's parabolic path.
20. A field bordering a straight stream is to be enclosed. The side bordering the stream is not to be fenced. If 1000 yards of fencing material is to be used, what are the dimensions of the largest rectangular field that can be fenced? What is the maximum area?
21. Among all pairs of numbers whose difference is 14 , find a pair whose product is as small as possible. What is the minimum product?
22. You have 1000 feet of fencing to construct six corrals, as shown in the figure. Find the dimensions that maximize the enclosed area. What is the maximum area?

23. The annual yield per fruit tree is fairly constant at 150 pounds per tree when the number of trees per acre is 35 or fewer. For each additional tree over 35 , the annual yield per tree for all trees on the acre decreases by 4 pounds due to overcrowding. How many fruit trees should be planted per acre to maximize the annual yield for the acre? What is the maximum number of pounds of fruit per acre?

2.3

In Exercises 24-27, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).]
24. $f(x)=-x^{3}+x^{2}+2 x$
25. $f(x)=x^{6}-6 x^{4}+9 x^{2}$
26. $f(x)=x^{5}-5 x^{3}+4 x$
27. $f(x)=-x^{4}+1$
a.

b.

c.

d.

28. The Brazilian Amazon rain forest is the world's largest tropical rain forest, with some of the greatest biodiversity of any region. In 2009, the number of trees cut down in the Amazon dropped to its lowest level in 20 years. The line graph shows the number of square kilometers cleared from 2001 through 2009.

Source: Brazil's National Institute for Space Research
The data in the line graph can be modeled by the following third- and fourth-degree polynomial functions:

$$
\begin{aligned}
& f(x)=158 x^{3}-2845 x^{2}+12,926 x+7175 \\
& g(x)=-17 x^{4}+508 x^{3}-5180 x^{2}+18,795 x+2889
\end{aligned}
$$

Amazon deforestation, in square
kilometers, x years after 2000
a. Use the Leading Coefficient Test to determine the end behavior to the right for the graph of f.
b. Assume that the rate at which the Amazon rain forest is being cut down continues to decline. Based on your answer to part (a), will f be useful in modeling Amazon deforestation over an extended period of time? Explain your answer.
c. Use the Leading Coefficient Test to determine the end behavior to the right for the graph of g
d. Assume that the rate at which the Amazon rain forest is being cut down continues to decline. Based on your answer to part (c), will g be useful in modeling Amazon deforestation over an extended period of time? Explain your answer.
29. The polynomial function

$$
f(x)=-0.87 x^{3}+0.35 x^{2}+81.62 x+7684.94
$$

model the number of thefts, $f(x)$, in thousands in the United States x years after 1987. Will this function be useful in modeling the number of thefts over an extended period of time? Explain your answer.

In Exercises 30-31, find the zeros for each polynomial function and give the multiplicity of each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero.
30. $f(x)=-2(x-1)(x+2)^{2}(x+5)^{3}$
31. $f(x)=x^{3}-5 x^{2}-25 x+125$
32. Show that $f(x)=x^{3}-2 x-1$ has a real zero between 1 and 2.

In Exercises 33-38,
a. Use the Leading Coefficient Test to determine the graph's end behavior.
b. Determine whether the graph has y-axis symmetry, origin symmetry, or neither.
c. Graph the function.
33. $f(x)=x^{3}-x^{2}-9 x+9$
34. $f(x)=4 x-x^{3}$
35. $f(x)=2 x^{3}+3 x^{2}-8 x-12$
36. $f(x)=-x^{4}+25 x^{2}$
37. $f(x)=-x^{4}+6 x^{3}-9 x^{2}$
38. $f(x)=3 x^{4}-15 x^{3}$

In Exercises 39-40, graph each polynomial function.
39. $f(x)=2 x^{2}(x-1)^{3}(x+2)$
40. $f(x)=-x^{3}(x+4)^{2}(x-1)$

2.4

In Exercises 41-43, divide using long division.
41. $\left(4 x^{3}-3 x^{2}-2 x+1\right) \div(x+1)$
42. $\left(10 x^{3}-26 x^{2}+17 x-13\right) \div(5 x-3)$
43. $\left(4 x^{4}+6 x^{3}+3 x-1\right) \div\left(2 x^{2}+1\right)$

In Exercises 44-45, divide using synthetic division.
44. $\left(3 x^{4}+11 x^{3}-20 x^{2}+7 x+35\right) \div(x+5)$
45. $\left(3 x^{4}-2 x^{2}-10 x\right) \div(x-2)$
46. Given $f(x)=2 x^{3}-7 x^{2}+9 x-3$, use the Remainder Theorem to find $f(-13)$.
47. Use synthetic division to divide $f(x)=2 x^{3}+x^{2}-13 x+6$ by $x-2$. Use the result to find all zeros of f.
48. Solve the equation $x^{3}-17 x+4=0$ given that 4 is a root.

2.5

In Exercises 49-50, use the Rational Zero Theorem to list all possible rational zeros for each given function.
49. $f(x)=x^{4}-6 x^{3}+14 x^{2}-14 x+5$
50. $f(x)=3 x^{5}-2 x^{4}-15 x^{3}+10 x^{2}+12 x-8$

In Exercises 51-52, use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros for each given function.
51. $f(x)=3 x^{4}-2 x^{3}-8 x+5$
52. $f(x)=2 x^{5}-3 x^{3}-5 x^{2}+3 x-1$
53. Use Descartes's Rule of Signs to explain why
$2 x^{4}+6 x^{2}+8=0$ has no real roots.
For Exercises 54-60,
a. List all possible rational roots or rational zeros.
b. Use Descartes's Rule of Signs to determine the possible number of positive and negative real roots or real zeros.
c. Use synthetic division to test the possible rational roots or zeros and find an actual root or zero.
d. Use the quotient from part (c) to find all the remaining roots or zeros.
54. $f(x)=x^{3}+3 x^{2}-4$
55. $f(x)=6 x^{3}+x^{2}-4 x+1$
56. $8 x^{3}-36 x^{2}+46 x-15=0$
57. $2 x^{3}+9 x^{2}-7 x+1=0$
58. $x^{4}-x^{3}-7 x^{2}+x+6=0$
59. $4 x^{4}+7 x^{2}-2=0$
60. $f(x)=2 x^{4}+x^{3}-9 x^{2}-4 x+4$

In Exercises 61-62, find an nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing utility, graph the function and verify the real zeros and the given function value.
61. $n=3 ; 2$ and $2-3 i$ are zeros; $f(1)=-10$
62. $n=4 ; i$ is a zero; -3 is a zero of multiplicity $2 ; f(-1)=16$

In Exercises 63-64, find all the zeros of each polynomial function and write the polynomial as a product of linear factors.
63. $f(x)=2 x^{4}+3 x^{3}+3 x-2$
64. $g(x)=x^{4}-6 x^{3}+x^{2}+24 x+16$

In Exercises 65-68, graphs of fifth-degree polynomial functions are shown. In each case, specify the number of real zeros and the number of imaginary zeros. Indicate whether there are any real zeros with multiplicity other than 1.
65.

66.

67.

68.

2.6

In Exercises 69-70, use transformations of $f(x)=\frac{1}{x}$ or $f(x)=\frac{1}{x^{2}}$
to graph each rational function.
69. $g(x)=\frac{1}{(x+2)^{2}}-1$
70. $h(x)=\frac{1}{x-1}+3$

In Exercises 71-78, find the vertical asymptotes, if any, the horizontal asymptote, if one exists, and the slant asymptote, if there is one, of the graph of each rational function. Then graph the rational function.
71. $f(x)=\frac{2 x}{x^{2}-9}$
72. $g(x)=\frac{2 x-4}{x+3}$
73. $h(x)=\frac{x^{2}-3 x-4}{x^{2}-x-6}$
74. $r(x)=\frac{x^{2}+4 x+3}{(x+2)^{2}}$
75. $y=\frac{x^{2}}{x+1}$
76. $y=\frac{x^{2}+2 x-3}{x-3}$
77. $f(x)=\frac{-2 x^{3}}{x^{2}+1}$
78. $g(x)=\frac{4 x^{2}-16 x+16}{2 x-3}$
79. A company is planning to manufacture affordable graphing calculators. The fixed monthly cost will be $\$ 50,000$ and it will cost $\$ 25$ to produce each calculator.
a. Write the cost function, C, of producing x graphing calculators.
b. Write the average cost function, \bar{C}, of producing x graphing calculators.
c. Find and interpret $\bar{C}(50), \bar{C}(100), \bar{C}(1000)$, and $\bar{C}(100,000)$.
d. What is the horizontal asymptote for the graph of this function and what does it represent?
Exercises 80-81 involve rational functions that model the given situations. In each case, find the horizontal asymptote as $x \rightarrow \infty$ and then describe what this means in practical terms.
80. $f(x)=\frac{150 x+120}{0.05 x+1}$; the number of bass, $f(x)$, after x months in a lake that was stocked with 120 bass
81. $P(x)=\frac{72,900}{100 x^{2}+729}$; the percentage, $P(x)$, of people in the United States with x years of education who are unemployed
82. The bar graph shows the population of the United States, in millions, for six selected years.

Source: U.S. Census Bureau

Here are two functions that model the data:

$$
M(x)=1.53 x+114.8\left\{\begin{array}{c}
\text { Male U.S. population, } \\
M(x), \text { in millions, } x \\
\text { years after } 1985
\end{array}\right.
$$

$$
F(x)=1.46 x+\text { 120.7. }\left\{\begin{array}{c}
\text { Female U.S. population, } \\
F(x) \text {, in millions, } x \\
\text { years after } 1985
\end{array}\right.
$$

a. Write a function that models the total U.S. population, $P(x)$, in millions, x years after 1985.
b. Write a rational function that models the fraction of men in the U.S. population, $R(x), x$ years after 1985.
c. What is the equation of the horizontal asymptote associated with the function in part (b)? Round to two decimal places. What does this mean about the percentage of men in the U.S. population over time?
83. A jogger ran 4 miles and then walked 2 miles. The average velocity running was 3 miles per hour faster than the average velocity walking. Express the total time for running and walking, T, as a function of the average velocity walking, x.
84. The area of a rectangular floor is 1000 square feet. Express the perimeter of the floor, P, as a function of the width of the rectangle, x.

2.7

In Exercises 85-90, solve each inequality and graph the solution set on a real number line.
85. $2 x^{2}+5 x-3<0$
86. $2 x^{2}+9 x+4 \geq 0$
87. $x^{3}+2 x^{2}>3 x$
88. $\frac{x-6}{x+2}>0$
89. $\frac{(x+1)(x-2)}{x-1} \geq 0$
90. $\frac{x+3}{x-4} \leq 5$
91. The graph shows stopping distances for motorcycles at various speeds on dry roads and on wet roads.

Source: National Highway Traffic Safety Administration

The functions

$$
f(x)=0.125 x^{2}-0.8 x+99
$$

Dry pavement
and

Wet pavement

$$
g(x)=0.125 x^{2}+2.3 x+27
$$

model a motorcycle's stopping distance, $f(x)$ or $g(x)$, in feet, traveling at x miles per hour. Function f models stopping distance on dry pavement and function g models stopping distance on wet pavement.
a. Use function g to find the stopping distance on wet pavement for a motorcycle traveling at 35 miles per hour. Round to the nearest foot. Does your rounded answer overestimate or underestimate the stopping distance shown by the graph? By how many feet?
b. Use function f to determine speeds on dry pavement requiring stopping distances that exceed 267 feet.
92. Use the position function

$$
s(t)=-16 t^{2}+v_{0} t+s_{0}
$$

to solve this problem. A projectile is fired vertically upward from ground level with an initial velocity of 48 feet per second. During which time period will the projectile's height exceed 32 feet?

2.8

Solve the variation problems in Exercises 93-98.
93. Many areas of Northern California depend on the snowpack of the Sierra Nevada mountain range for their water supply. The volume of water produced from melting snow varies directly as the volume of snow. Meteorologists have determined that 250 cubic centimeters of snow will melt to 28 cubic centimeters of water. How much water does 1200 cubic centimeters of melting snow produce?
94. The distance that a body falls from rest is directly proportional to the square of the time of the fall. If skydivers fall 144 feet in 3 seconds, how far will they fall in 10 seconds?
95. The pitch of a musical tone varies inversely as its wavelength. A tone has a pitch of 660 vibrations per second and a wavelength of 1.6 feet. What is the pitch of a tone that has a wavelength of 2.4 feet?
96. The loudness of a stereo speaker, measured in decibels, varies inversely as the square of your distance from the speaker. When you are 8 feet from the speaker, the loudness is 28 decibels. What is the loudness when you are 4 feet from the speaker?
97. The time required to assemble computers varies directly as the number of computers assembled and inversely as the number of workers. If 30 computers can be assembled by 6 workers in 10 hours, how long would it take 5 workers to assemble 40 computers?
98. The volume of a pyramid varies jointly as its height and the area of its base. A pyramid with a height of 15 feet and a base with an area of 35 square feet has a volume of 175 cubic feet. Find the volume of a pyramid with a height of 20 feet and a base with an area of 120 square feet.
99. Heart rates and life spans of most mammals can be modeled using inverse variation. The bar graph shows the average heart rate and the average life span of five mammals.

Source: The Handy Science Answer Book, Visible Ink Press, 2003.
a. A mammal's average life span, L, in years, varies inversely as its average heart rate, R, in beats per minute. Use the data shown for horses to write the equation that models this relationship.
b. Is the inverse variation equation in part (a) an exact model or an approximate model for the data shown for lions?
c. Elephants have an average heart rate of 27 beats per minute. Determine their average life span.

CHAPTER 2 TEST

In Exercises 1-3, perform the indicated operations and write the result in standard form.

1. $(6-7 i)(2+5 i)$ 2. $\frac{5}{2-i}$
2. $2 \sqrt{-49}+3 \sqrt{-64}$
3. Solve and express solutions in standard form: $x^{2}=4 x-8$.

In Exercises 5-6, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range.
5. $f(x)=(x+1)^{2}+4$
6. $f(x)=x^{2}-2 x-3$
7. Determine, without graphing, whether the quadratic function $f(x)=-2 x^{2}+12 x-16$ has a minimum value or a maximum value. Then find
a. the minimum or maximum value and where it occurs.
b. the function's domain and its range.
8. The function $f(x)=-x^{2}+46 x-360$ models the daily profit, $f(x)$, in hundreds of dollars, for a company that manufactures x computers daily. How many computers should be manufactured each day to maximize profit? What is the maximum daily profit?
9. Among all pairs of numbers whose sum is 14 , find a pair whose product is as large as possible. What is the maximum product?
10. Consider the function $f(x)=x^{3}-5 x^{2}-4 x+20$.
a. Use factoring to find all zeros of f.
b. Use the Leading Coefficient Test and the zeros of f to graph the function.
11. Use end behavior to explain why the following graph cannot be the graph of $f(x)=x^{5}-x$. Then use intercepts to explain why the graph cannot represent $f(x)=x^{5}-x$.

12. The graph of $f(x)=6 x^{3}-19 x^{2}+16 x-4$ is shown in the figure.

a. Based on the graph of f, find the root of the equation $6 x^{3}-19 x^{2}+16 x-4=0$ that is an integer.
b. Use synthetic division to find the other two roots of $6 x^{3}-19 x^{2}+16 x-4=0$.
13. Use the Rational Zero Theorem to list all possible rational zeros of $f(x)=2 x^{3}+11 x^{2}-7 x-6$.
14. Use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros of

$$
f(x)=3 x^{5}-2 x^{4}-2 x^{2}+x-1
$$

15. Solve: $x^{3}+9 x^{2}+16 x-6=0$.
16. Consider the function whose equation is given by $f(x)=2 x^{4}-x^{3}-13 x^{2}+5 x+15$.
a. List all possible rational zeros.
b. Use the graph of f in the figure shown and synthetic division to find all zeros of the function.

17. Use the graph of $f(x)=x^{3}+3 x^{2}-4$ in the figure shown to factor $x^{3}+3 x^{2}-4$.

18. Find a fourth-degree polynomial function $f(x)$ with real coefficients that has $-1,1$, and i as zeros and such that $f(3)=160$.
19. The figure shows an incomplete graph of $f(x)=-3 x^{3}-4 x^{2}+x+2$. Find all the zeros of the function. Then draw a complete graph.

In Exercises 20-25, find the domain of each rational function and graph the function.
20. $f(x)=\frac{1}{(x+3)^{2}}$
21. $f(x)=\frac{1}{x-1}+2$
22. $f(x)=\frac{x}{x^{2}-16}$
23. $f(x)=\frac{x^{2}-9}{x-2}$
24. $f(x)=\frac{x+1}{x^{2}+2 x-3}$
25. $f(x)=\frac{4 x^{2}}{x^{2}+3}$
26. A company is planning to manufacture portable satellite radio players. The fixed monthly cost will be $\$ 300,000$ and it will cost $\$ 10$ to produce each player.
a. Write the average cost function, \bar{C}, of producing x players.
b. What is the horizontal asymptote for the graph of this function and what does it represent?

Solve each inequality in Exercises 27-28 and graph the solution set on a real number line. Express each solution set in interval notation.
27. $x^{2}<x+12$
28. $\frac{2 x+1}{x-3} \leq 3$
29. The intensity of light received at a source varies inversely as the square of the distance from the source. A particular light has an intensity of 20 foot-candles at 15 feet. What is the light's intensity at 10 feet?

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-2)

Use the graph of $y=f(x)$ to solve Exercises 1-6.

1. Find the domain and the range of f.
2. Find the zeros and the least possible multiplicity of each zero.
3. Where does the relative maximum occur?
4. Find $(f \circ f)(-1)$.
5. Use arrow notation to complete this statement: $f(x) \rightarrow \infty$ as
\qquad or as \qquad
6. Graph $g(x)=f(x+2)+1$.

In Exercises 7-12, solve each equation or inequality.
7. $|2 x-1|=3$
8. $3 x^{2}-5 x+1=0$
9. $9+\frac{3}{x}=\frac{2}{x^{2}}$
10. $x^{3}+2 x^{2}-5 x-6=0$
11. $|2 x-5|>3$
12. $3 x^{2}>2 x+5$

In Exercises 13-18, graph each equation in a rectangular coordinate system. If two functions are given, graph both in the same system.
13. $f(x)=x^{3}-4 x^{2}-x+4$
14. $f(x)=x^{2}+2 x-8$
15. $f(x)=x^{2}(x-3)$
16. $f(x)=\frac{x-1}{x-2}$
17. $f(x)=|x|$ and $g(x)=-|x|-1$
18. $x^{2}+y^{2}-2 x+4 y-4=0$

In Exercises 19-20, let $f(x)=2 x^{2}-x-1$ and $g(x)=4 x-1$.
19. Find $(f \circ g)(x)$.
20. Find $\frac{f(x+h)-f(x)}{h}$.

EXPONENTIAL and logarithmic FUNCTIONS

CHAPTER 3

HERE'S WHERE YOU'LL FIND THESE APPLICATIONS:

- You'll be sitting on \$500,000 in Example 10 of Section 3.4.
- World population growth: Section 3.5, Example 6
- Population and walking speed: Section 3.5 , Check Point 5
- Alcohol and risk of a car accident: Section 3.4, Example 9
- Earthquake intensity: Section 3.2, Example 9
- Immortality: Blitzer Bonus, page 418

We open the chapter with those grinning merchants and the sound of ka-ching!

SECTION 3.1

Exponential Functions

Objectives

(1) Evaluate exponential functions.
2. Graph exponential functions.
(3) Evaluate functions with base e.
4. Use compound interest formulas.

from a polynomial function? The variable x is in the exponent. Functions whose equations contain a variable in the exponent are called exponential functions. Many real-life situations, including population growth, growth of epidemics, radioactive decay, and other changes that involve rapid increase or decrease, can be described using exponential functions. is money.

Just browsing? Take your time. Researchers know, to the dollar, the average amount the typical consumer spends per minute at the shopping mall. And the longer you stay, the more you spend. So if you say you're just browsing, that's just fine with the mall merchants. Browsing is time and, as shown in Figure 3.1, time

The data in Figure 3.1 can be modeled by the function

$$
f(x)=42.2(1.56)^{x}
$$

where $f(x)$ is the average amount spent, in dollars, at a shopping mall after x hours. Can you see how this function is different

Mall Browsing Time and Average Amount Spent

FIGURE 3.1
Source: International Council of Shopping Centers Research, 2006

Definition of the Exponential Function

The exponential function \boldsymbol{f} with base \boldsymbol{b} is defined by

$$
f(x)=b^{x} \quad \text { or } \quad y=b^{x}
$$

where b is a positive constant other than $1(b>0$ and $b \neq 1)$ and x is any real number.

Here are some examples of exponential functions:

$$
\begin{array}{cccc}
f(x)=2^{x} & g(x)=10^{x} & h(x)=3^{x+1} & j(x)=\left(\frac{1}{2}\right)^{x-1} \\
\text { Base is 2. } & \text { Base is 10. } & \text { Base is 3. } & \text { Base is } \frac{1}{2} .
\end{array}
$$

Each of these functions has a constant base and a variable exponent.
By contrast, the following functions are not exponential functions:

$$
F(x)=x^{2} \quad G(x)=1^{x} \quad H(x)=(-1)^{x} \quad J(x)=x^{x}
$$

Variable is the base and not the exponent.

The base of an exponential function must be a positive constant other than 1.

The base of an exponentia function must be positive.

Variable is both the base and the exponent.
(1) Evaluate exponential functions.

(2) Graph exponential functions.

Why is $G(x)=1^{x}$ not classified as an exponential function? The number 1 raised to any power is 1 . Thus, the function G can be written as $G(x)=1$, which is a constant function.

Why is $H(x)=(-1)^{x}$ not an exponential function? The base of an exponential function must be positive to avoid having to exclude many values of x from the domain that result in nonreal numbers in the range:

You will need a calculator to evaluate exponential expressions. Most scientific calculators have a y^{x} key. Graphing calculators have a \wedge key. To evaluate expressions of the form b^{x}, enter the base b, press y^{x} or \wedge, enter the exponent x, and finally press $=$ or ENTER.

EXAMPLE 1 Evaluating an Exponential Function

The exponential function $f(x)=42.2(1.56)^{x}$ models the average amount spent, $f(x)$, in dollars, at a shopping mall after x hours. What is the average amount spent, to the nearest dollar, after four hours?

SOLUTION

Because we are interested in the amount spent after four hours, substitute 4 for x and evaluate the function.

$$
\begin{array}{ll}
f(x)=42.2(1.56)^{x} & \text { This is the given function. } \\
f(4)=42.2(1.56)^{4} & \text { Substitute } 4 \text { for } x .
\end{array}
$$

Use a scientific or graphing calculator to evaluate $f(4)$. Press the following keys on your calculator to do this:

The display should be approximately 249.92566 .

$$
f(4)=42.2(1.56)^{4} \approx 249.92566 \approx 250
$$

Thus, the average amount spent after four hours at a mall is $\$ 250$. \quad.
Check Point 1 Use the exponential function in Example 1 to find the average amount spent, to the nearest dollar, after three hours at a shopping mall. Does this rounded function value underestimate or overestimate the amount shown in Figure 3.1? By how much?

Graphing Exponential Functions

We are familiar with expressions involving b^{x}, where x is a rational number. For example,

$$
b^{1.7}=b^{\frac{17}{10}}=\sqrt[10]{b^{17}} \text { and } b^{1.73}=b^{\frac{173}{100}}=\sqrt[100]{b^{173}}
$$

However, note that the definition of $f(x)=b^{x}$ includes all real numbers for the domain x. You may wonder what b^{x} means when x is an irrational number, such as $b^{\sqrt{3}}$ or b^{π}. Using closer and closer approximations for $\sqrt{3}(\sqrt{3} \approx 1.73205)$, we can think of $b^{\sqrt{3}}$ as the value that has the successively closer approximations

$$
b^{1.7}, b^{1.73}, b^{1.732}, b^{1.73205}, \ldots
$$

In this way, we can graph exponential functions with no holes, or points of discontinuity, at the irrational domain values.

\[

\]

EXAMPLE 2 Graphing an Exponential Function

Graph: $f(x)=2^{x}$.

SOLUTION

We begin by setting up a table of coordinates.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}^{\boldsymbol{x}}$
-3	$f(-3)=2^{-3}=\frac{1}{8}$
-2	$f(-2)=2^{-2}=\frac{1}{4}$
-1	$f(-1)=2^{-1}=\frac{1}{2}$
0	$f(0)=2^{0}=1$
1	$f(1)=2^{1}=2$
2	$f(2)=2^{2}=4$
3	$f(3)=2^{3}=8$

FIGURE 3.2 The graph of $f(x)=2^{x}$

We plot these points, connecting them with a continuous curve. Figure 3.2 shows the graph of $f(x)=2^{x}$. Observe that the graph approaches, but never touches, the negative portion of the x-axis. Thus, the x-axis, or $y=0$, is a horizontal asymptote. The range is the set of all positive real numbers. Although we used integers for x in our table of coordinates, you can use a calculator to find additional points. For example, $f(0.3)=2^{0.3} \approx 1.231$ and $f(0.95)=2^{0.95} \approx 1.932$. The points $(0.3,1.231)$ and $(0.95,1.932)$ approximately fit the graph.

\int Check Point 2 Graph: $f(x)=3^{x}$.

EXAMPLE 3 Graphing an Exponential Function

Graph: $g(x)=\left(\frac{1}{2}\right)^{x}$.

SOLUTION

We begin by setting up a table of coordinates. We compute the function values by noting that

$$
g(x)=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}
$$

We plot these points, connecting them with a continuous curve. Figure 3.3 shows the graph of $g(x)=\left(\frac{1}{2}\right)^{x}$. This time the graph approaches, but never touches, the positive portion of the x-axis. Once again, the x-axis, or $y=0$, is a horizontal asymptote. The range consists of all positive real numbers.

FIGURE 3.3 The graph of $g(x)=\left(\frac{1}{2}\right)^{x}$

Do you notice a relationship between the graphs of $f(x)=2^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{x}$ in Figures 3.2 and 3.3? The graph of $g(x)=\left(\frac{1}{2}\right)^{x}$ is the graph of $f(x)=2^{x}$ reflected about the y-axis:

$$
g(x)=\left(\frac{1}{2}\right)^{x}=2^{-x}=f(-x) .
$$

Recall that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis.

\bigcirc Check Point 3 Graph: $f(x)=\left(\frac{1}{3}\right)^{x}$. Note that $f(x)=\left(\frac{1}{3}\right)^{x}=\left(3^{-1}\right)^{x}=3^{-x}$.

Four exponential functions have been graphed in Figure 3.4. Compare the black and green graphs, where $b>1$, to those in blue and red, where $b<1$. When $b>1$, the value of y increases as the value of x increases. When $b<1$, the value of y decreases as the value of x increases. Notice that all four graphs pass through $(0,1)$.

Horizontal asymptote: $y=0$

FIGURE 3.4 Graphs of four exponential functions

These graphs illustrate the following general characteristics of exponential functions:

Characteristics of Exponential Functions of the Form $f(x)=b^{x}$

1. The domain of $f(x)=b^{x}$ consists of all real numbers: $(-\infty, \infty)$. The range of $f(x)=b^{x}$ consists of all positive real numbers: $(0, \infty)$.
2. The graphs of all exponential functions of the form $f(x)=b^{x}$ pass through the point $(0,1)$ because $f(0)=b^{0}=1(b \neq 0)$. The y-intercept is 1 . There is no x-intercept.
3. If $b>1, f(x)=b^{x}$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
4. If $0<b<1, f(x)=b^{x}$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
5. $f(x)=b^{x}$ is one-to-one and has an inverse that is a function.
6. The graph of $f(x)=b^{x}$ approaches, but does not touch, the x-axis. The x-axis, or $y=0$, is a horizontal asymptote.

Blitzer Bonus || Exponential Growth: The Year Humans Become Immortal

In 2011, Jeopardy! aired a three-night match between a personable computer named Watson and the show's two most successful players. The winner: Watson. In the time it took each human
 contestant to respond to one trivia question, Watson was able to scan the content of one million books. It was also trained to understand the puns and twists of phrases unique to Jeopardy! clues.

Watson's remarkable accomplishments can be thought of as a single data point on an exponential curve that models growth in computing power. According to inventor, author, and computer scientist Ray Kurzweil (1948-), computer technology is progressing exponentially, doubling in power each year. What does this mean in terms of the accelerating pace of the graph of $y=2^{x}$ that starts slowly and then rockets skyward toward infinity? According to Kurzweil, by 2023, a supercomputer will surpass the brainpower of a human. As progress accelerates exponentially and every hour brings a century's worth of scientific breakthroughs, by 2045, computers will surpass the brainpower equivalent to that of all human brains combined. Here's where it gets exponentially weird: In that year (says Kurzweil), we will be able to scan our consciousness into computers and enter a virtual existence, or swap our bodies for immortal robots. Indefinite life extension will become a reality and people will die only if they choose to.

Transformations of Exponential Functions

The graphs of exponential functions can be translated vertically or horizontally, reflected, stretched, or shrunk. These transformations are summarized in Table 3.1.

Table 3.1 Transformations Involving Exponential Functions
In each case, c represents a positive real number.

Transformation	Equation	Description
Vertical translation	$\begin{aligned} & g(x)=b^{x}+c \\ & g(x)=b^{x}-c \end{aligned}$	- Shifts the graph of $f(x)=b^{x}$ upward c units. - Shifts the graph of $f(x)=b^{x}$ downward c units.
Horizontal translation	$\begin{aligned} & g(x)=b^{x+c} \\ & g(x)=b^{x-c} \end{aligned}$	- Shifts the graph of $f(x)=b^{x}$ to the left c units. - Shifts the graph of $f(x)=b^{x}$ to the right c units.
Reflection	$\begin{aligned} & g(x)=-b^{x} \\ & g(x)=b^{-x} \end{aligned}$	- Reflects the graph of $f(x)=b^{x}$ about the x-axis. - Reflects the graph of $f(x)=b^{x}$ about the y-axis.
Vertical stretching or shrinking	$g(x)=c b^{x}$	- Vertically stretches the graph of $f(x)=b^{x}$ if $c>1$. - Vertically shrinks the graph of $f(x)=b^{x}$ if $0<c<1$.
Horizontal stretching or shrinking	$g(x)=b^{c x}$	- Horizontally shrinks the graph of $f(x)=b^{x}$ if $c>1$. - Horizontally stretches the graph of $f(x)=b^{x}$ if $0<c<1$.

EXAMPLE 4 Transformations Involving Exponential Functions

Use the graph of $f(x)=3^{x}$ to obtain the graph of $g(x)=3^{x+1}$.

SOLUTION

The graph of $g(x)=3^{x+1}$ is the graph of $f(x)=3^{x}$ shifted 1 unit to the left.
 5 Check Point 4 Use the graph of $f(x)=3^{x}$ to obtain the graph of $g(x)=3^{x-1}$.

If an exponential function is translated upward or downward, the horizontal asymptote is shifted by the amount of the vertical shift.

EXAMPLE 5 Transformations Involving Exponential Functions

Use the graph of $f(x)=2^{x}$ to obtain the graph of $g(x)=2^{x}-3$.

SOLUTION

The graph of $g(x)=2^{x}-3$ is the graph of $f(x)=2^{x}$ shifted down 3 units.

Begin with a table showing some of the coordinates for f.

\boldsymbol{x}	$\boldsymbol{f (x)}=\mathbf{2}^{\boldsymbol{x}}$
-2	$f(-2)=2^{-2}=\frac{1}{4}$
-1	$f(-1)=2^{-1}=\frac{1}{2}$
0	$f(0)=2^{0}=1$
1	$f(1)=2^{1}=2$
2	$f(2)=2^{2}=4$

$$
\begin{aligned}
& \text { Graph } f(x)=2^{x} \text {. We } \\
& \text { identified three points } \\
& \text { and the horizontal asymptote. }
\end{aligned}
$$

Horizontal asymptote: $y=0$

> The graph of $g(x)=2^{x}-3$ with three points and the horizontal asymptote labeled

Graph $g(x)=2^{x}-3$. Shift $f 3$ units down. Subtract 3 from each y-coordinate.
$\$$ Check Point 5 Use the graph of $f(x)=2^{x}$ to obtain the graph of $g(x)=2^{x}+1$.

TECHNOLOGY

Graphic Connections

As $n \rightarrow \infty$, the graph of $y=\left(1+\frac{1}{n}\right)^{n}$ approaches the graph of $y=e$.

FIGURE 3.5 Graphs of three exponential functions

The Natural Base e

An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions. The number e is defined as the value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n gets larger and larger. Table $\mathbf{3 . 2}$ shows values of $\left(1+\frac{1}{n}\right)^{n}$ for increasingly large values of n. As $n \rightarrow \infty$, the approximate value of e to nine decimal places is

$$
e \approx 2.718281827
$$

The irrational number e, approximately 2.72 , is called the natural base. The function $f(x)=e^{x}$ is called the natural exponential function.

Use a scientific or graphing calculator with an e^{x} key to evaluate e to various powers. For example, to find e^{2}, press the following keys on most calculators:

Scientific calculator: $2 e^{x}$
Graphing calculator: $e^{x} 2$ ENTER.
The display should be approximately 7.389.

Table 3.2

\boldsymbol{n}	$\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{n}}$
1	2
2	2.25
5	2.48832
10	2.59374246
100	2.704813829
1000	2.716923932
10,000	2.718145927
100,000	2.718268237
$1,000,000$	2.718280469
$1,000,000,000$	2.718281827

$$
\begin{aligned}
& \text { In calculus, this } \\
& \text { is expressed as } \\
& \lim _{n \rightarrow \infty}\left|1+\frac{1}{n}\right|^{n}=e .
\end{aligned}
$$

$$
e^{2} \approx 7.389
$$

The number e lies between 2 and 3. Because $2^{2}=4$ and $3^{2}=9$, it makes sense that e^{2}, approximately 7.389 , lies between 4 and 9 .

Because $2<e<3$, the graph of $y=e^{x}$ is between the graphs of $y=2^{x}$ and $y=3^{x}$, shown in Figure 3.5.

EXAMPLE 6 Gray Wolf Population

Insatiable killer. That's the reputation the gray wolf acquired in the United States in the nineteenth and early twentieth centuries. Although the label was undeserved, an estimated two million wolves were shot, trapped, or poisoned. By 1960, the population was reduced to 800 wolves. Figure 3.6 shows the rebounding population in two recovery areas after the

Gray Wolf Population in Two Recovery Areas for Selected Years

FIGURE 3.6
Source: U.S. Fish and Wildlife Service gray wolf was declared an endangered species and received federal protection.

The exponential function

$$
f(x)=1.26 e^{0.247 x}
$$

models the gray wolf population of the Northern Rocky Mountains, $f(x), x$ years after 1978. If the wolf is not removed from the endangered species list and trends shown in Figure 3.6 continue, project its population in the recovery area in 2010.

SOLUTION

Because 2010 is 32 years after 1978, we substitute 32 for x in the given function.

$$
\begin{aligned}
f(x) & =1.26 e^{0.247 x} \quad \text { This is the given function. } \\
f(32) & =1.26 e^{0.247(32)} \quad \text { Substitute } 32 \text { for } x .
\end{aligned}
$$

Perform this computation on your calculator.

The display should be approximately 3412.1973 .
Thus,

$$
f(32)=1.26 e^{0.247(32)} \approx 3412
$$ some calculators.

This indicates that the gray wolf population of the Northern Rocky Mountains in the year 2010 is projected to have been 3412 .

Check Point 6 The exponential function $f(x)=1066 e^{0.042 x}$ models the gray wolf population of the Western Great Lakes, $f(x), x$ years after 1978. If trends shown in Figure 3.6 continue, project the gray wolf's population in the recovery area in 2012.

In 2008, using exponential functions and projections like those in Example 6 and Check Point 6, the U.S. Fish and Wildlife Service removed the gray wolf from the endangered species list, a ruling environmentalists vowed to appeal.
(4) Use compound interest formulas.

Compound Interest

We all want a wonderful life with fulfilling work, good health, and loving relationships. And let's be honest:Financial security wouldn't hurt! Achieving this goal depends on understanding how money in savings accounts grows in remarkable ways as a result of compound interest. Compound interest is interest computed on your original investment as well as on any accumulated interest.

Suppose a sum of money, called the principal, P, is invested at an annual percentage rate r, in decimal form, compounded once per year. Because the interest is added to the principal at year's end, the accumulated value, A, is

$$
A=P+P r=P(1+r) .
$$

The accumulated amount of money follows this pattern of multiplying the previous principal by $(1+r)$ for each successive year, as indicated in Table 3.3.

Table 3.3

Time in Years	Accumulated Value after Each Compounding
0	$A=P$
1	$A=P(1+r)$
2	$A=P(1+r)(1+r)=P(1+r)^{2}$
3	$A=P(1+r)^{2}(1+r)=P(1+r)^{3}$
4	$A=P(1+r)^{3}(1+r)=P(1+r)^{4}$
\vdots	\vdots
t	$A=P(1+r)^{t}$

Most savings institutions have plans in which interest is paid more than once a year. If compound interest is paid twice a year, the compounding period is six months. We say that the interest is compounded semiannually. When compound interest is paid four times a year, the compounding period is three months and the interest is said to be compounded quarterly. Some plans allow for monthly compounding or daily compounding.

In general, when compound interest is paid n times a year, we say that there are \boldsymbol{n} compounding periods per year. Table 3.4 shows the three most frequently used plans in which interest is paid more than once a year.

Table 3.4 Interest Plans

Name	Number of Compounding Periods per Year	Length of Each Compounding Period
Semiannual Compounding	$n=2$	6 months
Quarterly Compounding	$n=4$	3 months
Monthly Compounding	$n=12$	1 month

The formula $A=P(1+r)^{t}$ can be adjusted to take into account the number of compounding periods in a year. If there are n compounding periods per year, in each time period the interest rate is $\frac{r}{n}$ and there are $n t$ time periods in t years. This results in the following formula for the balance, A, after t years:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Some banks use continuous compounding, where the number of compounding periods increases infinitely (compounding interest every trillionth of a second, every quadrillionth of a second, etc.). Let's see what happens to the balance, A, as $n \rightarrow \infty$.

We see that the formula for continuous compounding is $A=P e^{r t}$. Although continuous compounding sounds terrific, it yields only a fraction of a percent more interest over a year than daily compounding.

Formulas for Compound Interest

After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas:

1. For n compounding periods per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
2. For continuous compounding: $A=P e^{r t}$.

EXAMPLE 7 Choosing between Investments

You decide to invest $\$ 8000$ for 6 years and you have a choice between two accounts. The first pays 7% per year, compounded monthly. The second pays 6.85% per year, compounded continuously. Which is the better investment?

SOLUTION

The better investment is the one with the greater balance in the account after 6 years. Let's begin with the account with monthly compounding. We use the compound interest model with $P=8000, r=7 \%=0.07, n=12$ (monthly compounding means 12 compoundings per year), and $t=6$.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}=8000\left(1+\frac{0.07}{12}\right)^{12 \cdot 6} \approx 12,160.84
$$

The balance in this account after 6 years is $\$ 12,160.84$.
For the second investment option, we use the model for continuous compounding with $P=8000, r=6.85 \%=0.0685$, and $t=6$.

$$
A=P e^{r t}=8000 e^{0.0685(6)} \approx 12,066.60
$$

The balance in this account after 6 years is $\$ 12,066.60$, slightly less than the previous amount. Thus, the better investment is the 7% monthly compounding option. ...

8 Check Point 7 a sum of $\$ 10,000$ is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to a. quarterly compounding and b. continuous compounding.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The exponential function f with base b is defined by $f(x)=$ \qquad $b>0$ and $b \neq 1$. Using interval notation, the domain of this function is \qquad and the range is \qquad .
2. The graph of the exponential function f with base b approaches, but does not touch, the \qquad -axis. This axis, whose equation is \qquad , is a/an
\qquad asymptote.
3. The value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n gets larger and larger is the irrational number \qquad called the \qquad base. This irrational number is approximately equal to \qquad
4. Consider the compound interest formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

This formula gives the balance, \qquad , in an account with principal \qquad and annual interest rate \qquad , in decimal form, subject to compound interest paid \qquad times per year.
5. If compound interest is paid twice a year, we say that the interest is compounded \qquad If compound interest is paid four times a year, we say that the interest is compounded \qquad . If the number of compounding periods increases infinitely, we call this \qquad compounding.

EXERCISE SET 3.1

Practice Exercises

In Exercises 1-10, approximate each number using a calculator. Round your answer to three decimal places.

1. $2^{3.4}$
2. $3^{2.4}$
3. $3^{\sqrt{5}}$
4. $5^{\sqrt{3}}$
5. $4^{-1.5}$
6. $6^{-1.2}$
7. $e^{2.3}$
8. $e^{3.4}$
9. $e^{-0.95}$
10. $e^{-0.75}$

In Exercises 11-18, graph each function by making a table of coordinates. If applicable, use a graphing utility to confirm your hand-drawn graph.
11. $f(x)=4^{x}$
12. $f(x)=5^{x}$
13. $g(x)=\left(\frac{3}{2}\right)^{x}$
14. $g(x)=\left(\frac{4}{3}\right)^{x}$
15. $h(x)=\left(\frac{1}{2}\right)^{x}$
16. $h(x)=\left(\frac{1}{3}\right)^{x}$
17. $f(x)=(0.6)^{x}$
18. $f(x)=(0.8)^{x}$

In Exercises 19-24, the graph of an exponential function is given. Select the function for each graph from the following options:

$$
\begin{aligned}
& f(x)=3^{x}, g(x)=3^{x-1}, h(x)=3^{x}-1, \\
& F(x)=-3^{x}, G(x)=3^{-x}, H(x)=-3^{-x} .
\end{aligned}
$$

19.

20.

21.

22.

23.

24.

In Exercises 25-34, begin by graphing $f(x)=2^{x}$. Then use transformations of this graph to graph the given function. Be sure to graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs.
25. $g(x)=2^{x+1}$
26. $g(x)=2^{x+2}$
27. $g(x)=2^{x}-1$
28. $g(x)=2^{x}+2$
29. $h(x)=2^{x+1}-1$
30. $h(x)=2^{x+2}-1$
31. $g(x)=-2^{x}$
32. $g(x)=2^{-x}$
33. $g(x)=2 \cdot 2^{x}$
34. $g(x)=\frac{1}{2} \cdot 2^{x}$

The figure shows the graph of $f(x)=e^{x}$. In Exercises 35-46, use transformations of this graph to graph each function. Be sure to give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs.

35. $g(x)=e^{x-1}$
36. $g(x)=e^{x+1}$
37. $g(x)=e^{x}+2$
38. $g(x)=e^{x}-1$
39. $h(x)=e^{x-1}+2$
40. $h(x)=e^{x+1}-1$
41. $h(x)=e^{-x}$
42. $h(x)=-e^{x}$
43. $g(x)=2 e^{x}$
44. $g(x)=\frac{1}{2} e^{x}$
45. $h(x)=e^{2 x}+1$
46. $h(x)=e^{\frac{x}{2}}+2$

In Exercises 47-52, graph functions f and g in the same rectangular coordinate system. Graph and give equations of all asymptotes. If applicable, use a graphing utility to confirm your hand-drawn graphs.
47. $f(x)=3^{x}$ and $g(x)=3^{-x}$
48. $f(x)=3^{x}$ and $g(x)=-3^{x}$
49. $f(x)=3^{x}$ and $g(x)=\frac{1}{3} \cdot 3^{x}$
50. $f(x)=3^{x}$ and $g(x)=3 \cdot 3^{x}$
51. $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{x-1}+1$
52. $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{x-1}+2$

Use the compound interest formulas $A=P\left(1+\frac{r}{n}\right)^{n t}$ and $A=P e^{r t}$ to solve Exercises 53-56. Round answers to the nearest cent.
53. Find the accumulated value of an investment of $\$ 10,000$ for 5 years at an interest rate of 5.5% if the money is a. compounded semiannually; b. compounded quarterly; c. compounded monthly; d. compounded continuously.
54. Find the accumulated value of an investment of $\$ 5000$ for 10 years at an interest rate of 6.5% if the money is a. compounded semiannually; b. compounded quarterly; c. compounded monthly; d. compounded continuously.
55. Suppose that you have $\$ 12,000$ to invest. Which investment yields the greater return over 3 years: 7\% compounded monthly or 6.85% compounded continuously?
56. Suppose that you have $\$ 6000$ to invest. Which investment yields the greater return over 4 years: 8.25% compounded quarterly or 8.3% compounded semiannually?

Practice Plus

In Exercises 57-58, graph f and g in the same rectangular coordinate system. Then find the point of intersection of the two graphs.
57. $f(x)=2^{x}, g(x)=2^{-x}$
58. $f(x)=2^{x+1}, g(x)=2^{-x+1}$
59. Graph $y=2^{x}$ and $x=2^{y}$ in the same rectangular coordinate system.
60. Graph $y=3^{x}$ and $x=3^{y}$ in the same rectangular coordinate system.

In Exercises 61-64, give the equation of each exponential function whose graph is shown.
61.

62.

63.

64.

Application Exercises

Use a calculator with a y^{x} key or a $\triangle \wedge$ key to solve
Exercises 65-70.
65. India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world's population will live in these two countries alone. The exponential function $f(x)=574(1.026)^{x}$ models the population of India, $f(x)$, in millions, x years after 1974.
a. Substitute 0 for x and, without using a calculator, find India's population in 1974.
b. Substitute 27 for x and use your calculator to find India's population, to the nearest million, in the year 2001 as modeled by this function.
c. Find India's population, to the nearest million, in the year 2028 as predicted by this function.
d. Find India's population, to the nearest million, in the year 2055 as predicted by this function.
e. What appears to be happening to India's population every 27 years?
66. The 1986 explosion at the Chernobyl nuclear power plant in the former Soviet Union sent about 1000 kilograms of radioactive cesium-137 into the atmosphere. The function $f(x)=1000(0.5)^{\frac{x}{30}}$ describes the amount, $f(x)$, in kilograms, of cesium-137 remaining in Chernobyl x years after 1986. If even 100 kilograms of cesium- 137 remain in Chernobyl's atmosphere, the area is considered unsafe for human habitation. Find $f(80)$ and determine if Chernobyl will be safe for human habitation by 2066.
The formula $S=C(1+r)^{t}$ models inflation, where $C=$ the value today, $r=$ the annual inflation rate, and $S=$ the inflated value t years from now. Use this formula to solve Exercises 67-68. Round answers to the nearest dollar.
67. If the inflation rate is 6%, how much will a house now worth $\$ 465,000$ be worth in 10 years?
68. If the inflation rate is 3%, how much will a house now worth $\$ 510,000$ be worth in 5 years?
69. A decimal approximation for $\sqrt{3}$ is 1.7320508 . Use a calculator to find $2^{1.7}, 2^{1.73}, 2^{1.732}, 2^{1.73205}$, and $2^{1.7320508}$. Now find $2^{\sqrt{3}}$. What do you observe?
70. A decimal approximation for π is 3.141593 . Use a calculator to find $2^{3}, 2^{3.1}, 2^{3.14}, 2^{3.141}, 2^{3.1415}, 2^{3.14159}$, and $2^{3.141593}$. Now find 2^{π}. What do you observe?

Use a calculator with an e^{x} key to solve Exercises 71-76.
Average annual premiums for employer-sponsored family health insurance policies more than doubled over 11 years. The bar graph shows the average cost of a family health insurance plan in the United States for six selected years from 2000 through 2011.

Average Cost of a Family Health Insurance Plan

Source: Kaiser Family Foundation
The data can be modeled by

$$
f(x)=782 x+6564 \quad \text { and } \quad g(x)=6875 e^{0.077 x}
$$

in which $f(x)$ and $g(x)$ represent the average cost of a family health insurance plan x years after 2000. Use these functions to solve Exercises 71-72. Where necessary, round answers to the nearest whole dollar.
71. a. According to the linear model, what was the average cost of a family health insurance plan in 2011?
b. According to the exponential model, what was the average cost of a family health insurance plan in 2011?
c. Which function is a better model for the data in 2011 ?
72. a. According to the linear model, what was the average cost of a family health insurance plan in 2008?
b. According to the exponential model, what was the average cost of a family health insurance plan in 2008?
c. Which function is a better model for the data in 2008 ?
73. In college, we study large volumes of informationinformation that, unfortunately, we do not often retain for very long. The function

$$
f(x)=80 e^{-0.5 x}+20
$$

describes the percentage of information, $f(x)$, that a particular person remembers x weeks after learning the information.
a. Substitute 0 for x and, without using a calculator, find the percentage of information remembered at the moment it is first learned.
b. Substitute 1 for x and find the percentage of information that is remembered after 1 week.
c. Find the percentage of information that is remembered after 4 weeks.
d. Find the percentage of information that is remembered after one year (52 weeks).
74. In 1626, Peter Minuit convinced the Wappinger Indians to sell him Manhattan Island for $\$ 24$. If the Native Americans had put the $\$ 24$ into a bank account paying 5% interest, how much would the investment have been worth in the year 2010 if interest were compounded
a. monthly?
b. continuously?

The bar graph shows the percentage of people 25 years of age and older who were college graduates in the United States for seven selected years.

Percentage of College Graduates, Among People Ages 25 and Older, in the United States

Source: U.S. Census Bureau
The functions

$$
f(x)=6.25(1.029)^{x} \quad \text { and } \quad g(x)=\frac{38.8}{1+6.3 e^{-0.051 x}}
$$

model the percentage of college graduates, among people ages 25 and older, $f(x)$ or $g(x)$, x years after 1950. Use these functions to solve Exercises 75-76.
75. Which function is a better model for the percentage who were college graduates in 2009?
76. Which function is a better model for the percentage who were college graduates in 1990 ?

Writing in Mathematics

77. What is an exponential function?
78. What is the natural exponential function?
79. Use a calculator to evaluate $\left(1+\frac{1}{x}\right)^{x}$ for $x=10,100,1000$, $10,000,100,000$, and 1,000,000. Describe what happens to the expression as x increases.
80. Describe how you could use the graph of $f(x)=2^{x}$ to obtain a decimal approximation for $\sqrt{2}$.

Technology Exercises

81. You have $\$ 10,000$ to invest. One bank pays 5% interest compounded quarterly and a second bank pays 4.5% interest compounded monthly.
a. Use the formula for compound interest to write a function for the balance in each bank at any time t.
b. Use a graphing utility to graph both functions in an appropriate viewing rectangle. Based on the graphs, which bank offers the better return on your money?
82. a. Graph $y=e^{x}$ and $y=1+x+\frac{x^{2}}{2}$ in the same viewing rectangle.
b. Graph $y=e^{x}$ and $y=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ in the same viewing rectangle.
c. Graph $y=e^{x}$ and $y=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}$ in the same viewing rectangle.
d. Describe what you observe in parts (a)-(c). Try generalizing this observation.

Critical Thinking Exercises

Make Sense? In Exercises 83-86, determine whether each statement makes sense or does not make sense, and explain your reasoning.
83. My graph of $f(x)=3 \cdot 2^{x}$ shows that the horizontal asymptote for f is $x=3$.
84. I'm using a photocopier to reduce an image over and over by 50%, so the exponential function $f(x)=\left(\frac{1}{2}\right)^{x}$ models the new image size, where x is the number of reductions.
85. I'm looking at data that show the number of new college programs in green studies, and a linear function appears to be a better choice than an exponential function for modeling the number of new college programs from 2005 through 2009.
 Sustainability in Higher Education
86. I use the natural base e when determining how much money I'd have in a bank account that earns compound interest subject to continuous compounding.

In Exercises 87-90, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
87. As the number of compounding periods increases on a fixed investment, the amount of money in the account over a fixed interval of time will increase without bound.
88. The functions $f(x)=3^{-x}$ and $g(x)=-3^{x}$ have the same graph.
89. If $f(x)=2^{x}$, then $f(a+b)=f(a)+f(b)$.
90. The functions $f(x)=\left(\frac{1}{3}\right)^{x}$ and $g(x)=3^{-x}$ have the same graph.
91. The graphs labeled (a)-(d) in the figure represent $y=3^{x}$, $y=5^{x}, y=\left(\frac{1}{3}\right)^{x}$, and $y=\left(\frac{1}{5}\right)^{x}$, but not necessarily in that order. Which is which? Describe the process that enables you to make this decision.

92. Graph $f(x)=2^{x}$ and its inverse function in the same rectangular coordinate system.
93. The hyperbolic cosine and hyperbolic sine functions are defined by

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

a. Show that $\cosh x$ is an even function.
b. Show that $\sinh x$ is an odd function.
c. Prove that $(\cosh x)^{2}-(\sinh x)^{2}=1$.

Preview Exercises

Exercises 94-96 will help you prepare for the material covered in the next section.
94. What problem do you encounter when using the switch-andsolve strategy to find the inverse of $f(x)=2^{x}$? (The switch-and-solve strategy is described in the box on page 248.)
95. 25 to what power gives 5 ? $\left(25^{?}=5\right)$
96. Solve: $(x-3)^{2}>0$.

SECTION 3.2

Objectives

(1) Change from logarithmic to exponential form.
(2) Change from exponential to logarithmic form.
(3) Evaluate logarithms.
(4) Use basic logarithmic properties.
(5) Graph logarithmic functions.
6 Find the domain of a logarithmic function.
(7) Use common logarithms.
(8) Use natural logarithms.

The earthquake that ripped through northern California on October 17, 1989, measured 7.1 on the Richter scale, killed more than 60 people, and injured more than 2400. Shown here is San Francisco’s Marina district, where shock waves tossed houses off their foundations and into the street.

A higher measure on the Richter scale is more devastating than it seems because for each increase in one unit on the scale, there is a tenfold increase in the intensity of an earthquake. In this section, our focus is on the inverse of the exponential function, called the logarithmic function. The logarithmic function will help you to understand diverse phenomena, including earthquake intensity, human memory, and the pace of life in large cities.

GREAT QUESTION!

You mentioned that the inverse of the exponential function is called the logarithmic function. We haven't discussed inverses of functions since Section 1.8. What should I already know about functions and their inverses?
Here's a brief summary:

1. Only one-to-one functions have inverses that are functions. A function, f, has an inverse function, f^{-1}, if there is no horizontal line that intersects the graph of f at more than one point.
2. If a function is one-to-one, its inverse function can be found by interchanging x and y in the function's equation and solving for y.
3. If $f(a)=b$, then $f^{-1}(b)=a$. The domain of f is the range of f^{-1}. The range of f is the domain of f^{-1}.
4. $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
5. The graph of f^{-1} is the reflection of the graph of f about the line $y=x$.

The Definition of Logarithmic Functions

No horizontal line can be drawn that intersects the graph of an exponential function at more than one point. This means that the exponential function is one-to-one and has an inverse. Let's use our switch-and-solve strategy from Section 1.8 to find the inverse.

All exponential functions have inverse functions.
 $$
f(x)=b^{x}
$$

Step 1 Replace $f(x)$ with $y: y=b^{x}$.
Step 2 Interchange \boldsymbol{x} and $\boldsymbol{y}: \quad x=b^{y}$.
Step 3 Solve for y : ?
The question mark indicates that we do not have a method for solving $b^{y}=x$ for y. To isolate the exponent y, a new notation, called logarithmic notation, is needed. This notation gives us a way to name the inverse of $f(x)=b^{x}$. The inverse function of the exponential function with base b is called the logarithmic function with base b.

Definition of the Logarithmic Function

$$
\begin{aligned}
& \text { For } x>0 \text { and } b>0, b \neq 1 \text {, } \\
& y=\log _{b} x \text { is equivalent to } b^{y}=x .
\end{aligned}
$$

The function $f(x)=\log _{b} x$ is the logarithmic function with base \boldsymbol{b}.
The equations

$$
y=\log _{b} x \quad \text { and } \quad b^{y}=x
$$

are different ways of expressing the same thing. The first equation is in logarithmic form and the second equivalent equation is in exponential form.

Notice that a logarithm, \boldsymbol{y}, is an exponent. You should learn the location of the base and exponent in each form.

Location of Base and Exponent in Exponential and Logarithmic Forms

EXAMPLE 1 Changing from Logarithmic to Exponential Form

Write each equation in its equivalent exponential form:
a. $2=\log _{5} x$
b. $3=\log _{b} 64$
c. $\log _{3} 7=y$.

SOLUTION

We use the fact that $y=\log _{b} x$ means $b^{y}=x$.
a. $2=\log _{5} x$ means $5^{2}=x$.
b. $3=\log _{b} 64$ means $b^{3}=64$.
Logarithms are exponents.
c. $\log _{3} 7=y$ or $y=\log _{3} 7$ means $3^{y}=7$.

GREAT QUESTION!

Much of what you've discussed so far involves changing from logarithmic form to the more familiar exponential form. Is there a pattern I can use to help me remember how to do this?
Yes. To change from logarithmic form to exponential form, use this pattern:

Check Point 1 Write each equation in its equivalent exponential form:
a. $3=\log _{7} x$
b. $2=\log _{b} 25$
c. $\log _{4} 26=y$.
2) Change from exponential to logarithmic form.
(3) Evaluate logarithms.

EXAMPLE 2 Changing from Exponential to Logarithmic Form

Write each equation in its equivalent logarithmic form:
a. $12^{2}=x$
b. $b^{3}=8$
c. $e^{y}=9$.

SOLUTION

We use the fact that $b^{y}=x$ means $y=\log _{b} x$.
a. $12^{2}=x$ means $2=\log _{12} x$.
b. $b^{3}=8$ means $3=\log _{b} 8$.

Exponents are logarithms.
Exponents are logarithms.
c. $e^{y}=9$ means $y=\log _{e} 9$.

0 Check Point 2 Write each equation in its equivalent logarithmic form:
a. $2^{5}=x$
b. $b^{3}=27$
c. $e^{y}=33$.

Remembering that logarithms are exponents makes it possible to evaluate some logarithms by inspection. The logarithm of x with base $b, \log _{b} x$, is the exponent to which b must be raised to get x. For example, suppose we want to evaluate $\log _{2} 32$. We ask, 2 to what power gives 32 ? Because $2^{5}=32, \log _{2} 32=5$.

EXAMPLE 3 Evaluating Logarithms

Evaluate:
a. $\log _{2} 16$
b. $\log _{7} \frac{1}{49}$
c. $\log _{25} 5$
d. $\log _{2} \sqrt[5]{2}$.

SOLUTION

Logarithmic Expression	Question Needed for Evaluation	Logarithmic Expression Evaluated
a. $\log _{2} 16$	2 to what power gives $16 ?$ $2^{?}=16$	$\log _{2} 16=4$ because $2^{4}=16$.
b. $\log _{7} \frac{1}{49}$	7 to what power gives $\frac{1}{49} ?$ $7^{?}=\frac{1}{49}$	$\log _{7} \frac{1}{49}=-2$ because $7^{-2}=\frac{1}{7^{2}}=\frac{1}{49}$.
c. $\log _{25} 5$	25 to what power gives $5 ?$ $25^{?}=5$	$\log _{25} 5=\frac{1}{2}$ because $25^{\frac{1}{2}}=\sqrt{25}=5$.
d. $\log _{2} \sqrt[5]{2}$	2 to what power gives $\sqrt[5]{2}$, or $2^{5} ? ~$	$\log _{2}=\sqrt[5]{2}=\frac{1}{5}$ because $2^{\frac{1}{5}}=\sqrt[5]{2}$.

$\$$ Check Point 3 Evaluate:

a. $\log _{10} 100$
b. $\log _{5} \frac{1}{125}$
c. $\log _{36} 6$
d. $\log _{3} \sqrt[7]{3}$.

Basic Logarithmic Properties

Because logarithms are exponents, they have properties that can be verified using properties of exponents.

Basic Logarithmic Properties Involving One

1. $\log _{b} b=1$ because 1 is the exponent to which b must be raised to obtain b. $\left(b^{1}=b\right)$
2. $\log _{b} 1=0$ because 0 is the exponent to which b must be raised to obtain 1 . $\left(b^{0}=1\right)$

EXAMPLE 4 Using Properties of Logarithms

Evaluate:
a. $\log _{7} 7$
b. $\log _{5} 1$.

SOLUTION

a. Because $\log _{b} b=1$, we conclude $\log _{7} 7=1$. $\quad \begin{gathered}\text { This means } \\ \text { that } 7^{\prime}=7\end{gathered}$.
b. Because $\log _{b} 1=0$, we conclude $\log _{5} 1=0$. This means
that $5^{0}=1$.
$\$$ Check Point 4 Evaluate:
a. $\log _{9} 9$
b. $\log _{8} 1$.

Now that we are familiar with logarithmic notation, let's resume and finish the switch-and-solve strategy for finding the inverse of $f(x)=b^{x}$.

Step 1 Replace $\boldsymbol{f}(\boldsymbol{x})$ with $\boldsymbol{y}: \quad y=b^{x}$.
Step 2 Interchange \boldsymbol{x} and $\boldsymbol{y}: \quad x=b^{y}$.
Step 3 Solve for $y: y=\log _{b} x$.
Step 4 Replace \boldsymbol{y} with $\boldsymbol{f}^{-1}(\boldsymbol{x}): \quad f^{-1}(x)=\log _{b} x$.
The completed switch-and-solve strategy illustrates that if $f(x)=b^{x}$, then $f^{-1}(x)=\log _{b} x$. The inverse of an exponential function is the logarithmic function with the same base.

In Section 1.8, we saw how inverse functions "undo" one another. In particular,

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x
$$

Applying these relationships to exponential and logarithmic functions, we obtain the following inverse properties of logarithms:

> Inverse Properties of Logarithms

For $b>0$ and $b \neq 1$,

$$
\begin{array}{rlrl}
\log _{b} b^{x} & =x & & \text { The logarithm with base } b \text { of } b \text { raised to a power equals that power. } \\
b^{\log _{b} x} & =x . & b \text { raised to the logarithm with base } b \text { of a number equals that number. }
\end{array}
$$

EXAMPLE 5 Using Inverse Properties of Logarithms

Evaluate:
a. $\log _{4} 4^{5}$
b. $6^{\log _{6} 9}$.

SOLUTION

a. Because $\log _{b} b^{x}=x$, we conclude $\log _{4} 4^{5}=5$.
b. Because $b^{\log _{b} x}=x$, we conclude $6^{\log _{6} 9}=9$.
$\$$ Check Point 5 Evaluate:
a. $\log _{7} 7^{8}$
b. $3^{\log _{3} 17}$.
(5) Graph logarithmic functions.

Graphs of Logarithmic Functions

How do we graph logarithmic functions? We use the fact that a logarithmic function is the inverse of an exponential function. This means that the logarithmic function reverses the coordinates of the exponential function. It also means that the graph of the logarithmic function is a reflection of the graph of the exponential function about the line $y=x$.

EXAMPLE 6 Graphs of Exponential and Logarithmic Functions

FIGURE 3.7 The graphs of $f(x)=2^{x}$ and its inverse function

Graph $f(x)=2^{x}$ and $g(x)=\log _{2} x$ in the same rectangular coordinate system.

SOLUTION

We first set up a table of coordinates for $f(x)=2^{x}$. Reversing these coordinates gives the coordinates for the inverse function $g(x)=\log _{2} x$.

We now plot the ordered pairs from each table, connecting them with smooth curves. Figure 3.7 shows the graphs of $f(x)=2^{x}$ and its inverse function $g(x)=\log _{2} x$. The graph of the inverse can also be drawn by reflecting the graph of $f(x)=2^{x}$ about the line $y=x$.

GREAT QUESTION!

You found the coordinates of $g(x)=\log _{2} x$ by reversing the coordinates of $f(x)=2^{x}$. Do I have to do it that way?
Not necessarily. You can obtain a partial table of coordinates for $g(x)=\log _{2} x$ without having to obtain and reverse coordinates for $f(x)=2^{x}$. Because $g(x)=\log _{2} x$ means $2^{g(x)}=x$, we begin with values for $g(x)$ and compute corresponding values for x :

Check Point 6 Graph $f(x)=3^{x}$ and $g(x)=\log _{3} x$ in the same rectangular coordinate system.

Figure 3.8 illustrates the relationship between the graph of an exponential function, shown in blue, and its inverse, a logarithmic function, shown in red, for bases greater than 1 and for bases between 0 and 1 . Also shown and labeled are the exponential function's horizontal asymptote $(y=0)$ and the logarithmic function's vertical asymptote $(x=0)$.

FIGURE 3.8 (repeated)

FIGURE 3.9 Shifting $f(x)=\log _{2} x$ one unit to the right

The red graphs in Figure 3.8 illustrate the following general characteristics of logarithmic functions:

Characteristics of Logarithmic Functions of the Form $f(x)=\log _{b} x$

1. The domain of $f(x)=\log _{b} x$ consists of all positive real numbers: $(0, \infty)$. The range of $f(x)=\log _{b} x$ consists of all real numbers: $(-\infty, \infty)$.
2. The graphs of all logarithmic functions of the form $f(x)=\log _{b} x$ pass through the point $(1,0)$ because $f(1)=\log _{b} 1=0$. The x-intercept is 1 . There is no y-intercept.
3. If $b>1, f(x)=\log _{b} x$ has a graph that goes up to the right and is an increasing function.
4. If $0<b<1, f(x)=\log _{b} x$ has a graph that goes down to the right and is a decreasing function.
5. The graph of $f(x)=\log _{b} x$ approaches, but does not touch, the y-axis. The y-axis, or $x=0$, is a vertical asymptote.

The graphs of logarithmic functions can be translated vertically or horizontally, reflected, stretched, or shrunk. These transformations are summarized in Table 3.5.

Table 3.5 Transformations Involving Logarithmic Functions
In each case, c represents a positive real number.

Transformation	Equation	Description
Vertical translation	$\begin{aligned} & g(x)=\log _{b} x+c \\ & g(x)=\log _{b} x-c \end{aligned}$	- Shifts the graph of $f(x)=\log _{b} x$ upward c units. - Shifts the graph of $f(x)=\log _{b} x$ downward c units.
Horizontal translation	$g(x)=\log _{b}(x+c)$ $g(x)=\log _{b}(x-c)$	- Shifts the graph of $f(x)=\log _{b} x$ to the left c units. Vertical asymptote: $x=-c$ - Shifts the graph of $f(x)=\log _{b} x$ to the right c units. Vertical asymptote: $x=c$
Reflection	$\begin{aligned} & g(x)=-\log _{b} x \\ & g(x)=\log _{b}(-x) \end{aligned}$	- Reflects the graph of $f(x)=\log _{b} x$ about the x-axis. - Reflects the graph of $f(x)=\log _{b} x$ about the y-axis.
Vertical stretching or shrinking	$g(x)=c \log _{b} x$	- Vertically stretches the graph of $f(x)=\log _{b} x$ if $c>1$. - Vertically shrinks the graph of $f(x)=\log _{b} x$ if $0<c<1$.
Horizontal stretching or shrinking	$g(x)=\log _{b}(c x)$	- Horizontally shrinks the graph of $f(x)=\log _{b} x$ if $c>1$. - Horizontally stretches the graph of $f(x)=\log _{b} x$ if $0<c<1$.

For example, Figure 3.9 illustrates that the graph of $g(x)=\log _{2}(x-1)$ is the graph of $f(x)=\log _{2} x$ shifted one unit to the right. If a logarithmic function is translated to the left or to the right, both the x-intercept and the vertical asymptote are shifted by the amount of the horizontal shift. In Figure 3.9, the x-intercept of f is 1 . Because g is shifted one unit to the right, its x-intercept is 2 . Also observe that the vertical asymptote for f, the y-axis, or $x=0$, is shifted one unit to the right for the vertical asymptote for g. Thus, $x=1$ is the vertical asymptote for g.

FIGURE 3.10 Shifting vertically up three units

6 Find the domain of a logarithmic function.

FIGURE 3.13 The domain of $f(x)=\log _{4}(x+3)$ is $(-3, \infty)$.

Here are some other examples of transformations of graphs of logarithmic functions:

- The graph of $g(x)=3+\log _{4} x$ is the graph of $f(x)=\log _{4} x$ shifted up three units, shown in Figure 3.10.
- The graph of $h(x)=-\log _{2} x$ is the graph of $f(x)=\log _{2} x$ reflected about the x-axis, shown in Figure 3.11.
- The graph of $r(x)=\log _{2}(-x)$ is the graph of $f(x)=\log _{2} x$ reflected about the y-axis, shown in Figure 3.12.

FIGURE 3.11 Reflection about the x-axis

FIGURE 3.12 Reflection about the y-axis

The Domain of a Logarithmic Function

In Section 3.1, we learned that the domain of an exponential function of the form $f(x)=b^{x}$ includes all real numbers and its range is the set of positive real numbers. Because the logarithmic function reverses the domain and the range of the exponential function, the domain of a logarithmic function of the form $f(x)=\log _{b} x$ is the set of all positive real numbers. Thus, $\log _{2} 8$ is defined because the value of x in the logarithmic expression, 8 , is greater than zero and therefore is included in the domain of the logarithmic function $f(x)=\log _{2} x$. However, $\log _{2} 0$ and $\log _{2}(-8)$ are not defined because 0 and -8 are not positive real numbers and therefore are excluded from the domain of the logarithmic function $f(x)=\log _{2} x$. In general, the domain of $f(x)=\log _{b} g(x)$ consists of all x for which $g(x)>0$.

EXAMPLE 7 Finding the Domain of a Logarithmic Function

Find the domain of $f(x)=\log _{4}(x+3)$.

SOLUTION

The domain of f consists of all x for which $x+3>0$. Solving this inequality for x, we obtain $x>-3$. Thus, the domain of f is $(-3, \infty)$. This is illustrated in Figure 3.13. The vertical asymptote is $x=-3$ and all points on the graph of f have x-coordinates that are greater than -3 .
\int Check Point 7 Find the domain of $f(x)=\log _{4}(x-5)$.

Common Logarithms

The logarithmic function with base 10 is called the common logarithmic function The function $f(x)=\log _{10} x$ is usually expressed as $f(x)=\log x$. A calculator with a LOG key can be used to evaluate common logarithms. Here are some examples:

Logarithm

$\log 1000$
$\log \frac{5}{2}$
$\log 5$
$\log 2$
$\log (-3)$

Most Scientific

Calculator Keystrokes
1000 LOG
($5 \longdiv { \div } 2) \mathrm{LOG}$
$5 \mathrm{LOG} \div 2 \mathrm{LOG}=$
$3+/-\mathrm{LOG}$

Most Graphing
Calculator Keystrokes
LOG 1000 ENTER LOG $5 \div 2$) ENTER

LOG $5 \div$ LOG 2 ENTER
LOG (-) 3 ENTER

Display (or
Approximate Display) 3
0.39794
2.32193

ERROR

Some graphing calculators display an open parenthesis when the LOG key is pressed. In this case, remember to close the set of parentheses after entering the function's domain value: LOG $5 \triangle \dot{-}$ LOG $2 \triangle$ ENTER.

The error message or NONREAL ANS given by many calculators for $\log (-3)$ is a reminder that the domain of the common logarithmic function, $f(x)=\log x$, is the set of positive real numbers. In general, the domain of $f(x)=\log g(x)$ consists of all x for which $g(x)>0$.

Many real-life phenomena start with rapid growth and then the growth begins to level off. This type of behavior can be modeled by logarithmic functions.

EXAMPLE 8 Modeling Height of Children

The percentage of adult height attained by a boy who is x years old can be modeled by

$$
f(x)=29+48.8 \log (x+1),
$$

where x represents the boy's age (from 5 to 15) and $f(x)$ represents the percentage of his adult height. Approximately what percentage of his adult height has a boy attained at age eight?

SOLUTION

We substitute the boy's age, 8 , for x and evaluate the function.

$$
\begin{aligned}
f(x) & =29+48.8 \log (x+1) & & \text { This is the given function. } \\
f(8) & =29+48.8 \log (8+1) & & \text { Substitute } 8 \text { for } x . \\
& =29+48.8 \log 9 & & \text { Graphing calculator keystrokes: } \\
& \approx 76 & & 29 \square+48.8 \text { LOG 9 ENTER }
\end{aligned}
$$

Thus, an 8 -year-old boy has attained approximately 76% of his adult height. ... 6 Check Point 8 Use the function in Example 8 to answer this question: Approximately what percentage of his adult height has a boy attained at age ten?

The basic properties of logarithms that were listed earlier in this section can be applied to common logarithms.

Properties of Common Logarithms

General Properties

Common Logarithms

1. $\log _{b} 1=0$
2. $\log 1=0$
3. $\log _{b} b=1$
4. $\log 10=1$
5. $\log _{b} b^{x}=x \curvearrowright$ Inverse
6. $\log 10^{x}=x$
7. $b^{\log _{b} x}=x$ properties
8. $10^{\log x}=x$
(8) Use natural logarithms.

$[-10,10,1]$ by $[-10,10,1]$
FIGURE 3.14 The domain of $f(x)=\ln (3-x)$ is $(-\infty, 3)$.

$[-10,10,1]$ by $[-10,10,1]$
FIGURE 3.153 is excluded from the domain of $h(x)=\ln (x-3)^{2}$.

The property $\log 10^{x}=x$ can be used to evaluate common logarithms involving powers of 10 . For example,

$$
\log 100=\log 10^{2}=2, \quad \log 1000=\log 10^{3}=3, \quad \text { and } \quad \log 10^{7.1}=7.1
$$

EXAMPLE 9 Earthquake Intensity

The magnitude, R, on the Richter scale of an earthquake of intensity I is given by

$$
R=\log \frac{I}{I_{0}}
$$

where I_{0} is the intensity of a barely felt zero-level earthquake. The earthquake that destroyed San Francisco in 1906 was $10^{8.3}$ times as intense as a zero-level earthquake. What was its magnitude on the Richter scale?

SOLUTION

Because the earthquake was $10^{8.3}$ times as intense as a zero-level earthquake, the intensity, I, is $10^{8.3} I_{0}$.

$$
\begin{aligned}
R & =\log \frac{I}{I_{0}} & & \text { This is the formula for magnitude on the Richter scale. } \\
R & =\log \frac{10^{8.3} I_{0}}{I_{0}} & & \text { Substitute } 10^{8.3} I_{0} \text { for } 1 . \\
& =\log 10^{8.3} & & \text { Simplify. } \\
& =8.3 & & \text { Use the property } \log 10^{\times}=x .
\end{aligned}
$$

San Francisco's 1906 earthquake registered 8.3 on the Richter scale. ...
0 Check Point 9 Use the formula in Example 9 to solve this problem. If an earthquake is 10,000 times as intense as a zero-level quake ($I=10,000 I_{0}$), what is its magnitude on the Richter scale?

Natural Logarithms

The logarithmic function with base e is called the natural logarithmic function. The function $f(x)=\log _{e} x$ is usually expressed as $f(x)=\ln x$, read "el en of x." A calculator with an LN key can be used to evaluate natural logarithms. Keystrokes are identical to those shown for common logarithmic evaluations on page 434.

Like the domain of all logarithmic functions, the domain of the natural logarithmic function $f(x)=\ln x$ is the set of all positive real numbers. Thus, the domain of $f(x)=\ln g(x)$ consists of all x for which $g(x)>0$.

EXAMPLE 10 Finding Domains of Natural Logarithmic Functions

Find the domain of each function:
a. $f(x)=\ln (3-x)$
b. $h(x)=\ln (x-3)^{2}$.

SOLUTION

a. The domain of f consists of all x for which $3-x>0$. Solving this inequality for x, we obtain $x<3$. Thus, the domain of f is $\{x \mid x<3\}$ or $(-\infty, 3)$. This is verified by the graph in Figure 3.14.
b. The domain of h consists of all x for which $(x-3)^{2}>0$. It follows that the domain of h is all real numbers except 3. Thus, the domain of h is $\{x \mid x \neq 3\}$ or $(-\infty, 3) \cup(3, \infty)$. This is shown by the graph in Figure 3.15. To make it more obvious that 3 is excluded from the domain, we used a DOT format. ...

Check Point 10 Find the domain of each function:
a. $f(x)=\ln (4-x)$
b. $h(x)=\ln x^{2}$.

The basic properties of logarithms that were listed earlier in this section can be applied to natural logarithms.

Properties of Natural Logarithms

General Properties

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b} b^{x}=x \leadsto$ Inverse
4. $b^{\log _{b} x}=x$ properties
5. $\ln 1=0$

Natural Logarithms

2. $\ln e=1$
3. $\ln e^{x}=x$
4. $e^{\ln x}=x$

Examine the inverse properties, $\ln e^{x}=x$ and $e^{\ln x}=x$. Can you see how \ln and e "undo" one another? For example,

$$
\ln e^{2}=2, \quad \ln e^{7 x^{2}}=7 x^{2}, \quad e^{\ln 2}=2, \quad \text { and } \quad e^{\ln 7 x^{2}}=7 x^{2} .
$$

EXAMPLE 11 Dangerous Heat: Temperature in an Enclosed Vehicle

When the outside air temperature is anywhere from 72° to 96° Fahrenheit, the temperature in an enclosed vehicle climbs by 43° in the first hour. The bar graph in Figure 3.16 shows the temperature increase throughout the hour. The function

$$
f(x)=13.4 \ln x-11.6
$$

models the temperature increase, $f(x)$, in degrees Fahrenheit, after x minutes. Use the function to find the temperature increase, to the nearest degree, after 50 minutes. How well does the function model the actual increase shown in Figure 3.16?

> Temperature Increase in an Enclosed Vehicle

FIGURE 3.16
Source: Professor Jan Null, San Francisco State University

SOLUTION

We find the temperature increase after 50 minutes by substituting 50 for x and evaluating the function at 50 .

$$
\begin{array}{rlrl}
f(x) & =13.4 \ln x-11.6 & & \text { This is the given function. } \\
f(50) & =13.4 \ln 50-11.6 & & \text { Substitute } 50 \text { for } x . \\
& \approx 41 & & \text { Graphing calculator keystrokes: } \\
& & 13.4 \ln 50 \square 11.6 \text { ENTER. On some } \\
& & \text { calculators, a parenthesis is needed after } 50 .
\end{array}
$$

According to the function, the temperature will increase by approximately 41° after 50 minutes. Because the increase shown in Figure $\mathbf{3 . 1 6}$ is 41°, the function models the actual increase extremely well.
Check Point 11 Use the function in Example 11 to find the temperature increase, to the nearest degree, after 30 minutes. How well does the function model the actual increase shown in Figure 3.16?

Blitzer Bonus || The Curious Number e

FIGURE 3.17

You will learn more about each curiosity mentioned below if you take calculus.

- The number e was named by the Swiss mathematician Leonhard Euler (1707-1783), who proved that it is the limit as $n \rightarrow \infty$ of $\left(1+\frac{1}{n}\right)^{n}$.
- e features in Euler's remarkable relationship $e^{i \pi}=-1$, in which $i=\sqrt{-1}$.
- The first few decimal places of e are fairly easy to remember: $e=2.718281828459045 \ldots$.
- The best approximation of e using numbers less than 1000 is also easy to remember: $e \approx \frac{878}{323} \approx 2.71826 \ldots$.
- Isaac Newton (1642-1727), one of the cofounders of calculus, showed that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$, from which we obtain $e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$, an infinite sum suitable for calculation because its terms decrease so rapidly. (Note: $n!$ (n factorial) is the product of all the consecutive integers from n down to $1: n!=n(n-1)(n-2)(n-3) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$.)
- The area of the region bounded by $y=\frac{1}{x}$, the x-axis, $x=1$, and $x=t$ (shaded in Figure 3.17) is a function of t, designated by $A(t)$. Grégoire de Saint-Vincent, a Belgian Jesuit (1584-1667), spent his entire professional life attempting to find a formula for $A(t)$. With his student, he showed that $A(t)=\ln t$, becoming one of the first mathematicians to make use of the logarithmicfunction for something other than a computational device.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $y=\log _{b} x$ is equivalent to the exponential form $\xrightarrow{,} x>0, b>0, b \neq 1$.
2. The function $f(x)=\log _{b} x$ is the \qquad function with base \qquad _.
3. $\log _{b} b=$ \qquad
4. $\log _{b} 1=$
5. $\log _{b} b^{x}=$
6. $b^{\log _{b} x}=$
\qquad
\qquad
7. Using interval notation, the domain of $f(x)=\log _{b} x$ is \qquad and the range is \qquad —.
8. The graph of $f(x)=\log _{b} x$ approaches, but does not touch, the \qquad -axis. This axis, whose equation is —, is a/an \qquad asymptote.
9. The graph of $g(x)=5+\log _{2} x$ is the graph of $f(x)=\log _{2} x$ shifted \qquad
10. The graph of $g(x)=\log _{3}(x+5)$ is the graph of $f(x)=\log _{3} x$ shifted
11. The graph of $g(x)=-\log _{4} x$ is the graph of $f(x)=\log _{4} x$ reflected about the \qquad —.
12. The graph of $g(x)=\log _{5}(-x)$ is the graph of $f(x)=\log _{5} x$ reflected about the \qquad _.
13. The domain of $g(x)=\log _{2}(5-x)$ can be found by solving the inequality \qquad -.
14. The logarithmic function with base 10 is called the \qquad logarithmic function. The function $f(x)=\log _{10} x$ is usually expressed as $f(x)=$ \qquad _.
15. The logarithmic function with base e is called the \qquad logarithmic function. The function $f(x)=\log _{e} x$ is usually expressed as $f(x)=$ \qquad

EXERCISE SET 3.2

Practice Exercises

In Exercises 1-8, write each equation in its equivalent exponential form.

1. $4=\log _{2} 16$
2. $6=\log _{2} 64$
3. $2=\log _{3} x$
4. $2=\log _{9} x$
5. $5=\log _{b} 32$
6. $3=\log _{b} 27$
7. $\log _{6} 216=y$
8. $\log _{5} 125=y$

In Exercises 9-20, write each equation in its equivalent logarithmic form.
9. $2^{3}=8$
10. $5^{4}=625$
11. $2^{-4}=\frac{1}{16}$
12. $5^{-3}=\frac{1}{125}$
13. $\sqrt[3]{8}=2$
14. $\sqrt[3]{64}=4$
15. $13^{2}=x$
16. $15^{2}=x$
17. $b^{3}=1000$
18. $b^{3}=343$
19. $7^{y}=200$
20. $8^{y}=300$

In Exercises 21-42, evaluate each expression without using a calculator.
21. $\log _{4} 16$
22. $\log _{7} 49$
23. $\log _{2} 64$
24. $\log _{3} 27$
25. $\log _{5} \frac{1}{5}$
26. $\log _{6} \frac{1}{6}$
27. $\log _{2} \frac{1}{8}$
28. $\log _{3} \frac{1}{9}$
29. $\log _{7} \sqrt{7}$
30. $\log _{6} \sqrt{6}$
31. $\log _{2} \frac{1}{\sqrt{2}}$
32. $\log _{3} \frac{1}{\sqrt{3}}$
33. $\log _{64} 8$
34. $\log _{81} 9$
35. $\log _{5} 5$
36. $\log _{11} 11$
37. $\log _{4} 1$
38. $\log _{6} 1$
39. $\log _{5} 5^{7}$
40. $\log _{4} 4^{6}$
41. $8^{\log _{8} 19}$
42. $7^{\log _{7} 23}$
43. Graph $f(x)=4^{x}$ and $g(x)=\log _{4} x$ in the same rectangular coordinate system.
44. Graph $f(x)=5^{x}$ and $g(x)=\log _{5} x$ in the same rectangular coordinate system.
45. Graph $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\log _{\frac{1}{2}} x$ in the same rectangular coordinate system.
46. Graph $f(x)=\left(\frac{1}{4}\right)^{x}$ and $g(x)=\log _{\frac{1}{4}} x$ in the same rectangular coordinate system.
In Exercises 47-52, the graph of a logarithmic function is given.
Select the function for each graph from the following options:

$$
\begin{aligned}
& f(x)=\log _{3} x, g(x)=\log _{3}(x-1), h(x)=\log _{3} x-1, \\
& F(x)=-\log _{3} x, G(x)=\log _{3}(-x), H(x)=1-\log _{3} x \text {. }
\end{aligned}
$$

47.

48.

49.

50.

51.

52.

In Exercises 53-58, begin by graphing $f(x)=\log _{2} x$. Then use transformations of this graph to graph the given function. What is the vertical asymptote? Use the graphs to determine each function's domain and range.
53. $g(x)=\log _{2}(x+1)$
54. $g(x)=\log _{2}(x+2)$
55. $h(x)=1+\log _{2} x$
56. $h(x)=2+\log _{2} x$
57. $g(x)=\frac{1}{2} \log _{2} x$
58. $g(x)=-2 \log _{2} x$

The figure shows the graph of $f(x)=\log x$. In Exercises 59-64, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range.

59. $g(x)=\log (x-1)$
60. $g(x)=\log (x-2)$
61. $h(x)=\log x-1$
62. $h(x)=\log x-2$
63. $g(x)=1-\log x$
64. $g(x)=2-\log x$

The figure shows the graph of $f(x)=\ln x$. In Exercises 65-74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range.

65. $g(x)=\ln (x+2)$
66. $g(x)=\ln (x+1)$
67. $h(x)=\ln (2 x)$
68. $h(x)=\ln \left(\frac{1}{2} x\right)$
69. $g(x)=2 \ln x$
70. $g(x)=\frac{1}{2} \ln x$
71. $h(x)=-\ln x$
72. $h(x)=\ln (-x)$
73. $g(x)=2-\ln x$
74. $g(x)=1-\ln x$

In Exercises 75-80, find the domain of each logarithmic function.
75. $f(x)=\log _{5}(x+4)$
76. $f(x)=\log _{5}(x+6)$
77. $f(x)=\log (2-x)$
78. $f(x)=\log (7-x)$
79. $f(x)=\ln (x-2)^{2}$
80. $f(x)=\ln (x-7)^{2}$

In Exercises 81-100, evaluate or simplify each expression without using a calculator.
81. $\log 100$
82. $\log 1000$
83. $\log 10^{7}$
84. $\log 10^{8}$
85. $10^{\log 33}$
86. $10^{\log 53}$
87. $\ln 1$
88. $\ln e$
89. $\ln e^{6}$
90. $\ln e^{7}$
91. $\ln \frac{1}{e^{6}}$
92. $\ln \frac{1}{e^{7}}$
93. $e^{\ln 125}$
94. $e^{\ln 300}$
95. $\ln e^{9 x}$
96. $\ln e^{13 x}$
97. $e^{\ln 5 x^{2}}$
98. $e^{\ln 7 x^{2}}$
99. $10^{\log \sqrt{x}}$
100. $10^{\log \sqrt[3]{x}}$

Practice Plus

In Exercises 101-104, write each equation in its equivalent exponential form. Then solve for x.
101. $\log _{3}(x-1)=2$
102. $\log _{5}(x+4)=2$
103. $\log _{4} x=-3$
104. $\log _{64} x=\frac{2}{3}$

In Exercises 105-108, evaluate each expression without using a calculator.
105. $\log _{3}\left(\log _{7} 7\right)$
106. $\log _{5}\left(\log _{2} 32\right)$
107. $\log _{2}\left(\log _{3} 81\right)$
108. $\log (\ln e)$

In Exercises 109-112, find the domain of each logarithmic function.
109. $f(x)=\ln \left(x^{2}-x-2\right)$
110. $f(x)=\ln \left(x^{2}-4 x-12\right)$
111. $f(x)=\log \left(\frac{x+1}{x-5}\right)$
112. $f(x)=\log \left(\frac{x-2}{x+5}\right)$

Application Exercises

The percentage of adult height attained by a girl who is x years old can be modeled by

$$
f(x)=62+35 \log (x-4)
$$

where x represents the girl's age (from 5 to 15) and $f(x)$ represents the percentage of her adult height. Use the function to solve Exercises 113-114. Round answers to the nearest tenth of a percent.
113. Approximately what percentage of her adult height has a girl attained at age 13 ?
114. Approximately what percentage of her adult height has a girl attained at age ten?
The bar graph indicates that the percentage of first-year college students expressing antifeminist views declined after 1970. Use this information to solve Exercises 115-116.

Source: John Macionis, Sociology, Thirteenth Edition, Prentice Hall, 2010.
115. The function

$$
f(x)=-7.52 \ln x+53
$$

models the percentage of first-year college men, $f(x)$, expressing antifeminist views (by agreeing with the statement) x years after 1969 .
a. Use the function to find the percentage of first-year college men expressing antifeminist views in 2008. Round to one decimal place. Does this function value overestimate or underestimate the percentage displayed by the graph? By how much?
b. Use the function to project the percentage of first-year college men who will express antifeminist views in 2015. Round to one decimal place.
116. The function

$$
f(x)=-4.82 \ln x+32.5
$$

models the percentage of first-year college women, $f(x)$, expressing antifeminist views (by agreeing with the statement) x years after 1969 .
a. Use the function to find the percentage of first-year college women expressing antifeminist views in 2008. Round to one decimal place. Does this function value overestimate or underestimate the percentage displayed by the graph? By how much?
b. Use the function to project the percentage of first-year college women who will express antifeminist views in 2015. Round to one decimal place.

The loudness level of a sound, D, in decibels, is given by the formula

$$
D=10 \log \left(10^{12} I\right)
$$

where I is the intensity of the sound, in watts per meter ${ }^{2}$. Decibel levels range from 0, a barely audible sound, to 160, a sound resulting in a ruptured eardrum. (Any exposure to sounds of 130 decibels or higher puts a person at immediate risk for hearing damage.) Use the formula to solve Exercises 117-118.
117. The sound of a blue whale can be heard 500 miles away, reaching an intensity of 6.3×10^{6} watts per meter ${ }^{2}$. Determine the decibel level of this sound. At close range, can the sound of a blue whale rupture the human eardrum?
118. What is the decibel level of a normal conversation, 3.2×10^{-6} watt per meter ${ }^{2}$?
119. Students in a psychology class took a final examination. As part of an experiment to see how much of the course content they remembered over time, they took equivalent forms of the exam in monthly intervals thereafter. The average score for the group, $f(t)$, after t months was modeled by the function

$$
f(t)=88-15 \ln (t+1), \quad 0 \leq t \leq 12
$$

a. What was the average score on the original exam?
b. What was the average score after 2 months? 4 months? 6 months? 8 months? 10 months? one year?
c. Sketch the graph of f (either by hand or with a graphing utility). Describe what the graph indicates in terms of the material retained by the students.

Writing in Mathematics

120. Describe the relationship between an equation in logarithmic form and an equivalent equation in exponential form.
121. What question can be asked to help evaluate $\log _{3} 81$?
122. Explain why the logarithm of 1 with base b is 0 .
123. Describe the following property using words: $\log _{b} b^{x}=x$.
124. Explain how to use the graph of $f(x)=2^{x}$ to obtain the graph of $g(x)=\log _{2} x$.
125. Explain how to find the domain of a logarithmic function.
126. Logarithmic models are well suited to phenomena in which growth is initially rapid but then begins to level off. Describe something that is changing over time that can be modeled using a logarithmic function.
127. Suppose that a girl is 4 feet 6 inches at age 10. Explain how to use the function in Exercises 113-114 to determine how tall she can expect to be as an adult.

Technology Exercises

In Exercises 128-131, graph f and g in the same viewing rectangle.
Then describe the relationship of the graph of g to the graph of f.
128. $f(x)=\ln x, g(x)=\ln (x+3)$
129. $f(x)=\ln x, g(x)=\ln x+3$
130. $f(x)=\log x, g(x)=-\log x$
131. $f(x)=\log x, g(x)=\log (x-2)+1$
132. Students in a mathematics class took a final examination. They took equivalent forms of the exam in monthly intervals thereafter. The average score, $f(t)$, for the group after t months was modeled by the human memory function $f(t)=75-10 \log (t+1)$, where $0 \leq t \leq 12$. Use a graphing utility to graph the function. Then determine how many months elapsed before the average score fell below 65.
133. In parts (a)-(c), graph f and g in the same viewing rectangle.
a. $f(x)=\ln (3 x), g(x)=\ln 3+\ln x$
b. $f(x)=\log \left(5 x^{2}\right), g(x)=\log 5+\log x^{2}$
c. $f(x)=\ln \left(2 x^{3}\right), g(x)=\ln 2+\ln x^{3}$
d. Describe what you observe in parts (a)-(c). Generalize this observation by writing an equivalent expression for $\log _{b}(M N)$, where $M>0$ and $N>0$.
e. Complete this statement: The logarithm of a product is equal to \qquad
134. Graph each of the following functions in the same viewing rectangle and then place the functions in order from the one that increases most slowly to the one that increases most rapidly.

$$
y=x, y=\sqrt{x}, y=e^{x}, y=\ln x, y=x^{x}, y=x^{2}
$$

Critical Thinking Exercises

Make Sense? In Exercises 135-138, determine whether each statement makes sense or does not make sense, and explain your reasoning.
135. I've noticed that exponential functions and logarithmic functions exhibit inverse, or opposite, behavior in many ways. For example, a vertical translation shifts an exponential function's horizontal asymptote and a horizontal translation shifts a logarithmic function's vertical asymptote.
136. I estimate that $\log _{8} 16$ lies between 1 and 2 because $8^{1}=8$ and $8^{2}=64$.
137. I can evaluate some common logarithms without having to use a calculator.
138. An earthquake of magnitude 8 on the Richter scale is twice as intense as an earthquake of magnitude 4.
In Exercises 139-142, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
139. $\frac{\log _{2} 8}{\log _{2} 4}=\frac{8}{4}$
140. $\log (-100)=-2$
141. The domain of $f(x)=\log _{2} x$ is $(-\infty, \infty)$.
142. $\log _{b} x$ is the exponent to which b must be raised to obtain x.
143. Without using a calculator, find the exact value of

$$
\frac{\log _{3} 81-\log _{\pi} 1}{\log _{2 \sqrt{2}} 8-\log 0.001}
$$

144. Without using a calculator, find the exact value of $\log _{4}\left[\log _{3}\left(\log _{2} 8\right)\right]$.
145. Without using a calculator, determine which is the greater number: $\log _{4} 60$ or $\log _{3} 40$.

Group Exercise

146. This group exercise involves exploring the way we grow. Group members should create a graph for the function that models the percentage of adult height attained by a boy who is x years old, $f(x)=29+48.8 \log (x+1)$. Let $x=5,6$, $7, \ldots, 15$, find function values, and connect the resulting points with a smooth curve. Then create a graph for the function that models the percentage of adult height attained by a girl who is x years old, $g(x)=62+35 \log (x-4)$. Let $x=5,6,7, \ldots, 15$, find function values, and connect the resulting points with a smooth curve. Group members should then discuss similarities and differences in the growth patterns for boys and girls based on the graphs.

Preview Exercises

Exercises 147-149 will help you prepare for the material covered in the next section. In each exercise, evaluate the indicated logarithmic expressions without using a calculator.
147. a. Evaluate: $\log _{2} 32$.
b. Evaluate: $\log _{2} 8+\log _{2} 4$.
c. What can you conclude about $\log _{2} 32$, or $\log _{2}(8 \cdot 4)$?
148. a. Evaluate: $\log _{2} 16$.
b. Evaluate: $\log _{2} 32-\log _{2} 2$.
c. What can you conclude about

$$
\log _{2} 16, \text { or } \log _{2}\left(\frac{32}{2}\right) ?
$$

149. a. Evaluate: $\log _{3} 81$.
b. Evaluate: $2 \log _{3} 9$.
c. What can you conclude about

$$
\log _{3} 81, \text { or } \log _{3} 9^{2} ?
$$

SECTION 3.3

Properties of Logarithms

Objectives

(1) Use the product rule.
(2) Use the quotient rule.
(3) Use the power rule.
(4) Expand logarithmic expressions.
(5) Condense Iogarithmic expressions.
(6) Use the change-of-base property.

1) Use the product rule.

DISCOVERY

We know that $\log 100,000=5$. Show that you get the same result by writing 100,000 as $1000 \cdot 100$ and then using the product rule. Then verify the product rule by using other numbers whose logarithms are easy to find. proof of the product rule in the appendix.

We all learn new things in different ways. In this section, we consider important properties of logarithms. What would be the most effective way for you to learn these properties? Would it be helpful to use your graphing utility and discover one of these properties for yourself? To do so, work Exercise 133 in Exercise Set 3.2 before continuing. Would it be helpful to evaluate certain logarithmic expressions that suggest three of the properties? If this is the case, work Preview Exercises 147-149 in Exercise Set 3.2 before continuing. Would the properties become more meaningful if you could see exactly where they come from? If so, you will find details of the proofs of many of these properties in the appendix. The remainder of our work in this chapter will be based on the properties of logarithms that you learn in this section.

The Product Rule

Properties of exponents correspond to properties of logarithms. For example, when we multiply with the same base, we add exponents:

$$
b^{m} \cdot b^{n}=b^{m+n}
$$

This property of exponents, coupled with an awareness that a logarithm is an exponent, suggests the following property, called the product rule:

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N
$$

The logarithm of a product is the sum of the logarithms.

When we use the product rule to write a single logarithm as the sum of two logarithms, we say that we are expanding a logarithmic expression. For example, we can use the product rule to expand $\ln (7 x)$:

EXAMPLE 1 Using the Product Rule

Use the product rule to expand each logarithmic expression:
a. $\log _{4}(7 \cdot 5)$
b. $\log (10 x)$.

SOLUTION

a. $\log _{4}(7 \cdot 5)=\log _{4} 7+\log _{4} 5$
b. $\log (10 x)=\log 10+\log x$ The logarithm of a product is the sum of the logarithms. These are common logarithms with base 10 understood.

$$
=1+\log x \quad \text { Because } \log _{b} b=1, \text { then } \log 10=1 .
$$

Check Point 1 Use the product rule to expand each logarithmic expression:
a. $\log _{6}(7 \cdot 11)$
b. $\log (100 x)$.

The Quotient Rule

When we divide with the same base, we subtract exponents:

$$
\frac{b^{m}}{b^{n}}=b^{m-n}
$$

This property suggests the following property of logarithms, called the quotient rule:

The Quotient Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

The logarithm of a quotient is the difference of the logarithms.

When we use the quotient rule to write a single logarithm as the difference of two logarithms, we say that we are expanding a logarithmic expression. For example, we can use the quotient rule to expand $\log \frac{x}{2}$:

$$
\begin{aligned}
& \qquad \log \left(\frac{x}{2}\right)=\log x-\log 2 . \\
& \begin{array}{l}
\text { The logarithm } \\
\text { of a quotient }
\end{array} \\
& \text { is the difference of } \\
& \text { the logarithms. }
\end{aligned}
$$

EXAMPLE 2 Using the Quotient Rule

Use the quotient rule to expand each logarithmic expression:
a. $\log _{7}\left(\frac{19}{x}\right)$
b. $\ln \left(\frac{e^{3}}{7}\right)$.

SOLUTION

a. $\log _{7}\left(\frac{19}{x}\right)=\log _{7} 19-\log _{7} x \quad \begin{aligned} & \text { The logarithm of a quotient is the difference of } \\ & \text { the logarithms. }\end{aligned}$ the logarithms.
b. $\ln \left(\frac{e^{3}}{7}\right)=\ln e^{3}-\ln 7 \quad \begin{aligned} & \text { The logarithm of a quotient is the difference of } \\ & \text { the logarithms. These are natural logarithms }\end{aligned}$ with base e understood.

$$
=3-\ln 7 \quad \text { Because } \ln e^{x}=x, \text { then } \ln e^{3}=3
$$

$\$$ Check Point 2 Use the quotient rule to expand each logarithmic expression:
a. $\log _{8}\left(\frac{23}{x}\right)$
b. $\ln \left(\frac{e^{5}}{11}\right)$.

The Power Rule

When an exponential expression is raised to a power, we multiply exponents:

$$
\left(b^{m}\right)^{n}=b^{m n}
$$

This property suggests the following property of logarithms, called the power rule:

The Power Rule

Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$
\log _{b} M^{p}=p \log _{b} M
$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

When we use the power rule to "pull the exponent to the front," we say that we are expanding a logarithmic expression. For example, we can use the power rule to expand $\ln x^{2}$:

Figure 3.18 shows the graphs of $y=\ln x^{2}$ and $y=2 \ln x$ in $[-5,5,1]$ by $[-5,5,1]$ viewing rectangles. Are $\ln x^{2}$ and $2 \ln x$ the same? The graphs illustrate that $y=\ln x^{2}$ and $y=2 \ln x$ have different domains. The graphs are only the same if $x>0$. Thus, we should write

$$
\ln x^{2}=2 \ln x \text { for } x>0
$$

FIGURE $3.18 \ln x^{2}$ and $2 \ln x$ have different domains.

When expanding a logarithmic expression, you might want to determine whether the rewriting has changed the domain of the expression. For the rest of this section, assume that all variables and variable expressions represent positive numbers.

EXAMPLE 3 Using the Power Rule

Use the power rule to expand each logarithmic expression:
a. $\log _{5} 7^{4}$
b. $\ln \sqrt{x}$
c. $\log (4 x)^{5}$.

SOLUTION

a. $\log _{5} 7^{4}=4 \log _{5} 7$
b. $\ln \sqrt{x}=\ln x^{\frac{1}{2}}$

$$
=\frac{1}{2} \ln x \quad \text { Use the power rule to bring the exponent to the front. }
$$

c. $\log (4 x)^{5}=5 \log (4 x) \quad$ We immediately apply the power rule because the entire variable expression, $4 x$, is raised to the 5 th power.
$\$$ Check Point 3 Use the power rule to expand each logarithmic expression:
a. $\log _{6} 3^{9}$
b. $\ln \sqrt[3]{x}$
c. $\log (x+4)^{2}$.

Expanding Logarithmic Expressions

It is sometimes necessary to use more than one property of logarithms when you expand a logarithmic expression. Properties for expanding logarithmic expressions are as follows:

Properties for Expanding Logarithmic Expressions

For $M>0$ and $N>0$:

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N \quad$ Product rule
2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotientrule
3. $\log _{b} M^{p}=p \log _{b} M \quad$ Power rule

GREAT QUESTION!

Are there some common screw-ups that I can avoid when using properties of logarithms?

The graphs show that
$\ln (x+3) \neq \ln x+\ln 3$.

$$
\begin{array}{cc}
y=\ln x \text { shifted } & y=\ln x \text { shifted } \\
3 \text { units left } & \ln 3 \text { units up }
\end{array}
$$

In general,
$\log _{b}(M+N) \neq \log _{b} M+\log _{b} N$.

$[-4,5,1]$ by $[-3,3,1]$

EXAMPLE 4 Expanding Logarithmic Expressions

Use logarithmic properties to expand each expression as much as possible:
a. $\log _{b}\left(x^{2} \sqrt{y}\right)$
b. $\log _{6}\left(\frac{\sqrt[3]{x}}{36 y^{4}}\right)$.
(5) Condense logarithmic expressions.

GREAT QUESTION!

Are the properties listed on the right the same as those in the box on page 444 ?
Yes. The only difference is that we've reversed the sides in each property from the previous box.

SOLUTION

We will have to use two or more of the properties for expanding logarithms in each part of this example.

$$
\text { a. } \begin{array}{rlrl}
\log _{b}\left(x^{2} \sqrt{y}\right) & =\log _{b}\left(x^{2} y^{\frac{1}{2}}\right) & & \text { Use exponential notation. } \\
& =\log _{b} x^{2}+\log _{b} y^{\frac{1}{2}} & & \text { Use the product rule. } \\
& =2 \log _{b} x+\frac{1}{2} \log _{b} y & & \text { Use the power rule. } \\
\text { b. } \begin{aligned}
\log _{6}\left(\frac{\sqrt[3]{x}}{36 y^{4}}\right) & =\log _{6}\left(\frac{x^{\frac{1}{3}}}{36 y^{4}}\right) \\
& =\log _{6} x^{\frac{1}{3}}-\log _{6}\left(36 y^{4}\right) \\
& =\log _{6} x^{\frac{1}{3}}-\left(\log _{6} 36+\log _{6} y^{4}\right)
\end{aligned} & & \begin{array}{l}
\text { Use the product rule on } \\
\text { log }_{6}\left(36 y^{4}\right) .
\end{array} \\
& =\frac{1}{3} \log _{6} x-\left(\log _{6} 36+4 \log _{6} y\right) & & \begin{array}{l}
\text { Use the power rule. }
\end{array} \\
& =\frac{1}{3} \log _{6} x-\log _{6} 36-4 \log _{6} y & & \text { Apply the distributive property. }
\end{array}
$$

$\$$ Check Point 4 Use logarithmic properties to expand each expression as much as possible:
a. $\log _{b}\left(x^{4} \sqrt[3]{y}\right)$
b. $\log _{5}\left(\frac{\sqrt{x}}{25 y^{3}}\right)$.

Condensing Logarithmic Expressions

To condense a logarithmic expression, we write the sum or difference of two or more logarithmic expressions as a single logarithmic expression. We use the properties of logarithms to do so.

Properties for Condensing Logarithmic Expressions

$$
\text { For } M>0 \text { and } N>0 \text { : }
$$

1. $\log _{b} M+\log _{b} N=\log _{b}(M N) \quad$ Product rule
2. $\log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right) \quad$ Quotient rule
3. $p \log _{b} M=\log _{b} M^{p} \quad$ Power rule

EXAMPLE 5 Condensing Logarithmic Expressions

Write as a single logarithm:
a. $\log _{4} 2+\log _{4} 32$
b. $\log (4 x-3)-\log x$.

SOLUTION

a. $\log _{4} 2+\log _{4} 32=\log _{4}(2 \cdot 32)$

$$
=\log _{4} 64
$$

$$
=3
$$

b. $\log (4 x-3)-\log x=\log \left(\frac{4 x-3}{x}\right)$ Use the quotient rule.
\int Check Point 5 Write as a single logarithm:
a. $\log 25+\log 4$
b. $\log (7 x+6)-\log x$.

Coefficients of logarithms must be 1 before you can condense them using the product and quotient rules. For example, to condense

$$
2 \ln x+\ln (x+1)
$$

the coefficient of the first term must be 1 . We use the power rule to rewrite the coefficient as an exponent:

1. Use the power rule to make the number in front an exponent.

$$
2 \ln x+\ln (x+1)=\ln x^{2}+\ln (x+1)=\ln \left[x^{2}(x+1)\right] .
$$

2. Use the product rule. The sum of logarithms with coefficients of 1 is the logarithm of the product.

EXAMPLE 6 Condensing Logarithmic Expressions

Write as a single logarithm:
a. $\frac{1}{2} \log x+4 \log (x-1)$
b. $3 \ln (x+7)-\ln x$
c. $4 \log _{b} x-2 \log _{b} 6-\frac{1}{2} \log _{b} y$.

SOLUTION

a. $\frac{1}{2} \log x+4 \log (x-1)$

$$
\begin{array}{ll}
=\log x^{\frac{1}{2}}+\log (x-1)^{4} & \text { Use the power rule so that all coefficients are } 1 . \\
=\log \left[x^{\frac{1}{2}}(x-1)^{4}\right] & \begin{array}{l}
\text { Use the product rule. The condensed form } \\
\text { can be expressed as } \log \left[\sqrt{x}(x-1)^{4}\right] .
\end{array}
\end{array}
$$

b. $3 \ln (x+7)-\ln x$
$=\ln (x+7)^{3}-\ln x \quad$ Use the power rule so that all coefficients are 1.
$=\ln \left[\frac{(x+7)^{3}}{x}\right] \quad$ Use the quotient rule.
c. $4 \log _{b} x-2 \log _{b} 6-\frac{1}{2} \log _{b} y$

$$
\begin{array}{ll}
=\log _{b} x^{4}-\log _{b} 6^{2}-\log _{b} y^{\frac{1}{2}} & \text { Use the power rule so that all coefficients are } 1 . \\
=\log _{b} x^{4}-\left(\log _{b} 36+\log _{b} y^{\frac{1}{2}}\right) & \text { Rewrite as a single subtraction. } \\
=\log _{b} x^{4}-\log _{b}\left(36 y^{\frac{1}{2}}\right) & \\
=\log _{b}\left(\frac{x^{4}}{36 y^{\frac{1}{2}}}\right) \text { ore the product rule. } \log _{b}\left(\frac{x^{4}}{36 \sqrt{y}}\right) & \text { Use the quotient rule. }
\end{array}
$$

\oint Check Point 6 Write as a single logarithm:
a. $2 \ln x+\frac{1}{3} \ln (x+5)$
b. $2 \log (x-3)-\log x$
c. $\frac{1}{4} \log _{b} x-2 \log _{b} 5-10 \log _{b} y$.

The Change-of-Base Property

We have seen that calculators give the values of both common logarithms (base 10) and natural logarithms (base e). To find a logarithm with any other base, we can use the following change-of-base property:

The Change-of-Base Property

For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

The logarithm of M with base b is equal to the logarithm of M with any new base divided by the logarithm of b with that new base.

In the change-of-base property, base b is the base of the original logarithm. Base a is a new base that we introduce. Thus, the change-of-base property allows us to change from base b to any new base a, as long as the newly introduced base is a positive number not equal to 1 .

The change-of-base property is used to write a logarithm in terms of quantities that can be evaluated with a calculator. Because calculators contain keys for common (base 10) and natural (base e) logarithms, we will frequently introduce base 10 or base e.

Change-of-Base Property	Introducing Common Logarithms	Introducing Natural Logarithms
$\log _{b} M=\frac{\log _{a} M}{\log _{a} b}$	$\log _{b} M=\frac{\log _{10} M}{\log _{10} / b}$	$\log _{b} M=\frac{\log _{e} M}{\log _{e} b}$
	a is the new introduced base.	

Using the notations for common logarithms and natural logarithms, we have the following results:

The Change-of-Base Property: Introducing Common

 and Natural Logarithms
Introducing Common Logarithms

$$
\log _{b} M=\frac{\log M}{\log b}
$$

Introducing Natural Logarithms
$\log _{b} M=\frac{\ln M}{\ln b}$

EXAMPLE 7 Changing Base to Common Logarithms

Use common logarithms to evaluate $\log _{5} 140$.

SOLUTION

Because $\log _{b} M=\frac{\log M}{\log b}$,

$$
\begin{aligned}
\log _{5} 140 & =\frac{\log 140}{\log 5} \\
& \approx 3.07 . \quad \begin{array}{l}
\text { Use a calculator: } 140 \text { LOG } \div 5 \text { LOG }= \\
\\
\\
\\
\text { or LOG } 140 \square \div \text { LOG } 5 \text { ENTER. On some } \\
\text { calculators, parentheses are needed after } 140 \text { and } 5 .
\end{array}
\end{aligned}
$$

This means that $\log _{5} 140 \approx 3.07$.

EXAMPLE 8 Changing Base to Natural Logarithms

Use natural logarithms to evaluate $\log _{5} 140$.

SOLUTION

Because $\log _{b} M=\frac{\ln M}{\ln b}$,
$\log _{5} 140=\frac{\ln 140}{\ln 5}$
23.07. Use a calculator: 140 LN $\div 5$ LN $=$
or LN $140 \div \div$ LN 5 ENTER. On some calculators,
parentheses are needed after 140 and 5.
We have again shown that $\log _{5} 140 \approx 3.07$.
\int Check Point 8 Use natural logarithms to evaluate $\log _{7} 2506$.

TECHNOLOGY

We can use the change-of-base property to graph logarithmic functions with bases other than 10 or e on a graphing utility. For example, Figure 3.19 shows the graphs of

$$
y=\log _{2} x \quad \text { and } \quad y=\log _{20} x
$$

in a $[0,10,1]$ by $[-3,3,1]$ viewing rectangle. Because $\log _{2} x=\frac{\ln x}{\ln 2}$ and $\log _{20} x=\frac{\ln x}{\ln 20}$, the functions are entered as

$$
\begin{aligned}
y_{1} & =\mathrm{LN} x \quad \ddots \mathrm{LN} 2 \\
\text { and } y_{2} & =\mathrm{LN} x \quad \ddots \mathrm{LN} 20 .
\end{aligned}
$$

FIGURE 3.19 Using the change-of-base property to graph logarithmic functions

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The product rule for logarithms states that $\log _{b}(M N)=$ \qquad The logarithm of a product is the \qquad of the logarithms.
2. The quotient rule for logarithms states that
$\log _{b}\left(\frac{M}{N}\right)=$ \qquad The logarithm of a quotient is the \qquad of the logarithms.
3. The power rule for logarithms states that
$\log _{b} M^{p}=$ \qquad The logarithm of a number with an exponent is the \qquad of the exponent and the logarithm of that number.
4. The change-of-base property for logarithms allows us to write logarithms with base b in terms of a new base a. Introducing base a, the property states that

$$
\log _{b} M=\bar{\square} .
$$

EXERCISE SET 3.3

Practice Exercises

In Exercises 1-40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.

1. $\log _{5}(7 \cdot 3)$
2. $\log _{8}(13 \cdot 7)$
3. $\log _{7}(7 x)$
4. $\log _{9}(9 x)$
5. $\log (1000 x)$
6. $\log (10,000 x)$
7. $\log _{7}\left(\frac{7}{x}\right)$
8. $\log _{9}\left(\frac{9}{x}\right)$
9. $\log \left(\frac{x}{100}\right)$
10. $\log \left(\frac{x}{1000}\right)$
11. $\log _{4}\left(\frac{64}{y}\right)$
12. $\log _{5}\left(\frac{125}{y}\right)$
13. $\ln \left(\frac{e^{2}}{5}\right)$
14. $\ln \left(\frac{e^{4}}{8}\right)$
15. $\log _{b} x^{7}$
16. $\log N^{-6}$
17. $\log _{b} x^{3}$
18. $\ln \sqrt[5]{x}$
19. $\ln \sqrt[7]{x}$
20. $\log M^{-8}$
21. $\log _{4}\left(\frac{\sqrt{x}}{64}\right)$
22. $\log _{b}\left(x^{2} y\right)$
23. $\log _{b}\left(x y^{3}\right)$
24. $\log _{8}\left(\frac{64}{\sqrt{x+1}}\right)$
25. $\log _{5}\left(\frac{\sqrt{x}}{25}\right)$
26. $\log _{6}\left(\frac{36}{\sqrt{x+1}}\right)$
27. $\log \sqrt{100 x}$
28. $\log _{b}\left(\frac{x^{2} y}{z^{2}}\right)$
29. $\log _{b}\left(\frac{x^{3} y}{z^{2}}\right)$
30. $\log \sqrt[5]{\frac{x}{y}}$
31. $\ln \sqrt{e x}$
32. $\log \sqrt[3]{\frac{x}{y}}$
33. $\log _{5} \sqrt[3]{\frac{x^{2} y}{25}}$
34. $\log _{b}\left(\frac{\sqrt{x} y^{3}}{z^{3}}\right)$
35. $\log _{b}\left(\frac{\sqrt[3]{x} y^{4}}{z^{5}}\right)$
36. $\log _{2} \sqrt[5]{\frac{x y^{4}}{16}}$
37. $\ln \left[\frac{x^{3} \sqrt{x^{2}+1}}{(x+1)^{4}}\right]$
38. $\ln \left[\frac{x^{4} \sqrt{x^{2}+3}}{(x+3)^{5}}\right]$
39. $\log \left[\frac{10 x^{2} \sqrt[3]{1-x}}{7(x+1)^{2}}\right]$
40. $\log \left[\frac{100 x^{3} \sqrt[3]{5-x}}{3(x+7)^{2}}\right]$

In Exercises 41-70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1 . Where possible, evaluate logarithmic expressions without using a calculator.
41. $\log 5+\log 2$
42. $\log 250+\log 4$
43. $\ln x+\ln 7$
44. $\ln x+\ln 3$
45. $\log _{2} 96-\log _{2} 3$
46. $\log _{3} 405-\log _{3} 5$
47. $\log (2 x+5)-\log x$
48. $\log (3 x+7)-\log x$
49. $\log x+3 \log y$
50. $\log x+7 \log y$
51. $\frac{1}{2} \ln x+\ln y$
52. $\frac{1}{3} \ln x+\ln y$
53. $2 \log _{b} x+3 \log _{b} y$
54. $5 \log _{b} x+6 \log _{b} y$
55. $5 \ln x-2 \ln y$
56. $7 \ln x-3 \ln y$
57. $3 \ln x-\frac{1}{3} \ln y$
58. $2 \ln x-\frac{1}{2} \ln y$
59. $4 \ln (x+6)-3 \ln x$
60. $8 \ln (x+9)-4 \ln x$
61. $3 \ln x+5 \ln y-6 \ln z$
62. $4 \ln x+7 \ln y-3 \ln z$
63. $\frac{1}{2}(\log x+\log y)$
65. $\frac{1}{2}\left(\log _{5} x+\log _{5} y\right)-2 \log _{5}(x+1)$
66. $\frac{1}{3}\left(\log _{4} x-\log _{4} y\right)+2 \log _{4}(x+1)$
67. $\frac{1}{3}\left[2 \ln (x+5)-\ln x-\ln \left(x^{2}-4\right)\right]$
68. $\frac{1}{3}\left[5 \ln (x+6)-\ln x-\ln \left(x^{2}-25\right)\right]$
69. $\log x+\log \left(x^{2}-1\right)-\log 7-\log (x+1)$
70. $\log x+\log \left(x^{2}-4\right)-\log 15-\log (x+2)$

In Exercises 71-78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places.
71. $\log _{5} 13$
72. $\log _{6} 17$
73. $\log _{14} 87.5$
74. $\log _{16} 57.2$
75. $\log _{0.1} 17$
76. $\log _{0.3} 19$
77. $\log _{\pi} 63$
78. $\log _{\pi} 400$

In Exercises 79-82, use a graphing utility and the change-of-base property to graph each function.
79. $y=\log _{3} x$
80. $y=\log _{15} x$
81. $y=\log _{2}(x+2)$
82. $y=\log _{3}(x-2)$

Practice Plus

In Exercises 83-88, let $\log _{b} 2=A$ and $\log _{b} 3=C$. Write each expression in terms of A and C.
83. $\log _{b} \frac{3}{2}$
84. $\log _{b} 6$
85. $\log _{b} 8$
86. $\log _{b} 81$
87. $\log _{b} \sqrt{\frac{2}{27}}$
88. $\log _{b} \sqrt{\frac{3}{16}}$

In Exercises 89-102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement.
89. $\ln e=0$
90. $\ln 0=e$
91. $\log _{4}\left(2 x^{3}\right)=3 \log _{4}(2 x)$
92. $\ln \left(8 x^{3}\right)=3 \ln (2 x)$
93. $x \log 10^{x}=x^{2}$
94. $\ln (x+1)=\ln x+\ln 1$
95. $\ln (5 x)+\ln 1=\ln (5 x)$
96. $\ln x+\ln (2 x)=\ln (3 x)$
97. $\log (x+3)-\log (2 x)=\frac{\log (x+3)}{\log (2 x)}$
98. $\frac{\log (x+2)}{\log (x-1)}=\log (x+2)-\log (x-1)$
99. $\log _{6}\left(\frac{x-1}{x^{2}+4}\right)=\log _{6}(x-1)-\log _{6}\left(x^{2}+4\right)$
100. $\log _{6}[4(x+1)]=\log _{6} 4+\log _{6}(x+1)$
101. $\log _{3} 7=\frac{1}{\log _{7} 3}$
102. $e^{x}=\frac{1}{\ln x}$

Application Exercises

103. The loudness level of a sound can be expressed by comparing the sound's intensity to the intensity of a sound barely audible to the human ear. The formula

$$
D=10\left(\log I-\log I_{0}\right)
$$

describes the loudness level of a sound, D, in decibels, where I is the intensity of the sound, in watts per meter ${ }^{2}$, and I_{0} is the intensity of a sound barely audible to the human ear.
a. Express the formula so that the expression in parentheses is written as a single logarithm.
b. Use the form of the formula from part (a) to answer this question: If a sound has an intensity 100 times the intensity of a softer sound, how much larger on the decibel scale is the loudness level of the more intense sound?
104. The formula

$$
t=\frac{1}{c}[\ln A-\ln (A-N)]
$$

describes the time, t, in weeks, that it takes to achieve mastery of a portion of a task, where A is the maximum learning possible, N is the portion of the learning that is to be achieved, and c is a constant used to measure an individual's learning style.
a. Express the formula so that the expression in brackets is written as a single logarithm.
b. The formula is also used to determine how long it will take chimpanzees and apes to master a task. For example, a typical chimpanzee learning sign language can master a maximum of 65 signs. Use the form of the formula from part (a) to answer this question: How many weeks will it take a chimpanzee to master 30 signs if c for that chimp is 0.03 ?

Writing in Mathematics

105. Describe the product rule for logarithms and give an example.
106. Describe the quotient rule for logarithms and give an example
107. Describe the power rule for logarithms and give an example.
108. Without showing the details, explain how to condense $\ln x-2 \ln (x+1)$.
109. Describe the change-of-base property and give an example.
110. Explain how to use your calculator to find $\log _{14} 283$.
111. You overhear a student talking about a property of logarithms in which division becomes subtraction. Explain what the student means by this.
112. Find $\ln 2$ using a calculator. Then calculate each of the following: $1-\frac{1}{2} ; \quad 1-\frac{1}{2}+\frac{1}{3} ; \quad 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$; $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} ; \ldots$. Describe what you observe.

Technology Exercises

113. a. Use a graphing utility (and the change-of-base property) to graph $y=\log _{3} x$.
b. Graph $y=2+\log _{3} x, y=\log _{3}(x+2)$, and $y=-\log _{3} x$ in the same viewing rectangle as $y=\log _{3} x$. Then describe the change or changes that need to be made to the graph of $y=\log _{3} x$ to obtain each of these three graphs.
114. Graph $y=\log x, y=\log (10 x)$, and $y=\log (0.1 x)$ in the same viewing rectangle. Describe the relationship among the three graphs. What logarithmic property accounts for this relationship?
115. Use a graphing utility and the change-of-base property to graph $y=\log _{3} x, y=\log _{25} x$, and $y=\log _{100} x$ in the same viewing rectangle.
a. Which graph is on the top in the interval $(0,1)$? Which is on the bottom?
b. Which graph is on the top in the interval $(1, \infty)$? Which is on the bottom?
c. Generalize by writing a statement about which graph is on top, which is on the bottom, and in which intervals, using $y=\log _{b} x$ where $b>1$.

Disprove each statement in Exercises 116-120 by

a. letting y equal a positive constant of your choice, and
b. using a graphing utility to graph the function on each side of the equal sign. The two functions should have different graphs, showing that the equation is not true in general.
116. $\log (x+y)=\log x+\log y$
117. $\log \left(\frac{x}{y}\right)=\frac{\log x}{\log y}$
118. $\ln (x-y)=\ln x-\ln y$
119. $\ln (x y)=(\ln x)(\ln y)$
120. $\frac{\ln x}{\ln y}=\ln x-\ln y$

Critical Thinking Exercises

Make Sense? In Exercises 121-124, determine whether each statement makes sense or does not make sense, and explain your reasoning.
121. Because I cannot simplify the expression $b^{m}+b^{n}$ by adding exponents, there is no property for the logarithm of a sum.
122. Because logarithms are exponents, the product, quotient, and power rules remind me of properties for operations with exponents.
123. I can use any positive number other than 1 in the change-of-base property, but the only practical bases are 10 and e because my calculator gives logarithms for these two bases.
124. I expanded $\log _{4} \sqrt{\frac{x}{y}}$ by writing the radical using a rational exponent and then applying the quotient rule, obtaining $\frac{1}{2} \log _{4} x-\log _{4} y$.
In Exercises 125-128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
125. $\ln \sqrt{2}=\frac{\ln 2}{2}$
126. $\frac{\log _{7} 49}{\log _{7} 7}=\log _{7} 49-\log _{7} 7$
127. $\log _{b}\left(x^{3}+y^{3}\right)=3 \log _{b} x+3 \log _{b} y$
128. $\log _{b}(x y)^{5}=\left(\log _{b} x+\log _{b} y\right)^{5}$
129. Use the change-of-base property to prove that

$$
\log e=\frac{1}{\ln 10}
$$

130. If $\log 3=A$ and $\log 7=B$, find $\log _{7} 9$ in terms of A and B.
131. Write as a single term that does not contain a logarithm:

$$
e^{\ln 8 x^{5}-\ln 2 x^{2}}
$$

132. If $f(x)=\log _{b} x$, show that

$$
\frac{f(x+h)-f(x)}{h}=\log _{b}\left(1+\frac{h}{x}\right)^{\frac{1}{h}}, h \neq 0 .
$$

133. Use the proof of the product rule in the appendix to prove the quotient rule.

Preview Exercises

Exercises 134-136 will help you prepare for the material covered in the next section.
134. Solve for x : $a(x-2)=b(2 x+3)$.
135. Solve: $x(x-7)=3$.
136. Solve: $\frac{x+2}{4 x+3}=\frac{1}{x}$.

CHAPTER 3

WHAT YOU KNOW: We evaluated and graphed exponential functions $\left[f(x)=b^{x}, b>0\right.$ and $\left.b \neq 1\right]$, including the natural exponential function $\left[f(x)=e^{x}\right.$, $e \approx 2.718$]. A function has an inverse that is a function if there is no horizontal line that intersects the function's graph more than once. The exponential function passes this horizontal line test and we called the inverse of the exponential function with base b the logarithmic function with base b. We learned that $y=\log _{b} x$ is equivalent to $b^{y}=x$. We evaluated and graphed logarithmic functions, including the common logarithmic function $\left[f(x)=\log _{10} x\right.$ or $\left.f(x)=\log x\right]$ and the natural logarithmic function $\left[f(x)=\log _{e} x\right.$ or $\left.f(x)=\ln x\right]$. We learned to use transformations to graph exponential and logarithmic functions. Finally, we used properties of logarithms to expand and condense logarithmic expressions.
In Exercises 1-5, graph f and g in the same rectangular coordinate system. Graph and give equations of all asymptotes. Give each function's domain and range.

1. $f(x)=2^{x}$ and $g(x)=2^{x}-3$
2. $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{x-1}$
3. $f(x)=e^{x}$ and $g(x)=\ln x$
4. $f(x)=\log _{2} x$ and $g(x)=\log _{2}(x-1)+1$
5. $f(x)=\log _{\frac{1}{2}} x$ and $g(x)=-2 \log _{\frac{1}{2}} x$

In Exercises 6-9, find the domain of each function.
6. $f(x)=\log _{3}(x+6)$
7. $g(x)=\log _{3} x+6$
8. $h(x)=\log _{3}(x+6)^{2}$
9. $f(x)=3^{x+6}$

In Exercises 10-20, evaluate each expression without using a calculator. If evaluation is not possible, state the reason.
10. $\log _{2} 8+\log _{5} 25$
11. $\log _{3} \frac{1}{9}$
12. $\log _{100} 10$
13. $\log \sqrt[3]{10}$
14. $\log _{2}\left(\log _{3} 81\right)$
15. $\log _{3}\left(\log _{2} \frac{1}{8}\right)$
16. $6^{\log _{6} 5}$
17. $\ln e^{\sqrt{7}}$
18. $10^{\log 13}$
19. $\log _{100} 0.1$
20. $\log _{\pi} \pi^{\sqrt{\pi}}$

In Exercises 21-22, expand and evaluate numerical terms.
21. $\log \left(\frac{\sqrt{x y}}{1000}\right)$
22. $\ln \left(e^{19} x^{20}\right)$

In Exercises 23-25, write each expression as a single logarithm.
23. $8 \log _{7} x-\frac{1}{3} \log _{7} y$
24. $7 \log _{5} x+2 \log _{5} x$
25. $\frac{1}{2} \ln x-3 \ln y-\ln (z-2)$
26. Use the formulas

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad \text { and } \quad A=P e^{r t}
$$

to solve this exercise. You decide to invest $\$ 8000$ for 3 years at an annual rate of 8%. How much more is the return if the interest is compounded continuously than if it is compounded monthly? Round to the nearest dollar.

SECTION 3.4

Objectives

(1) Use like bases to solve exponential equations.
2. Use logarithms to solve exponential equations.
(3) Use the definition of a logarithm to solve logarithmic equations.
4. Use the one-to-one property of logarithms to solve logarithmic equations.
5 Solve applied problems involving exponential and logarithmic equations.

Exponential and Logarithmic Equations

At age 20, you inherit $\$ 30,000$. You'd like to put aside $\$ 25,000$ and eventually have over half a million dollars for early retirement. Is this possible? In Example 10 in this section, you will see how techniques for solving equations with variable exponents provide an answer to this question.

Exponential Equations

An exponential equation is an equation containing a variable in an exponent. Examples of exponential equations include

$$
2^{3 x-8}=16, \quad 4^{x}=15, \quad \text { and } \quad 40 e^{0.6 x}=240
$$

Some exponential equations can be solved by expressing each side of the equation as a power of the same base. All exponential functions are one-to-one-that is, no two different ordered pairs have the same second component. Thus, if b is a positive number other than 1 and $b^{M}=b^{N}$, then $M=N$.

1 Use like bases to solve exponential equations.

TECHNOLOGY

Graphic Connections

The graphs of

$$
\begin{aligned}
y_{1} & =2^{3 x-8} \\
\text { and } \quad y_{2} & =16
\end{aligned}
$$

have an intersection point whose x-coordinate is 4 . This verifies that $\{4\}$ is the solution set of $2^{3 x-8}=16$.

Solving Exponential Equations by Expressing Each Side as a Power

 of the Same Base

1. Rewrite the equation in the form $b^{M}=b^{N}$.
2. Set $M=N$.
3. Solve for the variable.

EXAMPLE 1 Solving Exponential Equations

Solve:
a. $2^{3 x-8}=16$
b. $27^{x+3}=9^{x-1}$.

SOLUTION

In each equation, express both sides as a power of the same base. Then set the exponents equal to each other and solve for the variable.
a. Because 16 is 2^{4}, we express each side of $2^{3 x-8}=16$ in terms of base 2 .

$$
\begin{aligned}
2^{3 x-8} & =16 & & \text { This is the given equation. } \\
2^{3 x-8} & =2^{4} & & \text { Write each side as a power of the same base. } \\
3 x-8 & =4 & & \text { If } b^{M}=b^{N}, b>0 \text { and } b \neq 1, \text { then } M=N . \\
3 x & =12 & & \text { Add } 8 \text { to both sides. } \\
x & =4 & & \text { Divide both sides by } 3 .
\end{aligned}
$$

Substituting 4 for x into the original equation produces the true statement $16=16$. The solution set is $\{4\}$.
b. Because $27=3^{3}$ and $9=3^{2}$, we can express both sides of $27^{x+3}=9^{x-1}$ in terms of base 3 .

$$
\begin{array}{rlrl}
27^{x+3} & =9^{x-1} & & \text { This is the given equation. } \\
\left(3^{3}\right)^{x+3} & =\left(3^{2}\right)^{x-1} & & \text { Write each side as a power of the same base. } \\
3^{3(x+3)} & =3^{2(x-1)} & & \text { When an exponential expression is raised to a power, } \\
3(x+3) & =2(x-1) & & \text { multiply exponents. } \\
& & \text { If two powers of the same base are equal, } \\
3 x+9 & =2 x-2 & & \text { then the exponents are equal. } \\
x+9 & =-2 & & \text { Apply the distributive property. } \\
x & =-11 & & \text { Subtract } 2 x \text { from both sides. } \\
x+9 \text { Subtract } 9 \text { from both sides. }
\end{array}
$$

Substituting -11 for x into the original equation produces $27^{-8}=9^{-12}$, which simplifies to the true statement $3^{-24}=3^{-24}$. The solution set is $\{-11\}$.
Φ Check Point 1 Solve:
a. $5^{3 x-6}=125$
b. $8^{x+2}=4^{x-3}$.

Most exponential equations cannot be rewritten so that each side has the same base. Here are two examples:

$$
4^{x}=15 \quad 10^{x}=120,000
$$

We cannot rewrite both sides in terms of base 10 .

Logarithms are extremely useful in solving these equations. The solution begins with isolating the exponential expression. Notice that the exponential expression is already isolated in both $4^{x}=15$ and $10^{x}=120,000$. Then we take the logarithm on both sides. Why can we do this? All logarithmic relations are functions. Thus, if M and N are positive real numbers and $M=N$, then $\log _{b} M=\log _{b} N$.

The base that is used when taking the logarithm on both sides of an equation can be any base at all. If the exponential equation involves base 10 , as in $10^{x}=120,000$, we'll take the common logarithm on both sides. If the exponential equation involves any other base, as in $4^{x}=15$, we'll take the natural logarithm on both sides.

Using Logarithms to Solve Exponential Equations

1. Isolate the exponential expression.
2. Take the common logarithm on both sides of the equation for base 10. Take the natural logarithm on both sides of the equation for bases other than 10 .
3. Simplify using one of the following properties:

$$
\ln b^{x}=x \ln b \quad \text { or } \quad \ln e^{x}=x \quad \text { or } \quad \log 10^{x}=x
$$

4. Solve for the variable.

EXAMPLE 2 Solving Exponential Equations

Solve:
a. $4^{x}=15$
b. $10^{x}=120,000$.

SOLUTION

We will use the natural logarithmic function to solve $4^{x}=15$ and the common logarithmic function to solve $10^{x}=120,000$.
a. Because the exponential expression, 4^{x}, is already isolated on the left side of $4^{x}=15$, we begin by taking the natural logarithm on both sides of the equation.

$$
\begin{array}{rlrl}
4^{x} & =15 & & \begin{array}{l}
\text { This is the given equation. } \\
\ln 4^{x}
\end{array}=\ln 15 \\
x \ln 4 & =\ln 15 & \begin{array}{l}
\text { Take the natural logarithm on both sides. } \\
\text { Use the power rule and bring the variable exponent }
\end{array} \\
\text { to the front: } \ln b^{x}=x \ln b .
\end{array}
$$

We now have an exact value for x. We use the exact value for x in the equation's solution set. Thus, the equation's solution is $\frac{\ln 15}{\ln 4}$ and the solution set is $\left\{\frac{\ln 15}{\ln 4}\right\}$. We can obtain a decimal approximation by using a calculator: $x \approx 1.95$. Because $4^{2}=16$, it seems reasonable that the solution to $4^{x}=15$ is approximately 1.95 .
b. Because the exponential expression, 10^{x}, is already isolated on the left side of $10^{x}=120,000$, we begin by taking the common logarithm on both sides of the equation.

$$
\begin{aligned}
10^{x} & =120,000 & & \text { This is the given equation. } \\
\log 10^{x} & =\log 120,000 & & \text { Take the common logarithm on both sides. } \\
x & =\log 120,000 & & \text { Use the inverse property } \log 10^{x}=x \text { on the left. }
\end{aligned}
$$

The equation's solution is $\log 120,000$ and the solution set is $\{\log 120,000\}$. We can obtain a decimal approximation by using a calculator: $x \approx 5.08$. Because $10^{5}=100,000$, it seems reasonable that the solution to $10^{x}=120,000$ is approximately 5.08 .
$\$$ Check Point 2 Solve:
a. $5^{x}=134$
b. $10^{x}=8000$.

Find each solution set and then use a calculator to obtain a decimal approximation to two decimal places for the solution.

EXAMPLE 3 Solving an Exponential Equation

Solve: $40 e^{0.6 x}-3=237$.

SOLUTION

We begin by adding 3 to both sides and dividing both sides by 40 to isolate the exponential expression, $e^{0.6 x}$. Then we take the natural logarithm on both sides of the equation.

$$
\begin{array}{rlrl}
40 e^{0.6 x}-3 & =237 & & \text { This is the given equation. } \\
40 e^{0.6 x} & =240 & & \text { Add } 3 \text { to both sides. } \\
e^{0.6 x} & =6 & & \text { Isolate the exponential factor by dividing both } \\
\ln e^{0.6 x} & =\ln 6 & & \text { sides by } 40 . \\
0.6 x & =\ln 6 \\
x & =\frac{\ln 6}{0.6} \approx 2.99 & & \text { Take the natural logarithm on both sides. } \\
\text { Use the inverse property } \ln e^{x}=x \text { on the left. } \\
& & &
\end{array}
$$

Thus, the solution of the equation is $\frac{\ln 6}{0.6} \approx 2.99$. Try checking this approximate solution in the original equation to verify that $\left\{\frac{\ln 6}{0.6}\right\}$ is the solution set. ...
$\$$ Check Point 3 Solve: $7 e^{2 x}-5=58$. Find the solution set and then use a calculator to obtain a decimal approximation to two decimal places for the solution.

EXAMPLE 4 Solving an Exponential Equation

Solve: $\quad 5^{x-2}=4^{2 x+3}$.

SOLUTION

Because each exponential expression is isolated on one side of the equation, we begin by taking the natural logarithm on both sides.

$$
\begin{aligned}
5^{x-2} & =4^{2 x+3} & & \text { This is the given equation. } \\
\ln 5^{x-2} & =\ln 4^{2 x+3} & & \text { Take the natural logarithm on both sides. }
\end{aligned}
$$

> Be sure to insert parentheses around the binomials. $$
(x-2) \ln 5=(2 x+3) \ln 4
$$

Remember that $\ln 5$ and $\ln 4$ are constants, not variables.

$$
x \ln 5-2 \ln 5=2 x \ln 4+3 \ln 4
$$

Use the distributive property to distribute $\ln 5$ and $\ln 4$ to both terms in parentheses.

$$
x \ln 5-2 x \ln 4=2 \ln 5+3 \ln 4
$$

DISCOVERY

Use properties of logarithms to show that the solution in Example 4 can be expressed as

$$
\frac{\ln 1600}{\ln \left(\frac{5}{16}\right)} .
$$

TECHNOLOGY

Graphic Connections

Shown below is the graph of $y=e^{2 x}-4 e^{x}+3$. There are two x-intercepts, one at 0 and one at approximately 1.10. These intercepts verify our algebraic solution.

$[-3,3,1]$ by $[-1,3,1]$

3 Use the definition of a logarithm to solve logarithmic equations.

$$
\begin{array}{rlrl}
x(\ln 5-2 \ln 4) & =2 \ln 5+3 \ln 4 \\
x & =\frac{2 \ln 5+3 \ln 4}{\ln 5-2 \ln 4} & \quad \begin{array}{l}
\text { Factor out } x \text { from the two terms on the left. } \\
\end{array} & \begin{array}{l}
\text { Isolate } \times \text { by dividing both sides by } \\
\end{array}
\end{array}
$$

The solution set is $\left\{\frac{2 \ln 5+3 \ln 4}{\ln 5-2 \ln 4}\right\}$. The solution is approximately -6.34
Check Point 4 Solve: $3^{2 x-1}=7^{x+1}$. Find the solution set and then use a calculator to obtain a decimal approximation to two decimal places for the solution.

EXAMPLE 5 Solving an Exponential Equation

Solve: $e^{2 x}-4 e^{x}+3=0$.

SOLUTION

The given equation is quadratic in form. If $u=e^{x}$, the equation can be expressed as $u^{2}-4 u+3=0$. Because this equation can be solved by factoring, we factor to isolate the exponential term.

$$
\begin{array}{rlrl}
e^{2 x}-4 e^{x}+3 & =0 & & \begin{array}{l}
\text { This is the given equation. } \\
\left(e^{x}-3\right)\left(e^{x}-1\right)
\end{array}=0 \\
& & \begin{array}{l}
\text { Factor on the left. Notice that if } \\
e^{x}-3
\end{array} & =0 \\
e^{x} & =3 & \text { or } & e^{x}-1, u^{2}-4 u+3=(u-3)(u-1) . \\
\ln e^{x} & =\ln 3 & & \\
e^{x}=1 & & \text { Set each factor equal to } 0 .
\end{array}
$$

The solution set is $\{0, \ln 3\}$. The solutions are 0 and $\ln 3$, which is approximately 1.10.

Check Point 5 Solve: $e^{2 x}-8 e^{x}+7=0$. Find the solution set and then use a calculator to obtain a decimal approximation to two decimal places, if necessary, for the solutions.

Logarithmic Equations

A logarithmic equation is an equation containing a variable in a logarithmic expression. Examples of logarithmic equations include

$$
\log _{4}(x+3)=2 \quad \text { and } \quad \ln (x+2)-\ln (4 x+3)=\ln \left(\frac{1}{x}\right)
$$

Some logarithmic equations can be expressed in the form $\log _{b} M=c$. We can solve such equations by rewriting them in exponential form.

Using the Definition of a Logarithm to Solve Logarithmic Equations

1. Express the equation in the form $\log _{b} M=c$.
2. Use the definition of a logarithm to rewrite the equation in exponential form:

3. Solve for the variable.
4. Check proposed solutions in the original equation. Include in the solution set only values for which $M>0$.

EXAMPLE 6 Solving Logarithmic Equations

Solve:
a. $\log _{4}(x+3)=2$
b. $3 \ln (2 x)=12$.

SOLUTION

The form $\log _{b} M=c$ involves a single logarithm whose coefficient is 1 on one side and a constant on the other side. Equation (a) is already in this form. We will need to divide both sides of equation (b) by 3 to obtain this form.
a. $\log _{4}(x+3)=2 \quad$ This is the given equation.

$$
\begin{array}{ll}
4^{2}=x+3 & \\
\text { Rewrite in exponential form: } \log _{b} M=c \text { means } b^{c}=M . \\
16=x+3 & \\
\text { Square } 4 . \\
13=x & \\
\text { Subtract } 3 \text { from both sides. }
\end{array}
$$

Check 13:

$$
\begin{array}{rlrl}
\log _{4}(x+3) & =2 & & \text { This is the given logarithmic equation. } \\
\log _{4}(13+3) & \stackrel{?}{=} 2 & & \text { Substitute } 13 \text { for } x . \\
\log _{4} 16 & \stackrel{?}{=} 2 & & \\
2 & =2, \text { true } & \log _{4} 16=2 \text { because } 4^{2}=16 .
\end{array}
$$

This true statement indicates that the solution set is $\{13\}$.
b.

$$
\begin{array}{rlrl}
3 \ln (2 x) & =12 & & \text { This is the given equation. } \\
\ln (2 x) & =4 & & \text { Divide both sides by } 3 . \\
\log _{e}(2 x) & =4 & & \text { Rewrite the natural logarithm showing base } e . \text { This step } \\
\text { is optional. } \\
e^{4} & =2 x & & \text { Rewrite in exponential form: } \log _{b} M=c \text { means } b^{c}=M . \\
\frac{e^{4}}{2} & =x & & \text { Divide both sides by } 2 .
\end{array}
$$

Check $\frac{e^{4}}{2}$:

$$
\begin{array}{rlrl}
3 \ln (2 x) & =12 & & \text { This is the given logarithmic equation. } \\
3 \ln \left[2\left(\frac{e^{4}}{2}\right)\right] & \stackrel{?}{=} 12 & & \text { Substitute } \frac{e^{4}}{2} \text { for } x . \\
3 \ln e^{4} & \stackrel{?}{=} 12 & \text { Simplify: } \frac{\not 2}{1} \cdot \frac{e^{4}}{2}=e^{4} . \\
3 \cdot 4 & \stackrel{?}{=} 12 & \text { Because } \ln e^{x}=x, \text { we conclude } \ln e^{4}=4 . \\
12 & =12, \text { true } &
\end{array}
$$

This true statement indicates that the solution set is $\left\{\frac{e^{4}}{2}\right\}$. ...
Check Point 6 Solve:
a. $\log _{2}(x-4)=3$
b. $4 \ln (3 x)=8$.

Logarithmic expressions are defined only for logarithms of positive real numbers. Always check proposed solutions of a logarithmic equation in the original equation. Exclude from the solution set any proposed solution that produces the logarithm of a negative number or the logarithm of 0 .

GREAT QUESTION!

Can a negative number belong to the solution set of a logarithmic equation?
Yes. Here's an example.

$$
\begin{aligned}
\log _{2}(x+20) & =3 & & \text { Solve this equation. } \\
2^{3} & =x+20 & & \text { Rewrite in exponential form. } \\
8 & =x+20 & & \text { Cube } 2 . \\
-12 & =x & & \text { Subtract } 20 \text { from both sides. }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { Check - 12: } & \\
\log _{2}(-12+20) & \stackrel{?}{=} 3 & \text { Substitute }-12 \text { for } x . \\
\log _{2} 8 & \stackrel{?}{=} 3 \\
3 & =3, \text { true } \log _{2} 8=3 \text { because } 2^{3}=8 .
\end{array}
$$

The solution set is $\{-12\}$. Although -12 is negative, it does not produce the logarithm of a negative number in $\log _{2}(x+20)=3$, the given equation. Note that the domain of the expression $\log _{2}(x+20)$ is $(-20, \infty)$, which includes negative numbers such as -12 .

To rewrite the logarithmic equation $\log _{b} M=c$ in the equivalent exponential form $b^{c}=M$, we need a single logarithm whose coefficient is one. It is sometimes necessary to use properties of logarithms to condense logarithms into a single logarithm. In the next example, we use the product rule for logarithms to obtain a single logarithmic expression on the left side.

EXAMPLE 7 Solving a Logarithmic Equation

Solve: $\log _{2} x+\log _{2}(x-7)=3$.

SOLUTION

$$
\begin{array}{rlrl}
\log _{2} x+\log _{2}(x-7) & =3 & & \begin{array}{l}
\text { This is the given equation. } \\
\log _{2}[x(x-7)]
\end{array} \\
=3 & & \begin{array}{l}
\text { Use the product rule to obtain a single } \\
\text { logarithm: } \log _{b} M+\log _{b} N=\log _{b}(M N) .
\end{array} \\
2^{3} & =x(x-7) & \begin{array}{l}
\text { Rewrite in exponential form: } \log _{b} M=c \\
\text { means } b^{c}=M .
\end{array} \\
8 & =x^{2}-7 x & & \begin{array}{l}
\text { Evaluate } 2^{3} \text { on the left and apply the } \\
\text { distributive property on the right. }
\end{array} \\
0 & =x^{2}-7 x-8 & & \text { Set the equation equal to } O . \\
0 & =(x-8)(x+1) & & \text { Factor. } \\
x-8=0 & \text { or } x+1=0 & & \text { Set each factor equal to } O . \\
x=8 & x=-1 & & \text { Solve for } x .
\end{array}
$$

Check 8:	Check -1:	
$\log _{2} x+\log _{2}(x-7)$	$=3$	$\log _{2} x+\log _{2}(x-7)=3$
$\log _{2} 8+\log _{2}(8-7)$	$\stackrel{?}{=} 3$	$\log _{2}(-1)+\log _{2}(-1-7) \stackrel{?}{=} 3$
$\log _{2} 8+\log _{2} 1$	$\stackrel{?}{=} 3$	The number -1 does not check.
$3+0$	$\stackrel{?}{=} 3$	The domain of a logarithmic function consists of positive numbers.
3	$=3$,	true

The solution set is $\{8\}$.
Check Point 7 Solve: $\quad \log x+\log (x-3)=1$.

TECHNOLOGY

Numeric Connections

A graphing utility's TABLE
feature can be used to verify that $\{3\}$ is the solution set of
$\ln (x+2)-\ln (4 x+3)=\ln \left(\frac{1}{x}\right)$.

(5) Solve applied problems involving exponential and logarithmic equations.

Some logarithmic equations can be expressed in the form $\log _{b} M=\log _{b} N$, where the bases on both sides of the equation are the same. Because all logarithmic functions are one-to-one, we can conclude that $M=N$.

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

1. Express the equation in the form $\log _{b} M=\log _{b} N$. This form involves a single logarithm whose coefficient is 1 on each side of the equation.
2. Use the one-to-one property to rewrite the equation without logarithms: If $\log _{b} M=\log _{b} N$, then $M=N$.
3. Solve for the variable.
4. Check proposed solutions in the original equation. Include in the solution set only values for which $M>0$ and $N>0$.

EXAMPLE 8 Solving a Logarithmic Equation

Solve: $\ln (x+2)-\ln (4 x+3)=\ln \left(\frac{1}{x}\right)$.

SOLUTION

In order to apply the one-to-one property of logarithms, we need a single logarithm whose coefficient is 1 on each side of the equation. The right side is already in this form. We can obtain a single logarithm on the left side by applying the quotient rule.

$$
\begin{aligned}
& \ln (x+2)-\ln (4 x+3)=\ln \left(\frac{1}{x}\right) \quad \text { This is the given equation. } \\
& \ln \left(\frac{x+2}{4 x+3}\right)=\ln \left(\frac{1}{x}\right) \quad \begin{array}{l}
\text { Use the quotient rule to obtain a } \\
\text { single logarithm on the left side: }
\end{array} \\
& \log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right) \text {. } \\
& \frac{x+2}{4 x+3}=\frac{1}{x} \\
& x(4 x+3)\left(\frac{x+2}{4 x+3}\right)=x(4 x+3)\left(\frac{1}{x}\right) \text { Multiply both sides by } x(4 x+3) \text {, the LCD. } \\
& x(x+2)=4 x+3 \quad \text { Simplify. } \\
& x^{2}+2 x=4 x+3 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x-3=0 \text { or } x+1=0 \text { Set each factor equal to } 0 \text {. } \\
& x=3 \quad x=-1 \quad \text { Solve for } x .
\end{aligned}
$$

Substituting 3 for x into $\ln (x+2)-\ln (4 x+3)=\ln \left(\frac{1}{x}\right)$ produces the true statement $\ln \left(\frac{1}{3}\right)=\ln \left(\frac{1}{3}\right)$. However, substituting -1 produces logarithms of negative numbers. Thus, -1 is not a solution. The solution set is $\{3\}$.

Check Point 8 Solve: $\ln (x-3)=\ln (7 x-23)-\ln (x+1)$.

Applications

Our first applied example provides a mathematical perspective on the old slogan "Alcohol and driving don't mix." In California, where 38% of fatal traffic crashes involve drinking drivers, it is illegal to drive with a blood alcohol concentration of 0.08 or higher. At these levels, drivers may be arrested and charged with driving under the influence.

FIGURE 3.20

EXAMPLE 9 Alcohol and Risk of a Car Accident

Medical research indicates that the risk of having a car accident increases exponentially as the concentration of alcohol in the blood increases. The risk is modeled by

$$
R=6 e^{12.77 x},
$$

where x is the blood alcohol concentration and R, given as a percent, is the risk of having a car accident. What blood alcohol concentration corresponds to a 17% risk of a car accident? How is this shown on the graph of R in Figure 3.20?

SOLUTION

For a risk of 17%, we let $R=17$ in the equation and solve for x, the blood alcohol concentration.

$$
\begin{array}{rlrl}
R & =6 e^{12.77 x} & & \begin{array}{l}
\text { This is the given equation. } \\
6 e^{12.77 x}
\end{array} \\
=17 & \begin{array}{l}
\text { Substitute } 17 \text { for } R \text { and (optional) reverse the two } \\
\text { sides of the equation. }
\end{array} \\
e^{12.77 x} & =\frac{17}{6} & \begin{array}{l}
\text { Isolate the exponential factor by dividing both } \\
\text { sides by } 6 .
\end{array} \\
\ln e^{12.77 x} & =\ln \left(\frac{17}{6}\right) \\
12.77 x & =\ln \left(\frac{17}{6}\right) \\
x & =\frac{\ln \left(\frac{17}{6}\right)}{12.77} \approx 0.08 & & \text { Take the natural logarithm on both sides. } \\
\text { Use the inverse property In } e^{x}=x \text { on the left side. }
\end{array}
$$

For a blood alcohol concentration of 0.08 , the risk of a car accident is 17%. This is shown on the graph of R in Figure 3.20 by the point $(0.08,17)$ that lies on the blue curve. Take a moment to locate this point on the curve. In many states, it is illegal to drive with a blood alcohol concentration of 0.08.

Check Point 9 Use the formula in Example 9 to answer this question: What blood alcohol concentration corresponds to a 7% risk of a car accident? (In many states, drivers under the age of 21 can lose their licenses for driving at this level.)

Suppose that you inherit $\$ 30,000$ at age 20. Is it possible to invest $\$ 25,000$ and have over half a million dollars for early retirement? Our next example illustrates the power of compound interest.

EXAMPLE 10 Revisiting the Formula for Compound Interest

The formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

describes the accumulated value, A, of a sum of money, P, the principal, after t years at annual percentage rate r (in decimal form) compounded n times a year. How long will it take $\$ 25,000$ to grow to $\$ 500,000$ at 9% annual interest compounded monthly?

Blitzer Bonus

Playing Doubles: Interest Rates and Doubling Time

One way to calculate what your savings will be worth at some point in the future is to consider doubling time. The following table shows how long it takes for your money to double at different annual interest rates subject to continuous compounding.

Annual Interest Rate	Years to Double
5%	13.9 years
7%	9.9 years
9%	7.7 years
11%	6.3 years

Of course, the first problem is collecting some money to invest. The second problem is finding a reasonably safe investment with a return of 9% or more.

SOLUTION

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
500,000 & =25,000\left(1+\frac{0.09}{12}\right)^{12 t}
\end{aligned}
$$

Because of the exponent, $12 t$, do not distribute 25,000 over the terms in parentheses.

This is the given formula.
$A($ the desired accumulated value $)=\$ 500,000$, $P($ the principal $)=\$ 25,000$,
$r($ the interest rate $)=9 \%=0.09$, and $n=12$ (monthly compounding).

Our goal is to solve the equation for t. Let's reverse the two sides of the equation and then simplify within parentheses.

$$
\begin{aligned}
25,000\left(1+\frac{0.09}{12}\right)^{12 t} & =500,000 & & \text { Reverse the two sides of the previous equation. } \\
25,000(1+0.0075)^{12 t} & =500,000 & & \text { Divide within parentheses: } \frac{0.09}{12}=0.0075 . \\
25,000(1.0075)^{12 t} & =500,000 & & \text { Add within parentheses. } \\
(1.0075)^{12 t} & =20 & & \text { Divide both sides by } 25,000 . \\
\ln (1.0075)^{12 t} & =\ln 20 & & \text { Take the natural logarithm on both sides. } \\
12 t \ln (1.0075) & =\ln 20 & & \begin{array}{l}
\text { Use the power rule to bring the exponent to the } \\
\text { front: In } b^{x}=x \ln b .
\end{array} \\
t & \approx \frac{\ln 20}{12 \ln 1.0075} & & \text { Solve for } t, \text { dividing both sides by } 12 \ln 1.0075 . \\
& \approx 33.4 & & \text { Use a calculator. }
\end{aligned}
$$

After approximately 33.4 years, the $\$ 25,000$ will grow to an accumulated value of $\$ 500,000$. If you set aside the money at age 20, you can begin enjoying a life as a half-millionaire at about age 53 .

Check Point 10 How long, to the nearest tenth of a year, will it take $\$ 1000$ to grow to $\$ 3600$ at 8% annual interest compounded quarterly?

EXAMPLE 11 Revisiting the Model for Height of Children

We have seen that the percentage of adult height attained by a boy who is x years old can be modeled by

$$
f(x)=29+48.8 \log (x+1)
$$

where x represents the boy's age (from 5 to 15) and $f(x)$ represents the percentage of his adult height. At what age, rounded to the nearest year, has a boy attained 85% of his adult height?

SOLUTION

To find at what age a boy has attained 85% of his adult height, we substitute 85 for $f(x)$ and solve for x, the boy's age.

$$
\begin{aligned}
f(x) & =29+48.8 \log (x+1) & & \text { This is the given function. } \\
85 & =29+48.8 \log (x+1) & & \text { Substitute } 85 \text { for } f(x) .
\end{aligned}
$$

Our goal is to isolate $\log (x+1)$ and then rewrite the equation in exponential form.

$$
\begin{aligned}
56 & =48.8 \log (x+1) & & \text { Subtract } 29 \text { from both sides. } \\
\frac{56}{48.8} & =\log (x+1) & & \text { Divide both sides by } 48.8 .
\end{aligned}
$$

$$
\begin{aligned}
\frac{56}{48.8} & =\log _{10}(x+1) \\
10 \frac{56}{48.8} & =x+1 \\
10 \frac{56}{48.8}-1 & =x \\
13 & \approx x
\end{aligned}
$$

Rewrite the common logarithm showing base 10. This step is optional.

Rewrite in exponential form.
Subtract 1 from both sides.

At approximately age 13, a boy has attained 85% of his adult height. This is shown on the graph of the model in Figure $\mathbf{3 . 2 1}$ by the point $(13,85)$.

FIGURE 3.21 Graph of a model for the percentage of adult height attained by a boy

Check Point 11 The percentage of adult height attained by a girl who is x years old can be modeled by

$$
f(x)=62+35 \log (x-4),
$$

where x represents the girl's age (from 5 to 15) and $f(x)$ represents the percentage of her adult height. At what age has a girl attained 97% of her adult height?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. If $b^{M}=b^{N}$, then \qquad .
2. If $2^{4 x-1}=2^{7}$, then $-=7$.
3. If $x \ln 9=\ln 20$, then $x=$ \qquad .
4. If $e^{0.6 x}=6$, then $0.6 x=$ \qquad . $=x+1$.
5. If $\log _{5}(x+1)=3$, then \qquad
6. If $\log _{3} x+\log _{3}(x+1)=2$, then $\log _{3}-=2$.
7. If $\ln \left(\frac{7 x-23}{x+1}\right)=\ln (x-3)$, then $\quad=x-3$.
8. True or false: $x^{4}=15$ is an exponential equation.
9. True or false: $4^{x}=15$ is an exponential equation.
10. True or false: -3 is a solution of $\log _{5} 9=2 \log _{5} x$.
11. True or false: -10 is a solution of $\log _{5}(x+35)=2$.

EXERCISE SET 3.4

Practice Exercises

Solve each exponential equation in Exercises 1-22 by expressing each side as a power of the same base and then equating exponents.

1. $2^{x}=64$
2. $3^{x}=81$
3. $5^{x}=125$
4. $5^{x}=625$
5. $2^{2 x-1}=32$
6. $3^{2 x+1}=27$
7. $4^{2 x-1}=64$
8. $5^{3 x-1}=125$
9. $32^{x}=8$
10. $4^{x}=32$
11. $9^{x}=27$
12. $125^{x}=625$
13. $3^{1-x}=\frac{1}{27}$
14. $5^{2-x}=\frac{1}{125}$
15. $6^{\frac{x-3}{4}}=\sqrt{6}$
16. $7^{\frac{x-2}{6}}=\sqrt{7}$
17. $4^{x}=\frac{1}{\sqrt{2}}$
18. $9^{x}=\frac{1}{\sqrt[3]{3}}$
19. $8^{x+3}=16^{x-1}$
20. $e^{x+1}=\frac{1}{e}$

Solve each exponential equation in Exercises 23-48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.
23. $10^{x}=3.91$
24. $10^{x}=8.07$
25. $e^{x}=5.7$
26. $e^{x}=0.83$
27. $5^{x}=17$
28. $19^{x}=143$
29. $5 e^{x}=23$
30. $9 e^{x}=107$
31. $3 e^{5 x}=1977$
32. $4 e^{7 x}=10,273$
33. $e^{1-5 x}=793$
35. $e^{5 x-3}-2=10,476$
34. $e^{1-8 x}=7957$
37. $7^{x+2}=410$
36. $e^{4 x-5}-7=11,243$
39. $7^{0.3 x}=813$
38. $5^{x-3}=137$
41. $5^{2 x+3}=3^{x-1}$
40. $3^{\frac{x}{7}}=0.2$
43. $e^{2 x}-3 e^{x}+2=0$
42. $7^{2 x+1}=3^{x+2}$
45. $e^{4 x}+5 e^{2 x}-24=0$
44. $e^{2 x}-2 e^{x}-3=0$
47. $3^{2 x}+3^{x}-2=0$
46. $e^{4 x}-3 e^{2 x}-18=0$

Solve each logarithmic equation in Exercises 49-92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.
49. $\log _{3} x=4$
50. $\log _{5} x=3$
51. $\ln x=2$
52. $\ln x=3$
53. $\log _{4}(x+5)=3$
54. $\log _{5}(x-7)=2$
55. $\log _{2}(x+25)=4$
56. $\log _{2}(x+50)=5$
57. $\log _{3}(x+4)=-3$
58. $\log _{7}(x+2)=-2$
59. $\log _{4}(3 x+2)=3$
60. $\log _{2}(4 x+1)=5$
61. $5 \ln (2 x)=20$
62. $6 \ln (2 x)=30$
63. $6+2 \ln x=5$
64. $7+3 \ln x=6$
65. $\ln \sqrt{x+3}=1$
66. $\ln \sqrt{x+4}=1$
67. $\log _{5} x+\log _{5}(4 x-1)=1$
68. $\log _{6}(x+5)+\log _{6} x=2$
69. $\log _{3}(x+6)+\log _{3}(x+4)=1$
70. $\log _{6}(x+3)+\log _{6}(x+4)=1$
71. $\log _{2}(x+2)-\log _{2}(x-5)=3$
72. $\log _{4}(x+2)-\log _{4}(x-1)=1$
73. $2 \log _{3}(x+4)=\log _{3} 9+2$
74. $3 \log _{2}(x-1)=5-\log _{2} 4$
75. $\log _{2}(x-6)+\log _{2}(x-4)-\log _{2} x=2$
76. $\log _{2}(x-3)+\log _{2} x-\log _{2}(x+2)=2$
77. $\log (x+4)=\log x+\log 4$
78. $\log (5 x+1)=\log (2 x+3)+\log 2$
79. $\log (3 x-3)=\log (x+1)+\log 4$
80. $\log (2 x-1)=\log (x+3)+\log 3$
81. $2 \log x=\log 25$
82. $3 \log x=\log 125$
83. $\log (x+4)-\log 2=\log (5 x+1)$
84. $\log (x+7)-\log 3=\log (7 x+1)$
85. $2 \log x-\log 7=\log 112$
86. $\log (x-2)+\log 5=\log 100$
87. $\log x+\log (x+3)=\log 10$
88. $\log (x+3)+\log (x-2)=\log 14$
89. $\ln (x-4)+\ln (x+1)=\ln (x-8)$
90. $\log _{2}(x-1)-\log _{2}(x+3)=\log _{2}\left(\frac{1}{x}\right)$
91. $\ln (x-2)-\ln (x+3)=\ln (x-1)-\ln (x+7)$
92. $\ln (x-5)-\ln (x+4)=\ln (x-1)-\ln (x+2)$

Practice Plus

In Exercises 93-102, solve each equation.
93. $5^{2 x} \cdot 5^{4 x}=125$
94. $3^{x+2} \cdot 3^{x}=81$
95. $2|\ln x|-6=0$
96. $3|\log x|-6=0$
97. $3^{x^{2}}=45$
98. $5^{x^{2}}=50$
99. $\ln (2 x+1)+\ln (x-3)-2 \ln x=0$
100. $\ln 3-\ln (x+5)-\ln x=0$
101. $5^{x^{2}-12}=25^{2 x}$
102. $3^{x^{2}-12}=9^{2 x}$

Application Exercises

103. The formula $A=37.3 e^{0.0095 t}$ models the population of California, A, in millions, t years after 2010.
a. What was the population of California in 2010?
b. When will the population of California reach 40 million?
104. The formula $A=25.1 e^{0.0187 t}$ models the population of Texas, A, in millions, t years after 2010.
a. What was the population of Texas in 2010?
b. When will the population of Texas reach 28 million?

The function $f(x)=20(0.975)^{x}$ models the percentage of surface sunlight, $f(x)$, that reaches a depth of x feet beneath the surface of the ocean. The figure shows the graph of this function. Use this information to solve Exercises 105-106.

105. Use the function to determine at what depth, to the nearest foot, there is 1% of surface sunlight. How is this shown on the graph of f ?
106. Use the function to determine at what depth, to the nearest foot, there is 3% of surface sunlight. How is this shown on the graph of f ?

In Exercises 107-110, complete the table for a savings account subject to n compoundings yearly $\left[A=P\left(1+\frac{r}{n}\right)^{n t}\right]$. Round answers
to one decimal place.

	Amount Invested	Number of Compounding Periods	Annual Interest Rate	Accumulated Amount	Time \boldsymbol{t} in Years
107.	$\$ 12,500$	4	5.75%	$\$ 20,000$	
$\mathbf{1 0 8 .}$	$\$ 7250$	12	6.5%	$\$ 15,000$	
$\mathbf{1 0 9 .}$	$\$ 1000$	360	16.8%	$\$ 1400$	
$\mathbf{1 1 0 .}$	$\$ 5000$	360	14.7%	$\$ 9000$	

In Exercises 111-114, complete the table for a savings account subject to continuous compounding ($A=P e^{r t}$). Round answers to one decimal place.

	Amount Invested	Annual Interest Rate	Accumulated Amount	Time t in Years
111.	\$8000	8\%	Double the amount invested	
112.	\$8000	20.3\%	\$12,000	
113.	\$2350	15.7\%	Triple the amount invested	
114.	\$17,425	4.25\%	\$25,000	

By 2019, nearly $\$ 1$ out of every $\$ 5$ spent in the U.S. economy is projected to go for health care. The bar graph shows the percentage of the U.S. gross domestic product (GDP) going toward health care from 2007 through 2010, with projections for 2014 and 2019.

Source: Health Affairs (healthaffairs.org)

The data can be modeled by the function $f(x)=1.2 \ln x+15.7$, where $f(x)$ is the percentage of the U.S. gross domestic product going toward health care x years after 2006. Use this information to solve Exercises 115-116.
115. a. Use the function to determine the percentage of the U.S. gross domestic product that went toward health care in 2009. Round to the nearest tenth of a percent. Does this underestimate or overestimate the percent displayed by the graph? By how much?
b. According to the model, when will 18.5% of the U.S. gross domestic product go toward health care? Round to the nearest year.
116. a. Use the function to determine the percentage of the U.S. gross domestic product that went toward health care in 2008. Round to the nearest tenth of a percent. Does this underestimate or overestimate the percent displayed by the graph? By how much?
b. According to the model, when will 18.6% of the U.S. gross domestic product go toward health care? Round to the nearest year.

The function $P(x)=95-30 \log _{2} x$ models the percentage, $P(x)$, of students who could recall the important features of a classroom lecture as a function of time, where x represents the number of days that have elapsed since the lecture was given. The figure shows the graph of the function. Use this information to solve Exercises 117-118. Round answers to one decimal place.

117. After how many days do only half the students recall the important features of the classroom lecture? (Let $P(x)=50$ and solve for x.) Locate the point on the graph that conveys this information.
118. After how many days have all students forgotten the important features of the classroom lecture? (Let $P(x)=0$ and solve for x.) Locate the point on the graph that conveys this information.

The pH scale is used to measure the acidity or alkalinity of a solution. The scale ranges from 0 to 14. A neutral solution, such as pure water, has a pH of 7 . An acid solution has a pH less than 7 and an alkaline solution has a pH greater than 7. The lower the pH below 7, the more acidic is the solution. Each whole-number decrease in pH represents a tenfold increase in acidity.

The pH Scale

The pH of a solution is given by

$$
\mathrm{pH}=-\log x,
$$

where x represents the concentration of the hydrogen ions in the solution, in moles per liter. Use the formula to solve Exercises 119-120. Express answers as powers of 10.
119. a. Normal, unpolluted rain has a pH of about 5.6. What is the hydrogen ion concentration?
b. An environmental concern involves the destructive effects of acid rain. The most acidic rainfall ever had a pH of 2.4. What was the hydrogen ion concentration?
c. How many times greater is the hydrogen ion concentration of the acidic rainfall in part (b) than the normal rainfall in part (a)?
120. a. The figure indicates that lemon juice has a pH of 2.3 . What is the hydrogen ion concentration?
b. Stomach acid has a pH that ranges from 1 to 3 . What is the hydrogen ion concentration of the most acidic stomach?
c. How many times greater is the hydrogen ion concentration of the acidic stomach in part (b) than the lemon juice in part (a)?

Writing in Mathematics

121. Explain how to solve an exponential equation when both sides can be written as a power of the same base.
122. Explain how to solve an exponential equation when both sides cannot be written as a power of the same base. Use $3^{x}=140$ in your explanation.
123. Explain the differences between solving $\log _{3}(x-1)=4$ and $\log _{3}(x-1)=\log _{3} 4$.
124. In many states, a 17% risk of a car accident with a blood alcohol concentration of 0.08 is the lowest level for charging a motorist with driving under the influence. Do you agree with the 17% risk as a cutoff percentage, or do you feel that the percentage should be lower or higher? Explain your answer. What blood alcohol concentration corresponds to what you believe is an appropriate percentage?

Technology Exercises

In Exercises 125-132, use your graphing utility to graph each side of the equation in the same viewing rectangle. Then use the x-coordinate of the intersection point to find the equation's solution set. Verify this value by direct substitution into the equation.
125. $2^{x+1}=8$
126. $3^{x+1}=9$
127. $\log _{3}(4 x-7)=2$
128. $\log _{3}(3 x-2)=2$
129. $\log (x+3)+\log x=1$
130. $\log (x-15)+\log x=2$
131. $3^{x}=2 x+3$
132. $5^{x}=3 x+4$

Hurricanes are one of nature's most destructive forces. These low-pressure areas often have diameters of over 500 miles. The function $f(x)=0.48 \ln (x+1)+27$ models the barometric air pressure, $f(x)$, in inches of mercury, at a distance of x miles from the eye of a hurricane. Use this function to solve Exercises 133-134.
133. Graph the function in a $[0,500,50]$ by $[27,30,1]$ viewing rectangle. What does the shape of the graph indicate about barometric air pressure as the distance from the eye increases?
134. Use an equation to answer this question: How far from the eye of a hurricane is the barometric air pressure 29 inches of mercury? Use the TRACE and ZOOM features or the intersect command of your graphing utility to verify your answer.
135. The function $P(t)=145 e^{-0.092 t}$ models a runner's pulse, $P(t)$, in beats per minute, t minutes after a race, where $0 \leq t \leq 15$. Graph the function using a graphing utility. TRACE along the graph and determine after how many minutes the runner's pulse will be 70 beats per minute. Round to the nearest tenth of a minute. Verify your observation algebraically.
136. The function $W(t)=2600\left(1-0.51 e^{-0.075 t}\right)^{3}$ models the weight, $W(t)$, in kilograms, of a female African elephant at age t years. (1 kilogram ≈ 2.2 pounds) Use a graphing utility to graph the function. Then TRACE along the curve to estimate the age of an adult female elephant weighing 1800 kilograms.

Critical Thinking Exercises

Make Sense? In Exercises 137-140, determine whether each statement makes sense or does not make sense, and explain your reasoning.
137. Because the equations $2^{x}=15$ and $2^{x}=16$ are similar, I solved them using the same method.
138. Because the equations

$$
\log (3 x+1)=5 \text { and } \log (3 x+1)=\log 5
$$

are similar, I solved them using the same method.
139. I can solve $4^{x}=15$ by writing the equation in logarithmic form.
140. It's important for me to check that the proposed solution of an equation with logarithms gives only logarithms of positive numbers in the original equation.

In Exercises 141-144, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
141. If $\log (x+3)=2$, then $e^{2}=x+3$.
142. If $\log (7 x+3)-\log (2 x+5)=4$, then the equation in exponential form is $10^{4}=(7 x+3)-(2 x+5)$.
143. If $x=\frac{1}{k} \ln y$, then $y=e^{k x}$.
144. Examples of exponential equations include $10^{x}=5.71$, $e^{x}=0.72$, and $x^{10}=5.71$.
145. If $\$ 4000$ is deposited into an account paying 3% interest compounded annually and at the same time $\$ 2000$ is deposited into an account paying 5% interest compounded annually, after how long will the two accounts have the same balance? Round to the nearest year.

Solve each equation in Exercises 146-148. Check each proposed solution by direct substitution or with a graphing utility.
146. $(\ln x)^{2}=\ln x^{2}$
147. $(\log x)(2 \log x+1)=6$
148. $\ln (\ln x)=0$

Group Exercise

149. Research applications of logarithmic functions as mathematical models and plan a seminar based on your group's research. Each group member should research one of the following areas or any other area of interest: pH (acidity of solutions), intensity of sound (decibels), brightness of stars, human memory, progress over time in a sport, profit over time. For the area that you select, explain how logarithmic functions are used and provide examples.

Preview Exercises

Exercises 150-152 will help you prepare for the material covered in the next section.
150. The formula $A=10 e^{-0.003 t}$ models the population of Hungary, A, in millions, t years after 2006.
a. Find Hungary's population, in millions, for 2006, 2007, 2008, and 2009. Round to two decimal places.
b. Is Hungary's population increasing or decreasing?
151. a. Simplify: $e^{\ln 3}$.
b. Use your simplification from part (a) to rewrite 3^{x} in terms of base e.
152. U.S. soldiers fight Russian troops who have invaded New York City. Incoming missiles from Russian submarines and warships ravage the Manhattan skyline. It's just another scenario for the multi-billion-dollar video games Call of Duty, which have sold more than 100 million games since the franchise's birth in 2003.

The table shows the annual retail sales for Call of Duty video games from 2004 through 2010. Create a scatter plot for the data. Based on the shape of the scatter plot, would a logarithmic function, an exponential function, or a linear function be the best choice for modeling the data?

Annual Retail Sales for Call of Duty Games

Year	Retail Sales (millions of dollars)
2004	56
2005	101
2006	196
2007	352
2008	436
2009	778
2010	980

[^6]
SECTION 3.5

Exponential Growth and Decay; Modeling Data

Objectives

(1) Model exponential growth and decay.
2. Use logistic growth models.
(3) Use Newton's Law of Cooling.
4. Choose an appropriate model for data.
(5) Express an exponential model in base e.

On October 31, 2011, the world marked a major milestone: According to the United Nations, the number of people on Earth reached 7 billion-and counting. Since the dawn of humankind some 50,000 years ago, an estimated total of 108 billion people have lived on our planet, which means that about 6.5% of all humans ever born are alive today. That's a lot of bodies to feed, clothe, and shelter. Scientists, politicians, economists, and demographers have long disagreed when it comes to making predictions about the effects of the world's growing population. Debates about entities that are growing exponentially can be approached mathematically: We can create functions that model data and use these functions to make predictions. In this section, we will show you how this is done.

Exponential Growth and Decay

One of algebra's many applications is to predict the behavior of variables. This can be done with exponential growth and decay models. With exponential growth or decay, quantities grow or decay at a rate directly proportional to their size. Populations that are growing exponentially grow extremely rapidly as they get larger because there are more adults to have offspring. For example, world population is increasing at approximately 1.2% per year. This means that each year world population is 1.2% more than what it was in the previous year. In 2010, world population was 6.9 billion. Thus, we compute the world population in 2011 as follows:

$$
6.9 \text { billion }+1.2 \% \text { of } 6.9 \text { billion }=6.9+(0.012)(6.9)=6.9828
$$

This computation indicates that 6.9828 billion people populated the world in 2011. The 0.0828 billion represents an increase of 82.8 million people from 2010 to 2011, the equivalent of the population of Germany. Using 1.2% as the annual rate of increase, world population for 2012 is found in a similar manner:

$$
6.9828+1.2 \% \text { of } 6.9828=6.9828+(0.012)(6.9828) \approx 7.067
$$

This computation indicates that approximately 7.1 billion people populated the world in 2012.

The explosive growth of world population may remind you of the growth of money in an account subject to compound interest. Just as the growth rate for world population is multiplied by the population plus any increase in the population, a compound interest rate is multiplied by the original investment plus any accumulated interest. The balance in an account subject to continuous compounding and world population are special cases of exponential growth models.

GREAT QUESTION!

Why does the formula for

 exponential growth look familiar?You have seen the formula for exponential growth before, but with different letters. It is the formula for compound interest with continuous compounding.

$$
A=P e^{r t}
$$

Amount Principal is the Interest rate is at time t original amount. the growth rate.

$$
A=A_{0} e^{k t}
$$

U.S. Population, 1970-2010

FIGURE 3.22
Source: U.S. Census Bureau

Exponential Growth and Decay Models

The mathematical model for exponential growth or decay is given by

$$
f(t)=A_{0} e^{k t} \quad \text { or } \quad A=A_{0} e^{k t} .
$$

- If $\boldsymbol{k}>\mathbf{0}$, the function models the amount, or size, of a growing entity. A_{0} is the original amount, or size, of the growing entity at time $t=0, A$ is the amount at time t, and k is a constant representing the growth rate.
- If $\boldsymbol{k}<\mathbf{0}$, the function models the amount, or size, of a decaying entity. A_{0} is the original amount, or size, of the decaying entity at time $t=0, A$ is the amount at time t, and k is a constant representing the decay rate.

(a) Exponential growth

(b) Exponential decay

Sometimes we need to use given data to determine k, the rate of growth or decay. After we compute the value of k, we can use the formula $A=A_{0} e^{k t}$ to make predictions. This idea is illustrated in our first two examples.

EXAMPLE 1 Modeling the Growth of the U.S. Population

The graph in Figure 3.22 shows the U.S. population, in millions, for five selected years from 1970 through 2010. In 1970, the U.S. population was 203.3 million. By 2010, it had grown to 308.7 million.
a. Find an exponential growth function that models the data for 1970 through 2010.
b. By which year will the U.S. population reach 335 million?

SOLUTION

a. We use the exponential growth model

$$
A=A_{0} e^{k t}
$$

in which t is the number of years after 1970. This means that 1970 corresponds to $t=0$. At that time the U.S. population was 203.3 million, so we substitute 203.3 for A_{0} in the growth model:

$$
A=203.3 e^{k t} .
$$

We are given that 308.7 million was the population in 2010. Because 2010 is 40 years after 1970 , when $t=40$ the value of A is 308.7 . Substituting these numbers into the growth model will enable us to find k, the growth rate. We know that $k>0$ because the problem involves growth.
U.S. Population, 1970-2010

FIGURE 3.22 (repeated)

$$
\begin{array}{rlrl}
A & =203.3 e^{k t} & & \begin{array}{l}
\text { Use the growth model with } A_{0}=203.3 . \\
\text { When } t=40, A=308.7 \text {. Substitute these }
\end{array} \\
308.7 & =203.3 e^{k \cdot 40} & & \begin{array}{l}
\text { numbers into the model. }
\end{array} \\
e^{40 k} & =\frac{308.7}{203.3} & \begin{array}{l}
\text { Isolate the exponential factor by dividing both } \\
\text { sides by 203.3. We also reversed the sides. }
\end{array} \\
\ln e^{40 k} & =\ln \left(\frac{308.7}{203.3}\right) & & \text { Take the natural logarithm on both sides. } \\
40 k & =\ln \left(\frac{308.7}{203.3}\right) & & \text { Simplify the left side using In } e^{x}=x .
\end{array}
$$

The value of k, approximately 0.01 , indicates a growth rate of about 1%. We substitute 0.01 for k in the growth model, $A=203.3 e^{k t}$, to obtain an exponential growth function for the U.S. population. It is

$$
A=203.3 e^{0.01 t}
$$

where t is measured in years after 1970 .
b. To find the year in which the U.S. population will reach 335 million, substitute 335 for A in the model from part (a) and solve for t.

$$
\begin{array}{rlrl}
A & =203.3 e^{0.01 t} & & \begin{array}{l}
\text { This is the model from part (a). } \\
335
\end{array} \\
=203.3 e^{0.01 t} & & \text { Substitute } 335 \text { for } A . \\
e^{0.01 t} & =\frac{335}{203.3} & & \begin{array}{l}
\text { Divide both sides by 203.3. We also } \\
\text { reversed the sides. }
\end{array} \\
\ln e^{0.01 t} & =\ln \left(\frac{335}{203.3}\right) & & \text { Take the natural logarithm on both sides. } \\
0.01 t & =\ln \left(\frac{335}{203.3}\right) & & \text { Simplify on the left using In } e^{x}=x . \\
t & =\frac{\ln \left(\frac{335}{203.3}\right)}{0.01} \approx 50 \quad & & \begin{array}{l}
\text { Divide both sides by } 0.01 \text { and solve for } t .
\end{array} \\
\text { Then use a calculator. }
\end{array}
$$

Because t represents the number of years after 1970, the model indicates that the U.S. population will reach 335 million by $1970+50$, or in the year 2020.

In Example 1, we used only two data values, the population for 1970 and the population for 2010, to develop a model for U.S. population growth from 1970 through 2010. By not using data for any other years, have we created a model that inaccurately describes both the existing data and future population projections given by the U.S. Census Bureau? Something else to think about: Is an exponential model the best choice for describing U.S. population growth, or might a linear model provide a better description? We return to these issues in Exercises 70-74 in the Exercise Set.
S Check Point 1 In 2000, the population of Africa was 807 million and by 2011 it had grown to 1052 million.
a. Use the exponential growth model $A=A_{0} e^{k t}$, in which t is the number of years after 2000, to find the exponential growth function that models the data.
b. By which year will Africa's population reach 2000 million, or two billion?

Blitzer Bonus
 Carbon Dating and Artistic Development

The artistic community was electrified by the discovery in 1995 of spectacular cave paintings in a limestone cavern in France. Carbon dating of the charcoal from the site showed that the images, created by artists of remarkable talent, were 30,000 years old, making them the oldest cave paintings ever found. The artists seemed to have used the cavern's natural contours to heighten a sense of perspective. The quality of the painting suggests that the art of early humans did not mature steadily from primitive to sophisticated in any simple linear fashion.

Our next example involves exponential decay and its use in determining the age of fossils and artifacts. The method is based on considering the percentage of carbon-14 remaining in the fossil or artifact. Carbon-14 decays exponentially with a half-life of approximately 5715 years. The half-life of a substance is the time required for half of a given sample to disintegrate. Thus, after 5715 years a given amount of carbon-14 will have decayed to half the original amount. Carbon dating is useful for artifacts or fossils up to 80,000 years old. Older objects do not have enough carbon-14 left to determine age accurately.

EXAMPLE 2 Carbon-14 Dating: The Dead Sea Scrolls

a. Use the fact that after 5715 years a given amount of carbon-14 will have decayed to half the original amount to find the exponential decay model for carbon-14.
b. In 1947, earthenware jars containing what are known as the Dead Sea Scrolls were found by an Arab Bedouin herdsman. Analysis indicated that the scroll wrappings contained 76% of their original carbon-14. Estimate the age of the Dead Sea Scrolls.

SOLUTION

a. We begin with the exponential decay model $A=A_{0} e^{k t}$. We know that $k<0$ because the problem involves the decay of carbon-14. After 5715 years $(t=5715)$, the amount of carbon-14 present, A, is half the original amount, A_{0}. Thus, we can substitute $\frac{A_{0}}{2}$ for A in the exponential decay model. This will enable us to find k, the decay rate.

$$
\begin{array}{rlrl}
A & =A_{0} e^{k t} & & \text { Begin with the exponential decay model. } \\
\frac{A_{0}}{2} & =A_{0} e^{k 5715} & \begin{array}{l}
\text { After } 5715 \text { years }(t=5715), A=\frac{A_{0}}{2} \\
\text { (because the amount present, } A, \text { is half th } \\
\text { original amount, } \left.A_{0}\right) .
\end{array} \\
\frac{1}{2} & =e^{5715 k} & \begin{array}{l}
\text { Divide both sides of the equation by } A_{0} . \\
\ln \left(\frac{1}{2}\right)
\end{array} & =\ln e^{5715 k} \\
\ln \left(\frac{1}{2}\right) & =5715 k & \text { Take the natural logarithm on both sides. }
\end{array}
$$

Substituting -0.000121 for k in the decay model, $A=A_{0} e^{k t}$, the model for carbon-14 is

$$
A=A_{0} e^{-0.000121 t}
$$

b. In 1947 , the Dead Sea Scrolls contained 76% of their original carbon-14. To find their age in 1947, substitute $0.76 A_{0}$ for A in the model from part (a) and solve for t.

$$
\begin{aligned}
A & =A_{0} e^{-0.000121 t} & & \text { This is the decay model for carbon-14. } \\
0.76 A_{0} & =A_{0} e^{-0.000121 t} & & \text { A, the amount present, is } 76 \% \text { of the original } \\
0.76 & =e^{-0.000121 t} & & \text { amount, so } A=0.76 A_{0} . \\
\ln 0.76 & =\ln e^{-0.000121 t} & & \text { Divide both sides of the equation by } A_{0} . \\
\ln 0.76 & =-0.000121 t & & \text { Take the natural logarithm on both sides. } \\
t & =\frac{\ln 0.76}{-0.000121} \approx 2268 & & \text { Simplify the right side using In } e^{x}=x .
\end{aligned}
$$

The Dead Sea Scrolls are approximately 2268 years old plus the number of years between 1947 and the current year.
(2) Use logistic growth models.

FIGURE 3.23 The logistic growth curve has a horizontal asymptote that identifies the limit of the growth of A over time.

Logistic Growth Models

From population growth to the spread of an epidemic, nothing on Earth can grow exponentially indefinitely. Growth is always limited. This is shown in Figure $\mathbf{3 . 2 3}$ by the horizontal asymptote. The logistic growth model is a function used to model situations of this type.

Logistic Growth Model

The mathematical model for limited logistic growth is given by

$$
f(t)=\frac{c}{1+a e^{-b t}} \quad \text { or } \quad A=\frac{c}{1+a e^{-b t}},
$$

where a, b, and c are constants, with $c>0$ and $b>0$.

As time increases $(t \rightarrow \infty)$, the expression $a e^{-b t}$ in the model approaches 0 , and A gets closer and closer to c. This means that $y=c$ is a horizontal asymptote for the graph of the function. Thus, the value of A can never exceed c and c represents the limiting size that A can attain.

EXAMPLE 3 Modeling the Spread of the Flu

The function

$$
f(t)=\frac{30,000}{1+20 e^{-1.5 t}}
$$

describes the number of people, $f(t)$, who have become ill with influenza t weeks after its initial outbreak in a town with 30,000 inhabitants.
a. How many people became ill with the flu when the epidemic began?
b. How many people were ill by the end of the fourth week?
c. What is the limiting size of $f(t)$, the population that becomes ill?

SOLUTION

a. The time at the beginning of the flu epidemic is $t=0$. Thus, we can find the number of people who were ill at the beginning of the epidemic by substituting 0 for t.

$$
\begin{array}{rlr}
f(t) & =\frac{30,000}{1+20 e^{-1.5 t}} \quad \text { This is the given logistic growth function. } \\
f(0) & =\frac{30,000}{1+20 e^{-1.5(0)}} & \text { When the epidemic began, } t=0 . \\
& =\frac{30,000}{1+20} & e^{-1.5(0)}=e^{0}=1 \\
& \approx 1429 &
\end{array}
$$

Approximately 1429 people were ill when the epidemic began.

TECHNOLOGY

The graph of the logistic growth function for the flu epidemic

$$
y=\frac{30,000}{1+20 e^{-1.5 x}}
$$

can be obtained using a graphing utility. We started x at 0 and ended at 10 . This takes us to week 10 . (In Example 3, we found that by week 4 approximately 28,583 people were ill.) We also know that 30,000 is the limiting size, so we took values of y up to 30,000 . Using a $[0,10,1]$ by [$0,30,000,3000$] viewing rectangle, the graph of the logistic growth function is shown below.

(3) Use Newton's Law of Cooling.

GREAT QUESTION!

Does Newton's Law of Cooling apply only to cooling objects?
No. Newton's Law of Cooling applies to any situation in which an object's temperature is different from that of the surrounding medium. Thus, it can be used to model the temperature of a heated object cooling to room temperature as well as the temperature of a frozen object thawing to room temperature.
b. We find the number of people who were ill at the end of the fourth week by substituting 4 for t in the logistic growth function.

$$
\begin{array}{rlrl}
f(t) & =\frac{30,000}{1+20 e^{-1.5 t}} & \text { Use the given logistic growth function. } \\
f(4) & =\frac{30,000}{1+20 e^{-1.5(4)}} & \begin{array}{l}
\text { To find the number of people ill by the end of } \\
\text { week four, let } t=4 .
\end{array} \\
& \approx 28,583 & & \text { Use a calculator. }
\end{array}
$$

Approximately 28,583 people were ill by the end of the fourth week. Compared with the number of people who were ill initially, 1429, this illustrates the virulence of the epidemic.
c. Recall that in the logistic growth model, $f(t)=\frac{c}{1+a e^{-b t}}$, the constant c represents the limiting size that $f(t)$ can attain. Thus, the number in the numerator, 30,000 , is the limiting size of the population that becomes ill. ...

Check Point 3 In a learning theory project, psychologists discovered that

$$
f(t)=\frac{0.8}{1+e^{-0.2 t}}
$$

is a model for describing the proportion of correct responses, $f(t)$, after t learning trials.
a. Find the proportion of correct responses prior to learning trials taking place.
b. Find the proportion of correct responses after 10 learning trials.
c. What is the limiting size of $f(t)$, the proportion of correct responses, as continued learning trials take place?

Modeling Cooling

Over a period of time, a cup of hot coffee cools to the temperature of the surrounding air. Newton's Law of Cooling, named after Sir Isaac Newton, states that the temperature of a heated object decreases exponentially over time toward the temperature of the surrounding medium.

Newton's Law of Cooling

The temperature, T, of a heated object at time t is given by

$$
T=C+\left(T_{0}-C\right) e^{k t},
$$

where C is the constant temperature of the surrounding medium, T_{0} is the initial temperature of the heated object, and k is a negative constant that is associated with the cooling object.

EXAMPLE 4 Using Newton's Law of Cooling

A cake removed from the oven has a temperature of $210^{\circ} \mathrm{F}$. It is left to cool in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 30 minutes, the temperature of the cake is $140^{\circ} \mathrm{F}$.
a. Use Newton's Law of Cooling to find a model for the temperature of the cake, T, after t minutes.
b. What is the temperature of the cake after 40 minutes?
c. When will the temperature of the cake be $90^{\circ} \mathrm{F}$?

SOLUTION

a. We use Newton's Law of Cooling

$$
T=C+\left(T_{0}-C\right) e^{k t} .
$$

When the cake is removed from the oven, its temperature is $210^{\circ} \mathrm{F}$. This is its initial temperature: $T_{0}=210$. The constant temperature of the room is $70^{\circ} \mathrm{F}: C=70$. Substitute these values into Newton's Law of Cooling. Thus, the temperature of the cake, T, in degrees Fahrenheit, at time t, in minutes, is

$$
T=70+(210-70) e^{k t}=70+140 e^{k t} .
$$

After 30 minutes, the temperature of the cake is $140^{\circ} \mathrm{F}$. This means that when $t=30, T=140$. Substituting these numbers into Newton's Law of Cooling will enable us to find k, a negative constant.

$$
\begin{array}{rlrl}
T & =70+140 e^{k t} & & \text { Use Newton's Law of Cooling from above. } \\
140 & =70+140 e^{k \cdot 30} & & \text { When } t=30, T=140 . \text { Substitute these numbers } \\
70 & =140 e^{30 k} & & \text { into the cooling model. } \\
e^{30 k} & =\frac{1}{2} & & \text { Subtract } 70 \text { from both sides. } \\
\ln e^{30 k} & =\ln \left(\frac{1}{2}\right) & & \text { Isolate the exponential factor by dividing both } \\
\text { sides by } 140 . \text { We also reversed the sides. } \\
30 k & =\ln \left(\frac{1}{2}\right) & & \text { Take the natural logarithm on both sides. } \\
k & =\frac{\ln \left(\frac{1}{2}\right)}{30} \approx-0.0231 & & \text { Divide both sides by } 30 \text { and solve for } k .
\end{array}
$$

We substitute -0.0231 for k into Newton's Law of Cooling, $T=70+140 e^{k t}$. The temperature of the cake, T, in degrees Fahrenheit, after t minutes is modeled by

$$
T=70+140 e^{-0.0231 t}
$$

b. To find the temperature of the cake after 40 minutes, we substitute 40 for t into the cooling model from part (a) and evaluate to find T.

$$
T=70+140 e^{-0.0231(40)} \approx 126
$$

After 40 minutes, the temperature of the cake will be approximately $126^{\circ} \mathrm{F}$.

TECHNOLOGY

Graphic Connections

The graphs illustrate how the temperature of the cake decreases exponentially over time toward the $70^{\circ} \mathrm{F}$ room temperature.

c. To find when the temperature of the cake will be $90^{\circ} \mathrm{F}$, we substitute 90 for T into the cooling model from part (a) and solve for t.

$$
\begin{array}{rlrl}
T & =70+140 e^{-0.0231 t} & & \text { This is the cooling model from part (a). } \\
90 & =70+140 e^{-0.0231 t} & & \text { Substitute } 90 \text { for } T . \\
20 & =140 e^{-0.0231 t} & & \text { Subtract } 70 \text { from both sides. } \\
e^{-0.0231 t} & =\frac{1}{7} & & \text { Divide both sides by } 140 . \text { We also reversed the } \\
\text { sides. } \\
\ln e^{-0.0231 t} & =\ln \left(\frac{1}{7}\right) & & \text { Take the natural logarithm on both sides. } \\
-0.0231 t & =\ln \left(\frac{1}{7}\right) & & \text { Simplify the left side using In } e^{x}=x . \\
t & =\frac{\ln \left(\frac{1}{7}\right)}{-0.0231} \approx 84 & & \text { Solve for } t \text { by dividing both sides by }-0.0231 .
\end{array}
$$

The temperature of the cake will be $90^{\circ} \mathrm{F}$ after approximately 84 minutes.
(4) Choose an appropriate model for data.

Modeling Data

Throughout this chapter, we have been working with models that were given. However, we can create functions that model data by observing patterns in scatter plots. Figure 3.24 shows scatter plots for data that are exponential, logarithmic, and linear.

FIGURE 3.24 Scatter plots for exponential, logarithmic, and linear models

Table 3.6 Growth of the Human Brain

Age	Percentage of Adult Size Brain
1	30%
2	50%
4	78%
6	88%
8	92%
10	95%
11	99%

Source: Gerrig and Zimbardo, Psychology and Life, 18th Edition, Allyn and Bacon, 2008.

EXAMPLE 5
 Choosing a Model for Data

The data in Table 3.6 indicate that between the ages of 1 and 11, the human brain does not grow linearly, or steadily. A scatter plot for the data is shown in Figure 3.25. What type of function would be a good choice for modeling the data?

FIGURE 3.25

SOLUTION

Because the data in the scatter plot increase rapidly at first and then begin to level off a bit, the shape suggests that a logarithmic function is a good choice for modeling the data.

Check Point 5 Table 3.7 shows the populations of various cities, in thousands, and the average walking speed, in feet per second, of a person living in the city. Create a scatter plot for the data. Based on the scatter plot, what type of function would be a good choice for modeling the data?

FIGURE 3.26 A logarithmic model for the data in Table 3.8

Table 3.7 Population and Walking Speed

Population (thousands)	Walking Speed (feet per second)
5.5	0.6
14	1.0
71	1.6
138	1.9
342	2.2

Source: Mark H. Bornstein and Helen G. Bornstein, "The Pace of Life." Nature, 259, Feb. 19, 1976, pp. 557-559
How can we obtain a logarithmic function that models the data for the growth of the human brain? A graphing utility can be used to obtain a logarithmic model of the form $y=a+b \ln x$. Because the domain of the logarithmic function is the set of positive numbers, zero must not be a value for \boldsymbol{x}. This is not a problem for the data giving the percentage of an adult size brain because the data begin at age 1 . We will assign x to represent age and y to represent the percentage of an adult size brain. This gives us the data shown in Table 3.8. Using the logarithmic regression option, we obtain the equation in Figure 3.26.

From Figure 3.26, we see that the logarithmic model of the data, with numbers rounded to three decimal places, is

$$
y=31.954+28.947 \ln x
$$

The number r that appears in Figure 3.26 is called the correlation coefficient and is a measure of how well the model fits the data. The value of r is such that $-1 \leq r \leq 1$. A positive r means that as the x-values increase, so do the y-values. A negative r means that as the x-values increase, the y-values decrease. The closer that \boldsymbol{r} is to $\mathbf{- 1}$ or 1 , the better the model fits the data. Because r is approximately 0.99 , the model fits the data very well.

Table 3.9 Percentage of U.S. Men Who Are Married or Who Have Been Married, by Age

Age	Percent
18	2
20	7
25	36
30	61
35	75

Source: National Center for Health Statistics

EXAMPLE 6 Choosing a Model for Data

Figure 3.27(a) shows world population, in billions, for seven selected years from 1950 through 2010. A scatter plot is shown in Figure 3.27(b). Suggest two types of functions that would be good choices for modeling the data.

World Population, 1950-2010

FIGURE 3.27(a)
Source: U.S. Census Bureau, International Database

FIGURE 3.27(b)

SOLUTION

Because the data in the scatter plot appear to increase more and more rapidly, the shape suggests that an exponential model might be a good choice. Furthermore, we can probably draw a line that passes through or near the seven points. Thus, a linear function would also be a good choice for modeling the data.

Check Point 6 Table 3.9 shows the percentage of U.S. men who are married or who have been married, by age. Create a scatter plot for the data. Based on the scatter plot, what type of function would be a good choice for modeling the data?

EXAMPLE 7 Comparing Linear and Exponential Models

The data for world population are shown in Table 3.10. Using a graphing utility's linear regression feature and exponential regression feature, we enter the data and obtain the models shown in Figure 3.28.

Table 3.10

| \boldsymbol{x}, Number of Years |
| :---: | :---: |
after 1949		\boldsymbol{y}, World Population		
(billions)	$	$	$1(1950)$	2.6
:---:	:---:			
$11(1960)$	3.0			
$21(1970)$	4.5			
$31(1980)$	5.3			
$41(1990)$	6.1			
$51(2000)$	6.9			
$61(2010)$				

FIGURE 3.28 A linear model and an exponential model for the data in Table $\mathbf{3 . 1 0}$

Because r, the correlation coefficient, is close to 1 in each screen in Figure 3.28, the models fit the data very well.
a. Use Figure 3.28 to express each model in function notation, with numbers rounded to three decimal places.
b. How well do the functions model world population in 2000 ?
c. By one projection, world population is expected to reach 8 billion in the year 2026. Which function serves as a better model for this prediction?

FIGURE 3.28 (repeated) A linear model and an exponential model for world population

SOLUTION

a. Using Figure 3.28 and rounding to three decimal places, the functions

$$
f(x)=0.074 x+2.294 \quad \text { and } \quad g(x)=2.577(1.017)^{x}
$$

model world population, in billions, x years after 1949 . We named the linear function f and the exponential function g, although any letters can be used.
b. Table 3.10 on the previous page shows that world population in 2000 was 6.1 billion. The year 2000 is 51 years after 1949. Thus, we substitute 51 for x in each function's equation and then evaluate the resulting expressions with a calculator to see how well the functions describe world population in 2000.

$$
\begin{array}{rlrl}
f(x) & =0.074 x+2.294 & & \text { This is the linear model. } \\
f(51) & =0.074(51)+2.294 & & \text { Substitute } 51 \text { for } x . \\
& \approx 6.1 & & \text { Use a calculator. } \\
g(x) & =2.577(1.017)^{x} & & \text { This is the exponential model. } \\
g(51) & =2.577(1.017)^{51} & & \text { Substitute } 51 \text { for } x . \\
& \approx 6.1 & & \text { Use a calculator: } \\
& & 2.577 \times 1.017\left(y^{x}(\text { or } \triangle) 51 \square=.\right.
\end{array}
$$

Because 6.1 billion was the actual world population in 2000, both functions model world population in 2000 extremely well.
c. Let's see which model comes closer to projecting a world population of 8 billion in the year 2026. Because 2026 is 77 years after 1949 $(2026-1949=77)$, we substitute 77 for x in each function's equation.

$$
\begin{array}{rlrl}
f(x) & =0.074 x+2.294 & & \text { This is the linear model. } \\
f(77) & =0.074(77)+2.294 & & \text { Substitute } 77 \text { for } x . \\
& \approx 8.0 & & \text { Use a calculator. } \\
g(x) & =2.577(1.017)^{x} & & \text { This is the exponential model. } \\
g(77) & =2.577(1.017)^{77} & & \text { Substitute } 77 \text { for } x . \\
& \approx 9.4 & & \text { Use a calculator: } \\
& & 2.577 \times 1.017\lfloor(\text { or } \triangle \wedge) 77 \square=.
\end{array}
$$

The linear function $f(x)=0.074 x+2.294$ serves as a better model for a projected world population of 8 billion by 2026 .

Check Point 7 Use the models $f(x)=0.074 x+2.294$ and $g(x)=2.577(1.017)^{x}$ to solve this problem.
a. World population in 1970 was 3.7 billion. Which function serves as a better model for this year?
b. By one projection, world population is expected to reach 9.3 billion by 2050 . Which function serves as a better model for this projection?

When using a graphing utility to model data, begin with a scatter plot, drawn either by hand or with the graphing utility, to obtain a general picture for the shape of the data. It might be difficult to determine which model best fits the datalinear, logarithmic, exponential, quadratic, or something else. If necessary, use your graphing utility to fit several models to the data. The best model is the one that yields the value r, the correlation coefficient, closest to 1 or -1 . Finding a proper fit for data can be almost as much art as it is mathematics. In this era of technology, the process of creating models that best fit data is one that involves more decision making than computation.
5. Express an exponential model in base e.

Blitzer Bonus

Global Population Increase

By the time you finish reading Example 8 and working Check Point 8, more than 1000 people will have been added to our planet. By this time tomorrow, world population will have increased by more than 220,000 .

Expressing $y=a b^{x}$ in Base e

Graphing utilities display exponential models in the form $y=a b^{x}$. However, our discussion of exponential growth involved base e. Because of the inverse property $b=e^{\ln b}$, we can rewrite any model in the form $y=a b^{x}$ in terms of base e.

Expressing an Exponential Model in Base e

$$
y=a b^{x} \text { is equivalent to } y=a e^{(\ln b) \cdot x}
$$

EXAMPLE 8 Rewriting the Model for World Population in Base e

We have seen that the function

$$
g(x)=2.577(1.017)^{x}
$$

models world population, $g(x)$, in billions, x years after 1949. Rewrite the model in terms of base e.

SOLUTION

We use the two equivalent equations shown in the voice balloons to rewrite the model in terms of base e.

$$
\begin{gathered}
y=a b^{x} \\
g=a e^{(\ln b \mid \cdot x} \\
g(x)=2.577(1.017)^{x} \quad \text { is equivalent to } \quad g(x)=2.577 e^{(\ln 1.017) x} .
\end{gathered}
$$

Using $\ln 1.017 \approx 0.017$, the exponential growth model for world population, $g(x)$, in billions, x years after 1949 is

$$
g(x)=2.577 e^{0.017 x}
$$

In Example 8, we can replace $g(x)$ with A and x with t so that the model has the same letters as those in the exponential growth model $A=A_{0} e^{k t}$.

$$
\begin{array}{ll}
A= & A_{o} \\
e^{k t} & \text { This is the exponential growth model. } \\
A=2.577 e^{0.017 t} & \text { This is the model for world population. }
\end{array}
$$

The value of $k, 0.017$, indicates a growth rate of 1.7%. Although this is an excellent model for the data, we must be careful about making projections about world population using this growth function. Why? World population growth rate is now 1.2%, not 1.7%, so our model will overestimate future populations.

Check Point 8 Rewrite $y=4(7.8)^{x}$ in terms of base e. Express the answer in terms of a natural logarithm and then round to three decimal places.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Consider the model for exponential growth or decay given by

$$
A=A_{0} e^{k t} .
$$

If k \qquad , the function models the amount, or size, of a growing entity. If k \qquad , the function models the amount, or size, of a decaying entity.
2. In the model for exponential growth or decay, the amount, or size, at $t=0$ is represented by \qquad The amount, or size, at time t is represented by \qquad .
given by

$$
A=\frac{c}{1+a e^{-b t}} .
$$

The amount, or size, at time t is represented by \qquad This value can never exceed
\qquad

For each of the scatter plots in Exercises 4-6, determine whether an exponential function, a logarithmic function, or a linear function is the best choice for modeling the data.
4. y

5.

EXERCISE SET 3.5

Practice Exercises and Application Exercises

The exponential models describe the population of the indicated country, A, in millions, t years after 2010. Use these models to solve Exercises 1-6.

India	$A=1173.1 e^{0.008 t}$
Iraq	$A=31.5 e^{0.019 t}$
Japan	$A=127.3 e^{-0.006 t}$
Russia	$A=141.9 e^{-0.005 t}$

1. What was the population of Japan in 2010?
2. What was the population of Iraq in 2010 ?
3. Which country has the greatest growth rate? By what percentage is the population of that country increasing each year?
4. Which countries have a decreasing population? By what percentage is the population of these countries decreasing each year?
5. When will India's population be 1377 million?
6. When will India's population be 1491 million?

About the size of New Jersey, Israel has seen its population soar to more than 6 million since it was established. The graphs show that by 2050, Palestinians in the West Bank, Gaza Strip, and East Jerusalem will outnumber Israelis. Exercises 7-8 involve the projected growth of these two populations.

Palestinian Population in West Bank, Gaza, and East Jerusalem

Source: Newsweek
6. y

7. $y=3(5)^{x}$ can be written in terms of base e as $y=3 e^{(-) \cdot x}$.
7. a. In 2000 , the population of Israel was approximately 6.04 million and by 2050 it is projected to grow to 10 million. Use the exponential growth model $A=A_{0} e^{k t}$, in which t is the number of years after 2000, to find an exponential growth function that models the data.
b. In which year will Israel's population be 9 million?
8. a. In 2000 , the population of the Palestinians in the West Bank, Gaza Strip, and East Jerusalem was approximately 3.2 million and by 2050 it is projected to grow to 12 million. Use the exponential growth model $A=A_{0} e^{k t}$, in which t is the number of years after 2000, to find the exponential growth function that models the data.
b. In which year will the Palestinian population be 9 million?

In Exercises 9-14, complete the table. Round projected populations to one decimal place and values of k to four decimal places.

	Country	2010 Population (millions)	Projected 2050 Population (millions)	Projected Growth Rate, \boldsymbol{k}
9.	Philippines	99.9		0.0095
10.	Pakistan	184.4		0.0149
11.	Colombia	44.2	62.9	
12.	Madagascar	21.3	42.7	
13.	Germany	82.3	70.5	
14.	Bulgaria	7.1	5.4	

Source: International Programs Center, U.S. Census Bureau
An artifact originally had 16 grams of carbon- 14 present. The decay model $A=16 e^{-0.000121 t}$ describes the amount of carbon-14 present after t years. Use this model to solve Exercises 15-16.
15. How many grams of carbon- 14 will be present in 5715 years?
16. How many grams of carbon-14 will be present in 11,430 years?
17. The half-life of the radioactive element krypton-91 is 10 seconds. If 16 grams of krypton-91 are initially present, how many grams are present after 10 seconds? 20 seconds? 30 seconds? 40 seconds? 50 seconds?
18. The half-life of the radioactive element plutonium- 239 is 25,000 years. If 16 grams of plutonium- 239 are initially present, how many grams are present after 25,000 years? 50,000 years? 75,000 years? 100,000 years? 125,000 years?

Use the exponential decay model for carbon-14, $A=A_{0} e^{-0.000121 t}$, to solve Exercises 19-20.
19. Prehistoric cave paintings were discovered in a cave in France. The paint contained 15% of the original carbon-14. Estimate the age of the paintings.
20. Skeletons were found at a construction site in San Francisco in 1989. The skeletons contained 88% of the expected amount of carbon-14 found in a living person. In 1989, how old were the skeletons?
In Exercises 21-26, complete the table. Round half-lives to one decimal place and values of k to six decimal places.

Radioactive Substance		Half-Life	Decay Rate, \boldsymbol{k}
21.	Tritium		5.5\% per year $=-0.055$
22.	Krypton-85		6.3% per year $=-0.063$
23.	Radium-226	1620 years	
24.	Uranium-238	4560 years	
25.	Arsenic-74	17.5 days	
26.	Calcium-47	113 hours	

27. The August 1978 issue of National Geographic described the 1964 find of bones of a newly discovered dinosaur weighing 170 pounds, measuring 9 feet, with a 6 -inch claw on one toe of each hind foot. The age of the dinosaur was estimated using potassium-40 dating of rocks surrounding the bones.
a. Potassium-40 decays exponentially with a half-life of approximately 1.31 billion years. Use the fact that after 1.31 billion years a given amount of potassium- 40 will have decayed to half the original amount to show that the decay model for potassium-40 is given by $A=A_{0} e^{-0.52912 t}$, where t is in billions of years.
b. Analysis of the rocks surrounding the dinosaur bones indicated that 94.5% of the original amount of potassium- 40 was still present. Let $A=0.945 A_{0}$ in the model in part (a) and estimate the age of the bones of the dinosaur.

Use the exponential decay model, $A=A_{0} e^{k t}$, to solve Exercises 28-31. Round answers to one decimal place.
28. The half-life of thorium-229 is 7340 years. How long will it take for a sample of this substance to decay to 20% of its original amount?
29. The half-life of lead is 22 years. How long will it take for a sample of this substance to decay to 80% of its original amount?
30. The half-life of aspirin in your bloodstream is 12 hours. How long will it take for the aspirin to decay to 70% of the original dosage?
31. Xanax is a tranquilizer used in the short-term relief of symptoms of anxiety. Its half-life in the bloodstream is 36 hours. How long will it take for Xanax to decay to 90% of the original dosage?
32. A bird species in danger of extinction has a population that is decreasing exponentially $\left(A=A_{0} e^{k t}\right)$. Five years ago the population was at 1400 and today only 1000 of the birds are alive. Once the population drops below 100 , the situation will be irreversible. When will this happen?
33. Use the exponential growth model, $A=A_{0} e^{k t}$, to show that the time it takes a population to double (to grow from A_{0} to $2 A_{0}$) is given by $t=\frac{\ln 2}{k}$.
34. Use the exponential growth model, $A=A_{0} e^{k t}$, to show that the time it takes a population to triple (to grow from A_{0} to $\left.3 A_{0}\right)$ is given by $t=\frac{\ln 3}{k}$.
Use the formula $t=\frac{\ln 2}{k}$ that gives the time for a population with a growth rate k to double to solve Exercises 35-36. Express each answer to the nearest whole year.
35. The growth model $A=4.3 e^{0.01 t}$ describes New Zealand's population, A, in millions, t years after 2010.
a. What is New Zealand's growth rate?
b. How long will it take New Zealand to double its population?
36. The growth model $A=112.5 e^{0.012 t}$ describes Mexico's population, A, in millions, t years after 2010.
a. What is Mexico's growth rate?
b. How long will it take Mexico to double its population?
37. The logistic growth function

$$
f(t)=\frac{100,000}{1+5000 e^{-t}}
$$

describes the number of people, $f(t)$, who have become ill with influenza t weeks after its initial outbreak in a particular community.
a. How many people became ill with the flu when the epidemic began?
b. How many people were ill by the end of the fourth week?
c. What is the limiting size of the population that becomes ill?
Shown, again, in the following table is world population, in billions, for seven selected years from 1950 through 2010. Using a graphing utility's logistic regression option, we obtain the equation shown on the screen.

| \boldsymbol{x}, Number of Years |
| :---: | :---: |
after 1949	\quad	\boldsymbol{y}, World Population		
(billions)	$	$	$1(1950)$	2.6
:---:	:---:			
$11(1960)$	3.0			
$21(1970)$	3.7			
$31(1980)$	4.5			
$41(1990)$	5.3			
$51(2000)$	6.1			
$61(2010)$	6.9			

We see from the calculator screen at the bottom of the previous page that a logistic growth model for world population, $f(x)$, in billions, x years after 1949 is

$$
f(x)=\frac{12.57}{1+4.11 e^{-0.026 x}}
$$

Use this function to solve Exercises 38-42.
38. How well does the function model the data showing a world population of 6.1 billion for 2000 ?
39. How well does the function model the data showing a world population of 6.9 billion for 2010 ?
40. When will world population reach 7 billion?
41. When will world population reach 8 billion?
42. According to the model, what is the limiting size of the population that Earth will eventually sustain?

The logistic growth function

$$
P(x)=\frac{90}{1+271 e^{-0.122 x}}
$$

models the percentage, $P(x)$, of Americans who are x years old with some coronary heart disease. Use the function to solve Exercises 43-46.
43. What percentage of 20 -year-olds have some coronary heart disease?
44. What percentage of 80 -year-olds have some coronary heart disease?
45. At what age is the percentage of some coronary heart disease 50\%?
46. At what age is the percentage of some coronary heart disease 70% ?

Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve Exercises 47-50.
47. A bottle of juice initially has a temperature of $70^{\circ} \mathrm{F}$. It is left to cool in a refrigerator that has a temperature of $45^{\circ} \mathrm{F}$. After
10 minutes, the temperature of the juice is $55^{\circ} \mathrm{F}$.
a. Use Newton's Law of Cooling to find a model for the temperature of the juice, T, after t minutes.
b. What is the temperature of the juice after 15 minutes?
c. When will the temperature of the juice be $50^{\circ} \mathrm{F}$?
48. A pizza removed from the oven has a temperature of $450^{\circ} \mathrm{F}$. It is left sitting in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 5 minutes, the temperature of the pizza is $300^{\circ} \mathrm{F}$.
a. Use Newton's Law of Cooling to find a model for the temperature of the pizza, T, after t minutes.
b. What is the temperature of the pizza after 20 minutes?
c. When will the temperature of the pizza be $140^{\circ} \mathrm{F}$?
49. A frozen steak initially has a temperature of $28^{\circ} \mathrm{F}$. It is left to thaw in a room that has a temperature of 75°. After 10 minutes, the temperature of the steak has risen to $38^{\circ} \mathrm{F}$. After how many minutes will the temperature of the steak be $50^{\circ} \mathrm{F}$?
50. A frozen steak initially has a temperature of $24^{\circ} \mathrm{F}$. It is left to thaw in a room that has a temperature of $65^{\circ} \mathrm{F}$. After 10 minutes, the temperature of the steak has risen to $30^{\circ} \mathrm{F}$. After how many minutes will the temperature of the steak be $45^{\circ} \mathrm{F}$?

Exercises 51-56 present data in the form of tables. For each data set shown by the table,
a. Create a scatter plot for the data.
b. Use the scatter plot to determine whether an exponential function, a logarithmic function, or a linear function is the best choice for modeling the data. (If applicable, in Exercise 76, you will use your graphing utility to obtain these functions.)

51. Percent of Miscarriages, by Age

Woman's Age	Percent of Miscarriages
22	9%
27	10%
32	13%
37	20%
42	38%
47	52%

Source: Time
52. Savings Needed for Health-Care Expenses during Retirement

Age at Death	Savings Needed
80	$\$ 219,000$
85	$\$ 307,000$
90	$\$ 409,000$
95	$\$ 524,000$
100	$\$ 656,000$

Source: Employee Benefit Research Institute

53. Intensity and Loudness Level of Various Sounds

Intensity (watts per meter ${ }^{2}$)	Loudness Level (decibels)
0.1 (loud thunder)	110
1 (rock concert, 2 yd from speakers)	120
10 (jackhammer)	130
100 (jet takeoff, 40 yd away)	140

54. Temperature Increase in an Enclosed Vehicle

Minutes	Temperature Increase $\left({ }^{\circ} \mathbf{F}\right)$
10	19°
20	29°
30	34°
40	38°
50	41°
60	43°

55. Dads Raising Kids Alone

Year	Number of Single U.S. Fathers Heading Households with Children Younger Than 18 (millions)
1980	0.6
1990	1.2
2000	1.8
2010	2.5

[^7]
56. Percentage of Births to Unmarried Women in the United States

Year	Percentage of Births
1960	5%
1970	11%
1980	18%
1990	28%
2000	33%
2009	41%

Source: National Center for Health Statistics
In Exercises 57-60, rewrite the equation in terms of base e. Express the answer in terms of a natural logarithm and then round to three decimal places.
57. $y=100(4.6)^{x}$
58. $y=1000(7.3)^{x}$
59. $y=2.5(0.7)^{x}$
60. $y=4.5(0.6)^{x}$

Writing in Mathematics

61. Nigeria has a growth rate of 0.025 or 2.5%. Describe what this means.
62. How can you tell whether an exponential model describes exponential growth or exponential decay?
63. Suppose that a population that is growing exponentially increases from 800,000 people in 2007 to $1,000,000$ people in 2010. Without showing the details, describe how to obtain the exponential growth function that models the data.
64. What is the half-life of a substance?
65. Describe a difference between exponential growth and logistic growth.
66. Describe the shape of a scatter plot that suggests modeling the data with an exponential function.
67. You take up weightlifting and record the maximum number of pounds you can lift at the end of each week. You start off with rapid growth in terms of the weight you can lift from week to week, but then the growth begins to level off. Describe how to obtain a function that models the number of pounds you can lift at the end of each week. How can you use this function to predict what might happen if you continue the sport?
68. Would you prefer that your salary be modeled exponentially or logarithmically? Explain your answer.
69. One problem with all exponential growth models is that nothing can grow exponentially forever. Describe factors that might limit the size of a population.

Technology Exercises

In Example 1 on page 467, we used two data points and an exponential function to model the population of the United States from 1970 through 2010. The data are shown again in the table. Use all five data points to solve Exercises 70-74.

| \boldsymbol{x}, Number of Years |
| :---: | :---: |
after 1969	\quad	\boldsymbol{y}, U.S. Population		
(millions)	$	$	$1(1970)$	203.3
:---:	:---:			
$11(1980)$	226.5			
$21(1990)$	248.7			
$31(2000)$	281.4			
$41(2010)$	308.7			

70. a. Use your graphing utility's exponential regression option to obtain a model of the form $y=a b^{x}$ that fits the data. How well does the correlation coefficient, r, indicate that the model fits the data?
b. Rewrite the model in terms of base e. By what percentage is the population of the United States increasing each year?
71. Use your graphing utility's logarithmic regression option to obtain a model of the form $y=a+b \ln x$ that fits the data. How well does the correlation coefficient, r, indicate that the model fits the data?
72. Use your graphing utility's linear regression option to obtain a model of the form $y=a x+b$ that fits the data. How well does the correlation coefficient, r, indicate that the model fits the data?
73. Use your graphing utility's power regression option to obtain a model of the form $y=a x^{b}$ that fits the data. How well does the correlation coefficient, r, indicate that the model fits the data?
74. Use the values of r in Exercises 70-73 to select the two models of best fit. Use each of these models to predict by which year the U.S. population will reach 335 million. How do these answers compare to the year we found in Example 1, namely 2020? If you obtained different years, how do you account for this difference?
75. The figure shows the number of people in the United States age 65 and over, with projected figures for the year 2020 and beyond.

United States Population Age 65 and Over

Source: U.S. Census Bureau
a. Let x represent the number of years after 1899 and let y represent the U.S. population age 65 and over, in millions. Use your graphing utility to find the model that best fits the data in the bar graph.
b. Rewrite the model in terms of base e. By what percentage is the 65 and over population increasing each year?
76. In Exercises 51-56, you determined the best choice for the kind of function that modeled the data in the table. For each of the exercises that you worked, use a graphing utility to find the actual function that best fits the data. Then use the model to make a reasonable prediction for a value that exceeds those shown in the table's first column.

Critical Thinking Exercises

Make Sense? In Exercises 77-80, determine whether each statement makes sense or does not make sense, and explain your reasoning.
77. I used an exponential model with a positive growth rate to describe the depreciation in my car's value over four years.
78. After 100 years, a population whose growth rate is 3% will have three times as many people as a population whose growth rate is 1%.
79. When I used an exponential function to model Russia's declining population, the growth rate k was negative.
80. Because carbon-14 decays exponentially, carbon dating can determine the ages of ancient fossils.
The exponential growth models describe the population of the indicated country, A, in millions, t years after 2006.

Canada	$A=33.1 e^{0.009 t}$
Uganda	$A=28.2 e^{0.034 t}$

In Exercises 81-84, use this information to determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
81. In 2006, Canada's population exceeded Uganda's by 4.9 million.
82. By 2009 , the models indicate that Canada's population will exceed Uganda's by approximately 2.8 million.
83. The models indicate that in 2013, Uganda's population will exceed Canada's.
84. Uganda's growth rate is approximately 3.8 times that of Canada's.
85. Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve this exercise. At 9:00 A.m., a coroner arrived at the home of a person who had died. The temperature of the room was $70^{\circ} \mathrm{F}$, and at the time of death the person had a body temperature of $98.6^{\circ} \mathrm{F}$. The coroner took the body's temperature at 9:30 A.m., at which time it was $85.6^{\circ} \mathrm{F}$, and again at 10:00 A.м., when it was 82.7°. At what time did the person die?

Group Exercise

86. Each group member should consult an almanac, newspaper, magazine, or the Internet to find data that can be modeled by exponential or logarithmic functions. Group members should select the two sets of data that are most interesting and relevant. For each set selected, find a model that best fits the data. Each group member should make one prediction based on the model and then discuss a consequence of this prediction. What factors might change the accuracy of the prediction?

Preview Exercises

Exercises 87-89 will help you prepare for the material covered in the first section of the next chapter.
87. Solve: $\frac{5 \pi}{4}=2 \pi x$.
88. Simplify: $\frac{17 \pi}{6}-2 \pi$.
89. Simplify: $-\frac{\pi}{12}+2 \pi$.

CHAPTER 3

SUMMARY

DEFINITIONS AND CONCEPTS

3.1 Exponential Functions

a. The exponential function with base b is defined by $f(x)=b^{x}$, where $b>0$ and $b \neq 1$.

Ex. 1, p. 415
b. Characteristics of exponential functions and graphs for $0<b<1$ and $b>1$ are shown in the box on page 417.

Ex. 2, p. 416;
Ex. 3, p. 416
c. Transformations involving exponential functions are summarized in Table 3.1 on page 418.

Ex. 4, p. 419;
Ex. 5, p. 419
d. The natural exponential function is $f(x)=e^{x}$. The irrational number e is called the natural base, where

Ex. 6, p. 420 $e \approx 2.7183 . e$ is the value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as $n \rightarrow \infty$.
e. Formulas for compound interest: After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by one of the following formulas:

1. For n compoundings per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
2. For continuous compounding: $A=P e^{r t}$.

DEFINITIONS AND CONCEPTS

3.2 Logarithmic Functions

a. Definition of the logarithmic function: For $x>0$ and $b>0, b \neq 1, y=\log _{b} x$ is equivalent to $b^{y}=x$. The function $f(x)=\log _{b} x$ is the logarithmic function with base b. This function is the inverse function of the exponential function with base b.
b. Graphs of logarithmic functions for $b>1$ and $0<b<1$ are shown in Figure 3.8 on page 431. Characteristics of the graphs are summarized in the box on page 432.
c. Transformations involving logarithmic functions are summarized in Table 3.5 on page 432 .
d. The domain of a logarithmic function of the form $f(x)=\log _{b} x$ is the set of all positive real numbers. The domain of $f(x)=\log _{b} g(x)$ consists of all x for which $g(x)>0$.
e. Common and natural logarithms: $f(x)=\log x$ means $f(x)=\log _{10} x$ and is the common logarithmic function. $f(x)=\ln x$ means $f(x)=\log _{e} x$ and is the natural logarithmic function.
f. Basic Logarithmic Properties

Base $\boldsymbol{b}(\boldsymbol{b}>\mathbf{0}, \boldsymbol{b} \neq \mathbf{1})$	Base 10 (Common Logarithms)	Base \boldsymbol{e} (Natural Logarithms)
$\log _{b} 1=0$	$\log 1=0$	$\ln 1=0$
$\log _{b} b=1$	$\log 10=1$	$\ln e=1$
$\log _{b} b^{x}=x$	$\log 10^{x}=x$	$\ln e^{x}=x$
$b^{\log _{b} x}=x$	$10^{\log x}=x$	$e^{\ln x}=x$

3.3 Properties of Logarithms

a. The Product Rule: $\log _{b}(M N)=\log _{b} M+\log _{b} N$
b. The Quotient Rule: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
c. The Power Rule: $\log _{b} M^{p}=p \log _{b} M$
d. The Change-of-Base Property:

The General
Property

Introducing	Introducing
Common Logarithms	Natural Logarithms

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} \quad \log _{b} M=\frac{\log M}{\log b} \quad \log _{b} M=\frac{\ln M}{\ln b}
$$

Ex. 7, p. 447;
Ex. 8, p. 448

Ex. 4, p. 444
Ex. 5, p. 445;
Ex. 6, p. 446
Ex. 1, p. 452

Ex. 2, p. 453;
Ex. 3, p. 454;
Ex. 4, p. 454;
Ex. 5, p. 455
Ex. 6, p. 456;
Ex. 7, p. 457

Ex. 8, p. 458
d. Some logarithmic equations can be expressed in the form $\log _{b} M=\log _{b} N$. Use the one-to-one property to rewrite the equation without logarithms: $M=N$. See the box on page 458.

Ex. 1, p. 428;
Ex. 2, p. 429;
Ex. 3, p. 429
Ex. 6, p. 431

Figures 3.9-3.12,
pp. 432-433
Ex. 7, p. 433;
Ex. 10, p. 435
Ex. 8, p. 434;
Ex. 9, p. 435;
Ex. 11, p. 436

Ex. 4, p. 430

Ex. 5, p. 430

Ex. 1, p. 441
Ex. 2, p. 442
Ex. 3, p. 443
e. Properties for expanding logarithmic expressions are given in the box on page 444.
f. Properties for condensing logarithmic expressions are given in the box on page 445 .

3.4 Exponential and Logarithmic Equations

a. An exponential equation is an equation containing a variable in an exponent. Some exponential equations can be solved by expressing each side as a power of the same base: If $b^{M}=b^{N}$, then $M=N$. Details are in the box on page 452.
b. The procedure for using logarithms to solve exponential equations is given in the box on page 453 . The solution procedure involves isolating the exponential expression. Take the common logarithm on both sides for base 10. Take the natural logarithm on both sides for bases other than 10. Simplify using

$$
\ln b^{x}=x \ln b \quad \text { or } \quad \ln e^{x}=x \quad \text { or } \quad \log 10^{x}=x .
$$

c. A logarithmic equation is an equation containing a variable in a logarithmic expression. Some logarithmic equations can be expressed in the form $\log _{b} M=c$. The definition of a logarithm is used to rewrite the equation in exponential form: $b^{c}=M$. See the box on page 455. When checking logarithmic equations, reject proposed solutions that produce the logarithm of a negative number or the logarithm of 0 in the original equation.

DEFINITIONS AND CONCEPTS

3.5 Exponential Growth and Decay; Modeling Data

a. Exponential growth and decay models are given by $A=A_{0} e^{k t}$ in which t represents time, A_{0} is the amount present at $t=0$, and A is the amount present at time t. If $k>0$, the model describes growth and k is the growth rate. If $k<0$, the model describes decay and k is the decay rate.
b. The logistic growth model, given by $A=\frac{c}{1+a e^{-b t}}$, describes situations in which growth is limited. $y=c$ is a horizontal asymptote for the graph, and growth, A, can never exceed c.
c. Newton's Law of Cooling: The temperature, T, of a heated object at time t is given by

$$
T=C+\left(T_{0}-C\right) e^{k t}
$$

where C is the constant temperature of the surrounding medium, T_{0} is the initial temperature of the heated object, and k is a negative constant.
d. Scatter plots for exponential, logarithmic, and linear models are shown in Figure 3.24 on page 473. When using a graphing utility to model data, the closer that the correlation coefficient, r, is to -1 or 1 , the better the model fits the data.
e. Expressing an Exponential Model in Base $e: y=a b^{x}$ is equivalent to $y=a e^{(\ln b) \cdot x}$.

Ex. 1, p. 467;
Ex. 2, p. 469

Ex. 3, p. 470

Ex. 4, p. 472

Ex. 5, p. 474;
Ex. 6, p. 475;
Ex. 7, p. 475
Ex. 8, p. 477

REVIEW EXERCISES

3.1

In Exercises 1-4, the graph of an exponential function is given. Select the function for each graph from the following options:

$$
\begin{aligned}
& f(x)=4^{x}, g(x)=4^{-x} \\
& h(x)=-4^{-x}, r(x)=-4^{-x}+3
\end{aligned}
$$

In Exercises 5-9, graph f and g in the same rectangular coordinate system. Use transformations of the graph of f to obtain the graph of g. Graph and give equations of all asymptotes. Use the graphs to determine each function's domain and range.
5. $f(x)=2^{x}$ and $g(x)=2^{x-1}$
6. $f(x)=3^{x}$ and $g(x)=3^{x}-1$
7. $f(x)=3^{x}$ and $g(x)=-3^{x}$
8. $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{-x}$
9. $f(x)=e^{x}$ and $g(x)=2 e^{\frac{x}{2}}$

Use the compound interest formulas to solve Exercises 10-11.
10. Suppose that you have $\$ 5000$ to invest. Which investment yields the greater return over 5 years: 5.5% compounded semiannually or 5.25% compounded monthly?
11. Suppose that you have $\$ 14,000$ to invest. Which investment yields the greater return over 10 years: 7\% compounded monthly or 6.85% compounded continuously?
12. A cup of coffee is taken out of a microwave oven and placed in a room. The temperature, T, in degrees Fahrenheit, of the coffee after t minutes is modeled by the function $T=70+130 e^{-0.04855 t}$. The graph of the function is shown in the figure.

Use the graph to answer each of the following questions.
a. What was the temperature of the coffee when it was first taken out of the microwave?
b. What is a reasonable estimate of the temperature of the coffee after 20 minutes? Use your calculator to verify this estimate.
c. What is the limit of the temperature to which the coffee will cool? What does this tell you about the temperature of the room?

3.2

In Exercises 13-15, write each equation in its equivalent exponential form.
13. $\frac{1}{2}=\log _{49} 7$
14. $3=\log _{4} x$
15. $\log _{3} 81=y$

In Exercises 16-18, write each equation in its equivalent logarithmic form.
16. $6^{3}=216$
17. $b^{4}=625$
18. $13^{y}=874$

In Exercises 19-29, evaluate each expression without using a calculator. If evaluation is not possible, state the reason.
19. $\log _{4} 64$
20. $\log _{5} \frac{1}{25}$
21. $\log _{3}(-9)$
22. $\log _{16} 4$
23. $\log _{17} 17$
24. $\log _{3} 3^{8}$
25. $\ln e^{5}$
26. $\log _{3} \frac{1}{\sqrt{3}}$
27. $\ln \frac{1}{e^{2}}$
28. $\log \frac{1}{1000}$
29. $\log _{3}\left(\log _{8} 8\right)$
30. Graph $f(x)=2^{x}$ and $g(x)=\log _{2} x$ in the same rectangular coordinate system. Use the graphs to determine each function's domain and range.
31. Graph $f(x)=\left(\frac{1}{3}\right)^{x}$ and $g(x)=\log _{\frac{1}{3}} x$ in the same rectangular coordinate system. Use the graphs to determine each function's domain and range.

In Exercises 32-35, the graph of a logarithmic function is given. Select the function for each graph from the following options:

$$
\begin{aligned}
& f(x)=\log x, g(x)=\log (-x) \\
& h(x)=\log (2-x), r(x)=1+\log (2-x)
\end{aligned}
$$

32.

33.

35.

In Exercises 36-38, begin by graphing $f(x)=\log _{2} x$. Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range.
36. $g(x)=\log _{2}(x-2)$
37. $h(x)=-1+\log _{2} x$
38. $r(x)=\log _{2}(-x)$

In Exercises 39-40, graph f and g in the same rectangular coordinate system. Use transformations of the graph of f to obtain the graph of g. Graph and give equations of all asymptotes. Use the graphs to determine each function's domain and range.
39. $f(x)=\log x$ and $g(x)=-\log (x+3)$
40. $f(x)=\ln x$ and $g(x)=-\ln (2 x)$

In Exercises 41-43, find the domain of each logarithmic function.
41. $f(x)=\log _{8}(x+5)$
42. $f(x)=\log (3-x)$
43. $f(x)=\ln (x-1)^{2}$

In Exercises 44-46, use inverse properties of logarithms to simplify each expression.
44. $\ln e^{6 x}$
45. $e^{\ln \sqrt{x}}$
46. $10^{\log 4 x^{2}}$
47. On the Richter scale, the magnitude, R, of an earthquake of intensity I is given by $R=\log \frac{I}{I_{0}}$, where I_{0} is the intensity of a barely felt zero-level earthquake. If the intensity of an earthquake is $1000 I_{0}$, what is its magnitude on the Richter scale?
48. Students in a psychology class took a final examination. As part of an experiment to see how much of the course content they remembered over time, they took equivalent forms of the exam in monthly intervals thereafter. The average score, $f(t)$, for the group after t months is modeled by the function $f(t)=76-18 \log (t+1)$, where $0 \leq t \leq 12$.
a. What was the average score when the exam was first given?
b. What was the average score after 2 months? 4 months? 6 months? 8 months? one year?
c. Use the results from parts (a) and (b) to graph f. Describe what the shape of the graph indicates in terms of the material retained by the students.
49. The formula

$$
t=\frac{1}{c} \ln \left(\frac{A}{A-N}\right)
$$

describes the time, t, in weeks, that it takes to achieve mastery of a portion of a task. In the formula, A represents maximum learning possible, N is the portion of the learning that is to be achieved, and c is a constant used to measure an individual's learning style. A 50 -year-old man decides to start running as a way to maintain good health. He feels that the maximum rate he could ever hope to achieve is 12 miles per hour. How many weeks will it take before the man can run 5 miles per hour if $c=0.06$ for this person?

3.3

In Exercises 50-53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.
50. $\log _{6}\left(36 x^{3}\right)$
51. $\log _{4}\left(\frac{\sqrt{x}}{64}\right)$
52. $\log _{2}\left(\frac{x y^{2}}{64}\right)$
53. $\ln \sqrt[3]{\frac{x}{e}}$

In Exercises 54-57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1 .
54. $\log _{b} 7+\log _{b} 3$
55. $\log 3-3 \log x$
56. $3 \ln x+4 \ln y$
57. $\frac{1}{2} \ln x-\ln y$

In Exercises 58-59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places.
58. $\log _{6} 72,348$
59. $\log _{4} 0.863$

In Exercises 60-63, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement.
60. $(\ln x)(\ln 1)=0$
61. $\log (x+9)-\log (x+1)=\frac{\log (x+9)}{\log (x+1)}$
62. $\left(\log _{2} x\right)^{4}=4 \log _{2} x \quad$ 63. $\ln e^{x}=x \ln e$

3.4

In Exercises 64-73, solve each exponential equation. Where necessary, express the solution set in terms of natural or common logarithms and use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.
64. $2^{4 x-2}=64$
65. $125^{x}=25$
66. $10^{x}=7000$
67. $9^{x+2}=27^{-x}$
68. $8^{x}=12,143$
69. $9 e^{5 x}=1269$
70. $e^{12-5 x}-7=123$
71. $5^{4 x+2}=37,500$
72. $3^{x+4}=7^{2 x-1}$
73. $e^{2 x}-e^{x}-6=0$

In Exercises 74-79, solve each logarithmic equation.
74. $\log _{4}(3 x-5)=3$
75. $3+4 \ln (2 x)=15$
76. $\log _{2}(x+3)+\log _{2}(x-3)=4$
77. $\log _{3}(x-1)-\log _{3}(x+2)=2$
78. $\ln (x+4)-\ln (x+1)=\ln x$
79. $\log _{4}(2 x+1)=\log _{4}(x-3)+\log _{4}(x+5)$
80. The function $P(x)=14.7 e^{-0.21 x}$ models the average atmospheric pressure, $P(x)$, in pounds per square inch, at an altitude of x miles above sea level. The atmospheric pressure at the peak of Mt. Everest, the world's highest mountain, is 4.6 pounds per square inch. How many miles above sea level, to the nearest tenth of a mile, is the peak of Mt. Everest?
81. The bar graph shows the number of smartphones sold in the United States from 2004 through 2010.

The function $S(t)=21.4(1.56)^{t}$ models the number of smartphones sold in the United States, $S(t)$, in millions, t years after 2004. When does this model project that 1170.9 million smartphones will be sold? Round to the nearest year.
82. Researchers have surveyed attitudes of college freshmen every year since 1969. The bar graph shows that since 1980, there has been a decline in first-year college students' opposition to homosexual relationships.

Opposition to Homosexual Relationships among First-Year United States College Students, 1980-2008

Statement: "It is important to have laws prohibiting homosexual relationships."

Source: John Macionis, Sociology, Thirteenth Edition, Prentice Hall, 2010.
a. The function

$$
f(x)=-6.2 \ln x+40.5
$$

models the percentage of first-year college women, $f(x)$, opposed to homosexual relationships x years after 1979 . If trends modeled by the function continue, when will opposition to homosexual relationships among first-year college women diminish to 16% ? Round to the nearest year.
b. The function $g(x)=-7 \ln x+59$ models the percentage of first-year college men, $g(x)$, opposed to homosexual relationships x years after 1979. According to this model, when did 40% of male freshmen oppose homosexual relationships? Round to the nearest year.
83. Use the formula for compound interest with n compoundings per year to solve this problem. How long, to the nearest tenth of a year, will it take $\$ 12,500$ to grow to $\$ 20,000$ at 6.5% annual interest compounded quarterly?

Use the formula for continuous compounding to solve Exercises 84-85.
84. How long, to the nearest tenth of a year, will it take $\$ 50,000$ to triple in value at 7.5% annual interest compounded continuously?
85. What interest rate, to the nearest percent, is required for an investment subject to continuous compounding to triple in 5 years?

3.5

86. According to the U.S. Bureau of the Census, in 2000 there were 35.3 million residents of Hispanic origin living in the United States. By 2010, the number had increased to 50.5 million. The exponential growth function $A=35.3 e^{k t}$ describes the U.S. Hispanic population, A, in millions, t years after 2000.
a. Find k, correct to three decimal places.
b. Use the resulting model to project the Hispanic resident population in 2015.
c. In which year will the Hispanic resident population reach 70 million?
87. Use the exponential decay model, $A=A_{0} e^{k t}$, to solve this exercise. The half-life of polonium-210 is 140 days. How long will it take for a sample of this substance to decay to 20% of its original amount?
88. The function

$$
f(t)=\frac{500,000}{1+2499 e^{-0.92 t}}
$$

models the number of people, $f(t)$, in a city who have become ill with influenza t weeks after its initial outbreak.
a. How many people became ill with the flu when the epidemic began?
b. How many people were ill by the end of the sixth week?
c. What is the limiting size of $f(t)$, the population that becomes ill?
89. Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve this exercise. You are served a cup of coffee that has a temperature of $185^{\circ} \mathrm{F}$. The room temperature is $65^{\circ} \mathrm{F}$. After 2 minutes, the temperature of the coffee is $155^{\circ} \mathrm{F}$.
a. Write a model for the temperature of the coffee, T, after t minutes.
b. When will the temperature of the coffee be $105^{\circ} \mathrm{F}$?

Exercises 90-92 present data in the form of tables. For each data set shown by the table,
a. Create a scatter plot for the data.
b. Use the scatter plot to determine whether an exponential function, a logarithmic function, or a linear function is the best choice for modeling the data.
90. U.S. Ice Cream Consumption

Year	Average Annual Consumption (pounds)
1968	18.5
1978	17.6
1988	17.3
1998	16.3
2008	13.9

Source: USDA, Feb. 2010
91. Percentage of Bachelor's Degrees Awarded to Women in the United States

Year	Percentage of Degrees
1975	45%
1985	51%
1995	55%
2005	57%

Source: U.S. Department of Education
92. E-Filing of Federal Taxes

Year	Percentage of E-Filed Returns
1990	4%
1995	10%
2000	28%
2005	51%
2010	69%
Source: IRS	

In Exercises 93-94, rewrite the equation in terms of base e. Express the answer in terms of a natural logarithm and then round to three decimal places.
93. $y=73(2.6)^{x}$
94. $y=6.5(0.43)^{x}$
95. The figure shows world population projections through the year 2150. The data are from the United Nations Family Planning Program and are based on optimistic or pessimistic expectations for successful control of human population growth. Suppose that you are interested in modeling these data using exponential, logarithmic, linear, and quadratic functions. Which function would you use to model each of the projections? Explain your choices. For the choice corresponding to a quadratic model, would your formula involve one with a positive or negative leading coefficient? Explain.

Source: United Nations

CHAPTER 3 TEST

1. Graph $f(x)=2^{x}$ and $g(x)=2^{x+1}$ in the same rectangular coordinate system.
2. Graph $f(x)=\log _{2} x$ and $g(x)=\log _{2}(x-1)$ in the same rectangular coordinate system.
3. Write in exponential form: $\log _{5} 125=3$.
4. Write in logarithmic form: $\sqrt{36}=6$.
5. Find the domain: $f(x)=\ln (3-x)$.

In Exercises 6-7, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.
6. $\log _{4}\left(64 x^{5}\right)$
7. $\log _{3}\left(\frac{\sqrt[3]{x}}{81}\right)$

In Exercises 8-9, write each expression as a single logarithm.
8. $6 \log x+2 \log y$
9. $\ln 7-3 \ln x$
10. Use a calculator to evaluate $\log _{15} 71$ to four decimal places.

In Exercises 11-18, solve each equation.
11. $3^{x-2}=9^{x+4}$
12. $5^{x}=1.4$
13. $400 e^{0.005 x}=1600$
14. $e^{2 x}-6 e^{x}+5=0$
15. $\log _{6}(4 x-1)=3$
16. $2 \ln (3 x)=8$
17. $\log x+\log (x+15)=2$
18. $\ln (x-4)-\ln (x+1)=\ln 6$
19. On the decibel scale, the loudness of a sound, D, in decibels, is given by $D=10 \log \frac{I}{I_{0}}$, where I is the intensity of the sound, in watts per meter ${ }^{2}$, and I_{0} is the intensity of a sound barely audible to the human ear. If the intensity of a sound is $10^{12} I_{0}$, what is its loudness in decibels? (Such a sound is potentially damaging to the ear.)

In Exercises 20-22, simplify each expression.
20. $\ln e^{5 x}$
21. $\log _{b} b$
22. $\log _{6} 1$

Use the compound interest formulas to solve Exercises 23-25.
23. Suppose you have $\$ 3000$ to invest. Which investment yields the greater return over 10 years: 6.5% compounded semiannually or 6% compounded continuously? How much more (to the nearest dollar) is yielded by the better investment?
24. How long, to the nearest tenth of a year, will it take $\$ 4000$ to grow to $\$ 8000$ at 5% annual interest compounded quarterly?
25. What interest rate, to the nearest tenth of a percent, is required for an investment subject to continuous compounding to double in 10 years?
26. The function

$$
A=82.3 e^{-0.004 t}
$$

models the population of Germany, A, in millions, t years after 2010.
a. What was the population of Germany in 2010?
b. Is the population of Germany increasing or decreasing? Explain.
c. In which year will the population of Germany be 79.1 million?
27. The 2010 population of Asia was 4121 million; in 2050, it is projected to be 5231 million. Write the exponential growth function that describes the population of Asia, in millions, t years after 2010.
28. Use the exponential decay model, $A=A_{0} e^{k t}$, to solve this exercise. The half-life of iodine-131 is 7.2 days. How long will it take for a sample of this substance to decay to 30% of its original amount? Round to one decimal place.
29. The logistic growth function

$$
f(t)=\frac{140}{1+9 e^{-0.165 t}}
$$

describes the population, $f(t)$, of an endangered species of elk t years after they were introduced to a nonthreatening habitat.
a. How many elk were initially introduced to the habitat?
b. How many elk are expected in the habitat after 10 years?
c. What is the limiting size of the elk population that the habitat will sustain?

In Exercises 30-33, determine whether the values in each table belong to an exponential function, a logarithmic function, a linear function, or a quadratic function.
30.

\boldsymbol{x}	\boldsymbol{y}
0	3
1	1
2	-1
3	-3
4	-5

31.

\boldsymbol{x}	\boldsymbol{y}
$\frac{1}{3}$	-1
1	0
3	1
9	2
27	3

32.

\boldsymbol{x}	\boldsymbol{y}
0	1
1	5
2	25
3	125
4	625

33.

\boldsymbol{x}	\boldsymbol{y}
0	12
1	3
2	0
3	3
4	12

34. Rewrite $y=96(0.38)^{x}$ in terms of base e. Express the answer in terms of a natural logarithm and then round to three decimal places.

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-3)

In Exercises 1-8, solve each equation or inequality.

1. $|3 x-4|=2$
2. $x^{2}+2 x+5=0$
3. $x^{4}+x^{3}-3 x^{2}-x+2=0$
4. $e^{5 x}-32=96$
5. $\log _{2}(x+5)+\log _{2}(x-1)=4$
6. $\ln (x+4)+\ln (x+1)=2 \ln (x+3)$
7. $14-5 x \geq-6$
8. $|2 x-4| \leq 2$

In Exercises 9-14, graph each equation in a rectangular coordinate system. If two functions are indicated, graph both in the same system.
9. $(x-3)^{2}+(y+2)^{2}=4$
10. $f(x)=(x-2)^{2}-1$
11. $f(x)=\frac{x^{2}-1}{x^{2}-4}$
12. $f(x)=(x-2)^{2}(x+1)$
13. $f(x)=2 x-4$ and $f^{-1}(x)$
14. $f(x)=\ln x$ and $g(x)=\ln (x-2)+1$
15. Write the point-slope form and the slope-intercept form of the line passing through $(1,3)$ and $(3,-3)$.
16. If $f(x)=x^{2}$ and $g(x)=x+2$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
17. You discover that the number of hours you sleep each night varies inversely as the square of the number of cups of coffee consumed during the early evening. If 2 cups of coffee are consumed, you get 8 hours of sleep. If the number of cups of coffee is doubled, how many hours should you expect to sleep?
A baseball player hits a pop fly into the air. The function

$$
s(t)=-16 t^{2}+64 t+5
$$

models the ball's height above the ground, $s(t)$, in feet, t seconds after it is hit. Use the function to solve Exercises 18-19.
18. When does the baseball reach its maximum height? What is that height?
19. After how many seconds does the baseball hit the ground? Round to the nearest tenth of a second.
20. You are paid time-and-a-half for each hour worked over 40 hours a week. Last week you worked 50 hours and earned $\$ 660$. What is your normal hourly salary?

This page intentionally left blank

TRIGONOMETRIC FUNCTIONS

CHAPTER

Have you had days when your physical, intellectual, and emotional potentials were all at their peak? Then there are those other days when we feel we should not even bother getting out of bed. Do our potentials run in oscillating cycles like the tides? Can they be described mathematically? In this chapter, you will encounter functions that enable us to model phenomena that occur in cycles.

SECTION 4.1

Objectives

(1) Recognize and use the vocabulary of angles.
(2) Use degree measure.
(3) Use radian measure.
(4) Convert between
degrees and radians.
(5) Draw angles in standard position.
6 Find coterminal angles.
(7) Find the length of a circular arc.
(8) Use linear and angular speed to describe motion on a circular path.
(1) Recognize and use the vocabulary of angles.
vocabulary of angles.

FIGURE 4.1 Clock with hands forming
an angle
Reyectives

Angles

The hour hand of a clock suggests a ray, a part of a line that has only one endpoint and extends forever in the opposite direction. An angle is formed by two rays that have a common endpoint. One ray is called the initial side and the other the terminal side.

A rotating ray is often a useful way to think about angles. The ray in Figure 4.1 rotates from 12 to 2 . The ray pointing to 12 is the initial side and the ray pointing to 2 is the terminal side. The common endpoint of an angle's initial side and terminal side is the vertex of the angle.

Figure 4.2 shows an angle. The arrow near the vertex shows the direction and the amount of rotation from the initial side to the terminal side. Several methods can be used to name an angle. Lowercase Greek letters, such as α (alpha), β (beta), γ (gamma), and θ (theta), are often used.

FIGURE 4.2 An angle; two rays with a common endpoint

An angle is in standard position if

- its vertex is at the origin of a rectangular coordinate system and
- its initial side lies along the positive x-axis.

The angles in Figure 4.3 at the top of the next page are both in standard position.
When we see an initial side and a terminal side in place, there are two kinds of rotations that could have generated the angle. The arrow in Figure 4.3(a) indicates that the rotation from the initial side to the terminal side is in the counterclockwise direction. Positive angles are generated by counterclockwise rotation. Thus, angle α is positive. By contrast, the arrow in Figure 4.3(b) shows that the rotation from

FIGURE 4.3 Two angles in standard position

FIGURE 4.4β is a quadrantal angle.
(2) Use degree measure.

A complete 360° rotation
the initial side to the terminal side is in the clockwise direction. Negative angles are generated by clockwise rotation. Thus, angle θ is negative.

When an angle is in standard position, its terminal side can lie in a quadrant. We say that the angle lies in that quadrant. For example, in Figure 4.3(a), the terminal side of angle α lies in quadrant II. Thus, angle α lies in quadrant II. By contrast, in Figure 4.3(b), the terminal side of angle θ lies in quadrant III. Thus, angle θ lies in quadrant III.

Must all angles in standard position lie in a quadrant? The answer is no. The terminal side can lie on the x-axis or the y-axis. For example, angle β in Figure 4.4 has a terminal side that lies on the negative y-axis. An angle is called a quadrantal angle if its terminal side lies on the x-axis or on the y-axis. Angle β in Figure 4.4 is an example of a quadrantal angle.

Measuring Angles Using Degrees

Angles are measured by determining the amount of rotation from the initial side to the terminal side. One way to measure angles is in degrees, symbolized by a small, raised circle ${ }^{\circ}$. Think of the hour hand of a clock. From 12 noon to 12 midnight, the hour hand moves around in a complete circle. By definition, the ray has rotated through 360 degrees, or 360°. Using 360° as the amount of rotation of a ray back onto itself, a degree, 1°, is $\frac{1}{360}$ of a complete rotation.

Figure 4.5 shows that certain angles have special names. An acute angle measures less than 90° [see Figure 4.5(a)]. A right angle, one quarter of a complete rotation, measures 90° [Figure 4.5(b)]. Examine the right angle-do you see a small square at the vertex? This symbol is used to indicate a right angle. An obtuse angle measures more than 90° but less than 180° [Figure 4.5(c)]. Finally, a straight angle, one-half a complete rotation, measures 180° [Figure 4.5(d)].

FIGURE 4.5 Classifying angles by their degree measurement

We will be using notation such as $\theta=60^{\circ}$ to refer to an angle θ whose measure is 60°. We also refer to an angle of 60° or a 60° angle, rather than using the more precise (but cumbersome) phrase an angle whose measure is 60°.
(3) Use radian measure.

FIGURE 4.6 For a 1-radian angle, the intercepted arc and the radius are equal.

TECHNOLOGY

Fractional parts of degrees are measured in minutes and seconds.
One minute, written 1^{\prime}, is $\frac{1}{60}$ degree: $1^{\prime}=\frac{10}{60}$.
One second, written $1^{\prime \prime}$, is $\frac{1}{3600}$ degree: $1^{\prime \prime}=\frac{1}{3600}^{\circ}$.
For example,

$$
\begin{aligned}
31^{\circ} 47^{\prime} 12^{\prime \prime} & =\left(31+\frac{47}{60}+\frac{12}{3600}\right)^{\circ} \\
& \approx 31.787^{\circ}
\end{aligned}
$$

Many calculators have keys for changing an angle from degree-minute-second notation ($\mathrm{D}^{\circ} \mathrm{M}^{\prime} \mathrm{S}^{\prime \prime}$) to a decimal form and vice versa.

Measuring Angles Using Radians

Another way to measure angles is in radians. Let's first define an angle measuring 1 radian. We use a circle of radius r. In Figure 4.6, we've constructed an angle whose vertex is at the center of the circle. Such an angle is called a central angle. Notice that this central angle intercepts an arc along the circle measuring r units. The radius of the circle is also r units. The measure of such an angle is 1 radian.

Definition of a Radian

One radian is the measure of the central angle of a circle that intercepts an arc equal in length to the radius of the circle.

The radian measure of any central angle is the length of the intercepted arc divided by the circle's radius. In Figure 4.7(a), the length of the arc intercepted by angle β is double the radius, r. We find the measure of angle β in radians by dividing the length of the intercepted arc by the radius.

$$
\beta=\frac{\text { length of the intercepted arc }}{\text { radius }}=\frac{2 r}{r}=2
$$

Thus, angle β measures 2 radians.

FIGURE 4.7 Two central angles measured in radians

In Figure 4.7(b), the length of the intercepted arc is triple the radius, r. Let us find the measure of angle γ :

$$
\gamma=\frac{\text { length of the intercepted arc }}{\text { radius }}=\frac{3 r}{r}=3
$$

Thus, angle γ measures 3 radians.

FIGURE 4.8

GREAT QUESTION!

When determining radian measure, do the units for the length of the intercepted arc and the radius have to be the same?
Yes. Before applying the formula for radian measure, be sure that the same unit of length is used for the intercepted arc, s, and the radius, r.

Convert between degrees and radians.

FIGURE 4.9 A complete rotation

Radian Measure

Consider an arc of length s on a circle of radius r. The measure of the central angle, θ, that intercepts the arc is

$$
\theta=\frac{s}{r} \text { radians. }
$$

EXAMPLE 1 Computing Radian Measure

A central angle, θ, in a circle of radius 6 inches intercepts an arc of length 15 inches. What is the radian measure of θ ?

SOLUTION

Angle θ is shown in Figure 4.8. The radian measure of a central angle is the length of the intercepted arc, s, divided by the circle's radius, r. The length of the intercepted arc is 15 inches: $s=15$ inches. The circle's radius is 6 inches: $r=6$ inches. Now we use the formula for radian measure to find the radian measure of θ.

$$
\theta=\frac{s}{r}=\frac{15 \text { inches }}{6 \text { inches }}=2.5
$$

Thus, the radian measure of θ is 2.5 .
In Example 1, notice that the units (inches) cancel when we use the formula for radian measure. We are left with a number with no units. Thus, if an angle θ has a measure of 2.5 radians, we can write $\theta=2.5$ radians or $\theta=2.5$. We will often include the word radians simply for emphasis. There should be no confusion as to whether radian or degree measure is being used. Why is this so? If θ has a degree measure of, say, 2.5°, we must include the degree symbol and write $\theta=2.5^{\circ}$, and not $\theta=2.5$.

Check Point 1 A central angle, θ, in a circle of radius 12 feet intercepts an arc of length 42 feet. What is the radian measure of θ ?

Relationship between Degrees and Radians

How can we obtain a relationship between degrees and radians? We compare the number of degrees and the number of radians in one complete rotation, shown in Figure 4.9. We know that 360° is the amount of rotation of a ray back onto itself. The length of the intercepted arc is equal to the circumference of the circle. Thus, the radian measure of this central angle is the circumference of the circle divided by the circle's radius, r. The circumference of a circle of radius r is $2 \pi r$. We use the formula for radian measure to find the radian measure of the 360° angle.

$$
\theta=\frac{s}{r}=\frac{\text { the circle's circumference }}{r}=\frac{2 \pi r^{\prime}}{r}=2 \pi
$$

Because one complete rotation measures 360° and 2π radians,

$$
360^{\circ}=2 \pi \text { radians. }
$$

Dividing both sides by 2 , we have

$$
180^{\circ}=\pi \text { radians }
$$

Dividing this last equation by 180° or π gives the conversion rules in the box on the next page.

GREAT QUESTION!

When converting between degrees and radians, which unit goes in the numerator of the conversion factor?
The unit you are converting to appears in the numerator of the conversion factor.

GREAT QUESTION!

Based on Example 3(c), can I conclude that 1 radian is approximately 57° ?
Yes. Keep in mind that a radian is much larger than a degree.

Conversion between Degrees and Radians

Using the basic relationship π radians $=180^{\circ}$,

1. To convert degrees to radians, multiply degrees by $\frac{\pi \text { radians }}{180^{\circ}}$.
2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \text { radians }}$.

Angles that are fractions of a complete rotation are usually expressed in radian measure as fractional multiples of π, rather than as decimal approximations. For example, we write $\theta=\frac{\pi}{2}$ rather than using the decimal approximation $\theta \approx 1.57$.

EXAMPLE 2 Converting from Degrees to Radians

Convert each angle in degrees to radians:
a. 30°
b. 90°
c. -135°.

SOLUTION

To convert degrees to radians, multiply by $\frac{\pi \text { radians }}{180^{\circ}}$. Observe how the degree units cancel.
a. $30^{\circ}=30^{\sigma} \cdot \frac{\pi \text { radians }}{180^{\sigma}}=\frac{30 \pi}{180}$ radians $=\frac{\pi}{6}$ radians
b. $90^{\circ}=90^{\circ} \cdot \frac{\pi \text { radians }}{180^{\sigma}}=\frac{90 \pi}{180}$ radians $=\frac{\pi}{2}$ radians
c. $-135^{\circ}=-135^{\circ} \cdot \frac{\pi \text { radians }}{180^{\varnothing}}=-\frac{135 \pi}{180}$ radians $=-\frac{3 \pi}{4}$ radians

Divide the numerator and denominator by 45 .
$\$$ Check Point 2 Convert each angle in degrees to radians:
a. 60°
b. 270°
c. -300°.

EXAMPLE 3 Converting from Radians to Degrees

Convert each angle in radians to degrees:
a. $\frac{\pi}{3}$ radians
b. $-\frac{5 \pi}{3}$ radians
c. 1 radian

SOLUTION

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text { radians }}$. Observe how the radian units cancel.
a. $\frac{\pi}{3}$ radians $=\frac{\pi \text { radians }}{3} \cdot \frac{180^{\circ}}{\pi f \text { radians }}=\frac{180^{\circ}}{3}=60^{\circ}$
b. $-\frac{5 \pi}{3}$ radians $=-\frac{5 \pi \text { radians }}{3} \cdot \frac{180^{\circ}}{\pi \text { radians }}=-\frac{5 \cdot 180^{\circ}}{3}=-300^{\circ}$
c. 1 radian $=1$ radian $\cdot \frac{180^{\circ}}{\pi \text { radians }}=\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$
$\$$ Check Point 3 Convert each angle in radians to degrees:
a. $\frac{\pi}{4}$ radians
b. $-\frac{4 \pi}{3}$ radians
c. 6 radians.
5. Draw angles in standard position.

Drawing Angles in Standard Position

Although we can convert angles in radians to degrees, it is helpful to "think in radians" without having to make this conversion. To become comfortable with radian measure, consider angles in standard position: Each vertex is at the origin and each initial side lies along the positive x-axis. Think of the terminal side of the angle revolving around the origin. Thinking in radians means determining what part of a complete revolution or how many full revolutions will produce an angle whose radian measure is known. And here's the thing: We want to do this without having to convert from radians to degrees.

Figure 4.10 is a starting point for learning to think in radians. The figure illustrates that when the terminal side makes one full revolution, it forms an angle whose radian measure is 2π. The figure shows the quadrantal angles formed by $\frac{3}{4}$ of a revolution, $\frac{1}{2}$ of a revolution, and $\frac{1}{4}$ of a revolution.

1 revolution

$$
2 \pi \text { radians }
$$

$$
\begin{gathered}
\frac{3}{4} \text { revolution } \\
\frac{3}{4} \cdot 2 \pi=\frac{3 \pi}{2} \text { radians }
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{4} \text { revolution } \\
\frac{1}{4} \cdot 2 \pi=\frac{\pi}{2} \text { radians }
\end{gathered}
$$

FIGURE 4.10 Angles formed by revolutions of terminal sides

EXAMPLE 4 Drawing Angles in Standard Position

Draw and label each angle in standard position:
a. $\quad \theta=\frac{\pi}{4}$
theta
b. $\alpha=\frac{5 \pi}{4}$
alpha
c. $\beta=-\frac{3 \pi}{4}$
beta
d. $\gamma=\frac{9 \pi}{4}$.
gamma

SOLUTION

Because we are drawing angles in standard position, each vertex is at the origin and each initial side lies along the positive x-axis.
a. An angle of $\frac{\pi}{4}$ radians is a positive angle. It is obtained by rotating the terminal side counterclockwise. Because 2π is a full-circle revolution, we can express $\frac{\pi}{4}$ as a fractional part of 2π to determine the necessary rotation:

$$
\begin{aligned}
& \frac{\pi}{4}=\frac{1}{8} \cdot 2 \pi \\
& \frac{\pi}{4} \text { is } \frac{1}{8} \text { of a complete } \\
& \text { revolution of } 2 \pi \text { radians. }
\end{aligned}
$$

We see that $\theta=\frac{\pi}{4}$ is obtained by rotating the terminal side counterclockwise for $\frac{1}{8}$ of a revolution. The angle lies in quadrant I and is shown in Figure 4.11.

FIGURE 4.12

FIGURE 4.13

FIGURE 4.14
b. An angle of $\frac{5 \pi}{4}$ radians is a positive angle. It is obtained by rotating the terminal side counterclockwise. Here are two ways to determine the necessary rotation:

Method 1

$$
\begin{aligned}
& \frac{5 \pi}{4}=\frac{5}{8} \cdot 2 \pi \\
& \frac{5 \pi}{4} \text { is } \frac{5}{8} \text { of a complete } \\
& \text { revolution of } 2 \pi \text { radians. }
\end{aligned}
$$

Method 2

$\frac{5 \pi}{4}=\pi+\frac{\pi}{4}$.

$$
\pi \text { is a half-circle }
$$

revolution.

$$
\frac{\pi}{4} \text { is } \frac{1}{8} \text { of a }
$$

complete revolution.

Method 1 shows that $\alpha=\frac{5 \pi}{4}$ is obtained by rotating the terminal side counterclockwise for $\frac{5}{8}$ of a revolution. Method 2 shows that $\alpha=\frac{5 \pi}{4}$ is obtained by rotating the terminal side counterclockwise for half of a revolution followed by a counterclockwise rotation of $\frac{1}{8}$ of a revolution. The angle lies in quadrant III and is shown in Figure 4.12. ${ }^{8}$
c. An angle of $-\frac{3 \pi}{4}$ is a negative angle. It is obtained by rotating the terminal side clockwise. We use $\left|-\frac{3 \pi}{4}\right|$, or $\frac{3 \pi}{4}$, to determine the necessary rotation.

Method 1

$$
\begin{aligned}
& \frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \\
& \frac{3 \pi}{4} \text { is } \frac{3}{8} \text { of a complete } \\
& \text { revolution of } 2 \pi \text { radians. }
\end{aligned}
$$

Method 2
$\frac{3 \pi}{4}=\frac{2 \pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}+\frac{\pi}{4}$

$$
\begin{aligned}
& \frac{\pi}{4} \text { is } \frac{1}{8} \text { of a } \\
& \text { complete revolution. }
\end{aligned}
$$

Method 1 shows that $\beta=-\frac{3 \pi}{4}$ is obtained by rotating the terminal side clockwise for $\frac{3}{8}$ of a revolution. Method 2 shows that $\beta=-\frac{3 \pi}{4}$ is obtained by rotating the terminal side clockwise for $\frac{1}{4}$ of a revolution followed by a clockwise rotation of $\frac{1}{8}$ of a revolution. The angle lies in quadrant III and is
shown in Figure 4.13.
d. An angle of $\frac{9 \pi}{4}$ radians is a positive angle. It is obtained by rotating the terminal side counterclockwise. Here are two methods to determine the necessary rotation:

Method 1

$$
\begin{aligned}
& \frac{9 \pi}{4}=\frac{9}{8} \cdot 2 \pi \\
& \frac{9 \pi}{4} \text { is } \frac{9}{8} \text {, or } 1 \frac{1}{8}, \text { complete } \\
& \text { revolutions of } 2 \pi \text { radians. }
\end{aligned}
$$

Method 2

$\frac{9 \pi}{4}=2 \pi+\frac{\pi}{4}$.
2π is a full-circle revolution.
$\frac{\pi}{4}$ is $\frac{1}{8}$ of a
complete revolution.

Method 1 shows that $\gamma=\frac{9 \pi}{4}$ is obtained by rotating the terminal side counterclockwise for $1 \frac{1}{8}$ revolutions. Method 2 shows that $\gamma=\frac{9 \pi}{4}$ is obtained by rotating the terminal side counterclockwise for a full-circle revolution followed by a counterclockwise rotation of $\frac{1}{8}$ of a revolution. The angle lies in quadrant I and is shown in Figure 4.14.
\int Check Point 4 Draw and label each angle in standard position:
a. $\theta=-\frac{\pi}{4}$
b. $\alpha=\frac{3 \pi}{4}$
c. $\beta=-\frac{7 \pi}{4}$
d. $\gamma=\frac{13 \pi}{4}$.

Figure 4.15 illustrates the degree and radian measures of angles that you will commonly see in trigonometry. Each angle is in standard position, so that the initial side lies along the positive x-axis. We will be using both degree and radian measures for these angles.

FIGURE 4.15 Degree and radian measures of selected positive and negative angles

Table 4.1 describes some of the positive angles in Figure 4.15 in terms of revolutions of the angle's terminal side around the origin.

Table 4.1

Terminal Side	Radian Measure of Angle	Degree Measure of Angle
$\frac{1}{12}$ revolution	$\frac{1}{12} \cdot 2 \pi=\frac{\pi}{6}$	$\frac{1}{12} \cdot 360^{\circ}=30^{\circ}$
$\frac{1}{8}$ revolution	$\frac{1}{8} \cdot 2 \pi=\frac{\pi}{4}$	$\frac{1}{8} \cdot 360^{\circ}=45^{\circ}$
$\frac{1}{6}$ revolution	$\frac{1}{6} \cdot 2 \pi=\frac{\pi}{3}$	$\frac{1}{6} \cdot 360^{\circ}=60^{\circ}$
$\frac{1}{4}$ revolution	$\frac{1}{4} \cdot 2 \pi=\frac{\pi}{2}$	$\frac{1}{4} \cdot 360^{\circ}=90^{\circ}$
$\frac{1}{3}$ revolution	$\frac{1}{3} \cdot 2 \pi=\frac{2 \pi}{3}$	$\frac{1}{3} \cdot 360^{\circ}=120^{\circ}$
$\frac{1}{2}$ revolution	$\frac{1}{2} \cdot 2 \pi=\pi$	$\frac{1}{2} \cdot 360^{\circ}=180^{\circ}$
$\frac{2}{3}$ revolution	$\frac{2}{3} \cdot 2 \pi=\frac{4 \pi}{3}$	$\frac{2}{3} \cdot 360^{\circ}=240^{\circ}$
3		
$\frac{3}{4}$ revolution	$\frac{3}{4} \cdot 2 \pi=\frac{3 \pi}{2}$	$\frac{3}{4} \cdot 360^{\circ}=270^{\circ}$
$\frac{7}{8}$ revolution	$\frac{7}{8} \cdot 2 \pi=\frac{7 \pi}{4}$	$\frac{7}{8} \cdot 360^{\circ}=315^{\circ}$
1 revolution	$1 \cdot 2 \pi=2 \pi$	$1 \cdot 360^{\circ}=360^{\circ}$

Coterminal Angles

Two angles with the same initial and terminal sides but possibly different rotations are called coterminal angles.

Every angle has infinitely many coterminal angles. Why? Think of an angle in standard position. If the rotation of the angle is extended by one or more complete rotations of 360° or 2π, clockwise or counterclockwise, the result is an angle with the same initial and terminal sides as the original angle.

Coterminal Angles

Increasing or decreasing the degree measure of an angle in standard position by an integer multiple of 360° results in a coterminal angle. Thus, an angle of θ° is coterminal with angles of $\theta^{\circ} \pm 360^{\circ} k$, where k is an integer.

Increasing or decreasing the radian measure of an angle by an integer multiple of 2π results in a coterminal angle. Thus, an angle of θ radians is coterminal with angles of $\theta \pm 2 \pi k$, where k is an integer.

Two coterminal angles for an angle of θ° can be found by adding 360° to θ° and subtracting 360° from θ°.

EXAMPLE 5 Finding Coterminal Angles

Assume the following angles are in standard position. Find a positive angle less than 360° that is coterminal with each of the following:
a. a 420° angle
b. $\mathrm{a}-120^{\circ}$ angle.

SOLUTION

We obtain the coterminal angle by adding or subtracting 360°. The requirement to obtain a positive angle less than 360° determines whether we should add or subtract.
a. For a 420° angle, subtract 360° to find a positive coterminal angle.

$$
420^{\circ}-360^{\circ}=60^{\circ}
$$

A 60° angle is coterminal with a 420° angle. Figure 4.16(a) illustrates that these angles have the same initial and terminal sides.
b. For a -120° angle, add 360° to find a positive coterminal angle.

$$
-120^{\circ}+360^{\circ}=240^{\circ}
$$

A 240° angle is coterminal with a -120° angle. Figure 4.16(b) illustrates that these angles have the same initial and terminal sides.

(a) Angles of 420° and 60° are coterminal.

(b) Angles of -120° and 240° are coterminal.
\oint Check Point 5 Find a positive angle less than 360° that is coterminal with each of the following:
a. a 400° angle
b. $\mathrm{a}-135^{\circ}$ angle.

Two coterminal angles for an angle of θ radians can be found by adding 2π to θ and subtracting 2π from θ.

EXAMPLE 6 Finding Coterminal Angles

Assume the following angles are in standard position. Find a positive angle less than 2π that is coterminal with each of the following:
a. a $\frac{17 \pi}{6}$ angle
b. $\mathrm{a}-\frac{\pi}{12}$ angle.

SOLUTION

We obtain the coterminal angle by adding or subtracting 2π. The requirement to obtain a positive angle less than 2π determines whether we should add or subtract.
a. For a $\frac{17 \pi}{6}$, or $2 \frac{5}{6} \pi$, angle, subtract 2π to find a positive coterminal angle.

$$
\frac{17 \pi}{6}-2 \pi=\frac{17 \pi}{6}-\frac{12 \pi}{6}=\frac{5 \pi}{6}
$$

A $\frac{5 \pi}{6}$ angle is coterminal with a $\frac{17 \pi}{6}$ angle. Figure 4.17(a) illustrates that these angles have the same initial and terminal sides.
b. For a $-\frac{\pi}{12}$ angle, add 2π to find a positive coterminal angle.

$$
-\frac{\pi}{12}+2 \pi=-\frac{\pi}{12}+\frac{24 \pi}{12}=\frac{23 \pi}{12}
$$

A $\frac{23 \pi}{12}$ angle is coterminal with a $-\frac{\pi}{12}$ angle. Figure 4.17(b) illustrates that these angles have the same initial and terminal sides.

$\$$ Check Point 6 Find a positive angle less than 2π that is coterminal with each of the following:
a. a $\frac{13 \pi}{5}$ angle
b. $\mathrm{a}-\frac{\pi}{15}$ angle.

To find a positive coterminal angle less than 360° or 2π, it is sometimes necessary to add or subtract more than one multiple of 360° or 2π.

EXAMPLE 7 Finding Coterminal Angles

Find a positive angle less than 360° or 2π that is coterminal with each of the following:
a. a 750° angle
b. a $\frac{22 \pi}{3}$ angle
c. $a-\frac{17 \pi}{6}$ angle.

DISCOVERY

Make a sketch for each part of Example 7 illustrating that the coterminal angle we found and the given angle have the same initial and terminal sides.
(7) Find the length of a circular arc.

GREAT QUESTION!

Can I apply the formula $s=r \theta$ if θ is expressed in degrees?
No. The formula can only be used when θ is expressed in radians. If θ is given in degrees, you'll need to convert from degrees to radians before using $s=r \theta$ to determine s, the length of the circular arc.

SOLUTION

a. For a 750° angle, subtract two multiples of 360°, or 720°, to find a positive coterminal angle less than 360°.

$$
750^{\circ}-360^{\circ} \cdot 2=750^{\circ}-720^{\circ}=30^{\circ}
$$

A 30° angle is coterminal with a 750° angle.
b. For a $\frac{22 \pi}{3}$, or $7 \frac{1}{3} \pi$, angle, subtract three multiples of 2π, or 6π, to find a positive coterminal angle less than 2π.

$$
\frac{22 \pi}{3}-2 \pi \cdot 3=\frac{22 \pi}{3}-6 \pi=\frac{22 \pi}{3}-\frac{18 \pi}{3}=\frac{4 \pi}{3}
$$

A $\frac{4 \pi}{3}$ angle is coterminal with a $\frac{22 \pi}{3}$ angle.
c. For a $-\frac{17 \pi}{6}$, or $-2 \frac{5}{6} \pi$ angle, add two multiples of 2π, or 4π, to find a positive coterminal angle less than 2π.

$$
-\frac{17 \pi}{6}+2 \pi \cdot 2=-\frac{17 \pi}{6}+4 \pi=-\frac{17 \pi}{6}+\frac{24 \pi}{6}=\frac{7 \pi}{6}
$$

A $\frac{7 \pi}{6}$ angle is coterminal with $\mathrm{a}-\frac{17 \pi}{6}$ angle.
Check Point 7 Find a positive angle less than 360° or 2π that is coterminal with each of the following:
a. an 855° angle
b. $\mathrm{a} \frac{17 \pi}{3}$ angle
c. $\mathrm{a}-\frac{25 \pi}{6}$ angle.

The Length of a Circular Arc

We can use the radian measure formula, $\theta=\frac{s}{r}$, to find the length of the arc of a circle. How do we do this? Remember that s represents the length of the arc intercepted by the central angle θ. Thus, by solving the formula for s, we have an equation for arc length.

The Length of a Circular Arc

Let r be the radius of a circle and θ the nonnegative radian measure of a central angle of the circle. The length of the arc intercepted by the central angle is

$$
s=r \theta
$$

EXAMPLE 8 Finding the Length of a Circular Arc

A circle has a radius of 10 inches. Find the length of the arc intercepted by a central angle of 120°.

GREAT QUESTION!

What unit do I use when expressing the length of a circular arc?

The unit used to describe the length of a circular arc is the same unit that is given in the circle's radius.
8. Use linear and angular speed to describe motion on a circular path.

SOLUTION

The formula $s=r \theta$ can be used only when θ is expressed in radians. Thus, we begin by converting 120° to radians. Multiply by $\frac{\pi \text { radians }}{180^{\circ}}$.

$$
120^{\circ}=120^{\sigma} \cdot \frac{\pi \text { radians }}{180^{\sigma}}=\frac{120 \pi}{180} \text { radians }=\frac{2 \pi}{3} \text { radians }
$$

Now we can use the formula $s=r \theta$ to find the length of the arc. The circle's radius is 10 inches: $r=10$ inches. The measure of the central angle, in radians, is $\frac{2 \pi}{3}: \theta=\frac{2 \pi}{3}$. The length of the arc intercepted by this central angle is

$$
s=r \theta=(10 \text { inches })\left(\frac{2 \pi}{3}\right)=\frac{20 \pi}{3} \text { inches } \approx 20.94 \text { inches. }
$$

Check Point 8 A circle has a radius of 6 inches. Find the length of the arc intercepted by a central angle of 45°. Express arc length in terms of π. Then round your answer to two decimal places.

Linear and Angular Speed

A carousel contains four circular rows of animals. As the carousel revolves, the animals in the outer row travel a greater distance per unit of time than those in the inner rows. These animals have a greater linear speed than those in the inner rows. By contrast, all animals, regardless of the row, complete the same number of revolutions per unit of time. All animals in the four circular rows travel at the same angular speed.

Using v for linear speed and ω (omega) for angular speed, we define these two kinds of speed along a circular path as follows:

Definitions of Linear and Angular Speed

If a point is in motion on a circle of radius r through an angle of θ radians in time t, then its linear speed is

$$
v=\frac{s}{t},
$$

where s is the arc length given by $s=r \theta$, and its angular speed is

$$
\omega=\frac{\theta}{t} .
$$

The hard drive in a computer rotates at 3600 revolutions per minute. This angular speed, expressed in revolutions per minute, can also be expressed in revolutions per second, radians per minute, and radians per second. Using 2π radians $=1$ revolution, we express the angular speed of a hard drive in radians per minute as follows:

3600 revolutions per minute
$=\frac{3600 \text { revolutions }}{1 \text { minute }} \cdot \frac{2 \pi \text { radians }}{1 \text { revolution }}=\frac{7200 \pi \text { radians }}{1 \text { minute }}$
$=7200 \pi$ radians per minute.
We can establish a relationship between the two kinds of speed by dividing both sides of the arc length formula, $s=r \theta$, by t :

Thus, linear speed is the product of the radius and the angular speed.

Linear Speed in Terms of Angular Speed

The linear speed, v, of a point a distance r from the center of rotation is given by

$$
v=r \omega,
$$

where ω is the angular speed in radians per unit of time.

EXAMPLE 9 Finding Linear Speed

A wind machine used to generate electricity has blades that are 10 feet in length (see Figure 4.18). The propeller is rotating at four revolutions per second. Find the linear speed, in feet per second, of the tips of the blades.

SOLUTION

We are given ω, the angular speed.

$$
\omega=4 \text { revolutions per second }
$$

We use the formula $v=r \omega$ to find v, the linear speed. Before applying the formula, we must express ω in radians per second.

$$
\omega=\frac{4 \text { revolutions }}{1 \text { second }} \cdot \frac{2 \pi \text { radians }}{1 \text { revolution }}=\frac{8 \pi \text { radians }}{1 \text { second }} \quad \text { or } \quad \frac{8 \pi}{1 \text { second }}
$$

The angular speed of the propeller is 8π radians per second. The linear speed is

$$
v=r \omega=10 \text { feet } \cdot \frac{8 \pi}{1 \text { second }}=\frac{80 \pi \text { feet }}{\text { second }} .
$$

The linear speed of the tips of the blades is 80π feet per second, which is approximately 251 feet per second.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. An angle in a rectangular coordinate system is in standard position if its vertex is at the \qquad and its initial side lies along the positive \qquad -.
2. Positive angles are generated by \qquad rotation.
Negative angles are generated by \qquad rotation.
3. If $0^{\circ}<\theta<90^{\circ}, \theta$ is a/an angle.
If $\theta=90^{\circ}, \theta$ is a/an \qquad angle.
If $90^{\circ}<\theta<180^{\circ}, \theta$ is a/an \qquad angle.
4. The radian measure of θ shown in the figure is $\theta=$ \qquad

5. To convert degrees to radians, multiply degrees by
6. To convert radians to degrees, multiply radians by
7. Two angles with the same initial and terminal sides but possibly different rotations are called
\qquad angles. Increasing or decreasing the degree measure of an angle in standard position by an integer multiple of \qquad results in such an angle. Increasing or decreasing the radian measure of an angle in standard position by an integer multiple of \qquad results in such an angle.
8. Using the figure shown in Exercise 4 on the previous page, the length of the arc intercepted by the central angle θ is $s=$ \qquad -.
9. True or false: If $r=10$ centimeters and $\theta=20^{\circ}$, then $s=10 \cdot 20=200$ centimeters.
10. The linear speed, v, of a point a distance r from the center of rotation is given by $v=$ \qquad —, where ω is the \qquad speed in radians per unit of time.

EXERCISE SET 4.1

Practice Exercises

In Exercises 1-6, the measure of an angle is given. Classify the angle as acute, right, obtuse, or straight.

1. 135°
2. 177°
3. 83.135°
4. 87.177°
5. π
6. $\frac{\pi}{2}$

In Exercises 7-12, find the radian measure of the central angle of a circle of radius r that intercepts an arc of length s.

Radius, \boldsymbol{r}	Arc Length, \boldsymbol{s}
7. 10 inches	40 inches
8. 5 feet	30 feet
9. 6 yards	8 yards
10. 8 yards	18 yards
11. 1 meter	400 centimeters
12. 1 meter	600 centimeters

In Exercises 13-20, convert each angle in degrees to radians. Express your answer as a multiple of π.
13. 45°
14. 18°
15. 135°
16. 150°
17. 300°
18. 330°
19. -225°
20. -270°

In Exercises 21-28, convert each angle in radians to degrees.
21. $\frac{\pi}{2}$
22. $\frac{\pi}{9}$
23. $\frac{2 \pi}{3}$
24. $\frac{3 \pi}{4}$
25. $\frac{7 \pi}{6}$
26. $\frac{11 \pi}{6}$
27. -3π
28. -4π

In Exercises 29-34, convert each angle in degrees to radians. Round to two decimal places.
29. 18°
30. 76°
31. -40°
32. -50°
33. 200°
34. 250°

In Exercises 35-40, convert each angle in radians to degrees. Round to two decimal places.
35. 2 radians
36. 3 radians
37. $\frac{\pi}{13}$ radians
38. $\frac{\pi}{17}$ radians
39. -4.8 radians
40. -5.2 radians

In Exercises 41-56, use the circle shown in the rectangular coordinate system to draw each angle in standard position. State the quadrant in which the angle lies. When an angle's measure is given in radians, work the exercise without converting to degrees.

41. $\frac{7 \pi}{6}$
42. $\frac{4 \pi}{3}$
43. $\frac{3 \pi}{4}$
44. $\frac{7 \pi}{4}$
45. $-\frac{2 \pi}{3}$
46. $-\frac{5 \pi}{6}$
47. $-\frac{5 \pi}{4}$
48. $-\frac{7 \pi}{4}$
49. $\frac{16 \pi}{3}$
50. $\frac{14 \pi}{3}$
51. 120°
52. 150°
53. -210°
54. -240°
55. 420°
56. 405°

In Exercises 57-70, find a positive angle less than 360° or 2π that is coterminal with the given angle.
57. 395°
58. 415°
59. -150°
60. -160°
61. -765°
62. -760°
63. $\frac{19 \pi}{6}$
64. $\frac{17 \pi}{5}$
65. $\frac{23 \pi}{5}$
66. $\frac{25 \pi}{6}$
67. $-\frac{\pi}{50}$
68. $-\frac{\pi}{40}$
69. $-\frac{31 \pi}{7}$
70. $-\frac{38 \pi}{9}$

In Exercises 71-74, find the length of the arc on a circle of radius r intercepted by a central angle θ. Express arc length in terms of π. Then round your answer to two decimal places.

Radius, \boldsymbol{r}	Central Angle, $\boldsymbol{\theta}$
71. 12 inches	$\theta=45^{\circ}$
72. 16 inches	$\theta=60^{\circ}$
73. 8 feet	$\theta=225^{\circ}$
74. 9 yards	$\theta=315^{\circ}$

In Exercises 75-76, express each angular speed in radians per second.
75. 6 revolutions per second
76. 20 revolutions per second

Practice Plus

Use the circle shown in the rectangular coordinate system to solve Exercises 77-82. Find two angles, in radians, between -2π and 2π such that each angle's terminal side passes through the origin and the given point.

77. A
78. B
79. D
80. F
81. E
82. C

In Exercises 83-86, find the positive radian measure of the angle that the second hand of a clock moves through in the given time.
83. 55 seconds
84. 35 seconds
85. 3 minutes and 40 seconds
86. 4 minutes and 25 seconds

Application Exercises

87. The minute hand of a clock moves from 12 to 2 o'clock, or $\frac{1}{6}$ of a complete revolution. Through how many degrees does it move? Through how many radians does it move?
88. The minute hand of a clock moves from 12 to 4 o'clock, or $\frac{1}{3}$ of a complete revolution. Through how many degrees does it move? Through how many radians does it move?
89. The minute hand of a clock is 8 inches long and moves from 12 to 2 o'clock. How far does the tip of the minute hand move? Express your answer in terms of π and then round to two decimal places.
90. The minute hand of a clock is 6 inches long and moves from 12 to 4 o'clock. How far does the tip of the minute hand move? Express your answer in terms of π and then round to two decimal places.
91. The figure shows a highway sign that warns of a railway crossing. The lines that form the cross pass through the circle's center and intersect at right angles. If the radius of the circle is 24 inches, find the length of each of the four arcs formed by the cross. Express your answer in terms of π and then round to two decimal places.

92. The radius of a wheel rolling on the ground is 80 centimeters. If the wheel rotates through an angle of 60°, how many centimeters does it move? Express your answer in terms of π and then round to two decimal places.

How do we measure the distance between two points, A and B, on Earth? We measure along a circle with a center, C, at the center of Earth. The radius of the circle is equal to the distance from C to the surface. Use the fact that Earth is a sphere of radius equal to approximately 4000 miles to solve Exercises 93-96.

93. If two points, A and B, are 8000 miles apart, express angle θ in radians and in degrees.
94. If two points, A and B, are 10,000 miles apart, express angle θ in radians and in degrees.
95. If $\theta=30^{\circ}$, find the distance between A and B to the nearest mile.
96. If $\theta=10^{\circ}$, find the distance between A and B to the nearest mile.
97. The angular speed of a point on Earth is $\frac{\pi}{12}$ radian per hour. The Equator lies on a circle of radius approximately 4000 miles. Find the linear velocity, in miles per hour, of a point on the Equator.
98. A Ferris wheel has a radius of 25 feet. The wheel is rotating at two revolutions per minute. Find the linear speed, in feet per minute, of a seat on this Ferris wheel.
99. A water wheel has a radius of 12 feet. The wheel is rotating at 20 revolutions per minute. Find the linear speed, in feet per minute, of the water.
100. On a carousel, the outer row of animals is 20 feet from the center. The inner row of animals is 10 feet from the center. The carousel is rotating at 2.5 revolutions per minute. What is the difference, in feet per minute, in the linear speeds of the animals in the outer and inner rows? Round to the nearest foot per minute.

Writing in Mathematics

101. What is an angle?
102. What determines the size of an angle?
103. Describe an angle in standard position.
104. Explain the difference between positive and negative angles. What are coterminal angles?
105. Explain what is meant by one radian.
106. Explain how to find the radian measure of a central angle.
107. Describe how to convert an angle in degrees to radians.
108. Explain how to convert an angle in radians to degrees.
109. Explain how to find the length of a circular arc.
110. If a carousel is rotating at 2.5 revolutions per minute, explain how to find the linear speed of a child seated on one of the animals.
111. The angular velocity of a point on Earth is $\frac{\pi}{12}$ radian per hour. Describe what happens every 24 hours.
112. Have you ever noticed that we use the vocabulary of angles in everyday speech? Here is an example:

My opinion about art museums took a 180° turn after visiting the San Francisco Museum of Modern Art.
Explain what this means. Then give another example of the vocabulary of angles in everyday use.

Technology Exercises

In Exercises 113-116, use the keys on your calculator or graphing utility for converting an angle in degrees, minutes, and seconds ($D^{\circ} M^{\prime} S^{\prime \prime}$) into decimal form, and vice versa.

In Exercises 113-114, convert each angle to a decimal in degrees. Round your answer to two decimal places.
113. $30^{\circ} 15^{\prime} 10^{\prime \prime}$
114. $65^{\circ} 45^{\prime} 20^{\prime \prime}$

In Exercises 115-116, convert each angle to $D^{\circ} M^{\prime} S^{\prime \prime}$ form. Round your answer to the nearest second.
115. 30.42°
116. 50.42°

Critical Thinking Exercises

Make Sense? In Exercises 117-120, determine whether each statement makes sense or does not make sense, and explain your reasoning.
117. I made an error because the angle I drew in standard position exceeded a straight angle.
118. When an angle's measure is given in terms of π, I know that it's measured using radians.
119. When I convert degrees to radians, I multiply by 1 , choosing $\frac{\pi}{180^{\circ}}$ for 1 .
120. Using radian measure, I can always find a positive angle less than 2π coterminal with a given angle by adding or subtracting 2π.
121. If $\theta=\frac{3}{2}$, is this angle larger or smaller than a right angle?
122. A railroad curve is laid out on a circle. What radius should be used if the track is to change direction by 20° in a distance of 100 miles? Round your answer to the nearest mile.
123. Assuming Earth to be a sphere of radius 4000 miles, how many miles north of the Equator is Miami, Florida, if it is 26° north from the Equator? Round your answer to the nearest mile.

Preview Exercises

Exercises 124-126 will help you prepare for the material covered in the next section.
124. Graph: $x^{2}+y^{2}=1$. Then locate the point $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ on the graph.
125. Use your graph of $x^{2}+y^{2}=1$ from Exercise 124 to determine the relation's domain and range.
126. Find $\frac{x}{y}$ for $x=-\frac{1}{2}$ and $y=\frac{\sqrt{3}}{2}$, and then rationalize the denominator.

SECTION 4.2

Objectives

(1) Use a unit circle to define trigonometric functions of real numbers.
2. Recognize the domain and range of sine and cosine functions.
3 Find exact values of the trigonometric functions at $\frac{\pi}{4}$.
(4) Use even and odd trigonometric functions.
(5) Recognize and use fundamental identities.
(6) Use periodic properties.
(7) Evaluate trigonometric functions with a calculator.

FIGURE 4.19 Unit circle with a central angle measuring t radians

There is something comforting in the repetition of some of nature's patterns. The ocean level at a beach varies between high and low tide approximately every 12 hours. The number of hours of daylight oscillates from a maximum on the summer solstice, June 21 , to a minimum on the winter solstice, December 21. Then it increases to the same maximum the following June 21. Some believe that cycles, called biorhythms, represent physical, emotional, and intellectual aspects of our lives. In this chapter, we study six functions, the six trigonometric functions, that are used to model phenomena that occur again and again.

Calculus and the Unit Circle

The word trigonometry means measurement of triangles. Trigonometric functions, with domains consisting of sets of angles, were first defined using right triangles. By contrast, problems in calculus are solved using functions whose domains are sets of real numbers. Therefore, we introduce the trigonometric functions using unit circles and radians, rather than right triangles and degrees.

A unit circle is a circle of radius 1 , with its center at the origin of a rectangular coordinate system. The equation of this unit circle is $x^{2}+y^{2}=1$. Figure 4.19 shows a unit circle with a central angle measuring t radians.

We can use the formula for the length of a circular arc, $s=r \theta$, to find the length of the intercepted arc.

$$
\begin{aligned}
& s=r \theta=1 \cdot t=t \\
& \text { The radius of a The radian measure of } \\
& \text { unit circle is } 1 \text {. } \\
& \text { the central angle is } t \text {. }
\end{aligned}
$$

Thus, the length of the intercepted arc is t. This is also the radian measure of the central angle. Thus, in a unit circle, the radian measure of the central angle is equal to the length of the intercepted arc. Both are given by the same real number t.

FIGURE 4.20

Use a unit circle to define trigonometric functions of real numbers.

FIGURE 4.21

In Figure 4.20, the radian measure of the angle and the length of the intercepted arc are both shown by t. Let $P=(x, y)$ denote the point on the unit circle that has arc length t from $(1,0)$. Figure $\mathbf{4 . 2 0 (a)}$ shows that if t is positive, point P is reached by moving counterclockwise along the unit circle from (1,0). Figure 4.20(b) shows that if t is negative, point P is reached by moving clockwise along the unit circle from $(1,0)$. For each real number t, there corresponds a point $P=(x, y)$ on the unit circle.

(a) t is positive.

(b) t is negative

The Six Trigonometric Functions

We begin the study of trigonometry by defining the six trigonometric functions. The inputs of these functions are real numbers, represented by t in Figure 4.20. The outputs involve the point $P=(x, y)$ on the unit circle that corresponds to t and the coordinates of this point.

The trigonometric functions have names that are words, rather than single letters such as f, g, and h. For example, the sine of t is the y-coordinate of point P on the unit circle:

$$
\begin{aligned}
& \qquad \sin t=y \\
& \begin{array}{l}
\text { Input is the real } \\
\text { number } t \text {. }
\end{array} \quad \begin{array}{c}
\text { Output is the } y \text {-coordinate of } \\
\text { a point on the unit circle. }
\end{array}
\end{aligned}
$$

The value of y depends on the real number t and thus is a function of t. The expression $\sin t$ really means $\sin (t)$, where sine is the name of the function and t, a real number, is an input.

For example, a point $P=(x, y)$ on the unit circle corresponding to a real number t is shown in Figure 4.21 for $\pi<t<\frac{3 \pi}{2}$. We see that the coordinates of $P=(x, y)$ are $x=-\frac{3}{5}$ and $y=-\frac{4}{5}$. Because the sine function is the y-coordinate of P, the value of this trigonometric function at the real number t is

$$
\sin t=-\frac{4}{5} .
$$

Here are the names of the six trigonometric functions, along with their abbreviations.

Name	Abbreviation	Name	Abbreviation
sine	\sin	cosecant	csc
cosine	\cos	secant	sec
tangent	\tan	cotangent	\cot

FIGURE 4.22

Definitions of the Trigonometric Functions in Terms of a Unit Circle

If t is a real number and $P=(x, y)$ is a point on the unit circle that corresponds to t, then

$$
\begin{array}{ll}
\sin t=y & \csc t=\frac{1}{y}, y \neq 0 \\
\cos t=x & \sec t=\frac{1}{x}, x \neq 0 \\
\tan t=\frac{y}{x}, x \neq 0 & \cot t=\frac{x}{y}, y \neq 0
\end{array}
$$

Because this definition expresses function values in terms of coordinates of a point on a unit circle, the trigonometric functions are sometimes called the circular functions. Observe that the function values in the second column in the box are the reciprocals of the corresponding function values in the first column.

EXAMPLE 1 Finding Values of the Trigonometric Functions

In Figure 4.22, t is a real number equal to the length of the intercepted arc of an angle that measures t radians and $P=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is the point on the unit circle that corresponds to t. Use the figure to find the values of the trigonometric functions at t.

SOLUTION

The point P on the unit circle that corresponds to t has coordinates $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. We use $x=-\frac{1}{2}$ and $y=\frac{\sqrt{3}}{2}$ to find the values of the trigonometric functions. Because radical expressions are usually written without radicals in the denominators, we simplify by rationalizing denominators where appropriate.

$$
\begin{array}{ll}
\sin t=y=\frac{\sqrt{3}}{2} & \csc t=\frac{1}{y}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
\cos t=x=-\frac{1}{2} & \sec t=\frac{1}{x}=\frac{1}{-\frac{1}{2}}=-2 \quad \begin{array}{c}
\text { Rationalize denominators. } \\
\text { We are multiplying by } 1 \text { and } \\
\text { not changing function values. }
\end{array} \\
\tan t=\frac{y}{x}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3} & \cot t=\frac{x}{y}=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
\end{array}
$$ to find the values of the trigonometric functions at t.

FIGURE 4.23

EXAMPLE 2 Finding Values of the Trigonometric Functions

Use Figure 4.23 to find the values of the trigonometric functions at $t=\frac{\pi}{2}$.

SOLUTION

The point P on the unit circle that corresponds to $t=\frac{\pi}{2}$ has coordinates $(0,1)$. We use $x=0$ and $y=1$ to find the values of the trigonometric functions at $\frac{\pi}{2}$.

$$
\begin{array}{lll}
\sin \frac{\pi}{2}=y=1 & \csc \frac{\pi}{2}=\frac{1}{y}=\frac{1}{1}=1 \\
\cos \frac{\pi}{2}=x=0 & \begin{array}{l}
\sec \frac{\pi}{2} \text { and } \\
\text { tan } \frac{\pi}{2} \text { are }
\end{array} & \sec \frac{\pi}{2}=\frac{1}{x}=\frac{1}{1} \\
\tan \frac{\pi}{2}=\frac{y}{x}=\frac{1}{1} & \text { undefined. } & \cot \frac{\pi}{2}=\frac{x}{y}=\frac{0}{1}=0
\end{array}
$$

W Check Point 2 Use the figure on the right to find the values of the trigonometric functions at $t=\pi$.

Domain and Range of Sine and Cosine Functions

The domain and range of each trigonometric function can be found from the unit circle definition. At this point, let's look only at the sine and cosine functions,

$$
\sin t=y \quad \text { and } \quad \cos t=x
$$

Figure 4.24 shows the sine function at t as the y-coordinate of a point along the unit circle:

$$
y=\sin t
$$

The domain is associated with t,
the angle's radian measure and the intercepted arc's length.

The range is associated with y, the point's second coordinate.

Because t can be any real number, the domain of the sine function is $(-\infty, \infty)$, the set of all FIGURE 4.24 real numbers. The radius of the unit circle is 1 and the dashed horizontal lines in Figure 4.24 show that y cannot be less than -1 or greater than 1 . Thus, the range of the sine function is $[-1,1]$, the set of all real numbers from -1 to 1 , inclusive.

FIGURE 4.25

3 Find exact values of the trigonometric functions at $\frac{\pi}{4}$.

FIGURE 4.26

Figure 4.25 shows the cosine function at t as the x-coordinate of a point along the unit circle:

$$
\begin{aligned}
& x=\cos t . \\
& \text { The domain is associated with } t \text {, } \\
& \text { the angle's radian measure and the } \\
& \text { intercepted arc's length. }
\end{aligned}
$$

The range is associated with x, the point's first coordinate.

Because t can be any real number, the domain of the cosine function is $(-\infty, \infty)$. The radius of the unit circle is 1 and the dashed vertical lines in Figure 4.25 show that x cannot be less than -1 or greater than 1 . Thus, the range of the cosine function is $[-1,1]$.

The Domain and Range of the Sine and Cosine Functions

The domain of the sine function and the cosine function is $(-\infty, \infty)$, the set of all real numbers. The range of these functions is $[-1,1]$, the set of all real numbers from -1 to 1 , inclusive.

Exact Values of the Trigonometric Functions at $t=\frac{\pi}{4}$

Trigonometric functions at $t=\frac{\pi}{4}$ occur frequently. How do we use the unit circle to find values of the trigonometric functions at $t=\frac{\pi}{4}$? Look at Figure 4.26. We must find the coordinates of point $P=(a, b)$ on the unit circle that correspond to $t=\frac{\pi}{4}$. Can you see that P lies on the line $y=x$. Thus, point P has equal x - and y-coordinates: $a=b$. We find these coordinates as follows:

$$
\begin{array}{rlrl}
x^{2}+y^{2} & =1 & & \text { This is the equation of the unit circle. } \\
a^{2}+b^{2} & =1 & \begin{array}{l}
\text { Point } P=(a, b) \text { lies on the unit circle. } \\
\text { Thus, its coordinates satisfy the circle's } \\
\text { equation. }
\end{array} \\
a^{2}+a^{2} & =1 & \begin{array}{l}
\text { Because } a=b, \text { substitute a for } b \text { in the } \\
\text { previous equation. }
\end{array} \\
2 a^{2} & =1 & & \begin{array}{l}
\text { Combine like terms. }
\end{array} \\
a^{2} & =\frac{1}{2} & & \begin{array}{l}
\text { Divide both sides of the equation by } 2 .
\end{array} \\
a & =\sqrt{\frac{1}{2}} & \begin{array}{l}
\text { Because } a>0, \text { take the positive square } \\
\text { root of both sides. }
\end{array}
\end{array}
$$

We see that $a=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$. Because $a=b$, we also have $b=\frac{1}{\sqrt{2}}$. Thus, if $t=\frac{\pi}{4}$, point $P=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the point on the unit circle that corresponds to t. Let's rationalize the denominator on each coordinate:

$$
\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

We are multiplying by 1 and not changing the value of $\frac{1}{\sqrt{2}}$.
We use $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ to find the values of the trigonometric functions at $t=\frac{\pi}{4}$.

EXAMPLE 3 Finding Values of the Trigonometric Functions at $t=\frac{\pi}{4}$

Find $\sin \frac{\pi}{4}, \cos \frac{\pi}{4}$, and $\tan \frac{\pi}{4}$.

SOLUTION

The point P on the unit circle that corresponds to $t=\frac{\pi}{4}$ has coordinates $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. We use $x=\frac{\sqrt{2}}{2}$ and $y=\frac{\sqrt{2}}{2}$ to find the values of the three trigonometric functions at $\frac{\pi}{4}$.

$$
\sin \frac{\pi}{4}=y=\frac{\sqrt{2}}{2} \quad \cos \frac{\pi}{4}=x=\frac{\sqrt{2}}{2} \quad \tan \frac{\pi}{4}=\frac{y}{x}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
$$

\oint Check Point 3 Find $\csc \frac{\pi}{4}, \sec \frac{\pi}{4}$, and $\cot \frac{\pi}{4}$.

Because you will often see the trigonometric functions at $\frac{\pi}{4}$, it is a good idea to memorize the values shown in the following box. In the next section, you will learn to use a right triangle to obtain these values.

Trigonometric Functions at $\frac{\pi}{4}$

$$
\begin{array}{ll}
\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} & \csc \frac{\pi}{4}=\sqrt{2} \\
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} & \sec \frac{\pi}{4}=\sqrt{2} \\
\tan \frac{\pi}{4}=1 & \cot \frac{\pi}{4}=1
\end{array}
$$

Even and Odd Trigonometric Functions

We have seen that a function is even if $f(-t)=f(t)$ and odd if $f(-t)=-f(t)$. We can use Figure 4.27 to show that the cosine function is an even function and the sine function is an odd function. By definition, the coordinates of the points P and Q in Figure 4.27 are as follows:

$$
\begin{aligned}
& P:(\cos t, \sin t) \\
& Q:(\cos (-t), \sin (-t)) .
\end{aligned}
$$

In Figure 4.27, the x-coordinates of P and Q are the same. Thus,

$$
\cos (-t)=\cos t
$$

This shows that the cosine function is an even function. By contrast, the y-coordinates of P and Q are negatives of each other. Thus,

$$
\sin (-t)=-\sin t .
$$

This shows that the sine function is an odd function.

This argument is valid regardless of the length of t. Thus, the arc may terminate in any of the four quadrants or on any axis. Using the unit circle definition of the trigonometric functions, we obtain the following results:

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$
\cos (-t)=\cos t \quad \sec (-t)=\sec t
$$

The sine, cosecant, tangent, and cotangent functions are odd.

$$
\begin{array}{ll}
\sin (-t)=-\sin t & \csc (-t)=-\csc t \\
\tan (-t)=-\tan t & \cot (-t)=-\cot t
\end{array}
$$

EXAMPLE 4 Using Even and Odd Functions to Find Values of Trigonometric Functions

Find the value of each trigonometric function:
a. $\cos \left(-\frac{\pi}{4}\right)$
b. $\tan \left(-\frac{\pi}{4}\right)$.

SOLUTION

a. $\cos \left(-\frac{\pi}{4}\right)=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
b. $\tan \left(-\frac{\pi}{4}\right)=-\tan \frac{\pi}{4}=-1$

0 Check Point 4 Find the value of each trigonometric function:
a. $\sec \left(-\frac{\pi}{4}\right)$
b. $\sin \left(-\frac{\pi}{4}\right)$.
5. Recognize and use fundamental identities

Fundamental Identities

Many relationships exist among the six trigonometric functions. These relationships are described using trigonometric identities. Trigonometric identities are equations that are true for all real numbers for which the trigonometric expressions in the equations are defined. For example, the definitions of the cosine and secant functions are given by

$$
\cos t=x \quad \text { and } \quad \sec t=\frac{1}{x}, x \neq 0
$$

Substituting $\cos t$ for x in the equation on the right, we see that

$$
\sec t=\frac{1}{\cos t}, \cos t \neq 0
$$

This identity is one of six reciprocal identities.

Reciprocal Identities

$$
\begin{array}{ll}
\sin t=\frac{1}{\csc t} & \csc t=\frac{1}{\sin t} \\
\cos t=\frac{1}{\sec t} & \sec t=\frac{1}{\cos t} \\
\tan t=\frac{1}{\cot t} & \cot t=\frac{1}{\tan t}
\end{array}
$$

Two other relationships that follow from the definitions of the trigonometric functions are called the quotient identities.

Quotient Identities

$$
\tan t=\frac{\sin t}{\cos t} \quad \cot t=\frac{\cos t}{\sin t}
$$

If $\sin t$ and $\cos t$ are known, a quotient identity and three reciprocal identities make it possible to find the value of each of the four remaining trigonometric functions.

EXAMPLE 5 Using Quotient and Reciprocal Identities

Given $\sin t=\frac{2}{5}$ and $\cos t=\frac{\sqrt{21}}{5}$, find the value of each of the four remaining trigonometric functions.

SOLUTION

We can find $\tan t$ by using the quotient identity that describes $\tan t$ as the quotient of $\sin t$ and $\cos t$.

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}=\frac{2}{5} \cdot \frac{5}{\sqrt{21}}=\frac{2}{\sqrt{21}}=\frac{2}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}=\frac{2 \sqrt{21}}{21}
$$

We use the reciprocal identities to find the value of each of the remaining three functions.
$\csc t=\frac{1}{\sin t}=\frac{1}{\frac{2}{5}}=\frac{5}{2}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{\sqrt{21}}{5}}=\frac{5}{\sqrt{21}}=\frac{5}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}=\frac{5 \sqrt{21}}{21}$
$\cot t=\frac{1}{\tan t}=\frac{1}{\frac{2}{\sqrt{21}}}=\frac{\sqrt{21}}{2} \quad \begin{aligned} & \text { We found } \tan t=\frac{2}{\sqrt{21}} \text {. We could use } \tan t=\frac{2 \sqrt{21}}{21}, \\ & \text { but then we would have to rationalize the denominator. }\end{aligned}$
$\$$ Check Point 5 Given $\sin t=\frac{2}{3}$ and $\cos t=\frac{\sqrt{5}}{3}$, find the value of each of the four remaining trigonometric functions.

Other relationships among trigonometric functions follow from the equation of the unit circle

$$
x^{2}+y^{2}=1 .
$$

Because $\cos t=x$ and $\sin t=y$, we see that

$$
(\cos t)^{2}+(\sin t)^{2}=1
$$

We will eliminate the parentheses in $(\cos t)^{2}+(\sin t)^{2}=1$ by writing $\cos ^{2} t$ instead of $(\cos t)^{2}$ and $\sin ^{2} t$ instead of $(\sin t)^{2}$. With this notation, we can write the identity as

$$
\cos ^{2} t+\sin ^{2} t=1
$$

or

$$
\sin ^{2} t+\cos ^{2} t=1 \text {. The identity usually appears in this form. }
$$

Two additional identities can be obtained from $x^{2}+y^{2}=1$ by dividing both sides by x^{2} and y^{2}, respectively. The three identities are called the Pythagorean identities.

Pythagorean Identities

$$
\sin ^{2} t+\cos ^{2} t=1 \quad 1+\tan ^{2} t=\sec ^{2} t \quad 1+\cot ^{2} t=\csc ^{2} t
$$

EXAMPLE 6 Using a Pythagorean Identity

Given that $\sin t=\frac{3}{5}$ and $0 \leq t<\frac{\pi}{2}$, find the value of $\cos t$ using a trigonometric identity.

SOLUTION

We can find the value of $\cos t$ by using the Pythagorean identity

$$
\begin{aligned}
\sin ^{2} t+\cos ^{2} t & =1 . & & \\
\left(\frac{3}{5}\right)^{2}+\cos ^{2} t & =1 & & \text { We are given that } \sin t=\frac{3}{5} \\
\frac{9}{25}+\cos ^{2} t & =1 & & \text { Square } \frac{3}{5}:\left(\frac{3}{5}\right)^{2}=\frac{3^{2}}{5^{2}}=\frac{9}{25} . \\
\cos ^{2} t & =1-\frac{9}{25} & & \text { Subtract } \frac{9}{25} \text { from both sides. } \\
\cos ^{2} t & =\frac{16}{25} & & \text { Simplify: } 1-\frac{9}{25}=\frac{25}{25}-\frac{9}{25}=\frac{16}{25} . \\
\cos t & =\sqrt{\frac{16}{25}}=\frac{4}{5} & & \begin{array}{l}
\text { Because } O \leq t<\frac{\pi}{2}, \cos t, \text { the } x \text {-coordinate } \\
\text { of a point on the unit circle, is positive. }
\end{array}
\end{aligned}
$$

Thus, $\cos t=\frac{4}{5}$.
(6) Use periodic properties.

Check Point 6 Given that $\sin t=\frac{1}{2}$ and $0 \leq t<\frac{\pi}{2}$, find the value of $\cos t$
using a trigonometric identity. using a trigonometric identity.

Periodic Functions

Certain patterns in nature repeat again and again. For example, the ocean level at a beach varies from low tide to high tide and then back to low tide approximately every 12 hours. If low tide occurs at noon, then high tide will be around 6 p.m. and low tide will occur again around midnight, and so on infinitely. If $f(t)$ represents the ocean level at the beach at any time t, then the level is the same 12 hours later. Thus,

$$
f(t+12)=f(t)
$$

The word periodic means that this tidal behavior repeats infinitely. The period, 12 hours, is the time it takes to complete one full cycle.

Definition of a Periodic Function

A function f is periodic if there exists a positive number p such that

$$
f(t+p)=f(t)
$$

for all t in the domain of f. The smallest positive number p for which f is periodic is called the period of f.

The trigonometric functions are used to model periodic phenomena. Why? If we begin at any point P on the unit circle and travel a distance of 2π units along the perimeter, we will return to the same point P. Because the trigonometric functions are defined in terms of the coordinates of that point P, we obtain the following results:

Periodic Properties of the Sine and Cosine Functions

$$
\sin (t+2 \pi)=\sin t \quad \text { and } \quad \cos (t+2 \pi)=\cos t
$$

The sine and cosine functions are periodic functions and have period 2π.

Like the sine and cosine functions, the secant and cosecant functions have period 2π. However, the tangent and cotangent functions have a smaller period. Figure 4.28 shows that if we begin at any point $P(x, y)$ on the unit circle and travel a distance of π units along the perimeter, we arrive at the point $Q(-x,-y)$. The tangent function, defined in terms of the coordinates of a point, is the same at (x, y) and $(-x,-y)$.

$$
\begin{gathered}
\text { Tangent function } \\
\text { at }(x, y)
\end{gathered} \quad \frac{y}{x}=\frac{-y}{-x} \quad \begin{gathered}
\text { Tangent function } \\
\pi \text { radians later }
\end{gathered}
$$

We see that $\tan (t+\pi)=\tan t$. The same observations apply to the cotangent function.

Periodic Properties of the Tangent and Cotangent Functions

$$
\tan (t+\pi)=\tan t \quad \text { and } \quad \cot (t+\pi)=\cot t
$$

The tangent and cotangent functions are periodic functions and have period π.

EXAMPLE 7 Using Periodic Properties

Find the value of each trigonometric function:
a. $\sin \frac{9 \pi}{4}$
b. $\tan \left(-\frac{5 \pi}{4}\right)$.

SOLUTION

a. $\sin \frac{9 \pi}{4}=\sin \left(\frac{\pi}{4}+2 \pi\right)=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$

$$
\sin (t+2 \pi)=\sin t
$$

b. $\tan \left(-\frac{5 \pi}{4}\right)=-\tan \frac{5 \pi}{4}=-\tan \left(\frac{\pi}{4}+\pi\right)=-\tan \frac{\pi}{4}=-1$

> The tangent function is odd: $\tan (-t)=-\tan t$.

$$
\tan (t+\pi)=\tan t
$$

$\$$ Check Point 7 Find the value of each trigonometric function:
a. $\cot \frac{5 \pi}{4}$
b. $\cos \left(-\frac{9 \pi}{4}\right)$.

Why do the trigonometric functions model phenomena that repeat indefinitely? By starting at point P on the unit circle and traveling a distance of 2π units, 4π units, 6π units, and so on, we return to the starting point P. Because the trigonometric functions are defined in terms of the coordinates of that point P, if we add (or subtract) multiples of 2π to t, the values of the trigonometric functions of t do not change. Furthermore, the values for the tangent and cotangent functions of t do not change if we add (or subtract) multiples of π to t.

Repetitive Behavior of the Sine, Cosine, and Tangent Functions

For any integer n and real number t,

$$
\sin (t+2 \pi n)=\sin t, \quad \cos (t+2 \pi n)=\cos t, \quad \text { and } \quad \tan (t+\pi n)=\tan t .
$$

Evaluate trigonometric functions with a calculator.

Using a Calculator to Evaluate Trigonometric Functions

We used a unit circle to find values of the trigonometric functions at $\frac{\pi}{4}$. These are exact values. We can find approximate values of the trigonometric functions using a calculator.

The first step in using a calculator to evaluate trigonometric functions is to set the calculator to the correct mode, degrees or radians. The domains of the trigonometric functions in the unit circle are sets of real numbers. Therefore, we use the radian mode.

Most calculators have keys marked SIN, COS , and TAN. For example, to find the value of $\sin 1.2$, set the calculator to the radian mode and enter 1.2 SIN on most scientific calculators and SIN 1.2 ENTER on most graphing calculators. Consult the manual for your calculator.

To evaluate the cosecant, secant, and cotangent functions, use the key for the respective reciprocal function, $\operatorname{SIN}, \mathrm{COS}$, or TAN , and then use the reciprocal key. The reciprocal key is $1 / x$ on many scientific calculators and x^{-1} on many graphing calculators. For example, we can evaluate $\sec \frac{\pi}{12}$ using the following reciprocal relationship:

$$
\sec \frac{\pi}{12}=\frac{1}{\cos \frac{\pi}{12}} .
$$

Using the radian mode, enter one of the following keystroke sequences:

Many Scientific Calculators

$$
\pi \div 12 \oplus \cos 1 / x
$$

Many Graphing Calculators

$$
\theta \boxed{\operatorname{COS}}(\pi \sqrt[\pi]{\div} 120) x^{-1} \text { ENTER. }
$$

(The open parenthesis following the COS key is provided on some calculators.)
Rounding the display to four decimal places, we obtain $\sec \frac{\pi}{12} \approx 1.0353$.

EXAMPLE 8 Evaluating Trigonometric Functions with a Calculator

Use a calculator to find the value to four decimal places:
a. $\cos \frac{\pi}{4}$
b. $\cot 1.2$.

SOLUTION

Scientific Calculator Solution

Function	Mode	Keystrokes	Display, rounded to four decimal places
$\text { a. } \cos \frac{\pi}{4}$	Radian	$\pi \square 4 \square \operatorname{COS}$	0.7071
b. $\cot 1.2$	Radian	1.2 TAN $1 / x$	0.3888

Graphing Calculator Solution

Function	Mode	Keystrokes	Display, rounded to four decimal places
$\text { a. } \cos \frac{\pi}{4}$	Radian	COS ($\pi \div 4 \square$ ENTER	0.7071
b. $\cot 1.2$	Radian	(T) TAN 1.2) x^{-1} ENTER	0.3888

$\$$ Check Point 8 Use a calculator to find the value to four decimal places:

a. $\sin \frac{\pi}{4}$
b. $\csc 1.5$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. In a unit circle, the radian measure of the central angle is equal to the length of the \qquad
2. If t is a real number and $P=(x, y)$ is a point on the unit circle that corresponds to t, then x is the \qquad of t and y is the \qquad of t.
3. The two trigonometric functions defined for all real numbers are the \qquad function and the
\qquad function. The domain of each of these functions is \qquad
4. The largest possible value for the sine function and the cosine function is \qquad and the smallest possible value is \qquad The range for each of these functions is \qquad
5. The point P on the unit circle that corresponds to $t=\frac{\pi}{4}$ has coordinates $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Thus, $\sin \frac{\pi}{4}=$ \qquad $\cos \frac{\pi}{4}=$ \qquad , and $\tan \frac{\pi}{4}=$ \qquad .
6. $\cos (-t)=$ \qquad and $\sec (-t)=$ \qquad so the cosine and secant are ___ functions.
7. $\sin (-t)=$ \qquad $\csc (-t)=$ \qquad
$\tan (-t)=$ \qquad , and $\cot (-t)=$ \qquad , so
the sine, cosecant, tangent, and cotangent are
\qquad functions.
8. According to the reciprocal identities,

$$
\frac{1}{\csc t}=\longrightarrow, \frac{1}{\sec t}=\longrightarrow, \text { and } \frac{1}{\cot t}=
$$

\qquad
9. According to the quotient identities,
$\frac{\sin t}{\cos t}=$ \qquad and $\frac{\cos t}{\sin t}=$ \qquad -
10. According to the Pythagorean identities,
$\sin ^{2} t+\cos ^{2} t=$ \qquad , $1+\tan ^{2} t=$ \qquad
and $1+\cot ^{2} t=$ \qquad
11. If there exists a positive number p such that $f(t+p)=f(t)$, the function f is \qquad .The smallest positive number p for which $f(t+p)=f(t)$ is called the \qquad of t.
12. $\sin (t+2 \pi)=\square$ and $\cos (t+2 \pi)=$ \qquad ., so the sine and cosine functions are \qquad functions. The period of each of these functions is \qquad -.
13. $\tan (t+\pi)=\square$ and $\cot (t+\pi)=$ \qquad , so the tangent and cotangent functions are___ functions. The period of each of these functions is \qquad -.

EXERCISE SET 4.2

Practice Exercises

In Exercises 1-4, a point $P(x, y)$ is shown on the unit circle corresponding to a real number t. Find the values of the trigonometric functions at t.

In Exercises 5-18, the unit circle at the top of the next column has been divided into twelve equal arcs, corresponding to t-values of

$$
0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{11 \pi}{6} \text {, and } 2 \pi .
$$

Use the (x, y) coordinates in the figure to find the value of each trigonometric function at the indicated real number, t, or state that the expression is undefined.

5. $\sin \frac{\pi}{6}$
6. $\sin \frac{\pi}{3}$
7. $\cos \frac{5 \pi}{6}$
8. $\cos \frac{2 \pi}{3}$
9. $\tan \pi$
10. $\tan 0$
11. $\csc \frac{7 \pi}{6}$
12. $\csc \frac{4 \pi}{3}$
13. $\sec \frac{11 \pi}{6}$
14. $\sec \frac{5 \pi}{3}$
15. $\sin \frac{3 \pi}{2}$
16. $\cos \frac{3 \pi}{2}$
17. $\sec \frac{3 \pi}{2}$
18. $\tan \frac{3 \pi}{2}$
In Exercises 19-24,
a. Use the unit circle shown for Exercises 5-18 to find the value of the trigonometric function.
b. Use even and odd properties of trigonometric functions and your answer from part (a) to find the value of the same trigonometric function at the indicated real number.
19. a. $\cos \frac{\pi}{6}$
b. $\cos \left(-\frac{\pi}{6}\right)$
21. a. $\sin \frac{5 \pi}{6}$
b. $\sin \left(-\frac{5 \pi}{6}\right)$
23. a. $\tan \frac{5 \pi}{3}$
b. $\tan \left(-\frac{5 \pi}{3}\right)$
20. a. $\cos \frac{\pi}{3}$
b. $\cos \left(-\frac{\pi}{3}\right)$
22. a. $\sin \frac{2 \pi}{3}$
b. $\sin \left(-\frac{2 \pi}{3}\right)$
24. a. $\tan \frac{11 \pi}{6}$
b. $\tan \left(-\frac{11 \pi}{6}\right)$

In Exercises 25-28, $\sin t$ and $\cos t$ are given. Use identities to find $\tan t, \csc t, \sec t$, and $\cot t$. Where necessary, rationalize denominators.
25. $\sin t=\frac{8}{17}, \cos t=\frac{15}{17} \quad$ 26. $\sin t=\frac{3}{5}, \cos t=\frac{4}{5}$
27. $\sin t=\frac{1}{3}, \cos t=\frac{2 \sqrt{2}}{3} \quad$ 28. $\sin t=\frac{2}{3}, \cos t=\frac{\sqrt{5}}{3}$

In Exercises 29-32, $0 \leq t<\frac{\pi}{2}$ and $\sin t$ is given. Use the Pythagorean identity $\sin ^{2} t+\cos ^{2} t=1$ to find $\cos t$.
29. $\sin t=\frac{6}{7}$
30. $\sin t=\frac{7}{8}$
31. $\sin t=\frac{\sqrt{39}}{8}$
32. $\sin t=\frac{\sqrt{21}}{5}$

In Exercises 33-38, use an identity to find the value of each expression. Do not use a calculator.
33. $\sin 1.7 \csc 1.7$
34. $\cos 2.3 \sec 2.3$
35. $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{6}$
36. $\sin ^{2} \frac{\pi}{3}+\cos ^{2} \frac{\pi}{3}$
37. $\sec ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{3}$
38. $\csc ^{2} \frac{\pi}{6}-\cot ^{2} \frac{\pi}{6}$

In Exercises 39-52, find the exact value of each trigonometric function. Do not use a calculator.
39. $\cos \frac{9 \pi}{4}$
40. $\csc \frac{9 \pi}{4}$
41. $\sin \left(-\frac{9 \pi}{4}\right)$
42. $\sec \left(-\frac{9 \pi}{4}\right)$
43. $\tan \frac{5 \pi}{4}$
44. $\cot \frac{5 \pi}{4}$
45. $\cot \left(-\frac{5 \pi}{4}\right)$
46. $\tan \left(-\frac{9 \pi}{4}\right)$
47. $-\tan \left(\frac{\pi}{4}+15 \pi\right)$
48. $-\cot \left(\frac{\pi}{4}+17 \pi\right)$
49. $\sin \left(-\frac{\pi}{4}-1000 \pi\right)$
50. $\sin \left(-\frac{\pi}{4}-2000 \pi\right)$
51. $\cos \left(-\frac{\pi}{4}-1000 \pi\right)$
52. $\cos \left(-\frac{\pi}{4}-2000 \pi\right)$

In Exercises 53-60, the unit circle has been divided into eight equal arcs, corresponding to t-values of

$$
0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, \text { and } 2 \pi
$$

a. Use the (x, y) coordinates in the figure to find the value of the trigonometric function.
b. Use periodic properties and your answer from part (a) to find the value of the same trigonometric function at the indicated real number.

53. a. $\sin \frac{3 \pi}{4}$
b. $\sin \frac{11 \pi}{4}$
54. a. $\cos \frac{3 \pi}{4}$
55. a. $\cos \frac{\pi}{2}$
b. $\cos \frac{11 \pi}{4}$
b. $\cos \frac{9 \pi}{2}$
56. a. $\sin \frac{\pi}{2}$
b. $\sin \frac{9 \pi}{2}$
57. a. $\tan \pi$
b. $\tan 17 \pi$
58. a. $\cot \frac{\pi}{2}$
b. $\cot \frac{15 \pi}{2}$
59. a. $\sin \frac{7 \pi}{4}$
60. a. $\cos \frac{7 \pi}{4}$
b. $\sin \frac{47 \pi}{4}$
b. $\cos \frac{47 \pi}{4}$

In Exercises 61-70, use a calculator to find the value of the

 trigonometric function to four decimal places.61. $\sin 0.8$
62. $\cos 0.6$
63. $\tan 3.4$
64. $\tan 3.7$
65. $\csc 1$
66. $\sec 1$
67. $\cos \frac{\pi}{10}$
68. $\sin \frac{3 \pi}{10}$
69. $\cot \frac{\pi}{12}$
70. $\cot \frac{\pi}{18}$

Practice Plus

In Exercises 71-80, let

$$
\sin t=a, \cos t=b, \text { and } \tan t=c
$$

Write each expression in terms of a, b, and c.
71. $\sin (-t)-\sin t$
72. $\tan (-t)-\tan t$
73. $4 \cos (-t)-\cos t$
74. $3 \cos (-t)-\cos t$
75. $\sin (t+2 \pi)-\cos (t+4 \pi)+\tan (t+\pi)$
76. $\sin (t+2 \pi)+\cos (t+4 \pi)-\tan (t+\pi)$
77. $\sin (-t-2 \pi)-\cos (-t-4 \pi)-\tan (-t-\pi)$
78. $\sin (-t-2 \pi)+\cos (-t-4 \pi)-\tan (-t-\pi)$
79. $\cos t+\cos (t+1000 \pi)-\tan t-\tan (t+999 \pi)-\sin t+$ $4 \sin (t-1000 \pi)$
80. $-\cos t+7 \cos (t+1000 \pi)+\tan t+\tan (t+999 \pi)+$ $\sin t+\sin (t-1000 \pi)$

Application Exercises

81. The number of hours of daylight, H, on day t of any given year (on January 1,t=1) in Fairbanks, Alaska, can be modeled by the function

$$
H(t)=12+8.3 \sin \left[\frac{2 \pi}{365}(t-80)\right]
$$

a. March 21, the 80 th day of the year, is the spring equinox. Find the number of hours of daylight in Fairbanks on this day.
b. June 21, the 172 nd day of the year, is the summer solstice, the day with the maximum number of hours of daylight. To the nearest tenth of an hour, find the number of hours of daylight in Fairbanks on this day.
c. December 21 , the 355 th day of the year, is the winter solstice, the day with the minimum number of hours of daylight. Find, to the nearest tenth of an hour, the number of hours of daylight in Fairbanks on this day.
82. The number of hours of daylight, H, on day t of any given year (on January 1, $t=1$) in San Diego, California, can be modeled by the function

$$
H(t)=12+2.4 \sin \left[\frac{2 \pi}{365}(t-80)\right]
$$

a. March 21, the 80th day of the year, is the spring equinox. Find the number of hours of daylight in San Diego on this day.
b. June 21, the 172 nd day of the year, is the summer solstice, the day with the maximum number of hours of daylight. Find, to the nearest tenth of an hour, the number of hours of daylight in San Diego on this day.
c. December 21, the 355 th day of the year, is the winter solstice, the day with the minimum number of hours of daylight. To the nearest tenth of an hour, find the number of hours of daylight in San Diego on this day.
83. People who believe in biorhythms claim that there are three cycles that rule our behavior - the physical, emotional, and mental. Each is a sine function of a certain period. The function for our emotional fluctuations is

$$
E=\sin \frac{\pi}{14} t
$$

where t is measured in days starting at birth. Emotional fluctuations, E, are measured from -1 to 1 , inclusive, with 1 representing peak emotional well-being, -1 representing the low for emotional well-being, and 0 representing feeling neither emotionally high nor low.
a. Find E corresponding to $t=7,14,21,28$, and 35 . Describe what you observe.
b. What is the period of the emotional cycle?
84. The height of the water, H, in feet, at a boat dock t hours after 6 A.M. is given by

$$
H=10+4 \sin \frac{\pi}{6} t
$$

a. Find the height of the water at the dock at 6 A.m., 9 A.m., noon, 6 P.M., midnight, and 3 A.m.
b. When is low tide and when is high tide?
c. What is the period of this function and what does this mean about the tides?

Writing in Mathematics

85. Why are the trigonometric functions sometimes called circular functions?
86. Define the sine of t.
87. Given a point on the unit circle that corresponds to t, explain how to find $\tan t$.
88. What is the range of the sine function? Use the unit circle to explain where this range comes from.
89. Explain how to use the unit circle to find values of the trigonometric functions at $\frac{\pi}{4}$.
90. What do we mean by even trigonometric functions? Which of the six functions fall into this category?
91. Use words (not an equation) to describe one of the reciprocal identities.
92. Use words (not an equation) to describe one of the quotient identities.
93. Use words (not an equation) to describe one of the Pythagorean identities
94. What is a periodic function? Why are the sine and cosine functions periodic?
95. Explain how you can use the function for emotional fluctuations in Exercise 83 to determine good days for having dinner with your moody boss.
96. Describe a phenomenon that repeats infinitely. What is its period?

Critical Thinking Exercises

Make Sense? In Exercises 97-100, determine whether each statement makes sense or does not make sense, and explain your reasoning.
97. Assuming that the innermost circle on this Navajo sand painting is a unit circle, as A moves around the circle, its coordinates define the cosine and sine functions, respectively.
98. I'm using a value for t and a point on the unit circle corresponding to t for which $\sin t=-\frac{\sqrt{10}}{2}$.

99. Because $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, I can conclude that $\cos \left(-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}$.
100. I can rewrite $\tan t$ as $\frac{1}{\cot t}$, as well as $\frac{\sin t}{\cos t}$.
101. If $\pi<t<\frac{3 \pi}{2}$, which of the following is true?
a. $\sin t>0$ and $\tan t>0$.
b. $\sin t<0$ and $\tan t<0$.
c. $\tan t>0$ and $\cot t>0$.
d. $\tan t<0$ and $\cot t<0$.
102. If $f(x)=\sin x$ and $f(a)=\frac{1}{4}$, find the value of

$$
f(a)+f(a+2 \pi)+f(a+4 \pi)+f(a+6 \pi)
$$

103. If $f(x)=\sin x$ and $f(a)=\frac{1}{4}$, find the value of $f(a)+2 f(-a)$
104. The seats of a Ferris wheel are 40 feet from the wheel's center. When you get on the ride, your seat is 5 feet above the ground. How far above the ground are you after rotating through an angle of $\frac{17 \pi}{4}$ radians? Round to the nearest foot.

Preview Exercises

Exercises 105-107 will help you prepare for the material covered in the next section. In each exercise, let θ be an acute angle in a right triangle, as shown in the figure. These exercises require the use of the Pythagorean Theorem.

105. If $a=5$ and $b=12$, find the ratio of the length of the side opposite θ to the length of the hypotenuse.
106. If $a=1$ and $b=1$, find the ratio of the length of the side opposite θ to the length of the hypotenuse. Simplify the ratio by rationalizing the denominator.
107. Simplify: $\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}$.

SECTION 4.3

Objectives

(1) Use right triangles to evaluate trigonometric functions.
(2) Find function values for $30^{\circ}\left(\frac{\pi}{6}\right), 45^{\circ}\left(\frac{\pi}{4}\right)$, and $60^{\circ}\left(\frac{\pi}{3}\right)$.
(3) Use equal cofunctions of complements.
(4) Use right triangle trigonometry to solve applied problems.

Use right triangles to evaluate trigonometric functions.

FIGURE 4.29 Interpreting trigonometric functions using a unit circle and a right triangle

Right Triangle Trigonometry

In the last century, Ang Rita Sherpa climbed Mount Everest ten times, all without the use of bottled oxygen.
Mountain climbers have forever been fascinated by reaching the top of Mount Everest, sometimes with tragic results. The mountain, on Asia's Tibet-Nepal border, is Earth's highest, peaking at an incredible 29,035 feet. The heights of mountains can be found using trigonometric functions. Remember that the word "trigonometry" means "measurement of triangles." Trigonometry is used in navigation, building, and engineering. For centuries, Muslims used trigonometry and the stars to navigate across the Arabian desert to Mecca, the birthplace of the prophet Muhammad, the founder of Islam. The ancient Greeks used trigonometry to record the locations of thousands of stars and worked out the motion of the Moon relative to Earth. Today, trigonometry is used to study the structure of DNA, the master molecule that determines how we grow from a single cell to a complex, fully developed adult.

Right Triangle Definitions of Trigonometric Functions

We have seen that in a unit circle, the radian measure of a central angle is equal to the measure of the intercepted arc. Thus, the value of a trigonometric function at the real number t is its value at an angle of t radians.

Figure 4.29(a) shows a central angle that measures $\frac{\pi}{3}$ radians and an intercepted arc of length $\frac{\pi}{3}$. Interpret $\frac{\pi}{3}$ as the measure of the central angle. In Figure 4.29(b), we construct a right triangle by dropping a line segment from point P perpendicular to the x-axis.

(a)

(b)

Now we can think of $\frac{\pi}{3}$, or 60°, as the measure of an acute angle in the right triangle in Figure 4.29(b). Because $\sin t$ is the second coordinate of point P and $\cos t$ is the first coordinate of point P, we see that

$$
\sin \frac{\pi}{3}=\sin 60^{\circ}=y=\frac{y}{1} \quad \begin{aligned}
& \text { This is the length of the side opposite } \\
& \text { the } 60^{\circ} \text { angle in the right triangle. }
\end{aligned} \quad \begin{gathered}
\text { This is the length of the hypotenuse } \\
\text { in the right triangle. }
\end{gathered}
$$

$$
\cos \frac{\pi}{3}=\cos 60^{\circ}=x=\frac{x}{1} . \quad \begin{aligned}
& \text { This is the length of the side adjacent } \\
& \text { to the } 60^{\circ} \text { angle in the right triangle. }
\end{aligned} \begin{aligned}
& \text { This is the length of the hypotenuse } \\
& \text { in the right triangle. }
\end{aligned}
$$

In solving certain kinds of problems, it is helpful to interpret trigonometric functions in right triangles, where angles are limited to acute angles. Figure 4.30 shows a right triangle with one of its acute angles labeled θ. The side opposite the right angle, the hypotenuse, has length c. The other sides of the triangle are described by their position relative to the acute angle θ. One side is opposite θ. The length of this side is a. One side is adjacent to θ. The length of this side is b.

Length of the side adjacent to θ
FIGURE 4.30

Right Triangle Definitions of Trigonometric Functions

See Figure 4.30. The six trigonometric functions of the acute angle $\boldsymbol{\theta}$ are defined as follows:

$$
\begin{array}{ll}
\sin \theta=\frac{\text { length of side opposite angle } \theta}{\text { length of hypotenuse }}=\frac{a}{c} & \csc \theta=\frac{\text { length of hypotenuse }}{\text { length of side opposite angle } \theta}=\frac{c}{a} \\
\cos \theta=\frac{\text { length of side adjacent to angle } \theta}{\text { length of hypotenuse }}=\frac{b}{c} & \sec \theta=\frac{\text { length of hypotenuse }}{\text { length of side adjacent to angle } \theta}=\frac{c}{b} \\
\tan \theta=\frac{\text { length of side opposite angle } \theta}{\text { length of side adjacent to angle } \theta}=\frac{a}{b} & \cot \theta=\frac{\text { length of side adjacent to angle } \theta}{\text { length of side opposite angle } \theta}=\frac{b}{a}
\end{array}
$$

FIGURE 4.31 A particular acute angle always gives the same ratio of opposite to adjacent sides.

Each of the trigonometric functions of the acute angle θ is positive. Observe that the ratios in the second column in the box are the reciprocals of the corresponding ratios in the first column.

GREAT QUESTION!

Is there a way to help me remember the right triangle definitions of any of the trigonometric functions?
The word
SOHCAHTOA (pronounced: so-cah-tow-ah)
may be helpful in remembering the definitions for sine, cosine, and tangent.

S	$\underline{\mathrm{OH}}$	C	A H	T	OA
,	$\xlongequal[\frac{\text { opp }}{\text { hyp }}]{ }$	\uparrow	$\underset{\text { adj }}{\text { hyp }}$	¢	$\frac{\text { opp }}{\text { adj }}$
Sine		Cosin			

"Some Old \underline{H} og Came Around Here and Took Our Apples."

Figure 4.31 shows four right triangles of varying sizes. In each of the triangles, θ is the same acute angle, measuring approximately 56.3°. All four of these similar triangles have the same shape and the lengths of corresponding sides are in the same ratio. In each triangle, the tangent function has the same value for the angle $\theta: \tan \theta=\frac{3}{2}$.

$\tan \theta=\frac{6}{4}=\frac{3}{2}$

$\tan \theta=\frac{1.5}{1}=\frac{3}{2}$

$\tan \theta=\frac{4.5}{3}=\frac{3}{2}$
$\tan \theta=\frac{a}{b}=\frac{3}{2}$
In general, the trigonometric function values of $\boldsymbol{\theta}$ depend only on the size of angle θ and not on the size of the triangle.

FIGURE 4.32

GREAT QUESTION!

Do I have to use the definitions of the trigonometric functions to get the function values shown in the second column?
No. The function values in the second column are reciprocals of those in the first column. You can obtain each of these values by interchanging the numerator and denominator of the corresponding ratio in the first column.

FIGURE 4.33

EXAMPLE 1 Evaluating Trigonometric Functions

Find the value of each of the six trigonometric functions of θ in Figure 4.32.

SOLUTION

We need to find the values of the six trigonometric functions of θ. However, we must know the lengths of all three sides of the triangle (a, b, and c) to evaluate all six functions. The values of a and b are given. We can use the Pythagorean Theorem, $c^{2}=a^{2}+b^{2}$, to find c.

$$
\begin{aligned}
& \quad a=5 \quad b=12 \\
& c^{2}=a^{2}+b^{2}=5^{2}+12^{2}=25+144=169 \\
& c=\sqrt{169}=13
\end{aligned}
$$

Now that we know the lengths of the three sides of the triangle, we apply the definitions of the six trigonometric functions of θ. Referring to these lengths as opposite, adjacent, and hypotenuse, we have

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{5}{13} & \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{13}{5} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{12}{13} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{13}{12} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}=\frac{12}{5}
\end{array}
$$

EXAMPLE 2 Evaluating Trigonometric Functions

Find the value of each of the six trigonometric functions of θ in Figure 4.33.

SOLUTION

We begin by finding b.

$$
\begin{array}{rlrl}
a^{2}+b^{2} & =c^{2} & & \text { Use the Pythagorean Theorem. } \\
1^{2}+b^{2} & =3^{2} & & \text { Figure } 4.33 \text { shows that } a=1 \text { and } c=3 . \\
1+b^{2} & =9 & & 1^{2}=1 \text { and } 3^{2}=9 . \\
b^{2} & =8 & & \text { Subtract } 1 \text { from both sides. } \\
b & =\sqrt{8}=2 \sqrt{2} & & \text { Take the principal square root and simplify: } \\
& & \sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \sqrt{2}=2 \sqrt{2} .
\end{array}
$$

FIGURE 4.33 (repeated, showing $b=2 \sqrt{ } 2$)

Now that we know the lengths of the three sides of the triangle, we apply the definitions of the six trigonometric functions of θ.

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{1}{3} & \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{3}{1}=3 \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{2 \sqrt{2}}{3} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{3}{2 \sqrt{2}} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{1}{2 \sqrt{2}} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}=\frac{2 \sqrt{2}}{1}=2 \sqrt{2}
\end{array}
$$

Because fractional expressions are usually written without radicals in the denominators, we simplify the values of $\tan \theta$ and $\sec \theta$ by rationalizing the denominators:

$$
\begin{aligned}
& \tan \theta=\frac{1}{2 \sqrt{2}}=\frac{1}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2 \cdot 2}=\frac{\sqrt{2}}{4} \quad \sec \theta=\frac{3}{2 \sqrt{2}}=\frac{3}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2 \cdot 2}=\frac{3 \sqrt{2}}{4} . \\
& \begin{array}{l}
\text { We are multiplying by } 1 \text { and multiplying by } 1 \text { and } \\
\text { not changing the value of } \frac{1}{2 \sqrt{2}} .
\end{array} \\
& \text { not changing the value of } \frac{3}{2 \sqrt{2}} .
\end{aligned}
$$

W Check Point 2 Find the value of each of the six trigonometric functions of θ in the figure. Express each value in simplified form.

(2) Find function values for $30^{\circ}\left(\frac{\pi}{6}\right), 45^{\circ}\left(\frac{\pi}{4}\right)$, and $60^{\circ}\left(\frac{\pi}{3}\right)$.

FIGURE 4.34 An isosceles right triangle

Function Values for Some Special Angles

In Section 4.2, we used the unit circle to find values of the trigonometric functions at $\frac{\pi}{4}$. How can we find the values of the trigonometric functions at $\frac{\pi}{4}$, or 45°, using a right triangle? We construct a right triangle with a 45° angle, as shown in Figure 4.34. The triangle actually has two 45° angles. Thus, the triangle is isosceles-that is, it has two sides of the same length. Assume that each leg of the triangle has a length equal to 1 . We can find the length of the hypotenuse using the Pythagorean Theorem.

$$
\begin{aligned}
(\text { length of hypotenuse })^{2} & =1^{2}+1^{2}=2 \\
\text { length of hypotenuse } & =\sqrt{2}
\end{aligned}
$$

With Figure 4.34, we can determine the trigonometric function values for 45°.

EXAMPLE 3 Evaluating Trigonometric Functions of 45°

Use Figure 4.34 to find $\sin 45^{\circ}$, $\cos 45^{\circ}$, and $\tan 45^{\circ}$.

SOLUTION

We apply the definitions of these three trigonometric functions. Where appropriate, we simplify by rationalizing denominators.

$$
\sin 45^{\circ}=\frac{\text { length of side opposite } 45^{\circ}}{\text { length of hypotenuse }}=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

Rationalize denominators.

$$
\begin{aligned}
& \cos 45^{\circ}=\frac{\text { length of side adjacent to } 45^{\circ}}{\text { length of hypotenuse }}=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \tan 45^{\circ}=\frac{\text { length of side opposite } 45^{\circ}}{\text { length of side adjacent to } 45^{\circ}}=\frac{1}{1}=1
\end{aligned}
$$

When you worked Check Point 3, did you actually use Figure 4.34 or did you use reciprocals to find the values?

Notice that if you use reciprocals, you should take the reciprocal of a function value before the denominator is rationalized. In this way, the reciprocal value will not contain a radical in the denominator.

Two other angles that occur frequently in trigonometry are 30°, or $\frac{\pi}{6}$ radian, and 60°, or $\frac{\pi}{3}$ radian, angles. We can find the values of the trigonometric functions of 30° and 60° by using a right triangle. To form this right triangle, draw an equilateral triangle - that is, a triangle with all sides the same length. Assume that each side has a length equal to 2 . Now take half of the equilateral triangle. We obtain the right triangle in Figure 4.35. This right triangle has a hypotenuse of length 2 and a leg of length 1 . The other leg has length a, which can be found using the Pythagorean Theorem.

$$
\begin{aligned}
a^{2}+1^{2} & =2^{2} \\
a^{2}+1 & =4 \\
a^{2} & =3 \\
a & =\sqrt{3}
\end{aligned}
$$

With the right triangle in Figure 4.35, we can determine the trigonometric functions for 30° and 60°.

FIGURE $4.3530^{\circ}-60^{\circ}-90^{\circ}$ triangle

FIGURE $4.3530^{\circ}-60^{\circ}-90^{\circ}$ triangle (repeated)

EXAMPLE 4 Evaluating Trigonometric Functions of 30° and 60°
Use Figure 4.35 to find $\sin 60^{\circ}$, $\cos 60^{\circ}, \sin 30^{\circ}$, and $\cos 30^{\circ}$.

SOLUTION

We begin with 60°. Use the angle on the lower left in Figure 4.35.

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{\text { length of side opposite } 60^{\circ}}{\text { length of hypotenuse }}=\frac{\sqrt{3}}{2} \\
& \cos 60^{\circ}=\frac{\text { length of side adjacent to } 60^{\circ}}{\text { length of hypotenuse }}=\frac{1}{2}
\end{aligned}
$$

To find $\sin 30^{\circ}$ and $\cos 30^{\circ}$, use the angle on the upper right in Figure 4.35.

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{\text { length of side opposite } 30^{\circ}}{\text { length of hypotenuse }}=\frac{1}{2} \\
& \cos 30^{\circ}=\frac{\text { length of side adjacent to } 30^{\circ}}{\text { length of hypotenuse }}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Check Point 4 Use Figure 4.35 to find $\tan 60^{\circ}$ and $\tan 30^{\circ}$. If a radical appears in a denominator, rationalize the denominator.

Because we will often use the function values of $30^{\circ}, 45^{\circ}$, and 60°, you should learn to construct the right triangles in Figure 4.34, shown on page 526, and Figure 4.35, shown above. With sufficient practice, you will memorize the values in Table 4.2.

Table 4.2 Trigonometric Functions of Special Angles

$\boldsymbol{\theta}$	$\mathbf{3 0 ^ { \circ }}=\frac{\boldsymbol{\pi}}{\mathbf{6}}$	$\mathbf{4 5}=\frac{\boldsymbol{\pi}}{\mathbf{4}}$	$\mathbf{6 0 ^ { \circ }}=\frac{\boldsymbol{\pi}}{\mathbf{3}}$
$\boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Trigonometric Functions and Complements

Two positive angles are complements if their sum is 90° or $\frac{\pi}{2}$. For example, angles of 70° and 20° are complements because $70^{\circ}+20^{\circ}=90^{\circ}$.

In Section 4.2, we used the unit circle to establish fundamental trigonometric identities. Another relationship among trigonometric functions is based on angles that are complements. Refer to Figure 4.36. Because the sum of the angles of any triangle is 180°, in a right triangle the sum of the acute angles is 90°. Thus, the acute angles are complements. If the degree measure of one acute angle is θ, then the degree measure of the other acute angle is $\left(90^{\circ}-\theta\right)$. This angle is shown on the upper right in Figure 4.36.

Let's use Figure $\mathbf{4 . 3 6}$ to compare $\sin \theta$ and $\cos \left(90^{\circ}-\theta\right)$.

$$
\begin{aligned}
\sin \theta & =\frac{\text { length of side opposite } \theta}{\text { length of hypotenuse }}=\frac{a}{c} \\
\cos \left(90^{\circ}-\theta\right) & =\frac{\text { length of side adjacent to }\left(90^{\circ}-\theta\right)}{\text { length of hypotenuse }}=\frac{a}{c}
\end{aligned}
$$

Thus, $\sin \theta=\cos \left(90^{\circ}-\theta\right)$.
Because $\sin \theta=\cos \left(90^{\circ}-\theta\right)$, if two angles are complements, the sine of one equals the cosine of the other. Because of this relationship, the sine and cosine are called cofunctions of each other. The name cosine is a shortened form of the phrase complement's sine.

Any pair of trigonometric functions f and g for which

$$
f(\theta)=g\left(90^{\circ}-\theta\right) \text { and } g(\theta)=f\left(90^{\circ}-\theta\right)
$$

are called cofunctions. Using Figure 4.36, we can show that the tangent and cotangent are also cofunctions of each other. So are the secant and cosecant.

Cofunction Identities

The value of a trigonometric function of θ is equal to the cofunction of the complement of θ. Cofunctions of complementary angles are equal.

$$
\begin{array}{rlrl}
\sin \theta & =\cos \left(90^{\circ}-\theta\right) & \cos \theta & =\sin \left(90^{\circ}-\theta\right) \\
\tan \theta & =\cot \left(90^{\circ}-\theta\right) & \cot \theta=\tan \left(90^{\circ}-\theta\right) \\
\sec \theta & =\csc \left(90^{\circ}-\theta\right) & & \csc \theta=\sec \left(90^{\circ}-\theta\right)
\end{array}
$$

If θ is in radians, replace 90° with $\frac{\pi}{2}$.

EXAMPLE 5 Using Cofunction Identities

Find a cofunction with the same value as the given expression:
a. $\sin 72^{\circ}$
b. $\csc \frac{\pi}{3}$.

SOLUTION

Because the value of a trigonometric function of θ is equal to the cofunction of the complement of θ, we need to find the complement of each angle. We do this by subtracting the angle's measure from 90° or its radian equivalent, $\frac{\pi}{2}$.
a. $\quad \sin 72^{\circ}=\cos \left(90^{\circ}-72^{\circ}\right)=\cos 18^{\circ}$

We have a function and its cofunction.
b. $\quad \csc \frac{\pi}{3}=\sec \left(\frac{\pi}{2}-\frac{\pi}{3}\right)=\sec \left(\frac{3 \pi}{6}-\frac{2 \pi}{6}\right)=\sec \frac{\pi}{6}$

We have a cofunction and its function.

Perform the subtraction using the least common denominator, 6.
$\$$ Check Point 5 Find a cofunction with the same value as the given expression:
a. $\sin 46^{\circ}$
b. $\cot \frac{\pi}{12}$.

Use right triangle trigonometry to solve applied problems.

Applications

Many applications of right triangle trigonometry involve the angle made with an imaginary horizontal line. As shown in Figure 4.37, an angle formed by a horizontal line and the line of sight to an object that is above the horizontal line is called the angle of elevation. The angle formed by a horizontal line and the line of sight to an object that is below the horizontal line is called the angle of depression. Transits and sextants are instruments used to measure such angles.

EXAMPLE 6 Problem Solving Using an Angle of Elevation

Sighting the top of a building, a surveyor measured the angle of elevation to be 22°. The transit is 5 feet above the ground and 300 feet from the building. Find the building's height.

SOLUTION

The situation is illustrated in Figure 4.38. Let a be the height of the portion of the building that lies above the transit. The height of the building is the transit's height, 5 feet, plus a. Thus, we need to identify a trigonometric function that will make it possible to find a. In terms of the 22° angle, we are looking for the side opposite the angle. The transit is 300 feet from the building, so the side adjacent to the 22° angle is 300 feet. Because we have a known angle, an unknown opposite side, and a known adjacent side, we select the tangent function.

$$
\begin{array}{rlrl}
\tan 22^{\circ} & =\frac{a}{300} \quad \text { Length of side opposite the } 22^{\circ} \text { angle } \\
a & =300 \tan 22^{\circ} \quad \text { Multiply both side adjacent to the } 22^{\circ} \text { angle } \\
a & \approx 121 \quad & \text { Use a calculator in the equation by } 300 . \\
a &
\end{array}
$$

The height of the part of the building above the transit is approximately 121 feet. Thus, the height of the building is determined by adding the transit's height, 5 feet, to 121 feet.

$$
h \approx 5+121=126
$$

The building's height is approximately 126 feet.

S Check Point 6 The irregular blue shape in Figure 4.39 represents a lake. The distance across the lake, a, is unknown. To find this distance, a surveyor took the measurements shown in the figure. What is the distance across the lake?

FIGURE 4.39

If two sides of a right triangle are known, an appropriate trigonometric function can be used to find an acute angle θ in the triangle. You will also need to use an inverse trigonometric key on a calculator. These keys use a function value to display the acute angle θ. For example, suppose that $\sin \theta=0.866$. We can find θ in the degree mode by using the secondary inverse sine key, usually labelled SIN^{-1}. The key SIN^{-1} is not a button you will actually press. It is the secondary function for the button labeled SIN.

Many Scientific Calculators:

The display should show approximately 59.997 , which can be rounded to 60 . Thus, if $\sin \theta=0.866$, then $\theta \approx 60^{\circ}$.

EXAMPLE 7 Determining the Angle of Elevation

A building that is 21 meters tall casts a shadow 25 meters long. Find the angle of elevation of the sun to the nearest degree.

SOLUTION

The situation is illustrated in Figure 4.40. We are asked to find θ.

We begin with the tangent function.

$$
\tan \theta=\frac{\text { side opposite } \theta}{\text { side adjacent to } \theta}=\frac{21}{25}
$$

FIGURE 4.40 (repeated)

We use $\tan \theta=\frac{21}{25}$ and a calculator in the degree mode to find θ.

The display should show approximately 40 . Thus, the angle of elevation of the sun is approximately 40°.

Check Point 7 A flagpole that is 14 meters tall casts a shadow 10 meters long. Find the angle of elevation of the sun to the nearest degree.

Blitzer Bonus || The Mountain Man

In the 1930s, a National Geographic team headed by Brad Washburn used trigonometry to create a map of the 5000-square-mile region of the Yukon, near the Canadian border. The team started with aerial photography. By drawing a network of angles on the photographs, the approximate locations of the major mountains and their rough heights were determined. The expedition then spent three months on foot to find the exact heights. Team members established two base points a known distance apart, one directly under the mountain's peak. By measuring the angle of elevation from one of the base points to the peak, the tangent function was used to determine the peak's height. The Yukon expedition was a major advance in the way maps are made.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Using lengths a, b, and c in the right triangle shown, the trigonometric functions of θ are defined as follows:

2. True or false: The trigonometric functions of θ in Exercise 1 depend only on the size of θ and not on the size of the triangle. \qquad
3. According to the cofunction identities,
$\cos \left(90^{\circ}-\theta\right)=\longrightarrow, \cot \left(90^{\circ}-\theta\right)=$ \qquad and $\csc \left(90^{\circ}-\theta\right)=$ \qquad
4. Using the definitions in Exercise 1, we refer to a as the length of the side \qquad angle θ, b as the length of the side \qquad angle θ, and c as the length of the \qquad -.

EXERCISE SET 4.3

Practice Exercises

In Exercises 1-8, use the Pythagorean Theorem to find the length of the missing side of each right triangle. Then find the value of each of the six trigonometric functions of θ.
1.

2.

3.

4. B

5.

6.

7.

8.

In Exercises 9-20, use the given triangles to evaluate each expression. If necessary, express the value without a square root in the denominator by rationalizing the denominator.

9. $\cos 30^{\circ}$
10. $\tan 30^{\circ}$
11. $\sec 45^{\circ}$
12. $\csc 45^{\circ}$
13. $\tan \frac{\pi}{3}$
14. $\cot \frac{\pi}{3}$
15. $\sin \frac{\pi}{4}-\cos \frac{\pi}{4}$
16. $\tan \frac{\pi}{4}+\csc \frac{\pi}{6}$
17. $\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\tan \frac{\pi}{4}$
18. $\cos \frac{\pi}{3} \sec \frac{\pi}{3}-\cot \frac{\pi}{3}$
19. $2 \tan \frac{\pi}{3}+\cos \frac{\pi}{4} \tan \frac{\pi}{6}$
20. $6 \tan \frac{\pi}{4}+\sin \frac{\pi}{3} \sec \frac{\pi}{6}$

In Exercises 21-28, find a cofunction with the same value as the given expression.
21. $\sin 7^{\circ}$
22. $\sin 19^{\circ}$
23. $\csc 25^{\circ}$
24. $\csc 35^{\circ}$
25. $\tan \frac{\pi}{9}$
26. $\tan \frac{\pi}{7}$
27. $\cos \frac{2 \pi}{5}$
28. $\cos \frac{3 \pi}{8}$

In Exercises 29-34, find the measure of the side of the right triangle whose length is designated by a lowercase letter. Round answers to the nearest whole number.
29.

30.

31.

32.

33.

34.

In Exercises 35-38, use a calculator to find the value of the acute angle θ to the nearest degree.
35. $\sin \theta=0.2974$
36. $\cos \theta=0.8771$
37. $\tan \theta=4.6252$
38. $\tan \theta=26.0307$

In Exercises 39-42, use a calculator to find the value of the acute angle θ in radians, rounded to three decimal places.
39. $\cos \theta=0.4112$
40. $\sin \theta=0.9499$
41. $\tan \theta=0.4169$
42. $\tan \theta=0.5117$

Practice Plus

In Exercises 43-48, find the exact value of each expression.
Do not use a calculator.
43. $\frac{\tan \frac{\pi}{3}}{2}-\frac{1}{\sec \frac{\pi}{6}}$
44. $\frac{1}{\cot \frac{\pi}{4}}-\frac{2}{\csc \frac{\pi}{6}}$
45. $1+\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}$
46. $1-\tan ^{2} 10^{\circ}+\csc ^{2} 80^{\circ}$
47. $\csc 37^{\circ} \sec 53^{\circ}-\tan 53^{\circ} \cot 37^{\circ}$
48. $\cos 12^{\circ} \sin 78^{\circ}+\cos 78^{\circ} \sin 12^{\circ}$

In Exercises 49-50, express the exact value of each function as a single fraction. Do not use a calculator.
49. If $f(\theta)=2 \cos \theta-\cos 2 \theta$, find $f\left(\frac{\pi}{6}\right)$.
50. If $f(\theta)=2 \sin \theta-\sin \frac{\theta}{2}$, find $f\left(\frac{\pi}{3}\right)$.
51. If θ is an acute angle and $\cot \theta=\frac{1}{4}$, find $\tan \left(\frac{\pi}{2}-\theta\right)$.
52. If θ is an acute angle and $\cos \theta=\frac{1}{3}$, find $\csc \left(\frac{\pi}{2}-\theta\right)$.

Application Exercises

53. To find the distance across a lake, a surveyor took the measurements shown in the figure. Use these measurements to determine how far it is across the lake. Round to the nearest yard.

54. At a certain time of day, the angle of elevation of the sun is 40°. To the nearest foot, find the height of a tree whose shadow is 35 feet long.

55. A tower that is 125 feet tall casts a shadow 172 feet long. Find the angle of elevation of the sun to the nearest degree.

56. The Washington Monument is 555 feet high. If you are standing one quarter of a mile, or 1320 feet, from the base of the monument and looking to the top, find the angle of elevation to the nearest degree.

57. A plane rises from take-off and flies at an angle of 10° with the horizontal runway. When it has gained 500 feet, find the distance, to the nearest foot, the plane has flown.

58. A road is inclined at an angle of 5°. After driving 5000 feet along this road, find the driver's increase in altitude. Round to the nearest foot.

59. A telephone pole is 60 feet tall. A guy wire 75 feet long is attached from the ground to the top of the pole. Find the angle between the wire and the pole to the nearest degree.

60. A telephone pole is 55 feet tall. A guy wire 80 feet long is attached from the ground to the top of the pole. Find the angle between the wire and the pole to the nearest degree.

Writing in Mathematics

61. If you are given the lengths of the sides of a right triangle, describe how to find the sine of either acute angle.
62. Describe one similarity and one difference between the definitions of $\sin \theta$ and $\cos \theta$, where θ is an acute angle of a right triangle.
63. Describe the triangle used to find the trigonometric functions of 45°.
64. Describe the triangle used to find the trigonometric functions of 30° and 60°.
65. Describe a relationship among trigonometric functions that is based on angles that are complements.
66. Describe what is meant by an angle of elevation and an angle of depression.
67. Stonehenge, the famous "stone circle" in England, was built between 2750 b.c. and 1300 в.c. using solid stone blocks weighing over 99,000 pounds each. It required 550 people to pull a single stone up a ramp inclined at a 9° angle. Describe how right triangle trigonometry can be used to determine the distance the 550 workers had to drag a stone in order to raise it to a height of 30 feet.

Technology Exercises

68. Use a calculator in the radian mode to fill in the values in the following table. Then draw a conclusion about $\frac{\sin \theta}{\theta}$ as θ approaches 0 .

θ	0.4	0.3	0.2	0.1	0.01	0.001	0.0001	0.00001
$\sin \theta$								
$\frac{\sin \theta}{\theta}$								

69. Use a calculator in the radian mode to fill in the values in the following table. Then draw a conclusion about $\frac{\cos \theta-1}{\theta}$ as θ approaches 0 .

θ	0.4	0.3	0.2	0.1	0.01	0.001	0.0001	0.00001
$\cos \theta$								
$\frac{\cos \theta-1}{\theta} \boldsymbol{\theta}$								

Critical Thinking Exercises

Make Sense? In Exercises 70-73, determine whether each statement makes sense or does not make sense, and explain your reasoning.
70. For a given angle θ, I found a slight increase in $\sin \theta$ as the size of the triangle increased.
71. Although I can use an isosceles right triangle to determine the exact value of $\sin \frac{\pi}{4}$, I can also use my calculator to obtain this value.
72. The sine and cosine are cofunctions and reciprocals of each other.
73. Standing under this arch, I can determine its height by measuring the angle of elevation to the top of the arch and my distance to a point directly under the arch.

[^8]In Exercises 74-77, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
74. $\frac{\tan 45^{\circ}}{\tan 15^{\circ}}=\tan 3^{\circ}$
75. $\tan ^{2} 15^{\circ}-\sec ^{2} 15^{\circ}=-1$
76. $\sin 45^{\circ}+\cos 45^{\circ}=1$
77. $\tan ^{2} 5^{\circ}=\tan 25^{\circ}$
78. Explain why the sine or cosine of an acute angle cannot be greater than or equal to 1.
79. Describe what happens to the tangent of an acute angle as the angle gets close to 90°. What happens at 90° ?
80. From the top of a 250 -foot lighthouse, a plane is sighted overhead and a ship is observed directly below the plane. The angle of elevation of the plane is 22° and the angle of depression of the ship is 35°. Find a. the distance of the ship from the lighthouse; \mathbf{b}. the plane's height above the water. Round to the nearest foot.

Preview Exercises

Exercises 81-83 will help you prepare for the material covered in the next section. Use these figures to solve Exercises 81-82.

(a) θ lies in quadrant I.

(b) θ lies in quadrant II.
81. a. Write a ratio that expresses $\sin \theta$ for the right triangle in

Figure (a).

b. Determine the ratio that you wrote in part (a) for Figure (b) with $x=-3$ and $y=4$. Is this ratio positive or negative?
82. a. Write a ratio that expresses $\cos \theta$ for the right triangle in Figure (a).
b. Determine the ratio that you wrote in part (a) for Figure (b) with $x=-3$ and $y=5$. Is this ratio positive or negative?
83. Find the positive angle θ^{\prime} formed by the terminal side of θ and the x-axis.
a.

b.

SECTION 4.4

Objectives

(1) Use the definitions of trigonometric functions of any angle.
2 Use the signs of the trigonometric functions.
(3) Find reference angles.
(4) Use reference angles to evaluate trigonometric functions.
(1) Use the definitions of trigonometric functions of any angle.

Cycles govern many aspects of life-heartbeats, sleep patterns, seasons, and tides all follow regular, predictable cycles. Because of their periodic nature, trigonometric functions are used to model phenomena that occur in cycles. It is helpful to apply these models regardless of whether we think of the domains of trigonometric functions as sets of real numbers or sets of angles. In order to understand and use models for cyclic phenomena from an angle perspective, we need to move beyond right triangles.

Trigonometric Functions

 of Any AngleIn the last section, we evaluated trigonometric functions of acute angles, such as that shown in Figure $4.41(a)$. Note that this angle is in standard position. The point $P=(x, y)$ is a point r units from the origin on the terminal side of θ. A right triangle is formed by drawing a line segment from $P=(x, y)$ perpendicular to the x-axis. Note that y is the length of the side opposite θ and x is the length of the side adjacent to θ.

(a) θ lies in quadrant I.

(b) θ lies in quadrant II.

(c) θ lies in quadrant III.

(d) θ lies in quadrant IV.

FIGURE 4.41

Figures 4.41(b), (c), and (d) show angles in standard position, but they are not acute. We can extend our definitions of the six trigonometric functions to include such angles, as well as quadrantal angles. (Recall that a quadrantal angle has its terminal side on the x-axis or y-axis; such angles are not shown in Figure 4.41.) The point $P=(x, y)$ may be any point on the terminal side of the angle θ other than the origin, $(0,0)$.

FIGURE 4.41(a) θ lies in quadrant I. (repeated)

GREAT QUESTION!

Is there a way to make it easier for me to remember the definitions of trigonometric functions of any angle?

Yes. If θ is acute, we have the right triangle shown in Figure 4.41(a). In this situation, the definitions in the box are the right triangle definitions of the trigonometric functions. This should make it easier for you to remember the six definitions.

FIGURE 4.42

Definitions of Trigonometric Functions of Any Angle

Let θ be any angle in standard position and let $P=(x, y)$ be a point on the terminal side of θ. If $r=\sqrt{x^{2}+y^{2}}$ is the distance from $(0,0)$ to (x, y), as shown in Figure 4.41 on the previous page, the six trigonometric functions of $\boldsymbol{\theta}$ are defined by the following ratios:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y}, y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x}, x \neq 0 \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0 .
\end{array}
$$

The ratios in the second column are the reciprocals of the corresponding ratios in the first column.

Because the point $P=(x, y)$ is any point on the terminal side of θ other than the origin, $(0,0), r=\sqrt{x^{2}+y^{2}}$ cannot be zero. Examine the six trigonometric functions defined above. Note that the denominator of the sine and cosine functions is r. Because $r \neq 0$, the sine and cosine functions are defined for any angle θ. This is not true for the other four trigonometric functions. Note that the denominator of the tangent and secant functions is $x: \tan \theta=\frac{y}{x}$ and $\sec \theta=\frac{r}{x}$. These functions are not defined if $x=0$. If the point $P=(x, y)$ is on the y-axis, then $x=0$. Thus, the tangent and secant functions are undefined for all quadrantal angles with terminal sides on the positive or negative y-axis. Likewise, if $P=(x, y)$ is on the x-axis, then $y=0$, and the cotangent and cosecant functions are undefined: $\cot \theta=\frac{x}{y}$ and $\csc \theta=\frac{r}{y}$. The cotangent and cosecant functions are undefined for all quadrantal angles with terminal sides on the positive or negative x-axis.

EXAMPLE 1 Evaluating Trigonometric Functions

Let $P=(-3,-5)$ be a point on the terminal side of θ. Find each of the six trigonometric functions of θ.

SOLUTION

The situation is shown in Figure 4.42. We need values for x, y, and r to evaluate all six trigonometric functions. We are given the values of x and y. Because $P=(-3,-5)$ is a point on the terminal side of $\theta, x=-3$ and $y=-5$. Furthermore,

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-3)^{2}+(-5)^{2}}=\sqrt{9+25}=\sqrt{34}
$$

Now that we know x, y, and r, we can find the six trigonometric functions of θ. Where appropriate, we will rationalize denominators. $\sin \theta=\frac{y}{r}=\frac{-5}{\sqrt{34}}=-\frac{5}{\sqrt{34}} \cdot \frac{\sqrt{34}}{\sqrt{34}}=-\frac{5 \sqrt{34}}{34} \quad \csc \theta=\frac{r}{y}=\frac{\sqrt{34}}{-5}=-\frac{\sqrt{34}}{5}$ $\cos \theta=\frac{x}{r}=\frac{-3}{\sqrt{34}}=-\frac{3}{\sqrt{34}} \cdot \frac{\sqrt{34}}{\sqrt{34}}=-\frac{3 \sqrt{34}}{34}$
$\sec \theta=\frac{r}{x}=\frac{\sqrt{34}}{-3}=-\frac{\sqrt{34}}{3}$
$\tan \theta=\frac{y}{x}=\frac{-5}{-3}=\frac{5}{3}$
$\cot \theta=\frac{x}{y}=\frac{-3}{-5}=\frac{3}{5}$
Check Point 1 Let $P=(1,-3)$ be a point on the terminal side of θ. Find each of the six trigonometric functions of θ.

FIGURE 4.43

FIGURE 4.44

FIGURE 4.45

FIGURE 4.46

How do we find the values of the trigonometric functions for a quadrantal angle? First, draw the angle in standard position. Second, choose a point P on the angle's terminal side. The trigonometric function values of θ depend only on the size of θ and not on the distance of point P from the origin. Thus, we will choose a point that is 1 unit from the origin. Finally, apply the definitions of the appropriate trigonometric functions.

EXAMPLE 2 Trigonometric Functions of Quadrantal Angles

Evaluate, if possible, the sine function and the tangent function at the following four quadrantal angles:
a. $\theta=0^{\circ}=0$
b. $\theta=90^{\circ}=\frac{\pi}{2}$
c. $\theta=180^{\circ}=\pi$
d. $\theta=270^{\circ}=\frac{3 \pi}{2}$.

SOLUTION

a. If $\theta=0^{\circ}=0$ radians, then the terminal side of the angle is on the positive x-axis. Let us select the point $P=(1,0)$ with $x=1$ and $y=0$. This point is 1 unit from the origin, so $r=1$. Figure 4.43 shows values of x, y, and r corresponding to $\theta=0^{\circ}$ or 0 radians. Now that we know x, y, and r, we can apply the definitions of the sine and tangent functions.

$$
\begin{aligned}
& \sin 0^{\circ}=\sin 0=\frac{y}{r}=\frac{0}{1}=0 \\
& \tan 0^{\circ}=\tan 0=\frac{y}{x}=\frac{0}{1}=0
\end{aligned}
$$

b. If $\theta=90^{\circ}=\frac{\pi}{2}$ radians, then the terminal side of the angle is on the positive y-axis. Let us select the point $P=(0,1)$ with $x=0$ and $y=1$. This point is 1 unit from the origin, so $r=1$. Figure 4.44 shows values of x, y, and r corresponding to $\theta=90^{\circ}$ or $\frac{\pi}{2}$. Now that we know x, y, and r, we can apply the definitions of the sine and tangent functions.

$$
\begin{aligned}
& \sin 90^{\circ}=\sin \frac{\pi}{2}=\frac{y}{r}=\frac{1}{1}=1 \\
& \tan 90^{\circ}=\tan \frac{\pi}{2}=\frac{y}{x}=\frac{11}{0}
\end{aligned}
$$

Because division by 0 is undefined, $\tan 90^{\circ}$ is undefined.
c. If $\theta=180^{\circ}=\pi$ radians, then the terminal side of the angle is on the negative x-axis. Let us select the point $P=(-1,0)$ with $x=-1$ and $y=0$. This point is 1 unit from the origin, so $r=1$. Figure 4.45 shows values of x, y, and r corresponding to $\theta=180^{\circ}$ or π. Now that we know x, y, and r, we can apply the definitions of the sine and tangent functions.

$$
\begin{aligned}
& \sin 180^{\circ}=\sin \pi=\frac{y}{r}=\frac{0}{1}=0 \\
& \tan 180^{\circ}=\tan \pi=\frac{y}{x}=\frac{0}{-1}=0
\end{aligned}
$$

d. If $\theta=270^{\circ}=\frac{3 \pi}{2}$ radians, then the terminal side of the angle is on the negative y-axis. Let us select the point $P=(0,-1)$ with $x=0$ and $y=-1$. This point is 1 unit from the origin, so $r=1$. Figure 4.46 shows values of x, y, and r corresponding to $\theta=270^{\circ}$ or $\frac{3 \pi}{2}$. Now that we know x, y, and r, we can apply the definitions of the sine and tangent functions.

$$
\begin{aligned}
& \sin 270^{\circ}=\sin \frac{3 \pi}{2}=\frac{y}{r}=\frac{-1}{1}=-1 \\
& \tan 270^{\circ}=\tan \frac{3 \pi}{2}=\frac{y}{x}=\frac{71}{0}
\end{aligned}
$$

DISCOVERY
Try finding $\tan 90^{\circ}$ and $\tan 270^{\circ}$ with your calculator. Describe what occurs.

Because division by 0 is undefined, $\tan 270^{\circ}$ is undefined.
(2) Use the signs of the trigonometric functions.

FIGURE 4.47 The signs of the trigonometric functions
$\$$ Check Point 2 Evaluate, if possible, the cosine function and the cosecant function at the following four quadrantal angles:
a. $\theta=0^{\circ}=0$
b. $\theta=90^{\circ}=\frac{\pi}{2}$
c. $\theta=180^{\circ}=\pi$
d. $\theta=270^{\circ}=\frac{3 \pi}{2}$.

The Signs of the Trigonometric Functions

In Example 2, we evaluated trigonometric functions of quadrantal angles. However, we will now return to the trigonometric functions of nonquadrantal angles. If $\boldsymbol{\theta}$ is not a quadrantal angle, the sign of a trigonometric function depends on the quadrant in which θ lies. In all four quadrants, r is positive. However, x and y can be positive or negative. For example, if θ lies in quadrant II, x is negative and y is positive. Thus, the only positive ratios in this quadrant are $\frac{y}{r}$ and its reciprocal, $\frac{r}{y}$. These ratios are the function values for the sine and cosecant, respectively. In short, if θ lies in quadrant II, $\sin \theta$ and $\csc \theta$ are positive. The other four trigonometric functions are negative.

Figure 4.47 summarizes the signs of the trigonometric functions. If θ lies in quadrant I, all six functions are positive. If θ lies in quadrant II, only $\sin \theta$ and $\csc \theta$ are positive. If θ lies in quadrant III, only $\tan \theta$ and $\cot \theta$ are positive. Finally, if θ lies in quadrant IV, only $\cos \theta$ and $\sec \theta$ are positive. Observe that the positive functions in each quadrant occur in reciprocal pairs.

GREAT QUESTION!

Is there a way to remember the signs of the trigonometric functions?
Here's a phrase that may be helpful:

EXAMPLE 3 Finding the Quadrant in Which an Angle Lies

If $\tan \theta<0$ and $\cos \theta>0$, name the quadrant in which angle θ lies.

SOLUTION

When $\tan \theta<0, \theta$ lies in quadrant II or IV. When $\cos \theta>0, \theta$ lies in quadrant I or IV. When both conditions are met $(\tan \theta<0$ and $\cos \theta>0), \theta$ must lie in quadrant IV.
\int Check Point 3 If $\sin \theta<0$ and $\cos \theta<0$, name the quadrant in which angle θ lies.

EXAMPLE 4 Evaluating Trigonometric Functions

Given $\tan \theta=-\frac{2}{3}$ and $\cos \theta>0$, find $\cos \theta$ and $\csc \theta$.

SOLUTION

Because the tangent is negative and the cosine is positive, θ lies in quadrant IV. This will help us to determine whether the negative sign in $\tan \theta=-\frac{2}{3}$ should be associated with the numerator or the denominator. Keep in mind that in quadrant IV, x is positive and y is negative. Thus,

$$
\begin{aligned}
& \text { In quadrant IV, } y \text { is negative. } \\
& \tan \theta=-\frac{2}{3}=\frac{y}{x}=\frac{-2}{3}
\end{aligned}
$$

FIGURE $4.48 \tan \theta=-\frac{2}{3}$ and $\cos \theta>0$

3 Find reference angles.

FIGURE 4.49 Reference angles, θ^{\prime}, for positive angles, θ, in quadrants II, III, and IV
(See Figure 4.48.) Thus, $x=3$ and $y=-2$. Furthermore,

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+(-2)^{2}}=\sqrt{9+4}=\sqrt{13} .
$$

Now that we know x, y, and r, we can find $\cos \theta$ and $\csc \theta$.
$\cos \theta=\frac{x}{r}=\frac{3}{\sqrt{13}}=\frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{3 \sqrt{13}}{13} \quad \csc \theta=\frac{r}{y}=\frac{\sqrt{13}}{-2}=-\frac{\sqrt{13}}{2} \ldots \oplus$
\int Check Point 4 Given $\tan \theta=-\frac{1}{3}$ and $\cos \theta<0$, find $\sin \theta$ and $\sec \theta$.

In Example 4, we used the quadrant in which θ lies to determine whether a negative sign should be associated with the numerator or the denominator. Here's a situation, similar to Example 4, where negative signs should be associated with both the numerator and the denominator:

$$
\tan \theta=\frac{3}{5} \quad \text { and } \quad \cos \theta<0
$$

Because the tangent is positive and the cosine is negative, θ lies in quadrant III. In quadrant III, x is negative and y is negative. Thus,

$$
\tan \theta=\frac{3}{5}=\frac{y}{x}=\frac{-3}{-5} \cdot \quad \begin{gathered}
\text { We see that } x=-5 \\
\text { and } y=-3 .
\end{gathered}
$$

Reference Angles

We will often evaluate trigonometric functions of positive angles greater than 90° and all negative angles by making use of a positive acute angle. This positive acute angle is called a reference angle.

Definition of a Reference Angle

Let θ be a nonacute angle in standard position that lies in a quadrant. Its reference angle is the positive acute angle θ^{\prime} formed by the terminal side of θ and the x-axis.

Figure 4.49 shows the reference angle for θ lying in quadrants II, III, and IV. Notice that the formula used to find θ^{\prime}, the reference angle, varies according to the quadrant in which θ lies. You may find it easier to find the reference angle for a given angle by making a figure that shows the angle in standard position. The acute angle formed by the terminal side of this angle and the x-axis is the reference angle.

DISCOVERY

Solve part (c) by first finding a positive coterminal angle for -135° less than 360°. Use the positive coterminal angle to find the reference angle.

EXAMPLE 5 Finding Reference Angles

Find the reference angle, θ^{\prime}, for each of the following angles:
a. $\theta=345^{\circ}$
b. $\theta=\frac{5 \pi}{6}$
c. $\theta=-135^{\circ}$
d. $\theta=2.5$.

SOLUTION

a. A 345° angle in standard position is shown in Figure 4.50. Because 345° lies in quadrant IV, the reference angle is

$$
\theta^{\prime}=360^{\circ}-345^{\circ}=15^{\circ}
$$

b. Because $\frac{5 \pi}{6}$ lies between $\frac{\pi}{2}=\frac{3 \pi}{6}$ and $\pi=\frac{6 \pi}{6}, \theta=\frac{5 \pi}{6}$ lies in quadrant II. The angle is shown in Figure 4.51. The reference angle is

$$
\theta^{\prime}=\pi-\frac{5 \pi}{6}=\frac{6 \pi}{6}-\frac{5 \pi}{6}=\frac{\pi}{6}
$$

c. A -135° angle in standard position is shown in Figure 4.52. The figure indicates that the positive acute angle formed by the terminal side of θ and the x-axis is 45°. The reference angle is

$$
\theta^{\prime}=45^{\circ}
$$

$$
\theta^{\prime}=\pi-2.5 \approx 0.64
$$

FIGURE 4.53

FIGURE 4.50

FIGURE 4.51

FIGURE 4.52

d. The angle $\theta=2.5$ lies between $\frac{\pi}{2} \approx 1.57$ and $\pi \approx 3.14$. This means that $\theta=2.5$ is in quadrant II, shown in Figure 4.53. The reference angle is

3 Check Point 5 Find the reference angle, θ^{\prime}, for each of the following angles:
a. $\theta=210^{\circ}$
b. $\theta=\frac{7 \pi}{4}$
c. $\theta=-240^{\circ}$
d. $\theta=3.6$.

Finding reference angles for angles that are greater than $360^{\circ}(2 \pi)$ or less than $-360^{\circ}(-2 \pi)$ involves using coterminal angles. We have seen that coterminal angles have the same initial and terminal sides. Recall that coterminal angles can be obtained by increasing or decreasing an angle's measure by an integer multiple of 360° or 2π.

Finding Reference Angles for Angles Greater Than $360^{\circ}(2 \pi)$ or Less Than $-360^{\circ}(-2 \pi)$

1. Find a positive angle α less than 360° or 2π that is coterminal with the given angle.
2. Draw α in standard position.
3. Use the drawing to find the reference angle for the given angle. The positive acute angle formed by the terminal side of α and the x-axis is the reference angle.

DISCOVERY

Solve part (c) using the coterminal angle formed by adding 2π, rather than 4π, to the given angle.

EXAMPLE 6 Finding Reference Angles

Find the reference angle for each of the following angles:
a. $\theta=580^{\circ}$
b. $\theta=\frac{8 \pi}{3}$
c. $\theta=-\frac{13 \pi}{6}$.

SOLUTION

a. For a 580° angle, subtract 360° to find a positive coterminal angle less than 360°.

$$
580^{\circ}-360^{\circ}=220^{\circ}
$$

Figure 4.54 shows $\alpha=220^{\circ}$ in standard position. Because 220° lies in quadrant III, the reference angle is

$$
\alpha^{\prime}=220^{\circ}-180^{\circ}=40^{\circ} .
$$

b. For an $\frac{8 \pi}{3}$, or $2 \frac{2}{3} \pi$, angle, subtract 2π to find a

FIGURE 4.54 positive coterminal angle less than 2π.

$$
\frac{8 \pi}{3}-2 \pi=\frac{8 \pi}{3}-\frac{6 \pi}{3}=\frac{2 \pi}{3}
$$

Figure 4.55 shows $\alpha=\frac{2 \pi}{3}$ in standard position. Because $\frac{2 \pi}{3}$ lies in quadrant II, the
reference angle is

$$
\alpha^{\prime}=\pi-\frac{2 \pi}{3}=\frac{3 \pi}{3}-\frac{2 \pi}{3}=\frac{\pi}{3} .
$$

FIGURE 4.55
c. For a $-\frac{13 \pi}{6}$, or $-2 \frac{1}{6} \pi$, angle, add 4π to find a positive coterminal angle less than 2π.

$$
-\frac{13 \pi}{6}+4 \pi=-\frac{13 \pi}{6}+\frac{24 \pi}{6}=\frac{11 \pi}{6}
$$

Figure 4.56 shows $\alpha=\frac{11 \pi}{6}$ in standard figure 4.56 position. Because $\frac{11 \pi}{6}$ lies in quadrant IV, the reference angle is

$$
\alpha^{\prime}=2 \pi-\frac{11 \pi}{6}=\frac{12 \pi}{6}-\frac{11 \pi}{6}=\frac{\pi}{6} .
$$

$\$$ Check Point 6 Find the reference angle for each of the following angles:
a. $\theta=665^{\circ}$
b. $\theta=\frac{15 \pi}{4}$
c. $\theta=-\frac{11 \pi}{3}$.

Evaluating Trigonometric Functions Using Reference Angles

The way that reference angles are defined makes them useful in evaluating trigonometric functions.

Using Reference Angles to Evaluate Trigonometric Functions

The values of the trigonometric functions of a given angle, θ, are the same as the values of the trigonometric functions of the reference angle, θ^{\prime}, except possibly for the sign. A function value of the acute reference angle, θ^{\prime}, is always positive. However, the same function value for θ may be positive or negative.

DISCOVERY

Draw the two right triangles involving $30^{\circ}, 45^{\circ}$, and 60°. Indicate the length of each side. Use these lengths to verify the function values for the reference angles in the solution to Example 7.

FIGURE 4.57 Reference angle for 135°

For example, we can use a reference angle, θ^{\prime}, to obtain an exact value for $\tan 120^{\circ}$. The reference angle for $\theta=120^{\circ}$ is $\theta^{\prime}=180^{\circ}-120^{\circ}=60^{\circ}$. We know the exact value of the tangent function of the reference angle: $\tan 60^{\circ}=\sqrt{3}$. We also know that the value of a trigonometric function of a given angle, θ, is the same as that of its reference angle, θ^{\prime}, except possibly for the sign. Thus, we can conclude that $\tan 120^{\circ}$ equals $-\sqrt{3}$ or $\sqrt{3}$.

What sign should we attach to $\sqrt{3}$? A 120° angle lies in quadrant II, where only the sine and cosecant are positive. Thus, the tangent function is negative for a 120° angle. Therefore,
Prefix by a negative sign to
Prefix by a negative sign to
show tangent is negative in
show tangent is negative in
quadrant II.
quadrant II.

$$
\tan 120^{\circ}=-\tan 60^{\circ}=-\sqrt{3}
$$

The reference angle
for 120° is 60°.

In the previous section, we used two right triangles to find exact trigonometric values of $30^{\circ}, 45^{\circ}$, and 60°. Using a procedure similar to finding tan 120°, we can now find the exact function values of all angles for which $30^{\circ}, 45^{\circ}$, or 60° are reference angles.

A Procedure for Using Reference Angles to Evaluate Trigonometric Functions

The value of a trigonometric function of any angle θ is found as follows:

1. Find the associated reference angle, θ^{\prime}, and the function value for θ^{\prime}.
2. Use the quadrant in which θ lies to prefix the appropriate sign to the function value in step 1 .

EXAMPLE 7 Using Reference Angles to Evaluate Trigonometric Functions

Use reference angles to find the exact value of each of the following trigonometric functions:
a. $\sin 135^{\circ}$
b. $\cos \frac{4 \pi}{3}$
c. $\cot \left(-\frac{\pi}{3}\right)$.

SOLUTION

a. We use our two-step procedure to find $\sin 135^{\circ}$.

Step 1 Find the reference angle, $\boldsymbol{\theta}^{\prime}$, and $\sin \boldsymbol{\theta}^{\prime}$. Figure 4.57 shows 135° lies in quadrant II. The reference angle is

$$
\theta^{\prime}=180^{\circ}-135^{\circ}=45^{\circ}
$$

The function value for the reference angle is $\sin 45^{\circ}=\frac{\sqrt{2}}{2}$.
Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value in step 1. The angle $\theta=135^{\circ}$ lies in quadrant II. Because the sine is positive in quadrant II, we put a $+\operatorname{sign}$ before the function value of the reference angle. Thus,

$$
\begin{aligned}
& \text { The sine is positive } \\
& \text { in quadrant II. } \\
& \sin 135^{\circ}=+\sin 45^{\circ}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

FIGURE 4.58 Reference angle for $\frac{4 \pi}{3}$

FIGURE 4.59 Reference angle for $-\frac{\pi}{3}$
b. We use our two-step procedure to find $\cos \frac{4 \pi}{3}$.

Step 1 Find the reference angle, $\boldsymbol{\theta}^{\prime}$, and $\cos \boldsymbol{\theta}^{\prime}$. Figure $\mathbf{4 . 5 8}$ shows that $\theta=\frac{4 \pi}{3}$ lies in quadrant III. The reference angle is

$$
\theta^{\prime}=\frac{4 \pi}{3}-\pi=\frac{4 \pi}{3}-\frac{3 \pi}{3}=\frac{\pi}{3} .
$$

The function value for the reference angle is

$$
\cos \frac{\pi}{3}=\frac{1}{2} .
$$

Step 2 Use the quadrant in which $\boldsymbol{\theta}$ lies to prefix the appropriate sign to the function value in step 1. The angle $\theta=\frac{4 \pi}{3}$ lies in quadrant III. Because only the tangent and cotangent are positive in quadrant III, the cosine is negative in this quadrant. We put a - sign before the function value of the reference angle. Thus,

$$
\begin{aligned}
& \text { The cosine is negative } \\
& \text { in quadrant III. } \\
& \cos \frac{4 \pi}{3}=-\cos \frac{\pi}{3}=-\frac{1}{2} . \\
& \text { The reference angle } \\
& \text { for } \frac{4 \pi}{3} \text { is } \frac{\pi}{3} .
\end{aligned}
$$

c. We use our two-step procedure to find $\cot \left(-\frac{\pi}{3}\right)$.

Step 1 Find the reference angle, $\boldsymbol{\theta}^{\prime}$, and $\cot \boldsymbol{\theta}^{\prime}$. Figure 4.59 shows that $\theta=-\frac{\pi}{3}$ lies in quadrant IV. The reference angle is $\theta^{\prime}=\frac{\pi}{3}$. The function value for the reference angle is $\cot \frac{\pi}{3}=\frac{\sqrt{3}}{3}$.
Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value in step 1. The angle $\theta=-\frac{\pi}{3}$ lies in quadrant IV. Because only the cosine and secant are positive in quadrant IV, the cotangent is negative in this quadrant. We put a - sign before the function value of the reference angle. Thus,

$$
\begin{aligned}
& \text { The cotangent is } \\
& \text { negative in quadrant IV. } \\
& \cot \left(-\frac{\pi}{3}\right)=-\cot \frac{\pi}{3}=-\frac{\sqrt{3}}{3} . \\
& \text { The reference angle } \\
& \text { for }-\frac{\pi}{3} \text { is } \frac{\pi}{3} .
\end{aligned}
$$

Check Point 7 Use reference angles to find the exact value of the following trigonometric functions:
a. $\sin 300^{\circ}$
b. $\tan \frac{5 \pi}{4}$
c. $\sec \left(-\frac{\pi}{6}\right)$.

In our final example, we use positive coterminal angles less than 2π to find the reference angles.

FIGURE 4.60 Reference angle for $\frac{2 \pi}{3}$

FIGURE 4.61 Reference angle for $\frac{7 \pi}{4}$

EXAMPLE 8 Using Reference Angles to Evaluate Trigonometric Functions

Use reference angles to find the exact value of each of the following trigonometric functions:
a. $\tan \frac{14 \pi}{3}$
b. $\sec \left(-\frac{17 \pi}{4}\right)$.

SOLUTION

a. We use our two-step procedure to find $\tan \frac{14 \pi}{3}$.

Step 1 Find the reference angle, $\boldsymbol{\theta}^{\prime}$, and $\tan \boldsymbol{\theta}^{\prime}$. Because the given angle, $\frac{14 \pi}{3}$ or $4 \frac{2}{3} \pi$, exceeds 2π, subtract 4π to find a positive coterminal angle less than 2π.

$$
\theta=\frac{14 \pi}{3}-4 \pi=\frac{14 \pi}{3}-\frac{12 \pi}{3}=\frac{2 \pi}{3}
$$

Figure 4.60 shows $\theta=\frac{2 \pi}{3}$ in standard position. The angle lies in quadrant II.
The reference angle is

$$
\theta^{\prime}=\pi-\frac{2 \pi}{3}=\frac{3 \pi}{3}-\frac{2 \pi}{3}=\frac{\pi}{3} .
$$

The function value for the reference angle is $\tan \frac{\pi}{3}=\sqrt{3}$.
Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value in step 1. The coterminal angle $\theta=\frac{2 \pi}{3}$ lies in quadrant II. Because the tangent is negative in quadrant II, we put a - sign before the function value of the reference angle. Thus,

The tangent is negative in quadrant II.

$$
\tan \frac{14 \pi}{3}=\tan \frac{2 \pi}{3}=-\tan \frac{\pi}{3}=-\sqrt{3}
$$

The reference angle

$$
\text { for } \frac{2 \pi}{3} \text { is } \frac{\pi}{3}
$$

b. We use our two-step procedure to find $\sec \left(-\frac{17 \pi}{4}\right)$.

Step 1 Find the reference angle, $\boldsymbol{\theta}^{\prime}$, and $\sec \boldsymbol{\theta}^{\prime}$. Because the given angle, $-\frac{17 \pi}{4}$ or $-4 \frac{1}{4} \pi$, is less than -2π, add 6π (three multiples of 2π) to find a positive coterminal angle less than 2π.

$$
\theta=-\frac{17 \pi}{4}+6 \pi=-\frac{17 \pi}{4}+\frac{24 \pi}{4}=\frac{7 \pi}{4}
$$

Figure 4.61 shows $\theta=\frac{7 \pi}{4}$ in standard position. The angle lies in quadrant IV. The reference angle is

$$
\theta^{\prime}=2 \pi-\frac{7 \pi}{4}=\frac{8 \pi}{4}-\frac{7 \pi}{4}=\frac{\pi}{4}
$$

The function value for the reference angle is $\sec \frac{\pi}{4}=\sqrt{2}$.

Step 2 Use the quadrant in which $\boldsymbol{\theta}$ lies to prefix the appropriate sign to the function value in step 1. The coterminal angle $\theta=\frac{7 \pi}{4}$ lies in quadrant IV. Because the secant is positive in quadrant IV, we put a + sign before the function value of the reference angle. Thus,

$$
\sec \left(-\frac{17 \pi}{4}\right)=\sec \frac{7 \pi}{4}=+\sec \frac{\pi}{4}=\sqrt{2} .
$$

Check Point 8 Use reference angles to find the exact value of each of the following trigonometric functions:
a. $\cos \frac{17 \pi}{6}$
b. $\sin \left(-\frac{22 \pi}{3}\right)$.

GREAT QUESTION!

I feel overwhelmed by the amount of information required to evaluate trigonometric functions. Can you help me out?

You're right. Evaluating trigonometric functions like those in Example 8 and Check Point 8 involves using a number of concepts, including finding coterminal angles and reference angles, locating special angles, determining the signs of trigonometric functions in specific quadrants, and finding the trigonometric functions of special angles $\left(30^{\circ}=\frac{\pi}{6}, 45^{\circ}=\frac{\pi}{4}\right.$, and $\left.60^{\circ}=\frac{\pi}{3}\right)$. To be successful in trigonometry, it is often necessary to connect concepts. Here's an early reference sheet showing some of the concepts you should have at your fingertips (or memorized).

Special Right Triangles and Trigonometric Functions of Special Angles

$\boldsymbol{\theta}$	$\mathbf{3 0 ^ { \circ } = \frac { \boldsymbol { \pi } } { \mathbf { 6 } }}$	$\mathbf{4 5 ^ { \circ }}=\frac{\boldsymbol{\pi}}{\mathbf{4}}$	$\mathbf{6 0 ^ { \circ }}=\frac{\boldsymbol{\pi}}{\mathbf{3}}$
$\boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Trigonometric Functions of Quadrantal Angles

$\boldsymbol{\theta}$	$\mathbf{0}^{\circ}=\mathbf{0}$	$\mathbf{9 0}^{\circ}=\frac{\boldsymbol{\pi}}{\mathbf{2}}$	$\mathbf{1 8 0}^{\circ}=\boldsymbol{\pi}$	$\mathbf{2 7 0}^{\circ}=\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}$
$\boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$	0	1	0	-1
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	1	0	-1	0
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	0	undefined	0	undefined

$\sin \theta=$ \square $\sin \theta^{\prime}$
$\cos \theta=$ \qquad $\cos \theta^{\prime}$
$\tan \theta=$ \qquad $\tan \theta^{\prime}$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Let θ be any angle in standard position and let $P=(x, y)$ be any point besides the origin on the terminal side of θ. If $r=\sqrt{x^{2}+y^{2}}$ is the distance from $(0,0)$ to (x, y), the trigonometric functions of θ are defined as follows:

\[

\]

2. Using the definitions in Exercise 1, the trigonometric functions that are undefined when $x=0$ are
\qquad and \qquad The trigonometric functions that are undefined when $y=0$ are \qquad and \qquad .The trigonometric functions that do not depend on the value of r are \qquad and \qquad
3. If θ lies in quadrant II, \qquad and \qquad are positive.
4. If θ lies in quadrant III, \qquad and \qquad are positive.
5. If θ lies in quadrant IV, \qquad and \qquad are positive.
6. Let θ be a nonacute angle in standard position that lies in a quadrant. Its reference angle is the positive acute angle formed by the \qquad side of θ and the --axis.
7. Complete each statement for a positive angle θ and its reference angle θ^{\prime}.
a. If $90^{\circ}<\theta<180^{\circ}$, then $\theta^{\prime}=$ \qquad -.
b. If $180^{\circ}<\theta<270^{\circ}$, then $\theta^{\prime}=$ \qquad
c. If $270^{\circ}<\theta<360^{\circ}$, then $\theta^{\prime}=$ \qquad

EXERCISE SET 4.4

Practice Exercises

In Exercises 1-8, a point on the terminal side of angle θ is given.
Find the exact value of each of the six trigonometric functions of θ.

1. $(-4,3)$
2. $(-12,5)$
3. $(2,3)$
4. $(3,7)$
5. $(3,-3)$
6. $(5,-5)$
7. $(-2,-5)$
8. $(-1,-3)$

In Exercises 9-16, evaluate the trigonometric function at the quadrantal angle, or state that the expression is undefined.
9. $\cos \pi$
10. $\tan \pi$
11. $\sec \pi$
12. $\csc \pi$
13. $\tan \frac{3 \pi}{2}$
14. $\cos \frac{3 \pi}{2}$
15. $\cot \frac{\pi}{2}$
16. $\tan \frac{\pi}{2}$

In Exercises 17-22, let θ be an angle in standard position. Name the quadrant in which θ lies.
17. $\sin \theta>0, \quad \cos \theta>0$
18. $\sin \theta<0, \quad \cos \theta>0$
19. $\sin \theta<0, \quad \cos \theta<0$
20. $\tan \theta<0, \sin \theta<0$
21. $\tan \theta<0, \cos \theta<0$
22. $\cot \theta>0, \sec \theta<0$

In Exercises 23-34, find the exact value of each of the remaining trigonometric functions of θ.
23. $\cos \theta=-\frac{3}{5}, \quad \theta$ in quadrant III
24. $\sin \theta=-\frac{12}{13}, \quad \theta$ in quadrant III
25. $\sin \theta=\frac{5}{13}, \quad \theta$ in quadrant II
26. $\cos \theta=\frac{4}{5}, \quad \theta$ in quadrant IV
27. $\cos \theta=\frac{8}{17}, \quad 270^{\circ}<\theta<360^{\circ}$
28. $\cos \theta=\frac{1}{3}, \quad 270^{\circ}<\theta<360^{\circ}$
29. $\tan \theta=-\frac{2}{3}, \quad \sin \theta>0 \quad$ 30. $\tan \theta=-\frac{1}{3}, \quad \sin \theta>0$
31. $\tan \theta=\frac{4}{3}, \quad \cos \theta<0$
32. $\tan \theta=\frac{5}{12}, \quad \cos \theta<0$
33. $\sec \theta=-3, \quad \tan \theta>0$
34. $\csc \theta=-4, \quad \tan \theta>0$

In Exercises 35-60, find the reference angle for each angle.
35. 160°
36. 170°
37. 205°
38. 210°
39. 355°
40. 351°
41. $\frac{7 \pi}{4}$
42. $\frac{5 \pi}{4}$
43. $\frac{5 \pi}{6}$
44. $\frac{5 \pi}{7}$
45. -150°
46. -250°
47. -335°
48. -359°
49. 4.7
50. 5.5
51. 565°
52. 553°
53. $\frac{17 \pi}{6}$
54. $\frac{11 \pi}{4}$
55. $\frac{23 \pi}{4}$
56. $\frac{17 \pi}{3}$
57. $-\frac{11 \pi}{4}$
58. $-\frac{17 \pi}{6}$
59. $-\frac{25 \pi}{6}$
60. $-\frac{13 \pi}{3}$

In Exercises 61-86, use reference angles to find the exact value of each expression. Do not use a calculator.
61. $\cos 225^{\circ}$
62. $\sin 300^{\circ}$
63. $\tan 210^{\circ}$
64. $\sec 240^{\circ}$
65. $\tan 420^{\circ}$
66. $\tan 405^{\circ}$
67. $\sin \frac{2 \pi}{3}$
68. $\cos \frac{3 \pi}{4}$
69. $\csc \frac{7 \pi}{6}$
70. $\cot \frac{7 \pi}{4}$
71. $\tan \frac{9 \pi}{4}$
72. $\tan \frac{9 \pi}{2}$
73. $\sin \left(-240^{\circ}\right)$
74. $\sin \left(-225^{\circ}\right)$
75. $\tan \left(-\frac{\pi}{4}\right)$
76. $\tan \left(-\frac{\pi}{6}\right)$
77. $\sec 495^{\circ}$
78. $\sec 510^{\circ}$
79. $\cot \frac{19 \pi}{6}$
80. $\cot \frac{13 \pi}{3}$
81. $\cos \frac{23 \pi}{4}$
82. $\cos \frac{35 \pi}{6}$
83. $\tan \left(-\frac{17 \pi}{6}\right)$
84. $\tan \left(-\frac{11 \pi}{4}\right)$
85. $\sin \left(-\frac{17 \pi}{3}\right)$
86. $\sin \left(-\frac{35 \pi}{6}\right)$

Practice Plus

In Exercises 87-92, find the exact value of each expression. Write the answer as a single fraction. Do not use a calculator.
87. $\sin \frac{\pi}{3} \cos \pi-\cos \frac{\pi}{3} \sin \frac{3 \pi}{2}$
88. $\sin \frac{\pi}{4} \cos 0-\sin \frac{\pi}{6} \cos \pi$
89. $\sin \frac{11 \pi}{4} \cos \frac{5 \pi}{6}+\cos \frac{11 \pi}{4} \sin \frac{5 \pi}{6}$
90. $\sin \frac{17 \pi}{3} \cos \frac{5 \pi}{4}+\cos \frac{17 \pi}{3} \sin \frac{5 \pi}{4}$
91. $\sin \frac{3 \pi}{2} \tan \left(-\frac{15 \pi}{4}\right)-\cos \left(-\frac{5 \pi}{3}\right)$
92. $\sin \frac{3 \pi}{2} \tan \left(-\frac{8 \pi}{3}\right)+\cos \left(-\frac{5 \pi}{6}\right)$

In Exercises 93-98, let

$$
f(x)=\sin x, g(x)=\cos x, \text { and } h(x)=2 x
$$

Find the exact value of each expression. Do not use a calculator.
93. $f\left(\frac{4 \pi}{3}+\frac{\pi}{6}\right)+f\left(\frac{4 \pi}{3}\right)+f\left(\frac{\pi}{6}\right)$
94. $g\left(\frac{5 \pi}{6}+\frac{\pi}{6}\right)+g\left(\frac{5 \pi}{6}\right)+g\left(\frac{\pi}{6}\right)$
95. $(h \circ g)\left(\frac{17 \pi}{3}\right) \quad 96 .(h \circ f)\left(\frac{11 \pi}{4}\right)$
97. the average rate of change of f from $x_{1}=\frac{5 \pi}{4}$ to $x_{2}=\frac{3 \pi}{2}$
98. the average rate of change of g from $x_{1}=\frac{3 \pi}{4}$ to $x_{2}=\pi$

In Exercises 99-104, find two values of $\theta, 0 \leq \theta<2 \pi$, that satisfy each equation.
99. $\sin \theta=\frac{\sqrt{2}}{2}$
100. $\cos \theta=\frac{1}{2}$
101. $\sin \theta=-\frac{\sqrt{2}}{2}$
102. $\cos \theta=-\frac{1}{2}$
103. $\tan \theta=-\sqrt{3}$
104. $\tan \theta=-\frac{\sqrt{3}}{3}$

Writing in Mathematics

105. If you are given a point on the terminal side of angle θ, explain how to find $\sin \theta$.
106. Explain why $\tan 90^{\circ}$ is undefined.
107. If $\cos \theta>0$ and $\tan \theta<0$, explain how to find the quadrant in which θ lies.
108. What is a reference angle? Give an example with your description.
109. Explain how reference angles are used to evaluate trigonometric functions. Give an example with your description.

Critical Thinking Exercises

Make Sense? In Exercises 110-113, determine whether each statement makes sense or does not make sense, and explain your reasoning.
110. I'm working with a quadrantal angle θ for which $\sin \theta$ is undefined.
111. This angle θ is in a quadrant in which $\sin \theta<0$ and $\csc \theta>0$.
112. I am given that $\tan \theta=\frac{3}{5}$, so I can conclude that $y=3$ and $x=5$.
113. When I found the exact value of $\cos \frac{14 \pi}{3}$, I used a number of concepts, including coterminal angles, reference angles, finding the cosine of a special angle, and knowing the cosine's sign in various quadrants.

Preview Exercises

Exercises 114-116 will help you prepare for the material covered in the next section. In each exercise, complete the table of coordinates. Do not use a calculator.
114. $y=\frac{1}{2} \cos (4 x+\pi)$

\boldsymbol{x}	$-\frac{\pi}{4}$	$-\frac{\pi}{8}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$
\boldsymbol{y}					

115. $y=4 \sin \left(2 x-\frac{2 \pi}{3}\right)$

\boldsymbol{x}	$\frac{\pi}{3}$	$\frac{7 \pi}{12}$	$\frac{5 \pi}{6}$	$\frac{13 \pi}{12}$	$\frac{4 \pi}{3}$
\boldsymbol{y}					

116. $y=3 \sin \frac{\pi}{2} x$

\boldsymbol{x}	0	$\frac{1}{3}$	1	$\frac{5}{3}$	2	$\frac{7}{3}$	3	$\frac{11}{3}$	4
\boldsymbol{y}									

After completing this table of coordinates, plot the nine ordered pairs as points in a rectangular coordinate system. Then connect the points with a smooth curve.

CHAPTER 4

WHAT YOU KNOW: We learned to use radians to measure angles: One radian (approximately 57°) is the measure of the central angle that intercepts an arc equal in length to the radius of the circle. Using $180^{\circ}=\pi$ radians,
we converted degrees to radians (multiply by $\frac{\pi}{180^{\circ}}$) and radians to degrees $\left(\right.$ multiply by $\left.\frac{180^{\circ}}{\pi}\right)$. We defined the
six trigonometric functions using coordinates of points along the unit circle, right triangles, and angles in standard position. Evaluating trigonometric functions using reference angles involved connecting a number of concepts, including finding coterminal and reference angles, locating special angles, determining the signs of the trigonometric functions in specific quadrants, and finding the function values at special angles. Use the important Great Question! box on page 547 as a reference sheet to help connect these concepts.
In Exercises 1-2, convert each angle in degrees to radians. Express your answer as a multiple of π.

1. 10°
2. -105°

In Exercises 3-4, convert each angle in radians to degrees.
3. $\frac{5 \pi}{12}$
4. $-\frac{13 \pi}{20}$

In Exercises 5-7,
a. Find a positive angle less than 360° or 2π that is coterminal with the given angle.
b. Draw the given angle in standard position.
c. Find the reference angle for the given angle.
5. $\frac{11 \pi}{3}$
6. $-\frac{19 \pi}{4}$
7. 510°
8. Use the point shown on the unit circle to find each of the six trigonometric functions at t.

9. Use the triangle to find each of the six trigonometric functions of θ.

10. Use the point on the terminal side of θ to find each of the six trigonometric functions of θ.

In Exercises 11-12, find the exact value of the remaining trigonometric functions of θ.
11. $\tan \theta=-\frac{3}{4}, \cos \theta<0 \quad$ 12. $\cos \theta=\frac{3}{7}, \sin \theta<0$

In Exercises 13-14, find the measure of the side of the right triangle whose length is designated by a lowercase letter. Round the answer to the nearest whole number.
13.

14.

15. If $\cos \theta=\frac{1}{6}$ and θ is acute, find $\cot \left(\frac{\pi}{2}-\theta\right)$.

In Exercises 16-26, find the exact value of each expression. Do not use a calculator.
16. $\tan 30^{\circ}$
17. $\cot 120^{\circ}$
18. $\cos 240^{\circ}$
19. $\sec \frac{11 \pi}{6}$
20. $\sin ^{2} \frac{\pi}{7}+\cos ^{2} \frac{\pi}{7}$
21. $\sin \left(-\frac{2 \pi}{3}\right)$
22. $\csc \left(\frac{22 \pi}{3}\right)$
23. $\cos 495^{\circ}$
24. $\tan \left(-\frac{17 \pi}{6}\right)$
25. $\sin ^{2} \frac{\pi}{2}-\cos \pi$
26. $\cos \left(\frac{5 \pi}{6}+2 \pi n\right)+\tan \left(\frac{5 \pi}{6}+n \pi\right), n$ is an integer.
27. A circle has a radius of 40 centimeters. Find the length of the arc intercepted by a central angle of 36°. Express the answer in terms of π. Then round to two decimal places.
28. A merry-go-round makes 8 revolutions per minute. Find the linear speed, in feet per minute, of a horse 10 feet from the center. Express the answer in terms of π. Then round to one decimal place.
29. A plane takes off at an angle of 6°. After traveling for one mile, or 5280 feet, along this flight path, find the plane's height, to the nearest tenth of a foot, above the ground.
30. A tree that is 50 feet tall casts a shadow that is 60 feet long. Find the angle of elevation, to the nearest degree, of the sun.

SECTION 4.5

Graphs of Sine and Cosine Functions

Objectives

(1) Understand the graph of $y=\sin x$.
(2) Graph variations of $y=\sin x$.
(3) Understand the graph of $y=\cos x$.
(4) Graph variations of $y=\cos x$.
(5) Use vertical shifts of sine and cosine curves.
6 Model periodic behavior.
(1) Understand the graph of $y=\sin x$.

Take a deep breath and relax. Many relaxation exercises involve slowing down our breathing. Some people suggest that the way we breathe affects every part of our lives. Did you know that graphs of trigonometric functions can be used to analyze the breathing cycle, which is our closest link to both life and death?

In this section, we use graphs of sine and cosine functions to visualize their properties. We use the traditional symbol x, rather than θ or t, to represent the independent variable. We use the symbol y for the dependent variable, or the function's value at x. Thus, we will be graphing $y=\sin x$ and $y=\cos x$ in rectangular coordinates. In all graphs of trigonometric functions, the independent variable, x, is measured in radians.

The Graph of $y=\sin x$

The trigonometric functions can be graphed in a rectangular coordinate system by plotting points whose coordinates satisfy the function. Thus, we graph $y=\sin x$ by listing some points on the graph. Because the period of the sine function is 2π, we will graph the function on the interval $[0,2 \pi]$. The rest of the graph is made up of repetitions of this portion.

Table 4.3 lists some values of (x, y) on the graph of $y=\sin x, 0 \leq x \leq 2 \pi$.

Table 4.3 Values of (x, y) on the graph of $y=\sin x$

In plotting the points obtained in Table 4.3, we will use the approximation $\frac{\sqrt{3}}{2} \approx 0.87$. Rather than approximating π, we will mark off units on the x-axis in terms of π. If we connect these points with a smooth curve, we obtain the graph shown in Figure 4.62. The figure shows one period of the graph of $y=\sin x$.

FIGURE 4.62 One period of the graph of $y=\sin x$

FIGURE 4.63 The graph of $y=\sin x$
2) Graph variations of $y=\sin x$.

We can obtain a more complete graph of $y=\sin x$ by continuing the portion shown in Figure 4.62 to the left and to the right. The graph of the sine function, called a sine curve, is shown in Figure 4.63. Any part of the graph that corresponds to one period (2π) is one cycle of the graph of $y=\sin x$.

The graph of $y=\sin x$ allows us to visualize some of the properties of the sine function.

- The domain is $(-\infty, \infty)$, the set of all real numbers. The graph extends indefinitely to the left and to the right with no gaps or holes.
- The range is $[-1,1]$, the set of all real numbers between -1 and 1 , inclusive. The graph never rises above 1 or falls below -1 .
- The period is 2π. The graph's pattern repeats in every interval of length 2π.
- The function is an odd function: $\sin (-x)=-\sin x$. This can be seen by observing that the graph is symmetric with respect to the origin.

Graphing Variations of

$y=\boldsymbol{\operatorname { s i n }} x$
To graph variations of $y=\sin x$ by hand, it is helpful to find x-intercepts, maximum points, and minimum points. One complete cycle of the sine curve includes three x-intercepts, one maximum point, and one minimum point. The graph of $y=\sin x$ has x-intercepts at the beginning, middle, and end of its full

FIGURE 4.64 Key points in graphing the sine function period, shown in Figure 4.64. The curve reaches its maximum point $\frac{1}{4}$ of the way through the period. It reaches its minimum point $\frac{3}{4}$ of the way through the period. Thus, key points in graphing sine

FIGURE 4.65 Comparing the graphs of $y=\sin x$ and $y=2 \sin x$
functions are obtained by dividing the period into four equal parts. The x-coordinates of the five key points are as follows:

$$
\begin{aligned}
& x_{1}=\text { value of } x \text { where the cycle begins } \\
& x_{2}=x_{1}+\frac{\text { period }}{4} \\
& x_{3}=x_{2}+\frac{\text { period }}{4} \\
& x_{4}=x_{3}+\frac{\text { period }}{4} \\
& x_{5}=x_{4}+\frac{\begin{array}{c}
\text { Add } \\
\text { "quarter-periods" } \\
\text { fo find } \\
\text { sucessive } \\
\text { values of } x .
\end{array}}{4} .
\end{aligned}
$$

The y-coordinates of the five key points are obtained by evaluating the given function at each of these values of x.

The graph of $y=\sin x$ forms the basis for graphing functions of the form

$$
y=A \sin x .
$$

For example, consider $y=2 \sin x$, in which $A=2$. We can obtain the graph of $y=2 \sin x$ from that of $y=\sin x$ if we multiply each y-coordinate on the graph of $y=\sin x$ by 2. Figure 4.65 shows the graphs. The basic sine curve is stretched and ranges between -2 and 2, rather than between -1 and 1 . However, both $y=\sin x$ and $y=2 \sin x$ have a period of 2π.

In general, the graph of $y=A \sin x$ ranges between $-|A|$ and $|A|$. Thus, the range of the function is $-|A| \leq y \leq|A|$. If $|A|>1$, the basic sine curve is stretched, as in Figure 4.65. If $|A|<1$, the basic sine curve is shrunk. We call $|A|$ the amplitude of $y=A \sin x$. The maximum value of y on the graph of $y=A \sin x$ is $|A|$, the amplitude.

Graphing Variations of $y=\sin x$

1. Identify the amplitude and the period.
2. Find the values of x for the five key points - the three x-intercepts, the maximum point, and the minimum point. Start with the value of x where the cycle begins and add quarter-periods-that is, $\frac{\text { period }}{4}-$ to find successive values of x.
3. Find the values of y for the five key points by evaluating the function at each value of x from step 2 .
4. Connect the five key points with a smooth curve and graph one complete cycle of the given function.
5. Extend the graph in step 4 to the left or right as desired.

EXAMPLE 1 Graphing a Variation of $y=\sin x$

Determine the amplitude of $y=\frac{1}{2} \sin x$. Then graph $y=\sin x$ and $y=\frac{1}{2} \sin x$ for $0 \leq x \leq 2 \pi$.

SOLUTION

Step 1 Identify the amplitude and the period. The equation $y=\frac{1}{2} \sin x$ is of the form $y=A \sin x$ with $A=\frac{1}{2}$. Thus, the amplitude is $|A|=\frac{1}{2}$. This means that the maximum value of y is $\frac{1}{2}$ and the minimum value of y is $-\frac{1}{2}$. The period for both $y=\frac{1}{2} \sin x$ and $y=\sin x$ is 2π.
Step 2 Find the values of \boldsymbol{x} for the five key points. We need to find the three x-intercepts, the maximum point, and the minimum point on the interval $[0,2 \pi]$. To do so, we begin by dividing the period, 2π, by 4 .

$$
\frac{\text { period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

FIGURE 4.66 The graphs of $y=\sin x$ and $y=\frac{1}{2} \sin x, 0 \leq x \leq 2 \pi$

We start with the value of x where the cycle begins: $x_{1}=0$. Now we add quarterperiods, $\frac{\pi}{2}$, to generate x-values for each of the key points. The five x-values are

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=0+\frac{\pi}{2}=\frac{\pi}{2}, \quad x_{3}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \\
& x_{4}=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}, \quad x_{5}=\frac{3 \pi}{2}+\frac{\pi}{2}=2 \pi
\end{aligned}
$$

Step 3 Find the values of \boldsymbol{y} for the five key points. We evaluate the function at each value of x from step 2 .

Value of \boldsymbol{x}	$\begin{aligned} & \text { Value of } y \text { : } \\ & y=\frac{1}{2} \sin x \end{aligned}$	Coordinates of key point
0	$y=\frac{1}{2} \sin 0=\frac{1}{2} \cdot 0=0$	$(0,0)$
$\frac{\pi}{2}$	$y=\frac{1}{2} \sin \frac{\pi}{2}=\frac{1}{2} \cdot 1=\frac{1}{2}$	$\left(\frac{\pi}{2}, \frac{1}{2}\right)$
π	$y=\frac{1}{2} \sin \pi=\frac{1}{2} \cdot 0=0$	$(\pi, 0)$
$\frac{3 \pi}{2}$	$y=\frac{1}{2} \sin \frac{3 \pi}{2}=\frac{1}{2}(-1)=-\frac{1}{2}$	$\left(\frac{3 \pi}{2},-\frac{1}{2}\right)$
2π	$y=\frac{1}{2} \sin 2 \pi=\frac{1}{2} \cdot 0=0$	$(2 \pi, 0)$

There are x-intercepts at $0, \pi$, and 2π. The maximum and minimum points are indicated by the voice balloons.
Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The five key points for $y=\frac{1}{2} \sin x$ are shown in red in Figure 4.66. By connecting the points with a smooth curve, the figure shows one complete cycle of $y=\frac{1}{2} \sin x$. Also shown is the graph of $y=\sin x$. The graph of $y=\frac{1}{2} \sin x$ is the graph of $y=\sin x$ vertically shrunk by a factor of $\frac{1}{2}$.

7 Check Point 1 Determine the amplitude of $y=3 \sin x$. Then graph $y=\sin x$ and $y=3 \sin x$ for $0 \leq x \leq 2 \pi$.

EXAMPLE 2 Graphing a Variation of $y=\sin x$

Determine the amplitude of $y=-2 \sin x$. Then graph $y=\sin x$ and $y=-2 \sin x$ for $-\pi \leq x \leq 3 \pi$.

SOLUTION

Step 1 Identify the amplitude and the period. The equation $y=-2 \sin x$ is of the form $y=A \sin x$ with $A=-2$. Thus, the amplitude is $|A|=|-2|=2$. This means that the maximum value of y is 2 and the minimum value of y is -2 . Both $y=\sin x$ and $y=-2 \sin x$ have a period of 2π.
Step 2 Find the values of \boldsymbol{x} for the five key points. Begin by dividing the period, 2π, by 4 .

$$
\frac{\text { period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

FIGURE 4.67 The graphs of $y=\sin x$ and $y=-2 \sin x, 0 \leq x \leq 2 \pi$

FIGURE 4.68 The graphs of $y=\sin x$ and $y=-2 \sin x,-\pi \leq x \leq 3 \pi$

Start with the value of x where the cycle begins: $x_{1}=0$. Adding quarter-periods, $\frac{\pi}{2}$, the five x-values for the key points are

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=0+\frac{\pi}{2}=\frac{\pi}{2}, \quad x_{3}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \\
& x_{4}=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}, \quad x_{5}=\frac{3 \pi}{2}+\frac{\pi}{2}=2 \pi
\end{aligned}
$$

Although we will be graphing on $[-\pi, 3 \pi]$, we select $x_{1}=0$ rather than $x_{1}=-\pi$. Knowing the graph's shape on $[0,2 \pi]$ will enable us to continue the pattern and extend it to the left to $-\pi$ and to the right to 3π.
Step 3 Find the values of \boldsymbol{y} for the five key points. We evaluate the function at each value of x from step 2 .

Value of \boldsymbol{x}	Value of $\boldsymbol{y}:$ $\boldsymbol{y}=-\mathbf{2} \sin \boldsymbol{x}$	Coordinates of key point
0	$y=-2 \sin 0=-2 \cdot 0=0$	$(0,0)$
$\frac{\pi}{2}$	$y=-2 \sin \frac{\pi}{2}=-2 \cdot 1=-2$	$\left(\frac{\pi}{2},-2\right)$
π	$y=-2 \sin \pi=-2 \cdot 0=0$	$(\pi, 0)$
$\frac{3 \pi}{2}$	$y=-2 \sin \frac{3 \pi}{2}=-2(-1)=2$	$\left(\frac{3 \pi}{2}, 2\right)$
2π	$y=-2 \sin 2 \pi=-2 \cdot 0=0$	$(2 \pi, 0)$

There are x-intercepts at $0, \pi$, and 2π. The minimum and maximum points are indicated by the voice balloons.
Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The five key points for $y=-2 \sin x$ are shown in red in Figure 4.67. By connecting the points with a smooth curve, the dark red portion shows one complete cycle of $y=-2 \sin x$. Also shown in dark blue is one complete cycle of the graph of $y=\sin x$. The graph of $y=-2 \sin x$ is the graph of $y=\sin x$ reflected about the x-axis and vertically stretched by a factor of 2 .
Step 5 Extend the graph in step 4 to the left or right as desired. The dark red and dark blue portions of the graphs in Figure 4.67 are from 0 to 2π. In order to graph for $-\pi \leq x \leq 3 \pi$, continue the pattern of each graph to the left and to the right. These extensions are shown by the lighter colors in Figure 4.68.

$\bullet \bullet \bullet$

Check Point 2 Determine the amplitude of $y=-\frac{1}{2} \sin x$. Then graph $y=\sin x$ and $y=-\frac{1}{2} \sin x$ for $-\pi \leq x \leq 3 \pi$.

GREAT QUESTION!

What should I do to graph functions of the form $y=A \sin B x$ if B is negative? If $B<0$ in $y=A \sin B x$, use $\sin (-\theta)=-\sin \theta$ to rewrite the equation before obtaining its graph.

Now let us examine the graphs of functions of the form $y=A \sin B x$, where B is the coefficient of x and $B>0$. How do such graphs compare to those of functions of the form $y=A \sin x$? We know that $y=A \sin x$ completes one cycle from $x=0$ to $x=2 \pi$. Thus, $y=A \sin B x$ completes one cycle as $B x$ increases from 0 to 2π. Set up an inequality to represent this and solve for x to determine the values of x for which $y=\sin B x$ completes one cycle.

$$
\begin{array}{ll}
0 \leq B x \leq 2 \pi & y=\sin B x \text { completes one cycle as } B x \\
\text { increases from } O \text { to } 2 \pi \\
0 \leq x \leq \frac{2 \pi}{B} & \text { Divide by } B, \text { where } B>0, \text { and solve for } x
\end{array}
$$

The inequality $0 \leq x \leq \frac{2 \pi}{B}$ means that $y=A \sin B x$ completes one cycle from 0 to $\frac{2 \pi}{B}$. The period is $\frac{2 \pi}{B}$. The graph of $y=A \sin B x$ is the graph of $y=A \sin x$ horizontally shrunk by a factor of $\frac{1}{B}$ if $B>1$ and horizontally stretched by a factor of $\frac{1}{B}$ if $0<B<1$.

Amplitudes and Periods

The graph of $y=A \sin B x, B>0$, has

$$
\begin{aligned}
\text { amplitude } & =|A| \\
\text { period } & =\frac{2 \pi}{B}
\end{aligned}
$$

EXAMPLE 3 Graphing a Function of the Form $y=A \sin B x$

Determine the amplitude and period of $y=3 \sin 2 x$. Then graph the function for $0 \leq x \leq 2 \pi$.

SOLUTION

Step 1 Identify the amplitude and the period. The equation $y=3 \sin 2 x$ is of the form $y=A \sin B x$ with $A=3$ and $B=2$.

$$
\begin{array}{ll}
\text { amplitude: } & |A|=|3|=3 \\
\text { period: } & \frac{2 \pi}{B}=\frac{2 \pi}{2}=\pi
\end{array}
$$

The amplitude, 3 , tells us that the maximum value of y is 3 and the minimum value of y is -3 . The period, π, tells us that the graph completes one cycle from 0 to π.
Step 2 Find the values of \boldsymbol{x} for the five key points. Begin by dividing the period of $y=3 \sin 2 x, \pi$, by 4 .

$$
\frac{\text { period }}{4}=\frac{\pi}{4}
$$

Start with the value of x where the cycle begins: $x_{1}=0$. Adding quarter-periods, $\frac{\pi}{4}$, the five x-values for the key points are

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=0+\frac{\pi}{4}=\frac{\pi}{4}, \quad x_{3}=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2} \\
& x_{4}=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}, \quad x_{5}=\frac{3 \pi}{4}+\frac{\pi}{4}=\pi
\end{aligned}
$$

FIGURE 4.69 The graph of $y=3 \sin 2 x, 0 \leq x \leq \pi$

FIGURE 4.70

TECHNOLOGY

The graph of $y=3 \sin 2 x$ in a $\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-4,4,1]$ viewing rectangle verifies our hand-drawn graph in Figure 4.70.

Step 3 Find the values of \boldsymbol{y} for the five key points. We evaluate the function at each value of x from step 2 .

Value of \boldsymbol{x}	Value of y : $y=3 \sin 2 x$	Coordinates of key point
0	$\begin{aligned} y & =3 \sin (2 \cdot 0) \\ & =3 \sin 0=3 \cdot 0=0 \end{aligned}$	$(0,0)$
$\frac{\pi}{4}$	$\begin{aligned} y & =3 \sin \left(2 \cdot \frac{\pi}{4}\right) \\ & =3 \sin \frac{\pi}{2}=3 \cdot 1=3 \end{aligned}$	$\left(\frac{\pi}{4}, 3\right)$
$\frac{\pi}{2}$	$\begin{aligned} y & =3 \sin \left(2 \cdot \frac{\pi}{2}\right) \\ & =3 \sin \pi=3 \cdot 0=0 \end{aligned}$	$\left(\frac{\pi}{2}, 0\right)$
$\frac{3 \pi}{4}$	$\begin{aligned} y & =3 \sin \left(2 \cdot \frac{3 \pi}{4}\right) \\ & =3 \sin \frac{3 \pi}{2}=3(-1)=-3 \end{aligned}$	$\left(\frac{3 \pi}{4},-3\right)$
π	$\begin{aligned} y & =3 \sin (2 \cdot \pi) \\ & =3 \sin 2 \pi=3 \cdot 0=0 \end{aligned}$	$(\pi, 0)$

In the interval $[0, \pi]$, there are x-intercepts at $0, \frac{\pi}{2}$, and π. The maximum and minimum points are indicated by the voice balloons.
Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The five key points for $y=3 \sin 2 x$ are shown in Figure 4.69. By connecting the points with a smooth curve, the blue portion shows one complete cycle of $y=3 \sin 2 x$ from 0 to π. The graph of $y=3 \sin 2 x$ is the graph of $y=\sin x$ vertically stretched by a factor of 3 and horizontally shrunk by a factor of $\frac{1}{2}$.
Step 5 Extend the graph in step 4 to the left or right as desired. The blue portion of the graph in Figure 4.69 is from 0 to π. In order to graph for $0 \leq x \leq 2 \pi$, we continue this portion and extend the graph another full period to the right. This extension is shown in gray in Figure 4.70.

Check Point 3 Determine the amplitude and period of $y=2 \sin \frac{1}{2} x$. Then graph the function for $0 \leq x \leq 8 \pi$.

Now let us examine the graphs of functions of the form $y=A \sin (B x-C)$, where $B>0$. How do such graphs compare to those of functions of the form $y=A \sin B x$? In both cases, the amplitude is $|A|$ and the period is $\frac{2 \pi}{B}$. One complete cycle occurs as $B x-C$ increases from 0 to 2π. This means that we can find an interval containing one cycle by solving the following inequality:

$$
\begin{array}{ll}
0 \leq B x-C \leq 2 \pi . & y=A \sin (B x-C) \text { completes one cycle as } \\
C \leq B x \leq C+2 \pi & B x-C \text { increases from } O \text { to } 2 \pi . \\
\frac{C}{B} \leq x \leq \frac{C}{B}+\frac{2 \pi}{B} & \text { Add } C \text { to all three parts. } \\
& \text { Divide by } B, \text { where } B>O, \text { and solve for } x .
\end{array}
$$

This is the x-coordinate

 on the left where the cycle begins.This is the x-coordinate on the right where the cycle ends. $\frac{2 \pi}{B}$ is the period.

The voice balloon on the left at the bottom of the previous page indicates that the graph of $y=A \sin (B x-C)$ is the graph of $y=A \sin B x$ shifted horizontally by $\frac{C}{B}$. Thus, the number $\frac{C}{B}$ is the phase shift associated with the graph.

The Graph of $y=A \sin (B x-C)$
The graph of $y=A \sin (B x-C), B>0$, is obtained by horizontally shifting the graph of $y=A \sin B x$ so that the starting point of the cycle is shifted from $x=0$ to $x=\frac{C}{B}$. If $\frac{C}{B}>0$, the shift is to the right. If $\frac{C}{B}<0$, the shift is to the left. The number $\frac{C}{B}$ is called the phase shift.

$$
\begin{aligned}
\text { amplitude } & =|A| \\
\text { period } & =\frac{2 \pi}{B}
\end{aligned}
$$

EXAMPLE 4 Graphing a Function of the Form $y=A \sin (B x-C)$

Determine the amplitude, period, and phase shift of $y=4 \sin \left(2 x-\frac{2 \pi}{3}\right)$. Then graph one period of the function.

SOLUTION

Step 1 Identify the amplitude, the period, and the phase shift. We must first identify values for A, B, and C.

$$
\begin{gathered}
\text { The equation is of the form } \\
y=A \sin (B x-C) \text {. } \\
y=4 \sin \left(2 x-\frac{2 \pi}{3}\right)
\end{gathered}
$$

Using the voice balloon, we see that $A=4, B=2$, and $C=\frac{2 \pi}{3}$.

$$
\begin{array}{cl}
\text { amplitude: } & |A|=|4|=4 \quad \begin{array}{l}
\text { The maximum value of } y \text { is } 4 \\
\text { and the minimum is }-4 .
\end{array} \\
\text { period: } & \frac{2 \pi}{B}=\frac{2 \pi}{2}=\pi \\
\text { phase shift: } & \frac{C}{B}=\frac{\frac{2 \pi}{3}}{2}=\frac{2 \pi}{3} \cdot \frac{1}{2}=\frac{\pi}{3} \quad \text { A cycle starts at } x=\frac{\pi}{3} .
\end{array}
$$

Step 2 Find the values of \boldsymbol{x} for the five key points. Begin by dividing the period, π, by 4 .

$$
\frac{\text { period }}{4}=\frac{\pi}{4}
$$

GREAT QUESTION!

Is there a way I can speed up the additions shown on the right?
Yes. First write the starting point, $\frac{\pi}{3}$, and the quarter-period, $\frac{\pi}{4}$, with a common denominator, 12 .
starting point $=\frac{\pi}{3}=\frac{4 \pi}{12}$
quarter-period $=\frac{\pi}{4}=\frac{3 \pi}{12}$

Start with the value of x where the cycle begins: $x_{1}=\frac{\pi}{3}$. Adding quarter-periods, $\frac{\pi}{4}$, the five x-values for the key points are

$$
\begin{aligned}
& x_{1}=\frac{\pi}{3}, \quad x_{2}=\frac{\pi}{3}+\frac{\pi}{4}=\frac{4 \pi}{12}+\frac{3 \pi}{12}=\frac{7 \pi}{12} \\
& x_{3}=\frac{7 \pi}{12}+\frac{\pi}{4}=\frac{7 \pi}{12}+\frac{3 \pi}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6} \\
& x_{4}=\frac{5 \pi}{6}+\frac{\pi}{4}=\frac{10 \pi}{12}+\frac{3 \pi}{12}=\frac{13 \pi}{12}, \\
& x_{5}=\frac{13 \pi}{12}+\frac{\pi}{4}=\frac{13 \pi}{12}+\frac{3 \pi}{12}=\frac{16 \pi}{12}=\frac{4 \pi}{3} .
\end{aligned}
$$

GREAT QUESTION!

Is there a way to check my computations for the \boldsymbol{x}-values for the five key points?
Yes. The difference between x_{5} and x_{1}, or $x_{5}-x_{1}$, should equal the period.

$$
x_{5}-x_{1}=\frac{4 \pi}{3}-\frac{\pi}{3}=\frac{3 \pi}{3}=\pi
$$

Because the period is π, this verifies that our five x-values are correct.

Step 3 Find the values of \boldsymbol{y} for the five key points. We evaluate the function at each value of x from step 2 .

Value of \boldsymbol{x}	Value of y : $y=4 \sin \left(2 x-\frac{2 \pi}{3}\right)$	Coordinates of key point
$\frac{\pi}{3}$	$\begin{aligned} y & =4 \sin \left(2 \cdot \frac{\pi}{3}-\frac{2 \pi}{3}\right) \\ & =4 \sin 0=4 \cdot 0=0 \end{aligned}$	$\left(\frac{\pi}{3}, 0\right)$
$\frac{7 \pi}{12}$	$\begin{aligned} y & =4 \sin \left(2 \cdot \frac{7 \pi}{12}-\frac{2 \pi}{3}\right) \\ & =4 \sin \left(\frac{7 \pi}{6}-\frac{4 \pi}{6}\right) \\ & =4 \sin \frac{3 \pi}{6}=4 \sin \frac{\pi}{2}=4 \cdot 1=4 \end{aligned}$	$\left(\frac{7 \pi}{12}, 4\right)$
$\frac{5 \pi}{6}$	$\begin{aligned} y & =4 \sin \left(2 \cdot \frac{5 \pi}{6}-\frac{2 \pi}{3}\right) \\ & =4 \sin \left(\frac{5 \pi}{3}-\frac{2 \pi}{3}\right) \\ & =4 \sin \frac{3 \pi}{3}=4 \sin \pi=4 \cdot 0=0 \end{aligned}$	$\left(\frac{5 \pi}{6}, 0\right)$
$\frac{13 \pi}{12}$	$\begin{aligned} y & =4 \sin \left(2 \cdot \frac{13 \pi}{12}-\frac{2 \pi}{3}\right) \\ & =4 \sin \left(\frac{13 \pi}{6}-\frac{4 \pi}{6}\right) \\ & =4 \sin \frac{9 \pi}{6}=4 \sin \frac{3 \pi}{2}=4(-1)=-4 \end{aligned}$	$\left(\frac{13 \pi}{12},-4\right)$
$\frac{4 \pi}{3}$	$\begin{aligned} y & =4 \sin \left(2 \cdot \frac{4 \pi}{3}-\frac{2 \pi}{3}\right) \\ & =4 \sin \frac{6 \pi}{3}=4 \sin 2 \pi=4 \cdot 0=0 \end{aligned}$	$\left(\frac{4 \pi}{3}, 0\right)$

In the interval $\left[\frac{\pi}{3}, \frac{4 \pi}{3}\right]$, there are x-intercepts at $\frac{\pi}{3}, \frac{5 \pi}{6}$, and $\frac{4 \pi}{3}$. The maximum and minimum points are indicated by the voice balloons.

Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The five key points, $\left(\frac{\pi}{3}, 0\right),\left(\frac{7 \pi}{12}, 4\right),\left(\frac{5 \pi}{6}, 0\right)$, $\left(\frac{13 \pi}{12},-4\right)$, and $\left(\frac{4 \pi}{3}, 0\right)$, are shown on the graph of $y=4 \sin \left(2 x-\frac{2 \pi}{3}\right)$ in

Figure 4.71.

FIGURE 4.71

S Check Point 4 Determine the amplitude, period, and phase shift of $y=3 \sin \left(2 x-\frac{\pi}{3}\right)$. Then graph one period of the function.

The Graph of $y=\cos \boldsymbol{x}$
We graph $y=\cos x$ by listing some points on the graph. Because the period of the cosine function is 2π, we will concentrate on the graph of the basic cosine curve on the interval $[0,2 \pi]$. The rest of the graph is made up of repetitions of this portion.
Table 4.4 lists some values of (x, y) on the graph of $y=\cos x$.
Table 4.4 Values of (x, y) on the Graph of $y=\cos x$

Plotting the points in Table 4.4 and connecting them with a smooth curve, we obtain the graph shown in Figure 4.72. The portion of the graph in dark blue shows one complete period. We can obtain a more complete graph of $y=\cos x$ by extending this dark blue portion to the left and to the right.

Graph variations of $y=\cos x$.

GREAT QUESTION!

What should I do to graph functions of the form $\boldsymbol{y}=A \cos B \boldsymbol{x}$ if \boldsymbol{B} is negative?
If $B<0$ in $y=A \cos B x$, use $\cos (-\theta)=\cos \theta$ to rewrite the equation before obtaining its graph.

The graph of $y=\cos x$ allows us to visualize some of the properties of the cosine function.

- The domain is $(-\infty, \infty)$, the set of all real numbers. The graph extends indefinitely to the left and to the right with no gaps or holes.
- The range is $[-1,1]$, the set of all real numbers between -1 and 1 , inclusive. The graph never rises above 1 or falls below -1 .
- The period is 2π. The graph's pattern repeats in every interval of length 2π.
- The function is an even function: $\cos (-x)=\cos x$. This can be seen by observing that the graph is symmetric with respect to the y-axis.
Take a second look at Figure 4.72. Can you see that the graph of $y=\cos x$ is the graph of $y=\sin x$ with a phase shift of $-\frac{\pi}{2}$? If you trace along the curve from $x=-\frac{\pi}{2}$ to $x=\frac{3 \pi}{2}$, you are tracing one complete cycle of the sine curve. This can be expressed as an identity:

$$
\cos x=\sin \left(x+\frac{\pi}{2}\right)
$$

Because of this similarity, the graphs of sine functions and cosine functions are called sinusoidal graphs.

Graphing Variations of $y=\cos x$

We use the same steps to graph variations of $y=\cos x$ as we did for graphing variations of $y=\sin x$. We will continue finding key points by dividing the period into four equal parts. Amplitudes, periods, and phase shifts play an important role when graphing by hand.

The Graph of $y=A \cos B x$

The graph of $y=A \cos B x, B>0$, has

$$
\begin{aligned}
\text { amplitude } & =|A| \\
\text { period } & =\frac{2 \pi}{B}
\end{aligned}
$$

EXAMPLE 5 Graphing a Function of the Form $y=A \cos B x$

Determine the amplitude and period of $y=-3 \cos \frac{\pi}{2} x$. Then graph the function for $-4 \leq x \leq 4$.

SOLUTION

Step 1 Identify the amplitude and the period. The equation $y=-3 \cos \frac{\pi}{2} x$ is of the form $y=A \cos B x$ with $A=-3$ and $B=\frac{\pi}{2}$.

$$
\begin{aligned}
& \text { amplitude: } \quad|A|=|-3|=3 \quad \begin{array}{l}
\text { The maximum value of } y \text { is } 3 \\
\text { and the minimum is }-3 \text {. }
\end{array} \\
& \text { period: } \quad \frac{2 \pi}{B}=\frac{2 \pi}{\frac{\pi}{2}}=2 \pi t \cdot \frac{2}{\not t}=4
\end{aligned}
$$

Step 2 Find the values of \boldsymbol{x} for the five key points. Begin by dividing the period, 4, by 4 .

$$
\frac{\text { period }}{4}=\frac{4}{4}=1
$$

Start with the value of x where the cycle begins: $x_{1}=0$. Adding quarter-periods, 1 , the five x-values for the key points are
$x_{1}=0, \quad x_{2}=0+1=1, \quad x_{3}=1+1=2, \quad x_{4}=2+1=3, \quad x_{5}=3+1=4$.
Step 3 Find the values of \boldsymbol{y} for the five key points. We evaluate the function at each value of x from step 2 .

Value of \boldsymbol{x}	Value of y : $y=-3 \cos \frac{\pi}{2} x$	Coordinates of k	
0	$\begin{aligned} y & =-3 \cos \left(\frac{\pi}{2} \cdot 0\right) \\ & =-3 \cos 0=-3 \cdot 1=-3 \end{aligned}$	$(0,-3)$	$\begin{gathered} \text { minimum } \\ \text { point } \end{gathered}$
1	$\begin{aligned} y & =-3 \cos \left(\frac{\pi}{2} \cdot 1\right) \\ & =-3 \cos \frac{\pi}{2}=-3 \cdot 0=0 \end{aligned}$	$(1,0)$	
2	$\begin{aligned} y & =-3 \cos \left(\frac{\pi}{2} \cdot 2\right) \\ & =-3 \cos \pi=-3(-1)=3 \end{aligned}$	$(2,3)$	maximum point
3	$\begin{aligned} y & =-3 \cos \left(\frac{\pi}{2} \cdot 3\right) \\ & =-3 \cos \frac{3 \pi}{2}=-3 \cdot 0=0 \end{aligned}$	$(3,0)$	
4	$\begin{aligned} y & =-3 \cos \left(\frac{\pi}{2} \cdot 4\right) \\ & =-3 \cos 2 \pi=-3 \cdot 1=-3 \end{aligned}$	$(4,-3)$	$\begin{gathered} \text { minimum } \\ \text { point } \end{gathered}$

In the interval $[0,4]$, there are x-intercepts at 1 and 3 . The minimum and maximum points are indicated by the voice balloons.
Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The five key points for $y=-3 \cos \frac{\pi}{2} x$ are shown in Figure 4.73. By connecting the points with a smooth curve, the blue portion shows one complete cycle of $y=-3 \cos \frac{\pi}{2} x$ from 0 to 4 .
Step 5 Extend the graph in step 4 to the left or right as desired. The blue portion of the graph in Figure 4.73 is for x from

FIGURE 4.73 0 to 4 . In order to graph for $-4 \leq x \leq 4$, we continue this portion and extend the graph another full period to the left. This extension is shown in gray in Figure 4.73.

Check Point 5 Determine the amplitude and period of $y=-4 \cos \pi x$. Then graph the function for $-2 \leq x \leq 2$.

Finally, let us examine the graphs of functions of the form $y=A \cos (B x-C)$. Graphs of these functions shift the graph of $y=A \cos B x$ horizontally by $\frac{C}{B}$.

The Graph of $y=A \cos (B x-C)$
The graph of $y=A \cos (B x-C), B>0$, is obtained by horizontally shifting the graph of $y=A \cos B x$ so that the starting point of the cycle is shifted from $x=0$ to $x=\frac{C}{B}$. If $\frac{C}{B}>0$, the shift is to the right. If $\frac{C}{B}<0$, the shift is to the left. The number $\frac{C}{B}$ is called the phase shift.

$$
\begin{aligned}
\text { amplitude } & =|A| \\
\text { period } & =\frac{2 \pi}{B}
\end{aligned}
$$

EXAMPLE 6 Graphing a Function of the Form $y=A \cos (B x-C)$

Determine the amplitude, period, and phase shift of $y=\frac{1}{2} \cos (4 x+\pi)$. Then graph one period of the function.

SOLUTION

Step 1 Identify the amplitude, the period, and the phase shift. We must first identify values for A, B, and C. To do this, we need to express the equation in the form $y=A \cos (B x-C)$. Thus, we write $y=\frac{1}{2} \cos (4 x+\pi)$ as $y=\frac{1}{2} \cos [4 x-(-\pi)]$. Now we can identify values for A, B, and C.

$$
\begin{gathered}
\text { The equation is of the form } \\
y=A \cos (B x-C) \text {. } \\
y=\frac{1}{2} \cos [4 x-(-\pi)]
\end{gathered}
$$

Using the voice balloon, we see that $A=\frac{1}{2}, B=4$, and $C=-\pi$.

$$
\begin{aligned}
\text { amplitude: } & |A|=\left|\frac{1}{2}\right|=\frac{1}{2} \quad \begin{aligned}
\text { The maximum value of } y \text { is } \frac{1}{2} \\
\text { and the minimum is }-\frac{1}{2} .
\end{aligned} \\
\text { period: } & \frac{2 \pi}{B}=\frac{2 \pi}{4}=\frac{\pi}{2} \quad \text { Each cycle is of length } \frac{\pi}{2} . \\
\text { phase shift: } & \frac{C}{B}=-\frac{\pi}{4}
\end{aligned}
$$

Step 2 Find the values of \boldsymbol{x} for the five key points. Begin by dividing the period, $\frac{\pi}{2}$, by 4 .

$$
\frac{\text { period }}{4}=\frac{\frac{\pi}{2}}{4}=\frac{\pi}{8}
$$

TECHNOLOGY

The graph of

$$
y=\frac{1}{2} \cos (4 x+\pi)
$$

in a $\left[-\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{8}\right]$ by $[-1,1,1]$
viewing rectangle verifies our hand-drawn graph in Figure 4.74.

(5) Use vertical shifts of sine and cosine curves.

Start with the value of x where the cycle begins: $x_{1}=-\frac{\pi}{4}$. Adding quarter-periods, $\frac{\pi}{8}$, the five x-values for the key points are

$$
\begin{aligned}
& x_{1}=-\frac{\pi}{4}, \quad x_{2}=-\frac{\pi}{4}+\frac{\pi}{8}=-\frac{2 \pi}{8}+\frac{\pi}{8}=-\frac{\pi}{8}, \quad x_{3}=-\frac{\pi}{8}+\frac{\pi}{8}=0 \\
& x_{4}=0+\frac{\pi}{8}=\frac{\pi}{8}, \quad x_{5}=\frac{\pi}{8}+\frac{\pi}{8}=\frac{2 \pi}{8}=\frac{\pi}{4}
\end{aligned}
$$

Step 3 Find the values of \boldsymbol{y} for the five key points. Take a few minutes and use your calculator to evaluate the function at each value of x from step 2 . Show that the key points are

$$
\begin{array}{ccccc}
\left(-\frac{\pi}{4}, \frac{1}{2}\right), & \left(-\frac{\pi}{8}, 0\right), & \left(0,-\frac{1}{2}\right), & \left(\frac{\pi}{8}, 0\right), \text { and }\left(\frac{\pi}{4}, \frac{1}{2}\right) . \\
\begin{array}{c}
\text { maximum } \\
\text { point }
\end{array} & \begin{array}{c}
x \text {-intercept } \\
\text { at }-\frac{\pi}{8}
\end{array} & \begin{array}{c}
\text { minimum } \\
\text { point }
\end{array} & \begin{array}{c}
x \text {-intercept } \\
\text { at } \frac{\pi}{8}
\end{array} & \begin{array}{c}
\text { maximum } \\
\text { point }
\end{array}
\end{array}
$$

Step 4 Connect the five key points with a smooth curve and graph one complete cycle of the given function. The key points and the graph of $y=\frac{1}{2} \cos (4 x+\pi)$ are shown in Figure 4.74.

FIGURE 4.74

Check Point 6 Determine the amplitude, period, and phase shift of $y=\frac{3}{2} \cos (2 x+\pi)$. Then graph one period of the function.

Vertical Shifts of Sinusoidal Graphs

We now look at sinusoidal graphs of functions of the form

$$
y=A \sin (B x-C)+D \quad \text { and } \quad y=A \cos (B x-C)+D
$$

The constant D causes a vertical shift in each of the graphs of $y=A \sin (B x-C)$ and $y=A \cos (B x-C)$. If D is positive, the shift is D units upward. If D is negative, the shift is $|D|$ units downward. These vertical shifts result in sinusoidal graphs oscillating about the horizontal line $y=D$ rather than about the x-axis. Thus, the maximum value of y is $D+|A|$ and the minimum value of y is $D-|A|$.

EXAMPLE 7 A Vertical Shift

Graph one period of the function $y=\frac{1}{2} \cos x-1$.

SOLUTION

The graph of $y=\frac{1}{2} \cos x-1$ is the graph of $y=\frac{1}{2} \cos x$ shifted one unit downward. The period of $y=\frac{1}{2} \cos x$ is 2π, which is also the period for the vertically shifted graph. The key points on the interval $[0,2 \pi]$ for $y=\frac{1}{2} \cos x-1$ are found by first determining their x-coordinates. The quarter-period is $\frac{2 \pi}{4}$, or $\frac{\pi}{2}$. The cycle begins at $x=0$. As always, we add quarter-periods to generate x-values for each of the key points. The five x-values are

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=0+\frac{\pi}{2}=\frac{\pi}{2}, \quad x_{3}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \\
& x_{4}=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}, \quad x_{5}=\frac{3 \pi}{2}+\frac{\pi}{2}=2 \pi
\end{aligned}
$$

The values of y for the five key points and their coordinates are determined as follows.

Value of \boldsymbol{x}	Value of $\boldsymbol{y}:$ $\boldsymbol{y}$$=\frac{\mathbf{1}}{\mathbf{2}} \cos \boldsymbol{x}-\mathbf{1}$	Coordinates of Key Point
0	$y=\frac{1}{2} \cos 0-1$	
	$=\frac{1}{2} \cdot 1-1=-\frac{1}{2}$	$\left(0,-\frac{1}{2}\right)$
$\frac{\pi}{2}$	$=\frac{1}{2} \cos \frac{\pi}{2}-1$	$\left(\frac{\pi}{2},-1\right)$
	$=\frac{1}{2} \cdot 0-1=-1$	$\left(\pi,-\frac{3}{2}\right)$
π	$=\frac{1}{2}(-1)-1=-\frac{3}{2}$	
$\frac{3 \pi}{2}$	y	$=\frac{1}{2} \cos \frac{3 \pi}{2}-1$
	$=\frac{1}{2} \cdot 0-1=-1$	$\left(\frac{3 \pi}{2},-1\right)$
2π	y	$=\frac{1}{2} \cos 2 \pi-1$
	$=\frac{1}{2} \cdot 1-1=-\frac{1}{2}$	

The five key points for $y=\frac{1}{2} \cos x-1$ are shown in Figure 4.75. By connecting the points with a smooth curve, we obtain one period of the graph.

FIGURE 4.75

Check Point 7 Graph one period of the function $y=2 \cos x+1$.
6 Model periodic behavior.

Modeling Periodic Behavior

Our breathing consists of alternating periods of inhaling and exhaling. Each complete pumping cycle of the human heart can be described using a sine function. Our brain waves during deep sleep are sinusoidal. Viewed in this way, trigonometry becomes an intimate experience.

Some graphing utilities have a SINe REGression feature. This feature gives the sine function in the form $y=A \sin (B x+C)+D$ of best fit for wavelike data. At least four data points must be used. However, it is not always necessary to use technology. In our next example, we use our understanding of sinusoidal graphs to model the process of breathing.

EXAMPLE 8 A Trigonometric Breath of Life

The graph in Figure 4.76 shows one complete normal breathing cycle. The cycle consists of inhaling and exhaling. It takes place every 5 seconds. Velocity of air flow is positive when we inhale and negative when we exhale. It is measured in liters per second. If y represents velocity of air flow after x seconds, find a function of the form $y=A \sin B x$ that models air flow in a normal breathing cycle.

FIGURE 4.76

SOLUTION

We need to determine values for A and B in the equation $y=A \sin B x$. The amplitude, A, is the maximum value of y. Figure 4.76 shows that this maximum value is 0.6 . Thus, $A=0.6$.

The value of B in $y=A \sin B x$ can be found using the formula for the period: period $=\frac{2 \pi}{B}$. The period of our breathing cycle is 5 seconds. Thus,

$$
\begin{aligned}
5 & =\frac{2 \pi}{B} \quad \text { Our goal is to solve this equation for } B . \\
5 B & =2 \pi \quad \text { Multiply both sides of the equation by } B . \\
B & =\frac{2 \pi}{5} . \quad \text { Divide both sides of the equation by } 5 .
\end{aligned}
$$

We see that $A=0.6$ and $B=\frac{2 \pi}{5}$. Substitute these values into $y=A \sin B x$. The breathing cycle is modeled by

$$
y=0.6 \sin \frac{2 \pi}{5} x .
$$

Check Point 8 Find an equation of the form $y=A \sin B x$ that produces the graph shown in the figure on the right.

EXAMPLE 9 Modeling a Tidal Cycle

FIGURE 4.77

Figure 4.77 shows that the depth of water at a boat dock varies with the tides. The depth is 5 feet at low tide and 13 feet at high tide. On a certain day, low tide occurs at 4 a.m. and high tide at 10 a.m. If y represents the depth of the water, in feet, x hours after midnight, use a sine function of the form $y=A \sin (B x-C)+D$ to model the water's depth.

SOLUTION

We need to determine values for A, B, C, and D in the equation $y=A \sin (B x-C)+D$. We can find these values using Figure 4.77. We begin with D.

To find D, we use the vertical shift. Because the water's depth ranges from a minimum of 5 feet to a maximum of 13 feet, the curve oscillates about the middle value, 9 feet. Thus, $D=9$, which is the vertical shift.

At maximum depth, the water is 4 feet above 9 feet. Thus, A, the amplitude, is 4: $A=4$.

To find B, we use the period. The blue portion of the graph shows that one complete tidal cycle occurs in $19-7$, or 12 hours. The period is 12 . Thus,

$$
\begin{aligned}
12 & =\frac{2 \pi}{B} & & \text { Our goal is to solve this equation for } B . \\
12 B & =2 \pi & & \text { Multiply both sides by } B . \\
B & =\frac{2 \pi}{12}=\frac{\pi}{6} . & & \text { Divide both sides by } 12 .
\end{aligned}
$$

To find C, we use the phase shift. The blue portion of the graph shows that the starting point of the cycle is shifted from 0 to 7 . The phase shift, $\frac{C}{B}$, is 7 .

$$
\begin{aligned}
7 & =\frac{C}{B} \quad \text { The phase shift of } y=A \sin (B x-C) \text { is } \frac{C}{B} . \\
7 & =\frac{C}{\frac{\pi}{6}} \quad \text { From above, we have } B=\frac{\pi}{6} . \\
\frac{7 \pi}{6} & =C \quad \text { Multiply both sides of the equation by } \frac{\pi}{6} .
\end{aligned}
$$

We see that $A=4, B=\frac{\pi}{6}, C=\frac{7 \pi}{6}$, and $D=9$. Substitute these values into $y=A \sin (B x-C)+D$. The water's depth, in feet, x hours after midnight is modeled by

$$
y=4 \sin \left(\frac{\pi}{6} x-\frac{7 \pi}{6}\right)+9
$$

TECHNOLOGY

Graphic Connections

We can use a graphing utility to verify that the model in Example 9,

$$
y=4 \sin \left(\frac{\pi}{6} x-\frac{7 \pi}{6}\right)+9
$$

is correct. The graph of the function is shown in a $[0,28,4]$ by $[0,15,5]$ viewing rectangle.

Check Point 9 A region that is 30° north of the Equator averages a minimum of 10 hours of daylight in December. Hours of daylight are at a maximum of 14 hours in June. Let x represent the month of the year, with 1 for January, 2 for February, 3 for March, and 12 for December. If y represents the number of hours of daylight in month x, use a sine function of the form $y=A \sin (B x-C)+D$ to model the hours of daylight.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The graph of $y=A \sin B x$ has amplitude $=$ \qquad and period $=$ \qquad -
2. The amplitude of $y=3 \sin \frac{1}{2} x$ is \qquad and the period is
3. The period of $y=4 \sin 2 x$ is \qquad so the
x-values for the five key points are $x_{1}=$ \qquad
$x_{2}=\longrightarrow, x_{3}=\longrightarrow, x_{4}=\longrightarrow$ and
$x_{5}=$ \qquad -.
4. The graph of $y=A \sin (B x-C)$ has phase shift
\qquad . If this phase shift is positive, the graph of $y=A \sin B x$ is shifted to the \qquad . If this phase shift is negative, the graph of $y=A \sin B x$ is shifted to the \qquad -.
5. The graph of $y=A \cos B x$ has amplitude $=$ \qquad and period $=$ \qquad
6. The amplitude of $y=\frac{1}{2} \cos 3 x$ is \qquad and the period is \qquad -
7. True or false: The graph of $y=\cos \left(x+\frac{\pi}{4}\right)$ lies $\frac{\pi}{4}$ units to the right of the graph of $y=\cos x$.
8. True or false: The graph of $y=\cos \left(2 x-\frac{\pi}{2}\right)$ has
phase shift $\frac{\pi}{4}$. phase shift $\frac{\pi}{4}$.
9. True or false: The maximum value of the function $y=-2 \cos x+5$ is 7 .
10. True or false: The minimum value of the function $y=2 \sin x+1$ is -1 .

EXERCISE SET 4.5

Practice Exercises

In Exercises 1-6, determine the amplitude of each function. Then graph the function and $y=\sin x$ in the same rectangular coordinate system for $0 \leq x \leq 2 \pi$.

1. $y=4 \sin x$
2. $y=5 \sin x$
3. $y=\frac{1}{3} \sin x$
4. $y=\frac{1}{4} \sin x$
5. $y=-3 \sin x$
6. $y=-4 \sin x$

In Exercises 7-16, determine the amplitude and period of each function. Then graph one period of the function.
7. $y=\sin 2 x$
8. $y=\sin 4 x$
9. $y=3 \sin \frac{1}{2} x$
10. $y=2 \sin \frac{1}{4} x$
11. $y=4 \sin \pi x$
12. $y=3 \sin 2 \pi x$
13. $y=-3 \sin 2 \pi x$
14. $y=-2 \sin \pi x$
15. $y=-\sin \frac{2}{3} x$
16. $y=-\sin \frac{4}{3} x$

In Exercises 17-30, determine the amplitude, period, and phase shift of each function. Then graph one period of the function.
17. $y=\sin (x-\pi)$
18. $y=\sin \left(x-\frac{\pi}{2}\right)$
19. $y=\sin (2 x-\pi)$
20. $y=\sin \left(2 x-\frac{\pi}{2}\right)$
21. $y=3 \sin (2 x-\pi)$
22. $y=3 \sin \left(2 x-\frac{\pi}{2}\right)$
23. $y=\frac{1}{2} \sin \left(x+\frac{\pi}{2}\right)$
24. $y=\frac{1}{2} \sin (x+\pi)$
25. $y=-2 \sin \left(2 x+\frac{\pi}{2}\right)$
26. $y=-3 \sin \left(2 x+\frac{\pi}{2}\right)$
27. $y=3 \sin (\pi x+2)$
28. $y=3 \sin (2 \pi x+4)$
29. $y=-2 \sin (2 \pi x+4 \pi)$
30. $y=-3 \sin (2 \pi x+4 \pi)$

In Exercises 31-34, determine the amplitude of each function. Then graph the function and $y=\cos x$ in the same rectangular coordinate system for $0 \leq x \leq 2 \pi$.
31. $y=2 \cos x$
32. $y=3 \cos x$
33. $y=-2 \cos x$
34. $y=-3 \cos x$

In Exercises 35-42, determine the amplitude and period of each function. Then graph one period of the function.
35. $y=\cos 2 x$
36. $y=\cos 4 x$
37. $y=4 \cos 2 \pi x$
38. $y=5 \cos 2 \pi x$
39. $y=-4 \cos \frac{1}{2} x$
40. $y=-3 \cos \frac{1}{3} x$
41. $y=-\frac{1}{2} \cos \frac{\pi}{3} x$
42. $y=-\frac{1}{2} \cos \frac{\pi}{4} x$

In Exercises 43-52, determine the amplitude, period, and phase shift of each function. Then graph one period of the function.
43. $y=\cos \left(x-\frac{\pi}{2}\right)$
44. $y=\cos \left(x+\frac{\pi}{2}\right)$
45. $y=3 \cos (2 x-\pi)$
46. $y=4 \cos (2 x-\pi)$
47. $y=\frac{1}{2} \cos \left(3 x+\frac{\pi}{2}\right)$
48. $y=\frac{1}{2} \cos (2 x+\pi)$
49. $y=-3 \cos \left(2 x-\frac{\pi}{2}\right)$
50. $y=-4 \cos \left(2 x-\frac{\pi}{2}\right)$
51. $y=2 \cos (2 \pi x+8 \pi)$
52. $y=3 \cos (2 \pi x+4 \pi)$

In Exercises 53-60, use a vertical shift to graph one period of the function.
53. $y=\sin x+2$
54. $y=\sin x-2$
55. $y=\cos x-3$
56. $y=\cos x+3$
57. $y=2 \sin \frac{1}{2} x+1$
58. $y=2 \cos \frac{1}{2} x+1$
59. $y=-3 \cos 2 \pi x+2$
60. $y=-3 \sin 2 \pi x+2$

Practice Plus

In Exercises 61-66, find an equation for each graph.
61.

62.

63.

Application Exercises

In the theory of biorhythms, sine functions are used to measure a person's potential. You can obtain your biorhythm chart online by simply entering your date of birth, the date you want your biorhythm chart to begin, and the number of months you wish to have included in the plot. Shown below is your author's chart, beginning January 25, 2012, when he was 24,378 days old. We all have cycles with the same amplitudes and periods as those shown here. Each of our three basic cycles begins at birth. Use the biorhythm chart shown to solve Exercises 75-82. The longer tick marks correspond to the dates shown.

In Exercises 71-74, graph f, g, and h in the same rectangular
coordinate system for $0 \leq x \leq 2 \pi$. Obtain the graph of h by
In Exercises 71-74, graph f, g, and h in the same rectangular
coordinate system for $0 \leq x \leq 2 \pi$. Obtain the graph of h by adding or subtracting the corresponding y-coordinates on the graphs of f and g.
71. $f(x)=-2 \sin x, g(x)=\sin 2 x, h(x)=(f+g)(x)$
72. $f(x)=2 \cos x, g(x)=\cos 2 x, h(x)=(f+g)(x)$
73. $f(x)=\sin x, g(x)=\cos 2 x, h(x)=(f-g)(x)$
74. $f(x)=\cos x, g(x)=\sin 2 x, h(x)=(f-g)(x)$
67. $y=\left|2 \cos \frac{x}{2}\right|$
68. $y=\left|3 \cos \frac{2 x}{3}\right|$
69. $y=-|3 \sin \pi x|$
70. $y=-\left|2 \sin \frac{\pi x}{2}\right|$
64.

65.

66.

In Exercises 67-70, graph one period of each function.
(In exercises 75-82, be sure to refer to the biorhythm chart shown at the bottom of the previous page.)
75. What is the period of the physical cycle?
76. What is the period of the emotional cycle?
77. What is the period of the intellectual cycle?
78. For the period shown, what is the worst day in February for your author to run in a marathon?
79. For the period shown, what is the best day in March for your author to meet an online friend for the first time?
80. For the period shown, what is the best day in February for your author to begin writing this trigonometry chapter?
81. If you extend these sinusoidal graphs to the end of the year, is there a day when your author should not even bother getting out of bed?
82. If you extend these sinusoidal graphs to the end of the year, are there any days where your author is at near-peak physical, emotional, and intellectual potential?
83. Rounded to the nearest hour, Los Angeles averages 14 hours of daylight in June, 10 hours in December, and 12 hours in March and September. Let x represent the number of months after June and let y represent the number of hours of daylight in month x. Make a graph that displays the information from June of one year to June of the following year.
84. A clock with an hour hand that is 15 inches long is hanging on a wall. At noon, the distance between the tip of the hour hand and the ceiling is 23 inches. At 3 P.M., the distance is 38 inches; at 6 p.м., 53 inches; at 9 p.м., 38 inches; and at midnight the distance is again 23 inches. If y represents the distance between the tip of the hour hand and the ceiling x hours after noon, make a graph that displays the information for $0 \leq x \leq 24$.
85. The number of hours of daylight in Boston is given by

$$
y=3 \sin \frac{2 \pi}{365}(x-79)+12
$$

where x is the number of days after January 1 .
a. What is the amplitude of this function?
b. What is the period of this function?
c. How many hours of daylight are there on the longest day of the year?
d. How many hours of daylight are there on the shortest day of the year?
e. Graph the function for one period, starting on January 1.
86. The average monthly temperature, y, in degrees Fahrenheit, for Juneau, Alaska, can be modeled by $y=16 \sin \left(\frac{\pi}{6} x-\frac{2 \pi}{3}\right)+40$, where x is the month of the year $\quad($ January $=1$, February $=2, \ldots$ December $=12)$. Graph the function for $1 \leq x \leq 12$. What is the highest average monthly temperature? In which month does this occur?
87. The figure at the top of the next column shows the depth of water at the end of a boat dock. The depth is 6 feet at low tide and 12 feet at high tide. On a certain day, low tide occurs at 6 a.m. and high tide at noon. If y represents the depth of the water x hours after midnight, use a cosine function of the form $y=A \cos B x+D$ to model the water's depth.

88. The figure shows the depth of water at the end of a boat dock. The depth is 5 feet at high tide and 3 feet at low tide. On a certain day, high tide occurs at noon and low tide at 6 P.m. If y represents the depth of the water x hours after noon, use a cosine function of the form $y=A \cos B x+D$ to model the water's depth.

Writing in Mathematics

89. Without drawing a graph, describe the behavior of the basic sine curve.
90. What is the amplitude of the sine function? What does this tell you about the graph?
91. If you are given the equation of a sine function, how do you determine the period?
92. What does a phase shift indicate about the graph of a sine function? How do you determine the phase shift from the function's equation?
93. Describe a general procedure for obtaining the graph of $y=A \sin (B x-C)$.
94. Without drawing a graph, describe the behavior of the basic cosine curve.
95. Describe a relationship between the graphs of $y=\sin x$ and $y=\cos x$.
96. Describe the relationship between the graphs of $y=A \cos (B x-C)$ and $y=A \cos (B x-C)+D$.
97. Biorhythm cycles provide interesting applications of sinusoidal graphs. But do you believe in the validity of biorhythms? Write a few sentences explaining why or why not.

Technology Exercises

98. Use a graphing utility to verify any five of the sine curves that you drew by hand in Exercises 7-30. The amplitude, period, and phase shift should help you to determine appropriate viewing rectangle settings.
99. Use a graphing utility to verify any five of the cosine curves that you drew by hand in Exercises 35-52.
100. Use a graphing utility to verify any two of the sinusoidal curves with vertical shifts that you drew in Exercises 53-60.

In Exercises 101-104, use a graphing utility to graph two periods of the function.
101. $y=3 \sin (2 x+\pi)$
102. $y=-2 \cos \left(2 \pi x-\frac{\pi}{2}\right)$
103. $y=0.2 \sin \left(\frac{\pi}{10} x+\pi\right)$
104. $y=3 \sin (2 x-\pi)+5$
105. Use a graphing utility to graph $y=\sin x$ and $y=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$ in a $\left[-\pi, \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle. How do the graphs compare?
106. Use a graphing utility to graph $y=\cos x$ and $y=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}$ in a $\left[-\pi, \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle. How do the graphs compare?
107. Use a graphing utility to graph

$$
y=\sin x+\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\frac{\sin 4 x}{4}
$$

in a $\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle. How do these waves compare to the smooth rolling waves of the basic sine curve?
108. Use a graphing utility to graph

$$
y=\sin x-\frac{\sin 3 x}{9}+\frac{\sin 5 x}{25}
$$

in a $\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle. How do these waves compare to the smooth rolling waves of the basic sine curve?
109. The data show the average monthly temperatures for Washington, D.C.

	\boldsymbol{x} (Month)	Average Monthly Temperature, ${ }^{\circ} \mathbf{F}$
$\mathbf{1}$	(January)	$\mathbf{3 4 . 6}$
$\mathbf{2}$	(February)	$\mathbf{3 7 . 5}$
$\mathbf{3}$	(March)	$\mathbf{4 7 . 2}$
$\mathbf{4}$	(April)	$\mathbf{5 6 . 5}$
$\mathbf{5}$	(May)	$\mathbf{6 6 . 4}$
$\mathbf{6}$	(June)	$\mathbf{7 5 . 6}$
$\mathbf{7}$	(July)	$\mathbf{8 0 . 0}$
$\mathbf{8}$	(August)	$\mathbf{7 8 . 5}$
$\mathbf{9}$	(September)	$\mathbf{7 1 . 3}$
$\mathbf{1 0}$	(October)	$\mathbf{5 9 . 7}$
$\mathbf{1 1}$	(November)	$\mathbf{4 9 . 8}$
$\mathbf{1 2}$	(December)	$\mathbf{3 9 . 4}$

Source: U.S. National Oceanic and Atmospheric Administration
a. Use your graphing utility to draw a scatter plot of the data from $x=1$ through $x=12$.
b. Use the SINe REGression feature to find the sinusoidal function of the form $y=A \sin (B x+C)+D$ that best fits the data.
c. Use your graphing utility to draw the sinusoidal function of best fit on the scatter plot.
110. Repeat Exercise 109 for data of your choice. The data can involve the average monthly temperatures for the region where you live or any data whose scatter plot takes the form of a sinusoidal function.

Critical Thinking Exercises

Make Sense? In Exercises 111-114, determine whether each statement makes sense or does not make sense, and explain your reasoning.
111. When graphing one complete cycle of $y=A \sin (B x-C)$, I find it easiest to begin my graph on the x-axis.
112. When graphing one complete cycle of $y=A \cos (B x-C)$, I find it easiest to begin my graph on the x-axis.
113. Using the equation $y=A \sin B x$, if I replace either A or B with its opposite, the graph of the resulting equation is a reflection of the graph of the original equation about the x-axis.
114. A ride on a circular Ferris wheel is like riding sinusoidal graphs.
115. Determine the range of each of the following functions. Then give a viewing rectangle, or window, that shows two periods of the function's graph.
a. $f(x)=3 \sin \left(x+\frac{\pi}{6}\right)-2$
b. $g(x)=\sin 3\left(x+\frac{\pi}{6}\right)-2$
116. Write the equation for a cosine function with amplitude π, period 1 , and phase shift -2 .
In Chapter 5, we will prove the following identities:

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \\
& \cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x
\end{aligned}
$$

Use these identities to solve Exercises 117-118.
117. Use the identity for $\sin ^{2} x$ to graph one period of $y=\sin ^{2} x$.
118. Use the identity for $\cos ^{2} x$ to graph one period of $y=\cos ^{2} x$.

Group Exercise

119. This exercise is intended to provide some fun with biorhythms, regardless of whether you believe they have any validity. We will use each member's chart to determine biorhythmic compatibility. Before meeting, each group member should go online and obtain his or her biorhythm chart. The date of the group meeting is the date on which your chart should begin. Include 12 months in the plot. At the meeting, compare differences and similarities among the intellectual sinusoidal curves. Using these comparisons, each person should find the one other person with whom he or she would be most intellectually compatible.

Preview Exercises

Exercises 120-122 will help you prepare for the material covered in the next section.
120. Solve: $-\frac{\pi}{2}<x+\frac{\pi}{4}<\frac{\pi}{2}$.
121. Simplify: $\frac{-\frac{3 \pi}{4}+\frac{\pi}{4}}{2}$.
122. a. Graph $y=-3 \cos \frac{x}{2}$ for $-\pi \leq x \leq 5 \pi$.
b. Consider the reciprocal function of $y=-3 \cos \frac{x}{2}$, namely, $y=-3 \sec \frac{x}{2}$. What does your graph from part (a) indicate about this reciprocal function for $x=-\pi, \pi, 3 \pi$, and 5π ?

SECTION 4.6

Objectives

(1) Understand the graph of $y=\tan x$.
2. Graph variations of $y=\tan x$.
(3) Understand the graph of $y=\cot x$.
4. Graph variations of $y=\cot x$.
(5) Understand the graphs of $y=\csc x$ and $y=\sec x$.
6 Graph variations of $y=\csc x$ and $y=\sec x$.

debate over whether Earth is warming up is over: Humankind's reliance on fossil fuels-coal, fuel oil, and natural gas-is to blame for global warming. In an earlier chapter, we developed a linear function that modeled average global temperature in terms of atmospheric carbon dioxide. In this section's Exercise Set, you will see how trigonometric graphs reveal interesting patterns in carbon dioxide concentration from 1990 through 2008. In this section, trigonometric graphs will reveal patterns involving the tangent, cotangent, secant, and cosecant

1. Understand the graph of $y=\tan x$.

The Graph of $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$

The properties of the tangent function discussed in Section 4.2 will help us determine its graph. Because the tangent function has properties that are different from sinusoidal functions, its graph differs significantly from those of sine and cosine. Properties of the tangent function include the following:

- The period is π. It is only necessary to graph $y=\tan x$ over an interval of length π. The remainder of the graph consists of repetitions of that graph at intervals of π.
- The tangent function is an odd function: $\tan (-x)=-\tan x$. The graph is symmetric with respect to the origin.
- The tangent function is undefined at $\frac{\pi}{2}$. The graph of $y=\tan x$ has a vertical asymptote at $x=\frac{\pi}{2}$.

We obtain the graph of $y=\tan x$ using some points on the graph and origin symmetry. Table 4.5 lists some values of (x, y) on the graph of $y=\tan x$ on the interval $\left[0, \frac{\pi}{2}\right)$.

Table 4.5 Values of (x, y) on the graph of $y=\tan x$

\boldsymbol{x}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5 \pi}{12}\left(75^{\circ}\right)$	$\frac{17 \pi}{36}\left(85^{\circ}\right)$	$\frac{89 \pi}{180}\left(89^{\circ}\right)$	1.57	$\frac{\pi}{2}$
$y=\tan x$	0	$\frac{\sqrt{3}}{3} \approx 0.6$	1	$\sqrt{3} \approx 1.7$	3.7		$\begin{aligned} & 57.3 \\ & \end{aligned}$	$\begin{gathered} 1255.8 \\ \swarrow \end{gathered}$	undefined
		As x increases from 0 toward $\frac{\pi}{2}, y$ increases slowly at first, then more and more rapidly.							

FIGURE 4.78 Graphing the tangent function

The graph in Figure 4.78(a) is based on our observation that as x increases from 0 toward $\frac{\pi}{2}, y$ increases slowly at first, then more and more rapidly. Notice that y increases without bound as x approaches $\frac{\pi}{2}$. As the figure shows, the graph of $y=\tan x$ has a vertical asymptote at $x=\frac{\pi}{2}$.

The graph of $y=\tan x$ can be completed on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ by using origin
symmetry. Figure $4.78(b)$ shows the result of reflecting the graph in Figure 4.78(a) about the origin. The graph of $y=\tan x$ has another vertical asymptote at $x=-\frac{\pi}{2}$. Notice that y decreases without bound as x approaches $-\frac{\pi}{2}$.

Because the period of the tangent function is π, the graph in Figure 4.78(b) shows one complete period of $y=\tan x$. We obtain the complete graph of $y=\tan x$ by repeating the graph in Figure 4.78(b) to the left and right over intervals of π. The resulting graph and its main characteristics are shown in the following box:

The Tangent Curve: The Graph of $y=\tan x$ and lts Characteristics

Characteristics

- Period: π
- Domain: All real numbers except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers
- Vertical asymptotes at odd multiples of $\frac{\pi}{2}$
- An \boldsymbol{x}-intercept occurs midway between each pair of consecutive asymptotes.
- Odd function with origin symmetry
- Points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes have y-coordinates of -1 and 1 , respectively.

(2) Graph variations of $y=\tan x$.

Graphing Variations of $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$

We use the characteristics of the tangent curve to graph tangent functions of the form $y=A \tan (B x-C)$.

$$
\text { Graphing } y=A \tan (B x-C), B>0
$$

1. Find two consecutive asymptotes by finding an interval containing one period:

$$
-\frac{\pi}{2}<B x-C<\frac{\pi}{2}
$$

A pair of consecutive asymptotes occurs at

$$
B x-C=-\frac{\pi}{2} \text { and } B x-C=\frac{\pi}{2}
$$

2. Identify an x-intercept, midway between the consecutive asymptotes.
3. Find the points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. These points have y-coordinates of $-A$ and A, respectively.
4. Use steps 1-3 to graph one full period of the function. Add additional cycles to the left or right as needed.

FIGURE 4.79 The graph is shown for two full periods.

EXAMPLE 1 Graphing a Tangent Function

Graph $y=2 \tan \frac{x}{2}$ for $-\pi<x<3 \pi$.

SOLUTION

Refer to Figure 4.79 as you read each step.
Step 1 Find two consecutive asymptotes. We do this by finding an interval containing one period.

$$
\begin{array}{ll}
-\frac{\pi}{2}<\frac{x}{2}<\frac{\pi}{2} & \text { Set up the inequality }-\frac{\pi}{2}<\text { variable expression in tangent }<\frac{\pi}{2} . \\
-\pi<x<\pi & \text { Multiply all parts by } 2 \text { and solve for } x .
\end{array}
$$

An interval containing one period is $(-\pi, \pi)$. Thus, two consecutive asymptotes occur at $x=-\pi$ and $x=\pi$.
Step 2 Identify an x-intercept, midway between the consecutive asymptotes. Midway between $x=-\pi$ and $x=\pi$ is $x=0$. An x-intercept is 0 and the graph passes through $(0,0)$.
Step 3 Find points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. These points have \boldsymbol{y}-coordinates of $\boldsymbol{- A}$ and \boldsymbol{A}. Because A, the coefficient of the tangent in $y=2 \tan \frac{x}{2}$, is 2 , these points have y-coordinates of -2 and 2 . The graph passes through $\left(-\frac{\pi}{2},-2\right)$ and $\left(\frac{\pi}{2}, 2\right)$.
Step 4 Use steps 1-3 to graph one full period of the function. We use the two consecutive asymptotes, $x=-\pi$ and $x=\pi$, an x-intercept of 0 , and points midway between the x-intercept and asymptotes with y-coordinates of -2 and 2 . We graph one period of $y=2 \tan \frac{x}{2}$ from $-\pi$ to π. In order to graph for $-\pi<x<3 \pi$, we continue the pattern and extend the graph another full period to the right. The graph is shown in Figure 4.79.
\int Check Point 1 Graph $y=3 \tan 2 x$ for $-\frac{\pi}{4}<x<\frac{3 \pi}{4}$.

EXAMPLE 2 Graphing a Tangent Function

Graph two full periods of $y=\tan \left(x+\frac{\pi}{4}\right)$.

SOLUTION

FIGURE 4.80 The graph is shown for two full periods.

The graph of $y=\tan \left(x+\frac{\pi}{4}\right)$ is the graph of $y=\tan x$ shifted horizontally to the left $\frac{\pi}{4}$ units. Refer to Figure 4.80 as you read each step.
Step 1 Find two consecutive asymptotes. We do this by finding an interval containing one period.

$$
\begin{array}{ll}
-\frac{\pi}{2}<x+\frac{\pi}{4}<\frac{\pi}{2} & \text { Set up the inequality }-\frac{\pi}{2}<\text { variable expression in tangent }<\frac{\pi}{2} . \\
-\frac{\pi}{2}-\frac{\pi}{4}<x<\frac{\pi}{2}-\frac{\pi}{4} & \text { Subtract } \frac{\pi}{4} \text { from all parts and solve for x. } \\
-\frac{3 \pi}{4}<x<\frac{\pi}{4} & \text { Simplify: }-\frac{\pi}{2}-\frac{\pi}{4}=-\frac{2 \pi}{4}-\frac{\pi}{4}=-\frac{3 \pi}{4} \\
& \text { and } \frac{\pi}{2}-\frac{\pi}{4}=\frac{2 \pi}{4}-\frac{\pi}{4}=\frac{\pi}{4} .
\end{array}
$$

An interval containing one period is $\left(-\frac{3 \pi}{4}, \frac{\pi}{4}\right)$. Thus, two consecutive asymptotes occur at $x=-\frac{3 \pi}{4}$ and $x=\frac{\pi}{4}$.
Step 2 Identify an x-intercept, midway between the consecutive asymptotes.

$$
x \text {-intercept }=\frac{-\frac{3 \pi}{4}+\frac{\pi}{4}}{2}=\frac{-\frac{2 \pi}{4}}{2}=-\frac{2 \pi}{8}=-\frac{\pi}{4}
$$

An x-intercept is $-\frac{\pi}{4}$ and the graph passes through $\left(-\frac{\pi}{4}, 0\right)$.
Step 3 Find points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. These points have \boldsymbol{y}-coordinates of $\boldsymbol{-} \boldsymbol{A}$ and \boldsymbol{A}. Because A, the coefficient of the tangent in $y=\tan \left(x+\frac{\pi}{4}\right)$, is 1 , these points have y-coordinates of -1 and 1. They are shown as blue dots in Figure 4.80.
Step 4 Use steps 1-3 to graph one full period of the function. We use the two consecutive asymptotes, $x=-\frac{3 \pi}{4}$ and $x=\frac{\pi}{4}$, to graph one full period of $y=\tan \left(x+\frac{\pi}{4}\right)$ from $-\frac{3 \pi}{4}$ to $\frac{\pi}{4}$. We graph two full periods by continuing the pattern and extending the graph another full period to the right. The graph is shown in Figure 4.80.

$$
W \text { Check Point } 2 \text { Graph two full periods of } y=\tan \left(x-\frac{\pi}{2}\right) \text {. }
$$

(3) Understand the graph
of $y=\cot x$.

The Graph of $\boldsymbol{y}=\cot \boldsymbol{x}$

Like the tangent function, the cotangent function, $y=\cot x$, has a period of π. The graph and its main characteristics are shown in the following box.

The Cotangent Curve: The Graph of $y=\cot x$ and Its Characteristics

Characteristics

- Period: π
- Domain: All real numbers except integral multiples of π
- Range: All real numbers
- Vertical asymptotes at integral multiples of π
- An \boldsymbol{x}-intercept occurs midway between each pair of consecutive asymptotes.
- Odd function with origin symmetry
- Points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes have y-coordinates of 1 and -1 , respectively.

(4) Graph variations of $y=\cot x$. Graphing Variations of $y=\cot x$

We use the characteristics of the cotangent curve to graph cotangent functions of the form $y=A \cot (B x-C)$.

Graphing $y=A \cot (B x-C), B>0$

1. Find two consecutive asymptotes by finding an interval containing one full period:

$$
0<B x-C<\pi
$$

A pair of consecutive asymptotes occurs at

$$
B x-C=0 \text { and } B x-C=\pi .
$$

2. Identify an x-intercept, midway between the consecutive asymptotes.
3. Find the points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. These points have y-coordinates of A and $-A$, respectively.
4. Use steps $1-3$ to graph one full period of the function. Add additional cycles to the left or right as needed.

EXAMPLE 3 Graphing a Cotangent Function

Graph $y=3 \cot 2 x$.

SOLUTION

Step 1 Find two consecutive asymptotes. We do this by finding an interval containing one period.

$$
\begin{array}{ll}
0<2 x<\pi & \text { Set up the inequality } 0<\text { variable expression in cotangent }<\pi . \\
0<x<\frac{\pi}{2} & \text { Divide all parts by } 2 \text { and solve for } x .
\end{array}
$$

FIGURE 4.81 The graph of $y=3 \cot 2 x$

An interval containing one period is $\left(0, \frac{\pi}{2}\right)$. Thus, two consecutive asymptotes occur at $x=0$ and $x=\frac{\pi}{2}$, shown in Figure 4.81.

Step 2 Identify an \boldsymbol{x}-intercept, midway between the consecutive asymptotes. Midway between $x=0$ and $x=\frac{\pi}{2}$ is $x=\frac{\pi}{4}$. An x-intercept is $\frac{\pi}{4}$ and the graph passes through $\left(\frac{\pi}{4}, 0\right)$.
Step 3 Find points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes. These points have \boldsymbol{y}-coordinates of \boldsymbol{A} and $\boldsymbol{-} \boldsymbol{A}$. Because A, the coefficient of the cotangent in $y=3 \cot 2 x$, is 3 , these points have y-coordinates of 3 and -3. They are shown as blue dots in Figure 4.81.
Step 4 Use steps $\mathbf{1} \mathbf{- 3}$ to graph one full period of the function. We use the two consecutive asymptotes, $x=0$ and $x=\frac{\pi}{2}$, to graph one full period of $y=3 \cot 2 x$. This curve is repeated to the left and right, as shown in Figure 4.81.

Φ Check Point 3 Graph $y=\frac{1}{2} \cot \frac{\pi}{2} x$.

(5) Understand the graphs of $y=\csc x$ and $y=\sec x$.

The Graphs of $y=\csc x$ and $y=\sec x$

We obtain the graphs of the cosecant and secant curves by using the reciprocal identities

$$
\csc x=\frac{1}{\sin x} \quad \text { and } \quad \sec x=\frac{1}{\cos x}
$$

The identity $\csc x=\frac{1}{\sin x}$ tells us that the value of the cosecant function $y=\csc x$ at a given value of x equals the reciprocal of the corresponding value of the sine function, provided that the value of the sine function is not 0 . If the value of $\sin x$ is 0 , then at each of these values of x, the cosecant function is not defined. A vertical asymptote is associated with each of these values on the graph of $y=\csc x$.

We obtain the graph of $y=\csc x$ by taking reciprocals of the y-values in the graph of $y=\sin x$. Vertical asymptotes of $y=\csc x$ occur at the x-intercepts of $y=\sin x$. Likewise, we obtain the graph of $y=\sec x$ by taking the reciprocal of $y=\cos x$. Vertical asymptotes of $y=\sec x$ occur at the x-intercepts of $y=\cos x$. The graphs of $y=\csc x$ and $y=\sec x$ and their key characteristics are shown in the following boxes. We have used dashed red curves to graph $y=\sin x$ and $y=\cos x$ first, drawing vertical asymptotes through the x-intercepts.

The Cosecant Curve: The Graph of $y=\csc x$ and Its Characteristics

Characteristics

- Period: 2π
- Domain: All real numbers except integral multiples of π
- Range: All real numbers y such that $y \leq-1$ or $y \geq 1:(-\infty,-1] \cup[1, \infty)$
- Vertical asymptotes at integral multiples of π
- Odd function, $\csc (-x)=-\csc x$, with origin symmetry

6) Graph variations of $y=\csc x$ and $y=\sec x$.

x-intercepts correspond to vertical asymptotes.

Graphing Variations of $y=\csc x$ and $y=\sec x$

We use graphs of functions involving the corresponding reciprocal functions to obtain graphs of cosecant and secant functions. To graph a cosecant or secant curve, begin by graphing the function where cosecant or secant is replaced by its reciprocal function. For example, to graph $y=2 \csc 2 x$, we use the graph of $y=2 \sin 2 x$.
Likewise, to graph $y=-3 \sec \frac{x}{2}$, we use the graph of $y=-3 \cos \frac{x}{2}$.
Figure 4.82 illustrates how we use a sine curve to obtain a cosecant curve. Notice that

- x-intercepts on the red sine curve correspond to vertical asymptotes of the blue cosecant curve.
- A maximum point on the red sine curve corresponds to a minimum point on a continuous portion of the blue cosecant curve.
- A minimum point on the red sine curve corresponds to a maximum point on a continuous portion of the blue cosecant curve.

EXAMPLE 4 Using a Sine Curve to Obtain a Cosecant Curve

Use the graph of $y=2 \sin 2 x$ in Figure 4.83 to obtain the graph of $y=2 \csc 2 x$.

FIGURE 4.82

SOLUTION

We begin our work in Figure 4.84 by showing the given graph, the graph of $y=2 \sin 2 x$, using dashed red lines. The x-intercepts of $y=2 \sin 2 x$ correspond to the vertical asymptotes of $y=2 \csc 2 x$. Thus, we draw vertical asymptotes through the x-intercepts, shown in Figure 4.84. Using the asymptotes as guides, we sketch the graph of $y=2 \csc 2 x$ in Figure 4.84.
$\$$ Check Point 4 Use the graph of $y=\sin \left(x+\frac{\pi}{4}\right)$, shown on the right, to obtain the graph of $y=\csc \left(x+\frac{\pi}{4}\right)$.

We use a cosine curve to obtain a secant curve in exactly the same way we used a sine curve to obtain a cosecant curve. Thus,

- x-intercepts on the cosine curve correspond to vertical asymptotes on the secant curve.
- A maximum point on the cosine curve corresponds to a minimum point on a continuous portion of the secant curve.
- A minimum point on the cosine curve corresponds to a maximum point on a continuous portion of the secant curve.

EXAMPLE 5 Graphing a Secant Function

Graph $y=-3 \sec \frac{x}{2}$ for $-\pi<x<5 \pi$.

SOLUTION

We begin by graphing the function $y=-3 \cos \frac{x}{2}$, where secant has been replaced by cosine, its reciprocal function. This equation is of the form $y=A \cos B x$ with $A=-3$ and $B=\frac{1}{2}$.

$$
\begin{aligned}
& \text { amplitude: }|A|=|-3|=3 \\
& \text { period: } \quad \frac{2 \pi}{B}=\frac{2 \pi}{\frac{1}{2}}=4 \pi \\
& \begin{array}{l}
\text { The maximum value of } y \text { is } 3 \\
\text { and the minimum is }-3 \text {. }
\end{array} \\
& \text { Each cycle is of length } 4 \pi \text {. }
\end{aligned}
$$

We use quarter-periods, $\frac{4 \pi}{4}$, or π, to find the x-values for the five key points. Starting with $x=0$, the x-values are $0, \pi, 2 \pi, 3 \pi$, and 4π. Evaluating the function $y=-3 \cos \frac{x}{2}$ at each of these values of x, the key points are

$$
(0,-3),(\pi, 0),(2 \pi, 3),(3 \pi, 0), \text { and }(4 \pi,-3)
$$

We use these key points to graph $y=-3 \cos \frac{x}{2}$ from 0 to 4π, shown using a dashed red line in Figure 4.85. In order to graph $y=-3 \sec \frac{x}{2}$ for $-\pi<x<5 \pi$, extend the dashed red graph of the cosine function π units to the left and π units to the right. Now use this dashed red graph to obtain the graph of the corresponding secant function, its reciprocal function. Draw vertical asymptotes through the x-intercepts. Using these asymptotes as guides, the graph of $y=-3 \sec \frac{x}{2}$ is shown in blue in Figure 4.85.

FIGURE 4.85 Using a cosine curve to graph $y=-3 \sec \frac{x}{2}$
\int Check Point 5 Graph $y=2 \sec 2 x$ for $-\frac{3 \pi}{4}<x<\frac{3 \pi}{4}$.

The Six Curves of Trigonometry

Table 4.6 summarizes the graphs of the six trigonometric functions. Below each of the graphs is a description of the domain, range, and period of the function.

Table 4.6 Graphs of the Six Trigonometric Functions

Domain: all real numbers: $(-\infty, \infty)$ Range: [$-1,1$] Period: 2π	Domain: all real numbers: $(-\infty, \infty)$ Range: [$-1,1$] Period: 2π	Domain: all real numbers except odd multiples of $\frac{\pi}{2}$ Range: all real numbers Period: π
Domain: all real numbers except integral multiples of π Range: all real numbers Period: π	Domain: all real numbers except integral multiples of π Range: $(-\infty,-1] \cup[1, \infty)$ Period: 2π	Domain: all real numbers except odd multiples of $\frac{\pi}{2}$ Range: $(-\infty,-1] \cup[1, \infty)$ Period: 2π

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. In order to graph $y=\frac{1}{2} \tan 2 x$, an interval containing one period is found by solving $-\frac{\pi}{2}<2 x<\frac{\pi}{2}$.

An interval containing one period is \qquad Thus, two consecutive asymptotes occur at $x=$ \qquad and $x=$ \qquad -.
2. An interval containing one period of $y=\tan \left(x-\frac{\pi}{2}\right)$ is \qquad .Thus, two consecutive asymptotes occur at $x=$ \qquad and $x=$ \qquad .

- arran

3. In order to graph $y=3 \cot \frac{\pi}{2} x$, an interval containing one period is found by solving $0<\frac{\pi}{2} x<\pi$. An interval containing one period is \qquad Thus, two consecutive asymptotes occur at $x=$ \qquad and $x=$ \qquad -.
4. An interval containing one period of $y=4 \cot \left(x+\frac{\pi}{4}\right)$ is \qquad Thus, two consecutive asymptotes occur and $x=$ \qquad -.
at $x=$ \qquad and $x=$.
5. It is easiest to graph $y=3 \csc 2 x$ by first graphing $y=$ \qquad
6. It is easiest to graph $y=2 \sec \pi x$ by first graphing \qquad -.
7. True or false: The graphs of $y=\sec \frac{x}{2}$ and $y=\cos \frac{x}{2}$ are identical. \qquad
8. True or false: The graph of $y=2 \sin 2 x$ has an x-intercept at $\frac{\pi}{2}$, so $x=\frac{\pi}{2}$ is a vertical asymptote of $y=2 \csc 2 x$. \qquad

EXERCISE SET 4.6

Practice Exercises

In Exercises 1-4, the graph of a tangent function is given. Select the equation for each graph from the following options:

$$
y=\tan \left(x+\frac{\pi}{2}\right), \quad y=\tan (x+\pi), \quad y=-\tan x, \quad y=-\tan \left(x-\frac{\pi}{2}\right)
$$

1.

2.

3.

4.

In Exercises 5-12, graph two periods of the given tangent function.
5. $y=3 \tan \frac{x}{4}$
6. $y=2 \tan \frac{x}{4}$
7. $y=\frac{1}{2} \tan 2 x$
8. $y=2 \tan 2 x$
9. $y=-2 \tan \frac{1}{2} x$
10. $y=-3 \tan \frac{1}{2} x$
11. $y=\tan (x-\pi)$
12. $y=\tan \left(x-\frac{\pi}{4}\right)$

In Exercises 13-16, the graph of a cotangent function is given. Select the equation for each graph from the following options:

$$
y=\cot \left(x+\frac{\pi}{2}\right), \quad y=\cot (x+\pi), \quad y=-\cot x, \quad y=-\cot \left(x-\frac{\pi}{2}\right)
$$

13.

14.

15.

16.

In Exercises 17-24, graph two periods of the given cotangent function.
17. $y=2 \cot x$
18. $y=\frac{1}{2} \cot x$
19. $y=\frac{1}{2} \cot 2 x$
20. $y=2 \cot 2 x$
21. $y=-3 \cot \frac{\pi}{2} x$
22. $y=-2 \cot \frac{\pi}{4} x$
23. $y=3 \cot \left(x+\frac{\pi}{2}\right)$
24. $y=3 \cot \left(x+\frac{\pi}{4}\right)$

In Exercises 25-28, use each graph to obtain the graph of the corresponding reciprocal function, cosecant or secant. Give the equation of the function for the graph that you obtain.
25.

26.

27.

28.

In Exercises 29-44, graph two periods of the given cosecant or secant function.
29. $y=3 \csc x$
30. $y=2 \csc x$
31. $y=\frac{1}{2} \csc \frac{x}{2}$
32. $y=\frac{3}{2} \csc \frac{x}{4}$
33. $y=2 \sec x$
34. $y=3 \sec x$
35. $y=\sec \frac{x}{3}$
36. $y=\sec \frac{x}{2}$
37. $y=-2 \csc \pi x$
38. $y=-\frac{1}{2} \csc \pi x$
39. $y=-\frac{1}{2} \sec \pi x$
40. $y=-\frac{3}{2} \sec \pi x$
41. $y=\csc (x-\pi)$
42. $y=\csc \left(x-\frac{\pi}{2}\right)$
43. $y=2 \sec (x+\pi)$

Practice Plus

In Exercises 45-52, graph two periods of each function.
45. $y=2 \tan \left(x-\frac{\pi}{6}\right)+1$
46. $y=2 \cot \left(x+\frac{\pi}{6}\right)-1$
47. $y=\sec \left(2 x+\frac{\pi}{2}\right)-1$
48. $y=\csc \left(2 x-\frac{\pi}{2}\right)+1$
49. $y=\csc |x|$
50. $y=\sec |x|$
51. $y=\left|\cot \frac{1}{2} x\right|$
52. $y=\left|\tan \frac{1}{2} x\right|$

In Exercises 53-54, let $f(x)=2 \sec x, g(x)=-2 \tan x$, and $h(x)=2 x-\frac{\pi}{2}$.
53. Graph two periods of

$$
y=(f \circ h)(x) .
$$

54. Graph two periods of

$$
y=(g \circ h)(x)
$$

In Exercises 55-58, use a graph to solve each equation for
$-2 \pi \leq x \leq 2 \pi$.
55. $\tan x=-1$
56. $\cot x=-1$
57. $\csc x=1$
58. $\sec x=1$

Application Exercises

59. An ambulance with a rotating beam of light is parked 12 feet from a building. The function

$$
d=12 \tan 2 \pi t
$$

describes the distance, d, in feet, of the rotating beam of light from point C after t seconds.
a. Graph the function on the interval $[0,2]$.
b. For what values of t in $[0,2]$ is the function undefined? What does this mean in terms of the rotating beam of light in the figure shown?

60. The angle of elevation from the top of a house to a jet flying 2 miles above the house is x radians. If d represents the horizontal distance, in miles, of the jet from the house, express d in terms of a trigonometric function of x. Then graph the function for $0<x<\pi$.
61. Your best friend is marching with a band and has asked you to film him. The figure below shows that you have set yourself up 10 feet from the street where your friend will be passing from left to right. If d represents your distance, in feet, from your friend and x is the radian measure of the angle shown, express d in terms of a trigonometric function of x. Then graph the function for $-\frac{\pi}{2}<x<\frac{\pi}{2}$. Negative angles indicate that your marching buddy is on your left.

In Exercises 62-64, sketch a reasonable graph that models the

 given situation.62. The number of hours of daylight per day in your hometown over a two-year period
63. The motion of a diving board vibrating 10 inches in each direction per second just after someone has dived off
64. The distance of a rotating beam of light from a point on a wall (See the figure for Exercise 59.)

Writing in Mathematics

65. Without drawing a graph, describe the behavior of the basic tangent curve.
66. If you are given the equation of a tangent function, how do you find a pair of consecutive asymptotes?
67. If you are given the equation of a tangent function, how do you identify an x-intercept?
68. Without drawing a graph, describe the behavior of the basic cotangent curve.
69. If you are given the equation of a cotangent function, how do you find a pair of consecutive asymptotes?
70. Explain how to determine the range of $y=\csc x$ from the graph. What is the range?
71. Explain how to use a sine curve to obtain a cosecant curve. Why can the same procedure be used to obtain a secant curve from a cosine curve?
72. Scientists record brain activity by attaching electrodes to the scalp and then connecting these electrodes to a machine. The brain activity recorded with this machine is shown in the three graphs. Which trigonometric functions would be most appropriate for describing the oscillations in brain activity? Describe similarities and differences among these functions when modeling brain activity when awake, during dreaming sleep, and during non-dreaming sleep.

Technology Exercises

In working Exercises 73-76, describe what happens at the asymptotes on the graphing utility. Compare the graphs in the connected and dot modes.
73. Use a graphing utility to verify any two of the tangent curves that you drew by hand in Exercises 5-12.
74. Use a graphing utility to verify any two of the cotangent curves that you drew by hand in Exercises 17-24.
75. Use a graphing utility to verify any two of the cosecant curves that you drew by hand in Exercises 29-44.
76. Use a graphing utility to verify any two of the secant curves that you drew by hand in Exercises 29-44.

In Exercises 77-82, use a graphing utility to graph each function. Use a viewing rectangle that shows the graph for at least two periods.
77. $y=\tan \frac{x}{4}$
78. $y=\tan 4 x$
79. $y=\cot 2 x$
80. $y=\cot \frac{x}{2}$
81. $y=\frac{1}{2} \tan \pi x$
82. $y=\frac{1}{2} \tan (\pi x+1)$

In Exercises 83-86, use a graphing utility to graph each pair of functions in the same viewing rectangle. Use a viewing rectangle that shows the graphs for at least two periods.
83. $y=0.8 \sin \frac{x}{2}$ and $y=0.8 \csc \frac{x}{2}$
84. $y=-2.5 \sin \frac{\pi}{3} x$ and $y=-2.5 \csc \frac{\pi}{3} x$
85. $y=4 \cos \left(2 x-\frac{\pi}{6}\right)$ and $y=4 \sec \left(2 x-\frac{\pi}{6}\right)$
86. $y=-3.5 \cos \left(\pi x-\frac{\pi}{6}\right)$ and $y=-3.5 \sec \left(\pi x-\frac{\pi}{6}\right)$
87. Carbon dioxide particles in our atmosphere trap heat and raise the planet's temperature. Even if all greenhousegas emissions miraculously ended today, the planet would continue to warm through the rest of the century because of the amount of carbon we have already added to the atmosphere. Carbon dioxide accounts for about half of global warming. The function

$$
y=2.5 \sin 2 \pi x+0.0216 x^{2}+0.654 x+316
$$

models carbon dioxide concentration, y, in parts per million, where $x=0$ represents January 1960; $x=\frac{1}{12}$, February 1960; $x=\frac{2}{12}$, March 1960; $\ldots, x=1$, January 1961; $x=\frac{13}{12}$, February 1961; and so on. Use a graphing utility to graph the function in a $[30,48,5]$ by $[310,420,5]$ viewing rectangle. Describe what the graph reveals about carbon dioxide concentration from 1990 through 2008.
88. Graph $y=\sin \frac{1}{x}$ in a $[-0.2,0.2,0.01]$ by $[-1.2,1.2,0.01]$ viewing rectangle. What is happening as x approaches 0 from the left or the right? Explain this behavior.

Critical Thinking Exercises

Make Sense? In Exercises 89-92, determine whether each statement makes sense or does not make sense, and explain your reasoning.
89. I use the pattern
asymptote, $-A, x$-intercept, A, asymptote
to graph one full period of $y=A \tan (B x-C)$.
90. After using the four-step procedure to graph $y=-\cot \left(x+\frac{\pi}{4}\right)$, I checked my graph by verifying it was the graph of $y=\cot x$ shifted left $\frac{\pi}{4}$ unit and reflected about the x-axis.
91. I used the graph of $y=3 \cos 2 x$ to obtain the graph of $y=3 \csc 2 x$.
92. I used a tangent function to model the average monthly temperature of New York City, where $x=1$ represents January, $x=2$ represents February, and so on.

In Exercises 93-94, write an equation for each blue graph.
93.

94.

In Exercises 95-96, write the equation for a cosecant function satisfying the given conditions.
95. period: 3π; range: $(-\infty,-2] \cup[2, \infty)$
96. period: 2 ; range: $(-\infty,-\pi] \cup[\pi, \infty)$
97. Determine the range of the following functions. Then give a viewing rectangle, or window, that shows two periods of the function's graph.
a. $f(x)=\sec \left(3 x+\frac{\pi}{2}\right)$
b. $g(x)=3 \sec \pi\left(x+\frac{1}{2}\right)$
98. For $x>0$, what effect does 2^{-x} in $y=2^{-x} \sin x$ have on the graph of $y=\sin x$? What kind of behavior can be modeled by a function such as $y=2^{-x} \sin x$?

Preview Exercises

Exercises 99-101 will help you prepare for the material covered in the next section.
99. a. Graph $y=\sin x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
b. Based on your graph in part (a), does $y=\sin x$ have an inverse function if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?
Explain your answer.
c. Determine the angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $-\frac{1}{2}$. Identify this information as a point on your graph in part (a).
100. a. Graph $y=\cos x$ for $0 \leq x \leq \pi$.
b. Based on your graph in part (a), does $y=\cos x$ have an inverse function if the domain is restricted to $[0, \pi]$? Explain your answer.
c. Determine the angle in the interval $[0, \pi]$ whose cosine is $-\frac{\sqrt{3}}{2}$. Identify this information as a point on your graph in part (a).
101. a. Graph $y=\tan x$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
b. Based on your graph in part (a), does $y=\tan x$ have an inverse function if the domain is restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$?
Explain your answer. Explain your answer.
c. Determine the angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is $-\sqrt{3}$. Identify this information as a point on your graph in part (a).

SECTION 4.7

Objectives

(1) Understand and use the inverse sine function.
(2) Understand and use the inverse cosine function.
(3) Understand and use the inverse tangent function.
(4) Use a calculator to evaluate inverse trigonometric functions.
(5) Find exact values of composite functions with inverse trigonometric functions.
(1) Understand and use the inverse sine function.

FIGURE 4.87 The restricted sine function passes the horizontal line test. It is one-to-one and has an inverse function.

Inverse Trigonometric Functions

Movies are very much a visual medium. Though music and sound effects are important to the experience, the power of film is captured by the phrase "watching the movie." Where in the theater should you sit to maximize the visual impact of the astonishing worlds created by film? In this section's Exercise Set, you will see how an inverse trigonometric function can enhance your movie-going experience.

GREAT QUESTION!

What are the most important things I should already know about inverse functions?
Here are some helpful things to remember from our earlier discussion of inverse functions.

- If no horizontal line intersects the graph of a function more than once, the function is one-to-one and has an inverse function.
- If the point (a, b) is on the graph of f, then the point (b, a) is on the graph of the inverse function, denoted f^{-1}. The graph of f^{-1} is a reflection of the graph of f about the line $y=x$.

The Inverse Sine Function

Figure 4.86 shows the graph of $y=\sin x$. Can you see that every horizontal line that can be drawn between -1 and 1 intersects the graph infinitely many times? Thus, the sine function is not one-to-one and has no inverse function.

FIGURE 4.86 The horizontal line test shows that the sine function is not one-to-one and has no inverse function.

In Figure 4.87, we have taken a portion of the sine curve, restricting the domain of the sine function to $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. With this restricted domain, every horizontal line that can be drawn between -1 and 1 intersects the graph exactly once. Thus, the restricted function passes the horizontal line test and is one-to-one.

On the restricted domain $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, y=\sin x$ has an inverse function. The inverse of the restricted sine function is called the inverse sine function. Two notations are commonly used to denote the inverse sine function:

$$
y=\sin ^{-1} x \quad \text { or } \quad y=\arcsin x
$$

In this text, we will use $y=\sin ^{-1} x$. This notation has the same symbol as the inverse function notation $f^{-1}(x)$.

The Inverse Sine Function

The inverse sine function, denoted by $\sin ^{-1}$, is the inverse of the restricted sine function $y=\sin x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Thus,

$$
y=\sin ^{-1} x \quad \text { means } \quad \sin y=x
$$

where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ and $-1 \leq x \leq 1$. We read $y=\sin ^{-1} x$ as " y equals the inverse sine at x."

GREAT QUESTION!

Is $\sin ^{-1} x$ the same thing as $\frac{1}{\sin x}$?

No. The notation $y=\sin ^{-1} x$ does not mean $y=\frac{1}{\sin x}$. The notation $y=\frac{1}{\sin x}$, or the reciprocal of the sine function, is written $y=(\sin x)^{-1}$ and means $y=\csc x$.

Inverse sine function

Reciprocal of sine function

$$
y=\sin ^{-1} x \quad y=(\sin x)^{-1}=\frac{1}{\sin x}=\csc x
$$

One way to graph $y=\sin ^{-1} x$ is to take points on the graph of the restricted sine function and reverse the order of the coordinates. For example, Figure 4.88 shows that $\left(-\frac{\pi}{2},-1\right),(0,0)$, and $\left(\frac{\pi}{2}, 1\right)$ are on the graph of the restricted sine function. Reversing the order of the coordinates gives $\left(-1,-\frac{\pi}{2}\right),(0,0)$, and $\left(1, \frac{\pi}{2}\right)$. We now use these three points to sketch the inverse sine function. The graph of $y=\sin ^{-1} x$ is shown in Figure 4.89.

Another way to obtain the graph of $y=\sin ^{-1} x$ is to reflect the graph of the restricted sine function about the line $y=x$, shown in Figure 4.90. The red graph is the restricted sine function and the blue graph is the graph of $y=\sin ^{-1} x$.

FIGURE 4.89 The graph of the inverse sine function

FIGURE 4.90 Using a reflection to obtain the graph of the inverse sine function

Exact values of $\sin ^{-1} x$ can be found by thinking of $\sin ^{-1} x$ as the angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is \boldsymbol{x}. For example, we can use the two endpoints on the blue graph of the inverse sine function in Figure 4.89 to write

$$
\begin{array}{cc}
\sin ^{-1}(-1)=-\frac{\pi}{2} & \text { and } \sin ^{-1} 1=\frac{\pi}{2} . \\
\begin{array}{cc}
\text { The angle whose } \\
\text { sine is }-1 \text { is }-\frac{\pi}{2} . & \begin{array}{l}
\text { The angle whose } \\
\text { sine is } 1 \text { is } \frac{\pi}{2} .
\end{array}
\end{array} .
\end{array}
$$

Because we are thinking of $\sin ^{-1} x$ in terms of an angle, we will represent such an angle by θ.

Finding Exact Values of $\sin ^{-1} x$

1. Let $\theta=\sin ^{-1} x$.
2. Rewrite $\theta=\sin ^{-1} x$ as $\sin \theta=x$, where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
3. Use the exact values in Table 4.7 to find the value of θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that
satisfies $\sin \theta=x$.

Table 4.7 Exact Values for $\sin \boldsymbol{\theta},-\frac{\pi}{2} \leq \boldsymbol{\theta} \leq \frac{\pi}{2}$

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

EXAMPLE 1 Finding the Exact Value of an Inverse Sine Function

Find the exact value of $\sin ^{-1} \frac{\sqrt{2}}{2}$.

SOLUTION

Step 1 Let $\theta=\sin ^{-1} x$. Thus,

$$
\theta=\sin ^{-1} \frac{\sqrt{2}}{2}
$$

We must find the angle $\theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, whose sine equals $\frac{\sqrt{2}}{2}$.
Step 2 Rewrite $\theta=\sin ^{-1} x$ as $\sin \theta=x$, where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Using the definition of the inverse sine function, we rewrite $\theta=\sin ^{-1} \frac{\sqrt{2}}{2}$ as

$$
\sin \theta=\frac{\sqrt{2}}{2}, \text { where }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} .
$$

Step 3 Use the exact values in Table 4.7 to find the value of θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta=\boldsymbol{x}$. Table 4.7 shows that the only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta=\frac{\sqrt{2}}{2}$ is $\frac{\pi}{4}$. Thus, $\theta=\frac{\pi}{4}$. Because θ, in step 1 , represents $\sin ^{-1} \frac{\sqrt{2}}{2}$, we conclude that

$$
\sin ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4} . \quad \text { The angle in }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { whose sine is } \frac{\sqrt{2}}{2} \text { is } \frac{\pi}{4} .
$$

σ Check Point 1 Find the exact value of $\sin ^{-1} \frac{\sqrt{3}}{2}$.
EXAMPLE 2 Finding the Exact Value of an Inverse Sine Function Find the exact value of $\sin ^{-1}\left(-\frac{1}{2}\right)$.

SOLUTION

Step 1 Let $\theta=\sin ^{-1} x$. Thus,

$$
\theta=\sin ^{-1}\left(-\frac{1}{2}\right)
$$

We must find the angle $\theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, whose sine equals $-\frac{1}{2}$.
Step 2 Rewrite $\theta=\sin ^{-1} \boldsymbol{x}$ as $\sin \theta=\boldsymbol{x}$, where $-\frac{\boldsymbol{\pi}}{\mathbf{2}} \leq \boldsymbol{\theta} \leq \frac{\boldsymbol{\pi}}{\mathbf{2}}$. We rewrite $\theta=\sin ^{-1}\left(-\frac{1}{2}\right)$ and obtain

$$
\sin \theta=-\frac{1}{2} \text {, where }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} .
$$

Step 3 Use the exact values in Table 4.7 to find the value of θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
that satisfies $\sin \theta=\boldsymbol{x}$. Table 4.7 shows that the only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta=-\frac{1}{2}$ is $-\frac{\pi}{6}$. Thus,

$$
\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6} .
$$

$\$$ Check Point 2 Find the exact value of $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$.

Some inverse sine expressions cannot be evaluated. Because the domain of the inverse sine function is $[-1,1]$, it is only possible to evaluate $\sin ^{-1} x$ for values of x in this domain. Thus, $\sin ^{-1} 3$ cannot be evaluated. There is no angle whose sine is 3 .

The Inverse Cosine Function

Figure 4.91 shows how we restrict the domain of the cosine function so that it becomes one-to-one and has an inverse function. Restrict the domain to the interval $[0, \pi]$, shown by the dark blue graph. Over this interval, the restricted cosine function passes the horizontal line test and has an inverse function.

FIGURE $4.91 y=\cos x$ is one-to-one on the interval $[0, \pi]$.

The Inverse Cosine Function

The inverse cosine function, denoted by $\cos ^{-1}$, is the inverse of the restricted cosine function $y=\cos x, 0 \leq x \leq \pi$. Thus,

$$
y=\cos ^{-1} x \text { means } \cos y=x,
$$

where $0 \leq y \leq \pi$ and $-1 \leq x \leq 1$.

One way to graph $y=\cos ^{-1} x$ is to take points on the graph of the restricted cosine function and reverse the order of the coordinates. For example, Figure 4.92 shows that $(0,1),\left(\frac{\pi}{2}, 0\right)$, and $(\pi,-1)$ are on the graph of the restricted cosine function. Reversing the order of the coordinates gives $(1,0),\left(0, \frac{\pi}{2}\right)$, and $(-1, \pi)$.

We now use these three points to sketch the inverse cosine function. The graph of $y=\cos ^{-1} x$ is shown in Figure 4.93. You can also obtain this graph by reflecting the graph of the restricted cosine function about the line $y=x$.

Domain: $[0, \pi]$
Range: $[-1,1]$
FIGURE 4.92 The restricted cosine function

Domain: [$-1,1$]
Range: $[0, \pi]$
FIGURE 4.93 The graph of the inverse cosine function

Exact values of $\cos ^{-1} x$ can be found by thinking of $\cos ^{-1} \boldsymbol{x}$ as the angle in the interval $[0, \pi]$ whose cosine is x.

Finding Exact Values of $\cos ^{-1} x$

1. Let $\theta=\cos ^{-1} x$.
2. Rewrite $\theta=\cos ^{-1} x$ as $\cos \theta=x$, where $0 \leq \theta \leq \pi$.
3. Use the exact values in Table 4.8 to find the value of θ in $[0, \pi]$ that satisfies $\cos \theta=x$.

Table 4.8 Exact Values for $\cos \boldsymbol{\theta}, 0 \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$\cos \boldsymbol{\theta}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

EXAMPLE 3 Finding the Exact Value

 of an Inverse Cosine FunctionFind the exact value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$.

SOLUTION

Step 1 Let $\theta=\cos ^{-1} x$. Thus,

$$
\theta=\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)
$$

We must find the angle $\theta, 0 \leq \theta \leq \pi$, whose cosine equals $-\frac{\sqrt{3}}{2}$.
Step 2 Rewrite $\boldsymbol{\theta}=\cos ^{-1} \boldsymbol{x}$ as $\cos \boldsymbol{\theta}=\boldsymbol{x}$, where $\boldsymbol{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$. We obtain

$$
\cos \theta=-\frac{\sqrt{3}}{2}, \text { where } 0 \leq \theta \leq \pi
$$

Step 3 Use the exact values in Table 4.8 to find the value of $\boldsymbol{\theta}$ in $[0, \pi]$ that satisfies $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\boldsymbol{x}$. Table 4.8 shows that the only angle in the interval $[0, \pi]$ that satisfies $\cos \theta=-\frac{\sqrt{3}}{2}$ is $\frac{5 \pi}{6}$. Thus, $\theta=\frac{5 \pi}{6}$ and

$$
\begin{aligned}
\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6} . & \text { The angle in }[0, \pi] \text { whose cosine is } \\
& -\frac{\sqrt{3}}{2} \text { is } \frac{5 \pi}{6} .
\end{aligned}
$$

0 Check Point 3 Find the exact value of $\cos ^{-1}\left(-\frac{1}{2}\right)$.
3. Understand and use the inverse tangent function.

The Inverse Tangent Function

Figure 4.94 shows how we restrict the domain of the tangent function so that it becomes one-to-one and has an inverse function. Restrict the domain to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, shown by the solid blue graph. Over this interval, the restricted tangent function passes the horizontal line test and has an inverse function.

FIGURE $4.94 y=\tan x$ is one-to-one on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

The Inverse Tangent Function

The inverse tangent function, denoted by $\tan ^{-1}$, is the inverse of the restricted tangent function $y=\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}$. Thus,

$$
y=\tan ^{-1} x \quad \text { means } \quad \tan y=x
$$

where $-\frac{\pi}{2}<y<\frac{\pi}{2}$ and $-\infty<x<\infty$.

We graph $y=\tan ^{-1} x$ by taking points on the graph of the restricted function and reversing the order of the coordinates. Figure 4.95 shows that $\left(-\frac{\pi}{4},-1\right),(0,0)$, and $\left(\frac{\pi}{4}, 1\right)$ are on the graph of the restricted tangent function. Reversing the order gives $\left(-1,-\frac{\pi}{4}\right),(0,0)$, and $\left(1, \frac{\pi}{4}\right)$. We now use these three points to graph the inverse tangent function. The graph of $y=\tan ^{-1} x$ is shown in Figure 4.96. Notice that the vertical asymptotes become horizontal asymptotes for the graph of the inverse function.

FIGURE 4.95 The restricted tangent function

Domain: $(-\infty, \infty)$
Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
FIGURE 4.96 The graph of the inverse tangent function

Exact values of $\tan ^{-1} x$ can be found by thinking of $\boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$ as the angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x.

Finding Exact Values of $\tan ^{-1} x$

1. Let $\theta=\tan ^{-1} x$.
2. Rewrite $\theta=\tan ^{-1} x$ as $\tan \theta=x$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.
3. Use the exact values in Table 4.9 to find the value of θ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta=x$.

Table 4.9 Exact Values for $\tan \theta_{1}-\frac{\pi}{2}<\theta<\frac{\pi}{2}$

θ	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\tan \theta$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

EXAMPLE 4 Finding the Exact Value of an Inverse Tangent Function

Find the exact value of $\tan ^{-1} \sqrt{3}$.

SOLUTION

Step 1 Let $\boldsymbol{\theta}=\boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$. Thus,

$$
\theta=\tan ^{-1} \sqrt{3} .
$$

We must find the angle $\theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, whose tangent equals $\sqrt{3}$.
Step 2 Rewrite $\theta=\boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$ as $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=\boldsymbol{x}$, where $-\frac{\boldsymbol{\pi}}{\mathbf{2}}<\boldsymbol{\theta}<\frac{\boldsymbol{\pi}}{\mathbf{2}}$. We obtain

$$
\tan \theta=\sqrt{3}, \text { where }-\frac{\pi}{2}<\theta<\frac{\pi}{2} .
$$

Step 3 Use the exact values in Table 4.9 to find the value of θ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \boldsymbol{\theta}=\boldsymbol{x}$. Table 4.9 shows that the only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta=\sqrt{3}$ is $\frac{\pi}{3}$. Thus, $\theta=\frac{\pi}{3}$ and

$$
\begin{aligned}
\tan ^{-1} \sqrt{3}=\frac{\pi}{3} . & \begin{array}{l}
\text { The angle in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text { whose } \\
\\
\\
\text { tangent is } \sqrt{3} \text { is } \frac{\pi}{3} .
\end{array}
\end{aligned}
$$

GREAT QUESTION!

Are the domains of the restricted trigonometric functions the same as the intervals on which the nonrestricted functions complete one cycle?
Do not confuse the domains of the restricted trigonometric functions with the intervals on which the nonrestricted functions complete one cycle. They are only the same for the tangent function.

Trigonometric
Function

Domain of

Restricted Function

Interval on Which Nonrestricted Function's Graph Completes

One Period

$$
y=\sin x
$$

$$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

$$
[0, \pi]
$$

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

$[0,2 \pi]$

$$
[0,2 \pi]
$$

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Period: 2π

Period: 2π
These domain restrictions are the range for $y=\sin ^{-1} x$, $y=\cos ^{-1} x$, and $y=\tan ^{-1} x$, respectively.

0 Check Point 4 Find the exact value of $\tan ^{-1}(-1)$.

Table 4.10 summarizes the graphs of the three basic inverse trigonometric functions. Below each of the graphs is a description of the function's domain and range.
Table 4.10 Graphs of the Three Basic Inverse Trigonometric Functions

Domain: [$-1,1$] Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Domain: [-1, 1]
Range: $[0, \pi]$

Domain: $(-\infty, \infty)$
Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

4 Use a calculator to evaluate inverse trigonometric functions.
(5) Find exact values of composite functions with inverse trigonometric functions.

Using a Calculator to Evaluate Inverse Trigonometric Functions

Calculators give approximate values of inverse trigonometric functions. Use the secondary keys marked $\mathrm{SIN}^{-1}, \mathrm{COS}^{-1}$, and TAN^{-1}. These keys are not buttons that you actually press. They are the secondary functions for the buttons labeled SIN, COS, and TAN, respectively. Consult your manual for the location of this feature.

EXAMPLE 5 Calculators and Inverse Trigonometric Functions

Use a calculator to find the value to four decimal places of each function:
a. $\sin ^{-1} \frac{1}{4}$
b. $\tan ^{-1}(-9.65)$.

SOLUTION

Scientific Calculator Solution

Function

a. $\sin ^{-1} \frac{1}{4}$
b. $\tan ^{-1}(-9.65)$

Radian $9.65+/-2 \mathrm{nd}$ TAN
Graphing Calculator Solution

Function

a. $\sin ^{-1} \frac{1}{4}$
b. $\tan ^{-1}(-9.65)$

Mode

Radian
Radian
2nd TAN $(-) 9.65$ ENTER

Display, Rounded to Four Places

0.2527
-1.4675

Display, Rounded

 to Four Places0.2527
-1.4675
$\$$ Check Point 5 Use a calculator to find the value to four decimal places of each function:
a. $\cos ^{-1} \frac{1}{3}$
b. $\tan ^{-1}(-35.85)$.

GREAT QUESTION!

What happens if I attempt to evaluate an inverse trigonometric function at a value that is not in its domain?
In real number mode, most calculators will display an error message. For example, an error message can result if you attempt to approximate $\cos ^{-1} 3$. There is no angle whose cosine is 3 . The domain of the inverse cosine function is $[-1,1]$ and 3 does not belong to this domain.

Composition of Functions Involving

Inverse Trigonometric Functions

In our earlier discussion of functions and their inverses, we saw that

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x
$$

We apply these properties to the sine, cosine, tangent, and their inverse functions to obtain the following properties:

Inverse Properties

The Sine Function and Its Inverse

$$
\begin{array}{ll}
\sin \left(\sin ^{-1} x\right)=x & \text { for every } x \text { in the interval }[-1,1] \\
\sin ^{-1}(\sin x)=x & \text { for every } x \text { in the interval }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{array}
$$

The Cosine Function and Its Inverse

$$
\begin{array}{ll}
\cos \left(\cos ^{-1} x\right)=x & \text { for every } x \text { in the interval }[-1,1] \\
\cos ^{-1}(\cos x)=x & \text { for every } x \text { in the interval }[0, \pi]
\end{array}
$$

The Tangent Function and Its Inverse

$$
\begin{array}{ll}
\tan \left(\tan ^{-1} x\right)=x & \text { for every real number } x \\
\tan ^{-1}(\tan x)=x & \text { for every } x \text { in the interval }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}
$$

The restrictions on x in the inverse properties are a bit tricky. For example,

$$
\begin{aligned}
& \sin ^{-1}\left(\sin \frac{\pi}{4}\right)=\frac{\pi}{4} . \\
& \sin ^{-1}(\sin x)=x \text { for } x \text { in }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] . \\
& \text { Observe that } \frac{\pi}{4} \text { is in this interval. }
\end{aligned}
$$

Can we use $\sin ^{-1}(\sin x)=x$ to find the exact value of $\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right) ?$ Is $\frac{5 \pi}{4}$ in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$? No. Thus, to evaluate $\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)$, we must first find $\sin \frac{5 \pi}{4}$.

$$
\begin{aligned}
& \begin{array}{c}
\frac{5 \pi}{4} \text { is in quadrant III, } \\
\text { where the sine is negative. } \\
\sin \frac{5 \pi}{4}=-\sin \frac{\pi}{4}=-\frac{\sqrt{2}}{2} \\
\text { The reference angle } \\
\text { for } \frac{5 \pi}{4} \text { is } \frac{\pi}{4} .
\end{array} .
\end{aligned}
$$

We evaluate $\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)$ as follows:

$$
\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)=\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4} . \quad \begin{aligned}
& \text { If necessary, see Table } \\
& 4.7 \text { on page } 587 .
\end{aligned}
$$

To determine how to evaluate the composition of functions involving inverse trigonometric functions, first examine the value of x. You can use the inverse properties in the box only if x is in the specified interval.

EXAMPLE 6 Evaluating Compositions of Functions and Their Inverses

Find the exact value, if possible:
a. $\cos \left(\cos ^{-1} 0.6\right)$
b. $\sin ^{-1}\left(\sin \frac{3 \pi}{2}\right)$
c. $\cos \left(\cos ^{-1} 1.5\right)$.

SOLUTION

a. The inverse property $\cos \left(\cos ^{-1} x\right)=x$ applies for every x in $[-1,1]$. To evaluate $\cos \left(\cos ^{-1} 0.6\right)$, observe that $x=0.6$. This value of x lies in $[-1,1]$, which is the domain of the inverse cosine function. This means that we can use the inverse property $\cos \left(\cos ^{-1} x\right)=x$. Thus,

$$
\cos \left(\cos ^{-1} 0.6\right)=0.6 .
$$

b. The inverse property $\sin ^{-1}(\sin x)=x$ applies for every x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. To evaluate $\sin ^{-1}\left(\sin \frac{3 \pi}{2}\right)$, observe that $x=\frac{3 \pi}{2}$. This value of x does not lie in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. To evaluate this expression, we first find $\sin \frac{3 \pi}{2}$.

$$
\begin{aligned}
\sin ^{-1}\left(\sin \frac{3 \pi}{2}\right)=\sin ^{-1}(-1)=-\frac{\pi}{2} & \text { The angle in }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text { whose } \\
& \text { sine is }-1 \text { is }-\frac{\pi}{2} .
\end{aligned}
$$

c. The inverse property $\cos \left(\cos ^{-1} x\right)=x$ applies for every x in $[-1,1]$. To attempt to evaluate $\cos \left(\cos ^{-1} 1.5\right)$, observe that $x=1.5$. This value of x does not lie in $[-1,1]$, which is the domain of the inverse cosine function. Thus, the expression $\cos \left(\cos ^{-1} 1.5\right)$ is not defined because $\cos ^{-1} 1.5$ is not defined. ...
\oint Check Point 6 Find the exact value, if possible:
a. $\cos \left(\cos ^{-1} 0.7\right)$
b. $\sin ^{-1}(\sin \pi)$
c. $\cos \left[\cos ^{-1}(-1.2)\right]$.

We can use points on terminal sides of angles in standard position to find exact values of expressions involving the composition of a function and a different inverse function. Here are two examples:

$$
\cos \left(\tan ^{-1} \frac{5}{12}\right) \quad \cot \left[\sin ^{-1}\left(-\frac{1}{3}\right)\right] .
$$

> Inner part involves the
> angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
> whose tangent is $\frac{5}{12}$.

The inner part of each expression involves an angle. To evaluate such expressions, we represent such angles by θ. Then we use a sketch that illustrates our representation. Examples 7 and 8 show how to carry out such evaluations.

EXAMPLE 7 Evaluating a Composite Trigonometric Expression

Find the exact value of $\cos \left(\tan ^{-1} \frac{5}{12}\right)$.

SOLUTION

We let θ represent the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is $\frac{5}{12}$. Thus,

$$
\theta=\tan ^{-1} \frac{5}{12} .
$$

FIGURE 4.97 Representing $\tan \theta=\frac{5}{12}$

FIGURE 4.98 Representing $\sin \theta=-\frac{1}{3}$

We are looking for the exact value of $\cos \left(\tan ^{-1} \frac{5}{12}\right)$, with $\theta=\tan ^{-1} \frac{5}{12}$. Using the definition of the inverse tangent function, we can rewrite $\theta=\tan ^{-1} \frac{5}{12}$ as

$$
\tan \theta=\frac{5}{12}, \quad \text { where } \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

Because $\tan \theta$ is positive, θ must be an angle in $\left(0, \frac{\pi}{2}\right)$. Thus, θ is a first-quadrant angle. Figure 4.97 shows a right triangle in quadrant I with

$$
\tan \theta=\frac{5}{12} \cdot \quad \begin{aligned}
& \text { Side opposite } \theta, \text { or } y \\
& \text { Side adjacent to } \theta, \text { or } x
\end{aligned}
$$

The hypotenuse of the triangle, r, or the distance from the origin to $(12,5)$, is found using $r=\sqrt{x^{2}+y^{2}}$.

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13
$$

We use the values for x and r to find the exact value of $\cos \left(\tan ^{-1} \frac{5}{12}\right)$.

$$
\cos \left(\tan ^{-1} \frac{5}{12}\right)=\cos \theta=\frac{\text { side adjacent to } \theta, \text { or } x}{\text { hypotenuse, or } r}=\frac{12}{13}
$$

σ Check Point 7 Find the exact value of $\sin \left(\tan ^{-1} \frac{3}{4}\right)$.

EXAMPLE 8 Evaluating a Composite Trigonometric Expression

Find the exact value of $\cot \left[\sin ^{-1}\left(-\frac{1}{3}\right)\right]$.

SOLUTION

We let θ represent the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $-\frac{1}{3}$. Thus,

$$
\theta=\sin ^{-1}\left(-\frac{1}{3}\right) \text { and } \sin \theta=-\frac{1}{3}, \quad \text { where }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} .
$$

Because $\sin \theta$ is negative in $\sin \theta=-\frac{1}{3}, \theta$ must be an angle in $\left[-\frac{\pi}{2}, 0\right)$. Thus, θ is a negative angle that lies in quadrant IV. Figure $\mathbf{4 . 9 8}$ shows angle θ in quadrant IV with

In quadrant IV, y is negative.

$$
\sin \theta=-\frac{1}{3}=\frac{y}{r}=\frac{-1}{3} .
$$

Thus, $y=-1$ and $r=3$. The value of x can be found using $r=\sqrt{x^{2}+y^{2}}$ or $x^{2}+y^{2}=r^{2}$.

$$
\begin{array}{rlrl}
x^{2}+(-1)^{2} & =3^{2} & & \text { Use } x^{2}+y^{2}=r^{2} \text { with } y=-1 \text { and } r=3 . \\
x^{2}+1 & =9 & & \text { Square }-1 \text { and square } 3 . \\
x^{2} & =8 \\
x & =\sqrt{8}=\sqrt{4 \cdot 2}=2 \sqrt{2} & & \text { Subtract } 1 \text { from both sides. } \\
& \text { Use the square root property. Remember that } \\
& x \text { is positive in quadrant IV. }
\end{array}
$$

We use values for x and y to find the exact value of $\cot \left[\sin ^{-1}\left(-\frac{1}{3}\right)\right]$.

$$
\cot \left[\sin ^{-1}\left(-\frac{1}{3}\right)\right]=\cot \theta=\frac{x}{y}=\frac{2 \sqrt{2}}{-1}=-2 \sqrt{2}
$$

$\$$ Check Point 8 Find the exact value of $\cos \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$.

Some composite functions with inverse trigonometric functions can be simplified to algebraic expressions. To simplify such an expression, we represent the inverse trigonometric function in the expression by θ. Then we use a right triangle.

EXAMPLE 9 Simplifying an Expression Involving $\sin ^{-1} x$

 If $0<x \leq 1$, write $\cos \left(\sin ^{-1} x\right)$ as an algebraic expression in x.
SOLUTION

We let θ represent the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x. Thus,

$$
\theta=\sin ^{-1} x \text { and } \sin \theta=x, \text { where }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} .
$$

Because $0<x \leq 1$, $\sin \theta$ is positive. Thus, θ is a first-quadrant angle and can be represented as an acute angle of a right triangle. Figure 4.99 shows a right triangle with

$$
\sin \theta=x=\frac{x}{1} \cdot \quad \text { Side opposite } \theta
$$

The third side, a in Figure 4.99, can be found using the Pythagorean Theorem.

$$
\begin{array}{rlrl}
a^{2}+x^{2} & =1^{2} & \begin{array}{l}
\text { Apply the Pythagorean Theorem to the right triangle } \\
\text { in Figure 4.99. }
\end{array} \\
a^{2} & =1-x^{2} & & \text { Subtract } x^{2} \text { from both sides. } \\
a & =\sqrt{1-x^{2}} & \begin{array}{l}
\text { Use the square root property and solve for } a . \\
\text { Remember that side } a \text { is positive. }
\end{array}
\end{array}
$$

We use the right triangle in Figure 4.99 to write $\cos \left(\sin ^{-1} x\right)$ as an algebraic expression.

$$
\cos \left(\sin ^{-1} x\right)=\cos \theta=\frac{\text { side adjacent to } \theta}{\text { hypotenuse }}=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}
$$

$\$$ Check Point 9 If $x>0$, write $\sec \left(\tan ^{-1} x\right)$ as an algebraic expression in x.

The inverse secant function, $y=\sec ^{-1} x$, is used in calculus. However, inverse cotangent and inverse cosecant functions are rarely used. Two of these remaining inverse trigonometric functions are briefly developed in the Exercise Set that follows.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. By restricting the domain of $y=\sin x$ to
\qquad , the restricted sine function has an inverse function. The inverse sine function is denoted by $y=$ \qquad -.
2. By restricting the domain of $y=\cos x$ to _ , the restricted cosine function has an inverse function. The inverse cosine function is denoted by $y=$ \qquad
3. By restricting the domain of $y=\tan x$ to
\qquad , the restricted tangent function has an inverse function. The inverse of the tangent function is denoted by $y=$ \qquad .
4. The domain of $y=\sin ^{-1} x$ is \qquad and the range is \qquad —.
5. The domain of $y=\cos ^{-1} x$ is \qquad and the range is \qquad
6. The domain of $y=\tan ^{-1} x$ is \qquad and the range is \qquad _.
7. $\sin ^{-1}(\sin x)=x$ for every x in the interval
\qquad -.
8. $\cos ^{-1}(\cos x)=x$ for every x in the interval \qquad .
9. $\tan ^{-1}(\tan x)=x$ for every x in the interval
10. True or false: $\cos ^{-1} x=\frac{1}{\cos x}$

EXERCISE SET 4.7

Practice Exercises

In Exercises 1-18, find the exact value of each expression.

1. $\sin ^{-1} \frac{1}{2}$
2. $\sin ^{-1} 0$
3. $\sin ^{-1} \frac{\sqrt{2}}{2}$
4. $\sin ^{-1} \frac{\sqrt{3}}{2}$
5. $\sin ^{-1}\left(-\frac{1}{2}\right)$
6. $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
7. $\cos ^{-1} \frac{\sqrt{3}}{2}$
8. $\cos ^{-1} \frac{\sqrt{2}}{2}$
9. $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
10. $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
11. $\cos ^{-1} 0$
12. $\cos ^{-1} 1$
13. $\tan ^{-1} \frac{\sqrt{3}}{3}$
14. $\tan ^{-1} 1$
15. $\tan ^{-1} 0$
16. $\tan ^{-1}(-1)$
17. $\tan ^{-1}(-\sqrt{3})$
18. $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$

In Exercises 19-30, use a calculator to find the value of each expression rounded to two decimal places.
19. $\sin ^{-1} 0.3$
20. $\sin ^{-1} 0.47$
21. $\sin ^{-1}(-0.32)$
22. $\sin ^{-1}(-0.625)$
23. $\cos ^{-1} \frac{3}{8}$
24. $\cos ^{-1} \frac{4}{9}$
25. $\cos ^{-1} \frac{\sqrt{5}}{7}$
26. $\cos ^{-1} \frac{\sqrt{7}}{10}$
27. $\tan ^{-1}(-20)$
28. $\tan ^{-1}(-30)$
29. $\tan ^{-1}(-\sqrt{473})$
30. $\tan ^{-1}(-\sqrt{5061})$

In Exercises 31-46, find the exact value of each expression, if possible. Do not use a calculator.
31. $\sin \left(\sin ^{-1} 0.9\right)$
32. $\cos \left(\cos ^{-1} 0.57\right)$
33. $\sin ^{-1}\left(\sin \frac{\pi}{3}\right)$
34. $\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)$
35. $\sin ^{-1}\left(\sin \frac{5 \pi}{6}\right)$
36. $\cos ^{-1}\left(\cos \frac{4 \pi}{3}\right)$
37. $\tan \left(\tan ^{-1} 125\right)$
38. $\tan \left(\tan ^{-1} 380\right)$
39. $\tan ^{-1}\left[\tan \left(-\frac{\pi}{6}\right)\right]$
40. $\tan ^{-1}\left[\tan \left(-\frac{\pi}{3}\right)\right]$
41. $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$
42. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
43. $\sin ^{-1}(\sin \pi)$
44. $\cos ^{-1}(\cos 2 \pi)$
45. $\sin \left(\sin ^{-1} \pi\right)$
46. $\cos \left(\cos ^{-1} 3 \pi\right)$

In Exercises 47-62, use a sketch to find the exact value of each expression.
47. $\cos \left(\sin ^{-1} \frac{4}{5}\right)$
48. $\sin \left(\tan ^{-1} \frac{7}{24}\right)$
49. $\tan \left(\cos ^{-1} \frac{5}{13}\right)$
50. $\cot \left(\sin ^{-1} \frac{5}{13}\right)$
51. $\tan \left[\sin ^{-1}\left(-\frac{3}{5}\right)\right]$
52. $\cos \left[\sin ^{-1}\left(-\frac{4}{5}\right)\right]$
53. $\sin \left(\cos ^{-1} \frac{\sqrt{2}}{2}\right)$
54. $\cos \left(\sin ^{-1} \frac{1}{2}\right)$
55. $\sec \left[\sin ^{-1}\left(-\frac{1}{4}\right)\right]$
56. $\sec \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$
57. $\tan \left[\cos ^{-1}\left(-\frac{1}{3}\right)\right]$
58. $\tan \left[\cos ^{-1}\left(-\frac{1}{4}\right)\right]$
59. $\csc \left[\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$
60. $\sec \left[\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right]$
61. $\cos \left[\tan ^{-1}\left(-\frac{2}{3}\right)\right]$
62. $\sin \left[\tan ^{-1}\left(-\frac{3}{4}\right)\right]$

In Exercises 63-72, use a right triangle to write each expression as an algebraic expression. Assume that x is positive and that the given inverse trigonometric function is defined for the expression in x.
63. $\tan \left(\cos ^{-1} x\right)$
64. $\sin \left(\tan ^{-1} x\right)$
65. $\cos \left(\sin ^{-1} 2 x\right)$
66. $\sin \left(\cos ^{-1} 2 x\right)$
67. $\cos \left(\sin ^{-1} \frac{1}{x}\right)$
68. $\sec \left(\cos ^{-1} \frac{1}{x}\right)$
69. $\cot \left(\tan ^{-1} \frac{x}{\sqrt{3}}\right)$
70. $\cot \left(\tan ^{-1} \frac{x}{\sqrt{2}}\right)$
71. $\sec \left(\sin ^{-1} \frac{x}{\sqrt{x^{2}+4}}\right)$
72. $\cot \left(\sin ^{-1} \frac{\sqrt{x^{2}-9}}{x}\right)$
73. a. Graph the restricted secant function, $y=\sec x$, by restricting x to the intervals $\left[0, \frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right]$.
b. Use the horizontal line test to explain why the restricted secant function has an inverse function.
c. Use the graph of the restricted secant function to graph $y=\sec ^{-1} x$.
74. a. Graph the restricted cotangent function, $y=\cot x$, by restricting x to the interval $(0, \pi)$.
b. Use the horizontal line test to explain why the restricted cotangent function has an inverse function.
c. Use the graph of the restricted cotangent function to graph $y=\cot ^{-1} x$.

Practice Plus

The graphs of $y=\sin ^{-1} x, y=\cos ^{-1} x$, and $y=\tan ^{-1} x$ are shown in Table 4.10 on page 592. In Exercises 75-84, use transformations (vertical shifts, horizontal shifts, reflections, stretching, or shrinking) of these graphs to graph each function.
Then use interval notation to give the function's domain and range.
75. $f(x)=\sin ^{-1} x+\frac{\pi}{2}$
76. $f(x)=\cos ^{-1} x+\frac{\pi}{2}$
77. $g(x)=\cos ^{-1}(x+1)$
78. $g(x)=\sin ^{-1}(x+1)$
79. $h(x)=-2 \tan ^{-1} x$
80. $h(x)=-3 \tan ^{-1} x$
81. $f(x)=\sin ^{-1}(x-2)-\frac{\pi}{2}$
82. $f(x)=\cos ^{-1}(x-2)-\frac{\pi}{2}$
83. $g(x)=\cos ^{-1} \frac{x}{2}$
84. $g(x)=\sin ^{-1} \frac{x}{2}$

In Exercises 85-92, determine the domain and the range of each function.
85. $f(x)=\sin \left(\sin ^{-1} x\right)$
86. $f(x)=\cos \left(\cos ^{-1} x\right)$
87. $f(x)=\cos ^{-1}(\cos x)$
88. $f(x)=\sin ^{-1}(\sin x)$
89. $f(x)=\sin ^{-1}(\cos x)$
90. $f(x)=\cos ^{-1}(\sin x)$
91. $f(x)=\sin ^{-1} x+\cos ^{-1} x$
92. $f(x)=\cos ^{-1} x-\sin ^{-1} x$

Application Exercises

93. Your neighborhood movie theater has a 25 -foot-high screen located 8 feet above your eye level. If you sit too close to the screen, your viewing angle is too small, resulting in a distorted picture. By contrast, if you sit too far back, the image is quite small, diminishing the movie's visual impact. If you sit x feet back from the screen, your viewing angle, θ, is given by

$$
\theta=\tan ^{-1} \frac{33}{x}-\tan ^{-1} \frac{8}{x}
$$

Find the viewing angle, in radians, at distances of 5 feet, 10 feet, 15 feet, 20 feet, and 25 feet.
94. The function $\theta=\tan ^{-1} \frac{33}{x}-\tan ^{-1} \frac{8}{x}$, described in Exercise 93, is graphed below in a $[0,50,10]$ by $[0,1,0.1]$ viewing rectangle. Use the graph to describe what happens to your viewing angle as you move farther back from the screen. How far back from the screen, to the nearest foot, should you sit to maximize your viewing angle? Verify this observation by finding the viewing angle one foot closer to the screen and one foot farther from the screen for this ideal viewing distance.

The formula

$$
\theta=2 \tan ^{-1} \frac{21.634}{x}
$$

gives the viewing angle, θ, in radians, for a camera whose lens is x millimeters wide. Use this formula to solve Exercises 95-96.

95. Find the viewing angle, in radians and in degrees (to the nearest tenth of a degree), of a 28 -millimeter lens.
96. Find the viewing angle, in radians and in degrees (to the nearest tenth of a degree), of a 300-millimeter telephoto lens.

For years, mathematicians were challenged by the following problem: What is the area of a region under a curve between two values of x ? The problem was solved in the seventeenth century with the development of integral calculus. Using calculus, the area of the region under $y=\frac{1}{x^{2}+1}$, above the x-axis, and between $x=a$ and $x=b$ is $\tan ^{-1} b-\tan ^{-1} a$. Use this result, shown in the figure, to find the area of the region under $y=\frac{1}{x^{2}+1}$,
above the x-axis, and between the values of a and b given in Exercises 97-98.

97. $a=0$ and $b=2$
98. $a=-2$ and $b=1$

Writing in Mathematics

99. Explain why, without restrictions, no trigonometric function has an inverse function.
100. Describe the restriction on the sine function so that it has an inverse function.
101. How can the graph of $y=\sin ^{-1} x$ be obtained from the graph of the restricted sine function?
102. Without drawing a graph, describe the behavior of the graph of $y=\sin ^{-1} x$. Mention the function's domain and range in your description.
103. Describe the restriction on the cosine function so that it has an inverse function.
104. Without drawing a graph, describe the behavior of the graph of $y=\cos ^{-1} x$. Mention the function's domain and range in your description.
105. Describe the restriction on the tangent function so that it has an inverse function.
106. Without drawing a graph, describe the behavior of the graph of $y=\tan ^{-1} x$. Mention the function's domain and range in your description.
107. If $\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$, is $\sin ^{-1}\left(\sin \frac{5 \pi}{6}\right)=\frac{5 \pi}{6}$? Explain your answer.
108. Explain how a right triangle can be used to find the exact value of $\sec \left(\sin ^{-1} \frac{4}{5}\right)$.
109. Find the height of the screen and the number of feet that it is located above eye level in your favorite movie theater. Modify the formula given in Exercise 93 so that it applies to your theater. Then describe where in the theater you should sit so that a movie creates the greatest visual impact.

Technology Exercises

In Exercises 110-113, graph each pair of functions in the same viewing rectangle. Use your knowledge of the domain and range for the inverse trigonometric function to select an appropriate viewing rectangle. How is the graph of the second equation in each exercise related to the graph of the first equation?
110. $y=\sin ^{-1} x$ and $y=\sin ^{-1} x+2$
111. $y=\cos ^{-1} x$ and $y=\cos ^{-1}(x-1)$
112. $y=\tan ^{-1} x$ and $y=-2 \tan ^{-1} x$
113. $y=\sin ^{-1} x$ and $y=\sin ^{-1}(x+2)+1$
114. Graph $y=\tan ^{-1} x$ and its two horizontal asymptotes in a $[-3,3,1]$ by $\left[-\pi, \pi, \frac{\pi}{2}\right]$ viewing rectangle. Then change the viewing rectangle to $[-50,50,5]$ by $\left[-\pi, \pi, \frac{\pi}{2}\right]$. What do
you observe?
115. Graph $y=\sin ^{-1} x+\cos ^{-1} x$ in a $[-2,2,1]$ by $[0,3,1]$ viewing rectangle. What appears to be true about the sum of the inverse sine and inverse cosine for values between -1 and 1 , inclusive?

Critical Thinking Exercises

Make Sense? In Exercises 116-119, determine whether each statement makes sense or does not make sense, and explain your reasoning.
116. Because $y=\sin x$ has an inverse function if x is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, they should make restrictions easier to remember by also using $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ as the restriction for $y=\cos x$.
117. Because $y=\sin x$ has an inverse function if x is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, they should make restrictions easier to remember by also using $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ as the restriction for $y=\tan x$.
118. Although $\sin ^{-1}\left(-\frac{1}{2}\right)$ is negative, $\cos ^{-1}\left(-\frac{1}{2}\right)$ is positive.
119. I used $f^{-1}(f(x))=x$ and concluded that

$$
\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)=\frac{5 \pi}{4} .
$$

120. Solve $y=2 \sin ^{-1}(x-5)$ for x in terms of y.
121. Solve for x : $2 \sin ^{-1} x=\frac{\pi}{4}$.
122. Prove that if $x>0, \tan ^{-1} x+\tan ^{-1} \frac{1}{x}=\frac{\pi}{2}$.
123. Derive the formula for θ, your viewing angle at the movie theater, in Exercise 93. Hint: Use the figure shown and represent the acute angle on the left in the smaller right triangle by α. Find expressions for $\tan \alpha$ and $\tan (\alpha+\theta)$.

Preview Exercises

Exercises 124-126 will help you prepare for the material covered in the next section.
124. Use trigonometric functions to find a and c to two decimal places.

125. Find θ to the nearest tenth of a degree.

126. Determine the amplitude and period of $y=10 \cos \frac{\pi}{6} x$.

SECTION 4.8

Objectives

(1) Solve a right triangle.
(2) Solve problems involving bearings.
(3) Model simple harmonic motion.
(1) Solve a right triangle.

FIGURE 4.100 Labeling right triangles

FIGURE 4.101 Find B, a, and c.

In the late 1960 s, popular musicians were searching for new sounds. Film composers were looking for ways to create unique sounds as well. From these efforts, synthesizers that electronically reproduce musical sounds were born. From providing the backbone of today's most popular music to providing the strange sounds for the most experimental music, synthesizing programs now available on computers are at the forefront of music technology.

If we did not understand the periodic nature of sinusoidal functions, the synthesizing programs used in almost all forms of music would not exist. In this section, we look at applications of trigonometric functions in solving right triangles and in modeling periodic phenomena such as sound.

Solving Right Triangles

Solving a right triangle means finding the missing lengths of its sides and the measurements of its angles. We will label right triangles so that side a is opposite angle A, side b is opposite angle B, and side c, the hypotenuse, is opposite right angle C. Figure 4.100 illustrates this labeling.

When solving a right triangle, we will use the sine, cosine, and tangent functions, rather than their reciprocals. Example 1 shows how to solve a right triangle when we know the length of a side and the measure of an acute angle.

EXAMPLE 1 Solving a Right Triangle

Solve the right triangle shown in Figure 4.101, rounding lengths to two decimal places.

SOLUTION

We begin by finding the measure of angle B. We do not need a trigonometric function to do so. Because $C=90^{\circ}$ and the sum of a triangle's angles is 180°, we see that $A+B=90^{\circ}$. Thus,

$$
B=90^{\circ}-A=90^{\circ}-34.5^{\circ}=55.5^{\circ}
$$

FIGURE 4.101 (repeated)

DISCOVERY

There is often more than one correct way to solve a right triangle. In Example 1, find a using angle $B=55.5^{\circ}$. Find c using the Pythagorean Theorem.

FIGURE 4.102 Determining height without using direct measurement

Now we need to find a. Because we have a known angle, an unknown opposite side, and a known adjacent side, we use the tangent function.

$$
\tan 34.5^{\circ}=\frac{a}{10.5} \quad \text { Side opposite the } 34.5^{\circ} \text { angle }
$$

Now we multiply both sides of this equation by 10.5 and solve for a.

$$
a=10.5 \tan 34.5^{\circ} \approx 7.22
$$

Finally, we need to find c. Because we have a known angle, a known adjacent side, and an unknown hypotenuse, we use the cosine function.

$$
\cos 34.5^{\circ}=\frac{10.5}{c} \quad \begin{aligned}
& \text { Side adjacent to the } 34.5^{\circ} \text { angle } \\
& \text { Hypotenuse }
\end{aligned}
$$

Now we multiply both sides of $\cos 34.5^{\circ}=\frac{10.5}{c}$ by c and then solve for c.

$$
\begin{array}{rlrl}
c \cos 34.5^{\circ} & =10.5 & & \text { Multiply both sides by } c . \\
c & =\frac{10.5}{\cos 34.5^{\circ}} \approx 12.74 & \begin{array}{l}
\text { Divide both sides by } \cos 34.5^{\circ} \\
\text { and solve for } c .
\end{array}
\end{array}
$$

In summary, $B=55.5^{\circ}, a \approx 7.22$, and $c \approx 12.74$.
\bigcirc Check Point 1 In Figure 4.100 on the previous page, let $A=62.7^{\circ}$ and $a=8.4$. Solve the right triangle, rounding lengths to two decimal places.

Trigonometry was first developed to measure heights and distances that were inconvenient or impossible to measure directly. In solving application problems, begin by making a sketch involving a right triangle that illustrates the problem's conditions. Then put your knowledge of solving right triangles to work and find the required distance or height.

EXAMPLE 2 Finding a Side of a Right Triangle

From a point on level ground 125 feet from the base of a tower, the angle of elevation is 57.2°. Approximate the height of the tower to the nearest foot.

SOLUTION

A sketch is shown in Figure 4.102, where a represents the height of the tower. In the right triangle, we have a known angle, an unknown opposite side, and a known adjacent side. Therefore, we use the tangent function.

$$
\tan 57.2^{\circ}=\frac{a}{125} \quad \text { Side opposite the } 57.2^{\circ} \text { angle }
$$

Now we multiply both sides of this equation by 125 and solve for a.

$$
a=125 \tan 57.2^{\circ} \approx 194
$$

The tower is approximately 194 feet high.

Example 3 illustrates how to find the measure of an acute angle of a right triangle if the lengths of two sides are known.

EXAMPLE 3 Finding an Angle of a Right Triangle

A kite flies at a height of 30 feet when 65 feet of string is out. If the string is in a straight line, find the angle that it makes with the ground. Round to the nearest tenth of a degree.

SOLUTION

A sketch is shown in Figure 4.103, where A represents the angle the string makes with the ground. In the right triangle, we have an unknown angle, a known opposite side, and a known hypotenuse. Therefore, we use the sine function.

FIGURE 4.103 Flying a kite
The string makes an angle of approximately 27.5° with the ground.

- -

\oint Check Point 3 A guy wire is 13.8 yards long and is attached from the ground to a pole 6.7 yards above the ground. Find the angle, to the nearest tenth of a degree, that the wire makes with the ground.

EXAMPLE 4 Using Two Right Triangles to Solve a Problem

You are taking your first hot-air balloon ride. Your friend is standing on level ground, 100 feet away from your point of launch, making a video of the terrified look on your rapidly ascending face. How rapidly? At one instant, the angle of elevation from the video camera to your face is 31.7°. One minute later, the angle of elevation is 76.2°. How far did you travel, to the nearest tenth of a foot, during that minute?

SOLUTION

A sketch that illustrates the problem is shown in Figure 4.104. We need to determine $b-a$, the distance traveled during the one-minute period. We find a using the small right triangle. Because we have a known angle, an unknown opposite side, and a known adjacent side, we use the tangent function.

$$
\begin{aligned}
\tan 31.7^{\circ} & =\frac{a}{100} \quad \begin{array}{l}
\text { Side opposite the } 31.7^{\circ} \text { angle } \\
\text { Side adjacent to the } 31.7^{\circ} \text { angle }
\end{array} \\
a & =100 \tan 31.7^{\circ} \approx 61.8
\end{aligned}
$$

We find b using the tangent function in the large right triangle.

$$
\begin{aligned}
\tan 76.2^{\circ} & =\frac{b}{100} \quad \begin{array}{l}
\text { Side opposite the } 76.2^{\circ} \text { angle } \\
\text { Side adjacent to the } 76.2^{\circ} \text { angle }
\end{array} \\
b & =100 \tan 76.2^{\circ} \approx 407.1^{2}
\end{aligned}
$$

The balloon traveled $407.1-61.8$, or approximately 345.3 feet, during the minute.

FIGURE 4.105 An illustration of three bearings

FIGURE 4.106 Finding bearings
$\$$ Check Point 4 You are standing on level ground 800 feet from Mt. Rushmore, looking at the sculpture of Abraham Lincoln's face. The angle of elevation to the bottom of the sculpture is 32° and the angle of elevation to the top is 35°. Find the height of the sculpture of Lincoln's face to the nearest tenth of a foot.

Trigonometry and Bearings

In navigation and surveying problems, the term bearing is used to specify the location of one point relative to another. The bearing from point O to point P is the acute angle, measured in degrees, between ray $O P$ and a north-south line.

The bearing from O to P can also be described using the phrase "the bearing of P from O." Figure 4.105 illustrates some examples of bearings. The north-south line and the east-west line intersect at right angles.

Each bearing has three parts: a letter (N or S), the measure of an acute angle, and a letter (E or W). Here's how we write a bearing:

- If the acute angle is measured from the north side of the north-south line, then we write N first. [See Figure 4.105(a).] If the acute angle is measured from the south side of the north-south line, then we write S first. [See Figure 4.105(c).]
- Second, we write the measure of the acute angle.
- If the acute angle is measured on the east side of the north-south line, then we write E last. [See Figure 4.105(a)]. If the acute angle is measured on the west side of the north-south line, then we write W last. [See Figure 4.105(b).]

EXAMPLE 5 Understanding Bearings

Use Figure 4.106 to find each of the following:
a. the bearing from O to B
b. the bearing from O to A.

SOLUTION

a. To find the bearing from O to B, we need the acute angle between the ray $O B$ and the north-south line through O. The measurement of this angle is given to be 40°. Figure $\mathbf{4 . 1 0 6}$ shows that the angle is measured from the north side of the north-south line and lies west of the north-south line. Thus, the bearing from O to B is $\mathrm{N} 40^{\circ} \mathrm{W}$.
b. To find the bearing from O to A, we need the acute angle between the ray $O A$ and the north-south line through O. This angle is specified by the voice balloon in Figure 4.106. Because of the given 20° angle, this angle measures $90^{\circ}-20^{\circ}$, or 70°. This angle is measured from the north side of the northsouth line. This angle is also east of the north-south line. Thus, the bearing from O to A is $\mathrm{N} 70^{\circ} \mathrm{E}$.
a. the bearing from O to D
b. the bearing from O to C.

FIGURE 4.107 Finding a boat's bearing from the harbor entrance

GREAT QUESTION!

I can follow Example 6 because

 Figure 4.107 is given. What should I do if I have to draw the figure?When making a diagram showing bearings, draw a north-south line through each point at which a change in course occurs. The north side of the line lies above each point. The south side of the line lies below each point.

EXAMPLE 6 Finding the Bearing of a Boat

A boat leaves the entrance to a harbor and travels 25 miles on a bearing of $\mathrm{N} 42^{\circ} \mathrm{E}$. Figure 4.107 shows that the captain then turns the boat 90° clockwise and travels 18 miles on a bearing of $\mathrm{S} 48^{\circ} \mathrm{E}$. At that time:
a. How far is the boat, to the nearest tenth of a mile, from the harbor entrance?
b. What is the bearing, to the nearest tenth of a degree, of the boat from the harbor entrance?

SOLUTION

a. The boat's distance from the harbor entrance is represented by c in Figure 4.107. Because we know the length of two sides of the right triangle, we find c using the Pythagorean Theorem. We have

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}=25^{2}+18^{2}=949 \\
c & =\sqrt{949} \approx 30.8
\end{aligned}
$$

The boat is approximately 30.8 miles from the harbor entrance.
b. The bearing of the boat from the harbor entrance means the bearing from the harbor entrance to the boat. Look at the north-south line passing through the harbor entrance on the left in Figure 4.107. The acute angle from this line to the ray on which the boat lies is $42^{\circ}+\theta$. Because we are measuring the angle from the north side of the line and the boat is east of the harbor, its bearing from the harbor entrance is $\mathrm{N}\left(42^{\circ}+\theta\right) \mathrm{E}$. To find θ, we use the right triangle shown in Figure 4.107 and the tangent function.

$$
\begin{aligned}
\tan \theta & =\frac{\text { side opposite } \theta}{\text { side adjacent to } \theta}=\frac{18}{25} \\
\theta & =\tan ^{-1} \frac{18}{25}
\end{aligned}
$$

We can use a calculator in degree mode to find the value of $\theta: \theta \approx 35.8^{\circ}$. Thus, $42^{\circ}+\theta \approx 42^{\circ}+35.8^{\circ}=77.8^{\circ}$. The bearing of the boat from the harbor entrance is $\mathrm{N} 77.8^{\circ} \mathrm{E}$.
-••
$\$$ Check Point 6 You leave the entrance to a system of hiking trails and hike 2.3 miles on a bearing of $\mathrm{S} 31^{\circ} \mathrm{W}$. Then the trail turns 90° clockwise and you hike 3.5 miles on a bearing of $\mathrm{N} 59^{\circ} \mathrm{W}$. At that time:
a. How far are you, to the nearest tenth of a mile, from the entrance to the trail system?
b. What is your bearing, to the nearest tenth of a degree, from the entrance to the trail system?

Simple Harmonic Motion

Because of their periodic nature, trigonometric functions are used to model phenomena that occur again and again. This includes vibratory or oscillatory motion, such as the motion of a vibrating guitar string, the swinging of a pendulum, or the bobbing of an object attached to a spring. Trigonometric functions are also used to describe radio waves from your favorite FM station, television waves from your not-to-be-missed weekly sitcom, and sound waves from your most-prized CDs.

To see how trigonometric functions are used to model vibratory motion, consider this: A ball is attached to a spring hung from the ceiling. You pull the ball down 4 inches and then release it. If we neglect the effects of friction and air resistance, the ball will continue bobbing up and down on the end of the spring. These up-and-down oscillations are called simple harmonic motion.

FIGURE 4.108 Using a d-axis to describe a ball's distance from its rest position

FIGURE 4.109 A sequence of "photographs" showing the bobbing ball's distance from the rest position, taken at one-second intervals

Blitzer Banus

Diminishing Motion with Increasing Time

Due to friction and other resistive forces, the motion of an oscillating object decreases over time. The function

$$
d=3 e^{-0.1 t} \cos 2 t
$$

models this type of motion. The graph of the function is shown in a $t=[0,10,1]$ by $d=[-3,3,1]$ viewing rectangle. Notice how the amplitude is decreasing with time as the moving object loses energy.

To better understand this motion, we use a d-axis, where d represents distance. This axis is shown in Figure 4.108. On this axis, the position of the ball before you pull it down is $d=0$. This rest position is called the equilibrium position. Now you pull the ball down 4 inches to $d=-4$ and release it. Figure 4.109 shows a sequence of "photographs" taken at one-second time intervals illustrating the distance of the ball from its rest position, d.

The curve in Figure 4.109 shows how the ball's distance from its rest position changes over time. The curve is sinusoidal and the motion can be described using a cosine or a sine function.

Simple Harmonic Motion

An object that moves on a coordinate axis is in simple harmonic motion if its distance from the origin, d, at time t is given by either

$$
d=a \cos \omega t \quad \text { or } \quad d=a \sin \omega t
$$

The motion has amplitude $|a|$, the maximum displacement of the object from its rest position. The period of the motion is $\frac{2 \pi}{\omega}$, where $\omega>0$. The period gives the time it takes for the motion to go through one complete cycle.

In describing simple harmonic motion, the equation with the cosine function, $d=a \cos \omega t$, is used if the object is at its greatest distance from rest position, the origin, at $t=0$. By contrast, the equation with the sine function, $d=a \sin \omega t$, is used if the object is at its rest position, the origin, at $t=0$.

EXAMPLE 7 Finding an Equation for an Object in Simple Harmonic Motion

A ball on a spring is pulled 4 inches below its rest position and then released. The period of the motion is 6 seconds. Write the equation for the ball's simple harmonic motion.

SOLUTION

We need to write an equation that describes d, the distance of the ball from its rest position, after t seconds. (The motion is illustrated by the "photo" sequence in Figure 4.109.) When the object is released $(t=0)$, the ball's distance from its rest position is 4 inches down. Because it is down 4 inches, d is negative:

Blitzer Banus
 Modeling Music

Sounds are caused by vibrating objects that result in variations in pressure in the surrounding air. Areas of high and low pressure moving through the air are modeled by the harmonic motion formulas. When these vibrations reach our eardrums, the eardrums' vibrations send signals to our brains, which create the sensation of hearing.

French mathematician John Fourier (1768-1830) proved that all musical sounds-instrumental and vocal-could be modeled by sums involving sine functions. Modeling musical sounds with sinusoidal functions is used by synthesizing programs available on computers to electronically produce sounds unobtainable from ordinary musical instruments.

FIGURE 4.110 A mass attached to a spring, moving in simple harmonic motion

When $t=0, d=-4$. Notice that the greatest distance from rest position occurs at $t=0$. Thus, we will use the equation with the cosine function,

$$
d=a \cos \omega t,
$$

to model the ball's simple harmonic motion.
Now we determine values for a and ω. Recall that $|a|$ is the maximum displacement. Because the ball is initially below rest position, $a=-4$.

The value of ω in $d=a \cos \omega t$ can be found using the formula for the period.

$$
\begin{aligned}
\text { period }=\frac{2 \pi}{\omega} & =6 & & \text { We are given that the period of the motion is } 6 \text { seconds. } \\
2 \pi & =6 \omega & & \text { Multiply both sides by } \omega . \\
\omega & =\frac{2 \pi}{6}=\frac{\pi}{3} & & \text { Divide both sides by } 6 \text { and solve for } \omega .
\end{aligned}
$$

We see that $a=-4$ and $\omega=\frac{\pi}{3}$. Substitute these values into $d=a \cos \omega t$. The equation for the ball's simple harmonic motion is

$$
d=-4 \cos \frac{\pi}{3} t .
$$

$\$$ Check Point 7 A ball on a spring is pulled 6 inches below its rest position and then released. The period for the motion is 4 seconds. Write the equation for the ball's simple harmonic motion.

The period of the harmonic motion in Example 7 was 6 seconds. It takes 6 seconds for the moving object to complete one cycle. Thus, $\frac{1}{6}$ of a cycle is completed every second. We call $\frac{1}{6}$ the frequency of the moving object. Frequency describes the number of complete cycles per unit time and is the reciprocal of the period.

Frequency of an Object in Simple Harmonic Motion

An object in simple harmonic motion given by

$$
d=a \cos \omega t \quad \text { or } \quad d=a \sin \omega t
$$

has frequency f given by

$$
f=\frac{\omega}{2 \pi}, \omega>0 .
$$

Equivalently,

$$
f=\frac{1}{\text { period }} .
$$

EXAMPLE 8 Analyzing Simple Harmonic Motion

Figure 4.110 shows a mass on a smooth surface attached to a spring. The mass moves in simple harmonic motion described by

with t measured in seconds and d in centimeters. Find:
a. the maximum displacement
b. the frequency
c. the time required for one cycle.

SOLUTION

We begin by identifying values for a and ω.

$$
\begin{aligned}
& \qquad \begin{array}{l}
d=10 \cos \frac{\pi}{6} t \\
\text { The form of this equation is } \\
\qquad d=a \cos \omega t
\end{array} \\
& \text { with } a=10 \text { and } \omega=\frac{\pi}{6} .
\end{aligned}
$$

a. The maximum displacement from the rest position is the amplitude. Because $a=10$, the maximum displacement is 10 centimeters.
b. The frequency, f, is

$$
f=\frac{\omega}{2 \pi}=\frac{\frac{\pi}{6}}{2 \pi}=\frac{\pi}{6} \cdot \frac{1}{2 \pi}=\frac{1}{12} .
$$

The frequency is $\frac{1}{12}$ cycle (or oscillation) per second.
c. The time required for one cycle is the period.

$$
\text { period }=\frac{2 \pi}{\omega}=\frac{2 \pi}{\frac{\pi}{6}}=2 \pi \cdot \frac{6}{\pi}=12
$$

The time required for one cycle is 12 seconds. This value can also be obtained by taking the reciprocal of the frequency in part (b).
$\$$ Check Point 8 An object moves in simple harmonic motion described by $d=12 \cos \frac{\pi}{4} t$, where t is measured in seconds and d in centimeters. Find a. the maximum displacement, b. the frequency, and \mathbf{c}. the time required for one cycle.

Blitzer Bonus || Resisting Damage of Simple Harmonic Motion

Simple harmonic motion from an earthquake caused this highway in Oakland, California, to collapse. By studying the harmonic motion of the soil under the highway, engineers learn to build structures that can resist damage.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Solving a right triangle means finding the missing lengths of its \qquad and the measurements of its \qquad _.
2. The bearing from point O to point P is the acute angle, measured in degrees, between ray $O P$ and a \qquad - \qquad line.
3. An object that moves on a coordinate axis is in \qquad motion if its distance from the origin, d, at time t is given by either

$$
d=a \cos \omega t \quad \text { or } \quad d=a \sin \omega t .
$$

The motion has amplitude \qquad the maximum displacement of the object from its rest position. The period of the motion is \qquad and the frequency f is
given by $f=$ \qquad where $\omega>0$.

EXERCISE SET 4.8

Practice Exercises

In Exercises 1-12, solve the right triangle shown in the figure. Round lengths to two decimal places and express angles to the nearest tenth of a degree.

1. $A=23.5^{\circ}, b=10$
2. $A=41.5^{\circ}, b=20$
3. $A=52.6^{\circ}, c=54$
4. $A=54.8^{\circ}, c=80$
5. $B=16.8^{\circ}, b=30.5$
6. $B=23.8^{\circ}, b=40.5$
7. $a=30.4, c=50.2$
8. $a=11.2, c=65.8$
9. $a=10.8, b=24.7$
10. $a=15.3, b=17.6$
11. $b=2, c=7$
12. $b=4, c=9$

Use the figure shown to solve Exercises 13-16.

13. Find the bearing from O to A.
14. Find the bearing from O to B.
15. Find the bearing from O to C.
16. Find the bearing from O to D.

In Exercises 17-20, an object is attached to a coiled spring. In Exercises 17-18, the object is pulled down (negative direction from the rest position) and then released. In Exercises 19-20, the object is propelled downward from its rest position at time $t=0$. Write an equation for the distance of the object from its rest position after t seconds.

Distance from Rest Position at $\boldsymbol{t}=\mathbf{0}$	Amplitude	Period
17. 6 centimeters	6 centimeters	4 seconds
18. 8 inches	8 inches	2 seconds
19. 0 inches	3 inches	1.5 seconds
20. 0 centimeters	5 centimeters	2.5 seconds

In Exercises 21-28, an object moves in simple harmonic motion described by the given equation, where t is measured in seconds and d in inches. In each exercise, find the following:
a. the maximum displacement
b. the frequency
c. the time required for one cycle.
21. $d=5 \cos \frac{\pi}{2} t$
22. $d=10 \cos 2 \pi t$
23. $d=-6 \cos 2 \pi t$
24. $d=-8 \cos \frac{\pi}{2} t$
25. $d=\frac{1}{2} \sin 2 t$
26. $d=\frac{1}{3} \sin 2 t$
27. $d=-5 \sin \frac{2 \pi}{3} t$
28. $d=-4 \sin \frac{3 \pi}{2} t$

Practice Plus

In Exercises 29-36, find the length x to the nearest whole unit.
29.

30.

31.

32.

33.

34.

35.

36.

In Exercises 37-40, an object moves in simple harmonic motion described by the given equation, where t is measured in seconds and d in inches. In each exercise, graph one period of the equation. Then find the following:
a. the maximum displacement
b. the frequency
c. the time required for one cycle
d. the phase shift of the motion.

Describe how (a) through (d) are illustrated by your graph.
37. $d=4 \cos \left(\pi t-\frac{\pi}{2}\right)$
38. $d=3 \cos \left(\pi t+\frac{\pi}{2}\right)$
39. $d=-2 \sin \left(\frac{\pi t}{4}+\frac{\pi}{2}\right)$
40. $d=-\frac{1}{2} \sin \left(\frac{\pi t}{4}-\frac{\pi}{2}\right)$

Application Exercises

41. The tallest television transmitting tower in the world is in North Dakota. From a point on level ground 5280 feet (1 mile) from the base of the tower, the angle of elevation is 21.3°. Approximate the height of the tower to the nearest foot.
42. From a point on level ground 30 yards from the base of a building, the angle of elevation is 38.7°. Approximate the height of the building to the nearest foot.
43. The Statue of Liberty is approximately 305 feet tall. If the angle of elevation from a ship to the top of the statue is 23.7°, how far, to the nearest foot, is the ship from the statue's base?
44. A 200 -foot cliff drops vertically into the ocean. If the angle of elevation from a ship to the top of the cliff is 22.3°, how far off shore, to the nearest foot, is the ship?
45. A helicopter hovers 1000 feet above a small island. The figure shows that the angle of depression from the helicopter to point P on the coast is 36°. How far off the coast, to the nearest foot, is the island?

46. A police helicopter is flying at 800 feet. A stolen car is sighted at an angle of depression of 72°. Find the distance of the stolen car, to the nearest foot, from a point directly below the helicopter.

47. A wheelchair ramp is to be built beside the steps to the campus library. Find the angle of elevation of the 23 -foot ramp, to the nearest tenth of a degree, if its final height is 6 feet.
48. A building that is 250 feet high casts a shadow 40 feet long. Find the angle of elevation, to the nearest tenth of a degree, of the sun at this time.
49. A hot-air balloon is rising vertically. From a point on level ground 125 feet from the point directly under the passenger compartment, the angle of elevation to the ballon changes from 19.2° to 31.7°. How far, to the nearest tenth of a foot, does the balloon rise during this period?

50. A flagpole is situated on top of a building. The angle of elevation from a point on level ground 330 feet from the building to the top of the flagpole is 63°. The angle of elevation from the same point to the bottom of the flagpole is 53°. Find the height of the flagpole to the nearest tenth of a foot.
51. A boat leaves the entrance to a harbor and travels 150 miles on a bearing of $\mathrm{N} 53^{\circ} \mathrm{E}$. How many miles north and how many miles east from the harbor has the boat traveled?
52. A boat leaves the entrance to a harbor and travels 40 miles on a bearing of S $64^{\circ} \mathrm{E}$. How many miles south and how many miles east from the harbor has the boat traveled?
53. A forest ranger sights a fire directly to the south. A second ranger, 7 miles east of the first ranger, also sights the fire. The bearing from the second ranger to the fire is $\mathrm{S} 28^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the first ranger from the fire?
54. A ship sights a lighthouse directly to the south. A second ship, 9 miles east of the first ship, also sights the lighthouse. The bearing from the second ship to the lighthouse is $\mathrm{S} 34^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the first ship from the lighthouse?
55. You leave your house and run 2 miles due west followed by 1.5 miles due north. At that time, what is your bearing from your house?
56. A ship is 9 miles east and 6 miles south of a harbor. What bearing should be taken to sail directly to the harbor?
57. A jet leaves a runway whose bearing is $\mathrm{N} 35^{\circ} \mathrm{E}$ from the control tower. After flying 5 miles, the jet turns 90° and files on a bearing of $\mathrm{S} 55^{\circ} \mathrm{E}$ for 7 miles. At that time, what is the bearing of the jet from the control tower?
58. A ship leaves port with a bearing of $\mathrm{S} 40^{\circ} \mathrm{W}$. After traveling 7 miles, the ship turns 90° and travels on a bearing of $\mathrm{N} 50^{\circ} \mathrm{W}$ for 11 miles. At that time, what is the bearing of the ship from port?
59. An object in simple harmonic motion has a frequency of $\frac{1}{2}$ oscillation per minute and an amplitude of 6 feet. Write an equation in the form $d=a \sin \omega t$ for the object's simple harmonic motion.
60. An object in simple harmonic motion has a frequency of $\frac{1}{4}$ oscillation per minute and an amplitude of 8 feet. Write an equation in the form $d=a \sin \omega t$ for the object's simple harmonic motion.
61. A piano tuner uses a tuning fork. If middle C has a frequency of 264 vibrations per second, write an equation in the form $d=\sin \omega t$ for the simple harmonic motion.
62. A radio station, 98.1 on the FM dial, has radio waves with a frequency of 98.1 million cycles per second. Write an equation in the form $d=\sin \omega t$ for the simple harmonic motion of the radio waves.

Writing in Mathematics

63. What does it mean to solve a right triangle?
64. Explain how to find one of the acute angles of a right triangle if two sides are known.
65. Describe a situation in which a right triangle and a trigonometric function are used to measure a height or distance that would otherwise be inconvenient or impossible to measure.
66. What is meant by the bearing from point O to point P ? Give an example with your description.
67. What is simple harmonic motion? Give an example with your description.
68. Explain the period and the frequency of simple harmonic motion. How are they related?
69. Explain how the photograph of the damaged highway on page 608 illustrates simple harmonic motion.

Technology Exercises

The functions in Exercises 70-71 model motion in which the amplitude decreases with time due to friction or other resistive forces. Graph each function in the given viewing rectangle. How many complete oscillations occur on the time interval $0 \leq x \leq 10$?
70. $y=4 e^{-0.1 x} \cos 2 x ;[0,10,1]$ by $[-4,4,1]$
71. $y=-6 e^{-0.09 x} \cos 2 \pi x ;[0,10,1]$ by $[-6,6,1]$

Critical Thinking Exercises

Make Sense? In Exercises 72-75, determine whether each statement makes sense or does not make sense, and explain your reasoning.
72. A wheelchair ramp must be constructed so that the slope is not more than 1 inch of rise for every 1 foot of run, so I used the tangent function to determine the maximum angle that the ramp can make with the ground.
73. The bearing from O to A is $\mathrm{N} 103^{\circ} \mathrm{W}$.
74. The bearing from O to B is $\mathrm{E} 70^{\circ} \mathrm{S}$.
75. I analyzed simple harmonic motion in which the period was 10 seconds and the frequency was 0.2 oscillation per second.
76. The figure shows a satellite circling 112 miles above Earth. When the satellite is directly above point B, angle A measures 76.6°. Find Earth's radius to the nearest mile.

77. The angle of elevation to the top of a building changes from 20° to 40° as an observer advances 75 feet toward the building. Find the height of the building to the nearest foot.

Group Exercise

78. Music and mathematics have been linked over the centuries. Group members should research and present a seminar to the class on music and mathematics. Be sure to include the role of trigonometric functions in the music-mathematics link.

Preview Exercises

Exercises 79-81 will help you prepare for the material covered in the first section of the next chapter. The exercises use identities, introduced in Section 4.2, that enable you to rewrite trigonometric expressions so that they contain only sines and cosines:

$$
\begin{array}{ll}
\csc x=\frac{1}{\sin x} & \sec x=\frac{1}{\cos x} \\
\tan x=\frac{\sin x}{\cos x} & \cot x=\frac{\cos x}{\sin x} .
\end{array}
$$

In Exercises 79-81, rewrite each expression by changing to sines and cosines. Then simplify the resulting expression.
79. $\sec x \cot x$
80. $\tan x \csc x \cos x$
81. $\sec x+\tan x$

SUMMARY

DEFINITIONS AND CONCEPTS

4.1 Angles and Radian Measure

a. An angle consists of two rays with a common endpoint, the vertex.
b. An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. Figure 4.3 on page 493 shows positive and negative angles in standard position.
c. A quadrantal angle is an angle with its terminal side on the x-axis or the y-axis.
d. Angles can be measured in degrees. 1° is $\frac{1}{360}$ of a complete rotation.
e. Acute angles measure more than 0° but less than 90°, right angles 90°, obtuse angles more than 90° but less than 180°, and straight angles 180°.
f. Angles can be measured in radians. One radian is the measure of the central angle when the intercepted

Figure 4.5, p. 493

Ex. 1, p. 495 arc and radius have the same length. In general, the radian measure of a central angle is the length of the intercepted arc divided by the circle's radius: $\theta=\frac{s}{r}$.
g. To convert from degrees to radians, multiply degrees by $\frac{\pi \text { radians }}{180^{\circ}}$. To convert from radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \text { radians }}$.
h. To draw angles measured in radians in standard position, it is helpful to "think in radians" without having to convert to degrees. See Figure 4.15 on page 499.
i. Two angles with the same initial and terminal sides are called coterminal angles. Increasing or decreasing an angle's measure by integer multiples of 360° or 2π produces coterminal angles.
j. The arc length formula is $s=r \theta$, as described in the box on page 502 .
k. The definition of linear speed is $v=\frac{s}{t}$; angular speed is $\omega=\frac{\theta}{t}$, as given in the box on page 503.

1. Linear speed is expressed in terms of angular speed by $v=r \omega$, where v is the linear speed of a point a distance r from the center of rotation and ω is the angular speed in radians per unit of time.

Ex. 2, p. 496;
Ex. 3, p. 496

Ex. 4, p. 497

Ex. 5, p. 500;
Ex. 6, p. 501;
Ex. 7, p. 501
Ex. 8, p. 502

Ex. 9, p. 504

DEFINITIONS AND CONCEPTS

4.2 Trigonometric Functions: The Unit Circle

a. Definitions of the trigonometric functions in terms of a unit circle are given in the box on page 510.

Ex. 1, p. 510;
Ex. 2, p. 511
b. The cosine and secant functions are even:

Ex. 4, p. 514

$$
\cos (-t)=\cos t, \quad \sec (-t)=\sec t
$$

The other trigonometric functions are odd:

$$
\begin{aligned}
\sin (-t) & =-\sin t, \\
\tan (-t) & =-\csc (-t)=-\csc t \\
t, & \cot (-t)=-\cot t
\end{aligned}
$$

c. Fundamental Identities

Ex. 5, p. 515;

1. Reciprocal Identities

Ex. 6, p. 516

$$
\sin t=\frac{1}{\csc t} \text { and } \csc t=\frac{1}{\sin t} ; \quad \cos t=\frac{1}{\sec t} \text { and } \sec t=\frac{1}{\cos t} ; \quad \tan t=\frac{1}{\cot t} \text { and } \cot t=\frac{1}{\tan t}
$$

2. Quotient Identities

$$
\tan t=\frac{\sin t}{\cos t} ; \quad \cot t=\frac{\cos t}{\sin t}
$$

3. Pythagorean Identities

$$
\sin ^{2} t+\cos ^{2} t=1 ; 1+\tan ^{2} t=\sec ^{2} t ; 1+\cot ^{2} t=\csc ^{2} t
$$

d. If $f(t+p)=f(t)$, the function f is periodic. The smallest positive value of p for which $f(t+p)=f(t)$ is the period of f. The tangent and cotangent functions have period π. The other four trigonometric functions have period 2π.

4.3 Right Triangle Trigonometry

a. The right triangle definitions of the six trigonometric functions are given in the box on page 524. $\sin \theta=\frac{\text { opp }}{\text { hyp }} ; \csc \theta=\frac{\text { hyp }}{\text { opp }} ; \cos \theta=\frac{\text { adj }}{\text { hyp }} ; \sec \theta=\frac{\text { hyp }}{\text { adj }} ; \tan \theta=\frac{\text { opp }}{\text { adj }} ; \cot \theta=\frac{\text { adj }}{\text { opp }}$
b. Function values for $30^{\circ}, 45^{\circ}$, and 60° can be obtained using these special triangles.
c. Two angles are complements if their sum is 90° or $\frac{\pi}{2}$. The value of a trigonometric function of θ is equal to the cofunction of the complement of θ. Cofunction identities are listed in the box on page 529 .

4.4 Trigonometric Functions of Any Angle

a. Definitions of the trigonometric functions of any angle are given in the box on page 538.

$$
\sin \theta=\frac{y}{r} ; \csc \theta=\frac{r}{y} ; \cos \theta=\frac{x}{r} ; \sec \theta=\frac{r}{x} ; \tan \theta=\frac{y}{x} ; \cot \theta=\frac{x}{y} ; r=\sqrt{x^{2}+y^{2}}
$$

b. Signs of the trigonometric functions: All functions are positive in quadrant I. If θ lies in quadrant II, $\sin \theta$ and $\csc \theta$ are positive. If θ lies in quadrant III, $\tan \theta$ and $\cot \theta$ are positive. If θ lies in quadrant $\mathrm{IV}, \cos \theta$ and $\sec \theta$ are positive.
c. If θ is a nonacute angle in standard position that lies in a quadrant, its reference angle is the positive acute angle θ^{\prime} formed by the terminal side of θ and the x-axis. The reference angle for a given angle can be found by making a sketch that shows the angle in standard position. Figure 4.49 on page 541 shows reference angles for θ in quadrants II, III, and IV.
d. The values of the trigonometric functions of a given angle are the same as the values of the functions of the reference angle, except possibly for the sign. A procedure for using reference angles to evaluate
trigonometric functions is given in the box on page 544.

Ex. 3, p. 526;
Ex. 4, p. 528

Ex. 5, p. 529

Ex. 1, p. 538;
Ex. 2, p. 539

Ex. 3, p. 540;
Ex. 4, p. 540

Ex. 5, p. 542;
Ex. 6, p. 543

Ex. 7, p. 544;
Ex. 8, p. 546
Ex. 1, p. 525;
Ex. 2, p. 525

DEFINITIONS AND CONCEPTS

4.5 and 4.6 Graphs of the Trigonometric Functions

a. Graphs of the six trigonometric functions, with a description of the domain, range, and period of each function, are given in Table 4.6 on page 580.
b. The graph of $y=A \sin (B x-C), B>0$, can be obtained using amplitude $=|A|$, period $=\frac{2 \pi}{B}$, and phase shift $=\frac{C}{B}$. See the illustration in the box on page 558 .
c. The graph of $y=A \cos (B x-C), B>0$, can be obtained using amplitude $=|A|$, period $=\frac{2 \pi}{B}$, and phase shift $=\frac{C}{B}$. See the illustration in the box on page 563 .
d. The constant D in $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$ causes vertical shifts in the graphs in the preceding items (b) and (c). If $D>0$, the shift is D units upward and if $D<0$, the shift is $|D|$ units downward. Oscillation is about the horizontal line $y=D$.
e. The graph of $y=A \tan (B x-C), B>0$, is obtained using the procedure in the box on page 574 . Consecutive asymptotes
(solve $-\frac{\pi}{2}<B x-C<\frac{\pi}{2}$; consecutive asymptotes occur at $B x-C=-\frac{\pi}{2}$ and $B x-C=\frac{\pi}{2}$)
and an x-intercept midway between them play a key role in the graphing process.
f. The graph of $y=A \cot (B x-C), B>0$, is obtained using the procedure in the lower box on page 576 . Consecutive asymptotes (solve $0<B x-C<\pi$; consecutive asymptotes occur at $B x-C=0$ and $B x-C=\pi$) and an x-intercept midway between them play a key role in the graphing process.
g. To graph a cosecant curve, begin by graphing the corresponding sine curve. Draw vertical asymptotes through x-intercepts, using asymptotes as guides to sketch the graph. To graph a secant curve, first graph the corresponding cosine curve and use the same procedure.

4.7 Inverse Trigonometric Functions

a. On the restricted domain $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, y=\sin x$ has an inverse function, defined in the box on page 586 . Think of $\sin ^{-1} x$ as the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x. A procedure for finding exact values $\operatorname{of}^{-1} x$ is given in the box on page 587.
b. On the restricted domain $0 \leq x \leq \pi, y=\cos x$ has an inverse function, defined in the upper box on page 589 . Think of $\cos ^{-1} x$ as the angle in $[0, \pi]$ whose cosine is x. A procedure for finding exact values of $\cos ^{-1} x$ is given in the lower box on page 589 .
c. On the restricted domain $-\frac{\pi}{2}<x<\frac{\pi}{2}, y=\tan x$ has an inverse function, defined in the box on page 590. Think of $\tan ^{-1} x$ as the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x. A procedure for finding exact values of $\tan ^{-1} x$ is given in the box on page 591
d. Graphs of the three basic inverse trigonometric functions, with a description of the domain and range of each function, are given in Table 4.10 on page 592.
e. Inverse properties are given in the box on page 594. Points on terminal sides of angles in standard position and right triangles are used to find exact values of the composition of a function and a different inverse function.

4.8 Applications of Trigonometric Functions

a. Solving a right triangle means finding the missing lengths of its sides and the measurements of its angles. The Pythagorean Theorem, two acute angles whose sum is 90°, and appropriate trigonometric functions are used in this process.
b. The bearing from point O to point P is the acute angle between ray $O P$ and a north-south line, shown in Figure 4.105 on page 604.
c. Simple harmonic motion, described in the box on page 606, is modeled by $d=a \cos \omega t$ or $d=a \sin \omega t$, with amplitude $=|a|$, period $=\frac{2 \pi}{\omega}$, and frequency $=\frac{\omega}{2 \pi}=\frac{1}{\text { period }}$.

Ex. 1, p. 553;
Ex. 2, p. 554;
Ex. 3, p. 556;
Ex. 4, p. 558
Ex. 5, p. 561;
Ex. 6, p. 563

Ex. 7, p. 564

Ex. 1, p. 574;
Ex. 2, p. 575

Ex. 3, p. 576

Ex. 4, p. 578;
Ex. 5, p. 579

Ex. 1, p. 587;
Ex. 2, p. 588

Ex. 3, p. 589

Ex. 4, p. 591

Ex. 6, p. 595;
Ex. 7, p. 595;
Ex. 8, p. 596;
Ex. 9, p. 597
Ex. 1, p. 601;
Ex. 2, p. 602;
Ex. 3, p. 603;
Ex. 4, p. 603
Ex. 5, p. 604;
Ex. 6, p. 605
Ex. 7, p. 606;
Ex. 8, p. 607

GREAT QUESTION!

This was a long chapter! Where can I find the essential information I should know to achieve success as I continue studying trigonometry?
Much of the essential information in this chapter can be found in three places:

- The Great Question! feature on page 547, showing special angles and how to obtain exact values of trigonometric functions at these angles
- Table 4.6 on page 580 , showing the graphs of the six trigonometric functions, with their domains, ranges, and periods
- Table 4.10 on page 592, showing graphs of the three basic inverse trigonometric functions, with their domains and ranges.

Make copies of these pages and mount them on cardstock. Use this reference sheet as you work the review exercises until you have all the information on the reference sheet memorized for the chapter test.

REVIEW EXERCISES

4.1

1. Find the radian measure of the central angle of a circle of radius 6 centimeters that intercepts an arc of length 27 centimeters.
In Exercises 2-4, convert each angle in degrees to radians. Express your answer as a multiple of π.
2. 15°
3. 120°
4. 315°

In Exercises 5-7, convert each angle in radians to degrees.
5. $\frac{5 \pi}{3}$
6. $\frac{7 \pi}{5}$
7. $-\frac{5 \pi}{6}$

In Exercises 8-12, draw each angle in standard position.
8. $\frac{5 \pi}{6}$
9. $-\frac{2 \pi}{3}$
10. $\frac{8 \pi}{3}$
11. 190°
12. -135°

In Exercises 13-17, find a positive angle less than 360° or 2π that is coterminal with the given angle.
13. 400°
14. -445°
15. $\frac{13 \pi}{4}$
16. $\frac{31 \pi}{6}$
17. $-\frac{8 \pi}{3}$
18. Find the length of the arc on a circle of radius 10 feet intercepted by a 135° central angle. Express arc length in terms of π. Then round your answer to two decimal places.
19. The angular speed of a propeller on a wind generator is 10.3 revolutions per minute. Express this angular speed in radians per minute.
20. The propeller of an airplane has a radius of 3 feet. The propeller is rotating at 2250 revolutions per minute. Find the linear speed, in feet per minute, of the tip of the propeller.

4.2

In Exercises 21-22, a point $P(x, y)$ is shown on the unit circle corresponding to a real number t. Find the values of the trigonometric functions at t.

22.

In Exercises 23-26, use the figure shown to find the value of each trigonometric function at the indicated real number or state that the expression is undefined.

23. $\sec \frac{5 \pi}{6}$
24. $\tan \frac{4 \pi}{3}$
25. $\sec \frac{\pi}{2}$
26. $\cot \pi$
27. If $\sin t=\frac{2 \sqrt{7}}{7}, 0 \leq t<\frac{\pi}{2}$, use identities to find the remaining trigonometric functions.

In Exercises 28-30 evaluate each expression without using a calculator.
28. $\tan 4.7 \cot 4.7$
29. $\sin ^{2} \frac{\pi}{17}+\cos ^{2} \frac{\pi}{17}$
30. $\tan ^{2} 1.4-\sec ^{2} 1.4$

4.3

31. Use the triangle to find each of the six trigonometric functions of θ.

In Exercises 32-35, find the exact value of each expression. Do not use a calculator.
32. $\sin \frac{\pi}{6}+\tan ^{2} \frac{\pi}{3}$
33. $\cos ^{2} \frac{\pi}{4}-\tan ^{2} \frac{\pi}{4}$
34. $\sec ^{2} \frac{\pi}{5}-\tan ^{2} \frac{\pi}{5}$
35. $\cos \frac{2 \pi}{9} \sec \frac{2 \pi}{9}$

In Exercises 36-37, find a cofunction with the same value as the given expression.
36. $\sin 70^{\circ}$
37. $\cos \frac{\pi}{2}$

In Exercises 38-40, find the measure of the side of the right triangle whose length is designated by a lowercase letter. Round answers to the nearest whole number.

39.

40.

41. If $\sin \theta=\frac{1}{4}$ and θ is acute, find $\tan \left(\frac{\pi}{2}-\theta\right)$.
42. A hiker climbs for a half mile up a slope whose inclination is 17°. How many feet of altitude, to the nearest foot, does the hiker gain?
43. To find the distance across a lake, a surveyor took the measurements in the figure shown. What is the distance across the lake? Round to the nearest meter.

44. When a six-foot pole casts a four-foot shadow, what is the angle of elevation of the sun? Round to the nearest whole degree.

4.4

In Exercises 45-46, a point on the terminal side of angle θ is given. Find the exact value of each of the six trigonometric functions of θ, or state that the function is undefined.
45. $(-1,-5)$
46. $(0,-1)$

In Exercises 47-48, let θ be an angle in standard position. Name the quadrant in which θ lies.
47. $\tan \theta>0$ and $\sec \theta>0$
48. $\tan \theta>0$ and $\cos \theta<0$

In Exercises 49-51, find the exact value of each of the remaining trigonometric functions of θ.
49. $\cos \theta=\frac{2}{5}, \sin \theta<0$
50. $\tan \theta=-\frac{1}{3}, \sin \theta>0$
51. $\cot \theta=3, \cos \theta<0$

In Exercises 52-56, find the reference angle for each angle.
52. 265°
53. $\frac{5 \pi}{8}$
54. -410°
55. $\frac{17 \pi}{6}$
56. $-\frac{11 \pi}{3}$

In Exercises 57-67, find the exact value of each expression. Do not use a calculator.
57. $\sin 240^{\circ}$
58. $\tan 120^{\circ}$
59. $\sec \frac{7 \pi}{4}$
60. $\cos \frac{11 \pi}{6}$
61. $\cot \left(-210^{\circ}\right)$
62. $\csc \left(-\frac{2 \pi}{3}\right)$
63. $\sin \left(-\frac{\pi}{3}\right)$
64. $\sin 495^{\circ}$
65. $\tan \frac{13 \pi}{4}$
66. $\sin \frac{22 \pi}{3}$
67. $\cos \left(-\frac{35 \pi}{6}\right)$

4.5

In Exercises 68-73, determine the amplitude and period of each function. Then graph one period of the function.
68. $y=3 \sin 4 x$
69. $y=-2 \cos 2 x$
70. $y=2 \cos \frac{1}{2} x$
71. $y=\frac{1}{2} \sin \frac{\pi}{3} x$
72. $y=-\sin \pi x$
73. $y=3 \cos \frac{x}{3}$

In Exercises 74-78, determine the amplitude, period, and phase shift of each function. Then graph one period of the function.
74. $y=2 \sin (x-\pi)$
75. $y=-3 \cos (x+\pi)$
76. $y=\frac{3}{2} \cos \left(2 x+\frac{\pi}{4}\right)$
77. $y=\frac{5}{2} \sin \left(2 x+\frac{\pi}{2}\right)$
78. $y=-3 \sin \left(\frac{\pi}{3} x-3 \pi\right)$

In Exercises 79-80, use a vertical shift to graph one period of the function.
79. $y=\sin 2 x+1$
80. $y=2 \cos \frac{1}{3} x-2$
81. The function

$$
y=98.6+0.3 \sin \left(\frac{\pi}{12} x-\frac{11 \pi}{12}\right)
$$

models variation in body temperature, y, in ${ }^{\circ} \mathrm{F}$, x hours after midnight.
a. What is body temperature at midnight?
b. What is the period of the body temperature cycle?
c. When is body temperature highest? What is the body temperature at this time?
d. When is body temperature lowest? What is the body temperature at this time?
e. Graph one period of the body temperature function.
82. Light waves can be modeled by sine functions. The graphs show waves of red and blue light. Write an equation in the form $y=A \sin B x$ that models each of these light waves.

4.6

In Exercises 83-89, graph two full periods of the given tangent or cotangent function.
83. $y=4 \tan 2 x$
84. $y=-2 \tan \frac{\pi}{4} x$
85. $y=\tan (x+\pi)$
86. $y=-\tan \left(x-\frac{\pi}{4}\right)$
87. $y=2 \cot 3 x$
88. $y=-\frac{1}{2} \cot \frac{\pi}{2} x$
89. $y=2 \cot \left(x+\frac{\pi}{2}\right)$

In Exercises 90-93, graph two full periods of the given cosecant or secant function.
90. $y=3 \sec 2 \pi x$
91. $y=-2 \csc \pi x$
92. $y=3 \sec (x+\pi)$
93. $y=\frac{5}{2} \csc (x-\pi)$

4.7

In Exercises 94-112, find the exact value of each expression. Do not use a calculator.
94. $\sin ^{-1} 1$
95. $\cos ^{-1} 1$
96. $\tan ^{-1} 1$
97. $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
98. $\cos ^{-1}\left(-\frac{1}{2}\right)$
99. $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$
100. $\cos \left(\sin ^{-1} \frac{\sqrt{2}}{2}\right)$
101. $\sin \left(\cos ^{-1} 0\right)$
102. $\tan \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$
103. $\tan \left[\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$
104. $\csc \left(\tan ^{-1} \frac{\sqrt{3}}{3}\right)$
105. $\cos \left(\tan ^{-1} \frac{3}{4}\right)$
106. $\sin \left(\cos ^{-1} \frac{3}{5}\right)$
107. $\tan \left[\sin ^{-1}\left(-\frac{3}{5}\right)\right]$
108. $\tan \left[\cos ^{-1}\left(-\frac{4}{5}\right)\right]$
109. $\sin \left[\tan ^{-1}\left(-\frac{1}{3}\right)\right]$
110. $\sin ^{-1}\left(\sin \frac{\pi}{3}\right)$
111. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
112. $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)$

In Exercises 113-114, use a right triangle to write each expression as an algebraic expression. Assume that x is positive and that the given inverse trigonometric function is defined for the expression in x.
113. $\cos \left(\tan ^{-1} \frac{x}{2}\right)$
114. $\sec \left(\sin ^{-1} \frac{1}{x}\right)$

4.8

In Exercises 115-118, solve the right triangle shown in the figure. Round lengths to two decimal places and express angles to the nearest tenth of a degree.

115. $A=22.3^{\circ}, c=10$
116. $B=37.4^{\circ}, b=6$
117. $a=2, c=7$
118. $a=1.4, b=3.6$
119. From a point on level ground 80 feet from the base of a building, the angle of elevation is 25.6°. Approximate the height of the building to the nearest foot.
120. Two buildings with flat roofs are 60 yards apart. The height of the shorter building is 40 yards. From its roof, the angle of elevation to the edge of the roof of the taller building is 40°. Find the height of the taller building to the nearest yard.
121. You want to measure the height of an antenna on the top of a 125 -foot building. From a point in front of the building, you measure the angle of elevation to the top of the building to be 68° and the angle of elevation to the top of the antenna to be 71°. How tall is the antenna, to the nearest tenth of a foot?

In Exercises 122-123, use the figures shown to find the bearing from O to A.
122.

123.

124. A ship is due west of a lighthouse. A second ship is 12 miles south of the first ship. The bearing from the second ship to the lighthouse is $\mathrm{N} 64^{\circ} \mathrm{E}$. How far, to the nearest tenth of a mile, is the first ship from the lighthouse?
125. From city A to city B, a plane flies 850 miles at a bearing of N $58^{\circ} \mathrm{E}$. From city B to city C, the plane flies 960 miles at a bearing of $\mathrm{S} 32^{\circ} \mathrm{E}$.
a. Find, to the nearest tenth of a mile, the distance from city A to city C.
b. What is the bearing from city A to city C ?

In Exercises 126-127, an object moves in simple harmonic motion described by the given equation, where t is measured in seconds and d in centimeters. In each exercise, find:
a. the maximum displacement
b. the frequency
c. the time required for one cycle.
126. $d=20 \cos \frac{\pi}{4} t$
127. $d=\frac{1}{2} \sin 4 t$

In Exercises 128-129, an object is attached to a coiled spring. In Exercise 128, the object is pulled down (negative direction from the rest position) and then released. In Exercise 129, the object is propelled downward from its rest position. Write an equation for the distance of the object from its rest position after t seconds.

Distance from Rest Position at $\boldsymbol{t}=\mathbf{0}$	Amplitude	Period
128. 30 inches	30 inches	2 seconds
129. 0 inches	$\frac{1}{4}$ inch	5 seconds

1. Convert 135° to an exact radian measure.
2. Find the length of the arc on a circle of radius 20 feet intercepted by a 75° central angle. Express arc length in terms of π. Then round your answer to two decimal places.
3. a. Find a positive angle less than 2π that is coterminal with $\frac{16 \pi}{3}$.
b. Find the reference angle for $\frac{16 \pi}{3}$.
4. If $(-2,5)$ is a point on the terminal side of angle θ, find the exact value of each of the six trigonometric functions of θ.
5. Determine the quadrant in which θ lies if $\cos \theta<0$ and $\cot \theta>0$.
6. If $\cos \theta=\frac{1}{3}$ and $\tan \theta<0$, find the exact value of each of the remaining trigonometric functions of θ.

In Exercises 7-12, find the exact value of each expression. Do not use a calculator.
7. $\tan \frac{\pi}{6} \cos \frac{\pi}{3}-\cos \frac{\pi}{2}$
8. $\tan 300^{\circ}$
9. $\sin \frac{7 \pi}{4}$
10. $\sec \frac{22 \pi}{3}$
11. $\cot \left(-\frac{8 \pi}{3}\right)$
12. $\tan \left(\frac{7 \pi}{3}+n \pi\right), n$ is an integer.
13. If $\sin \theta=a$ and $\cos \theta=b$, represent each of the following in terms of a and b.
a. $\sin (-\theta)+\cos (-\theta)$
b. $\tan \theta-\sec \theta$

In Exercises 14-17, graph one period of each function.
14. $y=3 \sin 2 x$
15. $y=-2 \cos \left(x-\frac{\pi}{2}\right)$
16. $y=2 \tan \frac{x}{2}$
17. $y=-\frac{1}{2} \csc \pi x$
18. Find the exact value of $\tan \left[\cos ^{-1}\left(-\frac{1}{2}\right)\right]$.
19. Write $\sin \left(\cos ^{-1} \frac{x}{3}\right)$ as an algebraic expression. Assume that $x>0$ and $\frac{x}{3}$ is in the domain of the inverse cosine function.
20. Solve the right triangle in the figure shown. Round lengths to one decimal place.

21. The angle of elevation to the top of a building from a point on the ground 30 yards from its base is 37°. Find the height of the building to the nearest yard.
22. A 73-foot rope from the top of a circus tent pole is anchored to the flat ground 43 feet from the bottom of the pole. Find the angle, to the nearest tenth of a degree, that the rope makes with the pole.
23. Use the figure to find the bearing from O to P.

24. An object moves in simple harmonic motion described by $d=-6 \cos \pi t$, where t is measured in seconds and d in inches. Find a. the maximum displacement, b. the frequency, and \mathbf{c}. the time required for one oscillation.
25. Why are trigonometric functions ideally suited to model phenomena that repeat in cycles?

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-4)

Solve each equation or inequality in Exercises 1-6.

1. $x^{2}=18+3 x$
2. $x^{3}+5 x^{2}-4 x-20=0$
3. $\log _{2} x+\log _{2}(x-2)=3$
4. $\sqrt{x-3}+5=x$
5. $x^{3}-4 x^{2}+x+6=0$
6. $|2 x-5| \leq 11$
7. If $f(x)=\sqrt{x-6}$, find $f^{-1}(x)$.
8. Divide $20 x^{3}-6 x^{2}-9 x+10$ by $5 x+2$.
9. Write as a single logarithm and evaluate: $\log 25+\log 40$.
10. Convert $\frac{14 \pi}{9}$ radians to degrees.
11. Find the maximum number of positive and negative real roots of the equation $3 x^{4}-2 x^{3}+5 x^{2}+x-9=0$.

In Exercises 12-16, graph each equation.
12. $f(x)=\frac{x}{x^{2}-1}$
13. $(x-2)^{2}+y^{2}=1$
14. $y=(x-1)(x+2)^{2}$
15. $y=\sin \left(2 x+\frac{\pi}{2}\right)$, from 0 to 2π
16. $y=2 \tan 3 x$; Graph two complete cycles.
17. You invest in a new play. The cost includes an overhead of $\$ 30,000$, plus production costs of $\$ 2500$ per performance. A sold-out performance brings you $\$ 3125$. How many sold-out performances must be played in order for you to break even?
18. Use the exponential growth model $A=A_{0} e^{k t}$ to solve this exercise. In 2000, there were 110 million cellphone subscribers in the United States. By 2010, there were 303 million subscribers. (Source: CTIA)
a. Find the exponential function that models the data.
b. According to the model, in which year were there 400 million cellphone subscribers in the United States?
19. The rate of heat lost through insulation varies inversely as the thickness of the insulation. The rate of heat lost through a 3.5 -inch thickness of insulation is 2200 Btu per hour. What is the rate of heat lost through a 5-inch thickness of the same insulation?
20. A tower is 200 feet tall. To the nearest degree, find the angle of elevation from a point 50 feet from the base of the tower to the top of the tower.

This page intentionally left blank

ANALYTIC TRIGONOMETRY

CHAPTER

 events. After a few full turns in a circle, she throws ("puts") an 8-pound, 13-ounce shot from the shoulder. The range of her throwing distance continues to improve. Knowing that you are studying trigonometry, she asks if there is some way that a trigonometric expression might help achieve her best possible distance in the event.

HERE'S WHERE YOU'LL FIND

 THESE APPLICATIONS:This problem appears as Exercise 79 in Exercise Set 5.3. In the solution, you will obtain critical information about athletic performance using a trigonometric identity. In this chapter, we derive important categories of identities involving trigonometric functions. You will learn how to use these identities to better understand your periodic world.

SECTION 5.1

Verifying Trigonometric Identities

Objective

(1) Use the fundamental trigonometric identities to verify identities.

Do you enjoy solving puzzles? The process is a natural way to develop problem-solving skills that are important in every area of our lives. Engaging in problem solving for sheer pleasure releases chemicals in the brain that enhance our feeling of well-being. Perhaps this is why puzzles have fascinated people for over 12,000 years.

Thousands of relationships exist among the six trigonometric functions. Verifying these relationships is like solving a puzzle. Why? There are no rigid rules for the process. Thus, proving a trigonometric relationship requires you to be creative in your approach to problem solving. By learning to establish these relationships, you will become a better, more confident problem solver. Furthermore, you may enjoy the feeling of satisfaction that accompanies solving each "puzzle."

The Fundamental Identities

In Chapter 4, we used the unit circle to establish relationships among the trigonometric functions. The fundamental identities listed in the following box are true for all values of x for which the expressions are defined.

Fundamental Trigonometric Identities

Reciprocal Identities

$$
\begin{array}{lll}
\sin x=\frac{1}{\csc x} & \cos x=\frac{1}{\sec x} & \tan x=\frac{1}{\cot x} \\
\csc x=\frac{1}{\sin x} & \sec x=\frac{1}{\cos x} & \cot x=\frac{1}{\tan x}
\end{array}
$$

Quotient Identities

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
$$

Pythagorean Identities

$$
\sin ^{2} x+\cos ^{2} x=1 \quad 1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x
$$

Even-Odd Identities

$$
\begin{array}{lll}
\sin (-x)=-\sin x & \cos (-x)=\cos x & \tan (-x)=-\tan x \\
\csc (-x)=-\csc x & \sec (-x)=\sec x & \cot (-x)=-\cot x
\end{array}
$$

Using Fundamental Identities to Verify Other Identities

The fundamental trigonometric identities are used to establish other relationships among trigonometric functions. To verify an identity, we show that one side of the identity can be simplified so that it is identical to the other side. Each side of the equation is manipulated independently of the other side of the equation. Start with the side containing the more complicated expression. If you substitute one or more
fundamental identities on the more complicated side, you will often be able to rewrite it in a form identical to that of the other side.

No one method or technique can be used to verify every identity. Some identities can be verified by rewriting the more complicated side so that it contains only sines and cosines.

EXAMPLE 1 Changing to Sines and Cosines to Verify an Identity

Verify the identity: $\sec x \cot x=\csc x$.

SOLUTION

The left side of the equation contains the more complicated expression. Thus, we work with the left side. Let us express this side of the identity in terms of sines and cosines. Perhaps this strategy will enable us to transform the left side into $\csc x$, the expression on the right.

$$
\begin{aligned}
\sec x \cot x & =\frac{1}{\cos x} \cdot \frac{\cos x}{\sin x} & & \begin{array}{l}
\text { Apply a reciprocal identity: } \sec x=\frac{1}{\cos x} \\
\\
\end{array}=\frac{1}{\cos x} \cdot \frac{\cos x}{\sin x}
\end{aligned} \begin{aligned}
& \text { Divide both the numerator and the denom } \\
& \cos x, \text { the common factor. } \cot x=\frac{\cos x}{\sin x} .
\end{aligned}
$$

By working with the left side and simplifying it so that it is identical to the right side, we have verified the given identity.

TECHNOLOGY

Numeric and Graphic Connections

You can use a graphing utility to provide evidence of an identity. Enter each side of the identity separately under y_{1} and y_{2}. Then use the TABLE feature or the graphs. The table should show that the function values are the same except for those values of x for which y_{1}, y_{2}, or both, are undefined. The graphs should appear to be identical.

Let's check the identity in Example 1:

Numeric Check

Display a table for y_{1} and y_{2}. We started our table at $-\pi$ and used $\Delta T b l=\frac{\pi}{8}$.

Function values are the same

 except for values of x for which y_{1}, y_{2}, or both, are undefined.
Graphic Check

Display graphs for y_{1} and y_{2}.

In verifying an identity, stay focused on your goal. When manipulating one side of the equation, continue to look at the other side to keep the desired form of the result in mind.

GREAT QUESTION!

What's the difference between solving a conditional equation and verifying that an equation is an identity?

You solve equations by working with both sides at once, adding, subtracting, multiplying, or dividing the sides by the same expression. You verify an identity by manipulating each side independently of the other side. Because you are familiar with solving conditional equations, it may feel strange to verify identities by working separately with the sides of the equation.

Here is an algebraic example that illustrates the difference between solving an equation and verifying an identity:

Solving an Equation

Solve:

$$
\begin{aligned}
5(3 x+2)-4 & =-24 . & & \\
15 x+10-4 & =-24 & & \text { Use the distributive property. } \\
15 x+6 & =-24 & & \text { Continue working with both sides. } \\
15 x & =-30 & & \text { Subtract } 6 \text { from both sides. } \\
x & =-2 & & \text { Divide both sides by } 15 .
\end{aligned}
$$

Verifying an Identity

Verify:

$$
5(3 x+2)-4=15 x+6 .
$$

Work with the left side of the equation.

$$
\begin{aligned}
5(3 x+2)-4 & =15 x+10-4 & & \begin{array}{l}
\text { Use the distributive } \\
\text { property. }
\end{array} \\
& =15 x+6 & & \text { Simplify. }
\end{aligned}
$$

By working with the left side and simplifying it so that it is identical to the right side, we have verified the identity.

The solution set is $\{-2\}$.
Why can't you verify an identity by such methods as adding the same expression to each side and obtaining a true statement? If you do this, you have already assumed that the given statement is true. You do not know that it is true until after you have verified it.

GREAT QUESTION!

When proving identities, do I have to write the variable associated with each trigonometric function?
Yes. Do not get lazy and write

$$
\sin \tan +\cos
$$

for

$$
\sin x \tan x+\cos x
$$

because sin, tan, and cos are meaningless without specified variables.

EXAMPLE 2 Changing to Sines and Cosines to Verify an Identity

Verify the identity: $\sin x \tan x+\cos x=\sec x$.

SOLUTION

The left side is more complicated, so we start with it. Notice that the left side contains the sum of two terms, but the right side contains only one term. This means that somewhere during the verification process, the two terms on the left side must be added to form one term.

Let's begin by expressing the left side of the identity so that it contains only sines and cosines. Thus, we apply a quotient identity and replace $\tan x$ by $\frac{\sin x}{\cos x}$. Perhaps this strategy will enable us to transform the left side into $\sec x$, the expression on the right.

$$
\begin{aligned}
\sin x \tan x+\cos x & =\sin x\left(\frac{\sin x}{\cos x}\right)+\cos x & & \text { Apply a quotient identity: } \tan x=\frac{\sin x}{\cos x} . \\
& =\frac{\sin ^{2} x}{\cos x}+\cos x & & \text { Multiply. } \\
& =\frac{\sin ^{2} x}{\cos x}+\cos x \cdot \frac{\cos x}{\cos x} & & \begin{array}{l}
\text { The least common denominator is } \cos x . \\
\text { Write the second expression with a } \\
\text { denominator of } \cos x .
\end{array} \\
& =\frac{\sin ^{2} x}{\cos x}+\frac{\cos ^{2} x}{\cos x} & & \text { Multiply. }
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{\sin ^{2} x+\cos ^{2} x}{\cos x} & \begin{array}{l}
\text { Add numerators and place this sum } \\
\text { over the least common denominator. }
\end{array} \\
=\frac{1}{\cos x} & \begin{array}{l}
\text { Apply a Pythagorean identity: } \\
\sin ^{2} x+\cos ^{2} x=1 .
\end{array} \\
=\sec x &
\end{array} \begin{aligned}
& \text { Apply a reciprocal identity: } \sec x=\frac{1}{\cos x} .
\end{aligned}
$$

By working with the left side and arriving at the right side, the identity is verified.

3 Check Point 2 Verify the identity: $\cos x \cot x+\sin x=\csc x$.

Some identities are verified using factoring to simplify a trigonometric expression.

EXAMPLE 3 Using Factoring to Verify an Identity

Verify the identity: $\cos x-\cos x \sin ^{2} x=\cos ^{3} x$.

SOLUTION

We start with the more complicated side, the left side. Factor out the greatest common factor, $\cos x$, from each of the two terms.

$$
\begin{array}{rlrl}
\cos x-\cos x \sin ^{2} x & =\cos x\left(1-\sin ^{2} x\right) \\
& =\cos x \cdot \cos ^{2} x & & \text { Factor cos } x \text { from the two terms. } \\
& & \text { Use a variation of } \sin ^{2} x+\cos ^{2} x=1 . \\
& =\cos ^{3} x & & \cos ^{2} x=1-\sin ^{2} x
\end{array}
$$

We worked with the left side and arrived at the right side. Thus, the identity is verified.

0 Check Point 3 Verify the identity: $\sin x-\sin x \cos ^{2} x=\sin ^{3} x$.

There is often more than one technique that can be used to verify an identity.

EXAMPLE 4 Using Two Techniques to Verify an Identity

Verify the identity: $\frac{1+\sin \theta}{\cos \theta}=\sec \theta+\tan \theta$.

SOLUTION

Method 1. Separating a Single-Term Quotient into Two Terms Let's separate the quotient on the left side into two terms using

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} .
$$

Perhaps this strategy will enable us to transform the left side into $\sec \theta+\tan \theta$, the sum on the right.

$$
\begin{aligned}
\frac{1+\sin \theta}{\cos \theta}= & \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \quad
\end{aligned} \begin{array}{ll}
\text { Divide each term in the numerator by } \cos \theta \\
=\sec \theta+\tan \theta & \text { Apply a reciprocal identity and a quotient identity: } \\
& \sec \theta=\frac{1}{\cos \theta} \text { and } \tan \theta=\frac{\sin \theta}{\cos \theta} .
\end{array}
$$

We worked with the left side and arrived at the right side. Thus, the identity is verified.

GREAT QUESTION!

In Example 5, the left side contains the sum of two fractional expressions. You found a common denominator and combined them into one fraction. What should I do if I'm having problems with the fractions?
Some students have difficulty verifying identities due to problems working with fractions. If this applies to you, review the section on rational expressions in Chapter P.

Method 2. Changing to Sines and Cosines We need to verify the identity $\frac{1+\sin \theta}{\cos \theta}=\sec \theta+\tan \theta$. Let's work with the right side and express it so that it contains only sines and cosines.

$$
\begin{aligned}
\sec \theta+\tan \theta & =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} & & \begin{array}{l}
\text { Apply a reciprocal identity and a quotient identity: } \\
\sec \theta=\frac{1}{\cos \theta} \text { and } \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{array} \\
& =\frac{1+\sin \theta}{\cos \theta} & & \begin{array}{l}
\text { Add numerators. Put this sum over the common } \\
\text { denominator. }
\end{array}
\end{aligned}
$$

We worked with the right side and arrived at the left side. Thus, the identity is verified.

3 Check Point 4 Verify the identity: $\frac{1+\cos \theta}{\sin \theta}=\csc \theta+\cot \theta$.

How do we verify identities in which sums or differences of fractions with trigonometric functions appear on one side? Use the least common denominator and combine the fractions. This technique is especially useful when the other side of the identity contains only one term.

EXAMPLE 5 Combining Fractional Expressions to Verify an Identity

Verify the identity: $\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=2 \sec x$.

SOLUTION

We start with the more complicated side, the left side. The least common denominator of the fractions is $(1+\sin x)(\cos x)$. We express each fraction in terms of this least common denominator by multiplying the numerator and denominator by the extra factor needed to form $(1+\sin x)(\cos x)$.

$$
\begin{array}{ll}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x} & \begin{array}{l}
\text { The least common denominator is } \\
(1+\sin x)(\cos x) .
\end{array} \\
=\frac{\cos x(\cos x)}{(1+\sin x)(\cos x)}+\frac{(1+\sin x)(1+\sin x)}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Rewrite each fraction with the leas } \\
\text { common denominator. }
\end{array} \\
=\frac{\cos ^{2} x}{(1+\sin x)(\cos x)}+\frac{1+2 \sin x+\sin ^{2} x}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Use the FOIL method to multiply } \\
(1+\sin x)(1+\sin x) .
\end{array} \\
=\frac{\cos ^{2} x+1+2 \sin x+\sin ^{2} x}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Add numerators. Put this sum ove } \\
\text { the least common denominator. }
\end{array} \\
=\frac{\left(\sin ^{2} x+\cos ^{2} x\right)+1+2 \sin x}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Regroup terms to apply a } \\
\text { Pythagorean identity. }
\end{array} \\
=\frac{1+1+2 \sin x}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Apply a Pythagorean identity: } \\
\text { sin}
\end{array} \\
=\frac{2+2 \sin x}{(1+\sin x)(\cos x)} & \begin{array}{l}
\text { Add constant terms in the }
\end{array} \\
=\frac{2(1+\sin x)}{(1+\sin x)(\cos x)} & \text { numerator: } 1+1=2 .
\end{array}
$$

We worked with the left side and arrived at the right side. Thus, the identity is verified.

$$
\$ \text { Check Point } 5 \text { Verify the identity: } \frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=2 \csc x \text {. }
$$

Some identities are verified using a technique that may remind you of rationalizing a denominator.

EXAMPLE 6 Multiplying the Numerator and Denominator by the Same Factor to Verify an Identity

Verify the identity: $\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}$.

SOLUTION

The suggestions given in the previous examples do not apply here. Everything is already expressed in terms of sines and cosines. Furthermore, there are no fractions to combine and neither side looks more complicated than the other. Let's solve the puzzle by working with the left side and making it look like the expression on the right. The expression on the right contains $1-\cos x$ in the numerator. This suggests multiplying the numerator and denominator of the left side by $1-\cos x$. By doing this, we obtain a factor of $1-\cos x$ in the numerator, as in the numerator on the right.

$$
\begin{aligned}
\frac{\sin x}{1+\cos x} & =\frac{\sin x}{1+\cos x} \cdot \frac{1-\cos x}{1-\cos x} & & \text { Multiply numerator and denominator by } 1-\cos x . \\
& =\frac{\sin x(1-\cos x)}{1-\cos ^{2} x} & & \begin{array}{l}
\text { Multiply. Use }(A+B)(A-B)=A^{2}-B^{2}, \text { with } \\
A=1 \text { and } B=\cos x, \text { to multiply denominators. }
\end{array} \\
& =\frac{\sin x(1-\cos x)}{\sin ^{2} x} & & \begin{array}{l}
\text { Use a variation of } \sin ^{2} x+\cos ^{2} x=1 . \text { Solving for } \\
\sin ^{2} x, \text { we obtain } \sin ^{2} x=1-\cos ^{2} x .
\end{array} \\
& =\frac{1-\cos x}{\sin x} & & \text { Simplify: } \frac{\sin x}{\sin ^{2} x}=\frac{\sin x}{\sin x \cdot \sin x}=\frac{1}{\sin x}
\end{aligned}
$$

We worked with the left side and arrived at the right side. Thus, the identity is verified.
$\$$ Check Point 6 Verify the identity: $\frac{\cos x}{1+\sin x}=\frac{1-\sin x}{\cos x}$.
EXAMPLE 7 Changing to Sines and Cosines to Verify an Identity
Verify the identity: $\frac{\tan x-\sin (-x)}{1+\cos x}=\tan x$.

SOLUTION

We begin with the left side. Our goal is to obtain $\tan x$, the expression on the right.

$$
\begin{array}{rlrl}
\frac{\tan x-\sin (-x)}{1+\cos x} & =\frac{\tan x-(-\sin x)}{1+\cos x} & & \begin{array}{l}
\text { The sine function is odd: } \\
\sin (-x)=-\sin x
\end{array} \\
& =\frac{\tan x+\sin x}{1+\cos x} & & \text { Simplify. } \\
& =\frac{\frac{\sin x}{\cos x}+\sin x}{1+\cos x} & & \text { Apply a quotient identity: } \\
& & \tan x=\frac{\sin x}{\cos x^{\circ}}
\end{array}
$$

$$
\begin{array}{ll}
=\frac{\frac{\sin x}{\cos x}+\frac{\sin x \cos x}{\cos x}}{1+\cos x} & \begin{array}{l}
\text { Express the terms in the } \\
\text { numerator with the least } \\
\text { common denominator, } \cos x
\end{array} \\
=\frac{\frac{\sin x+\sin x \cos x}{\cos x}}{1+\cos x} & \begin{array}{l}
\text { Add in the numerator. }
\end{array} \\
=\frac{\sin x+\sin x \cos x}{\cos x} \div \frac{1+\cos x}{1} & \begin{array}{l}
\text { Rewrite the main fraction bar } \\
\text { as } \div
\end{array} \\
=\frac{\sin x+\sin x \cos x}{\cos x} \cdot \frac{1}{1+\cos x} & \text { Invert the divisor and multiply. } \\
=\frac{\sin x\left(1+\frac{1}{\cos x)}\right.}{\cos x} \cdot \frac{1}{1+\cos x} & \text { Factor and simplify. } \\
=\frac{\sin x}{\cos x} & \begin{array}{l}
\text { Multiply the remaining } \\
\text { factors in the numerator and } \\
\text { in the denominator. }
\end{array} \\
=\tan x & \begin{array}{l}
\text { Apply a quotient identity. }
\end{array}
\end{array}
$$

The left side simplifies to $\tan x$, the right side of the given equation. Thus, the identity is verified.

$\$$ Check Point 7 Verify the identity: $\frac{\sec x+\csc (-x)}{\sec x \csc x}=\sin x-\cos x$.

Is every identity verified by working with only one side? No. You can sometimes work with each side separately and show that both sides are equal to the same trigonometric expression. This is illustrated in Example 8.

EXAMPLE 8 Working with Both Sides Separately to Verify an Identity

Verify the identity: $\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=2+2 \cot ^{2} \theta$.

SOLUTION

We begin by working with the left side.

$$
\begin{array}{ll}
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta} & \begin{array}{l}
\text { The least com } \\
\text { denominator is } \\
(1+\cos \theta)(1
\end{array} \\
=\frac{1(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}+\frac{1(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} & \begin{array}{l}
\text { Rewrite each } f \\
\text { with the least } \\
\text { denominator. }
\end{array} \\
=\frac{1-\cos \theta+1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)} & \begin{array}{l}
\text { Add numerato } \\
\text { sum over the } \\
\text { denominator. }
\end{array} \\
=\frac{2}{(1+\cos \theta)(1-\cos \theta)} & \begin{array}{l}
\text { Simplify the } n u \\
-\cos \theta+\cos \\
1+1=2 .
\end{array} \\
=\frac{1+\cos ^{2} \theta}{1-\lim ^{2}} & \begin{array}{l}
\text { Multiply the fa } \\
\text { denominator. }
\end{array}
\end{array}
$$

Now we work with the right side. Our goal is to transform this side into the simplified form attained for the left side, $\frac{2}{1-\cos ^{2} \theta}$.

$$
\begin{array}{rlrl}
2+2 \cot ^{2} \theta & =2+2\left(\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right) & & \text { Use a quotient identity: } \cot \theta=\frac{\cos \theta}{\sin \theta} . \\
& =\frac{2 \sin ^{2} \theta}{\sin ^{2} \theta}+\frac{2 \cos ^{2} \theta}{\sin ^{2} \theta} & & \begin{array}{l}
\text { Rewrite each term with the least common } \\
\text { denominator, } \sin ^{2} \theta .
\end{array} \\
& =\frac{2 \sin ^{2} \theta+2 \cos ^{2} \theta}{\sin ^{2} \theta} & \begin{array}{l}
\text { Add numerators. Put this sum over the least } \\
\text { common denominator. }
\end{array} \\
& =\frac{2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\sin ^{2} \theta} & & \text { Factor out the greatest common factor, } 2 . \\
& =\frac{2}{\sin ^{2} \theta} & & \begin{array}{l}
\text { Apply a Pythagorean identity: } \sin ^{2} \theta+\cos ^{2} \theta=1 .
\end{array} \\
& =\frac{2}{1-\cos ^{2} \theta} & \begin{array}{l}
\text { Use a variation of } \sin ^{2} \theta+\cos ^{2} \theta=1 \text { and solve } \\
\text { for } \sin ^{2} \theta: \sin ^{2} \theta=1-\cos ^{2} \theta .
\end{array}
\end{array}
$$

The identity is verified because both sides are equal to $\frac{2}{1-\cos ^{2} \theta}$. \int Check Point 8 Verify the identity: $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2+2 \tan ^{2} \theta$.

Guidelines for Verifying Trigonometric Identities

There is often more than one correct way to solve a puzzle, although one method may be shorter and more efficient than another. The same is true for verifying an identity. For example, how would you verify

$$
\frac{\csc ^{2} x-1}{\csc ^{2} x}=\cos ^{2} x ?
$$

One approach is to use a Pythagorean identity, $1+\cot ^{2} x=\csc ^{2} x$, on the left side. Then change the resulting expression to sines and cosines.
to sines and cosines.

A more efficient strategy for verifying this identity may not be apparent at first glance. Work with the left side and divide each term in the numerator by the denominator, $\csc ^{2} x$.

$$
\begin{array}{r}
\frac{\csc ^{2} x-1}{\csc ^{2} x}=\frac{\csc ^{2} x}{\csc ^{2} x}-\frac{1}{\csc ^{2} x}=1-\sin ^{2} x=\cos ^{2} x \\
\begin{array}{c}
\text { Apply a reciprocal } \\
\text { identity: } \sin x=\frac{1}{2}
\end{array} \text { Use } \sin ^{2} x+\cos ^{2} x=1 \\
\text { and solve for } \cos ^{2} x .
\end{array}
$$

With this strategy, we again obtain $\cos ^{2} x$, the expression on the right side, and it takes fewer steps than the first approach.

An even longer strategy to verify $\frac{\csc ^{2} x-1}{\csc ^{2} x}=\cos ^{2} x$, but one that works, is to replace each of the two occurrences of $\csc ^{2} x$ on the left side by $\frac{1}{\sin ^{2} x}$. This may be the approach that you first consider, particularly if you become accustomed to rewriting the more complicated side in terms of sines and cosines. The selection of an appropriate fundamental identity to solve the puzzle most efficiently is learned through lots of practice.

The more identities you prove, the more confident and efficient you will become. Although practice is the only way to learn how to verify identities, there are some guidelines developed throughout the section that should help you get started.

Guidelines for Verifying Trigonometric Identities

- Work with each side of the equation independently of the other side. Start with the more complicated side and transform it in a step-by-step fashion until it looks exactly like the other side.
- Analyze the identity and look for opportunities to apply the fundamental identities.
- Try using one or more of the following techniques:

1. Rewrite the more complicated side in terms of sines and cosines.
2. Factor out the greatest common factor.
3. Separate a single-term quotient into two terms:

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \quad \text { and } \quad \frac{a-b}{c}=\frac{a}{c}-\frac{b}{c} .
$$

4. Combine fractional expressions using the least common denominator.
5. Multiply the numerator and the denominator by a binomial factor that appears on the other side of the identity.

- Don't be afraid to stop and start over again if you are not getting anywhere. Creative puzzle solvers know that strategies leading to dead ends often provide good problem-solving ideas.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. To verify an identity, start with the more side and transform it in a step-by-step fashion until it is identical to the \qquad side.
2. It is sometimes helpful to verify an identity by rewriting one of the sides in terms of \qquad and \qquad , and then simplifying the result.
3. True or false:To verify the identity

$$
\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}
$$

we should begin by multiplying both sides by $\sin x(1+\cos x)$, the least common denominator.
4. $\frac{1}{\csc x-1}-\frac{1}{\csc x+1}$ can be simplified using as the least common denominator.
5. You can use your graphing calculator to provide evidence of an identity. Graph the left side and the right side separately, and see if the two graphs are \qquad .

EXERCISE SET 5.1

Practice Exercises

In Exercises 1-60, verify each identity.

1. $\sin x \sec x=\tan x$
2. $\cos x \csc x=\cot x$
3. $\tan (-x) \cos x=-\sin x$
4. $\cot (-x) \sin x=-\cos x$
5. $\tan x \csc x \cos x=1$
6. $\cot x \sec x \sin x=1$
7. $\sec x-\sec x \sin ^{2} x=\cos x$
8. $\csc x-\csc x \cos ^{2} x=\sin x$
9. $\cos ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x$
10. $\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1$
11. $\csc \theta-\sin \theta=\cot \theta \cos \theta$
12. $\tan \theta+\cot \theta=\sec \theta \csc \theta$
13. $\frac{\tan \theta \cot \theta}{\csc \theta}=\sin \theta$
14. $\frac{\cos \theta \sec \theta}{\cot \theta}=\tan \theta$
15. $\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)=1$
16. $\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)=1$
17. $\sin t \tan t=\frac{1-\cos ^{2} t}{\cos t}$
18. $\cos t \cot t=\frac{1-\sin ^{2} t}{\sin t}$
19. $\frac{\csc ^{2} t}{\cot t}=\csc t \sec t$
20. $\frac{\sec ^{2} t}{\tan t}=\sec t \csc t$
21. $\frac{\tan ^{2} t}{\sec t}=\sec t-\cos t$
22. $\frac{\cot ^{2} t}{\csc t}=\csc t-\sin t$
23. $\frac{1-\cos \theta}{\sin \theta}=\csc \theta-\cot \theta$
24. $\frac{1-\sin \theta}{\cos \theta}=\sec \theta-\tan \theta$
25. $\frac{\sin t}{\csc t}+\frac{\cos t}{\sec t}=1$
26. $\frac{\sin t}{\tan t}+\frac{\cos t}{\cot t}=\sin t+\cos t$
27. $\tan t+\frac{\cos t}{1+\sin t}=\sec t$
28. $\cot t+\frac{\sin t}{1+\cos t}=\csc t$
29. $1-\frac{\sin ^{2} x}{1+\cos x}=\cos x$
30. $1-\frac{\cos ^{2} x}{1+\sin x}=\sin x$
31. $\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=2 \sec x$
32. $\frac{\sin x}{\cos x+1}+\frac{\cos x-1}{\sin x}=0$
33. $\sec ^{2} x \csc ^{2} x=\sec ^{2} x+\csc ^{2} x$
34. $\csc ^{2} x \sec x=\sec x+\csc x \cot x$
35. $\frac{\sec x-\csc x}{\sec x+\csc x}=\frac{\tan x-1}{\tan x+1}$
36. $\frac{\csc x-\sec x}{\csc x+\sec x}=\frac{\cot x-1}{\cot x+1}$
37. $\frac{\sin ^{2} x-\cos ^{2} x}{\sin x+\cos x}=\sin x-\cos x$
38. $\frac{\tan ^{2} x-\cot ^{2} x}{\tan x+\cot x}=\tan x-\cot x$
39. $\tan ^{2} 2 x+\sin ^{2} 2 x+\cos ^{2} 2 x=\sec ^{2} 2 x$
40. $\cot ^{2} 2 x+\cos ^{2} 2 x+\sin ^{2} 2 x=\csc ^{2} 2 x$
41. $\frac{\tan 2 \theta+\cot 2 \theta}{\csc 2 \theta}=\sec 2 \theta$
42. $\frac{\tan 2 \theta+\cot 2 \theta}{\sec 2 \theta}=\csc 2 \theta$
43. $\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y-\sin x \sin y}$
44. $\frac{\cot x+\cot y}{1-\cot x \cot y}=\frac{\cos x \sin y+\sin x \cos y}{\sin x \sin y-\cos x \cos y}$
45. $(\sec x-\tan x)^{2}=\frac{1-\sin x}{1+\sin x}$
46. $(\csc x-\cot x)^{2}=\frac{1-\cos x}{1+\cos x}$
47. $\frac{\sec t+1}{\tan t}=\frac{\tan t}{\sec t-1}$
48. $\frac{\csc t-1}{\cot t}=\frac{\cot t}{\csc t+1}$
49. $\frac{1+\cos t}{1-\cos t}=(\csc t+\cot t)^{2}$
50. $\frac{\cos ^{2} t+4 \cos t+4}{\cos t+2}=\frac{2 \sec t+1}{\sec t}$
51. $\cos ^{4} t-\sin ^{4} t=1-2 \sin ^{2} t$
52. $\sin ^{4} t-\cos ^{4} t=1-2 \cos ^{2} t$
53. $\frac{\sin \theta-\cos \theta}{\sin \theta}+\frac{\cos \theta-\sin \theta}{\cos \theta}=2-\sec \theta \csc \theta$
54. $\frac{\sin \theta}{1-\cot \theta}-\frac{\cos \theta}{\tan \theta-1}=\sin \theta+\cos \theta$
55. $\left(\tan ^{2} \theta+1\right)\left(\cos ^{2} \theta+1\right)=\tan ^{2} \theta+2$
56. $\left(\cot ^{2} \theta+1\right)\left(\sin ^{2} \theta+1\right)=\cot ^{2} \theta+2$
57. $(\cos \theta-\sin \theta)^{2}+(\cos \theta+\sin \theta)^{2}=2$
58. $(3 \cos \theta-4 \sin \theta)^{2}+(4 \cos \theta+3 \sin \theta)^{2}=25$
59. $\frac{\cos ^{2} x-\sin ^{2} x}{1-\tan ^{2} x}=\cos ^{2} x$
60. $\frac{\sin x+\cos x}{\sin x}-\frac{\cos x-\sin x}{\cos x}=\sec x \csc x$

Practice Plus

In Exercises 61-66, half of an identity and the graph of this half are given. Use the graph to make a conjecture as to what the right side of the identity should be. Then prove your conjecture.
61. $\frac{(\sec x+\tan x)(\sec x-\tan x)}{\sec x}=$?

62. $\frac{\sec ^{2} x \csc x}{\sec ^{2} x+\csc ^{2} x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-4,4,1]$
63. $\frac{\cos x+\cot x \sin x}{\cot x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-4,4,1]$
64. $\frac{\cos x \tan x-\tan x+2 \cos x-2}{\tan x+2}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-4,4,1]$
65. $\frac{1}{\sec x+\tan x}+\frac{1}{\sec x-\tan x}=$?

66. $\frac{1+\cos x}{\sin x}+\frac{\sin x}{1+\cos x}=$?

In Exercises 67-74, rewrite each expression in terms of the given function or functions.
67. $\frac{\tan x+\cot x}{\csc x} ; \cos x$
68. $\frac{\sec x+\csc x}{1+\tan x} ; \sin x$
69. $\frac{\cos x}{1+\sin x}+\tan x ; \cos x$
70. $\frac{1}{\sin x \cos x}-\cot x ; \cot x$
71. $\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} ; \csc x$
72. $(\sec x+\csc x)(\sin x+\cos x)-2-\cot x ; \tan x$
73. $\frac{1}{\csc x-\sin x} ; \sec x$ and $\tan x$
74. $\frac{1-\sin x}{1+\sin x}-\frac{1+\sin x}{1-\sin x}$; sec x and $\tan x$

Writing in Mathematics

75. Explain how to verify an identity.
76. Describe two strategies that can be used to verify identities.
77. Describe how you feel when you successfully verify a difficult identity. What other activities do you engage in that evoke the same feelings?
78. A 10-point question on a quiz asks students to verify the identity

$$
\frac{\sin ^{2} x-\cos ^{2} x}{\sin x+\cos x}=\sin x-\cos x
$$

One student begins with the left side and obtains the right side as follows:

$$
\frac{\sin ^{2} x-\cos ^{2} x}{\sin x+\cos x}=\frac{\sin ^{2} x}{\sin x}-\frac{\cos ^{2} x}{\cos x}=\sin x-\cos x .
$$

How many points (out of 10) would you give this student? Explain your answer.

Technology Exercises

In Exercises 79-87, graph each side of the equation in the same viewing rectangle. If the graphs appear to coincide, verify that the equation is an identity. If the graphs do not appear to coincide, this indicates the equation is not an identity. In these exercises, find a value of x for which both sides are defined but not equal.
79. $\tan x=\sec x(\sin x-\cos x)+1$
80. $\sin x=-\cos x \tan (-x)$
81. $\sin \left(x+\frac{\pi}{4}\right)=\sin x+\sin \frac{\pi}{4}$
82. $\cos \left(x+\frac{\pi}{4}\right)=\cos x+\cos \frac{\pi}{4}$
83. $\cos (x+\pi)=\cos x$
84. $\sin (x+\pi)=\sin x$
85. $\frac{\sin x}{1-\cos ^{2} x}=\csc x$
86. $\sin x-\sin x \cos ^{2} x=\sin ^{3} x$
87. $\sqrt{\sin ^{2} x+\cos ^{2} x}=\sin x+\cos x$

Critical Thinking Exercises

Make Sense? In Exercises 88-91, determine whether each statement makes sense or does not make sense, and explain your reasoning.
88. The word identity is used in different ways in additive identity, multiplicative identity, and trigonometric identity.
89. To prove a trigonometric identity, I select one side of the equation and transform it until it is the other side of the equation, or I manipulate both sides to a common trigonometric expression.
90. In order to simplify $\frac{\cos x}{1-\sin x}-\frac{\sin x}{\cos x}$, I need to know how to subtract rational expressions with unlike denominators.
91. The most efficient way that I can simplify $\frac{(\sec x+1)(\sec x-1)}{\sin ^{2} x}$ is to immediately rewrite the expression in terms of cosines and sines.

In Exercises 92-95, verify each identity.
92. $\frac{\sin ^{3} x-\cos ^{3} x}{\sin x-\cos x}=1+\sin x \cos x$
93. $\frac{\sin x-\cos x+1}{\sin x+\cos x-1}=\frac{\sin x+1}{\cos x}$
94. $\ln |\sec x|=-\ln |\cos x|$
95. $\ln e^{\tan ^{2} x-\sec ^{2} x}=-1$
96. Use one of the fundamental identities in the box on page 622 to create an original identity.

Group Exercise

97. Group members are to write a helpful list of items for a pamphlet called "The Underground Guide to Verifying Identities." The pamphlet will be used primarily by students who sit, stare, and freak out every time they are asked to verify an identity. List easy ways to remember the fundamental identities. What helpful guidelines can you offer from the perspective of a student that you probably won't find in math books? If you have your own strategies that work particularly well, include them in the pamphlet.

Preview Exercises

Exercises 98-100 will help you prepare for the material covered in the next section.
98. Give exact values for $\cos 30^{\circ}, \sin 30^{\circ}, \cos 60^{\circ}, \sin 60^{\circ}, \cos 90^{\circ}$, and $\sin 90^{\circ}$.
99. Use the appropriate values from Exercise 98 to answer each of the following.
a. Is $\cos \left(30^{\circ}+60^{\circ}\right)$, or $\cos 90^{\circ}$, equal to $\cos 30^{\circ}+\cos 60^{\circ}$?
b. Is $\cos \left(30^{\circ}+60^{\circ}\right)$, or $\cos 90^{\circ}$, equal to $\cos 30^{\circ} \cos 60^{\circ}-\sin 30^{\circ} \sin 60^{\circ} ?$
100. Use the appropriate values from Exercise 98 to answer each of the following.
a. Is $\sin \left(30^{\circ}+60^{\circ}\right)$, or $\sin 90^{\circ}$, equal to $\sin 30^{\circ}+\sin 60^{\circ}$?
b. Is $\sin \left(30^{\circ}+60^{\circ}\right)$, or $\sin 90^{\circ}$, equal to $\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$?

SECTION 5.2

FIGURE 5.1 Using the unit circle and $P Q$ to develop a formula for $\cos (\alpha-\beta)$

Sum and Difference Formulas

Listen to the same note played on a piano and a violin. The notes have a different quality or "tone." Tone depends on the way an instrument vibrates. However, the less than
1% of the population with amusia, or true tone deafness, cannot tell the two sounds apart. Even simple, familiar tunes such as "Happy Birthday" and "Jingle Bells" are mystifying to amusics.

When a note is played, it vibrates at a specific fundamental frequency and has a particular amplitude. Amusics cannot tell the difference between two sounds from tuning forks modeled by $p=3 \sin 2 t$ and $\quad p=2 \sin (2 t+\pi)$, respectively. However, they can recognize the difference between the two equations. Notice that the second equation contains the sine of the sum of two angles. In this section, we will be developing identities involving the sums or differences of two angles. These formulas are called the sum and difference formulas. We begin with $\cos (\alpha-\beta)$, the cosine of the difference of two angles.

The Cosine of the Difference of Two Angles

$$
\begin{aligned}
& \text { The Cosine of the Difference of Two Angles } \\
& \qquad \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

The cosine of the difference of two angles equals the cosine of the first angle times the cosine of the second angle plus the sine of the first angle times the sine of the second angle.

We use Figure 5.1 to prove the identity in the box. The graph in Figure 5.1(a) shows a unit circle, $x^{2}+y^{2}=1$. The figure uses the definitions of the cosine and sine functions as the x - and y-coordinates of points along the unit circle. For example, point P corresponds to angle β. By definition, the x-coordinate of P is $\cos \beta$ and the y-coordinate is $\sin \beta$. Similarly, point Q corresponds to angle α. By definition, the x-coordinate of Q is $\cos \alpha$ and the y-coordinate is $\sin \alpha$.

Note that if we draw a line segment between points P and Q in Figure 5.1(a), a triangle is formed. Angle $\alpha-\beta$ is one of the angles of this triangle. What happens if we rotate this triangle so that point P falls on the x-axis at $(1,0)$? The result is shown in Figure 5.1(b), repeated below in the margin. This rotation changes the coordinates of points P and Q. However, it has no effect on the length of line segment $P Q$.

We can use the distance formula, $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, to find an expression for $P Q$ in Figure 5.1(a) and in Figure 5.1(b). By equating the two expressions for $P Q$, we will obtain the identity for the cosine of the difference of two angles, $\alpha-\beta$. We first apply the distance formula in Figure 5.1(a).

FIGURE 5.1(a) (repeated)

Next, we apply the distance formula in Figure 5.1(b) to obtain a second expression for $P Q$. We let $\left(x_{1}, y_{1}\right)=(1,0)$ and $\left(x_{2}, y_{2}\right)=(\cos (\alpha-\beta), \sin (\alpha-\beta))$.

$$
\begin{aligned}
P Q & =\sqrt{[\cos (\alpha-\beta)-1]^{2}+[\sin (\alpha-\beta)-0]^{2}} & & \begin{array}{l}
\text { Apply the distance formula to find the distance between } \\
(1,0) \text { and }(\cos (\alpha-\beta), \sin (\alpha-\beta)) .
\end{array} \\
& =\sqrt{\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1+\sin ^{2}(\alpha-\beta)} & & \begin{array}{l}
\text { Square each expression. }
\end{array} \\
& \text { Using a Pythagorean identity, } \sin ^{2}(\alpha-\beta)+\cos ^{2}(\alpha-\beta)=1 . & & \text { Use a Pythagorean identity. } \\
& =\sqrt{1-2 \cos (\alpha-\beta)+1} & & \text { Simplify. }
\end{aligned}
$$

FIGURE $5.1(\mathrm{~b})$ (repeated)

Now we equate the two expressions for $P Q$.

$$
\begin{aligned}
& \sqrt{2-2 \cos (\alpha-\beta)}=\sqrt{2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta} \begin{array}{l}
\text { The rotation does } \\
\text { not change the length } \\
\text { of } P Q .
\end{array} \\
& 2-2 \cos (\alpha-\beta)=2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \begin{array}{l}
\text { square both sides to } \\
\text { eliminate radicals. }
\end{array} \\
&-2 \cos (\alpha-\beta)=-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \begin{array}{l}
\text { Subtract } 2 \text { from both } \\
\text { sides of the equation. }
\end{array} \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \begin{array}{l}
\text { Divide both sides of }
\end{array} \\
& \text { the equation by - } 2 .
\end{aligned}
$$

(1) Use the formula for the cosine of the difference of two angles.

This proves the identity for the cosine of the difference of two angles.
Now that we see where the identity for the cosine of the difference of two angles comes from, let's look at some applications of this result.

Blitzer Bonus

Sound Quality and Amusia

People with true tone deafness cannot hear the difference among tones produced by a tuning fork, a flute, an oboe, and a violin. They cannot dance or tell the difference between harmony and dissonance. People with amusia appear to have been born without the wiring necessary to process music. Intriguingly, they show no overt signs of brain damage and their brain scans appear normal. Thus, they can visually recognize the difference among sound waves that produce varying sound qualities.

Varying Sound Qualities

- Tuning fork: Sound waves are rounded and regular, giving a pure and gentle tone.

- Flute: Sound waves are smooth and give a fluid tone.

- Oboe: Rapid wave changes give a richer tone.

- Violin: Jagged waves give a brighter harsher tone.

EXAMPLE 1 Using the Difference Formula

 for Cosines to Find an Exact ValueFind the exact value of $\cos 15^{\circ}$.

SOLUTION

We know exact values for trigonometric functions of 60° and 45°. Thus, we write 15° as $60^{\circ}-45^{\circ}$ and use the difference formula for cosines.

$$
\begin{aligned}
\cos 15^{\circ} & =\cos \left(60^{\circ}-45^{\circ}\right) \\
& =\cos 60^{\circ} \cos 45^{\circ}+\sin 60^{\circ} \sin 45^{\circ} \quad \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

$$
=\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \quad \begin{aligned}
& \text { Substitute exact values from memory or use } \\
& \text { special right triangles. }
\end{aligned}
$$

special right triangles.

$$
=\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \quad \text { Multiply. }
$$

$$
=\frac{\sqrt{2}+\sqrt{6}}{4} \quad \text { Add }
$$

GREAT QUESTION!

Can I use my calculator to verify that

$$
\begin{aligned}
& \qquad \cos 15^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4} ? \\
& \text { Yes. Find approximations for } \cos 15^{\circ} \text { and } \frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

00s(15)
($5(2)+5659258$
.9659258263

Because the approximations are the same, we have checked that

$$
\cos 15^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4}
$$

$\$$ Check Point 1 We know that $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$. Obtain this exact value using $\cos 30^{\circ}=\cos \left(90^{\circ}-60^{\circ}\right)$ and the difference formula for cosines.

EXAMPLE 2 Using the Difference Formula for Cosines to Find an Exact Value

Find the exact value of $\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}$.

SOLUTION

The given expression is the right side of the formula for $\cos (\alpha-\beta)$ with $\alpha=80^{\circ}$ and $\beta=20^{\circ}$.

$$
\begin{aligned}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}=\cos \left(80^{\circ}-20^{\circ}\right)=\cos 60^{\circ}=\frac{1}{2}
\end{aligned}
$$

$$
\bullet \bullet \bullet
$$

$\$$ Check Point 2 Find the exact value of

$$
\cos 70^{\circ} \cos 40^{\circ}+\sin 70^{\circ} \sin 40^{\circ}
$$

TECHNOLOGY

Graphic Connections

The graphs of

$$
y=\cos \left(\frac{\pi}{2}-x\right)
$$

and

$$
y=\sin x
$$

are shown in the same viewing rectangle. The graphs are the same. The displayed math on the right below with the voice balloon on top shows the equivalence algebraically.

2 Use sum and difference formulas for cosines and sines.

EXAMPLE 3 Verifying an Identity
Verify the identity: $\frac{\cos (\alpha-\beta)}{\sin \alpha \cos \beta}=\cot \alpha+\tan \beta$.

SOLUTION

We work with the left side.

$$
\begin{array}{rlrl}
\frac{\cos (\alpha-\beta)}{\sin \alpha \cos \beta} & =\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta}{\sin \alpha \cos \beta} & & \text { Use the formula for } \cos (\alpha-\beta) . \\
& =\frac{\cos \alpha \cos \beta}{\sin \alpha \cos \beta}+\frac{\sin \alpha \sin \beta}{\sin \alpha \cos \beta} & & \begin{array}{l}
\text { Divide each term in the numerator by } \\
\text { sin } \alpha \cos \beta .
\end{array} \\
& =\frac{\cos \alpha}{\sin \alpha} \cdot \frac{\cos \beta}{\cos \beta}+\frac{\sin \alpha}{\sin \alpha} \cdot \frac{\sin \beta}{\cos \beta} & \begin{array}{l}
\text { This step can be done mentally. We } \\
\text { wanted you to see the substitutions } \\
\text { that follow. }
\end{array} \\
& =\cot \alpha \cdot 1+1 \cdot \tan \beta & & \text { Use quotient identities. } \\
& =\cot \alpha+\tan \beta & & \text { Simplify. }
\end{array}
$$

We worked with the left side and arrived at the right side. Thus, the identity is verified.

\oint Check Point 3 Verify the identity: $\frac{\cos (\alpha-\beta)}{\cos \alpha \cos \beta}=1+\tan \alpha \tan \beta$.

The difference formula for cosines is used to establish other identities. For example, in our work with right triangles, we noted that cofunctions of complements are equal. Thus, because $\frac{\pi}{2}-\theta$ and θ are complements,

$$
\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta
$$

We can use the formula for $\cos (\alpha-\beta)$ to prove this cofunction identity for all angles.

$$
\begin{aligned}
& \text { Apply } \cos (\alpha-\beta) \text { with } \alpha=\frac{\pi}{2} \text { and } \beta=\theta . \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned} \quad \begin{aligned}
\cos \left(\frac{\pi}{2}-\theta\right) & =\cos \frac{\pi}{2} \cos \theta+\sin \frac{\pi}{2} \sin \theta \\
& =0 \cdot \cos \theta+1 \cdot \sin \theta \\
& =\sin \theta
\end{aligned}
$$

Sum and Difference Formulas for Cosines and Sines

Our formula for $\cos (\alpha-\beta)$ can be used to verify an identity for a sum involving cosines, as well as identities for a sum and a difference for sines.

Sum and Difference Formulas for Cosines and Sines

1. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
2. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
3. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
4. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$

Up to now, we have concentrated on the second formula in the preceding box, $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$. The first identity, $\cos (\alpha+\beta)=$ $\cos \alpha \cos \beta-\sin \alpha \sin \beta$, gives a formula for the cosine of the sum of two angles. It is proved as follows:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos [\alpha-(-\beta)] & & \begin{array}{l}
\text { Express addition as subtraction of an } \\
\text { additive inverse. }
\end{array} \\
& =\cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta) & & \text { Use the difference formula for cosines. } \\
& =\cos \alpha \cos \beta+\sin \alpha(-\sin \beta) & & \text { Cosine is even: } \cos (-\beta)=\cos \beta \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta . & & \text { Sine is odd: } \sin (-\beta)=-\sin \beta
\end{aligned}
$$

Thus, the cosine of the sum of two angles equals the cosine of the first angle times the cosine of the second angle minus the sine of the first angle times the sine of the second angle.

The third identity in the box, $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$, gives a formula for $\sin (\alpha+\beta)$, the sine of the sum of two angles. It is proved as follows:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\cos \left[\frac{\pi}{2}-(\alpha+\beta)\right] & & \text { Use a cofunction identity: } \\
& =\cos \left[\left(\frac{\pi}{2}-\alpha\right)-\beta\right] & & \sin \theta=\cos \left(\frac{\pi}{2}-\theta\right) \\
& =\cos \left(\frac{\pi}{2}-\alpha\right) \cos \beta+\sin \left(\frac{\pi}{2}-\alpha\right) \sin \beta & & \begin{array}{l}
\text { Use the difference formula for } \\
\text { cosines. }
\end{array} \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta . & & \text { Use cofunction identities. }
\end{aligned}
$$

Thus, the sine of the sum of two angles equals the sine of the first angle times the cosine of the second angle plus the cosine of the first angle times the sine of the second angle.

The final identity in the box, $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$, gives a formula for $\sin (\alpha-\beta)$, the sine of the difference of two angles. It is proved by writing $\sin (\alpha-\beta)$ as $\sin [\alpha+(-\beta)]$ and then using the formula for the sine of a sum.

EXAMPLE 4 Using the Sine of a Sum to Find an Exact Value

Find the exact value of $\sin \frac{7 \pi}{12}$ using the fact that $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$.

SOLUTION

We apply the formula for the sine of a sum.

$$
\begin{array}{rlrl}
\sin \frac{7 \pi}{12} & =\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right) & \\
& =\sin \frac{\pi}{3} \cos \frac{\pi}{4}+\cos \frac{\pi}{3} \sin \frac{\pi}{4} & & \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}+\frac{1}{2} \cdot \frac{\sqrt{2}}{2} & & \text { Substitute exact values. } \\
& =\frac{\sqrt{6}+\sqrt{2}}{4} & & \text { Simplify. }
\end{array}
$$

$\$$ Check Point 4 Find the exact value of $\sin \frac{5 \pi}{12}$ using the fact that

$$
\frac{5 \pi}{12}=\frac{\pi}{6}+\frac{\pi}{4}
$$

FIGURE $5.2 \sin \alpha=\frac{12}{13}$: α lies in quadrant II.

FIGURE $5.3 \sin \beta=\frac{3}{5}$: β lies in quadrant I.

EXAMPLE 5 Finding Exact Values

Suppose that $\sin \alpha=\frac{12}{13}$ for a quadrant II angle α and $\sin \beta=\frac{3}{5}$ for a quadrant I angle β. Find the exact value of each of the following:
a. $\cos \alpha$
b. $\cos \beta$
c. $\cos (\alpha+\beta)$
d. $\sin (\alpha+\beta)$.

SOLUTION

a. We find $\cos \alpha$ using a sketch that illustrates

$$
\sin \alpha=\frac{12}{13}=\frac{y}{r} .
$$

Figure 5.2 shows a quadrant II angle α with $\sin \alpha=\frac{12}{13}$. We find x using $x^{2}+y^{2}=r^{2}$. Because α lies in quadrant II, x is negative.

$$
\begin{aligned}
x^{2}+12^{2} & =13^{2} & & x^{2}+y^{2}=r^{2} \\
x^{2}+144 & =169 & & \text { square } 12 \text { and } 13, \text { respectively. } \\
x^{2} & =25 & & \text { Subtract } 144 \text { from both sides. } \\
x & =-\sqrt{25}=-5 & & \text { If } x^{2}=25, \text { then } x= \pm \sqrt{25}= \pm 5 .
\end{aligned}
$$

Choose $x=-\sqrt{25}$ because in quadrant II, x is negative.

Thus,

$$
\cos \alpha=\frac{x}{r}=\frac{-5}{13}=-\frac{5}{13} .
$$

b. We find $\cos \beta$ using a sketch that illustrates

$$
\sin \beta=\frac{3}{5}=\frac{y}{r} .
$$

Figure 5.3 shows a quadrant I angle β with $\sin \beta=\frac{3}{5}$. We find x using $x^{2}+y^{2}=r^{2}$.

$$
\begin{array}{rlrl}
x^{2}+3^{2} & =5^{2} & & x^{2}+y^{2}=r^{2} \\
x^{2}+9 & =25 & & \text { square } 3 \text { and } 5, \text { respectively. } \\
x^{2} & =16 & & \text { Subtract } 9 \text { from both sides. } \\
x & =\sqrt{16}=4 & & \text { If } x^{2}=16, \text { then } x= \pm \sqrt{16}= \pm 4 . \\
& & \text { Choose } x=\sqrt{16} \text { because in quadrant } 1, \\
& x \text { is positive. }
\end{array}
$$

Thus,

$$
\cos \beta=\frac{x}{r}=\frac{4}{5} .
$$

We use the given values and the exact values that we determined to find exact values for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$.

$$
\begin{array}{cl}
\text { These values are given. } & \text { These are the values we found. } \\
\sin \alpha=\frac{12}{13}, \sin \beta=\frac{3}{5} & \cos \alpha=-\frac{5}{13}, \cos \beta=\frac{4}{5}
\end{array}
$$

c. We use the formula for the cosine of a sum.

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& =\left(-\frac{5}{13}\right)\left(\frac{4}{5}\right)-\frac{12}{13}\left(\frac{3}{5}\right)=-\frac{56}{65}
\end{aligned}
$$

d. We use the formula for the sine of a sum.

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{12}{13} \cdot \frac{4}{5}+\left(-\frac{5}{13}\right) \cdot \frac{3}{5}=\frac{33}{65}
\end{aligned}
$$

These are the values we found.
$\cos \alpha=-\frac{5}{13}, \cos \beta=\frac{4}{5}$

$$
\bullet \bullet
$$

\oint Check Point 5 Suppose that $\sin \alpha=\frac{4}{5}$ for a quadrant II angle α and $\sin \beta=\frac{1}{2}$ for a quadrant I angle β. Find the exact value of each of the following:
a. $\cos \alpha$
b. $\cos \beta$
c. $\cos (\alpha+\beta)$
d. $\sin (\alpha+\beta)$.

EXAMPLE 6 Verifying Observations on a Graphing Utility

Figure 5.4 shows the graph of $y=\sin \left(x-\frac{3 \pi}{2}\right)$ in $a\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle.
a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.

SOLUTION

a. The graph appears to be the cosine curve $y=\cos x$. It cycles through maximum, intercept, minimum, intercept, and back to maximum. Thus, $y=\cos x$ also describes the graph.
b. We must show that

$$
\sin \left(x-\frac{3 \pi}{2}\right)=\cos x
$$

We apply the formula for the sine of a difference on the left side.

$$
\begin{aligned}
\sin \left(x-\frac{3 \pi}{2}\right) & =\sin x \cos \frac{3 \pi}{2}-\cos x \sin \frac{3 \pi}{2} & & \begin{array}{l}
\sin (\alpha-\beta)= \\
\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{array} \\
& =\sin x \cdot 0-\cos x(-1) & & \cos \frac{3 \pi}{2}=0 \text { and } \sin \frac{3 \pi}{2}=-1 \\
& =\cos x & & \text { Simplify. }
\end{aligned}
$$

This verifies our observation that $y=\sin \left(x-\frac{3 \pi}{2}\right)$ and $y=\cos x$ describe
the same graph. the same graph.
$\$$ Check Point 6 Figure 5.5 shows the graph of $y=\cos \left(x+\frac{3 \pi}{2}\right)$ in a $\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle.
a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.

Sum and Difference Formulas for Tangents

By writing $\tan (\alpha+\beta)$ as the quotient of $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$, we can develop a formula for the tangent of a sum. Writing subtraction as addition of an inverse leads to a formula for the tangent of a difference.

DISCOVERY

Derive the sum and difference formulas for tangents by working Exercises 55 and 56 in Exercise Set 5.2.

Sum and Difference Formulas for Tangents

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
$$

The tangent of the sum of two angles equals the tangent of the first angle plus the tangent of the second angle divided by 1 minus their product.

$$
\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
$$

The tangent of the difference of two angles equals the tangent of the first angle minus the tangent of the second angle divided by 1 plus their product.

EXAMPLE 7 Verifying an Identity

Verify the identity: $\tan \left(x-\frac{\pi}{4}\right)=\frac{\tan x-1}{\tan x+1}$.

SOLUTION

We work with the left side.

$$
\begin{aligned}
\tan \left(x-\frac{\pi}{4}\right) & =\frac{\tan x-\tan \frac{\pi}{4}}{1+\tan x \tan \frac{\pi}{4}} \quad \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& =\frac{\tan x-1}{1+\tan x \cdot 1} \quad \tan \frac{\pi}{4}=1 \\
& =\frac{\tan x-1}{\tan x+1}
\end{aligned}
$$

$$
\bullet \bullet \bullet
$$

\oint Check Point 7 Verify the identity: $\tan (x+\pi)=\tan x$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\cos (x+y)=$
2. $\cos (x-y)=$
\qquad
3. $\sin (C+D)=$
4. $\sin (C-D)=$
\qquad
5. $\tan (\theta-\phi)=$ \qquad
6. $\tan (\theta+\phi)=$ \qquad
7. True or false: $\tan 75^{\circ}=\tan 30^{\circ}+\tan 45^{\circ}$

EXERCISE SET 5.2

Practice Exercises

Use the formula for the cosine of the difference of two angles to solve Exercises 1-12.

In Exercises 1-4, find the exact value of each expression.

1. $\cos \left(45^{\circ}-30^{\circ}\right)$
2. $\cos \left(120^{\circ}-45^{\circ}\right)$
c. Find the exact value of the expression.
3. $\cos \left(\frac{3 \pi}{4}-\frac{\pi}{6}\right)$
4. $\cos \left(\frac{2 \pi}{3}-\frac{\pi}{6}\right)$
5. $\cos 50^{\circ} \cos 20^{\circ}+\sin 50^{\circ} \sin 20^{\circ}$
6. $\cos 50^{\circ} \cos 5^{\circ}+\sin 50^{\circ} \sin 5^{\circ}$

In Exercises 5-8, each expression is the right side of the formula for $\cos (\alpha-\beta)$ with particular values for α and β.
a. Identify α and β in each expression.
b. Write the expression as the cosine of an angle.
7. $\cos \frac{5 \pi}{12} \cos \frac{\pi}{12}+\sin \frac{5 \pi}{12} \sin \frac{\pi}{12}$
8. $\cos \frac{5 \pi}{18} \cos \frac{\pi}{9}+\sin \frac{5 \pi}{18} \sin \frac{\pi}{9}$

In Exercises 9-12, verify each identity.
9. $\frac{\cos (\alpha-\beta)}{\cos \alpha \sin \beta}=\tan \alpha+\cot \beta$
10. $\frac{\cos (\alpha-\beta)}{\sin \alpha \sin \beta}=\cot \alpha \cot \beta+1$
11. $\cos \left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(\cos x+\sin x)$
12. $\cos \left(x-\frac{5 \pi}{4}\right)=-\frac{\sqrt{2}}{2}(\cos x+\sin x)$

Use one or more of the six sum and difference identities to solve Exercises 13-54.

In Exercises 13-24, find the exact value of each expression.
13. $\sin \left(45^{\circ}-30^{\circ}\right)$
14. $\sin \left(60^{\circ}-45^{\circ}\right)$
15. $\sin 105^{\circ}$
16. $\sin 75^{\circ}$
17. $\cos \left(135^{\circ}+30^{\circ}\right)$
18. $\cos \left(240^{\circ}+45^{\circ}\right)$
19. $\cos 75^{\circ}$
20. $\cos 105^{\circ}$
21. $\tan \left(\frac{\pi}{6}+\frac{\pi}{4}\right)$
22. $\tan \left(\frac{\pi}{3}+\frac{\pi}{4}\right)$
23. $\tan \left(\frac{4 \pi}{3}-\frac{\pi}{4}\right)$
24. $\tan \left(\frac{5 \pi}{3}-\frac{\pi}{4}\right)$

In Exercises 25-32, write each expression as the sine, cosine, or tangent of an angle. Then find the exact value of the expression.
25. $\sin 25^{\circ} \cos 5^{\circ}+\cos 25^{\circ} \sin 5^{\circ}$
26. $\sin 40^{\circ} \cos 20^{\circ}+\cos 40^{\circ} \sin 20^{\circ}$
27. $\frac{\tan 10^{\circ}+\tan 35^{\circ}}{1-\tan 10^{\circ} \tan 35^{\circ}}$
28. $\frac{\tan 50^{\circ}-\tan 20^{\circ}}{1+\tan 50^{\circ} \tan 20^{\circ}}$
29. $\sin \frac{5 \pi}{12} \cos \frac{\pi}{4}-\cos \frac{5 \pi}{12} \sin \frac{\pi}{4}$
30. $\sin \frac{7 \pi}{12} \cos \frac{\pi}{12}-\cos \frac{7 \pi}{12} \sin \frac{\pi}{12}$
31. $\frac{\tan \frac{\pi}{5}-\tan \frac{\pi}{30}}{1+\tan \frac{\pi}{5} \tan \frac{\pi}{30}}$
32. $\frac{\tan \frac{\pi}{5}+\tan \frac{4 \pi}{5}}{1-\tan \frac{\pi}{5} \tan \frac{4 \pi}{5}}$

In Exercises 33-54, verify each identity.
33. $\sin \left(x+\frac{\pi}{2}\right)=\cos x \quad$ 34. $\sin \left(x+\frac{3 \pi}{2}\right)=-\cos x$
35. $\cos \left(x-\frac{\pi}{2}\right)=\sin x$
36. $\cos (\pi-x)=-\cos x$
37. $\tan (2 \pi-x)=-\tan x$
38. $\tan (\pi-x)=-\tan x$
39. $\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta$
40. $\cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha \cos \beta$
41. $\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta}=\tan \alpha-\tan \beta$
42. $\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta}=\tan \alpha+\tan \beta$
43. $\tan \left(\theta+\frac{\pi}{4}\right)=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$
44. $\tan \left(\frac{\pi}{4}-\theta\right)=\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}$
45. $\cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \beta-\sin ^{2} \alpha$
46. $\sin (\alpha+\beta) \sin (\alpha-\beta)=\cos ^{2} \beta-\cos ^{2} \alpha$
47. $\frac{\sin (\alpha+\beta)}{\sin (\alpha-\beta)}=\frac{\tan \alpha+\tan \beta}{\tan \alpha-\tan \beta}$
48. $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{1-\tan \alpha \tan \beta}{1+\tan \alpha \tan \beta}$
49. $\frac{\cos (x+h)-\cos x}{h}=\cos x \frac{\cos h-1}{h}-\sin x \frac{\sin h}{h}$
50. $\frac{\sin (x+h)-\sin x}{h}=\cos x \frac{\sin h}{h}+\sin x \frac{\cos h-1}{h}$
51. $\sin 2 \alpha=2 \sin \alpha \cos \alpha$

Hint: Write $\sin 2 \alpha$ as $\sin (\alpha+\alpha)$.
52. $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$

Hint: Write $\cos 2 \alpha$ as $\cos (\alpha+\alpha)$.
53. $\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$

Hint: Write $\tan 2 \alpha$ as $\tan (\alpha+\alpha)$.
54. $\tan \left(\frac{\pi}{4}+\alpha\right)-\tan \left(\frac{\pi}{4}-\alpha\right)=2 \tan 2 \alpha$

Hint: Use the result in Exercise 53.
55. Derive the identity for $\tan (\alpha+\beta)$ using

$$
\tan (\alpha+\beta)=\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)}
$$

After applying the formulas for sums of sines and cosines, divide the numerator and denominator by $\cos \alpha \cos \beta$.
56. Derive the identity for $\tan (\alpha-\beta)$ using

$$
\tan (\alpha-\beta)=\tan [\alpha+(-\beta)]
$$

After applying the formula for the tangent of the sum of two angles, use the fact that the tangent is an odd function.
In Exercises 57-64, find the exact value of the following under the given conditions:
a. $\cos (\alpha+\beta)$
b. $\sin (\alpha+\beta)$
c. $\tan (\alpha+\beta)$.
57. $\sin \alpha=\frac{3}{5}, \alpha$ lies in quadrant I , and $\sin \beta=\frac{5}{13}, \beta$ lies in quadrant II.
58. $\sin \alpha=\frac{4}{5}, \alpha$ lies in quadrant I , and $\sin \beta=\frac{7}{25}, \beta$ lies in quadrant II.
59. $\tan \alpha=-\frac{3}{4}, \alpha$ lies in quadrant II, and $\cos \beta=\frac{1}{3}, \beta$ lies in quadrant I .
60. $\tan \alpha=-\frac{4}{3}, \alpha$ lies in quadrant II, and $\cos \beta=\frac{2}{3}, \beta$ lies in quadrant I .
61. $\cos \alpha=\frac{8}{17}, \alpha$ lies in quadrant IV, and $\sin \beta=-\frac{1}{2}, \beta$ lies in quadrant III.
62. $\cos \alpha=\frac{1}{2}, \alpha$ lies in quadrant IV, and $\sin \beta=-\frac{1}{3}, \beta$ lies in quadrant III.
63. $\tan \alpha=\frac{3}{4}, \pi<\alpha<\frac{3 \pi}{2}$, and $\cos \beta=\frac{1}{4}, \frac{3 \pi}{2}<\beta<2 \pi$.
64. $\sin \alpha=\frac{5}{6}, \frac{\pi}{2}<\alpha<\pi$, and $\tan \beta=\frac{3}{7}, \pi<\beta<\frac{3 \pi}{2}$.

In Exercises 65-68, the graph with the given equation is shown in $a\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle.
a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.
65. $y=\sin (\pi-x)$

66. $y=\cos (x-2 \pi)$

67. $y=\sin \left(x+\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}-x\right)$

68. $y=\cos \left(x-\frac{\pi}{2}\right)-\cos \left(x+\frac{\pi}{2}\right)$

Practice Plus

In Exercises 69-74, rewrite each expression as a simplified expression containing one term.
69. $\cos (\alpha+\beta) \cos \beta+\sin (\alpha+\beta) \sin \beta$
70. $\sin (\alpha-\beta) \cos \beta+\cos (\alpha-\beta) \sin \beta$
71. $\frac{\sin (\alpha+\beta)-\sin (\alpha-\beta)}{\cos (\alpha+\beta)+\cos (\alpha-\beta)}$
72. $\frac{\cos (\alpha-\beta)+\cos (\alpha+\beta)}{-\sin (\alpha-\beta)+\sin (\alpha+\beta)}$
73. $\cos \left(\frac{\pi}{6}+\alpha\right) \cos \left(\frac{\pi}{6}-\alpha\right)-\sin \left(\frac{\pi}{6}+\alpha\right) \sin \left(\frac{\pi}{6}-\alpha\right)$
(Do not use four different identities to solve this exercise.)
74. $\sin \left(\frac{\pi}{3}-\alpha\right) \cos \left(\frac{\pi}{3}+\alpha\right)+\cos \left(\frac{\pi}{3}-\alpha\right) \sin \left(\frac{\pi}{3}+\alpha\right)$
(Do not use four different identities to solve this exercise.) In Exercises 75-78, half of an identity and the graph of this half are given. Use the graph to make a conjecture as to what the right side of the identity should be. Then prove your conjecture.
75. $\cos 2 x \cos 5 x+\sin 2 x \sin 5 x=$?

76. $\sin 5 x \cos 2 x-\cos 5 x \sin 2 x=$?

77. $\sin \frac{5 x}{2} \cos 2 x-\cos \frac{5 x}{2} \sin 2 x=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$
78. $\cos \frac{5 x}{2} \cos 2 x+\sin \frac{5 x}{2} \sin 2 x=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$

Application Exercises

79. A ball attached to a spring is raised 2 feet and released with an initial vertical velocity of 3 feet per second. The distance of the ball from its rest position after t seconds is given by $d=2 \cos t+3 \sin t$. Show that

$$
2 \cos t+3 \sin t=\sqrt{13} \cos (t-\theta)
$$

where θ lies in quadrant I and $\tan \theta=\frac{3}{2}$. Use the identity to find the amplitude and the period of the ball's motion.
80. A tuning fork is held a certain distance from your ears and struck. Your eardrums' vibrations after t seconds are given by $p=3 \sin 2 t$. When a second tuning fork is struck, the formula $p=2 \sin (2 t+\pi)$ describes the effects of the sound on the eardrums' vibrations. The total vibrations are given by $p=3 \sin 2 t+2 \sin (2 t+\pi)$.
a. Simplify p to a single term containing the sine.
b. If the amplitude of p is zero, no sound is heard. Based on your equation in part (a), does this occur with the two tuning forks in this exercise? Explain your answer.

Writing in Mathematics

In Exercises 81-86, use words to describe the formula for each of the following:
81. the cosine of the difference of two angles.
82. the cosine of the sum of two angles.
83. the sine of the sum of two angles.
84. the sine of the difference of two angles.
85. the tangent of the difference of two angles.
86. the tangent of the sum of two angles.
87. The distance formula and the definitions for cosine and sine are used to prove the formula for the cosine of the difference of two angles. This formula logically leads the way to the other sum and difference identities. Using this development of ideas and formulas, describe a characteristic of mathematical logic.

Technology Exercises

In Exercises 88-93, graph each side of the equation in the same viewing rectangle. If the graphs appear to coincide, verify that the equation is an identity. If the graphs do not appear to coincide, this indicates that the equation is not an identity. In these exercises, find a value of x for which both sides are defined but not equal.
88. $\cos \left(\frac{3 \pi}{2}-x\right)=-\sin x$
89. $\tan (\pi-x)=-\tan x$
90. $\sin \left(x+\frac{\pi}{2}\right)=\sin x+\sin \frac{\pi}{2}$
91. $\cos \left(x+\frac{\pi}{2}\right)=\cos x+\cos \frac{\pi}{2}$
92. $\cos 1.2 x \cos 0.8 x-\sin 1.2 x \sin 0.8 x=\cos 2 x$
93. $\sin 1.2 x \cos 0.8 x+\cos 1.2 x \sin 0.8 x=\sin 2 x$

Critical Thinking Exercises

Make Sense? In Exercises 94-97, determine whether each statement makes sense or does not make sense, and explain your reasoning.
94. I've noticed that for sine, cosine, and tangent, the trig function for the sum of two angles is not equal to that trig function of the first angle plus that trig function of the second angle.
95. After using an identity to determine the exact value of $\sin 105^{\circ}$, I verified the result with a calculator.
96. Using sum and difference formulas, I can find exact values for sine, cosine, and tangent at any angle.
97. After the difference formula for cosines is verified, I noticed that the other sum and difference formulas are verified relatively quickly.
98. Verify the identity:

$$
\frac{\sin (x-y)}{\cos x \cos y}+\frac{\sin (y-z)}{\cos y \cos z}+\frac{\sin (z-x)}{\cos z \cos x}=0
$$

In Exercises 99-102, find the exact value of each expression. Do not use a calculator.
99. $\sin \left(\cos ^{-1} \frac{1}{2}+\sin ^{-1} \frac{3}{5}\right)$
100. $\sin \left[\sin ^{-1} \frac{3}{5}-\cos ^{-1}\left(-\frac{4}{5}\right)\right]$
101. $\cos \left(\tan ^{-1} \frac{4}{3}+\cos ^{-1} \frac{5}{13}\right)$
102. $\cos \left[\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$

In Exercises 103-105, write each trigonometric expression as an algebraic expression (that is, without any trigonometric functions). Assume that x and y are positive and in the domain of the given inverse trigonometric function.
103. $\cos \left(\sin ^{-1} x-\cos ^{-1} y\right)$
104. $\sin \left(\tan ^{-1} x-\sin ^{-1} y\right)$
105. $\tan \left(\sin ^{-1} x+\cos ^{-1} y\right)$

Group Exercise

106. Remembering the six sum and difference identities can be difficult. Did you have problems with some exercises because the identity you were using in your head turned out to be an incorrect formula? Are there easy ways to remember the six new identities presented in this section? Group members should address this question, considering one identity at a time. For each formula, list ways to make it easier to remember.

Preview Exercises

Exercises 107-109 will help you prepare for the material covered in the next section.
107. Give exact values for $\sin 30^{\circ}, \cos 30^{\circ}, \sin 60^{\circ}$, and $\cos 60^{\circ}$.
108. Use the appropriate values from Exercise 107 to answer each of the following.
a. Is $\sin \left(2 \cdot 30^{\circ}\right)$, or $\sin 60^{\circ}$, equal to $2 \sin 30^{\circ}$?
b. Is $\sin \left(2 \cdot 30^{\circ}\right)$, or $\sin 60^{\circ}$, equal to $2 \sin 30^{\circ} \cos 30^{\circ}$?
109. Use appropriate values from Exercise 107 to answer each of the following.
a. Is $\cos \left(2 \cdot 30^{\circ}\right)$, or $\cos 60^{\circ}$, equal to $2 \cos 30^{\circ}$?
b. Is $\cos \left(2 \cdot 30^{\circ}\right)$, or $\cos 60^{\circ}$, equal to $\cos ^{2} 30^{\circ}-\sin ^{2} 30^{\circ}$?

SECTION 5.3

Double-Angle, Power-Reducing, and Half-Angle Formulas

Objectives

(1) Use the double-angle formulas.
(2) Use the power-reducing formulas.
(3) Use the half-angle formulas.
(1) Use the double-angle formulas.

We have a long history of throwing things. Prior to 400 в.с., the Greeks competed in games that included discus throwing. In the seventeenth century, English soldiers organized cannonballthrowing competitions. In 1827, a Yale University student, disappointed over failing an exam, took out his frustrations at the passing of a collection plate in chapel. Seizing the monetary tray, he flung it in the direction of a large open space on campus. Yale students see this act of frustration as the origin of the Frisbee.

In this section, we develop other important classes of identities, called the double-angle, power-reducing, and half-angle formulas. We will see how one of these formulas can be used by athletes to increase throwing distance.

Double-Angle Formulas

A number of basic identities follow from the sum formulas for sine, cosine, and tangent. The first category of identities involves double-angle formulas.

Double-Angle Formulas

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

To prove each of these formulas, we replace α and β by θ in the sum formulas for $\sin (\alpha+\beta), \cos (\alpha+\beta)$, and $\tan (\alpha+\beta)$.

GREAT QUESTION!

Isn't it easier to write $\sin 2 \theta=2 \sin \theta$ and not bother memorizing the double-angle formula?
No. The 2 that appears in each of the double-angle expressions cannot be pulled to the front and written as a coefficient.

Incorrect!

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \\
& \cos 2 \theta=2 \cos \theta \\
& \tan 2 \theta=2 \tan \theta
\end{aligned}
$$

The figure shows that the graphs of

$$
y=\sin 2 x
$$

and

$$
y=2 \sin x
$$

do not coincide: $\sin 2 x \neq 2 \sin x$.

$\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$

FIGURE $5.6 \sin \theta=\frac{5}{13}$ and θ lies in quadrant II.

DISCOVERY

Use a quotient identity and the results from parts (a) and (b) of Example 1 to find $\tan 2 \theta$. Do you get the result in part (c)?

- $\sin 2 \theta=\sin (\theta+\theta)=\sin \theta \cos \theta+\cos \theta \sin \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& \text { We use } \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \text {. }
\end{aligned}
$$

- $\cos 2 \theta=\cos (\theta+\theta)=\cos \theta \cos \theta-\sin \theta \sin \theta=\cos ^{2} \theta-\sin ^{2} \theta$

$$
\begin{aligned}
& \text { We use } \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{aligned}
$$

- $\tan 2 \theta=\tan (\theta+\theta)=\frac{\tan \theta+\tan \theta}{1-\tan \theta \tan \theta}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\begin{aligned}
& \text { We use } \\
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

EXAMPLE 1 Using Double-Angle Formulas to Find Exact Values

 If $\sin \theta=\frac{5}{13}$ and θ lies in quadrant II, find the exact value of each of the following:a. $\sin 2 \theta$
b. $\cos 2 \theta$
c. $\tan 2 \theta$.

SOLUTION

We begin with a sketch that illustrates

$$
\sin \theta=\frac{5}{13}=\frac{y}{r}
$$

Figure 5.6 shows a quadrant II angle θ for which $\sin \theta=\frac{5}{13}$. We find x using $x^{2}+y^{2}=r^{2}$. Because θ lies in quadrant II, x is negative.

$$
\begin{array}{rlrl}
x^{2}+5^{2} & =13^{2} & & x^{2}+y^{2}=r^{2} \\
x^{2}+25 & =169 & & \text { Square } 5 \text { and } 13, \text { respectively. } \\
x^{2} & =144 & & \text { Subtract } 25 \text { from both sides. } \\
x & =-\sqrt{144}=-12 & & \text { If } x^{2}=144, \text { then } x= \pm \sqrt{144}= \pm 12 . \\
& \text { Choose } x=-\sqrt{144} \text { because in } \\
& \text { quadrant II, } x \text { is negative. }
\end{array}
$$

Now we can use values for x, y, and r to find the required values. We will use $\cos \theta=\frac{x}{r}=-\frac{12}{13}$ and $\tan \theta=\frac{y}{x}=-\frac{5}{12}$. We were given $\sin \theta=\frac{5}{13}$.
a. $\sin 2 \theta=2 \sin \theta \cos \theta=2\left(\frac{5}{13}\right)\left(-\frac{12}{13}\right)=-\frac{120}{169}$
b. $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\left(-\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}$
c. $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2\left(-\frac{5}{12}\right)}{1-\left(-\frac{5}{12}\right)^{2}}=\frac{-\frac{5}{6}}{1-\frac{25}{144}}=\frac{-\frac{5}{6}}{\frac{119}{144}}$

$$
=\left(-\frac{5}{6}\right)\left(\frac{144}{119}\right)=-\frac{120}{119}
$$

Check Point 1 If $\sin \theta=\frac{4}{5}$ and θ lies in quadrant II, find the exact value of each of the following:
a. $\sin 2 \theta$
b. $\cos 2 \theta$
c. $\tan 2 \theta$.

EXAMPLE 2 Using the Double-Angle Formula for Tangent to Find an Exact Value

Find the exact value of $\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}}$.

SOLUTION

The given expression is the right side of the formula for $\tan 2 \theta$ with $\theta=15^{\circ}$.

$$
\begin{aligned}
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}}=\tan \left(2 \cdot 15^{\circ}\right)=\tan 30^{\circ}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

\oint Check Point 2 Find the exact value of $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$.

There are three forms of the double-angle formula for $\cos 2 \theta$. The form we have seen involves both the cosine and the sine:

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta .
$$

There are situations where it is more efficient to express $\cos 2 \theta$ in terms of just one trigonometric function. Using the Pythagorean identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, we can write $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ in terms of the cosine only. We substitute $1-\cos ^{2} \theta$ for $\sin ^{2} \theta$.

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{2} \theta-1+\cos ^{2} \theta=2 \cos ^{2} \theta-1
\end{aligned}
$$

We can also use a Pythagorean identity to write $\cos 2 \theta$ in terms of sine only. We substitute $1-\sin ^{2} \theta$ for $\cos ^{2} \theta$.

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=1-\sin ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta
$$

Three Forms of the Double-Angle Formula for $\cos 2 \theta$

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& \cos 2 \theta=1-2 \sin ^{2} \theta
\end{aligned}
$$

EXAMPLE 3 Verifying an Identity

Verify the identity: $\quad \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

SOLUTION

We begin by working with the left side. In order to obtain an expression for $\cos 3 \theta$, we use the sum formula and write 3θ as $2 \theta+\theta$.

$$
\begin{aligned}
\cos 3 \theta & =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& 2 \cos ^{2} \theta-1 \quad 2 \sin \theta \cos \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \sin \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \sin ^{2} \theta \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Write } 3 \theta \text { as } 2 \theta+\theta \\
& \qquad \begin{array}{l}
\cos (\alpha+\beta) \\
\quad=\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{array}
\end{aligned}
$$

[^9]\[

$$
\begin{aligned}
& =2 \cos ^{3} \theta-\cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$
\]

```
To get cosines only, use
\(\sin ^{2} \theta+\cos ^{2} \theta=1\) and
substitute \(1-\cos ^{2} \theta\) for \(\sin ^{2} \theta\).
Multiply
Simplify:
\(2 \cos ^{3} \theta+2 \cos ^{3} \theta=4 \cos ^{3} \theta\)
and
\(-\cos \theta-2 \cos \theta=-3 \cos \theta\).
```

We were required to verify $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$. By working with the left side, $\cos 3 \theta$, and expressing it in a form identical to the right side, we have verified the identity.
$\$$ Check Point 3 Verify the identity: $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.

2 Use the power-reducing formulas.

Power-Reducing Formulas

The double-angle formulas are used to derive the power-reducing formulas:

Power-Reducing Formulas

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
$$

We can prove the first two formulas in the box by working with two forms of the double-angle formula for $\cos 2 \theta$.

This is the form with cosine only. $\cos 2 \theta=2 \cos ^{2} \theta-1$

Solve the formula on the left for $\sin ^{2} \theta$. Solve the formula on the right for $\cos ^{2} \theta$.

$$
\begin{aligned}
2 \sin ^{2} \theta & =1-\cos 2 \theta & 2 \cos ^{2} \theta & =1+\cos 2 \theta \\
\sin ^{2} \theta & =\frac{1-\cos 2 \theta}{2} & \cos ^{2} \theta & =\frac{1+\cos 2 \theta}{2}
\end{aligned} \begin{aligned}
& \text { Divide both sides of each } \\
& \text { equation by } 2 .
\end{aligned}
$$

These are the first two formulas in the box. The third formula in the box is proved by writing the tangent as the quotient of the sine and the cosine.

$$
\tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{\frac{1-\cos 2 \theta}{2}}{\frac{1+\cos 2 \theta}{2}}=\frac{1-\cos 2 \theta}{2} \cdot \frac{\stackrel{1}{2}_{2}^{1}}{1+\cos 2 \theta}=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
$$

Power-reducing formulas are quite useful in calculus. By reducing the power of trigonometric functions, calculus can better explore the relationship between a function and how it is changing at every single instant in time.

EXAMPLE 4 Reducing the Power of a Trigonometric Function

Write an equivalent expression for $\cos ^{4} x$ that does not contain powers of trigonometric functions greater than 1 .
(3) Use the half-angle formulas.

GREAT QUESTION!

Isn't it easier to write $\sin \frac{\theta}{2}=\frac{1}{2} \sin \theta$ and not bother memorizing the half-angle formula?

No. The $\frac{1}{2}$ that appears in each of the half-angle formulas cannot be pulled to the front and written as a coefficient.

Incorrect!

$$
\begin{aligned}
& \sin \frac{\theta}{2}=\frac{1}{2} \sin \theta \\
& \cos \frac{\theta}{2}=\frac{1}{2} \cos \theta \\
& \tan \frac{\theta}{2}=\frac{1}{2} \tan \theta
\end{aligned}
$$

The figure shows that the graphs of $y=\sin \frac{x}{2}$ and $y=\frac{1}{2} \sin x$ do not coincide: $\sin \frac{x}{2} \neq \frac{1}{2} \sin x$.

$\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$

SOLUTION

Our goal is to rewrite $\cos ^{4} x$ without powers of trigonometric functions greater than 1. To achieve this goal, we will apply the formula for $\cos ^{2} \theta$ twice.

$$
\begin{array}{rlr}
\cos ^{4} x & =\left(\cos ^{2} x\right)^{2} & \\
& =\left(\frac{1+\cos 2 x}{2}\right)^{2} & \\
& =\frac{1+2 \cos 2 x+\cos ^{2} 2 x}{4} & \begin{array}{l}
\text { Use } \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
\text { square the numerator: } \\
(A+B)^{2}=A^{2}+2 A B+B^{2} . \\
\text { Square the denominator. }
\end{array} \\
& =\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{4} \cos ^{2} 2 x & \begin{array}{l}
\text { We can reduce the power of } \\
\cos ^{2} 2 x \text { using }
\end{array} \\
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
\text { with } \theta=2 x .
\end{array} \quad \begin{aligned}
& \text { Divide each term in the numerator by } 4 \\
&
\end{aligned}
$$

Thus, $\cos ^{4} x=\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$. The expression for $\cos ^{4} x$ does not contain powers of trigonometric functions greater than 1.
\int Check Point 4 Write an equivalent expression for $\sin ^{4} x$ that does not contain powers of trigonometric functions greater than 1.

Half-Angle Formulas

Useful equivalent forms of the power-reducing formulas can be obtained by replacing θ with $\frac{\alpha}{2}$. Then solve for the trigonometric function on the left sides of the equations. The resulting identities are called the half-angle formulas:

Half-Angle Formulas

$$
\begin{aligned}
\sin \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{2}} \\
\cos \frac{\alpha}{2} & = \pm \sqrt{\frac{1+\cos \alpha}{2}} \\
\tan \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}
\end{aligned}
$$

The \pm symbol in each formula does not mean that there are two possible values for each function. Instead, the \pm indicates that you must determine the sign of the trigonometric function, + or - , based on the quadrant in which the half-angle $\frac{\alpha}{2}$ lies.

If we know the exact value for the cosine of an angle, we can use the half-angle formulas to find exact values of sine, cosine, and tangent for half of that angle. For example, we know that $\cos 225^{\circ}=-\frac{\sqrt{2}}{2}$. In the next example, we find the exact value of the cosine of half of 225°, or $\cos 112.5^{\circ}$.

EXAMPLE 5 Using a Half-Angle Formula to Find an Exact Value

Find the exact value of $\cos 112.5^{\circ}$.

SOLUTION

Because $112.5^{\circ}=\frac{225^{\circ}}{2}$, we use the half-angle formula for $\cos \frac{\alpha}{2}$ with $\alpha=225^{\circ}$. What sign should we use when we apply the formula? Because 112.5° lies in quadrant II, where only the sine and cosecant are positive, $\cos 112.5^{\circ}<0$. Thus, we use the - sign in the half-angle formula.

$$
\begin{array}{rlrl}
\cos 112.5^{\circ} & =\cos \frac{225^{\circ}}{2} & \\
& =-\sqrt{\frac{1+\cos 225^{\circ}}{2}} & & \text { Use } \cos \frac{\alpha}{2}=-\sqrt{\frac{1+\cos \alpha}{2}} \text { with } \alpha=225^{\circ} . \\
& =-\sqrt{\frac{1+\left(-\frac{\sqrt{2}}{2}\right)}{2}} & & \cos 225^{\circ}=-\frac{\sqrt{2}}{2} \\
& =-\sqrt{\frac{2-\sqrt{2}}{4}} \quad & & \begin{array}{l}
\text { Multiply the radicand by } \frac{2}{2}: \\
2
\end{array} \\
& \begin{array}{ll}
1+\left(-\frac{\sqrt{2}}{2}\right) \\
2 & \frac{2}{2}=\frac{2-\sqrt{2}}{4} . \\
& =-\frac{\sqrt{2-\sqrt{2}}}{2}
\end{array} & \text { Simplify: } \sqrt{4}=2 .
\end{array}
$$

GREAT QUESTION!

What's the relationship between α and the signs I need to work with in the half-angle formulas?
The sign outside the radical is determined by the half angle $\frac{\alpha}{2}$. By contrast, the sign of $\cos \alpha$, which appears under the radical, is determined by the full angle α.

$$
\begin{aligned}
& \sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}} \quad \begin{array}{l}
\text { The sign of } \cos \alpha \\
\text { is determined by } \\
\text { the quadrant of } \alpha .
\end{array} \\
& \text { The sign is determined } \\
& \text { by the quadrant of } \frac{\alpha}{2} \text {. }
\end{aligned}
$$

$\$$ Check Point 5 Use $\cos 210^{\circ}=-\frac{\sqrt{3}}{2}$ to find the exact value of $\cos 105^{\circ}$.

There are alternate formulas for $\tan \frac{\alpha}{2}$ that do not require us to determine what sign to use when applying the formula. These formulas are logically connected to the identities in Example 6 and Check Point 6.

GREAT QUESTION!

I'm suffering from identity overload! Where can I find a complete list of all the trigonometric identities I should know?
We've provided a box at the end of this section that contains all identities presented so far.

EXAMPLE 6 Verifying an Identity
Verify the identity: $\tan \theta=\frac{1-\cos 2 \theta}{\sin 2 \theta}$.

SOLUTION

We work with the right side.

$$
\begin{array}{rlrl}
\frac{1-\cos 2 \theta}{\sin 2 \theta} & =\frac{1-\left(1-2 \sin ^{2} \theta\right)}{2 \sin \theta \cos \theta} \quad & \quad \begin{array}{l}
\text { The form } \cos 2 \theta=1-2 \sin ^{2} \theta \text { is used because it } \\
\text { produces only one term in the numerator. Use the } \\
\text { double-angle formula for sine in the denominator. }
\end{array} \\
& =\frac{2 \sin ^{2} \theta}{2 \sin \theta \cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} & & \begin{array}{l}
\text { Simplify the numerator. }
\end{array} \\
& =\tan \theta & \quad \text { Divide the numerator and denominator by } 2 \sin \theta . \\
& \text { Use a quotient identity: } \tan \theta=\frac{\sin \theta}{\cos \theta} .
\end{array}
$$

The right side simplifies to $\tan \theta$, the expression on the left side. Thus, the identity is verified.
δ Check Point 6 Verify the identity: $\tan \theta=\frac{\sin 2 \theta}{1+\cos 2 \theta}$.
Half-angle formulas for $\tan \frac{\alpha}{2}$ can be obtained using the identities in Example 6 and Check Point 6:

$$
\tan \theta=\frac{1-\cos 2 \theta}{\sin 2 \theta} \quad \text { and } \quad \tan \theta=\frac{\sin 2 \theta}{1+\cos 2 \theta}
$$

Do you see how to do this? Replace each occurrence of θ with $\frac{\alpha}{2}$. This results in the following identities:

Half-Angle Formulas for Tangent

$$
\begin{aligned}
& \tan \frac{\alpha}{2}=\frac{1-\cos \alpha}{\sin \alpha} \\
& \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha}
\end{aligned}
$$

EXAMPLE 7 Verifying an Identity

Verify the identity: $\tan \frac{\alpha}{2}=\csc \alpha-\cot \alpha$.

SOLUTION

We begin with the right side.

Express functions in terms of sines and cosines.

This is the first of the two half-angle formulas in the preceding box.

We worked with the right side and arrived at the left side. Thus, the identity is verified.
\oint Check Point 7 Verify the identity: $\tan \frac{\alpha}{2}=\frac{\sec \alpha}{\sec \alpha \csc \alpha+\csc \alpha}$.

GREAT QUESTION!

Any hint to help remember the correct sign in the numerator in the first two power-reducing formulas and the first two halfangle formulas?
Remember sinus-minus-the sine is minus.

We conclude with a summary of the principal trigonometric identities developed in this section and the previous section. The fundamental identities can be found in the box on page 642.

Principal Trigonometric Identities

Sum and Difference Formulas

$$
\begin{array}{ll}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} & \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{array}
$$

Double-Angle Formulas

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \cos \theta \\
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta \\
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

Power-Reducing Formulas

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} \quad \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \quad \tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
$$

Half-Angle Formulas

$$
\begin{aligned}
& \sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}} \quad \cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}} \\
& \tan \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\frac{1-\cos \alpha}{\sin \alpha}=\frac{\sin \alpha}{1+\cos \alpha}
\end{aligned}
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\sin 2 x=$ \qquad
2. $\cos 2 A=\cos ^{2} A-$ \qquad $=$
\qquad $-1=1-$ \qquad
3. $\tan 2 B=$ \qquad
4. $\sin ^{2} \alpha=\overline{2}$
5. $\cos ^{2} \alpha=\overline{2}$
6. $\tan ^{2} y=\overline{\overline{1+\cos 2 y}}$
7. $\sin \frac{x}{2}= \pm \sqrt{\frac{2}{2}}$
8. $\cos \frac{y}{2}= \pm \sqrt{\frac{2}{2}}$
9. $\tan \frac{\alpha}{2}= \pm \sqrt{\overline{1+\cos \alpha}}=\frac{}{\sin \alpha}=\frac{\sin \alpha}{-}$
10. True or false: The sine of twice an angle equals twice the sine of the angle.
11. True or false: $\frac{\cos 2 A}{2}=\cos A$ \qquad
12. True or false: The tangent of half an angle equals half the tangent of the angle. \qquad
In Exercises 13-15, determine whether the positive or negative sign results in a true statement.
13. $\sin 100^{\circ}= \pm \sqrt{\frac{1-\cos 200^{\circ}}{2}}$
14. $\cos 100^{\circ}= \pm \sqrt{\frac{1+\cos 200^{\circ}}{2}}$
15. $\tan 200^{\circ}= \pm \sqrt{\frac{1-\cos 400^{\circ}}{1+\cos 400^{\circ}}}$

EXERCISE SET 5.3

Practice Exercises

In Exercises 1-6, use the figures to find the exact value of each trigonometric function.

1. $\sin 2 \theta$
2. $\cos 2 \theta$
3. $\tan 2 \theta$
4. $\sin 2 \alpha$
5. $\cos 2 \alpha$
6. $\tan 2 \alpha$

In Exercises 7-14, use the given information to find the exact value of each of the following:
a. $\sin 2 \theta$
b. $\cos 2 \theta$
c. $\tan 2 \theta$.
7. $\sin \theta=\frac{15}{17}, \theta$ lies in quadrant II.
8. $\sin \theta=\frac{12}{13}, \theta$ lies in quadrant II.
9. $\cos \theta=\frac{24}{25}, \theta$ lies in quadrant IV.
10. $\cos \theta=\frac{40}{41}, \theta$ lies in quadrant IV.
11. $\cot \theta=2, \theta$ lies in quadrant III.
12. $\cot \theta=3, \theta$ lies in quadrant III.
13. $\sin \theta=-\frac{9}{41}, \theta$ lies in quadrant III.
14. $\sin \theta=-\frac{2}{3}, \theta$ lies in quadrant III.

In Exercises 15-22, write each expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression.
15. $2 \sin 15^{\circ} \cos 15^{\circ}$
16. $2 \sin 22.5^{\circ} \cos 22.5^{\circ}$
17. $\cos ^{2} 75^{\circ}-\sin ^{2} 75^{\circ}$
18. $\cos ^{2} 105^{\circ}-\sin ^{2} 105^{\circ}$
19. $2 \cos ^{2} \frac{\pi}{8}-1$
20. $1-2 \sin ^{2} \frac{\pi}{12}$
21. $\frac{2 \tan \frac{\pi}{12}}{1-\tan ^{2} \frac{\pi}{12}}$
22. $2 \tan \frac{\pi}{8}$
$1-\tan ^{2} \frac{\pi}{8}$

In Exercises 23-34, verify each identity.
23. $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
24. $\sin 2 \theta=\frac{2 \cot \theta}{1+\cot ^{2} \theta}$
25. $(\sin \theta+\cos \theta)^{2}=1+\sin 2 \theta$
26. $(\sin \theta-\cos \theta)^{2}=1-\sin 2 \theta$
27. $\sin ^{2} x+\cos 2 x=\cos ^{2} x$
28. $1-\tan ^{2} x=\frac{\cos 2 x}{\cos ^{2} x}$
29. $\cot x=\frac{\sin 2 x}{1-\cos 2 x}$
30. $\cot x=\frac{1+\cos 2 x}{\sin 2 x}$
31. $\sin 2 t-\tan t=\tan t \cos 2 t$
32. $\sin 2 t-\cot t=-\cot t \cos 2 t$
33. $\sin 4 t=4 \sin t \cos ^{3} t-4 \sin ^{3} t \cos t$
34. $\cos 4 t=8 \cos ^{4} t-8 \cos ^{2} t+1$

In Exercises 35-38, use the power-reducing formulas to rewrite each expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1.
35. $6 \sin ^{4} x$
36. $10 \cos ^{4} x$
37. $\sin ^{2} x \cos ^{2} x$
38. $8 \sin ^{2} x \cos ^{2} x$

In Exercises 39-46, use a half-angle formula to find the exact value of each expression.
39. $\sin 15^{\circ}$
40. $\cos 22.5^{\circ}$
41. $\cos 157.5^{\circ}$
42. $\sin 105^{\circ}$
43. $\tan 75^{\circ}$
44. $\tan 112.5^{\circ}$
45. $\tan \frac{7 \pi}{8}$
46. $\tan \frac{3 \pi}{8}$

In Exercises 47-54, use the figures to find the exact value of each trigonometric function.

47. $\sin \frac{\theta}{2}$
48. $\cos \frac{\theta}{2}$
49. $\tan \frac{\theta}{2}$
50. $\sin \frac{\alpha}{2}$
51. $\cos \frac{\alpha}{2}$
52. $\tan \frac{\alpha}{2}$
53. $2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$
54. $2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$

In Exercises 55-58, use the given information to find the exact value of each of the following:
a. $\sin \frac{\alpha}{2}$
b. $\cos \frac{\alpha}{2}$
c. $\tan \frac{\alpha}{2}$.
55. $\tan \alpha=\frac{4}{3}, 180^{\circ}<\alpha<270^{\circ}$
56. $\tan \alpha=\frac{8}{15}, 180^{\circ}<\alpha<270^{\circ}$
57. $\sec \alpha=-\frac{13}{5}, \frac{\pi}{2}<\alpha<\pi$
58. $\sec \alpha=-3, \frac{\pi}{2}<\alpha<\pi$

In Exercises 59-68, verify each identity.
59. $\sin ^{2} \frac{\theta}{2}=\frac{\sec \theta-1}{2 \sec \theta}$
60. $\sin ^{2} \frac{\theta}{2}=\frac{\csc \theta-\cot \theta}{2 \csc \theta}$
61. $\cos ^{2} \frac{\theta}{2}=\frac{\sin \theta+\tan \theta}{2 \tan \theta}$
62. $\cos ^{2} \frac{\theta}{2}=\frac{\sec \theta+1}{2 \sec \theta}$
63. $\tan \frac{\alpha}{2}=\frac{\tan \alpha}{\sec \alpha+1}$
64. $2 \tan \frac{\alpha}{2}=\frac{\sin ^{2} \alpha+1-\cos ^{2} \alpha}{\sin \alpha(1+\cos \alpha)}$
65. $\cot \frac{x}{2}=\frac{\sin x}{1-\cos x}$
66. $\cot \frac{x}{2}=\frac{1+\cos x}{\sin x}$
67. $\tan \frac{x}{2}+\cot \frac{x}{2}=2 \csc x$
68. $\tan \frac{x}{2}-\cot \frac{x}{2}=-2 \cot x$

Practice Plus

In Exercises 69-78, half of an identity and the graph of this half are given. Use the graph to make a conjecture as to what the right side of the identity should be. Then prove your conjecture.
69. $\frac{\cot x-\tan x}{\cot x+\tan x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
70. $\frac{2(\tan x-\cot x)}{\tan ^{2} x-\cot ^{2} x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
71. $\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
72. $\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
73. $\frac{\sin 2 x}{\sin x}-\frac{\cos 2 x}{\cos x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
74. $\sin 2 x \sec x=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
75. $\frac{\csc ^{2} x}{\cot x}=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
76. $\tan x+\cot x=$?

$\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
77. $\sin x\left(4 \cos ^{2} x-1\right)=$?

$\left[0,2 \pi, \frac{\pi}{6}\right]$ by $[-3,3,1]$
78. $1-8 \sin ^{2} x \cos ^{2} x=$?

Application Exercises

79. Throwing events in track and field include the shot put, the discus throw, the hammer throw, and the javelin throw. The distance that the athlete can achieve depends on the initial speed of the object thrown and the angle above the horizontal at which the object leaves the hand. This angle is represented by θ in the figure shown. The distance, d, in feet, that the athlete throws is modeled by the formula

$$
d=\frac{v_{0}^{2}}{16} \sin \theta \cos \theta
$$

in which v_{0} is the initial speed of the object thrown, in feet per second, and θ is the angle, in degrees, at which the object leaves the hand.

a. Use an identity to express the formula so that it contains the sine function only.
b. Use your formula from part (a) to find the angle, θ, that produces the maximum distance, d, for a given initial speed, v_{0}.

Use this information to solve Exercises 80-81: The speed of a supersonic aircraft is usually represented by a Mach number, named after Austrian physicist Ernst Mach (1838-1916). A Mach number is the speed of the aircraft, in miles per hour, divided by the speed of sound, approximately 740 miles per hour. Thus, a plane flying at twice the speed of sound has a speed, M, of Mach 2.

If an aircraft has a speed greater than Mach 1, a sonic boom is heard, created by sound waves that form a cone with a vertex angle θ, shown in the figure.

The relationship between the cone's vertex angle, θ, and the Mach speed, M, of an aircraft that is flying faster than the speed of sound is given by

$$
\sin \frac{\theta}{2}=\frac{1}{M}
$$

80. If $\theta=\frac{\pi}{6}$, determine the Mach speed, M, of the aircraft. Express the speed as an exact value and as a decimal to the nearest tenth.
81. If $\theta=\frac{\pi}{4}$, determine the Mach speed, M, of the aircraft. Express the speed as an exact value and as a decimal to the nearest tenth.

Writing in Mathematics

In Exercises 82-89, use words to describe the formula for:
82. the sine of double an angle.
83. the cosine of double an angle. (Describe one of the three formulas.)
84. the tangent of double an angle.
85. the power-reducing formula for the sine squared of an angle.
86. the power-reducing formula for the cosine squared of an angle.
87. the sine of half an angle.
88. the cosine of half an angle.
89. the tangent of half an angle. (Describe one of the two formulas that does not involve a square root.)
90. Explain how the double-angle formulas are derived.
91. How can there be three forms of the double-angle formula for $\cos 2 \theta$?
92. Without showing algebraic details, describe in words how to reduce the power of $\cos ^{4} x$.
93. Describe one or more of the techniques you use to help remember the identities in the box on page 651.
94. Your friend is about to compete as a shot-putter in a college field event. Using Exercise 79(b), write a short description to your friend on how to achieve the best distance possible in the throwing event.

Technology Exercises

In Exercises 95-98, graph each side of the equation in the same viewing rectangle. If the graphs appear to coincide, verify that the equation is an identity. If the graphs do not appear to coincide, find a value of x for which both sides are defined but not equal.
95. $3-6 \sin ^{2} x=3 \cos 2 x$
96. $4 \cos ^{2} \frac{x}{2}=2+2 \cos x$
97. $\sin \frac{x}{2}=\frac{1}{2} \sin x$
98. $\cos \frac{x}{2}=\frac{1}{2} \cos x$

In Exercises 99-101, graph each equation in a $\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$ viewing rectangle. Then a. Describe the graph using another equation, and \mathbf{b}. Verify that the two equations are equivalent.
99. $y=\frac{1-2 \cos 2 x}{2 \sin x-1}$
100. $y=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
101. $y=\csc x-\cot x$

Critical Thinking Exercises

Make Sense? In Exercises 102-105, determine whether each statement makes sense or does not make sense, and explain your reasoning.
102. The double-angle identities are derived from the sum identities by adding an angle to itself.
103. I simplified a double-angle trigonometric expression by pulling 2 to the front and treating it as a coefficient.
104. When using the half-angle formulas for trigonometric functions of $\frac{\alpha}{2}$, I determine the sign based on the quadrant in which α lies.
105. I used a half-angle formula to find the exact value of $\cos 100^{\circ}$.
106. Verify the identity:

$$
\sin ^{3} x+\cos ^{3} x=(\sin x+\cos x)\left(1-\frac{\sin 2 x}{2}\right)
$$

In Exercises 107-110, find the exact value of each expression. Do not use a calculator.
107. $\sin \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)$ 108. $\cos \left[2 \tan ^{-1}\left(-\frac{4}{3}\right)\right]$
109. $\cos ^{2}\left(\frac{1}{2} \sin ^{-1} \frac{3}{5}\right)$ 110. $\sin ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{5}\right)$
111. Use a right triangle to write $\sin \left(2 \sin ^{-1} x\right)$ as an algebraic expression. Assume that x is positive and in the domain of the given inverse trigonometric function.
112. Use the power-reducing formulas to rewrite $\sin ^{6} x$ as an equivalent expression that does not contain powers of trigonometric functions greater than 1.

Preview Exercises

Exercises 113-115 will help you prepare for the material covered in the next section. In each exercise, use exact values of trigonometric functions to show that the statement is true. Notice that each statement expresses the product of sines and/or cosines as a sum or a difference.
113. $\sin 60^{\circ} \sin 30^{\circ}=\frac{1}{2}\left[\cos \left(60^{\circ}-30^{\circ}\right)-\cos \left(60^{\circ}+30^{\circ}\right)\right]$
114. $\cos \frac{\pi}{2} \cos \frac{\pi}{3}=\frac{1}{2}\left[\cos \left(\frac{\pi}{2}-\frac{\pi}{3}\right)+\cos \left(\frac{\pi}{2}+\frac{\pi}{3}\right)\right]$
115. $\sin \pi \cos \frac{\pi}{2}=\frac{1}{2}\left[\sin \left(\pi+\frac{\pi}{2}\right)+\sin \left(\pi-\frac{\pi}{2}\right)\right]$

CHAPTER 5 Mid-Chapter Check Point

WHAT YOU KNOW: Verifying an identity means showing that the expressions on each side are identical. Like solving puzzles, the process can be intriguing because there are sometimes several "best" ways to proceed. We presented some guidelines to help you get started (see page 630). We used fundamental trigonometric identities (see page 622), as well as sum and difference formulas, double-angle formulas, power-reducing formulas, and half-angle formulas (see page 651) to verify identities. We also used these formulas to find exact values of trigonometric functions.

GREAT QUESTION!

What's the best way to organize what I should know for solving the exercises in this Mid-Chapter Check Point?

Make copies of the boxes on pages 622 and 651 that contain the essential trigonometric identities. Mount these boxes on cardstock and add this reference sheet to the one you prepared for Chapter 4. (If you didn't prepare a reference sheet for Chapter 4, it's not too late: See the Great Question! feature on page 547.)

In Exercises 1-18, verify each identity.

1. $\cos x(\tan x+\cot x)=\csc x$
2. $\frac{\sin (x+\pi)}{\cos \left(x+\frac{3 \pi}{2}\right)}=\tan ^{2} x-\sec ^{2} x$
3. $(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2$
4. $\frac{\sin t-1}{\cos t}=\frac{\cos t-\cot t}{\cos t \cot t}$
5. $\frac{1-\cos 2 x}{\sin 2 x}=\tan x$
6. $\sin \theta \cos \theta+\cos ^{2} \theta=\frac{\cos \theta(1+\cot \theta)}{\csc \theta}$
7. $\frac{\sin x}{\tan x}+\frac{\cos x}{\cot x}=\sin x+\cos x$
8. $\sin ^{2} \frac{t}{2}=\frac{\tan t-\sin t}{2 \tan t}$
9. $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
10. $\frac{1+\csc x}{\sec x}-\cot x=\cos x$
11. $\frac{\cot x-1}{\cot x+1}=\frac{1-\tan x}{1+\tan x}$
12. $2 \sin ^{3} \theta \cos \theta+2 \sin \theta \cos ^{3} \theta=\sin 2 \theta$
13. $\frac{\sin t+\cos t}{\sec t+\csc t}=\frac{\sin t}{\sec t}$
14. $\sec 2 x=\frac{\sec ^{2} x}{2-\sec ^{2} x}$
15. $\tan (\alpha+\beta) \tan (\alpha-\beta)=\frac{\tan ^{2} \alpha-\tan ^{2} \beta}{1-\tan ^{2} \alpha \tan ^{2} \beta}$
16. $\csc \theta+\cot \theta=\frac{\sin \theta}{1-\cos \theta}$
17. $\frac{1}{\csc 2 x}=\frac{2 \tan x}{1+\tan ^{2} x}$
18. $\frac{\sec t-1}{t \sec t}=\frac{1-\cos t}{t}$

Use the following conditions to solve Exercises 19-22:

$$
\begin{array}{ll}
\sin \alpha=\frac{3}{5}, & \frac{\pi}{2}<\alpha<\pi \\
\cos \beta=-\frac{12}{13}, & \pi<\beta<\frac{3 \pi}{2}
\end{array}
$$

Find the exact value of each of the following.
19. $\cos (\alpha-\beta)$
20. $\tan (\alpha+\beta)$
21. $\sin 2 \alpha$
22. $\cos \frac{\beta}{2}$

In Exercises 23-26, find the exact value of each expression. Do not use a calculator.
23. $\sin \left(\frac{3 \pi}{4}+\frac{5 \pi}{6}\right)$
24. $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$
25. $\cos \frac{5 \pi}{12} \cos \frac{\pi}{12}+\sin \frac{5 \pi}{12} \sin \frac{\pi}{12}$
26. $\tan 22.5^{\circ}$

SECTION 5.4

Objectives

(1) Use the product-to-sum formulas.
(2) Use the sum-to-product formulas.

James K. Polk
Born November 2, 1795

Warren G. Harding
Born November 2, 1865

Of all the U.S. presidents, two share a birthday (same month and day). The probability of two or more people in a group sharing a birthday rises sharply as the group's size increases. Above 50 people, the probability approaches certainty. (You can verify the mathematics of this surprising result by studying Sections 10.6 and 10.7 , and working Exercise 73 in Exercise Set 10.7.) So, come November 2, we salute Presidents Polk and Harding with

$$
112,163-, 112,196-, 110,8521-, 008,121-.
$$

Were you aware that each button on a touch-tone phone produces a unique sound? If we treat the commas as pauses and the hyphens as held notes, this sequence of numbers is "Happy Birthday" on a touch-tone phone.

Although "Happy Birthday" isn't Mozart or Sondheim, it is sinusoidal. Each of its touch-tone musical sounds can be described by the sum of two sine functions or the product of sines and cosines. In this section, we develop identities that enable us to use both descriptions. They are called the product-to-sum and sum-to-product formulas.
(1)

Use the product-to-sum formulas.

GREAT QUESTION!

Do I have to memorize the formulas in this section?

Not necessarily. When you need these formulas, you can either refer to one of the two boxes in the section or perhaps even derive them using the methods shown.

TECHNOLOGY

Graphic Connections

The graphs of

$$
y=\sin 8 x \sin 3 x
$$

and

$$
y=\frac{1}{2}(\cos 5 x-\cos 11 x)
$$

are shown in a $\left[-2 \pi, 2 \pi, \frac{\pi}{2}\right]$ by $[-1,1,1]$ viewing rectangle. The graphs coincide. This supports our algebraic work in Example 1(a).

The Product-to-Sum Formulas

How do we write the products of sines and/or cosines as sums or differences? We use the following identities, which are called product-to-sum formulas:

Product-to-Sum Formulas

$$
\begin{aligned}
\sin \alpha \sin \beta & =\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
\sin \alpha \cos \beta & =\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
\cos \alpha \sin \beta & =\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]
\end{aligned}
$$

Although these formulas are difficult to remember, they are fairly easy to derive. For example, let's derive the first identity in the box,

$$
\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] .
$$

We begin with the difference and sum formulas for the cosine, and subtract the second identity from the first:

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
-[\cos (\alpha+\beta) & =\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta]}{\cos (\alpha+\beta)}
\end{aligned}=\frac{0}{+2 \sin \alpha \sin \beta .} .
$$

$$
\begin{array}{ll}
\text { Subtract terms } & \text { Subtract terms on the right side: } \\
\text { on the left side. } & \cos \alpha \cos \beta-\cos \alpha \cos \beta=0 .
\end{array}
$$

Subtract terms on the right side: $\sin \alpha \sin \beta-(-\sin \alpha \sin \beta)=2 \sin \alpha \sin \beta$.

Now we use this result to derive the product-to-sum formula for $\sin \alpha \sin \beta$.

$$
\begin{array}{rlrl}
2 \sin \alpha \sin \beta & =\cos (\alpha-\beta)-\cos (\alpha+\beta) & & \text { Reverse the sides in the preceding equation. } \\
\sin \alpha \sin \beta & =\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] & \text { Multiply each side by } \frac{1}{2} .
\end{array}
$$

This last equation is the desired formula. Likewise, we can derive the product-tosum formula for $\operatorname{cosine,~} \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$. As we did for the previous derivation, begin with the difference and sum formulas for cosine. However, we add the formulas rather than subtracting them. Reversing both sides of this result and multiplying each side by $\frac{1}{2}$ produces the formula for $\cos \alpha \cos \beta$. The last two product-to-sum formulas, $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$ and $\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]$, are derived using the sum and difference formulas for sine in a similar manner.

EXAMPLE 1 Using the Product-to-Sum Formulas

Express each of the following products as a sum or difference:
a. $\sin 8 x \sin 3 x$
b. $\sin 4 x \cos x$.

SOLUTION

The product-to-sum formula that we are using is shown in each of the voice balloons.

$$
\begin{gathered}
\text { a. } \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
\sin 8 x \sin 3 x=\frac{1}{2}[\cos (8 x-3 x)-\cos (8 x+3 x)]=\frac{1}{2}(\cos 5 x-\cos 11 x)
\end{gathered}
$$

b. $\quad \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
$\sin 4 x \cos x=\frac{1}{2}[\sin (4 x+x)+\sin (4 x-x)]=\frac{1}{2}(\sin 5 x+\sin 3 x) \quad \ldots$
Check Point 1 Express each of the following products as a sum or difference:
a. $\sin 5 x \sin 2 x$
b. $\cos 7 x \cos x$. formulas.

The Sum-to-Product Formulas

How do we write the sum or difference of sines and/or cosines as products? We use the following identities, which are called the sum-to-product formulas:

Sum-to-Product Formulas

$$
\begin{aligned}
& \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2} \\
& \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
\end{aligned}
$$

We verify these formulas using the product-to-sum formulas. Let's verify the first sum-to-product formula

$$
\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} .
$$

We start with the right side of the formula, the side with the product. We can apply the product-to-sum formula for $\sin \alpha \cos \beta$ to this expression. By doing so, we obtain the left side of the formula, $\sin \alpha+\sin \beta$. Here's how:

$$
\begin{aligned}
& \sin \alpha \cos \beta=\quad \frac{1}{2}[\sin (\alpha+\beta) \\
& 2 \longdiv { \operatorname { s i n } (\alpha - \beta)] } \\
&=\sin \left(\frac{\alpha+\beta+\alpha-\beta-\beta}{2} \cos \frac{\alpha-\beta}{2}\right)+\sin \left(\frac{\alpha+\beta-\alpha+\beta}{2}\right) \\
&\left.=2 \cdot \sin \frac{2 \alpha}{2}+\sin \left(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}\right)+\sin \left(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}\right)\right] \\
& \sin \alpha+\sin \beta .
\end{aligned}
$$

The three other sum-to-product formulas in the preceding box are verified in a similar manner. Start with the right side and obtain the left side using an appropriate product-to-sum formula.

EXAMPLE 2 Using the Sum-to-Product Formulas

Express each sum or difference as a product:
a. $\sin 9 x+\sin 5 x$
b. $\cos 4 x-\cos 3 x$.

SOLUTION

The sum-to-product formula that we are using is shown in each of the voice balloons.
a.

$$
\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
$$

$$
\begin{aligned}
\sin 9 x+\sin 5 x & =2 \sin \frac{9 x+5 x}{2} \cos \frac{9 x-5 x}{2} \\
& =2 \sin \frac{14 x}{2} \cos \frac{4 x}{2} \\
& =2 \sin 7 x \cos 2 x
\end{aligned}
$$

b.

$$
\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
$$

$$
\begin{aligned}
\cos 4 x-\cos 3 x & =-2 \sin \frac{4 x+3 x}{2} \sin \frac{4 x-3 x}{2} \\
& =-2 \sin \frac{7 x}{2} \sin \frac{x}{2}
\end{aligned}
$$

Check Point 2 Express each sum as a product:
a. $\sin 7 x+\sin 3 x$
b. $\cos 3 x+\cos 2 x$.

Some identities contain a fraction on one side with sums and differences of sines and/or cosines. Applying the sum-to-product formulas in the numerator and the denominator is often helpful in verifying these identities.

EXAMPLE 3 Using Sum-to-Product Formulas to Verify an Identity Verify the identity: $\frac{\cos 3 x-\cos 5 x}{\sin 3 x+\sin 5 x}=\tan x$.

SOLUTION

Because the left side is more complicated, we will work with it. We use sum-toproduct formulas for the numerator and the denominator of the fraction on this side.

$$
\begin{aligned}
& \frac{\cos 3 x-\cos 5 x}{\sin 3 x+\sin 5 x} \quad \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
& =\frac{-2 \sin \frac{3 x+5 x}{2} \sin \frac{3 x-5 x}{2}}{\sin 3 x+\sin 5 x} \\
& =\frac{-2 \sin \frac{3 x+5 x}{2} \sin \frac{3 x-5 x}{2}}{2 \sin \frac{3 x+5 x}{2} \cos \frac{3 x-5 x}{2}} \quad \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& =\frac{-2 \sin \frac{8 x}{2} \sin \left(\frac{-2 x}{2}\right)}{2 \sin \frac{8 x}{2} \cos \left(\frac{-2 x}{2}\right)} \text { Perform the indicated additions and subtractions. } \\
& =\frac{-2 \sin -4 x \sin (-x)}{2 \sin -4 x \cos (-x)} \quad \text { Simplify. } \\
& =\frac{-(-\sin x)}{\cos x} \quad \begin{array}{l}
\text { The sine function is odd: } \sin (-x)=-\sin x . \text { The cosine } \\
\text { function is even: } \cos (-x)=\cos x .
\end{array} \\
& =\frac{\sin x}{\cos x} \quad \text { Simplify } \\
& =\tan x \quad \text { Apply a quotient identity: } \tan x=\frac{\sin x}{\cos x} \text {. }
\end{aligned}
$$

We were required to verify $\frac{\cos 3 x-\cos 5 x}{\sin 3 x+\sin 5 x}=\tan x$. We worked with the left side and arrived at the right side, $\tan x$. Thus, the identity is verified.
$\$$ Check Point 3 Verify the identity: $\frac{\cos 3 x-\cos x}{\sin 3 x+\sin x}=-\tan x$.

CONCEPT AND VOCABULARY CHECK

Because you may not be required to memorize the identities in this section, it's often tempting to pay no attention to them at all! Exercises 1-4 are provided to familiarize you with what these identities do. Fill in each blank using the word sum, difference, product, or quotient.

1. The formula

$$
\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
$$

can be used to change a \qquad of two sines into the \qquad of two cosine expressions.
2. The formula

$$
\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]
$$

can be used to change a \qquad of two cosines into the \qquad of two cosine expressions.
3. The formula

$$
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]
$$

can be used to change a \qquad of a sine and a cosine into the \qquad of two sine expressions.
4. The formula

$$
\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]
$$

can be used to change a \qquad of a cosine and a sine into the \qquad of two sine expressions.

Exercises 5-8 are provided to familiarize you with the second set of identities presented in this section. Fill in each blank using the word sum, difference, product, or quotient.
5. The formula

$$
\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
$$

can be used to change a \qquad of two sines into the \qquad of a sine and a cosine expression.
6. The formula

$$
\sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2}
$$

can be used to change a \qquad of two sines into the \qquad of a sine and a cosine expression.
7. The formula

$$
\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
$$ can be used to change a \qquad of two cosines into the \qquad of two cosine expressions.

8. The formula

$$
\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
$$

can be used to change a \qquad of two cosines into the \qquad of two sine expressions.

EXERCISE SET 5.4

Practice Exercises

Be sure that you've familiarized yourself with the first set of formulas presented in this section by working 1-4 in the Concept and Vocabulary Check. In Exercises 1-8, use the appropriate formula to express each product as a sum or difference.

1. $\sin 6 x \sin 2 x$
2. $\sin 8 x \sin 4 x$
3. $\cos 7 x \cos 3 x$
4. $\cos 9 x \cos 2 x$
5. $\sin x \cos 2 x$
6. $\sin 2 x \cos 3 x$
7. $\cos \frac{3 x}{2} \sin \frac{x}{2}$
8. $\cos \frac{5 x}{2} \sin \frac{x}{2}$

Be sure that you've familiarized yourself with the second set of formulas presented in this section by working 5-8 in the Concept and Vocabulary Check. In Exercises 9-22, express each sum or difference as a product. If possible, find this product's exact value.
9. $\sin 6 x+\sin 2 x$
10. $\sin 8 x+\sin 2 x$
11. $\sin 7 x-\sin 3 x$
12. $\sin 11 x-\sin 5 x$
13. $\cos 4 x+\cos 2 x$
14. $\cos 9 x-\cos 7 x$
15. $\sin x+\sin 2 x$
16. $\sin x-\sin 2 x$
17. $\cos \frac{3 x}{2}+\cos \frac{x}{2}$
18. $\sin \frac{3 x}{2}+\sin \frac{x}{2}$
19. $\sin 75^{\circ}+\sin 15^{\circ}$
20. $\cos 75^{\circ}-\cos 15^{\circ}$
21. $\sin \frac{\pi}{12}-\sin \frac{5 \pi}{12}$
22. $\cos \frac{\pi}{12}-\cos \frac{5 \pi}{12}$

In Exercises 23-30, verify each identity.
23. $\frac{\sin 3 x-\sin x}{\cos 3 x-\cos x}=-\cot 2 x$
24. $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
25. $\frac{\sin 2 x+\sin 4 x}{\cos 2 x+\cos 4 x}=\tan 3 x$
26. $\frac{\cos 4 x-\cos 2 x}{\sin 2 x-\sin 4 x}=\tan 3 x$
27. $\frac{\sin x-\sin y}{\sin x+\sin y}=\tan \frac{x-y}{2} \cot \frac{x+y}{2}$
28. $\frac{\sin x+\sin y}{\sin x-\sin y}=\tan \frac{x+y}{2} \cot \frac{x-y}{2}$
29. $\frac{\sin x+\sin y}{\cos x+\cos y}=\tan \frac{x+y}{2}$
30. $\frac{\sin x-\sin y}{\cos x-\cos y}=-\cot \frac{x+y}{2}$

Practice Plus

In Exercises 31-36, the graph with the given equation is shown in $a\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle.
a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.
31. $y=\frac{\sin x+\sin 3 x}{2 \sin 2 x}$

32. $y=\frac{\cos x-\cos 3 x}{\sin x+\sin 3 x}$

33. $y=\frac{\cos x-\cos 5 x}{\sin x+\sin 5 x}$

34. $y=\frac{\cos 5 x-\cos 3 x}{\sin 5 x+\sin 3 x}$

35. $y=\frac{\sin x-\sin 3 x}{\cos x-\cos 3 x}$

36. $y=\frac{\sin 2 x+\sin 6 x}{\cos 6 x-\cos 2 x}$

Application Exercises

Use this information to solve Exercises 37-38. The sound produced by touching each button on a touch-tone phone is described by

$$
y=\sin 2 \pi l t+\sin 2 \pi h t
$$

where l and h are the low and high frequencies in the figure shown. For example, what sound is produced by touching 5? The low frequency is $l=770$ cycles per second and the high frequency is $h=1336$ cycles per second. The sound produced by touching 5 is described by

$$
y=\sin 2 \pi(770) t+\sin 2 \pi(1336) t
$$

37. The touch-tone phone sequence for that most naive of melodies is given as follows:

Mary Had a Little Lamb 3212333,222,399,3212333322321.

a. Many numbers do not appear in this sequence, including 7. If you accidently touch 7 for one of the notes, describe this sound as the sum of sines.
b. Describe this accidental sound as a product of sines and cosines.
38. The touch-tone phone sequence for "Jingle Bells" is given as follows:

Jingle Bells

$333,333,39123,666-663333322329,333,333,39123,666-6633,399621$.
a. The first six notes of the song are produced by repeatedly touching 3. Describe this repeated sound as the sum of sines.
b. Describe the repeated sound as a product of sines and cosines.

Writing in Mathematics

In Exercises 39-42, use words to describe the given formula.
39. $\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
40. $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
41. $\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
42. $\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
43. Describe identities that can be verified using the sum-toproduct formulas.
44. Why do the sounds produced by touching each button on a touch-tone phone have the same loudness? Answer the question using the equation described for Exercises 37 and 38, $y=\sin 2 \pi l t+\sin 2 \pi h t$, and determine the maximum value of y for each sound.

Technology Exercises

In Exercises 45-48, graph each side of the equation in the same viewing rectangle. If the graphs appear to coincide, verify that the equation is an identity. If the graphs do not appear to coincide, find a value of x for which both sides are defined but not equal.
45. $\sin x+\sin 2 x=\sin 3 x$
46. $\cos x+\cos 2 x=\cos 3 x$
47. $\sin x+\sin 3 x=2 \sin 2 x \cos x$
48. $\cos x+\cos 3 x=2 \cos 2 x \cos x$
49. In Exercise 37(a), you wrote an equation for the sound produced by touching 7 on a touch-tone phone. Graph the equation in a $[0,0.01,0.001]$ by $[-2,2,1]$ viewing rectangle.
50. In Exercise 38(a), you wrote an equation for the sound produced by touching 3 on a touch-tone phone. Graph the equation in a $[0,0.01,0.001]$ by $[-2,2,1]$ viewing rectangle.
51. In this section, we saw how sums could be expressed as products. Sums of trigonometric functions can also be used to describe functions that are not trigonometric. French mathematician Jean Fourier (1768-1830) showed that any function can be described by a series of trigonometric functions. For example, the basic linear function $f(x)=x$ can also be represented by

$$
f(x)=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\cdots\right)
$$

a. Graph

$$
\begin{aligned}
& y=2\left(\frac{\sin x}{1}\right) \\
& y=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}\right) \\
& y=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}\right)
\end{aligned}
$$

and

$$
y=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}\right)
$$

in a $\left[-\pi, \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$ viewing rectangle. What patterns do you observe?
b. Graph
$y=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\frac{\sin 5 x}{5}-\frac{\sin 6 x}{6}\right.$

$$
\left.+\frac{\sin 7 x}{7}-\frac{\sin 8 x}{8}+\frac{\sin 9 x}{9}-\frac{\sin 10 x}{10}\right)
$$

in a $\left[-\pi, \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$ viewing rectangle. Is a portion of the graph beginning to look like the graph of $f(x)=x$? Obtain a better approximation for the line by graphing functions that contain more and more terms involving sines of multiple angles.
c. Use

$$
x=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\cdots\right)
$$

and substitute $\frac{\pi}{2}$ for x to obtain a formula for $\frac{\pi}{2}$. Show at least four nonzero terms. Then multiply both sides of your formula by 2 to write a nonending series of subtractions and additions that approaches π. Use this series to obtain an approximation for π that is more accurate than the one given by your graphing utility.

Critical Thinking Exercises

Make Sense? In Exercises 52-55, determine whether each statement makes sense or does not make sense, and explain your reasoning.
52. The product-to-sum formulas are difficult to remember because they are all so similar to one another.
53. I can use the sum and difference formulas for cosines and sines to derive the product-to-sum formulas.
54. I expressed $\sin 13^{\circ} \cos 48^{\circ}$ as $\frac{1}{2}\left(\sin 61^{\circ}-\sin 35^{\circ}\right)$.
55. I expressed $\cos 47^{\circ}+\cos 59^{\circ}$ as $2 \cos 53^{\circ} \cos 6^{\circ}$.

Use the identities for $\sin (\alpha+\beta)$ and $\sin (\alpha-\beta)$ to solve Exercises 56-57.
56. Add the left and right sides of the identities and derive the product-to-sum formula for $\sin \alpha \cos \beta$.
57. Subtract the left and right sides of the identities and derive the product-to-sum formula for $\cos \alpha \sin \beta$.

In Exercises 58-59, verify the given sum-to-product formula. Start with the right side and obtain the expression on the left side by using an appropriate product-to-sum formula.
58. $\sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2}$
59. $\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$

In Exercises 60-61, verify each identity.
60. $\frac{\sin 2 x+(\sin 3 x+\sin x)}{\cos 2 x+(\cos 3 x+\cos x)}=\tan 2 x$
61. $4 \cos x \cos 2 x \sin 3 x=\sin 2 x+\sin 4 x+\sin 6 x$

Group Exercise

62. This activity should result in an unusual group display entitled "'Frère Jacques', A New Perspective." Here is the touch-tone phone sequence:

Frère Jacques

4564,4564,69\#,69\#,\#*\#964,\#*\#964,414,414.

Group members should write every sound in the sequence as both the sum-of-sines and the product of sines and cosines. Use the sum-of-sines form and a graphing utility with a $[0,0.01,0.001]$ by $[-2,2,1]$ viewing rectangle to obtain a graph for every sound. Download these graphs. Use the graphs and equations to create your display in such a way that adults find the trigonometry of this naive melody interesting.

Preview Exercises

Exercises 63-65 will help you prepare for the material covered in the next section.
63. Solve: $2\left(1-u^{2}\right)+3 u=0$.
64. Solve: $u^{3}-3 u=0$.
65. Solve: $u^{2}-u-1=0$.

SECTION 5.5

Objectives

(1) Find all solutions of a trigonometric equation.
(2) Solve equations with multiple angles.
(3) Solve trigonometric equations quadratic in form.
(4) Use factoring to separate different functions in trigonometric equations.
(5) Use identities to solve trigonometric equations.
(6) Use a calculator to solve trigonometric equations.

1. Find all solutions of a trigonometric equation.

FIGURE 5.7 The equation $\sin x=\frac{1}{2}$ has five solutions when x is restricted to the interval $\left[-\frac{3 \pi}{2}, \frac{7 \pi}{2}\right]$.

Exponential functions display the manic energies of uncontrolled growth. By contrast, trigonometric functions repeat their behavior. Do they embody, in their regularity, some basic rhythm of the universe? The cycles of periodic phenomena provide events that we can comfortably count on. When will the moon look just as it does at this moment? When can I count on 13.5 hours of daylight? When will my breathing be exactly as it is right now? Models with trigonometric functions embrace the periodic rhythms of our world. Equations containing trigonometric functions are used to answer questions about these models.

Trigonometric Equations and Their Solutions

A trigonometric equation is an equation that contains a trigonometric expression with a variable, such as $\sin x$. We have seen that some trigonometric equations are identities, such as $\sin ^{2} x+\cos ^{2} x=1$. These equations are true for every value of the variable for which the expressions are defined. In this section, we consider trigonometric equations that are true for only some values of the variable. The values that satisfy such an equation are its solutions. (There are trigonometric equations that have no solution.)

An example of a trigonometric equation is

$$
\sin x=\frac{1}{2} .
$$

A solution of this equation is $\frac{\pi}{6}$ because $\sin \frac{\pi}{6}=\frac{1}{2}$. By contrast, π is not a solution because $\sin \pi=0 \neq \frac{1}{2}$.

Is $\frac{\pi}{6}$ the only solution of $\sin x=\frac{1}{2}$? The answer is no. Because of the periodic nature of the sine function, there are infinitely many values of x for which $\sin x=\frac{1}{2}$. Figure 5.7 shows five of the solutions, including $\frac{\pi}{6}$, for $-\frac{3 \pi}{2} \leq x \leq \frac{7 \pi}{2}$. Notice that the x-coordinates of the points where the graph of $y=\sin x$ intersects the line $y=\frac{1}{2}$ are the solutions of the equation $\sin x=\frac{1}{2}$.

How do we represent all solutions of $\sin x=\frac{1}{2}$? Because the period of the sine function is 2π, first find all solutions in $[0,2 \pi)$. The solutions are

$$
x=\frac{\pi}{6} \quad \text { and } \quad x=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
$$

Any multiple of 2π can be added to these values and the sine is still $\frac{1}{2}$. Thus, all solutions of $\sin x=\frac{1}{2}$ are given by

$$
x=\frac{\pi}{6}+2 n \pi \quad \text { or } \quad x=\frac{5 \pi}{6}+2 n \pi,
$$

where n is any integer. By choosing any two integers, such as $n=0$ and $n=1$, we can find some solutions of $\sin x=\frac{1}{2}$. Thus, four of the solutions are determined as follows:

$$
\begin{array}{rlrl}
\text { Let } n=0 . & & \text { Let } n=1 . \\
x=\frac{\pi}{6}+2 \cdot 0 \pi & x=\frac{5 \pi}{6}+2 \cdot 0 \pi & x & =\frac{\pi}{6}+2 \cdot 1 \pi \\
=\frac{\pi}{6} & =\frac{5 \pi}{6} & & x=\frac{5 \pi}{6}+2 \cdot 1 \pi \\
& & =\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6} & \\
& & =\frac{5 \pi}{6}+\frac{12 \pi}{6}=\frac{17 \pi}{6} .
\end{array}
$$

These four solutions are shown among the five solutions in Figure 5.7.

Equations Involving a Single Trigonometric Function

To solve an equation containing a single trigonometric function:

- Isolate the function on one side of the equation.
- Solve for the variable.

EXAMPLE 1 Finding All Solutions of a Trigonometric Equation

Solve the equation: $3 \sin x-2=5 \sin x-1$.

SOLUTION

The equation contains a single trigonometric function, $\sin x$.
Step 1 Isolate the function on one side of the equation. We can solve for $\sin x$ by collecting terms with $\sin x$ on the left side and constant terms on the right side.

GREAT QUESTION!

Why did you add $\frac{\pi}{6}$ to π but subtract $\frac{\pi}{6}$ from $\mathbf{2 \pi}$?
We are using an acute reference angle, $\frac{\pi}{6}$, to find angles in different quadrants. We are interested in solutions where the sine is negative, namely in quadrants III and IV. Adding $\frac{\pi}{6}$ to π puts us in quadrant III. Subtracting $\frac{\pi}{6}$ from 2π puts us in quadrant IV.

$$
\begin{aligned}
3 \sin x-2 & =5 \sin x-1 & & \text { This is the given equation. } \\
3 \sin x-5 \sin x-2 & =5 \sin x-5 \sin x-1 & & \text { Subtract } 5 \sin x \text { from both sides. } \\
-2 \sin x-2 & =-1 & & \text { Simplify. } \\
-2 \sin x & =1 & & \text { Add } 2 \text { to both sides. } \\
\sin x & =-\frac{1}{2} & & \text { Divide both sides by }-2 \text { and solve }
\end{aligned}
$$

Step 2 Solve for the variable. We must solve for x in $\sin x=-\frac{1}{2}$. Because $\sin \frac{\pi}{6}=\frac{1}{2}$, the solutions of $\sin x=-\frac{1}{2}$ in $[0,2 \pi)$ are

$$
x=\pi+\frac{\pi}{6}=\frac{6 \pi}{6}+\frac{\pi}{6}=\frac{7 \pi}{6} \quad x=2 \pi-\frac{\pi}{6}=\frac{12 \pi}{6}-\frac{\pi}{6}=\frac{11 \pi}{6} .
$$

The sine is negative
in quadrant III.

The sine is negative in quadrant IV.

Because the period of the sine function is 2π, the solutions of the equation are given by

$$
x=\frac{7 \pi}{6}+2 n \pi \quad \text { and } \quad x=\frac{11 \pi}{6}+2 n \pi
$$

where n is any integer.
2. Solve equations with multiple angles.

TECHNOLOGY

Graphic Connections

Shown below are the graphs of

$$
y=\tan 3 x
$$

and

$$
y=1
$$

in a $\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-3,3,1]$
viewing rectangle. The solutions of

$$
\tan 3 x=1
$$

in $[0,2 \pi)$ are shown by the x-coordinates of the six intersection points.

$$
\oint \text { Check Point } 1 \text { Solve the equation: } 5 \sin x=3 \sin x+\sqrt{3}
$$

Now we will concentrate on finding solutions of trigonometric equations for $0 \leq x<2 \pi$. You can use a graphing utility to check the solutions of these equations. Graph the left side and graph the right side. The solutions are the x-coordinates of the points where the graphs intersect.

Equations Involving Multiple Angles

Here are examples of two equations that include multiple angles:

$$
\begin{array}{ll}
\tan 3 x=1 & \sin \frac{x}{2}=\frac{\sqrt{3}}{2} . \\
\begin{array}{l}
\text { The angle is a } \\
\text { multiple of } 3 .
\end{array} & \begin{array}{l}
\text { The angle is a } \\
\text { multiple of } \frac{1}{2} .
\end{array}
\end{array}
$$

We will solve each equation for $0 \leq x<2 \pi$. The period of the function plays an important role in ensuring that we do not leave out any solutions.

EXAMPLE 2 Solving an Equation with a Multiple Angle

Solve the equation: $\tan 3 x=1,0 \leq x<2 \pi$.

SOLUTION

The period of the tangent function is π. In the interval $[0, \pi)$, the only value for which the tangent function is 1 is $\frac{\pi}{4}$. This means that $3 x=\frac{\pi}{4}$. Because the period is π, all the solutions to $\tan 3 x=1$ are given by

$$
\begin{aligned}
& 3 x=\frac{\pi}{4}+n \pi . \\
& x=\frac{\pi}{12}+\frac{n \pi}{3} \quad \text { is any integer. } \\
& \text { Divide both sides by } 3 \text { and solve for } x .
\end{aligned}
$$

In the interval $[0,2 \pi)$, we obtain the solutions of $\tan 3 x=1$ as follows:

$$
\begin{aligned}
& \text { Let } n=\mathbf{0} \text {. } \\
& \text { Let } n=1 \text {. } \\
& \text { Let } n=2 \text {. } \\
& x=\frac{\pi}{12}+\frac{0 \pi}{3} \\
& =\frac{\pi}{12} \quad=\frac{\pi}{12}+\frac{4 \pi}{12}=\frac{5 \pi}{12} \\
& \text { Let } n=4 \text {. } \\
& x=\frac{\pi}{12}+\frac{3 \pi}{3} \quad x=\frac{\pi}{12}+\frac{4 \pi}{3} \quad x=\frac{\pi}{12}+\frac{5 \pi}{3} \\
& =\frac{\pi}{12}+\frac{12 \pi}{12}=\frac{13 \pi}{12}=\frac{\pi}{12}+\frac{16 \pi}{12}=\frac{17 \pi}{12}=\frac{\pi}{12}+\frac{20 \pi}{12}=\frac{21 \pi}{12}=\frac{7 \pi}{4} \text {. }
\end{aligned}
$$

If you let $n=6$, you will obtain $x=\frac{25 \pi}{12}$. This value exceeds 2π. In the interval $[0,2 \pi)$, the solutions of $\tan 3 x=1$ are $\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{3 \pi}{4}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$, and $\frac{7 \pi}{4}$. These solutions are illustrated by the six intersection points in the technology box. \bullet. 0 Check Point 2 Solve the equation: $\tan 2 x=\sqrt{3}, 0 \leq x<2 \pi$.

EXAMPLE 3 Solving an Equation with a Multiple Angle

Solve the equation: $\sin \frac{x}{2}=\frac{\sqrt{3}}{2}, 0 \leq x<2 \pi$.

SOLUTION

The period of the sine function is 2π. In the interval $[0,2 \pi)$, there are two values at which the sine function is $\frac{\sqrt{3}}{2}$. One of these values is $\frac{\pi}{3}$. The sine is positive in quadrant II; thus, the other value is $\pi-\frac{\pi}{3}$, or $\frac{2 \pi}{3}$. This means that $\frac{x}{2}=\frac{\pi}{3}$ or $\frac{x}{2}=\frac{2 \pi}{3}$. Because the period is 2π, all the solutions of $\sin \frac{x}{2}=\frac{\sqrt{3}}{2}$ are given by

$$
\begin{array}{lll}
\frac{x}{2}=\frac{\pi}{3}+2 n \pi & \text { or } & \frac{x}{2}=\frac{2 \pi}{3}+2 n \pi \\
x=\frac{n \text { is any integer. }}{3}+4 n \pi & x=\frac{4 \pi}{3}+4 n \pi . & \text { Multiply both sides by } 2 \text { and solve for } x .
\end{array}
$$

We see that $x=\frac{2 \pi}{3}+4 n \pi$ or $x=\frac{4 \pi}{3}+4 n \pi$. If $n=0$, we obtain $x=\frac{2 \pi}{3}$ from the first equation and $x=\frac{4 \pi}{3}$ from the second equation. If we let $n=1$, we are adding $4 \cdot 1 \cdot \pi$, or 4π, to $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$. These values of x exceed 2π. Thus, in the interval $[0,2 \pi)$, the only solutions of $\sin \frac{x}{2}=\frac{\sqrt{3}}{2}$ are $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$. $\$$ Check Point 3 Solve the equation: $\sin \frac{x}{3}=\frac{1}{2}, 0 \leq x<2 \pi$.

Solve trigonometric equations quadratic in form.

TECHNOLOGY

Graphic Connections

The graph of

$$
y=2 \cos ^{2} x+\cos x-1
$$

is shown in a $\left[0,2 \pi, \frac{\pi}{2}\right]$
by $[-3,3,1]$ viewing rectangle. The x-intercepts, $\frac{\pi}{3}, \pi$, and $\frac{5 \pi}{3}$, verify the three solutions of

$$
2 \cos ^{2} x+\cos x-1=0
$$

in $[0,2 \pi)$.

Trigonometric Equations Quadratic in Form

Some trigonometric equations are in the form of a quadratic equation $a u^{2}+b u+c=0$, where u is a trigonometric function and $a \neq 0$. Here are two examples of trigonometric equations that are quadratic in form:

$$
\begin{array}{cc}
2 \cos ^{2} x+\cos x-1=0 & 2 \sin ^{2} x-3 \sin x+1=0 . \\
\begin{array}{cc}
\text { The form of this equation is } & \text { The form of this equation is } \\
2 u^{2}+u-1=0 \text { with } u=\cos x . & 2 u^{2}-3 u+1=0 \text { with } u=\sin x .
\end{array}
\end{array}
$$

To solve this kind of equation, try using factoring. If the trigonometric expression does not factor, use another method, such as the quadratic formula or the square root property.

EXAMPLE 4 Solving a Trigonometric Equation Quadratic in Form

Solve the equation: $2 \cos ^{2} x+\cos x-1=0, \quad 0 \leq x<2 \pi$.

SOLUTION

The given equation is in quadratic form $2 u^{2}+u-1=0$ with $u=\cos x$. Let us attempt to solve the equation by factoring.
The cosine is positive
in quadrants I and IV.

The solutions in the interval $[0,2 \pi)$ are $\frac{\pi}{3}, \pi$, and $\frac{5 \pi}{3}$.

$$
\begin{aligned}
& 2 \cos ^{2} x+\cos x-1=0 \quad \text { This is the given equation. } \\
& (2 \cos x-1)(\cos x+1)=0 \quad \text { Factor: Notice that } 2 u^{2}+u-1 \\
& \text { factors as }(2 u-1)(u+1) \text {. }
\end{aligned}
$$

$$
\text { The solutions in the interval }[0,2 \pi) \text { are } \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \text { and } \frac{11 \pi}{6}
$$

TECHNOLOGY

Numeric Connections

You can use a graphing utility's TABLE feature to verify that the solutions of $4 \sin ^{2} x-1=0$ in $[0,2 \pi)$ are $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}$, and $\frac{11 \pi}{6}$. The table for $y=4 \sin ^{2} x-1$, shown on the right, verifies that $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$ are solutions. Scroll through the table to verify the other two solutions.
\oint Check Point 5 Solve the equation: $4 \cos ^{2} x-3=0, \quad 0 \leq x<2 \pi$.
(4) Use factoring to separate different functions in trigonometric equations.

Using Factoring to Separate Two Different

Trigonometric Functions in an Equation
We have seen that factoring is used to solve some trigonometric equations that are quadratic in form. Factoring can also be used to solve some trigonometric equations that contain two different functions such as

$$
\tan x \sin ^{2} x=3 \tan x
$$

In such a case, move all terms to one side and obtain zero on the other side. Then try to use factoring to separate the different functions. Example 6 shows how this is done.

GREAT QUESTION!

Can I begin solving

$$
\tan x \sin ^{2} x=3 \tan x
$$

by dividing both sides by $\tan x$?
No. Division by zero is undefined. If you divide by $\tan x$, you lose the two solutions for which $\tan x=0$, namely 0 and π.
5. Use identities to solve trigonometric equations.

EXAMPLE 6 Using Factoring to Separate Different Functions

Solve the equation: $\tan x \sin ^{2} x=3 \tan x, \quad 0 \leq x<2 \pi$.

SOLUTION

Move all terms to one side and obtain zero on the other side.

$$
\begin{aligned}
\tan x \sin ^{2} x & =3 \tan x & & \text { This is the given equation. } \\
\tan x \sin ^{2} x-3 \tan x & =0 & & \text { Subtract } 3 \tan \mathrm{x} \text { from both sides. }
\end{aligned}
$$

We now have $\tan x \sin ^{2} x-3 \tan x=0$, which contains both tangent and sine functions. Use factoring to separate the two functions.

$$
\begin{array}{ll}
\text { tan } x\left(\sin ^{2} x-3\right)=0 & \begin{array}{l}
\text { Factor out tan } x \text { from the two } \\
\text { terms on the left side. }
\end{array} \\
\tan x=0 \quad \text { or } \quad \sin ^{2} x-3=0 & \text { Set each factor equal to } 0 . \\
x=\pi & \sin ^{2} x=3
\end{array} \begin{aligned}
& \text { Solve for } x . \\
& \begin{array}{c}
\text { This equation has } \\
\text { no solution because } \\
\text { sin } x \text { cannot be } \\
\text { greater than } 1 \text { or } \\
\text { less than }-1 .
\end{array}
\end{aligned}
$$

The solutions in the interval $[0,2 \pi)$ are 0 and π.
$\$$ Check Point 6 Solve the equation: $\sin x \tan x=\sin x, \quad 0 \leq x<2 \pi$.

Using Identities to Solve Trigonometric Equations

Some trigonometric equations contain more than one function on the same side and these functions cannot be separated by factoring. For example, consider the equation

$$
2 \cos ^{2} x+3 \sin x=0
$$

How can we obtain an equivalent equation that has only one trigonometric function? We use the identity $\sin ^{2} x+\cos ^{2} x=1$ and substitute $1-\sin ^{2} x$ for $\cos ^{2} x$. This forms the basis of our next example.

EXAMPLE 7 Using an Identity to Solve a Trigonometric Equation

Solve the equation: $2 \cos ^{2} x+3 \sin x=0, \quad 0 \leq x<2 \pi$.

SOLUTION

	$\begin{aligned} 2 \cos ^{2} x+3 \sin x & =0 \\ 2\left(1-\sin ^{2} x\right)+3 \sin x & =0 \\ 2-2 \sin ^{2} x+3 \sin x & =0 \end{aligned}$	This is the given equation. $\cos ^{2} x=1-\sin ^{2} x$ Use the distributive property.
It's easier to factor with a positive leading coefficient.	$\begin{aligned} & -2 \sin ^{2} x+3 \sin x+2=0 \\ & -2 \sin ^{2} x-3 \sin x-2=0 \end{aligned}$	Write the equation in descending powers of $\sin x$. Multiply both sides by -1. The equation is in quadratic form $2 u^{2}-3 u-2=0$ with $u=\sin x$.
	$\begin{aligned} & (2 \sin x+1)(\sin x-2)=0 \\ & +1=0 \text { or } \sin x-2=0 \end{aligned}$	Factor. Notice that $2 u^{2}-3 u-2$ factors as $(2 u+1)(u-2)$. Set each factor equal to 0 .

The solutions of $2 \cos ^{2} x+3 \sin x=0$ in the interval $[0,2 \pi)$ are $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$. \ldots $\$$ Check Point 7 Solve the equation: $2 \sin ^{2} x-3 \cos x=0, \quad 0 \leq x<2 \pi$.

EXAMPLE 8 Using an Identity to Solve a Trigonometric Equation

Solve the equation: $\cos 2 x+3 \sin x-2=0, \quad 0 \leq x<2 \pi$.

SOLUTION

The given equation contains a cosine function and a sine function. The cosine is a function of $2 x$ and the sine is a function of x. We want one trigonometric function of the same angle. This can be accomplished by using the double-angle identity $\cos 2 x=1-2 \sin ^{2} x$ to obtain an equivalent equation involving $\sin x$ only.

$$
\begin{aligned}
& \cos 2 x+3 \sin x-2=0 \text { This is the given equation. } \\
& 1-2 \sin ^{2} x+3 \sin x-2=0 \quad \cos 2 x=1-2 \sin ^{2} x \\
& -2 \sin ^{2} x+3 \sin x-1=0 \quad \text { Combine like terms. } \\
& 2 \sin ^{2} x-3 \sin x+1=0 \quad \text { Multiply both sides by }-1 \text {. The } \\
& \text { equation is in quadratic form } \\
& 2 u^{2}-3 u+1=0 \text { with } u=\sin x \text {. } \\
& (2 \sin x-1)(\sin x-1)=0 \quad \text { Factor. Notice that } 2 u^{2}-3 u+1 \\
& \text { factors as }(2 u-1)(u-1) \text {. } \\
& 2 \sin x-1=0 \quad \text { or } \quad \sin x-1=0 \quad \text { Set each factor equal to } 0 . \\
& \sin x=\frac{1}{2} \quad \sin x=1 \quad \text { Solve for } \sin x . \\
& x=\frac{\pi}{6} \quad x=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \quad x=\frac{\pi}{2} \quad \text { Solve each equation for } x \text {, } \\
& 0 \leq x<2 \pi \text {. } \\
& \text { The sine is positive } \\
& \text { in quadrants I and II. }
\end{aligned}
$$

The solutions in the interval $[0,2 \pi)$ are $\frac{\pi}{6}, \frac{\pi}{2}$, and $\frac{5 \pi}{6}$.
Check Point 8 Solve the equation: $\cos 2 x+\sin x=0, \quad 0 \leq x<2 \pi$.

Sometimes it is necessary to do something to both sides of a trigonometric equation before using an identity. For example, consider the equation

$$
\sin x \cos x=\frac{1}{2}
$$

This equation contains both a sine and a cosine function. How can we obtain a single function? Multiply both sides by 2 . In this way, we can use the double-angle identity $\sin 2 x=2 \sin x \cos x$ and obtain $\sin 2 x$, a single function, on the left side.

TECHNOLOGY

Graphic Connections

Shown below are the graphs of

$$
y=\sin x \cos x
$$

and

$$
y=\frac{1}{2}
$$

in a $\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-1,1,1]$ viewing rectangle. The solutions of

$$
\sin x \cos x=\frac{1}{2}
$$

are shown by the x-coordinates of the two intersection points.

TECHNOLOGY

Graphic Connections

A graphing utility can be used instead of an algebraic check. Shown are the graphs of

$$
y=\sin x-\cos x
$$

and

$$
y=1
$$

in a $\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle. The actual solutions of

$$
\sin x-\cos x=1
$$

are shown by the x-coordinates of the two intersection points, $\frac{\pi}{2}$ and π.

EXAMPLE 9 Using an Identity to Solve a Trigonometric Equation

Solve the equation: $\sin x \cos x=\frac{1}{2}, \quad 0 \leq x<2 \pi$.

SOLUTION

$$
\begin{aligned}
\sin x \cos x=\frac{1}{2} & \text { This is the given equation. } \\
2 \sin x \cos x=1 & \text { Multiply both sides by } 2 \text { in anticipation of } \\
& \text { using } \sin 2 x=2 \sin \times \cos x . \\
\sin 2 x=1 & \text { Use a double-angle identity. }
\end{aligned}
$$

Notice that we have an equation, $\sin 2 x=1$, with $2 x$, a multiple angle. The period of the sine function is 2π. In the interval $[0,2 \pi)$, the only value for which the sine function is 1 is $\frac{\pi}{2}$. This means that $2 x=\frac{\pi}{2}$. Because the period is 2π, all the solutions of $\sin 2 x=1$ are given by

$$
\begin{aligned}
2 x & =\frac{\pi}{2}+2 n \pi \quad n \text { is any integer. } \\
x & =\frac{\pi}{4}+n \pi \quad \text { Divide both sides by } 2 \text { and solve for } x .
\end{aligned}
$$

The solutions of $\sin x \cos x=\frac{1}{2}$ in the interval $[0,2 \pi)$ are obtained by letting $n=0$ and $n=1$. The solutions are $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$.

0 Check Point 9 Solve the equation: $\sin x \cos x=-\frac{1}{2}, \quad 0 \leq x<2 \pi$.

Let's look at another equation that contains two different functions, $\sin x-\cos x=1$. Can you think of an identity that can be used to produce only one function? Perhaps $\sin ^{2} x+\cos ^{2} x=1$ might be helpful. The next example shows how we can use this identity after squaring both sides of the given equation. Remember that if we raise both sides of an equation to an even power, we have the possibility of introducing extraneous solutions. Thus, we must check each proposed solution in the given equation. Alternatively, we can use a graphing utility to verify actual solutions.

EXAMPLE 10 Using an Identity to Solve a Trigonometric Equation

Solve the equation: $\sin x-\cos x=1, \quad 0 \leq x<2 \pi$.

SOLUTION

We square both sides of the equation in anticipation of using $\sin ^{2} x+\cos ^{2} x=1$.

$$
\begin{aligned}
& \sin x-\cos x=1 \quad \text { This is the given equation. } \\
& (\sin x-\cos x)^{2}=1^{2} \quad \text { Square both sides. } \\
& \sin ^{2} x-2 \sin x \cos x+\cos ^{2} x=1 \quad \text { Square the left side using } \\
& (A-B)^{2}=A^{2}-2 A B+B^{2} . \\
& \sin ^{2} x+\cos ^{2} x-2 \sin x \cos x=1 \quad \text { Rearrange terms. } \\
& 1-2 \sin x \cos x=1 \quad \text { Apply a Pythagorean identity: } \\
& \sin ^{2} x+\cos ^{2} x=1 \text {. } \\
& -2 \sin x \cos x=0 \quad \text { Subtract } 1 \text { from both sides of the equation. } \\
& \sin x \cos x=0 \quad \text { Divide both sides of the equation by }-2 \text {. } \\
& \sin x=0 \quad \text { or } \quad \cos x=0 \quad \text { Set each factor equal to } 0 \text {. } \\
& x=0 \quad x=\pi \quad x=\frac{\pi}{2} \quad x=\frac{3 \pi}{2} \quad \text { Solve for } x \text { in }[0,2 \pi) .
\end{aligned}
$$

We check these proposed solutions to see if any are extraneous.

Check 0:
$\sin x-\cos x=1$
$\sin 0-\cos 0 \stackrel{?}{\underline{=}} 1$
$0-1 \stackrel{?}{=} 1$
$-1=1$, false

0 is extraneous.

$$
\begin{array}{rlrl}
\text { Check } \frac{\pi}{2} \text { : } & \text { Check } \pi \text { : } & \text { Check } \frac{3 \pi}{2} \text { : } \\
\sin x-\cos x & =1 & \sin x-\cos x & =1 \\
\sin \frac{\pi}{2}-\cos \frac{\pi}{2} \stackrel{?}{=} 1 & \sin \pi-\cos \pi \stackrel{?}{=} 1 & \sin x-\cos x=1 \\
1-0 \stackrel{3 \pi}{2}-\cos \frac{3 \pi}{2} 1 & \stackrel{?}{=} 1 \\
1 & =1, \text { true } & 0-(-1) \stackrel{?}{=} 1 & -1-0 \stackrel{?}{=} 1 \\
1 & =1, \text { true } & -1=1, \text { false }
\end{array}
$$

The actual solutions of $\sin x-\cos x=1$ in the interval $[0,2 \pi)$ are $\frac{\pi}{2}$ and π. \ldots \varnothing Check Point 10 Solve the equation: $\cos x-\sin x=-1, \quad 0 \leq x<2 \pi$.

Using a Calculator to Solve Trigonometric Equations

In all our previous examples, the equations had solutions that were found by knowing the exact values of trigonometric functions of special angles, such as $\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}$. However, not all trigonometric equations involve these special angles. For those that do not, we will use the secondary keys marked $\mathrm{SIN}^{-1}, \mathrm{COS}^{-1}$, and TAN^{-1} on a calculator. Recall that on most calculators, the inverse trigonometric function keys are the secondary functions for the buttons labelled $\mathrm{SIN}, \mathrm{COS}$, and TAN , respectively.

EXAMPLE 11 Solving Trigonometric Equations with a Calculator

Solve each equation, correct to four decimal places, for $0 \leq x<2 \pi$:
a. $\tan x=12.8044$
b. $\cos x=-0.4317$.

SOLUTION

We begin by using a calculator to find $\theta, 0 \leq \theta<\frac{\pi}{2}$ satisfying the following equations:

$$
\tan \theta=12.8044 \quad \cos \theta=0.4317
$$

These numbers are the absolute values of the given range values.

Once θ is determined, we use our knowledge of the signs of the trigonometric functions to find x in $[0,2 \pi)$ satisfying $\tan x=12.8044$ and $\cos x=-0.4317$.
a. $\tan x=12.8044$
$\tan \theta=12.8044$

$$
\theta=\tan ^{-1}(12.8044) \approx 1.4929
$$

$\tan x=12.8044$

$$
x \approx 1.4929
$$

This is the given equation.
Use a calculator to solve this equation for θ,
$0 \leq \theta<\frac{\pi}{2}$.
12.8044 2nd TAN or

2nd TAN 12.8044 ENTER
Return to the given equation. Because the tangent is positive, x lies in quadrant I or III.
$x \approx \pi+1.4929 \approx 4.6345$ Solve for $x, O \leq x<2 \pi$.
The tangent is positive in quadrant III.

Correct to four decimal places, the solutions of $\tan x=12.8044$ in the interval $[0,2 \pi)$ are 1.4929 and 4.6345. (Note: Slight differences in approximate solutions can occur due to rounding. If you don't round $\tan ^{-1}(12.8044)$ first, then $x=\pi+\tan ^{-1}(12.8044) \approx 4.6344$.)

$$
\begin{aligned}
& \text { b. } \cos x=-0.4317 \\
& \cos \theta=0.4317 \\
& \theta=\cos ^{-1}(0.4317) \approx 1.1244 \\
& \cos x=-0.4317 \\
& x \approx \pi-1.1244 \approx 2.0172 \\
& \text { The cosine is negative in quadrant II. The cosine is negative in quadrant III. } \\
& \text { This is the given equation. } \\
& \text { Use a calculator to solve this equation for } \theta \text {, } \\
& 0 \leq \theta<\frac{\pi}{2} \text {. } \\
& .4317 \text { 2nd COS or 2nd COS . } 4317 \text { ENTER } \\
& \text { Return to the given equation. Because the } \\
& \text { cosine is negative, } x \text { lies in quadrant II or III. } \\
& x \approx \pi-1.1244 \approx 2.0172 \quad x \approx \pi+1.1244 \approx 4.2660 \quad \text { Solve for } \mathrm{x}, \mathrm{O} \leq \mathrm{x}<2 \pi
\end{aligned}
$$

Correct to four decimal places, the solutions of $\cos x=-0.4317$ in the interval $[0,2 \pi)$ are 2.0172 and 4.2660 .

$$
, 2 \pi) \text { are } 2.0172 \text { and } 4.2660
$$

$$
[\infty, \text { w }
$$

Check Point 11 Solve each equation, correct to four decimal places, for

 $0 \leq x<2 \pi$:a. $\tan x=3.1044$
b. $\sin x=-0.2315$.

EXAMPLE 12 Solving a Trigonometric Equation Using the Quadratic Formula and a Calculator

Solve the equation, correct to four decimal places, for $0 \leq x<2 \pi$:

$$
\sin ^{2} x-\sin x-1=0
$$

SOLUTION

The given equation is in quadratic form $u^{2}-u-1=0$ with $u=\sin x$. We use the quadratic formula to solve for $\sin x$ because $u^{2}-u-1$ cannot be factored. Begin by identifying the values for a, b, and c.

$$
\begin{gathered}
\sin ^{2} x-\sin x-1=0 \\
a=1 \quad b=-1
\end{gathered}
$$

Substituting these values into the quadratic formula and simplifying gives the values for $\sin x$. Once we obtain these values, we will solve for x.

$$
\begin{aligned}
& \sin x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{1-(-4)}}{2}=\frac{1 \pm \sqrt{5}}{2} \\
& \begin{array}{l}
\sin x=\frac{1+\sqrt{5}}{2} \approx 1.6180 \\
\begin{array}{c}
\text { This equation has no solution } \\
\text { because sin } x \text { cannot be } \\
\text { greater than 1. }
\end{array} \\
\text { or } \quad \sin x=\frac{1-\sqrt{5}}{2} \approx-0.6180
\end{array} \\
& \begin{array}{c}
\text { The sine is negative in quadrants III } \\
\text { and IV. Use a calculator to solve } \\
\sin \theta=0.6180,0 \leq \theta<\frac{\pi}{2} .
\end{array}
\end{aligned}
$$

Using a calculator to solve $\sin \theta=0.6180$, we have

$$
\theta=\sin ^{-1}(0.6180) \approx 0.6662
$$

We use 0.6662 to solve $\sin x=-0.6180,0 \leq x<2 \pi$.

$$
x \approx \pi+0.6662 \approx 3.8078 \quad x \approx 2 \pi-0.6662 \approx 5.6170
$$

The sine is negative in quadrant III
The sine is negative in quadrant IV.
Correct to four decimal places, the solutions of $\sin ^{2} x-\sin x-1=0$ in the interval $[0,2 \pi)$ are 3.8078 and 5.6170.
$\$$ Check Point 12 Solve the equation, correct to four decimal places, for $0 \leq x<2 \pi$:

$$
\cos ^{2} x+5 \cos x+3=0
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The solutions of $\sin x=\frac{\sqrt{2}}{2}$ in $[0,2 \pi)$ are $x=\frac{\pi}{4}$ and $x=$ \qquad If n is any integer, all solutions of $\sin x=\frac{\sqrt{2}}{2}$ are given by $x=$ \qquad and
$x=$ \qquad _.
2. The solution of $\tan x=-\sqrt{3}$ in $[0, \pi)$ is $x=\pi-\frac{\pi}{3}$, or $x=$ \qquad If n is any integer, all solutions of $\tan x=-\sqrt{3}$ are given by \qquad _.
3. True or false: If $3 x=\frac{\pi}{4}+n \pi$ for any integer n, then $x=\frac{\pi}{12}+n \pi$. \qquad
4. True or false: If $\cos \frac{x}{3}=\frac{1}{2}$, then $\frac{x}{3}=\frac{\pi}{3}+2 n \pi$ or $\frac{x}{3}=\frac{5 \pi}{3}+2 n \pi$ for any integer n.
5. True or false: If $\tan 3 x=1$, then $x=\frac{\pi}{4}+n \pi$ for any integer n.
6. If $2 \cos ^{2} x-9 \cos x-5=0$, then \qquad $=0$ or
\qquad $=0$. Of these two equations, the equation that has no solution is \qquad .
7. If $2 \sin x \cos x+\sqrt{2} \cos x=0$, then \qquad $=0$ or \qquad $=0$.
8. The first step in solving the equation $4 \cos ^{2} x+4 \sin x-5=0,0 \leq x<2 \pi$, is to replace with \qquad
9. If $\sin 0.9695 \approx 0.8246$, then the solutions of $\sin x=-0.8246,0 \leq x<2 \pi$, are given by $x \approx$ \qquad +0.9695 and $x \approx$ \qquad - 0.9695 .

EXERCISE SET 5.5

Practice Exercises

In Exercises 1-10, use substitution to determine whether the given x-value is a solution of the equation.

1. $\cos x=\frac{\sqrt{2}}{2}, x=\frac{\pi}{4}$
2. $\tan x=\sqrt{3}, \quad x=\frac{\pi}{3}$
3. $\sin x=\frac{\sqrt{3}}{2}, \quad x=\frac{\pi}{6}$
4. $\sin x=\frac{\sqrt{2}}{2}, \quad x=\frac{\pi}{3}$
5. $\cos x=-\frac{1}{2}, \quad x=\frac{2 \pi}{3}$
6. $\cos x=-\frac{1}{2}, \quad x=\frac{4 \pi}{3}$
7. $\tan 2 x=-\frac{\sqrt{3}}{3}, \quad x=\frac{5 \pi}{12}$
8. $\cos \frac{2 x}{3}=-\frac{1}{2}, \quad x=\pi$
9. $\cos x=\sin 2 x, \quad x=\frac{\pi}{3}$
10. $\cos x+2=\sqrt{3} \sin x, \quad x=\frac{\pi}{6}$

In Exercises 11-24, find all solutions of each equation.
11. $\sin x=\frac{\sqrt{3}}{2}$
12. $\cos x=\frac{\sqrt{3}}{2}$
13. $\tan x=1$
14. $\tan x=\sqrt{3}$
15. $\cos x=-\frac{1}{2}$
16. $\sin x=-\frac{\sqrt{2}}{2}$
17. $\tan x=0$
18. $\sin x=0$
19. $2 \cos x+\sqrt{3}=0$
20. $2 \sin x+\sqrt{3}=0$
21. $4 \sin \theta-1=2 \sin \theta$
22. $5 \sin \theta+1=3 \sin \theta$
23. $3 \sin \theta+5=-2 \sin \theta$
24. $7 \cos \theta+9=-2 \cos \theta$

Exercises 25-38 involve equations with multiple angles. Solve each equation on the interval $[0,2 \pi)$.
25. $\sin 2 x=\frac{\sqrt{3}}{2}$
26. $\cos 2 x=\frac{\sqrt{2}}{2}$
27. $\cos 4 x=-\frac{\sqrt{3}}{2}$
28. $\sin 4 x=-\frac{\sqrt{2}}{2}$
29. $\tan 3 x=\frac{\sqrt{3}}{3}$
30. $\tan 3 x=\sqrt{3}$
31. $\tan \frac{x}{2}=\sqrt{3}$
32. $\tan \frac{x}{2}=\frac{\sqrt{3}}{3}$
33. $\sin \frac{2 \theta}{3}=-1$
34. $\cos \frac{2 \theta}{3}=-1$
35. $\sec \frac{3 \theta}{2}=-2$
36. $\cot \frac{3 \theta}{2}=-\sqrt{3}$
37. $\sin \left(2 x+\frac{\pi}{6}\right)=\frac{1}{2}$
38. $\sin \left(2 x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$

Exercises 39-52 involve trigonometric equations quadratic in form. Solve each equation on the interval $[0,2 \pi)$.
39. $2 \sin ^{2} x-\sin x-1=0$
40. $2 \sin ^{2} x+\sin x-1=0$
41. $2 \cos ^{2} x+3 \cos x+1=0$
42. $\cos ^{2} x+2 \cos x-3=0$
43. $2 \sin ^{2} x=\sin x+3$
44. $2 \sin ^{2} x=4 \sin x+6$
45. $\sin ^{2} \theta-1=0$
46. $\cos ^{2} \theta-1=0$
47. $4 \cos ^{2} x-1=0$
48. $4 \sin ^{2} x-3=0$
49. $9 \tan ^{2} x-3=0$
50. $3 \tan ^{2} x-9=0$
51. $\sec ^{2} x-2=0$
52. $4 \sec ^{2} x-2=0$

In Exercises 53-62, solve each equation on the interval $[0,2 \pi)$.
53. $(\tan x-1)(\cos x+1)=0$
54. $(\tan x+1)(\sin x-1)=0$
55. $(2 \cos x+\sqrt{3})(2 \sin x+1)=0$
56. $(2 \cos x-\sqrt{3})(2 \sin x-1)=0$
57. $\cot x(\tan x-1)=0$
58. $\cot x(\tan x+1)=0$
59. $\sin x+2 \sin x \cos x=0$
60. $\cos x-2 \sin x \cos x=0$
61. $\tan ^{2} x \cos x=\tan ^{2} x$
62. $\cot ^{2} x \sin x=\cot ^{2} x$

In Exercises 63-84, use an identity to solve each equation on the interval $[0,2 \pi)$.
63. $2 \cos ^{2} x+\sin x-1=0$
64. $2 \cos ^{2} x-\sin x-1=0$
65. $\sin ^{2} x-2 \cos x-2=0$
66. $4 \sin ^{2} x+4 \cos x-5=0$
67. $4 \cos ^{2} x=5-4 \sin x$
68. $3 \cos ^{2} x=\sin ^{2} x$
69. $\sin 2 x=\cos x$
70. $\sin 2 x=\sin x$
71. $\cos 2 x=\cos x$
72. $\cos 2 x=\sin x$
73. $\cos 2 x+5 \cos x+3=0$
74. $\cos 2 x+\cos x+1=0$
75. $\sin x \cos x=\frac{\sqrt{2}}{4}$
76. $\sin x \cos x=\frac{\sqrt{3}}{4}$
77. $\sin x+\cos x=1$
78. $\sin x+\cos x=-1$
79. $\sin \left(x+\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right)=1$
80. $\sin \left(x+\frac{\pi}{3}\right)+\sin \left(x-\frac{\pi}{3}\right)=1$
81. $\sin 2 x \cos x+\cos 2 x \sin x=\frac{\sqrt{2}}{2}$
82. $\sin 3 x \cos 2 x+\cos 3 x \sin 2 x=1$
83. $\tan x+\sec x=1$
84. $\tan x-\sec x=1$

In Exercises 85-96, use a calculator to solve each equation, correct to four decimal places, on the interval $[0,2 \pi)$.
85. $\sin x=0.8246$
86. $\sin x=0.7392$
87. $\cos x=-\frac{2}{5}$
88. $\cos x=-\frac{4}{7}$
89. $\tan x=-3$
90. $\tan x=-5$
91. $\cos ^{2} x-\cos x-1=0$
92. $3 \cos ^{2} x-8 \cos x-3=0$
93. $4 \tan ^{2} x-8 \tan x+3=0$
94. $\tan ^{2} x-3 \tan x+1=0$
95. $7 \sin ^{2} x-1=0$
96. $5 \sin ^{2} x-1=0$

In Exercises 97-116, use the most appropriate method to solve each equation on the interval $[0,2 \pi)$. Use exact values where possible or give approximate solutions correct to four decimal places.
97. $2 \cos 2 x+1=0$
98. $2 \sin 3 x+\sqrt{3}=0$
99. $\sin 2 x+\sin x=0$
100. $\sin 2 x+\cos x=0$
101. $3 \cos x-6 \sqrt{3}=\cos x-5 \sqrt{3}$
102. $\cos x-5=3 \cos x+6$
103. $\tan x=-4.7143$
104. $\tan x=-6.2154$
105. $2 \sin ^{2} x=3-\sin x$
106. $2 \sin ^{2} x=2-3 \sin x$
107. $\cos x \csc x=2 \cos x$
108. $\tan x \sec x=2 \tan x$
109. $5 \cot ^{2} x-15=0$
110. $5 \sec ^{2} x-10=0$
111. $\cos ^{2} x+2 \cos x-2=0$
112. $\cos ^{2} x+5 \cos x-1=0$
113. $5 \sin x=2 \cos ^{2} x-4$
114. $7 \cos x=4-2 \sin ^{2} x$
115. $2 \tan ^{2} x+5 \tan x+3=0$
116. $3 \tan ^{2} x-\tan x-2=0$

Practice Plus

In Exercises 117-120, graph f and g in the same rectangular coordinate system for $0 \leq x \leq 2 \pi$. Then solve a trigonometric equation to determine points of intersection and identify these points on your graphs.
117. $f(x)=3 \cos x, g(x)=\cos x-1$
118. $f(x)=3 \sin x, g(x)=\sin x-1$
119. $f(x)=\cos 2 x, g(x)=-2 \sin x$
120. $f(x)=\cos 2 x, g(x)=1-\sin x$

In Exercises 121-126, solve each equation on the interval $[0,2 \pi)$.
121. $|\cos x|=\frac{\sqrt{3}}{2}$
122. $|\sin x|=\frac{1}{2}$
123. $10 \cos ^{2} x+3 \sin x-9=0$
124. $3 \cos ^{2} x-\sin x=\cos ^{2} x$
125. $2 \cos ^{3} x+\cos ^{2} x-2 \cos x-1=0$ (Hint: Use factoring by grouping.)
126. $2 \sin ^{3} x-\sin ^{2} x-2 \sin x+1=0$ (Hint: Use factoring by grouping.)

In Exercises 127-128, find the x-intercepts, correct to four decimal places, of the graph of each function. Then use the x-intercepts to match the function with its graph. The graphs are labeled (a) and (b).
127. $f(x)=\tan ^{2} x-3 \tan x+1$
128. $g(x)=4 \tan ^{2} x-8 \tan x+3$

$\left[0,2 \pi, \frac{\pi}{4}\right]$ by $[-3,3,1]$

Application Exercises

Use this information to solve Exercises 129-130. Our cycle of normal breathing takes place every 5 seconds. Velocity of air flow, y, measured in liters per second, after x seconds is modeled by

$$
y=0.6 \sin \frac{2 \pi}{5} x
$$

Velocity of air flow is positive when we inhale and negative when we exhale.
129. Within each breathing cycle, when are we inhaling at a rate of 0.3 liter per second? Round to the nearest tenth of a second.
130. Within each breathing cycle, when are we exhaling at a rate of 0.3 liter per second? Round to the nearest tenth of a second.

Use this information to solve Exercises 131-132. The number of hours of daylight in Boston is given by

$$
y=3 \sin \left[\frac{2 \pi}{365}(x-79)\right]+12
$$

where x is the number of days after January 1.
131. Within a year, when does Boston have 10.5 hours of daylight? Give your answer in days after January 1 and round to the nearest day.
132. Within a year, when does Boston have 13.5 hours of daylight? Give your answer in days after January 1 and round to the nearest day.

Use this information to solve Exercises 133-134. A ball on a spring is pulled 4 inches below its rest position and then released. After t seconds, the ball's distance, d, in inches from its rest position is given by

$$
d=-4 \cos \frac{\pi}{3} t .
$$

133. Find all values of t for which the ball is 2 inches above its rest position.
134. Find all values of t for which the ball is 2 inches below its rest position.
Use this information to solve Exercises 135-136. When throwing an object, the distance achieved depends on its initial velocity, v_{0}, and the angle above the horizontal at which the object is thrown, θ. The distance, d, in feet, that describes the range covered is given by

$$
d=\frac{v_{0}^{2}}{16} \sin \theta \cos \theta
$$

where v_{0} is measured in feet per second.
135. You and your friend are throwing a baseball back and forth. If you throw the ball with an initial velocity of $v_{0}=90$ feet per second, at what angle of elevation, θ, to the nearest degree, should you direct your throw so that it can be easily caught by your friend located 170 feet away?
136. In Exercise 135, you increase the distance between you and your friend to 200 feet. With this increase, at what angle of elevation, θ, to the nearest degree, should you direct your throw?

Writing in Mathematics

137. What are the solutions of a trigonometric equation?
138. Describe the difference between verifying a trigonometric identity and solving a trigonometric equation.
139. Without actually solving the equation, describe how to solve

$$
3 \tan x-2=5 \tan x-1
$$

140. In the interval $[0,2 \pi)$, the solutions of $\sin x=\cos 2 x$ are $\frac{\pi}{6}, \frac{5 \pi}{6}$, and $\frac{3 \pi}{2}$. Explain how to use graphs generated by a graphing utility to check these solutions.
141. Suppose you are solving equations in the interval $[0,2 \pi)$. Without actually solving equations, what is the difference between the number of solutions of $\sin x=\frac{1}{2}$ and $\sin 2 x=\frac{1}{2}$? How do you account for this difference?

In Exercises 142-143, describe a general strategy for solving each equation. Do not solve the equation.
142. $2 \sin ^{2} x+5 \sin x+3=0$
143. $\sin 2 x=\sin x$
144. Describe a natural periodic phenomenon. Give an example of a question that can be answered by a trigonometric equation in the study of this phenomenon.
145. A city's tall buildings and narrow streets reduce the amount of sunlight. If h is the average height of the buildings and w is the width of the street, the angle of elevation from the street to the top of the buildings is given by the trigonometric equation

$$
\tan \theta=\frac{h}{w} .
$$

A value of $\theta=63^{\circ}$ can result in an 85% loss of illumination. Some people experience depression with loss of sunlight. Determine whether such a person should live on a city street that is 80 feet wide with buildings whose heights average 400 feet. Explain your answer and include θ, to the nearest degree, in your argument.

Technology Exercises

146. Use a graphing utility to verify the solutions of any five equations that you solved in Exercises 63-84.

In Exercises 147-151, use a graphing utility to approximate the solutions of each equation in the interval $[0,2 \pi)$. Round to the nearest hundredth of a radian.
147. $15 \cos ^{2} x+7 \cos x-2=0$
148. $\cos x=x$
149. $2 \sin ^{2} x=1-2 \sin x$
150. $\sin 2 x=2-x^{2}$
151. $\sin x+\sin 2 x+\sin 3 x=0$

Critical Thinking Exercises

Make Sense? In Exercises 152-155, determine whether each statement makes sense or does not make sense, and explain your reasoning.
152. I solved $4 \cos ^{2} x=5-4 \sin x$ by working independently with the left side, applying a Pythagorean identity, and transforming the left side into $5-4 \sin x$.
153. There are similarities and differences between solving $4 x+1=3$ and $4 \sin \theta+1=3$: In the first equation, I need to isolate x to get the solution. In the trigonometric equation, I need to first isolate $\sin \theta$, but then I must continue to solve for θ.
154. I solved $\cos \left(x-\frac{\pi}{3}\right)=-1$ by first applying the formula for the cosine of the difference of two angles.
155. Using the equation for simple harmonic motion described in Exercises 133-134, I need to solve a trigonometric equation to determine the ball's distance from its rest position after 2 seconds.

In Exercises 156-159, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
156. The equation $(\sin x-3)(\cos x+2)=0$ has no solution.
157. The equation $\tan x=\frac{\pi}{2}$ has no solution.
158. A trigonometric equation with an infinite number of solutions is an identity.
159. The equations $\sin 2 x=1$ and $\sin 2 x=\frac{1}{2}$ have the same number of solutions on the interval $[0,2 \pi)$.

In Exercises 160-162, solve each equation on the interval $[0,2 \pi)$.
Do not use a calculator.
160. $2 \cos x-1+3 \sec x=0$
161. $\sin 3 x+\sin x+\cos x=0$
162. $\sin x+2 \sin \frac{x}{2}=\cos \frac{x}{2}+1$

Preview Exercises

Exercises 163-165 will help you prepare for the material covered in the first section of the next chapter. Solve each equation by using the cross-products principle to clear fractions from the proportion:

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text {, then } a d=b c .(b \neq 0 \text { and } d \neq 0)
$$

Round to the nearest tenth.
163. Solve for $a: \frac{a}{\sin 46^{\circ}}=\frac{56}{\sin 63^{\circ}}$.
164. Solve for $B, 0<B<180^{\circ}: \frac{81}{\sin 43^{\circ}}=\frac{62}{\sin B}$.
165. Solve for $B: \frac{51}{\sin 75^{\circ}}=\frac{71}{\sin B}$.

CHAPTER 5 Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

5.1 Verifying Trigonometric Identities

a. Identities are trigonometric equations that are true for all values of the variable for which the expressions are defined.
b. Fundamental trigonometric identities are given in the box on page 622.
c. Guidelines for verifying trigonometric identities are given in the box on page 630 .

Ex. 1, p. 623;
Ex. 2, p. 624;
Ex. 3, p. 625;
Ex. 4, p. 625;
Ex. 5, p. 626;
Ex. 6, p. 627;
Ex. 7, p. 627;
Ex. 8, p. 628

5.2 Sum and Difference Formulas

a. Sum and difference formulas are given in the box on page 636 and the box on page 640 .
b. Sum and difference formulas can be used to find exact values of trigonometric functions.
c. Sum and difference formulas can be used to verify trigonometric identities.

Ex. 1, p. 635;
Ex. 2, p. 635;
Ex. 4, p. 637;
Ex. 5, p. 638
Ex. 3, p. 636;
Ex. 6, p. 639;
Ex. 7, p. 640

DEFINITIONS AND CONCEPTS

5.3 Double-Angle, Power-Reducing, and Half-Angle Formulas

a. Double-angle, power-reducing, and half-angle formulas are given in the box on page 651.
b. Double-angle and half-angle formulas can be used to find exact values of trigonometric functions.
c. Double-angle and half-angle formulas can be used to verify trigonometric identities.
d. Power-reducing formulas can be used to reduce the powers of trigonometric functions.

5.4 Product-to-Sum and Sum-to-Product Formulas

a. The product-to-sum formulas are given in the box on page 657.
b. The sum-to-product formulas are given in the box on page 658 . These formulas are useful to verify identities with fractions that contain sums and differences of sines and/or cosines.

5.5 Trigonometric Equations

a. The values that satisfy a trigonometric equation are its solutions.
b. To solve an equation containing a single trigonometric function, isolate the function on one side and solve for the variable.
c. When solving equations involving multiple angles, the period plays an important role in ensuring that we do not leave out any solutions.
d. Trigonometric equations quadratic in form can be expressed as $a u^{2}+b u+c=0$, where u is a trigonometric function and $a \neq 0$. Such equations can be solved by factoring, the square root property, or the quadratic formula.
e. Factoring can be used to separate two different trigonometric functions in an equation.
f. Identities are used to solve some trigonometric equations.
g. Some trigonometric equations have solutions that cannot be determined by knowing the exact values of trigonometric functions of special angles. Such equations are solved using a calculator's inverse trigonometric function feature.

Ex. 1, p. 645;
Ex. 2, p. 646;
Ex. 5, p. 649
Ex. 3, p. 646;
Ex. 6, p. 650;
Ex. 7, p. 650
Ex. 4, p. 647

Ex. 1, p. 657
Ex. 2, p. 658;
Ex. 3, p. 659

Ex. 1, p. 665

Ex. 2, p. 666;
Ex. 3, p. 666
Ex. 4, p. 667;
Ex. 5, p. 668;
Ex. 12, p. 673
Ex. 6, p. 669
Ex. 7, p. 669;
Ex. 8, p. 670;
Ex. 9, p. 671;
Ex. 10, p. 671
Ex. 11, p. 672;
Ex. 12, p. 673

REVIEW EXERCISES

5.1

In Exercises 1-13, verify each identity.

1. $\sec x-\cos x=\tan x \sin x$
2. $\frac{1}{\sin \theta+\cos \theta}+\frac{1}{\sin \theta-\cos \theta}=\frac{2 \sin \theta}{\sin ^{4} \theta-\cos ^{4} \theta}$
3. $\cos x+\sin x \tan x=\sec x$
4. $\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)=1$
5. $\frac{\cos t}{\cot t-5 \cos t}=\frac{1}{\csc t-5}$
6. $(\sec \theta-1)(\sec \theta+1)=\tan ^{2} \theta$
7. $\frac{1-\tan x}{\sin x}=\csc x-\sec x$
8. $\frac{1}{\sin t-1}+\frac{1}{\sin t+1}=-2 \tan t \sec t$
9. $\frac{1+\sin t}{\cos ^{2} t}=\tan ^{2} t+1+\tan t \sec t$
10. $\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}$
11. $\frac{1-\cos t}{1+\cos t}=(\csc t-\cot t)^{2}$

5.2 and 5.3

In Exercises 14-19, use a sum or difference formula to find the exact value of each expression.
14. $\cos \left(45^{\circ}+30^{\circ}\right)$
15. $\sin 195^{\circ}$
16. $\tan \left(\frac{4 \pi}{3}-\frac{\pi}{4}\right)$
17. $\tan \frac{5 \pi}{12}$
18. $\cos 65^{\circ} \cos 5^{\circ}+\sin 65^{\circ} \sin 5^{\circ}$
19. $\sin 80^{\circ} \cos 50^{\circ}-\cos 80^{\circ} \sin 50^{\circ}$
9. $1-\frac{\sin ^{2} x}{1+\cos x}=\cos x$
10. $(\tan \theta+\cot \theta)^{2}=\sec ^{2} \theta+\csc ^{2} \theta$

In Exercises 20-31, verify each identity.
20. $\sin \left(x+\frac{\pi}{6}\right)-\cos \left(x+\frac{\pi}{3}\right)=\sqrt{3} \sin x$
21. $\tan \left(x+\frac{3 \pi}{4}\right)=\frac{\tan x-1}{1+\tan x}$
22. $\sec (\alpha+\beta)=\frac{\sec \alpha \sec \beta}{1-\tan \alpha \tan \beta}$
23. $\frac{\cos (\alpha-\beta)}{\cos \alpha \cos \beta}=1+\tan \alpha \tan \beta$
24. $\cos ^{4} t-\sin ^{4} t=\cos 2 t$
25. $\sin t-\cos 2 t=(2 \sin t-1)(\sin t+1)$
26. $\frac{\sin 2 \theta-\sin \theta}{\cos 2 \theta+\cos \theta}=\frac{1-\cos \theta}{\sin \theta}$
27. $\frac{\sin 2 \theta}{1-\sin ^{2} \theta}=2 \tan \theta$
28. $\tan 2 t=2 \sin t \cos t \sec 2 t$
29. $\cos 4 t=1-8 \sin ^{2} t \cos ^{2} t$
30. $\tan \frac{x}{2}(1+\cos x)=\sin x$
31. $\tan \frac{x}{2}=\frac{\sec x-1}{\tan x}$

In Exercises 32-34, the graph with the given equation is shown in $a\left[0,2 \pi, \frac{\pi}{2}\right]$ by $[-2,2,1]$ viewing rectangle.
a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.
32. $y=\sin \left(x-\frac{3 \pi}{2}\right)$

33. $y=\cos \left(x+\frac{\pi}{2}\right)$

34. $y=\frac{\tan x-1}{1-\cot x}$

In Exercises 35-38, find the exact value of the following under the given conditions.
a. $\sin (\alpha+\beta)$
b. $\cos (\alpha-\beta)$
c. $\tan (\alpha+\beta)$
d. $\sin 2 \alpha$
e. $\cos \frac{\beta}{2}$
35. $\sin \alpha=\frac{3}{5}, 0<\alpha<\frac{\pi}{2}$, and $\sin \beta=\frac{12}{13}, \frac{\pi}{2}<\beta<\pi$.
36. $\tan \alpha=\frac{4}{3}, \pi<\alpha<\frac{3 \pi}{2}$, and $\tan \beta=\frac{5}{12}, 0<\beta<\frac{\pi}{2}$.
37. $\tan \alpha=-3, \frac{\pi}{2}<\alpha<\pi$, and $\cot \beta=-3, \frac{3 \pi}{2}<\beta<2 \pi$.
38. $\sin \alpha=-\frac{1}{3}, \pi<\alpha<\frac{3 \pi}{2}$, and $\cos \beta=-\frac{1}{3}, \pi<\beta<\frac{3 \pi}{2}$.

In Exercises 39-42, use double- and half-angle formulas to find the exact value of each expression.
39. $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$
40. $\frac{2 \tan \frac{5 \pi}{12}}{1-\tan ^{2} \frac{5 \pi}{12}}$
41. $\sin 22.5^{\circ}$
42. $\tan \frac{\pi}{12}$

5.4

In Exercises 43-44, express each product as a sum or difference.
43. $\sin 6 x \sin 4 x$
44. $\sin 7 x \cos 3 x$

In Exercises 45-46, express each sum or difference as a product. If possible, find this product's exact value.
45. $\sin 2 x-\sin 4 x$
46. $\cos 75^{\circ}+\cos 15^{\circ}$

In Exercises 47-48, verify each identity.
47. $\frac{\cos 3 x+\cos 5 x}{\cos 3 x-\cos 5 x}=\cot x \cot 4 x$
48. $\frac{\sin 2 x+\sin 6 x}{\sin 2 x-\sin 6 x}=-\tan 4 x \cot 2 x$
49. The graph with the given equation is shown in a $\left[0,2 \pi, \frac{\pi}{2}\right]$
by $[-2,2,1]$ viewing rectangle.
$y=\frac{\cos 3 x+\cos x}{\sin 3 x-\sin x}$

a. Describe the graph using another equation.
b. Verify that the two equations are equivalent.

5.5

In Exercises 50-53, find all solutions of each equation.
50. $\cos x=-\frac{1}{2}$
51. $\sin x=\frac{\sqrt{2}}{2}$
52. $2 \sin x+1=0$
53. $\sqrt{3} \tan x-1=0$

In Exercises 54-67, solve each equation on the interval $[0,2 \pi)$. Use exact values where possible or give approximate solutions correct to four decimal places.
54. $\cos 2 x=-1$
55. $\sin 3 x=1$
56. $\tan \frac{x}{2}=-1$
57. $\tan x=2 \cos x \tan x$
58. $\cos ^{2} x-2 \cos x=3$
59. $2 \cos ^{2} x-\sin x=1$
60. $4 \sin ^{2} x=1$
61. $\cos 2 x-\sin x=1$
62. $\sin 2 x=\sqrt{3} \sin x$
63. $\sin x=\tan x$
64. $\sin x=-0.6031$
65. $5 \cos ^{2} x-3=0$
66. $\sec ^{2} x=4 \tan x-2$
67. $2 \sin ^{2} x+\sin x-2=0$
68. A ball on a spring is pulled 6 inches below its rest position and then released. After t seconds, the ball's distance, d, in inches from its rest position is given by

$$
d=-6 \cos \frac{\pi}{2} t .
$$

Find all values of t for which the ball is 3 inches below its rest position.
69. You are playing catch with a friend located 100 feet away. If you throw the ball with an initial velocity of $v_{0}=90$ feet per second, at what angle of elevation, θ, to the nearest degree should you direct your throw so that it can be caught easily? Use the formula

$$
d=\frac{v_{0}^{2}}{16} \sin \theta \cos \theta
$$

CHAPTER 5 TEST

Use the following conditions to solve Exercises 1-4:

$$
\begin{aligned}
& \sin \alpha=\frac{4}{5}, \frac{\pi}{2}<\alpha<\pi \\
& \cos \beta=\frac{5}{13}, 0<\beta<\frac{\pi}{2}
\end{aligned}
$$

Find the exact value of each of the following.

1. $\cos (\alpha+\beta)$
2. $\tan (\alpha-\beta)$
3. $\sin 2 \alpha$
4. $\cos \frac{\beta}{2}$
5. Use $105^{\circ}=135^{\circ}-30^{\circ}$ to find the exact value of $\sin 105^{\circ}$.

In Exercises 6-11, verify each identity.
6. $\cos x \csc x=\cot x$
7. $\frac{\sec x}{\cot x+\tan x}=\sin x$
8. $1-\frac{\cos ^{2} x}{1+\sin x}=\sin x$
9. $\cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$
10. $\frac{\sin (\alpha-\beta)}{\sin \alpha \cos \beta}=1-\cot \alpha \tan \beta$
11. $\sin t \cos t(\tan t+\cot t)=1$

In Exercises 12-18, solve each equation on the interval $[0,2 \pi)$. Use exact values where possible or give approximate solutions correct to four decimal places.
12. $\sin 3 x=-\frac{1}{2}$
13. $\sin 2 x+\cos x=0$
14. $2 \cos ^{2} x-3 \cos x+1=0$
15. $2 \sin ^{2} x+\cos x=1$
16. $\cos x=-0.8092$
17. $\tan x \sec x=3 \tan x$
18. $\tan ^{2} x-3 \tan x-2=0$

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-5)

Solve each equation or inequality in Exercises 1-5.

1. $x^{3}+x^{2}-x+15=0$
2. $11^{x-1}=125$
3. $x^{2}+2 x-8>0$
4. $\cos 2 x+3=5 \cos x, \quad 0 \leq x<2 \pi$
5. $\tan x+\sec ^{2} x=3, \quad 0 \leq x<2 \pi$

In Exercises 6-11, graph each equation.
6. $y=\sqrt{x+2}-1$; Use transformations of the graph of $y=\sqrt{x}$.
7. $(x-1)^{2}+(y+2)^{2}=9$
8. $y+2=\frac{1}{3}(x-1)$
9. $y=3 \cos 2 x,-2 \pi \leq x \leq 2 \pi$
10. $y=2 \sin \frac{x}{2}+1, \quad-2 \pi \leq x \leq 2 \pi$
11. $f(x)=(x-1)^{2}(x-3)$
12. If $f(x)=x^{2}+3 x-1$, find $\frac{f(a+h)-f(a)}{h}$.
13. Find the exact value of $\sin 225^{\circ}$.
14. Verify the identity: $\sec ^{4} x-\sec ^{2} x=\tan ^{4} x+\tan ^{2} x$.
15. Convert 320° to radians.
16. How long would it take for any amount of money, compounded continuously at 5.75% per year, to triple? Round to the nearest tenth of a year.
17. If $f(x)=\frac{2 x+1}{x-3}$, find $f^{-1}(x)$.
18. If C is a right angle in triangle $A B C$ with $A=23^{\circ}$ and $a=12$, solve the triangle.
19. A formula for calculating an infant's dosage for medication is Infant's dose $=\frac{\text { age of infant in months }}{150} \times$ adult dose.
If a 12-month-old infant is to receive 8.5 mg of medication, find the equivalent adult dose to the nearest milligram.
20. From a point on the ground 12 feet from the base of a flagpole, the angle of elevation to the top of the pole is 53°. Approximate the height of the flagpole to the nearest tenth of a foot.

ADDITIONAL TOPICS IN TRIGONOMETRY

CHAPTER 6

SECTION 6.1

Objectives

(1) Use the Law of Sines to solve oblique triangles.
(2) Use the Law of Sines to solve, if possible, the triangle or triangles in the ambiguous case.
(3) Find the area of an oblique triangle using the sine function.
(4) Solve applied problems using the Law of Sines.

GREAT QUESTION!

Does what I know about right triangles also apply to oblique triangles?

No. Up until now, our work with triangles has involved right triangles. Do not apply relationships that are valid for right triangles to oblique triangles. Avoid the error of using the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$, to find a missing side of an oblique triangle. This relationship among the three sides applies only to right triangles.

GREAT QUESTION!

Do I have to write the Law of Sines with the sines in the denominator?
No. The Law of Sines can be expressed with the sines in the numerator:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

FIGURE 6.2 Drawing an altitude to prove the Law of Sines

Point Reyes National Seashore, 40 miles north of San Francisco, consists of 75,000 acres with miles of pristine surf-pummeled beaches, forested ridges, and bays flanked by white cliffs. A few people, inspired by nature in the raw, live on private property adjoining the National Seashore. In 1995, a fire in the park burned 12,350 acres and destroyed 45 homes.

Fire is a necessary part of the life cycle in many wilderness areas. It is also an ongoing threat to those who choose to live surrounded by nature's unspoiled beauty. In this section, we see how trigonometry can be used to locate small wilderness fires before they become raging infernos. To do this, we begin by considering triangles other than right triangles.

The Law of Sines and Its Derivation

An oblique triangle is a triangle that does not contain a right angle. Figure 6.1 shows that an oblique triangle has either three acute angles or two acute angles and one obtuse angle. Notice that the angles are labeled A, B, and C. The sides opposite each angle are labeled as a, b, and c, respectively.

FIGURE 6.1 Oblique triangles
The relationships among the sides and angles of right triangles defined by the trigonometric functions are not valid for oblique triangles. Thus, we must observe and develop new relationships in order to work with oblique triangles.

Many relationships exist among the sides and angles in oblique triangles. One such relationship is called the Law of Sines.

The Law of Sines

If A, B, and C are the measures of the angles of a triangle, and a, b, and c are the lengths of the sides opposite these angles, then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The ratio of the length of the side of any triangle to the sine of the angle opposite that side is the same for all three sides of the triangle.

To prove the Law of Sines, we draw an altitude of length h from one of the vertices of the triangle. In Figure 6.2, the altitude is drawn from vertex C. Two smaller triangles are formed, triangles $A C D$ and $B C D$. Note that both are right triangles. Thus, we can use the definition of the sine of an angle of a right triangle.

$$
\begin{array}{rlrl}
\sin B & =\frac{h}{a} & \sin A & =\frac{h}{b} \\
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
h & =a \sin B & h & =b \sin A
\end{array} \begin{array}{cl}
\text { Solve each equation for } h .
\end{array}
$$

(1) Use the Law of Sines to solve oblique triangles.

FIGURE 6.3 Solving an oblique SAA triangle

GREAT QUESTION!

Do I have to set up the Law of Sines with the unknown side in the upper left position?
No. However, many students find it easier to solve for the unknown sides when they are placed in the upper left position.

Because we have found two expressions for h, we can set these expressions equal to each other.

$$
\begin{aligned}
a \sin B & =b \sin A & & \text { Equate the expressions for } h . \\
\frac{a \sin B}{\sin A \sin B} & =\frac{b \sin A}{\sin A \sin B} & & \text { Divide both sides by } \sin A \sin B . \\
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Simplify. }
\end{aligned}
$$

This proves part of the Law of Sines. If we use the same process and draw an altitude of length h from vertex A, we obtain the following result:

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

When this equation is combined with the previous equation, we obtain the Law of Sines. Because the sine of an angle is equal to the sine of 180° minus that angle, the Law of Sines is derived in a similar manner if the oblique triangle contains an obtuse angle.

Solving Oblique Triangles

Solving an oblique triangle means finding the lengths of its sides and the measurements of its angles. The Law of Sines can be used to solve a triangle in which one side and two angles are known. The three known measurements can be abbreviated using SAA (a side and two angles are known) or ASA (two angles and the side between them are known).

EXAMPLE 1 Solving an SAA Triangle Using the Law of Sines

Solve the triangle shown in Figure 6.3 with $A=46^{\circ}, C=63^{\circ}$, and $c=56$ inches. Round lengths of sides to the nearest tenth.

SOLUTION

We begin by finding B, the third angle of the triangle. We do not need the Law of Sines to do this. Instead, we use the fact that the sum of the measures of the interior angles of a triangle is 180°.

$$
\begin{array}{rlrl}
A+B+C & =180^{\circ} & & \\
46^{\circ}+B+63^{\circ} & =180^{\circ} & & \text { Substitute the given values: } \\
109^{\circ}+B & =180^{\circ} & & \text { Add. } \\
B & =76^{\circ} \text { and } C=63^{\circ} . \\
& & \text { Subtract } 109^{\circ} \text { from both sides. }
\end{array}
$$

When we use the Law of Sines, we must be given one of the three ratios. In this example, we are given c and $C: c=56$ and $C=63^{\circ}$. Thus, we use the ratio $\frac{c}{\sin C}$, or $\frac{56}{\sin 63^{\circ}}$, to find the other two sides. Use the Law of Sines to find a.

$$
\begin{array}{rlrl}
\frac{a}{\sin A} & =\frac{c}{\sin C} & \begin{array}{l}
\text { The ratio of any side to the sine of its opposite angle equals } \\
\text { the ratio of any other side to the sine of its opposite angle. }
\end{array} \\
\begin{aligned}
\frac{a}{\sin 46^{\circ}} & =\frac{56}{\sin 63^{\circ}} \quad A=46^{\circ}, c=56, \text { and } C=63^{\circ} . \\
a & =\frac{56 \sin 46^{\circ}}{\sin 63^{\circ}} \\
a & \approx 45.2 \text { inches }
\end{aligned} \quad \text { Use a calculaty both sides by } \sin 46^{\circ} \text { and solve for } a .
\end{array}
$$

FIGURE 6.3 (repeated)

FIGURE 6.4

FIGURE 6.5 Solving an ASA triangle

Use the Law of Sines again, this time to find b.

$$
\begin{aligned}
\frac{b}{\sin B} & =\frac{c}{\sin C} & \text { We use the given ratio, } \frac{c}{\sin C}, \text { to find } b . \\
\frac{b}{\sin 71^{\circ}} & =\frac{56}{\sin 63^{\circ}} & \text { We found that } B=71^{\circ} . \text { We are given } c=56 \text { and } C=63^{\circ} . \\
b & =\frac{56 \sin 71^{\circ}}{\sin 63^{\circ}} & \text { Multiply both sides by } \sin 71^{\circ} \text { and solve for } b . \\
b & \approx 59.4 \text { inches } & \text { Use a calculator. }
\end{aligned}
$$

The solution is $B=71^{\circ}, a \approx 45.2$ inches, and $b \approx 59.4$ inches.
Check Point 1 Solve the triangle shown in Figure 6.4 with $A=64^{\circ}, C=82^{\circ}$, and $c=14$ centimeters. Round as in Example 1.

EXAMPLE 2 Solving an ASA Triangle Using the Law of Sines

Solve triangle $A B C$ if $A=50^{\circ}, C=33.5^{\circ}$, and $b=76$. Round measures to the nearest tenth.

SOLUTION

We begin by drawing a picture of triangle $A B C$ and labeling it with the given information. Figure 6.5 shows the triangle that we must solve. We begin by finding B.

$$
\begin{aligned}
A+B+C & =180^{\circ} & \begin{array}{l}
\text { The sum of the measures of a triangle's interior } \\
\text { angles is } 180^{\circ} .
\end{array} \\
50^{\circ}+B+33.5^{\circ} & =180^{\circ} & A=50^{\circ} \text { and } C=33.5^{\circ} . \\
83.5^{\circ}+B & =180^{\circ} & \text { Add. } \\
B & =96.5^{\circ} & \text { Subtract } 83.5^{\circ} \text { from both sides. }
\end{aligned}
$$

Keep in mind that we must be given one of the three ratios to apply the Law of Sines. In this example, we are given that $b=76$ and we found that $B=96.5^{\circ}$. Thus, we use the ratio $\frac{b}{\sin B}$, or $\frac{76}{\sin 96.5^{\circ}}$, to find the other two sides. Use the Law of Sines to find a and c.

Find a :

Find $c:$

This is the known ratio.

$$
\begin{array}{rlrl}
\frac{a}{\sin A} & =\frac{b}{\sin B} & \frac{c}{\sin C} & =\frac{b}{\sin B} \\
\frac{a}{\sin 50^{\circ}} & =\frac{76}{\sin 96.5^{\circ}} & \frac{c}{\sin 33.5^{\circ}} & =\frac{76}{\sin 96.5^{\circ}} \\
a & =\frac{76 \sin 50^{\circ}}{\sin 96.5^{\circ}} \approx 58.6 & c & =\frac{76 \sin 33.5^{\circ}}{\sin 96.5^{\circ}} \approx 42.2
\end{array}
$$

The solution is $B=96.5^{\circ}, a \approx 58.6$, and $c \approx 42.2$.
$\$$ Check Point 2 Solve triangle $A B C$ if $A=40^{\circ}, C=22.5^{\circ}$, and $b=12$. Round as in Example 2.
2. Use the Law of Sines to solve, if possible, the triangle or triangles in the ambiguous case.

The Ambiguous Case (SSA)

If we are given two sides and an angle opposite one of them (SSA), does this determine a unique triangle? Can we solve this case using the Law of Sines? Such a case is called the ambiguous case because the given information may result in one triangle, two triangles, or no triangle at all. For example, in Figure 6.6, we are given a, b, and A. Because a is shorter than h, it is not long enough to form a triangle. The number of possible triangles, if any, that can be formed in the SSA case depends on h, the length of the altitude, where $h=b \sin A$.

FIGURE 6.6 Given SSA, no triangle may result.

The Ambiguous Case (SSA)

Consider a triangle in which a, b, and A are given. This information may result in

In an SSA situation, it is not necessary to draw an accurate sketch like those shown in the box. The Law of Sines determines the number of triangles, if any, and gives the solution for each triangle.

EXAMPLE 3 Solving an SSA Triangle Using the Law of Sines (One Solution)

Solve triangle $A B C$ if $A=43^{\circ}, a=81$, and $b=62$. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

SOLUTION

We begin with the sketch in Figure 6.7. The known ratio is $\frac{a}{\sin A}$, or $\frac{81}{\sin 43^{\circ}}$
Because side b is given, we use the Law of Sines to find angle B.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Apply the Law of Sines. } \\
\frac{81}{\sin 43^{\circ}} & =\frac{62}{\sin B} & & a=81, b=62, \text { and } A=43^{\circ} . \\
81 \sin B & =62 \sin 43^{\circ} & & \text { Cross multiply: If } \frac{a}{b}=\frac{c}{d}, \text { then } a d=b c . \\
\sin B & =\frac{62 \sin 43^{\circ}}{81} & & \text { Divide both sides by } 81 \text { and solve for } \sin B . \\
\sin B & \approx 0.5220 & & \text { Use a calculator. }
\end{aligned}
$$

FIGURE 6.7 (repeated)

FIGURE $6.8 a$ is not long enough to form a triangle.

There are two angles B between 0° and 180° for which $\sin B \approx 0.5220$.

$$
B_{1} \approx 31^{\circ} \quad B_{2} \approx 180^{\circ}-31^{\circ}=149^{\circ}
$$

Obtain the acute angle with your calculator in degree mode: $\sin ^{-1} 0.5220$.

The sine is positive in quadrant II.

Look at Figure 6.7. Given that $A=43^{\circ}$, can you see that $B_{2} \approx 149^{\circ}$ is impossible? By adding 149° to the given angle, 43°, we exceed a 180° sum:

$$
43^{\circ}+149^{\circ}=192^{\circ} .
$$

Thus, the only possibility is that $B_{1} \approx 31^{\circ}$. We find C using this approximation for B_{1} and the measure that was given for $A: A=43^{\circ}$.

$$
C=180^{\circ}-B_{1}-A \approx 180^{\circ}-31^{\circ}-43^{\circ}=106^{\circ}
$$

Side c that lies opposite this 106° angle can now be found using the Law of Sines.

$$
\begin{array}{rlrl}
\frac{c}{\sin C} & =\frac{a}{\sin A} & & \text { Apply the Law of Sines. } \\
\frac{c}{\sin 106^{\circ}} & =\frac{81}{\sin 43^{\circ}} & a=81, c \approx 106^{\circ}, \text { and } A=43^{\circ} . \\
c & =\frac{81 \sin 106^{\circ}}{\sin 43^{\circ}} \approx 114.2 & \begin{array}{l}
\text { Multiply both sides by } \sin 106^{\circ} \\
\text { and solve for } c .
\end{array}
\end{array}
$$

There is one triangle and the solution is $B_{1}($ or $B) \approx 31^{\circ}, C \approx 106^{\circ}$, and $c \approx 114.2$. in Example 3.

EXAMPLE 4 Solving an SSA Triangle Using the Law of Sines (No Solution)

Solve triangle $A B C$ if $A=75^{\circ}, a=51$, and $b=71$.

SOLUTION

The known ratio is $\frac{a}{\sin A}$, or $\frac{51}{\sin 75^{\circ}}$. Because side b is given, we use the Law of Sines to find angle B.

$$
\begin{array}{rlrl}
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Use the Law of Sines. } \\
\frac{51}{\sin 75^{\circ}} & =\frac{71}{\sin B} & \text { Substitute the given values. } \\
51 \sin B & =71 \sin 75^{\circ} & \text { Cross multiply: If } \frac{a}{b}=\frac{c}{d}, \text { then } a d=b c . \\
\sin B & =\frac{71 \sin 75^{\circ}}{51} \approx 1.34 & \text { Divide by } 51 \text { and solve for } \sin B .
\end{array}
$$

Because the sine can never exceed 1 , there is no angle B for which $\sin B \approx 1.34$. There is no triangle with the given measurements, as illustrated in Figure 6.8. ...

EXAMPLE 5 Solving an SSA Triangle Using the Law of Sines (Two Solutions)

Solve triangle $A B C$ if $A=40^{\circ}, a=54$, and $b=62$. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

SOLUTION

The known ratio is $\frac{a}{\sin A}$, or $\frac{54}{\sin 40^{\circ}}$. We use the Law of Sines to find angle B.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Use the Law of Sines. } \\
\frac{54}{\sin 40^{\circ}} & =\frac{62}{\sin B} & & \text { Substitute the given values. } \\
54 \sin B & =62 \sin 40^{\circ} & & \text { Cross multiply: If } \frac{a}{b}=\frac{c}{d}, \text { then ad }=b c . \\
\sin B & =\frac{62 \sin 40^{\circ}}{54} \approx 0.7380 & & \text { Divide by } 54 \text { and solve for } \sin B .
\end{aligned}
$$

There are two angles B between 0° and 180° for which $\sin B \approx 0.7380$.

$$
B_{1} \approx 48^{\circ} \quad B_{2} \approx 180^{\circ}-48^{\circ}=132^{\circ}
$$

Find $\sin ^{-1} 0.7380$ with your calculator.

The sine is positive in quadrant II.

If you add either angle to the given angle, 40°, the sum does not exceed 180°. Thus, there are two triangles with the given conditions, shown in Figure 6.9(a). The triangles, $A B_{1} C_{1}$ and $A B_{2} C_{2}$, are shown separately in Figure $\mathbf{6 . 9 (b)}$ and Figure 6.9(c).

(a) Two triangles are possible with $A=40^{\circ}$, $a=54$, and $b=62$.

(b) In one possible triangle, $B_{1}=48^{\circ}$.

(c) In the second possible triangle, $B_{2}=132^{\circ}$.

FIGURE 6.9

GREAT QUESTION!

Do I have to draw the two triangles in Figure 6.9 to solve Example 5?

The two triangles shown in Figure 6.9 are helpful in organizing the solutions. However, if you keep track of the two triangles, one with the given information and $B_{1}=48^{\circ}$, and the other with the given information and $B_{2}=132^{\circ}$, you do not have to draw the figure to solve the triangles.

We find angles C_{1} and C_{2} using a 180° angle sum in each of the two triangles.

$$
\begin{aligned}
C_{1} & =180^{\circ}-A-B_{1} & C_{2} & =180^{\circ}-A-B_{2} \\
& \approx 180^{\circ}-40^{\circ}-48^{\circ} & & \approx 180^{\circ}-40^{\circ}-132^{\circ} \\
& =92^{\circ} & & =8^{\circ}
\end{aligned}
$$

We use the Law of Sines to find c_{1} and c_{2}.

$$
\begin{aligned}
\frac{c_{1}}{\sin C_{1}} & =\frac{a}{\sin A} & \frac{c_{2}}{\sin C_{2}} & =\frac{a}{\sin A} \\
\frac{c_{1}}{\sin 92^{\circ}} & =\frac{54}{\sin 40^{\circ}} & \frac{c_{2}}{\sin 8^{\circ}} & =\frac{54}{\sin 40^{\circ}} \\
c_{1} & =\frac{54 \sin 92^{\circ}}{\sin 40^{\circ}} \approx 84.0 & c_{2} & =\frac{54 \sin 8^{\circ}}{\sin 40^{\circ}} \approx 11.7
\end{aligned}
$$

There are two triangles. In one triangle, the solution is $B_{1} \approx 48^{\circ}, C_{1} \approx 92^{\circ}$, and $c_{1} \approx 84.0$. In the other triangle, $B_{2} \approx 132^{\circ}, C_{2} \approx 8^{\circ}$, and $c_{2} \approx 11.7$.

Find the area of an oblique triangle using the sine function.

FIGURE 6.10

FIGURE 6.11 Finding the area of an SAS triangle

Solve applied problems using the Law of Sines.

The Area of an Oblique Triangle

A formula for the area of an oblique triangle can be obtained using the procedure for proving the Law of Sines. We draw an altitude of length h from one of the vertices of the triangle, as shown in Figure 6.10. We apply the definition of the sine of angle A, $\frac{\text { opposite }}{\text { hypotenuse }}$, in right triangle $A C D$:

$$
\sin A=\frac{h}{b}, \quad \text { so } \quad h=b \sin A
$$

The area of a triangle is $\frac{1}{2}$ the product of any side and the altitude drawn to that side. Using the altitude h in Figure 6.10, we have

$$
\text { Area }=\frac{1}{2} c h=\frac{1}{2} c b \sin A .
$$

$$
\begin{aligned}
& \text { Use the result from } \\
& \text { above: } h=b \sin A \text {. }
\end{aligned}
$$

This result, Area $=\frac{1}{2} c b \sin A$, or $\frac{1}{2} b c \sin A$, indicates that the area of the triangle is one-half the product of b and c times the sine of their included angle. If we draw altitudes from the other two vertices, we see that we can use any two sides to compute the area.

Area of an Oblique Triangle

The area of a triangle equals one-half the product of the lengths of two sides times the sine of their included angle. In Figure 6.10, this wording can be expressed by the formulas

$$
\text { Area }=\frac{1}{2} b c \sin A=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B .
$$

EXAMPLE 6 Finding the Area of an Oblique Triangle

Find the area of a triangle having two sides of lengths 24 meters and 10 meters and an included angle of 62°. Round to the nearest square meter.

SOLUTION

The triangle is shown in Figure 6.11. Its area is half the product of the lengths of the two sides times the sine of the included angle.

$$
\text { Area }=\frac{1}{2}(24)(10)\left(\sin 62^{\circ}\right) \approx 106
$$

The area of the triangle is approximately 106 square meters.
\bigcirc Check Point 6 Find the area of a triangle having two sides of lengths 8 meters and 12 meters and an included angle of 135°. Round to the nearest square meter.

Applications of the Law of Sines

We have seen how the trigonometry of right triangles can be used to solve many different kinds of applied problems. The Law of Sines enables us to work with triangles that are not right triangles. As a result, this law can be used to solve problems involving surveying, engineering, astronomy, navigation, and the environment. Example 7 illustrates the use of the Law of Sines in detecting potentially devastating fires.

EXAMPLE 7 An Application of the Law of Sines

Two fire-lookout stations are 20 miles apart, with station B directly east of station A. Both stations spot a fire on a mountain to the north. The bearing from station A to the fire is $\mathrm{N} 50^{\circ} \mathrm{E}$ (50° east of north). The bearing from station B to the fire is $\mathrm{N} 36^{\circ} \mathrm{W}\left(36^{\circ}\right.$ west of north). How far, to the nearest tenth of a mile, is the fire from station A?

SOLUTION

FIGURE 6.12

Figure 6.12 shows the information given in the problem. The distance from station A to the fire is represented by b. Notice that the angles describing the bearing from each station to the fire, 50° and 36°, are not interior angles of triangle $A B C$. Using a north-south line, the interior angles are found as follows:

$$
A=90^{\circ}-50^{\circ}=40^{\circ} \quad B=90^{\circ}-36^{\circ}=54^{\circ} .
$$

To find b using the Law of Sines, we need a known side and an angle opposite that side. Because $c=20$ miles, we find angle C using a 180° angle sum in the triangle. Thus,

$$
C=180^{\circ}-A-B=180^{\circ}-40^{\circ}-54^{\circ}=86^{\circ} .
$$

The ratio $\frac{c}{\sin C}$, or $\frac{20}{\sin 86^{\circ}}$, is now known. We use this ratio and the Law of Sines
to find b.

$$
\begin{array}{rlrl}
\frac{b}{\sin B} & =\frac{c}{\sin C} & & \text { Use the Law of Sines. } \\
\frac{b}{\sin 54^{\circ}} & =\frac{20}{\sin 86^{\circ}} \quad c=20, B=54^{\circ}, \text { and } C=86^{\circ} . \\
b & =\frac{20 \sin 54^{\circ}}{\sin 86^{\circ}} \approx 16.2 & & \text { Multiply both sides by } \sin 54^{\circ} \text { and solve for } b .
\end{array}
$$

The fire is approximately 16.2 miles from station A.
Check Point 7 Two fire-lookout stations are 13 miles apart, with station B directly east of station A. Both stations spot a fire. The bearing of the fire from station A is $\mathrm{N} 35^{\circ} \mathrm{E}$ and the bearing of the fire from station B is $\mathrm{N} 49^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the fire from station B?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A triangle that does not contain a right angle is called a/an \qquad triangle. Solving such a triangle means finding the lengths of its \qquad and the measurements of its \qquad
2. If A, B, and C are the measures of the angles of a triangle, and a, b, and c are the lengths of the sides opposite these angles, then the Law of Sines states that
3. We can always use the Law of Sines to find missing parts of triangles in which one \qquad and two \qquad are known.
4. True or false: A triangle in which two sides and an angle opposite one of them are given (SSA) always results in at least one triangle.
5. If two sides a and b and the included angle C are known in a triangle, then the area of the triangle is found using the formula Area $=$ \qquad —.

EXERCISE SET 6.1

Practice Exercises

In Exercises 1-8, solve each triangle. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

2.

3.

4.

5.

7.

8.

In Exercises 9-16, solve each triangle. Round lengths to the nearest tenth and angle measures to the nearest degree.
9. $A=44^{\circ}, B=25^{\circ}, a=12$
10. $A=56^{\circ}, C=24^{\circ}, a=22$
11. $B=85^{\circ}, C=15^{\circ}, b=40$
12. $A=85^{\circ}, B=35^{\circ}, c=30$
13. $A=115^{\circ}, C=35^{\circ}, c=200$
14. $B=5^{\circ}, C=125^{\circ}, b=200$
15. $A=65^{\circ}, B=65^{\circ}, c=6$
16. $B=80^{\circ}, C=10^{\circ}, a=8$

In Exercises 17-32, two sides and an angle (SSA) of a triangle are given. Determine whether the given measurements produce one triangle, two triangles, or no triangle at all. Solve each triangle that results. Round to the nearest tenth and the nearest degree for sides and angles, respectively.
17. $a=20, b=15, A=40^{\circ}$
18. $a=30, b=20, A=50^{\circ}$
19. $a=10, c=8.9, A=63^{\circ}$
20. $a=57.5, c=49.8, A=136^{\circ}$
21. $a=42.1, c=37, A=112^{\circ}$
22. $a=6.1, b=4, A=162^{\circ}$
23. $a=10, b=40, A=30^{\circ}$
24. $a=10, b=30, A=150^{\circ}$
25. $a=16, b=18, A=60^{\circ}$
26. $a=30, b=40, A=20^{\circ}$
27. $a=12, b=16.1, A=37^{\circ}$
28. $a=7, b=28, A=12^{\circ}$
29. $a=22, c=24.1, A=58^{\circ}$
30. $a=95, c=125, A=49^{\circ}$
31. $a=9.3, b=41, A=18^{\circ}$
32. $a=1.4, b=2.9, A=142^{\circ}$

In Exercises 33-38, find the area of the triangle having the given measurements. Round to the nearest square unit.
33. $A=48^{\circ}, b=20$ feet, $c=40$ feet
34. $A=22^{\circ}, b=20$ feet, $c=50$ feet
35. $B=36^{\circ}, a=3$ yards, $c=6$ yards
36. $B=125^{\circ}, a=8$ yards, $c=5$ yards
37. $C=124^{\circ}, a=4$ meters, $b=6$ meters
38. $C=102^{\circ}, a=16$ meters, $b=20$ meters

Practice Plus

In Exercises 39-40, find h to the nearest tenth. Begin by using the Law of Sines to find the length of BC.
39.

40.

In Exercises 41-42, use the given measurements to solve the following triangle. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

41. $a=300, b=200$
42. $a=400, b=300$

Application Exercises

43. Two fire-lookout stations are 10 miles apart, with station B directly east of station A. Both stations spot a fire. The bearing of the fire from station A is $\mathrm{N} 25^{\circ} \mathrm{E}$ and the bearing of the fire from station B is $\mathrm{N} 56^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the fire from each lookout station?
44. The Federal Communications Commission is attempting to locate an illegal radio station. It sets up two monitoring stations, A and B, with station B 40 miles east of station A. Station A measures the illegal signal from the radio station as coming from a direction of 48° east of north. Station B measures the signal as coming from a point 34° west of north. How far is the illegal radio station from monitoring stations A and B ? Round to the nearest tenth of a mile.
45. The figure shows a 1200 -yard-long sand beach and an oil platform in the ocean. The angle made with the platform from one end of the beach is 85° and from the other end is 76°. Find the distance of the oil platform, to the nearest tenth of a yard, from each end of the beach.

46. A surveyor needs to determine the distance between two points that lie on opposite banks of a river. The figure shows that 300 yards are measured along one bank. The angles from each end of this line segment to a point on the opposite bank are 62° and 53°. Find the distance between A and B to the nearest tenth of a yard.

47. The Leaning Tower of Pisa in Italy leans at an angle of about 84.7°. The figure shows that 171 feet from the base of the tower, the angle of elevation to the top is 50°. Find the distance, to the nearest tenth of a foot, from the base to the top of the tower.

48. A pine tree growing on a hillside makes a 75° angle with the hill. From a point 80 feet up the hill, the angle of elevation to the top of the tree is 62° and the angle of depression to the bottom is 23°. Find, to the nearest tenth of a foot, the height of the tree.

49. The figure shows a shot-put ring. The shot is tossed from A and lands at B. Using modern electronic equipment, the distance of the toss can be measured without the use of measuring tapes. When the shot lands at B, an electronic transmitter placed at B sends a signal to a device in the official's booth above the track. The device determines the angles at B and C. At a track meet, the distance from the official's booth to the shot-put ring is 562 feet. If $B=85.3^{\circ}$ and $C=5.7^{\circ}$, determine the length of the toss to the nearest tenth of a foot.

50. A pier forms an 85° angle with a straight shore. At a distance of 100 feet from the pier, the line of sight to the tip forms a 37° angle. Find the length of the pier to the nearest tenth of a foot.

51. When the angle of elevation of the sun is 62°, a telephone pole that is tilted at an angle of 8° directly away from the sun casts a shadow 20 feet long. Determine the length of the pole to the nearest tenth of a foot.

52. A leaning wall is inclined 6° from the vertical. At a distance of 40 feet from the wall, the angle of elevation to the top is 22°. Find the height of the wall to the nearest tenth of a foot.

53. Redwood trees in California's Redwood National Park are hundreds of feet tall. The height of one of these trees is represented by h in the figure shown.

a. Use the measurements shown to find a, to the nearest tenth of a foot, in oblique triangle $A B C$.
b. Use the right triangle shown to find the height, to the nearest tenth of a foot, of a typical redwood tree in the park.
54. The figure at the top of the next page shows a cable car that carries passengers from A to C. Point A is 1.6 miles from the base of the mountain. The angles of elevation from A and B to the mountain's peak are 22° and 66°, respectively.
a. Determine, to the nearest tenth of a foot, the distance covered by the cable car.
b. Find a, to the nearest tenth of a foot, in oblique triangle $A B C$.
c. Use the right triangle to find the height of the mountain to the nearest tenth of a foot.

55. Lighthouse B is 7 miles west of lighthouse A. A boat leaves A and sails 5 miles. At this time, it is sighted from B. If the bearing of the boat from B is $\mathrm{N} 62^{\circ} \mathrm{E}$, how far from B is the boat? Round to the nearest tenth of a mile.
56. After a wind storm, you notice that your 16-foot flagpole may be leaning, but you are not sure. From a point on the ground 15 feet from the base of the flagpole, you find that the angle of elevation to the top is 48°. Is the flagpole leaning? If so, find the acute angle, to the nearest degree, that the flagpole makes with the ground.

Writing in Mathematics

57. What is an oblique triangle?
58. Without using symbols, state the Law of Sines in your own words.
59. Briefly describe how the Law of Sines is proved.
60. What does it mean to solve an oblique triangle?
61. What do the abbreviations SAA and ASA mean?
62. Why is SSA called the ambiguous case?
63. How is the sine function used to find the area of an oblique triangle?
64. Write an original problem that can be solved using the Law of Sines. Then solve the problem.
65. Use Exercise 49 to describe how the Law of Sines is used for throwing events at track and field meets. Why aren't tape measures used to determine tossing distance?
66. You are cruising in your boat parallel to the coast, looking at a lighthouse. Explain how you can use your boat's speed and a device for measuring angles to determine the distance at any instant from your boat to the lighthouse.

Critical Thinking Exercises

Make Sense? In Exercises 67-70, determine whether each statement makes sense or does not make sense, and explain your reasoning.
67. I began using the Law of Sines to solve an oblique triangle in which the measures of two sides and the angle between them were known.
68. If I know the measures of the sides and angles of an oblique triangle, I have three ways of determining the triangle's area.
69. When solving an SSA triangle using the Law of Sines, my calculator gave me both the acute and obtuse angles B for which $\sin B=0.5833$.
70. Under certain conditions, a fire can be located by superimposing a triangle onto the situation and applying the Law of Sines.
71. If you are given two sides of a triangle and their included angle, you can find the triangle's area. Can the Law of Sines be used to solve the triangle with this given information? Explain your answer.
72. Two buildings of equal height are 800 feet apart. An observer on the street between the buildings measures the angles of elevation to the tops of the buildings as 27° and 41°. How high, to the nearest foot, are the buildings?
73. The figure shows the design for the top of the wing of a jet fighter. The fuselage is 5 feet wide. Find the wing span $C C^{\prime}$.

74. Find a to the nearest tenth.

Preview Exercises

Exercises 75-77 will help you prepare for the material covered in the next section.
75. Find the obtuse angle B, rounded to the nearest degree, satisfying

$$
\cos B=\frac{6^{2}+4^{2}-9^{2}}{2 \cdot 6 \cdot 4}
$$

76. Simplify and round to the nearest whole number:

$$
\sqrt{26(26-12)(26-16)(26-24)}
$$

77. Two airplanes leave an airport at the same time on different runways. The first plane, flying on a bearing of $\mathrm{N} 66^{\circ} \mathrm{W}$, travels 650 miles after two hours. The second plane, flying on a bearing of $\mathrm{S} 26^{\circ} \mathrm{W}$, travels 600 miles after two hours. Illustrate the situation with an oblique triangle that shows how far apart the airplanes will be after two hours.

SECTION 6.2

The Law of Cosines

Objectives

(1) Use the Law of Cosines to solve oblique triangles.
2. Solve applied problems using the Law of Cosines.
(3) Use Heron's formula to find the area of a triangle.

Paleontologists use trigonometry to study the movements made by dinosaurs millions of years ago. Figure 6.13, based on data collected at Dinosaur Valley State Park in Glen Rose, Texas, shows footprints made by a two-footed carnivorous (meat-eating) dinosaur and the hindfeet of a herbivorous (plant-eating) dinosaur.

For each dinosaur, the figure indicates the pace and the stride. The pace is the distance from the left footprint to the right footprint, and vice versa. The stride is the distance from the left footprint to the next left footprint or from the right footprint to the next right footprint. Also shown in Figure 6.13 is the pace angle, designated by θ. Notice that neither dinosaur moves with a pace angle of 180°, meaning that the footprints are directly in line. The footprints show a "zig-zig" pattern that is numerically described by the pace angle. A dinosaur that is an efficient walker has a pace angle close to 180°, minimizing zig-zag motion and maximizing forward motion.

FIGURE 6.13 Dinosaur Footprints
Source: Glen J. Kuban, An Overview of Dinosaur Tracking
How can we determine the pace angles for the carnivore and the herbivore in Figure 6.13? Problems such as this, in which we know the measures of three sides of a triangle and we need to find the measurement of a missing angle, cannot be solved by the Law of Sines. To numerically describe which dinosaur in Figure $\mathbf{6 . 1 3}$ made more forward progress with each step, we turn to the Law of Cosines.

The Law of Cosines and Its Derivation

We now look at another relationship that exists among the sides and angles in an oblique triangle. The Law of Cosines is used to solve triangles in which two sides and the included angle (SAS) are known, or those in which three sides (SSS) are known.

DISCOVERY

What happens to the Law of Cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

if $C=90^{\circ}$? What familiar theorem do you obtain?

FIGURE 6.14
(1) Use the Law of Cosines to solve oblique triangles.

The Law of Cosines

If A, B, and C are the measures of the angles of a triangle, and a, b, and c are the lengths of the sides opposite these angles, then

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C .
\end{aligned}
$$

The square of a side of a triangle equals the sum of the squares of the other two sides minus twice their product times the cosine of their included angle.

To prove the Law of Cosines, we place triangle $A B C$ in a rectangular coordinate system. Figure 6.14 shows a triangle with three acute angles. The vertex A is at the origin and side c lies along the positive x-axis. The coordinates of C are (x, y). Using the right triangle that contains angle A, we apply the definitions of the cosine and the sine.

$$
\begin{array}{rlrl}
\cos A & =\frac{x}{b} & \sin A & =\frac{y}{b} \\
x & =b \cos A & y & =b \sin A
\end{array} \begin{aligned}
& \text { Multiply both sides of each equation } \\
& \text { by } b \text { and solve for } x \text { and } y, \text { respectively. }
\end{aligned}
$$

Thus, the coordinates of C are $(x, y)=(b \cos A, b \sin A)$. Although triangle $A B C$ in Figure 6.14 shows angle A as an acute angle, if A were obtuse, the coordinates of C would still be $(b \cos A, b \sin A)$. This means that our proof applies to both kinds of oblique triangles.

We now apply the distance formula to the side of the triangle with length a. Notice that a is the distance from (x, y) to $(c, 0)$.

$$
\begin{aligned}
a & =\sqrt{(x-c)^{2}+(y-0)^{2}} & & \text { Use the distance formula. } \\
a^{2} & =(x-c)^{2}+y^{2} & & \text { Square both sides of the equation. } \\
a^{2} & =(b \cos A-c)^{2}+(b \sin A)^{2} & & x=b \cos A \text { and } y=b \sin A . \\
a^{2} & =b^{2} \cos ^{2} A-2 b c \cos A+c^{2}+b^{2} \sin ^{2} A & & \text { Square the two expressions. } \\
a^{2} & =b^{2} \sin ^{2} A+b^{2} \cos ^{2} A+c^{2}-2 b c \cos A & & \text { Rearrange terms. } \\
a^{2} & =b^{2}\left(\sin ^{2} A+\cos ^{2} A\right)+c^{2}-2 b c \cos A & & \text { Factor } b^{2} \text { from the first two terms. } \\
a^{2} & =b^{2}+c^{2}-2 b c \cos A & & \sin ^{2} A+\cos ^{2} A=1
\end{aligned}
$$

The resulting equation is one of the three formulas for the Law of Cosines. The other two formulas are derived in a similar manner.

Solving Oblique Triangles

If you are given two sides and an included angle (SAS) of an oblique triangle, none of the three ratios in the Law of Sines is known. This means that we do not begin solving the triangle using the Law of Sines. Instead, we apply the Law of Cosines and the following procedure:

Solving an SAS Triangle

1. Use the Law of Cosines to find the side opposite the given angle.
2. Use the Law of Sines to find the angle opposite the shorter of the two given sides. This angle is always acute.
3. Find the third angle by subtracting the measure of the given angle and the angle found in step 2 from 180°.

FIGURE 6.15 Solving an SAS triangle

EXAMPLE 1 Solving an SAS Triangle

Solve the triangle in Figure 6.15 with $A=60^{\circ}, b=20$, and $c=30$. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

SOLUTION

We are given two sides and an included angle. Therefore, we apply the three-step procedure for solving an SAS triangle.
Step 1 Use the Law of Cosines to find the side opposite the given angle. Thus, we will find a.

$$
\begin{array}{ll}
a^{2}=b^{2}+c^{2}-2 b c \cos A & \text { Apply the Law of Cosines to find } a . \\
\hline \begin{array}{l}
\text { In this example, we know } \\
\text { the exact value of }
\end{array} & a^{2}=20^{2}+30^{2}-2(20)(30) \cos 60^{\circ}
\end{array} \quad b=20, c=30, \text { and } \mathrm{A}=60^{\circ} .
$$

the exact value of

$$
\cos 60^{\circ}: \cos 60^{\circ}=0.5
$$

If the exact value of the
cosine is not available,
you can calculate

$$
b^{2}+c^{2}-2 b c \cos A
$$

in one step with a calculator.

Step 2 Use the Law of Sines to find the angle opposite the shorter of the two given sides. This angle is always acute. The shorter of the two given sides is $b=20$. Thus, we will find acute angle B.

$$
\begin{array}{rlrl}
\frac{b}{\sin B} & =\frac{a}{\sin A} & & \text { Apply the Law of Sines. } \\
\frac{20}{\sin B} & =\frac{\sqrt{700}}{\sin 60^{\circ}} & \begin{array}{l}
\text { We are given } b=20 \text { and } A=60^{\circ} . \text { Use } \\
\text { the value of } a, \sqrt{700} \text {, from step } 1 .
\end{array} \\
\sqrt{700} \sin B & =20 \sin 60^{\circ} & \text { Cross multiply: If } \frac{a}{b}=\frac{c}{d}, \text { then ad }=b c . \\
\sin B & =\frac{20 \sin 60^{\circ}}{\sqrt{700}} \approx 0.6547 & \text { Divide by } \sqrt{700} \text { and solve for } \sin B . \\
B & \approx 41^{\circ} & \text { Find } \sin ^{-1} 0.6547 \text { using a calculator. }
\end{array}
$$

FIGURE 6.16

Step 3 Find the third angle. Subtract the measure of the given angle and the angle found in step 2 from 180°.

$$
C=180^{\circ}-A-B \approx 180^{\circ}-60^{\circ}-41^{\circ}=79^{\circ}
$$

The solution is $a \approx 26.5, B \approx 41^{\circ}$, and $C \approx 79^{\circ}$.
8 Check Point 1 Solve the triangle shown in Figure 6.16 with $A=120^{\circ}, b=7$, and $c=8$. Round as in Example 1.

If you are given three sides of a triangle (SSS), solving the triangle involves finding the three angles. We use the following procedure:

Solving an SSS Triangle

1. Use the Law of Cosines to find the angle opposite the longest side.
2. Use the Law of Sines to find either of the two remaining acute angles.
3. Find the third angle by subtracting the measures of the angles found in steps 1 and 2 from 180°.

FIGURE 6.17 Solving an SSS triangle

GREAT QUESTION!

In Step 2, do I have to use the Law of Sines to find either of the remaining angles?
No. You can also use the Law of Cosines to find either angle. However, it is simpler to use the Law of Sines. Because the largest angle has been found, the remaining angles must be acute. Thus, there is no need to be concerned about two possible triangles or an ambiguous case.
2. Solve applied problems using the Law of Cosines.

FIGURE 6.18

EXAMPLE 2 Solving an SSS Triangle

Solve triangle $A B C$ if $a=6, b=9$, and $c=4$. Round angle measures to the nearest degree.

SOLUTION

We are given three sides. Therefore, we apply the three-step procedure for solving an SSS triangle. The triangle is shown in Figure 6.17.
Step 1 Use the Law of Cosines to find the angle opposite the longest side. The longest side is $b=9$. Thus, we will find angle B.

$$
\begin{array}{rlrl}
b^{2} & =a^{2}+c^{2}-2 a c \cos B & & \text { Apply the Law of Cosines to find } B . \\
2 a c \cos B & =a^{2}+c^{2}-b^{2} & & \text { Solve for } \cos B . \\
\cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} & & \\
\cos B & =\frac{6^{2}+4^{2}-9^{2}}{2 \cdot 6 \cdot 4}=-\frac{29}{48} & a=6, b=9, \text { and } c=4 .
\end{array}
$$

Using a calculator, $\cos ^{-1}\left(\frac{29}{48}\right) \approx 53^{\circ}$. Because $\cos B$ is negative, B is an obtuse angle. Thus,

$$
\begin{aligned}
& \text { Because the domain of } y=\cos ^{-1} x \text { is } \\
& {[0, \pi], \text { you can use a calculator to find }} \\
& \cos ^{-1}\left(-\frac{29}{48}\right) \approx 127^{\circ} \text {. }
\end{aligned}
$$

$$
B \approx 180^{\circ}-53^{\circ}=127^{\circ} . \quad[0, \pi], \text { you can use a calculator to find }
$$

Step 2 Use the Law of Sines to find either of the two remaining acute angles. We will find angle A.

$$
\begin{array}{rlrl}
\frac{a}{\sin A} & =\frac{b}{\sin B} & & \text { Apply the Law of Sines. } \\
\frac{6}{\sin A} & =\frac{9}{\sin 127^{\circ}} & & \text { We are given } a=6 \text { and } b=9 . \text { We found } \\
9 \sin A & =6 \sin 127^{\circ} & & \text { that } B \approx 127^{\circ} . \\
\sin A & =\frac{6 \sin 127^{\circ}}{9} \approx 0.5324 & & \text { Cross multiply. } \\
A & \approx 32^{\circ} & & \text { Fivide by } 9 \text { and solve for } \sin A . \\
\sin ^{-1} 0.5324 \text { using a calculator. }
\end{array}
$$

Step 3 Find the third angle. Subtract the measures of the angles found in steps 1 and 2 from 180°.

$$
C=180^{\circ}-B-A \approx 180^{\circ}-127^{\circ}-32^{\circ}=21^{\circ}
$$

The solution is $B \approx 127^{\circ}, A \approx 32^{\circ}$, and $C \approx 21^{\circ}$.
$\$$ Check Point 2 Solve triangle $A B C$ if $a=8, b=10$, and $c=5$. Round angle measures to the nearest degree.

Applications of the Law of Cosines

Applied problems involving SAS and SSS triangles can be solved using the Law of Cosines.

EXAMPLE 3 An Application of the Law of Cosines

Two airplanes leave an airport at the same time on different runways. One flies on a bearing of $\mathrm{N} 66^{\circ} \mathrm{W}$ at 325 miles per hour. The other airplane flies on a bearing of $\mathrm{S} 26^{\circ} \mathrm{W}$ at 300 miles per hour. How far apart will the airplanes be after two hours?

SOLUTION

After two hours, the plane flying at 325 miles per hour travels $325 \cdot 2$ miles, or 650 miles. Similarly, the plane flying at 300 miles per hour travels 600 miles. The situation is illustrated in Figure 6.18.

FIGURE 6.18 (repeated)
(3) Use Heron's formula to find the area of a triangle.

Let $b=$ the distance between the planes after two hours. We can use a northsouth line to find angle B in triangle $A B C$. Thus,

$$
B=180^{\circ}-66^{\circ}-26^{\circ}=88^{\circ} .
$$

We now have $a=650, c=600$, and $B=88^{\circ}$. We use the Law of Cosines to find b in this SAS situation.

$$
\begin{array}{rlrl}
b^{2} & =a^{2}+c^{2}-2 a c \cos B & & \text { Apply the Law of Cosines. } \\
b^{2} & =650^{2}+600^{2}-2(650)(600) \cos 88^{\circ} & & \text { Substitute: } a=650, c=600, \text { and } \\
& \approx 755,278 & & B=88^{\circ} . \\
b \approx \sqrt{755,278} \approx 869 & & \text { Use a calculator. } \\
\text { Take the square root and solve for } b .
\end{array}
$$

After two hours, the planes are approximately 869 miles apart.
Check Point 3 Two airplanes leave an airport at the same time on different runways. One flies directly north at 400 miles per hour. The other airplane flies on a bearing of $\mathrm{N} 75^{\circ} \mathrm{E}$ at 350 miles per hour. How far apart will the airplanes be after two hours?

Heron's Formula

Approximately 2000 years ago, the Greek mathematician Heron of Alexandria derived a formula for the area of a triangle in terms of the lengths of its sides. A more modern derivation uses the Law of Cosines and can be found in the appendix.

Heron's Formula for the Area of a Triangle

The area of a triangle with sides a, b, and c is

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where s is one-half its perimeter: $s=\frac{1}{2}(a+b+c)$.

EXAMPLE 4 Using Heron's Formula

Find the area of the triangle with $a=12$ yards, $b=16$ yards, and $c=24$ yards. Round to the nearest square yard.

SOLUTION

Begin by calculating one-half the perimeter:

$$
s=\frac{1}{2}(a+b+c)=\frac{1}{2}(12+16+24)=26 .
$$

Use Heron's formula to find the area:

$$
\begin{aligned}
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{26(26-12)(26-16)(26-24)} \\
& =\sqrt{7280} \approx 85 .
\end{aligned}
$$

The area of the triangle is approximately 85 square yards.
Check Point 4 Find the area of the triangle with $a=6$ meters, $b=16$ meters, and $c=18$ meters. Round to the nearest square meter.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. If A, B, and C are the measures of the angles of a triangle, and a, b, and c are the lengths of the sides opposite these angles, then the Law of Cosines states that $a^{2}=$ \qquad
2. To solve an oblique triangle given two sides and an included angle (SAS), the first step is to find the missing \qquad using the Law of \qquad Then we use the Law of \qquad to find the angle opposite the shorter of the two given sides. This angle is always \qquad . The third angle is found by subtracting the measure of the given angle and the angle found in the second step from \qquad —.
3. To solve an oblique triangle given three sides (SSS), the first step is to find the angle opposite the longest side using the Law of \qquad Then we find either of the two remaining acute angles using the Law of \qquad
4. Heron's formula for the area of a triangle with sides a, b, and c is Area $=$ \qquad , where $s=$ \qquad

EXERCISE SET 6.2

Practice Exercises

In Exercises 1-8, solve each triangle. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.
1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9-24, solve each triangle. Round lengths to the nearest tenth and angle measures to the nearest degree.
9. $a=5, b=7, C=42^{\circ}$
10. $a=10, b=3, C=15^{\circ}$
11. $b=5, c=3, A=102^{\circ}$
12. $b=4, c=1, A=100^{\circ}$
13. $a=6, c=5, B=50^{\circ}$
14. $a=4, c=7, B=55^{\circ}$
15. $a=5, c=2, B=90^{\circ}$
16. $a=7, c=3, B=90^{\circ}$
17. $a=5, b=7, c=10$
18. $a=4, b=6, c=9$
19. $a=3, b=9, c=8$
20. $a=4, b=7, c=6$
21. $a=3, b=3, c=3$
22. $a=5, b=5, c=5$
23. $a=63, b=22, c=50$
24. $a=66, b=25, c=45$

In Exercises 25-30, use Heron's formula to find the area of each triangle. Round to the nearest square unit.
25. $a=4$ feet, $b=4$ feet, $c=2$ feet
26. $a=5$ feet, $b=5$ feet, $c=4$ feet
27. $a=14$ meters, $b=12$ meters, $c=4$ meters
28. $a=16$ meters, $b=10$ meters, $c=8$ meters
29. $a=11$ yards, $b=9$ yards, $c=7$ yards
30. $a=13$ yards, $b=9$ yards, $c=5$ yards

Practice Plus

In Exercises 31-32, solve each triangle. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.
31.

32.

In Exercises 33-34, the three circles are arranged so that they touch each other, as shown in the figure. Use the given radii for the circles with centers A, B, and C, respectively, to solve triangle $A B C$. Round angle measures to the nearest degree.

33. 5.0, 4.0, 3.5
34. $7.5,4.3,3.0$

In Exercises 35-36, the three given points are the vertices of a triangle. Solve each triangle, rounding lengths of sides to the nearest tenth and angle measures to the nearest degree.
35. $A(0,0), B(-3,4), C(3,-1)$
36. $A(0,0), B(4,-3), C(1,-5)$

Application Exercises

37. Use Figure 6.13 on page 694 to find the pace angle, to the nearest degree, for the carnivore. Does the angle indicate that this dinosaur was an efficient walker? Describe your answer.
38. Use Figure 6.13 on page 694 to find the pace angle, to the nearest degree, for the herbivore. Does the angle indicate that this dinosaur was an efficient walker? Describe your answer.
39. Two ships leave a harbor at the same time. One ship travels on a bearing of $\mathrm{S} 12^{\circ} \mathrm{W}$ at 14 miles per hour. The other ship travels on a bearing of $\mathrm{N} 75^{\circ} \mathrm{E}$ at 10 miles per hour. How far apart will the ships be after three hours? Round to the nearest tenth of a mile.
40. A plane leaves airport A and travels 580 miles to airport B on a bearing of $\mathrm{N} 34^{\circ} \mathrm{E}$. The plane later leaves airport B and travels to airport C 400 miles away on a bearing of $\mathrm{S} 74^{\circ} \mathrm{E}$. Find the distance from airport A to airport C to the nearest tenth of a mile.
41. Find the distance across the lake from A to C, to the nearest yard, using the measurements shown in the figure.

42. To find the distance across a protected cove at a lake, a surveyor makes the measurements shown in the figure. Use these measurements to find the distance from A to B to the nearest yard.

The diagram shows three islands in Florida Bay. You rent a boat and plan to visit each of these remote islands. Use the diagram to solve Exercises 43-44.

43. If you are on island A, on what bearing should you navigate to go to island C?
44. If you are on island B, on what bearing should you navigate to go to island C?
45. You are on a fishing boat that leaves its pier and heads east. After traveling for 25 miles, there is a report warning of rough seas directly south. The captain turns the boat and follows a bearing of $\mathrm{S} 40^{\circ} \mathrm{W}$ for 13.5 miles.
a. At this time, how far are you from the boat's pier? Round to the nearest tenth of a mile.
b. What bearing could the boat have originally taken to arrive at this spot?

46. You are on a fishing boat that leaves its pier and heads east. After traveling for 30 miles, there is a report warning of rough seas directly south. The captain turns the boat and follows a bearing of $\mathrm{S} 45^{\circ} \mathrm{W}$ for 12 miles.
a. At this time, how far are you from the boat's pier? Round to the nearest tenth of a mile.
b. What bearing could the boat have originally taken to arrive at this spot?
47. The figure shows a 400 -foot tower on the side of a hill that forms a 7° angle with the horizontal. Find the length of each of the two guy wires that are anchored 80 feet uphill and downhill from the tower's base and extend to the top of the tower. Round to the nearest tenth of a foot.

48. The figure shows a 200 -foot tower on the side of a hill that forms a 5° angle with the horizontal. Find the length of each of the two guy wires that are anchored 150 feet uphill and downhill from the tower's base and extend to the top of the tower. Round to the nearest tenth of a foot.

49. A Major League baseball diamond has four bases forming a square whose sides measure 90 feet each. The pitcher's mound is 60.5 feet from home plate on a line joining home plate and second base. Find the distance from the pitcher's mound to first base. Round to the nearest tenth of a foot.
50. A Little League baseball diamond has four bases forming a square whose sides measure 60 feet each. The pitcher's mound is 46 feet from home plate on a line joining home plate and second base. Find the distance from the pitcher's mound to third base. Round to the nearest tenth of a foot.
51. A piece of commercial real estate is priced at $\$ 3.50$ per square foot. Find the cost, to the nearest dollar, of a triangular lot measuring 240 feet by 300 feet by 420 feet.
52. A piece of commercial real estate is priced at $\$ 4.50$ per square foot. Find the cost, to the nearest dollar, of a triangular lot measuring 320 feet by 510 feet by 410 feet.

Writing in Mathematics

53. Without using symbols, state the Law of Cosines in your own words.
54. Why can't the Law of Sines be used in the first step to solve an SAS triangle?
55. Describe a strategy for solving an SAS triangle.
56. Describe a strategy for solving an SSS triangle.
57. Under what conditions would you use Heron's formula to find the area of a triangle?
58. Describe an applied problem that can be solved using the Law of Cosines but not the Law of Sines.
59. The pitcher on a Little League team is studying angles in geometry and has a question. "Coach, suppose I'm on the pitcher's mound facing home plate. I catch a fly ball hit in my direction. If I turn to face first base and throw the ball, through how many degrees should I turn for a direct throw?" Use the information given in Exercise 50 and write an answer to the pitcher's question. Without getting too technical, describe to the pitcher how you obtained this angle.
60. Explain why the Pythagorean Theorem is a special case of the Law of Cosines.

Critical Thinking Exercises

Make Sense? In Exercises 61-64, determine whether each statement makes sense or does not make sense, and explain your reasoning.
61. The Law of Cosines is similar to the Law of Sines, with all the sines replaced with cosines.
62. If I know the measures of all three angles of an oblique triangle, neither the Law of Sines nor the Law of Cosines can be used to find the length of a side.
63. I noticed that for a right triangle, the Law of Cosines reduces to the Pythagorean Theorem.
64. Solving an SSS triangle, I do not have to be concerned about the ambiguous case when using the Law of Sines.
65. The lengths of the diagonals of a parallelogram are 20 inches and 30 inches. The diagonals intersect at an angle of 35°. Find the lengths of the parallelogram's sides. (Hint: Diagonals of a parallelogram bisect one another.)
66. Use the figure to solve triangle $A B C$. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

67. The minute hand and the hour hand of a clock have lengths m inches and h inches, respectively. Determine the distance between the tips of the hands at 10:00 in terms of m and h.

Group Exercise

68. The group should design five original problems that can be solved using the Laws of Sines and Cosines. At least two problems should be solved using the Law of Sines, one should be the ambiguous case, and at least two problems should be solved using the Law of Cosines. At least one problem should be an application problem using the Law of Sines and at least one problem should involve an application using the Law of Cosines. The group should turn in both the problems and their solutions.

Preview Exercises

Exercises 69-71 will help you prepare for the material covered in the next section.
69. Graph: $y=3$.
70. Graph: $x^{2}+(y-1)^{2}=1$.
71. Complete the square and write the equation in standard form: $x^{2}+6 x+y^{2}=0$. Then give the center and radius of the circle, and graph the equation.

SECTION 6.3

Objectives

(1) Plot points in the polar coordinate system.
(2) Find multiple sets of polar coordinates for a given point.
(3) Convert a point from polar to rectangular coordinates.
(4) Convert a point from rectangular to polar coordinates.
(5) Convert an equation from rectangular to polar coordinates.
6 Convert an equation from polar to rectangular coordinates.

Butterflies are among the most celebrated of all insects. It's hard not to notice their beautiful colors and graceful flight. Their symmetry can be explored with trigonometric functions and a system for plotting points called the polar coordinate system. In many cases, polar coordinates are simpler and easier to use than rectangular coordinates.

Plotting Points in the Polar Coordinate System

The foundation of the polar coordinate system is a horizontal ray that extends to the right. The ray is called the polar axis and is shown in Figure 6.19 at the top of the next page. The endpoint of the ray is called the pole.
(1) Plot points in the polar coordinate system.

FIGURE 6.21 Locating a point in polar coordinates

FIGURE 6.22(a) Plotting ($2,135^{\circ}$)

A point P in the polar coordinate system is represented by an ordered pair of numbers (r, θ). Figure $\mathbf{6 . 2 0}$ shows $P=(r, \theta)$ in the polar coordinate system.

- r is a directed distance from the pole to P. (We shall see that r can be positive, negative, or zero.)
- θ is an angle from the polar axis to the line segment from the pole to P. This angle can be measured in degrees or radians. Positive angles are measured counterclockwise from the polar axis. Negative angles are measured clockwise from the polar axis.
We refer to the ordered pair (r, θ) as the polar coordinates of P.
Let's look at a specific example. Suppose that the polar coordinates of a point P are $\left(3, \frac{\pi}{4}\right)$. Because θ is positive, we locate this point by drawing $\theta=\frac{\pi}{4}$ counterclockwise from the polar axis. Then we count out a distance of three units along the terminal side of the angle to reach the point P. Figure 6.21 shows that $(r, \theta)=\left(3, \frac{\pi}{4}\right)$ lies three units from the pole on the terminal side of the angle $\theta=\frac{\pi}{4}$.

The sign of r is important in locating $P=(r, \theta)$ in polar coordinates.

The Sign of r and a Point's Location in Polar Coordinates

The point $P=(r, \theta)$ is located $|r|$ units from the pole. If $r>0$, the point lies on the terminal side of θ. If $r<0$, the point lies along the ray opposite the terminal side of θ. If $r=0$, the point lies at the pole, regardless of the value of θ.

EXAMPLE 1 Plotting Points in a Polar Coordinate System

Plot the points with the following polar coordinates:
a. $\left(2,135^{\circ}\right)$
b. $\left(-3, \frac{3 \pi}{2}\right)$
c. $\left(-1,-\frac{\pi}{4}\right)$.

SOLUTION

a. To plot the point $(r, \theta)=\left(2,135^{\circ}\right)$, begin with the 135° angle. Because 135° is a positive angle, draw $\theta=135^{\circ}$ counterclockwise from the polar axis. Now consider $r=2$. Because $r>0$, plot the point by going out two units on the terminal side of θ. Figure $\mathbf{6 . 2 2 (a)}$ shows the point. The concentric circles in the figure are drawn to help plot the point at the appropriate distance from the pole.

FIGURE 6.22(b) Plotting $\left(-3, \frac{3 \pi}{2}\right)$

2 Find multiple sets of polar coordinates for a given point.

DISCOVERY

Illustrate the statements in the voice balloons by plotting the points with the following polar coordinates:
a. $\left(1, \frac{\pi}{2}\right)$ and $\left(1, \frac{5 \pi}{2}\right)$
b. $\left(3, \frac{\pi}{4}\right)$ and $\left(-3, \frac{5 \pi}{4}\right)$.

FIGURE 6.23 Finding other representations of a given point
b. To plot the point $(r, \theta)=\left(-3, \frac{3 \pi}{2}\right)$, begin with the $\frac{3 \pi}{2}$ angle. Because $\frac{3 \pi}{2}$ is a positive angle, we draw $\theta=\frac{3 \pi}{2}$ counterclockwise from the polar axis. Now consider $r=-3$. Because $r<0$, plot the point by going out three units along the ray opposite the terminal side of θ. Figure 6.22(b) shows the point.

FIGURE 6.22(c) Plotting $\left(-1,-\frac{\pi}{4}\right)$
c. To plot the point
$(r, \theta)=\left(-1,-\frac{\pi}{4}\right)$, begin with the $-\frac{\pi}{4}$ angle. Because $-\frac{\pi}{4}$ is a negative angle, draw $\theta=-\frac{\pi}{4}$ clockwise from the polar axis.
Now consider $r=-1$. Because $r<0$, plot the point by going out one unit along the ray opposite the terminal side of θ. Figure 6.22(c) shows the point. $\bullet \bullet$ S Check Point 1 P Plot the points with the following polar coordinates:
a. $\left(3,315^{\circ}\right)$
b. $(-2, \pi)$
c. $\left(-1,-\frac{\pi}{2}\right)$.

Multiple Representations of Points

in the Polar Coordinate System
In rectangular coordinates, each point (x, y) has exactly one representation. By contrast, any point in polar coordinates can be represented in infinitely many ways. For example,

$$
(r, \theta)=(r, \theta+2 \pi) \quad \text { and } \quad(r, \theta)=(-r, \theta+\pi)
$$

```
Adding 1 revolution, or 2\pi
    radians, to the angle does
        not change the point's
            location.
```

Adding $\frac{1}{2}$ revolution, or π radians, to the angle and replacing r with $-r$ does not change the point's location.

Thus, to find two other representations for the point (r, θ),

- Add 2π to the angle and do not change r.
- Add π to the angle and replace r with $-r$.

Continually adding or subtracting 2π in either of these representations does not change the point's location.

Multiple Representations of Points

If n is any integer, the point (r, θ) can be represented as

$$
(r, \theta)=(r, \theta+2 n \pi) \quad \text { or } \quad(r, \theta)=(-r, \theta+\pi+2 n \pi)
$$

EXAMPLE 2 Finding Other Polar Coordinates for a Given Point

The point $\left(2, \frac{\pi}{3}\right)$ is plotted in Figure 6.23. Find another representation of this point in which
a. r is positive and $2 \pi<\theta<4 \pi$.
b. r is negative and $0<\theta<2 \pi$.
c. r is positive and $-2 \pi<\theta<0$.

FIGURE 6.24 Polar and rectangular coordinate systems

SOLUTION

a. We want $r>0$ and $2 \pi<\theta<4 \pi$. Using $\left(2, \frac{\pi}{3}\right)$, add 2π to the angle and
do not change r.

$$
\left(2, \frac{\pi}{3}\right)=\left(2, \frac{\pi}{3}+2 \pi\right)=\left(2, \frac{\pi}{3}+\frac{6 \pi}{3}\right)=\left(2, \frac{7 \pi}{3}\right)
$$

b. We want $r<0$ and $0<\theta<2 \pi$. Using $\left(2, \frac{\pi}{3}\right)$, add π to the angle and
replace r with $-r$.

$$
\left(2, \frac{\pi}{3}\right)=\left(-2, \frac{\pi}{3}+\pi\right)=\left(-2, \frac{\pi}{3}+\frac{3 \pi}{3}\right)=\left(-2, \frac{4 \pi}{3}\right)
$$

c. We want $r>0$ and $-2 \pi<\theta<0$. Using $\left(2, \frac{\pi}{3}\right)$, subtract 2π from the
angle and do not change r. angle and do not change r.

$$
\left(2, \frac{\pi}{3}\right)=\left(2, \frac{\pi}{3}-2 \pi\right)=\left(2, \frac{\pi}{3}-\frac{6 \pi}{3}\right)=\left(2,-\frac{5 \pi}{3}\right)
$$

\oint Check Point 2 Find another representation of $\left(5, \frac{\pi}{4}\right)$ in which
a. r is positive and $2 \pi<\theta<4 \pi$.
b. r is negative and $0<\theta<2 \pi$.
c. r is positive and $-2 \pi<\theta<0$.

Relations between Polar and Rectangular Coordinates

We now consider both polar and rectangular coordinates simultaneously. Figure 6.24 shows the two coordinate systems. The polar axis coincides with the positive x-axis and the pole coincides with the origin. A point P, other than the origin, has rectangular coordinates (x, y) and polar coordinates (r, θ), as indicated in the figure. We wish to find equations relating the two sets of coordinates. From the figure, we see that

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x} .
\end{gathered}
$$

These relationships hold when P is in any quadrant and when $r>0$ or $r<0$.

Relations between Polar and Rectangular Coordinates

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
x^{2}+y^{2} & =r^{2} \\
\tan \theta & =\frac{y}{x}
\end{aligned} \underbrace{}_{x}
$$

Point Conversion from Polar to Rectangular Coordinates

To convert a point from polar coordinates (r, θ) to rectangular coordinates (x, y), use the formulas $x=r \cos \theta$ and $y=r \sin \theta$.

FIGURE 6.25 Converting $\left(2, \frac{3 \pi}{2}\right)$ to
rectangular coordinates rectangular coordinates

EXAMPLE 3 Polar-to-Rectangular Point Conversion

Find the rectangular coordinates of the points with the following polar coordinates:
a. $\left(2, \frac{3 \pi}{2}\right)$
b. $\left(-8, \frac{\pi}{3}\right)$.

SOLUTION

We find (x, y) by substituting the given values for r and θ into $x=r \cos \theta$ and $y=r \sin \theta$.
a. We begin with the rectangular coordinates of the point $(r, \theta)=\left(2, \frac{3 \pi}{2}\right)$.

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{3 \pi}{2}=2 \cdot 0=0 \\
& y=r \sin \theta=2 \sin \frac{3 \pi}{2}=2(-1)=-2
\end{aligned}
$$

The rectangular coordinates of $\left(2, \frac{3 \pi}{2}\right)$ are $(0,-2)$. See Figure 6.25.
b. We now find the rectangular coordinates of the point $(r, \theta)=\left(-8, \frac{\pi}{3}\right)$.

$$
\begin{aligned}
& x=r \cos \theta=-8 \cos \frac{\pi}{3}=-8\left(\frac{1}{2}\right)=-4 \\
& y=r \sin \theta=-8 \sin \frac{\pi}{3}=-8\left(\frac{\sqrt{3}}{2}\right)=-4 \sqrt{3}
\end{aligned}
$$

The rectangular coordinates of $\left(-8, \frac{\pi}{3}\right)$ are $(-4,-4 \sqrt{3})$.

TECHNOLOGY

Some graphing utilities can convert a point from polar coordinates to rectangular coordinates. Consult your manual. The screen on the right verifies the polarrectangular conversion in Example 3(a). It shows that the rectangular coordinates of $(r, \theta)=\left(2, \frac{3 \pi}{2}\right)$ are $(0,-2)$. Notice that the x - and y-coordinates are displayed separately.

Check Point 3 Find the rectangular coordinates of the points with the following polar coordinates:
a. $(3, \pi)$
b. $\left(-10, \frac{\pi}{6}\right)$.

Point Conversion from Rectangular to Polar Coordinates

Conversion from rectangular coordinates (x, y) to polar coordinates (r, θ) is a bit more complicated. Keep in mind that there are infinitely many representations for a point in polar coordinates. If the point (x, y) lies in one of the four quadrants, we will use a representation in which

- r is positive, and
- θ is the smallest positive angle with the terminal side passing through (x, y).

FIGURE 6.26 Converting $(-1, \sqrt{3})$ to polar coordinates

These conventions provide the following procedure:

Converting a Point from Rectangular to Polar Coordinates

 ($r>0$ and $0 \leq \theta<2 \pi$)1. Plot the point (x, y).
2. Find r by computing the distance from the origin to $(x, y): r=\sqrt{x^{2}+y^{2}}$.
3. Find θ using $\tan \theta=\frac{y}{x}$ with the terminal side of θ passing through (x, y).

EXAMPLE 4 Rectangular-to-Polar Point Conversion

Find polar coordinates of the point whose rectangular coordinates are $(-1, \sqrt{3})$.

SOLUTION

We begin with $(x, y)=(-1, \sqrt{3})$ and use our three-step procedure to find a set of polar coordinates (r, θ).
Step 1 Plot the point (x, y). The point $(-1, \sqrt{3})$ is plotted in quadrant II in Figure 6.26.
Step 2 Find \boldsymbol{r} by computing the distance from the origin to (x, y).

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2
$$

Step 3 Find θ using $\tan \theta=\frac{y}{x}$ with the terminal side of θ passing through (x, y).

$$
\tan \theta=\frac{y}{x}=\frac{\sqrt{3}}{-1}=-\sqrt{3}
$$

We know that $\tan \frac{\pi}{3}=\sqrt{3}$. Because θ lies in quadrant II,

$$
\theta=\pi-\frac{\pi}{3}=\frac{3 \pi}{3}-\frac{\pi}{3}=\frac{2 \pi}{3} .
$$

One representation of $(-1, \sqrt{3})$ in polar coordinates is $(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$. \ldots

TECHNOLOGY

The screen shows the rectangular-polar conversion for
RePr(-1, $\sqrt{(3)}$ $(-1, \sqrt{3})$ on a graphing utility. In Example 4, we showed that $(x, y)=(-1, \sqrt{3})$ can be represented in polar coordinates as $(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$.
Using $\frac{2 \pi}{3} \approx 2.09439510239$ verifies that our conversion is correct. Notice that the r - and (approximate) θ-coordinates are displayed separately.

Check Point 4 Find polar coordinates of the point whose rectangular coordinates are $(1,-\sqrt{3})$.

If a point (x, y) lies on a positive or negative axis, we use a representation in which

- r is positive, and
- θ is the smallest quadrantal angle that lies on the same positive or negative axis as (x, y).
In these cases, you can find r and θ by plotting (x, y) and inspecting the figure. Let's see how this is done.

FIGURE 6.27 Converting $(-2,0)$ to polar coordinates
(5) Convert an equation from rectangular to polar coordinates.

EXAMPLE 5 Rectangular-to-Polar Point Conversion

Find polar coordinates of the point whose rectangular coordinates are $(-2,0)$.

SOLUTION

We begin with $(x, y)=(-2,0)$ and find a set of polar coordinates (r, θ).
Step 1 Plot the point $(\boldsymbol{x}, \boldsymbol{y})$. The point $(-2,0)$ is plotted in Figure 6.27.
Step 2 Find r, the distance from the origin to $(\boldsymbol{x}, \boldsymbol{y})$. Can you tell by looking at Figure 6.27 that this distance is 2?

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-2)^{2}+0^{2}}=\sqrt{4}=2
$$

Step 3 Find $\boldsymbol{\theta}$ with $\boldsymbol{\theta}$ lying on the same positive or negative axis as $(\boldsymbol{x}, \boldsymbol{y})$. The point $(-2,0)$ is on the negative x-axis. Thus, θ lies on the negative x-axis and $\theta=\pi$. One representation of $(-2,0)$ in polar coordinates is $(2, \pi)$. coordinates are $(0,-4)$. Express θ in radians.

Equation Conversion from Rectangular to Polar Coordinates

A polar equation is an equation whose variables are r and θ. Two examples of polar equations are

$$
r=\frac{5}{\cos \theta+\sin \theta} \quad \text { and } \quad r=3 \csc \theta
$$

To convert a rectangular equation in x and y to a polar equation in r and θ, replace x with $r \cos \theta$ and y with $r \sin \theta$.

EXAMPLE 6 Converting Equations from Rectangular

 to Polar CoordinatesConvert each rectangular equation to a polar equation that expresses r in terms of θ :
a. $x+y=5$
b. $(x-1)^{2}+y^{2}=1$.

SOLUTION

Our goal is to obtain equations in which the variables are r and θ rather than x and y. We use $x=r \cos \theta$ and $y=r \sin \theta$. We then solve the equations for r, obtaining equivalent equations that give r in terms of θ.
a. $\begin{aligned} x+y & =5 & & \begin{array}{l}\text { This is the given equation in rectangular } \\ \text { coordinates. The graph is a line passing } \\ \text { through }(5,0) \text { and }(0,5) .\end{array} \\ r \cos \theta+r \sin \theta & =5 & & \text { Replace } \times \text { with } r \cos \theta \text { and } \mathrm{y} \text { with } r \sin \theta .\end{aligned}$

Thus, the polar equation for $x+y=5$ is $r=\frac{5}{\cos \theta+\sin \theta}$.

6 Convert an equation from polar to rectangular coordinates.
b. $\quad(x-1)^{2}+y^{2}=1$

The standard form of a circle's equation is
$(x-h)^{2}+(y-k)^{2}=r^{2}$,
with radius r and center at (h, k).
$(r \cos \theta-1)^{2}+(r \sin \theta)^{2}=1$
$r^{2} \cos ^{2} \theta-2 r \cos \theta+1+r^{2} \sin ^{2} \theta=1$

$$
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r \cos \theta=0
$$

$r^{2}-2 r \cos \theta=0$

$$
r(r-2 \cos \theta)=0
$$

$$
r=0 \quad \text { or } \quad r-2 \cos \theta=0
$$

$$
r=2 \cos \theta
$$

This is the given equation in rectangular coordinates. The graph is a circle with radius 1 and center at $(h, k)=(1,0)$.

Replace x with $r \cos \theta$ and y with $r \sin \theta$.
Use $(A-B)^{2}=A^{2}-2 A B+B^{2}$ to square $r \cos \theta-1$.
Subtract 1 from both sides and rearrange terms.
Simplify: $r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=$ $r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r^{2} \cdot 1=r^{2}$.

Factor out r.
Set each factor equal to 0 .
Solve for r.

The graph of $r=0$ is a single point, the pole. Because the pole also satisfies the equation $r=2 \cos \theta$ (for $\theta=\frac{\pi}{2}, r=0$), it is not necessary to include the equation $r=0$. Thus, the polar equation for $(x-1)^{2}+y^{2}=1$ is $r=2 \cos \theta$. \quad.
\oiint Check Point 6 convert each rectangular equation to a polar equation that expresses r in terms of θ :
a. $3 x-y=6$
b. $x^{2}+(y+1)^{2}=1$.

Equation Conversion from Polar to Rectangular Coordinates

When we convert an equation from polar to rectangular coordinates, our goal is to obtain an equation in which the variables are x and y rather than r and θ. We use one or more of the following equations:

$$
r^{2}=x^{2}+y^{2} \quad r \cos \theta=x \quad r \sin \theta=y \quad \tan \theta=\frac{y}{x}
$$

To use these equations, it is sometimes necessary to do something to the given polar equation. This could include squaring both sides, using an identity, taking the tangent of both sides, or multiplying both sides by r.

EXAMPLE 7 Converting Equations from Polar to Rectangular Form

Convert each polar equation to a rectangular equation in x and y :
a. $r=5$
b. $\theta=\frac{\pi}{4}$
c. $r=3 \csc \theta$
d. $r=-6 \cos \theta$.

SOLUTION

In each case, let's express the rectangular equation in a form that enables us to recognize its graph.
a. We use $r^{2}=x^{2}+y^{2}$ to convert the polar equation $r=5$ to a rectangular equation.

$$
\begin{aligned}
r & =5 & & \text { This is the given polar equation. } \\
r^{2} & =25 & & \text { Square both sides. } \\
x^{2}+y^{2} & =25 & & \text { Use } r^{2}=x^{2}+y^{2} \text { on the left side. }
\end{aligned}
$$

The rectangular equation for $r=5$ is $x^{2}+y^{2}=25$. The graph is a circle with center at $(0,0)$ and radius 5 .

FIGURE 6.28

FIGURE 6.29

FIGURE 6.30 The equations $r=5$ and $x^{2}+y^{2}=25$ have the same graph .
b. We use $\tan \theta=\frac{y}{x}$ to convert the polar equation $\theta=\frac{\pi}{4}$ to a rectangular equation in x and y.

$$
\begin{aligned}
\theta & =\frac{\pi}{4} & & \text { This is the given polar equation. } \\
\tan \theta & =\tan \frac{\pi}{4} & & \text { Take the tangent of both sides. } \\
\tan \theta & =1 & & \tan \frac{\pi}{4}=1 \\
\frac{y}{x} & =1 & & \text { Use } \tan \theta=\frac{y}{x} \text { on the left side. } \\
y & =x & & \text { Multiply both sides by } x .
\end{aligned}
$$

The rectangular equation for $\theta=\frac{\pi}{4}$ is $y=x$. The graph is a line that bisects quadrants I and III. Figure $\mathbf{6 . 2 8}$ shows the line drawn in a polar coordinate system.
c. We use $r \sin \theta=y$ to convert the polar equation $r=3 \csc \theta$ to a rectangular equation. To do this, we express the cosecant in terms of the sine.

$$
\begin{aligned}
r & =3 \csc \theta & & \text { This is the given polar equation. } \\
r & =\frac{3}{\sin \theta} & & \csc \theta=\frac{1}{\sin \theta} \\
r \sin \theta & =3 & & \text { Multiply both sides by } \sin \theta . \\
y & =3 & & \text { Use } r \sin \theta=y \text { on the left side. }
\end{aligned}
$$

The rectangular equation for $r=3 \csc \theta$ is $y=3$. The graph is a horizontal line three units above the x-axis. Figure 6.29 shows the line drawn in a polar coordinate system.
d. To convert $r=-6 \cos \theta$ to rectangular coordinates, we multiply both sides by r. Then we use $r^{2}=x^{2}+y^{2}$ on the left side and $r \cos \theta=x$ on the right side.

$$
\begin{array}{rlrl}
r & =-6 \cos \theta & & \text { This is the given polar equation. } \\
r^{2}=-6 r \cos \theta & & \text { Multiply both sides by } r . \\
x^{2}+y^{2} & =-6 x & & \text { Convert to rectangular coordinates: } \\
& r^{2}=x^{2}+y^{2} \text { and } r \cos \theta=x . \\
x^{2}+6 x+y^{2} & =0 & & \text { Add } 6 x \text { to both sides. } \\
x^{2}+6 x+9+y^{2}=9 & & \text { Complete the square on } x: \frac{1}{2} \cdot 6=3 \text { and } \\
(x+3)^{2}+y^{2} & =9 & & 3^{2}=9 . \\
& & \text { Factor. }
\end{array}
$$

The rectangular equation for $r=-6 \cos \theta$ is $(x+3)^{2}+y^{2}=9$. This last equation is the standard form of the equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$, with radius r and center at (h, k). Thus, the graph of $(x+3)^{2}+y^{2}=9$ is a circle with center at $(-3,0)$ and radius 3 .

Converting a polar equation to a rectangular equation may be a useful way to develop or check a graph. For example, the graph of the polar equation $r=5$ consists of all points that are five units from the pole. Thus, the graph is a circle centered at the pole with radius 5. The rectangular equation for $r=5$, namely, $x^{2}+y^{2}=25$, has precisely the same graph (see Figure 6.30). We will discuss graphs of polar equations in the next section.
$\$$ Check Point 7 Convert each polar equation to a rectangular equation in x and y :
a. $r=4$
b. $\theta=\frac{3 \pi}{4}$
c. $r=-2 \sec \theta$
d. $r=10 \sin \theta$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The foundation of the polar coordinate system consists of a point, called the \qquad , and a ray extending out from it, called the \qquad -.
2. The origin in the rectangular coordinate system coincides with the \qquad in polar coordinates. The positive x-axis in rectangular coordinates coincides with the \qquad in polar coordinates.

For each point with the given polar coordinates in Exercises 3-8 determine the quadrant in which the point lies if it is graphed in a rectangular coordinate system.
3. $\left(4,135^{\circ}\right)$; quadrant \qquad
4. $\left(-4,135^{\circ}\right)$; quadrant \qquad
5. $\left(2, \frac{5 \pi}{3}\right)$; quadrant \qquad
6. $\left(-3, \frac{\pi}{4}\right)$; quadrant \qquad
7. $\left(5,-\frac{\pi}{4}\right)$; quadrant \qquad

EXERCISE SET 6.3

Practice Exercises

In Exercises 1-10, indicate if the point with the given polar coordinates is represented by A, B, C, or D on the graph.

1. $\left(3,225^{\circ}\right)$
2. $\left(3,315^{\circ}\right)$
3. $\left(-3, \frac{5 \pi}{4}\right)$
4. $\left(-3, \frac{\pi}{4}\right)$
5. $(3, \pi)$
6. $(-3,0)$
7. $\left(3,-135^{\circ}\right)$
8. $\left(3,-315^{\circ}\right)$
9. $\left(-3,-\frac{5 \pi}{4}\right)$

In Exercises 11-20, use a polar coordinate system like the one shown for Exercises 1-10 to plot each point with the given polar coordinates.
11. $\left(2,45^{\circ}\right)$
12. $\left(1,45^{\circ}\right)$
13. $\left(3,90^{\circ}\right)$
14. $\left(2,270^{\circ}\right)$
15. $\left(3, \frac{4 \pi}{3}\right)$
16. $\left(3, \frac{7 \pi}{6}\right)$
8. $\left(-2,-\frac{\pi}{4}\right)$; quadrant \qquad
9. $(r, \theta)=$ \qquad $\theta+2 \pi)$
10. $(r, \theta)=$ \qquad $\theta+\pi)$
11. The equation $x+y=7$ can be converted to a polar equation by replacing x with \qquad and replacing y with \qquad -.
12. The equation $r=3$ can be converted to a rectangular equation by \qquad both sides and then replacing r^{2} with \qquad .
13. The equation $\theta=\frac{5 \pi}{4}$ can be converted to a rectangular equation by taking the \qquad of both sides and then replacing $\tan \theta$ with \qquad .
14. The equation $r=4 \sin \theta$ can be converted to a rectangular equation by \qquad both sides by ___ and then replacing r^{2} with \qquad and $r \sin \theta$ with \qquad -.
18. $\left(-1, \frac{3 \pi}{2}\right)$
19. $\left(-2,-\frac{\pi}{2}\right)$
20. $(-3,-\pi)$

In Exercises 21-26, use a polar coordinate system like the one shown for Exercises 1-10 to plot each point with the given polar coordinates. Then find another representation (r, θ) of this point in which
a. $r>0,2 \pi<\theta<4 \pi$.
b. $r<0, \quad 0<\theta<2 \pi$.
c. $r>0,-2 \pi<\theta<0$.
21. $\left(5, \frac{\pi}{6}\right)$
22. $\left(8, \frac{\pi}{6}\right)$
23. $\left(10, \frac{3 \pi}{4}\right)$
24. $\left(12, \frac{2 \pi}{3}\right)$
25. $\left(4, \frac{\pi}{2}\right)$
26. $\left(6, \frac{\pi}{2}\right)$

In Exercises 27-32, select the representations that do not change the location of the given point.
27. $\left(7,140^{\circ}\right)$
a. $\left(-7,320^{\circ}\right)$
b. $\left(-7,-40^{\circ}\right)$
c. $\left(-7,220^{\circ}\right)$
d. $\left(7,-220^{\circ}\right)$
28. $\left(4,120^{\circ}\right)$
a. $\left(-4,300^{\circ}\right)$
b. $\left(-4,-240^{\circ}\right)$
c. $\left(4,-240^{\circ}\right)$
d. $\left(4,480^{\circ}\right)$
29. $\left(2,-\frac{3 \pi}{4}\right)$
a. $\left(2,-\frac{7 \pi}{4}\right)$
b. $\left(2, \frac{5 \pi}{4}\right)$
c. $\left(-2,-\frac{\pi}{4}\right)$
d. $\left(-2,-\frac{7 \pi}{4}\right)$
30. $\left(-2, \frac{7 \pi}{6}\right)$
a. $\left(-2,-\frac{5 \pi}{6}\right)$
b. $\left(-2,-\frac{\pi}{6}\right)$
c. $\left(2,-\frac{\pi}{6}\right)$
d. $\left(2, \frac{\pi}{6}\right)$
31. $\left(-5,-\frac{\pi}{4}\right)$
a. $\left(-5, \frac{7 \pi}{4}\right)$
b. $\left(5,-\frac{5 \pi}{4}\right)$
c. $\left(-5, \frac{11 \pi}{4}\right)$
d. $\left(5, \frac{\pi}{4}\right)$
32. $(-6,3 \pi)$
a. $(6,2 \pi)$
b. $(6,-\pi)$
c. $(-6, \pi)$
d. $(-6,-2 \pi)$

In Exercises 33-40, polar coordinates of a point are given. Find the rectangular coordinates of each point.
33. $\left(4,90^{\circ}\right)$
34. $\left(6,180^{\circ}\right)$
35. $\left(2, \frac{\pi}{3}\right)$
36. $\left(2, \frac{\pi}{6}\right)$
37. $\left(-4, \frac{\pi}{2}\right)$
38. $\left(-6, \frac{3 \pi}{2}\right)$
39. $(7.4,2.5)$
40. $(8.3,4.6)$

In Exercises 41-48, the rectangular coordinates of a point are given. Find polar coordinates of each point. Express θ in radians.
41. $(-2,2)$
42. $(2,-2)$
43. $(2,-2 \sqrt{3})$
44. $(-2 \sqrt{3}, 2)$
45. $(-\sqrt{3},-1)$
46. $(-1,-\sqrt{3})$
47. $(5,0)$
48. $(0,-6)$

In Exercises 49-58, convert each rectangular equation to a polar equation that expresses r in terms of θ.
49. $3 x+y=7$
50. $x+5 y=8$
51. $x=7$
52. $y=3$
53. $x^{2}+y^{2}=9$
54. $x^{2}+y^{2}=16$
55. $(x-2)^{2}+y^{2}=4$
56. $x^{2}+(y+3)^{2}=9$
57. $y^{2}=6 x$
58. $x^{2}=6 y$

In Exercises 59-74, convert each polar equation to a rectangular equation. Then use a rectangular coordinate system to graph the rectangular equation.
59. $r=8$
61. $\theta=\frac{\pi}{2}$
60. $r=10$
63. $r \sin \theta=3$
62. $\theta=\frac{\pi}{3}$
65. $r=4 \csc \theta$
64. $r \cos \theta=7$
66. $r=6 \sec \theta$
67. $r=\sin \theta$
68. $r=\cos \theta$
70. $r=-4 \sin \theta$
72. $r=8 \cos \theta+2 \sin \theta$
71. $r=6 \cos \theta+4 \sin \theta$
74. $r^{2} \sin 2 \theta=4$

Practice Plus

In Exercises 75-78, show that each statement is true by converting the given polar equation to a rectangular equation.
75. Show that the graph of $r=a \sec \theta$ is a vertical line a units to the right of the y-axis if $a>0$ and $|a|$ units to the left of the y-axis if $a<0$.
76. Show that the graph of $r=a \csc \theta$ is a horizontal line a units above the x-axis if $a>0$ and $|a|$ units below the x-axis if $a<0$.
77. Show that the graph of $r=a \sin \theta$ is a circle with center at $\left(0, \frac{a}{2}\right)$ and radius $\frac{a}{2}$.
78. Show that the graph of $r=a \cos \theta$ is a circle with center at $\left(\frac{a}{2}, 0\right)$ and radius $\frac{a}{2}$.

In Exercises 79-80, convert each polar equation to a rectangular equation. Then determine the graph's slope and y-intercept.
79. $r \sin \left(\theta-\frac{\pi}{4}\right)=2$
80. $r \cos \left(\theta+\frac{\pi}{6}\right)=8$

In Exercises 81-82, find the rectangular coordinates of each pair of points. Then find the distance, in simplified radical form, between the points.
81. $\left(2, \frac{2 \pi}{3}\right)$ and $\left(4, \frac{\pi}{6}\right)$
82. $(6, \pi)$ and $\left(5, \frac{7 \pi}{4}\right)$

Application Exercises

Use the figure of the merry-go-round to solve Exercises 83-84. There are four circles of horses. Each circle is three feet from the next circle. The radius of the inner circle is 6 feet.

83. If a horse in the outer circle is $\frac{2}{3}$ of the way around the merry-go-round, give its polar coordinates.
84. If a horse in the inner circle is $\frac{5}{6}$ of the way around the merry-go-round, give its polar coordinates.

The wind is blowing at 10 knots. Sailboat racers look for a sailing angle to the 10-knot wind that produces maximum sailing speed. In this application, (r, θ) describes the sailing speed, r, in knots, at an angle θ to the 10-knot wind. Use this information to solve Exercises 85-87.
85. Interpret the polar coordinates: $\left(6.3,50^{\circ}\right)$.
86. Interpret the polar coordinates: $\left(7.4,85^{\circ}\right)$.
87. Four points in this 10 -knot-wind situation are ($6.3,50^{\circ}$), $\left(7.4,85^{\circ}\right),\left(7.5,105^{\circ}\right)$, and $\left(7.3,135^{\circ}\right)$. Based on these points, which sailing angle to the $10-\mathrm{knot}$ wind would you recommend to a serious sailboat racer? What sailing speed is achieved at this angle?

Writing in Mathematics

88. Explain how to plot (r, θ) if $r>0$ and $\theta>0$.
89. Explain how to plot (r, θ) if $r<0$ and $\theta>0$.
90. If you are given polar coordinates of a point, explain how to find two additional sets of polar coordinates for the point.
91. Explain how to convert a point from polar to rectangular coordinates. Provide an example with your explanation.
92. Explain how to convert a point from rectangular to polar coordinates. Provide an example with your explanation.
93. Explain how to convert from a rectangular equation to a polar equation.
94. In converting $r=5$ from a polar equation to a rectangular equation, describe what should be done to both sides of the equation and why this should be done.
95. In converting $r=\sin \theta$ from a polar equation to a rectangular equation, describe what should be done to both sides of the equation and why this should be done.
96. Suppose that (r, θ) describes the sailing speed, r, in knots, at an angle θ to a wind blowing at 20 knots. You have a list of all ordered pairs (r, θ) for integral angles from $\theta=0^{\circ}$ to $\theta=180^{\circ}$. Describe a way to present this information so that a serious sailboat racer can visualize sailing speeds at different sailing angles to the wind.

Technology Exercises

In Exercises 97-99, polar coordinates of a point are given. Use a graphing utility to find the rectangular coordinates of each point to three decimal places.
97. $\left(4, \frac{2 \pi}{3}\right)$
98. $(5.2,1.7)$
99. $(-4,1.088)$

In Exercises 100-102, the rectangular coordinates of a point are given. Use a graphing utility in radian mode to find polar coordinates of each point to three decimal places.
100. $(-5,2)$
101. $(\sqrt{5}, 2)$
102. $(-4.308,-7.529)$

Critical Thinking Exercises

Make Sense? In Exercises 103-106, determine whether each statement makes sense or does not make sense, and explain your reasoning.
103. I must have made a mistake because my polar representation of a given point is not the same as the answer in the back of the book.
104. When converting a point from polar coordinates to rectangular coordinates, there are infinitely many possible rectangular coordinate pairs.
105. After plotting the point with rectangular coordinates ($0,-4$), I found polar coordinates without having to show any work.
106. When I convert an equation from polar form to rectangular form, the rectangular equation might not define y as a function of x.
107. Prove that the distance, d, between two points with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ is

$$
d=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}
$$

108. Use the formula in Exercise 107 to find the distance between $\left(2, \frac{5 \pi}{6}\right)$ and $\left(4, \frac{\pi}{6}\right)$. Express the answer in simplified radical form.

Preview Exercises

Exercises 109-111 will help you prepare for the material covered in the next section. In each exercise, use a calculator to complete the table of coordinates. Where necessary, round to two decimal places. Then plot the resulting points, (r, θ), using a polar coordinate system.
109.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$r=1-\cos \theta$							

110.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$
$r=1+2 \sin \theta$										

111.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$r=4 \sin 2 \theta$									

SECTION 6.4

Graphs of Polar Equations

Objectives

(1) Use point plotting to graph polar equations.
2. Use symmetry to graph polar equations.

FIGURE 6.31 A polar coordinate grid
(1) Use point plotting to graph polar equations.

The America's Cup is the supreme event in ocean sailing. Competition is fierce and the costs are huge. Competitors look to mathematics to provide the critical innovation that can make the difference between winning and losing. In this section's Exercise Set, you will see how graphs of polar equations play a role in sailing faster using mathematics.

Using Polar Grids to Graph

Polar Equations

Recall that a polar equation is an equation whose variables are r and θ. The graph of a polar
equation is the set of all points whose polar coordinates satisfy the equation. We use polar grids like the one shown in Figure 6.31 to graph polar equations. The grid consists of circles with centers at the pole. This polar grid shows five such circles. A polar grid also shows lines passing through the pole. In this grid, each line represents an angle for which we know the exact values of the trigonometric functions.

Many polar coordinate grids show more circles and more lines through the pole than in Figure 6.31. See if your campus bookstore has paper with polar grids and use the polar graph paper throughout this section.

Graphing a Polar Equation by Point Plotting

One method for graphing a polar equation such as $r=4 \cos \theta$ is the point-plotting method. First, we make a table of values that satisfy the equation. Next, we plot these ordered pairs as points in the polar coordinate system. Finally, we connect the points with a smooth curve. This often gives us a picture of all ordered pairs (r, θ) that satisfy the equation.

EXAMPLE 1 Graphing an Equation Using the Point-Plotting Method

Graph the polar equation $r=4 \cos \theta$ with θ in radians.

SOLUTION

We construct a partial table of coordinates for $r=4 \cos \theta$ using multiples of $\frac{\pi}{6}$. Then we plot the points and join them with a smooth curve, as shown in
Figure 6.32.

FIGURE 6.32 The graph of $r=4 \cos \theta$

TECHNOLOGY

A graphing utility can be used to obtain the graph of a polar equation. Use the polar mode with angle measure in radians. You must enter the minimum and maximum values for θ and an increment setting for θ, called θ step. θ step determines the number of points that the graphing utility will plot. Make θ step relatively small so that a significant number of points are plotted.

Shown is the graph of $r=4 \cos \theta$ in a $[-7.5,7.5,1]$ by $[-5,5,1]$ viewing rectangle with

$$
\begin{aligned}
\theta \min & =0 \\
\theta \max & =2 \pi \\
\theta \text { step } & =\frac{\pi}{48}
\end{aligned}
$$

A square setting was used.

$\boldsymbol{\theta}$	$\boldsymbol{r}=\mathbf{4} \cos \boldsymbol{\theta}$	$(\boldsymbol{r}, \boldsymbol{\theta})$
0	$4 \cos 0=4 \cdot 1=4$	$(4,0)$
$\frac{\pi}{6}$	$4 \cos \frac{\pi}{6}=4 \cdot \frac{\sqrt{3}}{2}=2 \sqrt{3} \approx 3.5$	$\left(3.5, \frac{\pi}{6}\right)$
$\frac{\pi}{3}$	$4 \cos \frac{\pi}{3}=4 \cdot \frac{1}{2}=2$	$\left(2, \frac{\pi}{3}\right)$
$\frac{\pi}{2}$	$4 \cos \frac{\pi}{2}=4 \cdot 0=0$	$\left(0, \frac{\pi}{2}\right)$
$\frac{2 \pi}{3}$	$4 \cos \frac{2 \pi}{3}=4\left(-\frac{1}{2}\right)=-2$	$\left(-2, \frac{2 \pi}{3}\right)$
$\frac{5 \pi}{6}$	$4 \cos \frac{5 \pi}{6}=4\left(-\frac{\sqrt{3}}{2}\right)=-2 \sqrt{3} \approx-3.5$	$\left(-3.5, \frac{5 \pi}{6}\right)$
π	$4 \cos \pi=4(-1)=-4$	$(-4, \pi)$

The points repeat.

The graph of $r=4 \cos \theta$ in Figure $\mathbf{6 . 3 2}$ looks like a circle of radius 2 whose center is at the point $(x, y)=(2,0)$. We can verify this observation by changing the polar equation to a rectangular equation.

$$
\begin{array}{rlrl}
r & =4 \cos \theta & & \text { This is the given polar equation. } \\
r^{2}=4 r \cos \theta & & \text { Multiply both sides by } r . \\
x^{2}+y^{2} & =4 x & & \text { Convert to rectangular coordinates: } \\
r^{2}=x^{2}+y^{2} \text { and } r \cos \theta=x . \\
x^{2}-4 x+y^{2}=0 & & \text { Subtract } 4 x \text { from both sides. } \\
x^{2}-4 x+4+y^{2}=4 & & \begin{array}{l}
\text { Complete the square on } x: \frac{1}{2}(-4)=-2 \\
\text { and }(-2)^{2}=4 . \text { Add } 4 \text { to both sides. } \\
(x-2)^{2}+y^{2}
\end{array}=2^{2} & \\
\text { Factor. }
\end{array}
$$

This last equation is the standard form of the equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$, with radius r and center at (h, k). Thus, the radius is 2 and the center is at $(h, k)=(2,0)$.

In general, circles have simpler equations in polar form than in rectangular form.

Circles in Polar Coordinates

The graphs of

$$
r=a \cos \theta \quad \text { and } \quad r=a \sin \theta, a>0
$$

are circles.

Check Point 1 Graph the equation $r=4 \sin \theta$ with θ in radians. Use multiples of $\frac{\pi}{6}$ from 0 to π to generate coordinates for points (r, θ).

2 Use symmetry to graph polar equations.

Graphing a Polar Equation Using Symmetry

If the graph of a polar equation exhibits symmetry, you may be able to graph it more quickly. Three types of symmetry can be helpful.

Tests for Symmetry in Polar Coordinates

Symmetry with Respect to the Polar Axis (\boldsymbol{x}-Axis)

Replace θ with $-\theta$. If an equivalent equation results, the graph is symmetric with respect to the polar axis.

Symmetry with Respect to the
Line $\theta=\frac{\pi}{2}(y$-Axis $)$

Replace (r, θ) with $(-r,-\theta)$. If an equivalent equation results, the graph is symmetric with respect to $\theta=\frac{\pi}{2}$.

Symmetry with Respect to the Pole (Origin)

Replace r with $-r$. If an equivalent equation results, the graph is symmetric with respect to the pole.

If a polar equation passes a symmetry test, then its graph exhibits that symmetry. By contrast, if a polar equation fails a symmetry test, then its graph may or may not have that kind of symmetry. Thus, the graph of a polar equation may have a symmetry even if it fails a test for that particular symmetry. Nevertheless, the symmetry tests are useful. If we detect symmetry, we can obtain a graph of the equation by plotting fewer points.

EXAMPLE 2 Graphing a Polar Equation Using Symmetry

Check for symmetry and then graph the polar equation:

$$
r=1-\cos \theta
$$

SOLUTION

We apply each of the tests for symmetry.
Polar Axis: Replace θ with $-\theta$ in $r=1-\cos \theta$:

$$
\begin{array}{ll}
r=1-\cos (-\theta) & \text { Replace } \theta \text { with }-\theta \text { in } r=1-\cos \theta . \\
r=1-\cos \theta & \text { The cosine function is even: } \cos (-\theta)=\cos \theta .
\end{array}
$$

Because the polar equation does not change when θ is replaced with $-\theta$, the graph is symmetric with respect to the polar axis.

The Line $\boldsymbol{\theta}=\frac{\boldsymbol{\pi}}{\mathbf{2}}: \quad$ Replace (r, θ) with $(-r,-\theta)$ in $r=1-\cos \theta$:

$$
\begin{aligned}
-r & =1-\cos (-\theta) & & \text { Replace } r \text { with }-r \text { and } \theta \text { with }-\theta \text { in } r=1-\cos \theta . \\
-r & =1-\cos \theta & & \cos (-\theta)=\cos \theta . \\
r & =\cos \theta-1 & & \text { Multiply both sides by }-1 .
\end{aligned}
$$

FIGURE 6.33(a) Graphing $r=1-\cos \theta$ for $0 \leq \theta \leq \pi$

FIGURE 6.33(b) A complete graph of $r=1-\cos \theta$

Because the polar equation $r=1-\cos \theta$ changes to $r=\cos \theta-1$ when (r, θ) is replaced with $(-r,-\theta)$, the equation fails this symmetry test. The graph may or may not be symmetric with respect to the line $\theta=\frac{\pi}{2}$.

The Pole: Replace r with $-r$ in $r=1-\cos \theta$:

$$
\begin{aligned}
&-r=1-\cos \theta \quad \\
& r=\operatorname{Replace} r \text { with }-r \text { in } r=1-\cos \theta \\
& \theta-1 \\
& \text { Multiply both sides by }-1 .
\end{aligned}
$$

Because the polar equation $r=1-\cos \theta$ changes to $r=\cos \theta-1$ when r is replaced with $-r$, the equation fails this symmetry test. The graph may or may not be symmetric with respect to the pole.

Now we are ready to graph $r=1-\cos \theta$. Because the period of the cosine function is 2π, we need not consider values of θ beyond 2π. Recall that we discovered the graph of the equation $r=1-\cos \theta$ has symmetry with respect to the polar axis. Because the graph has this symmetry, we can obtain a complete graph by plotting fewer points. Let's start by finding the values of r for values of θ from 0 to π.

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
\boldsymbol{r}	0	0.13	0.5	1	1.5	1.87	2

The values for r and θ are shown in the table. These values can be obtained using your calculator or possibly with the TABLE feature on some graphing calculators. The points in the table are plotted in Figure 6.33(a). Examine the graph. Keep in mind that the graph must be symmetric with respect to the polar axis. Thus, if we reflect the graph in Figure 6.33(a) about the polar axis, we will obtain a complete graph of $r=1-\cos \theta$. This graph is shown in Figure 6.33(b).

Check Point 2 Check for symmetry and then graph the polar equation:

$$
r=1+\cos \theta
$$

EXAMPLE 3 Graphing a Polar Equation

Graph the polar equation: $r=1+2 \sin \theta$.

SOLUTION

We first check for symmetry.

$$
r=1+2 \sin \theta
$$

Polar Axis	The Line $\theta=\frac{\pi}{2}$	The Pole
Replace θ with $-\theta$. $\begin{aligned} & r=1+2 \sin (-\theta) \\ & r=1+2(-\sin \theta) \\ & r=1-2 \sin \theta \end{aligned}$	Replace (r, θ) with $(-r,-\theta)$. $\begin{aligned} -r & =1+2 \sin (-\theta) \\ -r & =1-2 \sin \theta \\ r & =-1+2 \sin \theta \end{aligned}$	Replace r with $-r$. $\begin{aligned} -r & =1+2 \sin \theta \\ r & =-1-2 \sin \theta \end{aligned}$

None of these equations are equivalent to $r=1+2 \sin \theta$. Thus, the graph may or may not have each of these kinds of symmetry.

Now we are ready to graph $r=1+2 \sin \theta$. Because the period of the sine function is 2π, we need not consider values of θ beyond 2π. We identify points on the graph of $r=1+2 \sin \theta$ by assigning values to θ and calculating the corresponding values of r. The values for r and θ are in the tables above Figure 6.34(a), Figure 6.34(b), and Figure 6.34(c). The complete graph of $r=1+2 \sin \theta$ is shown in Figure 6.34(c). The inner loop indicates that the graph passes through the pole twice.

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
\boldsymbol{r}	1	2	2.73	3	2.73	2	1

$\boldsymbol{\theta}$	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$
\boldsymbol{r}	0	-0.73	-1

(a) The graph of $r=1+2 \sin \theta$ for $0 \leq \theta \leq \pi$

FIGURE 6.34 Graphing $r=1+2 \sin \theta$

(b) The graph of $r=1+2 \sin \theta$ for $0 \leq \theta \leq \frac{3 \pi}{2}$

(c) The complete graph of $r=1+2 \sin \theta$ for $0 \leq \theta \leq 2 \pi$

Although the polar equation $r=1+2 \sin \theta$ failed the test for symmetry with respect to the line $\theta=\frac{\pi}{2}$ (the y-axis), its graph in Figure 6.34(c) reveals this kind of symmetry.
We're not quite sure if the polar graph in Figure 6.34(c) looks like a snail. However, the graph is called a limaçon, pronounced "LEE-ma-sohn," which is a French word for snail. Limaçons come with and without inner loops.

Limaçons

The graphs of

$$
\begin{array}{ll}
r=a+b \sin \theta, & r=a-b \sin \theta, \\
r=a+b \cos \theta, & r=a-b \cos \theta, \quad a>0, b>0
\end{array}
$$

are called limaçons. The ratio $\frac{a}{b}$ determines a limaçon's shape.

$\$$ Check Point 3 Graph the polar equation: $r=1-2 \sin \theta$.

FIGURE 6.35 The graph of $r=4 \sin 2 \theta$ for $0 \leq \theta \leq \pi$

FIGURE 6.36 The graph of $r=4 \sin 2 \theta$ for $0 \leq \theta \leq 2 \pi$

EXAMPLE 4 Graphing a Polar Equation

Graph the polar equation: $\quad r=4 \sin 2 \theta$.

SOLUTION

We first check for symmetry.

$$
r=4 \sin 2 \theta
$$

Polar Axis	The Line $\theta=\frac{\pi}{2}$	The Pole
Replace θ with $-\theta$. $\begin{aligned} & r=4 \sin 2(-\theta) \\ & r=4 \sin (-2 \theta) \\ & r=-4 \sin 2 \theta \end{aligned}$ Equation changes and fails this symmetry test.	Replace (r, θ) with $(-r,-\theta)$. $\begin{aligned} -r & =4 \sin 2(-\theta) \\ -r & =4 \sin (-2 \theta) \\ -r & =-4 \sin 2 \theta \\ r & =4 \sin 2 \theta \end{aligned}$ Equation does not change.	Replace r with $-r$. $\begin{aligned} -r & =4 \sin 2 \theta \\ r & =-4 \sin 2 \theta \end{aligned}$ Equation changes and fails this symmetry test.

Thus, we can be sure that the graph is symmetric with respect to $\theta=\frac{\pi}{2}$. The graph may or may not be symmetric with respect to the polar axis or the pole.

Now we are ready to graph $r=4 \sin 2 \theta$. In Figure 6.35, we plot points on the graph of $r=4 \sin 2 \theta$ using values of θ from 0 to π and the corresponding values of r. These coordinates are shown in the table below.

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
\boldsymbol{r}	0	3.46	4	3.46	0	-3.46	-4	-3.46	0

Now we can use symmetry with respect to the line $\theta=\frac{\pi}{2}$ (the y-axis) to complete the graph. By reflecting the graph in Figure 6.35 about the y-axis, we obtain the complete graph of $r=4 \sin 2 \theta$ from 0 to 2π. The graph is shown in Figure 6.36.

Although the polar equation $r=4 \sin 2 \theta$ failed the tests for symmetry with respect to the polar axis (the x-axis) and the pole (the origin), its graph in Figure 6.36 reveals all three types of symmetry.
The curve in Figure 6.36 is called a rose with four petals. We can use a trigonometric equation to confirm the four angles that give the location of the petal points. The petal points of $r=4 \sin 2 \theta$ are located at values of θ for which $r=4$ or $r=-4$.

$4 \sin 2 \theta=4$	or	$4 \sin 2 \theta=-4$	Use $r=4 \sin 2 \theta$ and set r equal to 4 or -4 .
$\sin 2 \theta=1$		$\sin 2 \theta=-1$	Divide both sides by 4.
$2 \theta=\frac{\pi}{2}+2 n \pi$		$2 \theta=\frac{3 \pi}{2}+2 n \pi$	Solve for 2θ, where n is any integer.
$\theta=\frac{\pi}{4}+n \pi$		$\theta=\frac{3 \pi}{4}+n \pi$	Divide both sides by 2 and solve for θ.
$\begin{aligned} & \text { If } n=0, \theta=\frac{\pi}{4} . \\ & \text { If } n=1, \theta=\frac{5 \pi}{4} . \end{aligned}$		$\begin{aligned} & \text { If } n=0, \theta=\frac{3 \pi}{4} . \\ & \text { If } n=1, \theta=\frac{7 \pi}{4} . \end{aligned}$	

Figure 6.36 confirms that the four angles giving the locations of the petal points are $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, and $\frac{7 \pi}{4}$.

TECHNOLOGY

The graph of

$$
r=4 \sin 2 \theta
$$

was obtained using a $[-4,4,1]$ by $[-4,4,1]$ viewing rectangle and

$$
\begin{aligned}
& \theta \min =0, \quad \theta \max =2 \pi \\
& \theta \text { step }=\frac{\pi}{48} .
\end{aligned}
$$

Rose Curves

The graphs of

$$
r=a \sin n \theta \quad \text { and } \quad r=a \cos n \theta, \quad a \neq 0
$$

are called rose curves. If n is even, the rose has $2 n$ petals. If n is odd, the rose has n petals.

$$
r=a \sin 2 \theta
$$

Rose curve with 4 petals

$r=a \cos 3 \theta$
$r=a \cos 4 \theta$
$r=a \sin 5 \theta$
Rose curve with 3 petals

Rose curve with 8 petals

Rose curve with 5 petals

Φ Check Point 4 Graph the polar equation: $r=3 \cos 2 \theta$.

EXAMPLE 5 Graphing a Polar Equation

Graph the polar equation: $r^{2}=4 \sin 2 \theta$.

SOLUTION

We first check for symmetry.

$$
r^{2}=4 \sin 2 \theta
$$

Thus, we can be sure that the graph is symmetric with respect to the pole. The graph may or may not be symmetric with respect to the polar axis or the line $\theta=\frac{\pi}{2}$.

FIGURE 6.37 Graphing $r^{2}=4 \sin 2 \theta$

Now we are ready to graph $r^{2}=4 \sin 2 \theta$. In Figure 6.37(a), we plot points on the graph by using values of θ from 0 to $\frac{\pi}{2}$ and the corresponding values of r. These coordinates are shown in the table to the left of Figure 6.37(a). Notice that the points in Figure 6.37(a) are shown for $r \geq 0$. Because the graph is symmetric with respect to the pole, we can reflect the graph in Figure 6.37(a) about the pole and obtain the graph in Figure 6.37(b).

(a) The graph of $r^{2}=4 \sin 2 \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$ and $r \geq 0$

(b) Using symmetry with respect to the pole on the graph of $r^{2}=4 \sin 2 \theta$

Does Figure 6.37(b) show a complete graph of $r^{2}=4 \sin 2 \theta$ or do we need to continue graphing for angles greater than $\frac{\pi}{2}$? If θ is in quadrant II, 2θ is in quadrant III or IV, where $\sin 2 \theta$ is negative. Thus, $4 \sin 2 \theta$ is negative. However, $r^{2}=4 \sin 2 \theta$ and r^{2} cannot be negative. The same observation applies to quadrant IV. This means that there are no points on the graph in quadrants II or IV. Thus, Figure 6.37(b) shows the complete graph of $r^{2}=4 \sin 2 \theta$.

The curve in Figure 6.37(b) is shaped like a propeller and is called a lemniscate.

Lemniscates

The graphs of

$$
r^{2}=a^{2} \sin 2 \theta \quad \text { and } \quad r^{2}=a^{2} \cos 2 \theta, \quad a \neq 0
$$

are called lemniscates.
$r^{2}=a^{2} \sin 2 \theta$ is
symmetric with respect
to the pole.

$r^{2}=a^{2} \cos 2 \theta$ is symmetric with respect to the polar $\operatorname{axis}, \theta=\frac{\pi}{2}$, and the pole.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. One method for graphing a polar equation is the point-plotting method. We substitute convenient values of \qquad into the equation and then determine the values for \qquad .
2. In polar coordinates, the graphs of $r=a \cos \theta$ and $r=a \sin \theta$ are \qquad .
3. To test whether the graph of a polar equation may be symmetric with respect to the polar axis (x-axis), replace
\qquad with \qquad -.
4. To test whether the graph of a polar equation may be symmetric with respect to the line $\theta=\frac{\pi}{2}(y$-axis $)$, replace
\qquad with \qquad -.
5. To test whether the graph of a polar equation may be symmetric with respect to the pole (origin), replace
\qquad with \qquad .
6. True or false: The graph of a polar equation may have symmetry even if it fails a test for that particular symmetry. \qquad -
7. The graphs of $r=a+b \sin \theta, r=a-b \sin \theta$, $r=a+b \cos \theta$, and $r=a-b \cos \theta, a>0, b>0$, are called \qquad , a French word for snail. The ratio $\frac{a}{b}$ determines the graph's shape.
If $\frac{a}{b}=1$, the graph is shaped like a heart and called a/an \qquad If $\frac{a}{b}<1$, the graph has an inner \qquad _.
8. The graphs of $r=a \sin n \theta$ and $r=a \cos n \theta, a \neq 0$, are called rose curves. If n is even, the rose has \qquad petals. If n is odd, the rose has \qquad petals.
9. The graphs of $r^{2}=a^{2} \sin 2 \theta$ and $r=a^{2} \cos 2 \theta, a \neq 0$, are shaped like propellers and called \qquad The graph of $r^{2}=a^{2} \sin 2 \theta$ is symmetric with respect to the \qquad .The graph of $r^{2}=a^{2} \cos 2 \theta$ is symmetric with respect to the \qquad , the
\qquad , and \qquad —.

EXERCISE SET 6.4

Practice Exercises

In Exercises 1-6, the graph of a polar equation is given. Select the polar equation for each graph from the following options.

$$
\begin{aligned}
& r=2 \sin \theta, \quad r=2 \cos \theta, \quad r=1+\sin \theta \\
& r=1-\sin \theta, \quad r=3 \sin 2 \theta, \quad r=3 \sin 3 \theta
\end{aligned}
$$

1.

2.

3.

4.

In Exercises 7-12, test for symmetry with respect to
a. the polar axis.
b. the line $\theta=\frac{\pi}{2}$.
c. the pole.
7. $r=\sin \theta$
8. $r=\cos \theta$
9. $r=4+3 \cos \theta$
10. $r=2 \cos 2 \theta$
11. $r^{2}=16 \cos 2 \theta$
12. $r^{2}=16 \sin 2 \theta$

In Exercises 13-34, test for symmetry and then graph each polar equation.
13. $r=2 \cos \theta$
14. $r=2 \sin \theta$
15. $r=1-\sin \theta$
16. $r=1+\sin \theta$
17. $r=2+2 \cos \theta$
18. $r=2-2 \cos \theta$
19. $r=2+\cos \theta$
20. $r=2-\sin \theta$
21. $r=1+2 \cos \theta$
22. $r=1-2 \cos \theta$
23. $r=2-3 \sin \theta$
24. $r=2+4 \sin \theta$
25. $r=2 \cos 2 \theta$
26. $r=2 \sin 2 \theta$
27. $r=4 \sin 3 \theta$
28. $r=4 \cos 3 \theta$
29. $r^{2}=9 \cos 2 \theta$
30. $r^{2}=9 \sin 2 \theta$
31. $r=1-3 \sin \theta$
32. $r=3+\sin \theta$
33. $r \cos \theta=-3$
34. $r \sin \theta=2$

Practice Plus

In Exercises 35-44, test for symmetry and then graph each polar equation.
35. $r=\cos \frac{\theta}{2}$
36. $r=\sin \frac{\theta}{2}$
37. $r=\sin \theta+\cos \theta$
38. $r=4 \cos \theta+4 \sin \theta$
39. $r=\frac{1}{1-\cos \theta}$
40. $r=\frac{2}{1-\cos \theta}$
41. $r=\sin \theta \cos ^{2} \theta$
42. $r=\frac{3 \sin 2 \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$
43. $r=2+3 \sin 2 \theta$
44. $r=2-4 \cos 2 \theta$

Application Exercises

In Exercise Set 6.3, we considered an application in which sailboat racers look for a sailing angle to a 10-knot wind that produces maximum sailing speed. This situation is now represented by the polar graph in the figure shown. Each point (r, θ) on the graph gives the sailing speed, r, in knots, at an angle θ to the 10-knot wind. Use this information to solve Exercises 45-49.

45. What is the speed, to the nearest knot, of a sailboat sailing at a 60° angle to the wind?
46. What is the speed, to the nearest knot, of a sailboat sailing at a 120° angle to the wind?
47. What is the speed, to the nearest knot, of a sailboat sailing at a 90° angle to the wind?
48. What is the speed, to the nearest knot, of a sailboat sailing at a 180° angle to the wind?
49. What angle to the wind produces the maximum sailing speed? What is the speed? Round the angle to the nearest five degrees and the speed to the nearest half knot.

Writing in Mathematics

50. What is a polar equation?
51. What is the graph of a polar equation?
52. Describe how to graph a polar equation.
53. Describe the test for symmetry with respect to the polar axis.
54. Describe the test for symmetry with respect to the line $\theta=\frac{\pi}{2}$.
55. Describe the test for symmetry with respect to the pole.
56. If an equation fails the test for symmetry with respect to the polar axis, what can you conclude?

724 Chapter 6 Additional Topics in Trigonometry

Technology Exercises

Use the polar mode of a graphing utility with angle measure in radians to solve Exercises 57-88. Unless otherwise indicated, use $\theta \min =0, \theta \max =2 \pi$, and θ step $=\frac{\pi}{48}$. If you are not pleased with the quality of the graph, experiment with smaller values for θ step. However, if θ step is extremely small, it can take your graphing utility a long period of time to complete the graph.
57. Use a graphing utility to verify any six of your hand-drawn graphs in Exercises 13-34.

In Exercises 58-75, use a graphing utility to graph the polar equation.
58. $r=4 \cos 5 \theta$
59. $r=4 \sin 5 \theta$
60. $r=4 \cos 6 \theta$
61. $r=4 \sin 6 \theta$
62. $r=2+2 \cos \theta$
63. $r=2+2 \sin \theta$
64. $r=4+2 \cos \theta$
65. $r=4+2 \sin \theta$
66. $r=2+4 \cos \theta$
67. $r=2+4 \sin \theta$
68. $r=\frac{3}{\sin \theta}$
69. $r=\frac{3}{\cos \theta}$
70. $r=\cos \frac{3}{2} \theta$
71. $r=\cos \frac{5}{2} \theta$
72. $r=3 \sin \left(\theta+\frac{\pi}{4}\right)$
73. $r=2 \cos \left(\theta-\frac{\pi}{4}\right)$
74. $r=\frac{1}{1-\sin \theta}$
75. $r=\frac{1}{3-2 \sin \theta}$

In Exercises 76-78, find the smallest interval for θ starting with θ min $=0$ so that your graphing utility graphs the given polar equation exactly once without retracing any portion of it.
76. $r=4 \sin \theta$
77. $r=4 \sin 2 \theta$
78. $r^{2}=4 \sin 2 \theta$

In Exercises 79-82, use a graphing utility to graph each butterfly curve. Experiment with the range setting, particularly θ step, to produce a butterfly of the best possible quality.
79. $r=\cos ^{2} 5 \theta+\sin 3 \theta+0.3$
80. $r=\sin ^{4} 4 \theta+\cos 3 \theta$
81. $r=\sin ^{5} \theta+8 \sin \theta \cos ^{3} \theta$
82. $r=1.5^{\sin \theta}-2.5 \cos 4 \theta+\sin ^{7} \frac{\theta}{15} \quad$ (Use $\quad \theta \min =0 \quad$ and $\theta \max =20 \pi$.
83. Use a graphing utility to graph $r=\sin n \theta$ for $n=1,2,3,4,5$, and 6 . Use a separate viewing screen for each of the six graphs. What is the pattern for the number of loops that occur corresponding to each value of n ? What is happening to the shape of the graphs as n increases? For each graph, what is the smallest interval for θ so that the graph is traced only once?
84. Repeat Exercise 83 for $r=\cos n \theta$. Are your conclusions the same as they were in Exercise 83?
85. Use a graphing utility to graph $r=1+2 \sin n \theta$ for $n=1,2,3,4,5$, and 6 . Use a separate viewing screen for each of the six graphs. What is the pattern for the number of large and small petals that occur corresponding to each value of n ? How are the large and small petals related when n is odd and when n is even?
86. Repeat Exercise 85 for $r=1+2 \cos n \theta$. Are your conclusions the same as they were in Exercise 85?
87. Graph the spiral $r=\theta$. Use a $[-30,30,1]$ by $[-30,30,1]$ viewing rectangle. Let $\theta \min =0$ and $\theta \max =2 \pi$, then $\theta \min =0$ and $\theta \max =4 \pi$, and finally $\theta \min =0$ and θ max $=8 \pi$.
88. Graph the spiral $r=\frac{1}{\theta}$. Use a $[-1,1,1]$ by $[-1,1,1]$ viewing rectangle. Let θ min $=0$ and $\theta \max =2 \pi$, then $\theta \min =0$ and θ max $=4 \pi$, and finally θ min $=0$ and $\theta \max =8 \pi$.

Critical Thinking Exercises

Make Sense? In Exercises 89-92, determine whether each statement makes sense or does not make sense, and explain your reasoning.
89. I'm working with a polar equation that failed the symmetry test with respect to $\theta=\frac{\pi}{2}$, so my graph will not have this kind of symmetry.
90. The graph of my limaçon exhibits none of the three kinds of symmetry discussed in this section.
91. There are no points on my graph of $r^{2}=9 \cos 2 \theta$ for which $\frac{\pi}{4}<\theta<\frac{3 \pi}{4}$.
92. I'm graphing a polar equation in which for every value of θ there is exactly one corresponding value of r, yet my polar coordinate graph fails the vertical line for functions.

In Exercises 93-94, graph r_{1} and r_{2} in the same polar coordinate system. What is the relationship between the two graphs?
93. $r_{1}=4 \cos 2 \theta, r_{2}=4 \cos 2\left(\theta-\frac{\pi}{4}\right)$
94. $r_{1}=2 \sin 3 \theta, r_{2}=2 \sin 3\left(\theta+\frac{\pi}{6}\right)$
95. Describe a test for symmetry with respect to the line $\theta=\frac{\pi}{2}$ in which r is not replaced.

Preview Exercises

Exercises 96-98 will help you prepare for the material covered in the next section. Refer to Section 2.1 if you need to review the basics of complex numbers. In each exercise, perform the indicated operation and write the result in the standard form $a+b i$.
96. $(1+i)(2+2 i)$
97. $(-1+i \sqrt{3})(-1+i \sqrt{3})(-1+i \sqrt{3})$
98. $\frac{2+2 i}{1+i}$

CHAPTER 6

Mid-Chapter Check Point

WHAT YOU KNOW: We learned to solve oblique triangles using the Law of Sines $\left(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\right)$ and the Law of Cosines $\left(a^{2}=b^{2}+c^{2}-2 b c \cos A\right)$. We applied the Law of Sines to SAA, ASA, and SSA (the ambiguous case) triangles. We applied the Law of Cosines to SAS and SSS triangles. We found areas of SAS triangles (area $=\frac{1}{2} b c \sin A$) and SSS triangles (Heron's formula: area $=\sqrt{s(s-a)(s-b)(s-c)}, s$ is $\frac{1}{2}$ the perimeter). We used the polar coordinate system to plot points and represented them in multiple ways. We used the relations between polar and rectangular coordinates

$$
x=r \cos \theta, y=r \sin \theta, x^{2}+y^{2}=r^{2}, \tan \theta=\frac{y}{x}
$$

to convert points and equations from one coordinate system to the other. Finally, we used point plotting and symmetry to graph polar equations.

In Exercises 1-6, solve each triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. If no triangle exists, state "no triangle." If two triangles exist, solve each triangle.

1. $A=32^{\circ}, B=41^{\circ}, a=20$
2. $A=42^{\circ}, a=63, b=57$
3. $A=65^{\circ}, a=6, b=7$
4. $B=110^{\circ}, a=10, c=16$
5. $C=42^{\circ}, a=16, c=13$
6. $a=5.0, b=7.2, c=10.1$

In Exercises 7-8, find the area of the triangle having the given measurements. Round to the nearest square unit.
7. $C=36^{\circ}, a=5$ feet, $b=7$ feet
8. $a=7$ meters, $b=9$ meters, $c=12$ meters
9. Two trains leave a station on different tracks that make an angle of 110° with the station as vertex. The first train travels at an average rate of 50 miles per hour and the second train travels at an average rate of 40 miles per hour. How far apart, to the nearest tenth of a mile, are the trains after 2 hours?
10. Two fire-lookout stations are 16 miles apart, with station B directly east of station A. Both stations spot a fire on a mountain to the south. The bearing from station A to the fire is $\mathrm{S} 56^{\circ} \mathrm{E}$. The bearing from station B to the fire is $\mathrm{S} 23^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the fire from station A ?
11. A tree that is perpendicular to the ground sits on a straight line between two people located 420 feet apart. The angles of elevation from each person to the top of the tree measure 50° and 66°, respectively. How tall, to the nearest tenth of a foot, is the tree?

In Exercises 12-15, convert the given coordinates to the indicated ordered pair.
12. $\left(-3, \frac{5 \pi}{4}\right)$ to (x, y)
13. $\left(6,-\frac{\pi}{2}\right)$ to (x, y)
14. $(2,-2 \sqrt{3})$ to (r, θ)
15. $(-6,0)$ to (r, θ)

In Exercises 16-17, plot each point in polar coordinates. Then find another representation (r, θ) of this point in which:
a. $r>0,2 \pi<\theta<4 \pi$.
b. $r<0, \quad 0<\theta<2 \pi$.
c. $r>0,-2 \pi<\theta<0$.
16. $\left(4, \frac{3 \pi}{4}\right)$
17. $\left(\frac{5}{2}, \frac{\pi}{2}\right)$

In Exercises 18-20, convert each rectangular equation to a polar equation that expresses r in terms of θ.
18. $5 x-y=7$
19. $y=-7$
20. $(x+1)^{2}+y^{2}=1$

In Exercises 21-25, convert each polar equation to a rectangular equation. Then use your knowledge of the rectangular equation to graph the polar equation in a polar coordinate system.
21. $r=6$
22. $\theta=\frac{\pi}{3}$
23. $r=-3 \csc \theta$
24. $r=-10 \cos \theta$
25. $r=4 \sin \theta \sec ^{2} \theta$

In Exercises 26-27, test for symmetry with respect to
a. the polar axis.
b. the line $\theta=\frac{\pi}{2}$.
c. the pole.
26. $r=1-4 \cos \theta$
27. $r^{2}=4 \cos 2 \theta$

In Exercises 28-32, graph each polar equation. Be sure to test for symmetry.
28. $r=-4 \sin \theta$
29. $r=2-2 \cos \theta$
30. $r=2-4 \cos \theta$
31. $r=2 \sin 3 \theta$
32. $r^{2}=16 \sin 2 \theta$

SECTION 6.5

Objectives

(1) Plot complex numbers in the complex plane.
(2) Find the absolute value of a complex number.
(3) Write complex numbers in polar form.
(4) Convert a complex number from polar to rectangular form.
(5) Find products of complex numbers in polar form.
(6) Find quotients of complex numbers in polar form.
(7) Find powers of complex numbers in polar form.
8 Find roots of complex numbers in polar form.

Plot complex numbers in the complex plane.

A magnification of the Mandelbrot set

One of the new frontiers of mathematics suggests that there is an underlying order in things that appear to be random, such as the hiss and crackle of background noises as you tune a radio. Irregularities in the heartbeat, some of them severe enough to cause a heart attack, or irregularities in our sleeping patterns, such as insomnia, are
examples of chaotic behavior.
Chaos in the mathematical sense does not mean a complete lack of form or arrangement. In mathematics, chaos is used to describe something that appears to be random but is not actually random. The patterns of chaos appear in images like the one shown here, called the Mandelbrot set. Magnified portions of this image yield repetitions of the original structure, as well as new and unexpected patterns. The Mandelbrot set transforms the hidden structure of chaotic events into a source of wonder and inspiration.

The Mandelbrot set is made possible by opening up graphing to include complex numbers in the form $a+b i$, where $i=\sqrt{-1}$. In this section, you will learn how to graph complex numbers and write them in terms of trigonometric functions.

The Complex Plane

We know that a real number can be represented as a point on a number line. By contrast, a complex number $z=a+b i$ is represented as a point (a, b) in a coordinate plane, as shown in Figure 6.38. The horizontal axis of the coordinate plane is called the real axis. The vertical axis is called the imaginary axis. The coordinate system is called the complex plane. Every complex number corresponds to a point in the complex plane and every point in the complex plane corresponds to a complex number. When we represent a complex number as a point in the complex plane, we say that we are plotting the complex number.

FIGURE 6.38 Plotting $z=a+b i$ in the complex plane

FIGURE 6.39 Plotting complex numbers

EXAMPLE 1 Plotting Complex Numbers

Plot each complex number in the complex plane:
a. $z=3+4 i$
b. $z=-1-2 i$
c. $z=-3$
d. $z=-4 i$.

SOLUTION

See Figure 6.39.

a. We plot the complex number $z=3+4 i$ the same way we plot $(3,4)$ in the rectangular coordinate system. We move three units to the right on the real axis and four units up parallel to the imaginary axis.
b. The complex number $z=-1-2 i$ corresponds to the point $(-1,-2)$ in the rectangular coordinate system. Plot the complex number by moving one unit to the left on the real axis and two units down parallel to the imaginary axis.
c. Because $z=-3=-3+0 i$, this complex number corresponds to the point $(-3,0)$. We plot -3 by moving three units to the left on the real axis.
d. Because $z=-4 i=0-4 i$, this number corresponds to the point $(0,-4)$. We plot the complex number by moving four units down on the imaginary axis.

W Check Point 1 Plot each complex number in the complex plane:
a. $z=2+3 i$
b. $z=-3-5 i$
c. $z=-4$
d. $z=-i$.

Recall that the absolute value of a real number is its distance from 0 on a number line. The absolute value of the complex number $z=a+b i$, denoted by $|z|$, is the distance from the origin to the point z in the complex plane. Figure 6.40 illustrates that we can use the Pythagorean Theorem to represent $|z|$ in terms of a and b : $|z|=\sqrt{a^{2}+b^{2}}$.

The Absolute Value of a Complex Number

The absolute value of the complex number $a+b i$ is

$$
|z|=|a+b i|=\sqrt{a^{2}+b^{2}} .
$$

EXAMPLE 2 Finding the Absolute Value of a Complex Number

Determine the absolute value of each of the following complex numbers:
a. $z=3+4 i$
b. $z=-1-2 i$.

SOLUTION

a. The absolute value of $z=3+4 i$ is found using $a=3$ and $b=4$.

$$
\begin{aligned}
|z|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \quad & \text { Use }|z|=\sqrt{a^{2}+b^{2}} \text { with } \\
& a=3 \text { and } b=4 .
\end{aligned}
$$

Thus, the distance from the origin to the point $z=3+4 i$, shown in quadrant I in Figure 6.41, is five units.
b. The absolute value of $z=-1-2 i$ is found using $a=-1$ and $b=-2$.

$$
|z|=\sqrt{(-1)^{2}+(-2)^{2}}=\sqrt{1+4}=\sqrt{5} \quad \begin{aligned}
& \text { Use }|z|=\sqrt{a^{2}+b^{2}} \\
& \text { with } a=-1 \text { and } b=-2 .
\end{aligned}
$$

Thus, the distance from the origin to the point $z=-1-2 i$, shown in quadrant III in Figure 6.41, is $\sqrt{5}$ units.

FIGURE 6.42

Polar Form of a Complex Number

A complex number in the form $z=a+b i$ is said to be in rectangular form. Suppose that its absolute value is r. In Figure 6.42, we let θ be an angle in standard position whose terminal side passes through the point (a, b). From the figure, we see that

$$
r=\sqrt{a^{2}+b^{2}}
$$

Likewise, according to the definitions of the trigonometric functions,

$$
\begin{aligned}
\cos \theta & =\frac{a}{r} & \sin \theta & =\frac{b}{r} \\
a & =r \cos \theta & b & =r \sin \theta
\end{aligned}
$$

By substituting the expressions for a and b into $z=a+b i$, we write the complex number in terms of trigonometric functions.

$$
\begin{gathered}
z=a+b i=r \cos \theta+(r \sin \theta) i=r(\cos \theta+i \sin \theta) \\
a=r \cos \theta \text { and } b=r \sin \theta . \quad \begin{array}{c}
\text { Factor out } r \text { from each } \\
\text { of the two previous terms. }
\end{array}
\end{gathered}
$$

The expression $z=r(\cos \theta+i \sin \theta)$ is called the polar form of a complex number.

Polar Form of a Complex Number

The complex number $z=a+b i$ is written in polar form as

$$
z=r(\cos \theta+i \sin \theta),
$$

where $a=r \cos \theta, b=r \sin \theta, r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=\frac{b}{a}$. The value of r is called the modulus (plural: moduli) of the complex number z and the angle θ is called the argument of the complex number z with $0 \leq \theta<2 \pi$.

EXAMPLE 3 Writing a Complex Number in Polar Form

Plot $z=-2-2 i$ in the complex plane. Then write z in polar form.

SOLUTION

The complex number $z=-2-2 i$ is in rectangular form $z=a+b i$, with $a=-2$ and $b=-2$. We plot the number by moving two units to the left on the real axis and two units down parallel to the imaginary axis, as shown in Figure 6.43.

By definition, the polar form of z is $r(\cos \theta+i \sin \theta)$. We need to determine the value for r, the modulus, and the value for θ, the argument. Figure $\mathbf{6 . 4 3}$ shows r and θ. We use $r=\sqrt{a^{2}+b^{2}}$ with $a=-2$ and $b=-2$ to find r.

$$
r=\sqrt{a^{2}+b^{2}}=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=\sqrt{4 \cdot 2}=2 \sqrt{2}
$$

We use $\tan \theta=\frac{b}{a}$ with $a=-2$ and $b=-2$ to find θ.

$$
\tan \theta=\frac{b}{a}=\frac{-2}{-2}=1
$$

We know that $\tan \frac{\pi}{4}=1$. Figure 6.43 shows that the argument, θ, satisfying $\tan \theta=1$ lies in quadrant III. Thus,

$$
\theta=\pi+\frac{\pi}{4}=\frac{4 \pi}{4}+\frac{\pi}{4}=\frac{5 \pi}{4} .
$$

We use $r=2 \sqrt{2}$ and $\theta=\frac{5 \pi}{4}$ to write the polar form. The polar form of $z=-2-2 i$ is

$$
z=r(\cos \theta+i \sin \theta)=2 \sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)
$$

Check Point 3 Plot $z=-1-i \sqrt{ } 3$ in the complex plane. Then write z in polar form. Express the argument in radians. (We write $-1-i \sqrt{3}$, rather than $-1-\sqrt{3} i$, which could easily be confused with $-1-\sqrt{3 i}$.)

Convert a complex number from polar to rectangular form.

5 Find products of complex numbers in polar form.

EXAMPLE 4 Writing a Complex Number in Rectangular Form

Write $z=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ in rectangular form.

SOLUTION

The complex number $z=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ is in polar form, with $r=2$ and $\theta=60^{\circ}$. We use exact values for $\cos 60^{\circ}$ and $\sin 60^{\circ}$ to write the number in rectangular form.

$$
2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=1+i \sqrt{3}
$$

The rectangular form of $z=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ is Write i before the

$$
z=1+i \sqrt{3}
$$

\oint Check Point 4 Write $z=4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ in rectangular form.

Products and Quotients in Polar Form

We can multiply and divide complex numbers fairly quickly if the numbers are expressed in polar form.

Product of Two Complex Numbers in Polar Form

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form. Their product, $z_{1} z_{2}$, is

$$
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

To multiply two complex numbers, multiply moduli and add arguments.

To prove that $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$ we begin by multiplying z_{1} and z_{2} using the FOIL method. Then we simplify the product using the sum formulas for sine and cosine.

$$
z_{1} z_{2}=\left[r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right]\left[r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right]
$$

$$
=r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \quad \text { Rearrange factors. }
$$

$$
\begin{array}{lll}
& \\
=r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}+i^{2} \sin \theta_{1} \sin \theta_{2}\right) & \text { Use the FOIL method. } \\
=r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}+i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right)+i^{2} \sin \theta_{1} \sin \theta_{2}\right] & \text { Factor } i \text { from the second and third terms. } \\
=r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}+i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right)-\sin \theta_{1} \sin \theta_{2}\right] & i^{2}=-1 \\
=r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] & \text { Rearrange terms. }
\end{array}
$$

$$
\text { This is } \cos \left(\theta_{1}+\theta_{2}\right) . \quad \text { This is } \sin \left(\theta_{1}+\theta_{2}\right)
$$

$$
=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

This result gives a rule for finding the product of two complex numbers in polar form. The two parts to the rule are shown in the following voice balloons.

$$
\begin{gathered}
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
\text { Multiply moduli. } \quad \text { Add arguments. }
\end{gathered}
$$

EXAMPLE 5 Finding Products of Complex Numbers in Polar Form

Find the product of the complex numbers. Leave the answer in polar form.

$$
z_{1}=4\left(\cos 50^{\circ}+i \sin 50^{\circ}\right) \quad z_{2}=7\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)
$$

SOLUTION
$z_{1} z_{2}$

$$
\begin{array}{ll}
=\left[4\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)\right]\left[7\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)\right] & \begin{array}{l}
\text { Form the product of the given } \\
\text { numbers. }
\end{array} \\
=(4 \cdot 7)\left[\cos \left(50^{\circ}+100^{\circ}\right)+i \sin \left(50^{\circ}+100^{\circ}\right)\right] & \begin{array}{l}
\text { Multiply moduli and add } \\
\text { arguments. }
\end{array} \\
=28\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) & \begin{array}{l}
\text { Simplify. }
\end{array}
\end{array}
$$

$\$$ Check Point 5 Find the product of the complex numbers. Leave the answer in polar form.

$$
z_{1}=6\left(\cos 40^{\circ}+i \sin 40^{\circ}\right) \quad z_{2}=5\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)
$$

6 Find quotients of complex numbers in polar form.

Using algebraic methods for dividing complex numbers and the difference formulas for sine and cosine, we can obtain a rule for dividing complex numbers in polar form. The proof of this rule can be found in the appendix. You can derive the rule on your own by working Exercise 110 in this section's Exercise Set.

Quotient of Two Complex Numbers in Polar Form

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form. Their quotient, $\frac{z_{1}}{z_{2}}$, is

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
$$

To divide two complex numbers, divide moduli and subtract arguments.

EXAMPLE 6 Finding Quotients of Complex Numbers in Polar Form

Find the quotient $\frac{z_{1}}{z_{2}}$ of the complex numbers. Leave the answer in polar form.

$$
z_{1}=12\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \quad z_{2}=4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

$$
\begin{aligned}
& \text { SOLUTION } \\
& \begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{12\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)}{4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)} \\
& =\frac{12}{4}\left[\cos \left(\frac{3 \pi}{4}-\frac{\pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}-\frac{\pi}{4}\right)\right] \quad \text { Divide moduli and subtract arguments. } \\
& =3\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \quad
\end{aligned} \quad \text { Simplify: } \frac{3 \pi}{4}-\frac{\pi}{4}=\frac{2 \pi}{4}=\frac{\pi}{2} .
\end{aligned}
$$

(7) Find powers of complex numbers in polar form.

Powers of Complex Numbers in Polar Form

We can use a formula to find powers of complex numbers if the complex numbers are expressed in polar form. This formula can be illustrated by repeatedly multiplying by $r(\cos \theta+i \sin \theta)$.

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
z \cdot z & =r(\cos \theta+i \sin \theta) r(\cos \theta+i \sin \theta) \\
z^{2} & =r^{2}(\cos 2 \theta+i \sin 2 \theta) \\
z^{2} \cdot z & =r^{2}(\cos 2 \theta+i \sin 2 \theta) r(\cos \theta+i \sin \theta) \\
z^{3} & =r^{3}(\cos 3 \theta+i \sin 3 \theta) \\
z^{3} \cdot z & =r^{3}(\cos 3 \theta+i \sin 3 \theta) r(\cos \theta+i \sin \theta) \\
z^{4} & =r^{4}(\cos 4 \theta+i \sin 4 \theta)
\end{aligned}
$$

$$
\text { Start with } z .
$$

$$
\text { Multiply } z \text { by } z=r(\cos \theta+i \sin \theta) \text {. }
$$

$$
\text { Multiply moduli: } r \cdot r=r^{2} \text {. Add }
$$

$$
\text { arguments: } \theta+\theta=2 \theta \text {. }
$$

$$
\text { Multiply } z^{2} \text { by } z=r(\cos \theta+i \sin \theta) \text {. }
$$

$$
\text { Multiply moduli: } r^{2} \cdot r=r^{3} \text {. Add }
$$

$$
\text { arguments: } 2 \theta+\theta=3 \theta \text {. }
$$

$$
\text { Multiply } z^{3} \text { by } z=r(\cos \theta+i \sin \theta) \text {. }
$$

Multiply moduli: $r^{3} \cdot r=r^{4}$. Add arguments: $3 \theta+\theta=4 \theta$.

Do you see a pattern forming? If n is a positive integer, it appears that z^{n} is obtained by raising the modulus to the nth power and multiplying the argument by n. The formula for the nth power of a complex number is known as DeMoivre's Theorem in honor of the French mathematician Abraham DeMoivre (1667-1754).

DeMoivre's Theorem

Let $z=r(\cos \theta+i \sin \theta)$ be a complex number in polar form. If n is a positive integer, then z to the nth power, z^{n}, is

$$
z^{n}=[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta) .
$$

FIGURE 6.44 Plotting $1+i$ and writing the number in polar form

EXAMPLE 7 Finding the Power of a Complex Number

Find $\left[2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right]^{6}$. Write the answer in rectangular form, $a+b i$.

SOLUTION

We begin by applying DeMoivre's Theorem.

$$
\begin{aligned}
{\left[2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right]^{6} } & \\
=2^{6}\left[\cos \left(6 \cdot 20^{\circ}\right)+i \sin \left(6 \cdot 20^{\circ}\right)\right] & \begin{array}{l}
\text { Raise the modulus to the } 6 \text { th power } \\
\text { and multiply the argument by } 6 .
\end{array} \\
=64\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) & \\
=64\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) & \text { Simplify. } \\
=-32+32 i \sqrt{3} & \begin{array}{l}
\text { Wulte the answer in rectangular form. } \\
\text { in } a+\text { bi form. }
\end{array}
\end{aligned}
$$

5 Check Point 7 Find $\left[2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]^{5}$. Write the answer in rectangular form.

EXAMPLE 8 Finding the Power of a Complex Number

Find $(1+i)^{8}$ using DeMoivre's Theorem. Write the answer in rectangular form, $a+b i$.

SOLUTION

DeMoivre's Theorem applies to complex numbers in polar form. Thus, we must first write $1+i$ in $r(\cos \theta+i \sin \theta)$ form. Then we can use DeMoivre's Theorem. The complex number $1+i$ is plotted in Figure 6.44. From the figure, we obtain values for r and θ.

$$
\begin{gathered}
r=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
\tan \theta=\frac{b}{a}=\frac{1}{1}=1 \text { and } \theta=\frac{\pi}{4} \text { because } \theta \text { lies in quadrant } \mathrm{I} .
\end{gathered}
$$

Using these values,

$$
1+i=r(\cos \theta+i \sin \theta)=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

Now we use DeMoivre's Theorem to raise $1+i$ to the 8th power.

$$
\begin{array}{ll}
(1+i)^{8} & \\
=\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{8} & \\
=(\sqrt{2})^{8}\left[\cos \left(8 \cdot \frac{\pi}{4}\right)+i \sin \left(8 \cdot \frac{\pi}{4}\right)\right] & \begin{array}{l}
\text { Work with the polar form of } 1+i . \\
\text { Aply DeMoivre's Theorem. Raise the } \\
\text { modulus to the 8th power and } \\
\text { multiply the argument by } 8 .
\end{array} \\
=16(\cos 2 \pi+i \sin 2 \pi) & \begin{array}{l}
\text { Simplify: }(\sqrt{2})^{8}=\left(2^{1 / 2}\right)^{8}=2^{4}=16 . \\
=16(1+0 i) \\
=16 \text { or } 16+0 i
\end{array} \\
\cos 2 \pi=1 \text { and } \sin 2 \pi=0 . \\
\text { Simplify. }
\end{array}
$$

Check Point 8 Find $(1+i)^{4}$ using DeMoivre's Theorem. Write the answer in rectangular form.

8 Find roots of complex numbers in polar form.

Roots of Complex Numbers in Polar Form

In Example 7, we showed that

$$
\left[2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right]^{6}=64\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) .
$$

We say that $2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$ is a complex sixth root of $64\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$. It is one of six distinct complex sixth roots of $64\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$.

In general, if a complex number z satisfies the equation

$$
z^{n}=w,
$$

we say that z is a complex \boldsymbol{n} th root of w. It is one of n distinct nth complex roots that can be found using the following theorem:

DeMoivre's Theorem for Finding Complex Roots

Let $w=r(\cos \theta+i \sin \theta)$ be a complex number in polar form. If $w \neq 0, w$ has n distinct complex nth roots given by the formula

$$
\begin{aligned}
z_{k} & =\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right] \quad \text { (radians) } \\
\text { or } \quad z_{k} & =\sqrt[n]{r}\left[\cos \left(\frac{\theta+360^{\circ} k}{n}\right)+i \sin \left(\frac{\theta+360^{\circ} k}{n}\right)\right] \text { (degrees), }
\end{aligned}
$$

where $k=0,1,2, \ldots, n-1$.

By raising the radian or degree formula for z_{k} to the nth power, you can use DeMoivre's Theorem for powers to show that $z_{k}^{n}=w$. Thus, each z_{k} is a complex nth root of w.

DeMoivre's Theorem for finding complex roots states that every complex number has two distinct complex square roots, three distinct complex cube roots, four distinct complex fourth roots, and so on. Each root has the same modulus, $\sqrt[n]{r}$. Successive roots have arguments that differ by the same amount, $\frac{2 \pi}{n}$ or $\frac{360^{\circ}}{n}$. This means that if you plot all the complex roots of any number, they will be equally spaced on a circle centered at the origin, with radius $\sqrt[n]{r}$.

EXAMPLE 9 Finding the Roots of a Complex Number

Find all the complex fourth roots of $16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$. Write roots in polar form, with θ in degrees.

SOLUTION

There are exactly four fourth roots of the given complex number. From DeMoivre's Theorem for finding complex roots, the fourth roots of $16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$ are

$$
\begin{gathered}
z_{k}=\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} k}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} k}{4}\right)\right], k=0,1,2,3 . \\
\\
\begin{array}{c}
\text { Use } z_{k}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+360^{\circ} k}{n}\right)+i \sin \left(\frac{\theta+360^{\circ} k}{n}\right)\right] . \\
\text { In } 16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right), r=16 \text { and } \theta=120^{\circ} . \\
\text { Because we are finding fourth roots, } n=4 .
\end{array}
\end{gathered}
$$

The four fourth roots are found by substituting $0,1,2$, and 3 for k in the expression for z_{k}, repeated in the margin. Thus, the four complex fourth roots are as follows:
$z_{k}=\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} k}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} k}{4}\right)\right] \quad z_{0}=\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} \cdot 0}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} \cdot 0}{4}\right)\right]$
The formula for the four fourth roots of $16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right), k=0,1,2,3$ (repeated)

$$
\begin{aligned}
& =\sqrt[4]{16}\left(\cos \frac{120^{\circ}}{4}+i \sin \frac{120^{\circ}}{4}\right)=2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) \\
z_{1} & =\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} \cdot 1}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} \cdot 1}{4}\right)\right] \\
& =\sqrt[4]{16}\left(\cos \frac{480^{\circ}}{4}+i \sin \frac{480^{\circ}}{4}\right)=2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) \\
z_{2} & =\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} \cdot 2}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} \cdot 2}{4}\right)\right] \\
& =\sqrt[4]{16}\left(\cos \frac{840^{\circ}}{4}+i \sin \frac{840^{\circ}}{4}\right)=2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right) \\
z_{3} & =\sqrt[4]{16}\left[\cos \left(\frac{120^{\circ}+360^{\circ} \cdot 3}{4}\right)+i \sin \left(\frac{120^{\circ}+360^{\circ} \cdot 3}{4}\right)\right] \\
& =\sqrt[4]{16}\left(\cos \frac{1200^{\circ}}{4}+i \sin \frac{1200^{\circ}}{4}\right)=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) .
\end{aligned}
$$

In Figure 6.45, we have plotted each of the four fourth roots of $16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$. Notice that they are equally spaced at 90° intervals on a circle with radius 2.

FIGURE 6.45 Plotting the four fourth roots of $16\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$

5 Check Point 9 Find all the complex fourth roots of $16\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$. Write roots in polar form, with θ in degrees.

EXAMPLE 10 Finding the Roots of a Complex Number

Find all the cube roots of 8 . Write roots in rectangular form.

SOLUTION

DeMoivre's Theorem for roots applies to complex numbers in polar form. Thus, we will first write 8 , or $8+0 i$, in polar form. We express θ in radians, although degrees could also be used.

$$
8=r(\cos \theta+i \sin \theta)=8(\cos 0+i \sin 0)
$$

There are exactly three cube roots of 8 . From DeMoivre's Theorem for finding complex roots, the cube roots of 8 are

$$
\begin{gathered}
z_{k}=\sqrt[3]{8}\left[\cos \left(\frac{0+2 \pi k}{3}\right)+i \sin \left(\frac{0+2 \pi k}{3}\right)\right], k=0,1,2 . \\
\text { Use } z_{k}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right] . \\
\text { In } 8(\cos 0+i \sin 0), r=8 \text { and } \theta=0 . \\
\text { Because we are finding cube roots, } n=3 .
\end{gathered}
$$

The three cube roots of 8 are found by substituting 0,1 , and 2 for k in the expression for z_{k} above the voice balloon. Thus, the three cube roots of 8 are

Use DeMoivre's Theorem to cube $-1+i \sqrt{3}$ or $-1-i \sqrt{3}$ and obtain 8.
FIGURE 6.46 The three cube roots of 8 are equally spaced at intervals of $\frac{2 \pi}{3}$ on a circle with radius 2.

DISCOVERY

$$
\begin{aligned}
z_{0} & =\sqrt[3]{8}\left[\cos \left(\frac{0+2 \pi \cdot 0}{3}\right)+i \sin \left(\frac{0+2 \pi \cdot 0}{3}\right)\right] \\
& =2(\cos 0+i \sin 0)=2(1+i \cdot 0)=2 \\
z_{1} & =\sqrt[3]{8}\left[\cos \left(\frac{0+2 \pi \cdot 1}{3}\right)+i \sin \left(\frac{0+2 \pi \cdot 1}{3}\right)\right] \\
& =2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)=2\left(-\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right)=-1+i \sqrt{3} \\
z_{2} & =\sqrt[3]{8}\left[\cos \left(\frac{0+2 \pi \cdot 2}{3}\right)+i \sin \left(\frac{0+2 \pi \cdot 2}{3}\right)\right] \\
& =2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)=2\left(-\frac{1}{2}+i \cdot\left(-\frac{\sqrt{3}}{2}\right)\right)=-1-i \sqrt{3} .
\end{aligned}
$$

The three cube roots of 8 are plotted in Figure 6.46.
$\$$ Check Point 10 Find all the cube roots of 27. Write roots in rectangular form.

Blitzer Bonus || The Mandelbrot Set

FIGURE 6.47

The set of all complex numbers for which the sequence

$$
z, z^{2}+z,\left(z^{2}+z\right)^{2}+z,\left[\left(z^{2}+z\right)^{2}+z\right]^{2}+z, \ldots
$$

is bounded is called the Mandelbrot set. Plotting these complex numbers in the complex plane results in a graph that is "buglike" in shape, shown in Figure 6.47. Colors can be added to the boundary of the graph. At the boundary, color choices depend on how quickly the numbers in the boundary approach infinity when substituted into the sequence shown. The magnified boundary is shown in the introduction to this section. It includes the original buglike structure, as well as new and interesting patterns. With each level of magnification, repetition and unpredictable formations interact to create what has been called the most complicated mathematical object ever known.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. In the complex plane, the horizontal axis is called the \qquad axis and the vertical axis is called the \qquad axis.
2. The value $\sqrt{a^{2}+b^{2}}$ is the \qquad of the complex number $a+b i$.
3. In the polar form of a complex number,
$r(\cos \theta+i \sin \theta), r$ is called the \qquad and θ is called the \qquad , $0 \leq \theta<2 \pi$.
4. To convert a complex number from rectangular form, $z=a+b i$, to polar form, $z=r(\cos \theta+i \sin \theta)$, we use the relationships $r=$ \qquad and $\tan \theta=$ \qquad noting the quadrant in which the graph of z lies.
5. $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)=$
\qquad
The product of two complex numbers in polar form is found by \qquad their moduli and \qquad their arguments.
6. $\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}$

$$
=
$$

\qquad [$\cos ($ \qquad $+i \sin$ \qquad
The quotient of two complex numbers in polar form is found by \qquad their moduli and \qquad their arguments.
7. DeMoivre's Theorem states that

$$
[r(\cos \theta+i \sin \theta)]^{n}
$$

$$
=
$$

\qquad (cos \qquad $+i \sin$ \qquad).
8. Every nonzero complex number has \qquad distinct complex nth roots.

EXERCISE SET 6.5

Practice Exercises

In Exercises 1-10, plot each complex number and find its absolute value.

1. $z=4 i$
2. $z=3 i$
3. $z=3$
4. $z=4$
5. $z=3+2 i$
6. $z=2+5 i$
7. $z=3-i$
8. $z=4-i$
9. $z=-3+4 i$
10. $z=-3-4 i$

In Exercises 11-26, plot each complex number. Then write the complex number in polar form. You may express the argument in degrees or radians.
11. $2+2 i$
12. $1+i \sqrt{3}$
13. $-1-i$
14. $2-2 i$
15. $-4 i$
16. $-3 i$
17. $2 \sqrt{3}-2 i$
18. $-2+2 i \sqrt{3}$
19. -3
20. -4
21. $-3 \sqrt{2}-3 i \sqrt{3}$
22. $3 \sqrt{2}-3 i \sqrt{2}$
23. $-3+4 i$
24. $-2+3 i$
25. $2-i \sqrt{3}$
26. $1-i \sqrt{5}$

In Exercises 27-36, write each complex number in rectangular form. If necessary, round to the nearest tenth.
27. $6\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
28. $12\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
29. $4\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)$
30. $10\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
31. $8\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$
32. $4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
33. $5\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
34. $7\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$
35. $20\left(\cos 205^{\circ}+i \sin 205^{\circ}\right)$
36. $30(\cos 2.3+i \sin 2.3)$

In Exercises 37-44, find the product of the complex numbers. Leave answers in polar form.
37. $z_{1}=6\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$
$z_{2}=5\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$
38. $z_{1}=4\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)$
$z_{2}=7\left(\cos 25^{\circ}+i \sin 25^{\circ}\right)$
39. $z_{1}=3\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)$
$z_{2}=4\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$
40. $z_{1}=3\left(\cos \frac{5 \pi}{8}+i \sin \frac{5 \pi}{8}\right)$
$z_{2}=10\left(\cos \frac{\pi}{16}+i \sin \frac{\pi}{16}\right)$
41. $z_{1}=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
42. $z_{1}=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$
$z_{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$
$z_{2}=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
43. $z_{1}=1+i$
$z_{2}=-1+i$
44. $z_{1}=1+i$
$z_{2}=2+2 i$

In Exercises 45-52, find the quotient $\frac{z_{1}}{z_{2}}$ of the complex numbers. Leave answers in polar form. In Exercises 49-50, express the argument as an angle between 0° and 360°.
45. $z_{1}=20\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)$
$z_{2}=4\left(\cos 25^{\circ}+i \sin 25^{\circ}\right)$
46. $z_{1}=50\left(\cos 80^{\circ}+i \sin 80^{\circ}\right)$ $z_{2}=10\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$
47. $z_{1}=3\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)$ $z_{2}=4\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$
48. $z_{1}=3\left(\cos \frac{5 \pi}{18}+i \sin \frac{5 \pi}{18}\right)$ $z_{2}=10\left(\cos \frac{\pi}{16}+i \sin \frac{\pi}{16}\right)$
49. $z_{1}=\cos 80^{\circ}+i \sin 80^{\circ}$ $z_{2}=\cos 200^{\circ}+i \sin 200^{\circ}$
50. $z_{1}=\cos 70^{\circ}+i \sin 70^{\circ}$
$z_{2}=\cos 230^{\circ}+i \sin 230^{\circ}$
51. $z_{1}=2+2 i$
$z_{2}=1+i$
52. $z_{1}=2-2 i$
$z_{2}=1-i$
In Exercises 53-64, use DeMoivre's Theorem to find the indicated power of the complex number. Write answers in rectangular form.
53. $\left[4\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)\right]^{3}$
54. $\left[2\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)\right]^{3}$
55. $\left[2\left(\cos 80^{\circ}+i \sin 80^{\circ}\right)\right]^{3}$
56. $\left[2\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)\right]^{3}$
57. $\left[\frac{1}{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\right]^{6}$
58. $\left[\frac{1}{2}\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)\right]^{5}$
59. $\left[\sqrt{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)\right]^{4}$
60. $\left[\sqrt{3}\left(\cos \frac{5 \pi}{18}+i \sin \frac{5 \pi}{18}\right)\right]^{6}$
61. $(1+i)^{5}$
62. $(1-i)^{5}$
63. $(\sqrt{3}-i)^{6}$
64. $(\sqrt{2}-i)^{4}$

In Exercises 65-68, find all the complex roots. Write roots in polar form with θ in degrees.
65. The complex square roots of $9\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
66. The complex square roots of $25\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
67. The complex cube roots of $8\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
68. The complex cube roots of $27\left(\cos 306^{\circ}+i \sin 306^{\circ}\right)$

In Exercises 69-76, find all the complex roots. Write roots in rectangular form. If necessary, round to the nearest tenth.
69. The complex fourth roots of $81\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$
70. The complex fifth roots of $32\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$
71. The complex fifth roots of 32
72. The complex sixth roots of 64
73. The complex cube roots of 1
74. The complex cube roots of i
75. The complex fourth roots of $1+i$
76. The complex fifth roots of $-1+i$

Practice Plus

In Exercises 77-80, convert to polar form and then perform the indicated operations. Express answers in polar and rectangular form.
77. $i(2+2 i)(-\sqrt{3}+i)$
78. $(1+i)(1-i \sqrt{3})(-\sqrt{3}+i)$
79. $\frac{(1+i \sqrt{3})(1-i)}{2 \sqrt{3}-2 i}$
80. $\frac{(-1+i \sqrt{3})(2-2 i \sqrt{3})}{4 \sqrt{3}-4 i}$

In Exercises 81-86, solve each equation in the complex number system. Express solutions in polar and rectangular form.
81. $x^{6}-1=0$
82. $x^{6}+1=0$
83. $x^{4}+16 i=0$
84. $x^{5}-32 i=0$
85. $x^{3}-(1+i \sqrt{3})=0$
86. $x^{3}-(1-i \sqrt{3})=0$

In calculus, it can be shown that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

In Exercises 87-90, use this result to plot each complex number.
87. $e^{\frac{\pi i}{4}}$
88. $e^{\frac{\pi i}{6}}$
89. $-e^{-\pi i}$
90. $-2 e^{-2 \pi i}$

Application Exercises

In Exercises 91-92, show that the given complex number z plots as a point in the Mandelbrot set.
a. Write the first six terms of the sequence

$$
z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, \ldots
$$

where
$z_{1}=z$: Write the given number.
$z_{2}=z^{2}+z$: Square z_{1} and add the given number.
$z_{3}=\left(z^{2}+z\right)^{2}+z$: Square z_{2} and add the given number.
$z_{4}=\left[\left(z^{2}+z\right)^{2}+z\right]^{2}+z$: Square z_{3} and add the given
number.
z_{5} : Square z_{4} and add the given number.
z_{6} : Square z_{5} and add the given number.
b. If the sequence that you began writing in part (a) is bounded, the given complex number belongs to the Mandelbrot set. Show that the sequence is bounded by writing two complex numbers. One complex number should be greater in absolute value than the absolute values of the terms in the sequence. The second complex number should be less in absolute value than the absolute values of the terms in the sequence.
91. $z=i$
92. $z=-i$

Writing in Mathematics

93. Explain how to plot a complex number in the complex plane. Provide an example with your explanation.
94. How do you determine the absolute value of a complex number?
95. What is the polar form of a complex number?
96. If you are given a complex number in rectangular form, how do you write it in polar form?
97. If you are given a complex number in polar form, how do you write it in rectangular form?
98. Explain how to find the product of two complex numbers in polar form.
99. Explain how to find the quotient of two complex numbers in polar form.
100. Explain how to find the power of a complex number in polar form.
101. Explain how to use DeMoivre's Theorem for finding complex roots to find the two square roots of 9 .
102. Describe the graph of all complex numbers with an absolute value of 6 .
103. The image of the Mandelbrot set in the section opener exhibits self-similarity: Magnified portions repeat much of the pattern of the whole structure, as well as new and unexpected patterns. Describe an object in nature that exhibits self-similarity.

Technology Exercises

104. Use the rectangular-to-polar feature on a graphing utility to verify any four of your answers in Exercises $11-26$. Be aware that you may have to adjust the angle for the correct quadrant.
105. Use the polar-to-rectangular feature on a graphing utility to verify any four of your answers in Exercises 27-36.

Critical Thinking Exercises

Make Sense? In Exercises 106-109, determine whether each statement makes sense or does not make sense, and explain your reasoning.
106. A complex number $a+b i$ can be interpreted geometrically as the point (a, b) in the $x y$-plane.
107. I multiplied two complex numbers in polar form by first multiplying the moduli and then multiplying the arguments.
108. The proof of the formula for the product of two complex numbers in polar form uses the sum formulas for cosines and sines that I studied in the previous chapter.
109. My work with complex numbers verified that the only possible cube root of 8 is 2 .
110. Prove the rule for finding the quotient of two complex numbers in polar form. Begin the proof as follows, using the conjugate of the denominator's second factor:

$$
\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)} \cdot \frac{\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{\left(\cos \theta_{2}-i \sin \theta_{2}\right)}
$$

Perform the indicated multiplications. Then use the difference formulas for sine and cosine.
111. Plot each of the complex fourth roots of 1 .

Group Exercise

112. Group members should prepare and present a seminar on mathematical chaos. Include one or more of the following topics in your presentation: fractal images, the role of complex numbers in generating fractal images, algorithms, iterations, iteration number, and fractals in nature. Be sure to include visual images that will intrigue your audience.

Preview Exercises

Exercises 113-115 will help you prepare for the material covered in the next section.
113. Use the distance formula to determine if the line segment with endpoints $(-3,-3)$ and $(0,3)$ has the same length as the line segment with endpoints $(0,0)$ and $(3,6)$.
114. Use slope to determine if the line through $(-3,-3)$ and $(0,3)$ is parallel to the line through $(0,0)$ and $(3,6)$.
115. Simplify: $4(5 x+4 y)-2(6 x-9 y)$.

SECTION 6.6

Objectives

(1) Use magnitude and direction to show vectors are equal.
(2) Visualize scalar multiplication, vector addition, and vector subtraction as geometric vectors.
(3) Represent vectors in the rectangular coordinate system.
(4) Perform operations with vectors in terms of \mathbf{i} and \mathbf{j}.
(5) Find the unit vector in the direction of \mathbf{v}.
(6) Write a vector in terms of its magnitude and direction.
(7) Solve applied problems involving vectors.

This sign shows a distance and direction for each city. Thus, the sign defines a vector for each destination.

Vectors

It's been a dynamic lecture, but now that it's over it's obvious that my professor is exhausted. She's slouching motionless against the board and-what's that? The forces acting against her body, including the pull of gravity, are appearing as arrows. I know that mathematics reveals the hidden patterns of the universe, but this is ridiculous. Does the arrangement of the arrows on the right have anything to do with the fact that my wipedout professor is not sliding down the wall?

Ours is a world of pushes and pulls. For example, suppose you are pulling a cart up a 30° incline, requiring an effort of 100 pounds. This quantity is described by giving its magnitude (a number indicating size, including a unit of measure) and also its direction. The magnitude is 100 pounds and the direction is 30° from the horizontal. Quantities that involve both a magnitude and a direction are called vector quantities, or vectors for short. Here is another example of a vector:

You are driving due north at 50 miles per hour. The magnitude is the speed, 50 miles per hour. The direction of motion is due north.

Some quantities can be completely described by giving only their magnitudes. For example, the temperature of the lecture room that you just left is 75°. This temperature has magnitude, 75°, but no direction. Quantities that involve magnitude, but no direction, are called scalar quantities, or scalars for short. Thus, a scalar has only a numerical value. Another example of a scalar is your professor's height, which you estimate to be 5.5 feet.

In this section and the next, we introduce the world of vectors, which literally surround your every move. Because vectors have nonnegative magnitude as well as direction, we begin our discussion with directed line segments.

FIGURE 6.48 A directed line segment from P to Q

GREAT QUESTION!

What's the difference between a ray and a vector?
A ray is a directed line that has only an initial point and extends forever in one direction. A vector is a directed line segment that has both an initial point and a terminal point.

Use magnitude and direction to show vectors are equal.

Terminal point:
$(3,6)$

Directed Line Segments and Geometric Vectors

A line segment to which a direction has been assigned is called a directed line segment. Figure 6.48 shows a directed line segment from P to Q. We call P the initial point and Q the terminal point. We denote this directed line segment by

$$
\overrightarrow{P Q}
$$

The magnitude of the directed line segment $\overrightarrow{P Q}$ is its length. We denote this by $\|\overrightarrow{P Q}\|$. Thus, $\|\overrightarrow{P Q}\|$ is the distance from point P to point Q. Because distance is nonnegative, vectors do not have negative magnitudes.

Geometrically, a vector is a directed line segment. Vectors are often denoted by boldface letters, such as \mathbf{v}. If a vector \mathbf{v} has the same magnitude and the same direction as the directed line segment $\overrightarrow{P Q}$, we write

$$
\mathbf{v}=\overrightarrow{P Q}
$$

GREAT QUESTION!

Because it's impossible for me to write boldface on paper, how should I denote a vector?
Use an arrow over a single letter.

Representing Vectors in Print	Representing Vectors on Paper	Representing Vectors in Print	Representing Vectors on Paper		
Vector \mathbf{v}	\mathbf{v}	\vec{v}	Magnitude of $\mathbf{v}$$\\|\mathbf{v}\\|$		

Figure 6.49 shows four possible relationships between vectors \mathbf{v} and \mathbf{w}. In Figure 6.49(a), the vectors have the same magnitude and the same direction, and are said to be equal. In general, vectors \mathbf{v} and \mathbf{w} are equal if they have the same magnitude and the same direction. We write this as $\mathbf{v}=\mathbf{w}$.

FIGURE 6.49 Relationships between vectors

EXAMPLE 1 Showing That Two Vectors Are Equal

Use Figure 6.50 to show that $\mathbf{u}=\mathbf{v}$.

SOLUTION

Equal vectors have the same magnitude and the same direction. Use the distance formula to show that \mathbf{u} and \mathbf{v} have the same magnitude.

$$
\begin{aligned}
& \begin{array}{c}
\text { Magnitude } \\
\text { of } \mathbf{u}
\end{array} \\
&\|\mathbf{u}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{[0-(-3)]^{2}+[3-(-3)]^{2}} \\
&=\sqrt{3^{2}+6^{2}}=\sqrt{9+36}=\sqrt{45} \quad(\text { or } 3 \sqrt{5}) \\
& \\
& \begin{array}{c}
\text { Magnitude } \\
\text { of } \mathbf{v}
\end{array}\|\mathbf{v}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(3-0)^{2}+(6-0)^{2}} \\
&=\sqrt{3^{2}+6^{2}}=\sqrt{9+36}=\sqrt{45} \quad(\text { or } 3 \sqrt{5})
\end{aligned}
$$

Thus, \mathbf{u} and \mathbf{v} have the same magnitude: $\|\mathbf{u}\|=\|\mathbf{v}\|$.

FIGURE 6.51
(2) Visualize scalar multiplication, vector addition, and vector subtraction as geometric vectors.

One way to show that \mathbf{u} and \mathbf{v} have the same direction is to find the slopes of the lines on which they lie. We continue to use Figure $\mathbf{6 . 5 0}$ on the previous page.

Line on which
u lies
:---
$(-3,-3)$ and $(0,3)$.

Line on which
v lies

Because \mathbf{u} and \mathbf{v} are both directed toward the upper right on lines having the same slope, 2, they have the same direction.

Thus, \mathbf{u} and \mathbf{v} have the same magnitude and direction, and $\mathbf{u}=\mathbf{v}$.
\int Check Point 1 Use Figure 6.51 to show that $\mathbf{u}=\mathbf{v}$.
A vector can be multiplied by a real number. Figure $\mathbf{6 . 5 2}$ shows three such multiplications: $2 \mathbf{v}, \frac{1}{2} \mathbf{v}$, and $-\frac{3}{2} \mathbf{v}$. Multiplying a vector by any positive real number (except for 1) changes the magnitude of the vector but not its direction. This can be seen by the blue and green vectors in Figure 6.52. Compare the black and blue vectors. Can you see that $2 \mathbf{v}$ has the same direction as \mathbf{v} but is twice the magnitude of \mathbf{v} ? Now, compare the black and green vectors: $\frac{1}{2} \mathbf{v}$ has the same direction as \mathbf{v} but is half the magnitude of \mathbf{v}.

FIGURE 6.52 Multiplying vector \mathbf{v} by real numbers

Now compare the black and red vectors in Figure 6.52. Multiplying a vector by a negative number reverses the direction of the vector. Notice that $-\frac{3}{2} \mathbf{v}$ has the opposite direction as \mathbf{v} and is $\frac{3}{2}$ the magnitude of \mathbf{v}.

The multiplication of a real number k and a vector \mathbf{v} is called scalar multiplication. We write this product as $k \mathbf{v}$.

Scalar Multiplication

If k is a real number and \mathbf{v} a vector, the vector $k \mathbf{v}$ is called a scalar multiple of the vector \mathbf{v}. The magnitude and direction of $k \mathbf{v}$ are given as follows:

The vector $k \mathbf{v}$ has a magnitude of $|k|\|\mathbf{v}\|$. We describe this as the absolute value of k times the magnitude of vector \mathbf{v}.

The vector $k \mathbf{v}$ has a direction that is

- the same as the direction of \mathbf{v} if $k>0$, and
- opposite the direction of \mathbf{v} if $k<0$.

Initial point of \mathbf{u}
FIGURE 6.53 Vector addition $\mathbf{u}+\mathbf{v}$; the terminal point of \mathbf{u} coincides with the initial point of \mathbf{v}.

A geometric method for adding two vectors is shown in Figure 6.53. The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$ is called the resultant vector. Here is how we find this vector:

1. Position \mathbf{u} and \mathbf{v}, so that the terminal point of \mathbf{u} coincides with the initial point of \mathbf{v}.
2. The resultant vector, $\mathbf{u}+\mathbf{v}$, extends from the initial point of \mathbf{u} to the terminal point of \mathbf{v}.

Blitzer Bonus

Wiped Out, But Not Sliding Down the Wall

The figure shows the sum of five vectors:

$$
\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\mathbf{F}_{g}+\mathbf{f}
$$

Notice how the terminal point of each vector coincides with the initial point of the vector that's being added to it. The vector sum, from the initial point of \mathbf{F}_{1} to the terminal point of \mathbf{f}, is a single point. The magnitude of a single point is zero. These forces add up to a net force of zero, allowing the professor to be motionless.
(3) Represent vectors in the rectangular coordinate system.

The difference of two vectors, $\mathbf{v}-\mathbf{u}$, is defined as $\mathbf{v}-\mathbf{u}=\mathbf{v}+(-\mathbf{u})$, where $-\mathbf{u}$ is the scalar multiplication of \mathbf{u} and $-1:-1 \mathbf{u}$. The difference $\mathbf{v}-\mathbf{u}$ is shown geometrically in Figure 6.54.

FIGURE 6.54 Vector subtraction $\mathbf{v}-\mathbf{u}$; the terminal point of \mathbf{v} coincides with the initial point of $-\mathbf{u}$.

Vectors in the Rectangular Coordinate System

As you saw in Example 1, vectors can be shown in the rectangular coordinate system. Now let's see how we can use the rectangular coordinate system to represent vectors. We begin with two vectors that both have a magnitude of 1 . Such vectors are called unit vectors.

The i and j Unit Vectors

Vector \mathbf{i} is the unit vector whose direction is along the positive x-axis. Vector \mathbf{j} is the unit vector whose direction is along the positive y-axis.

Why are the unit vectors \mathbf{i} and \mathbf{j} important? Vectors in the rectangular coordinate system can be represented in terms of \mathbf{i} and \mathbf{j}. For example, consider vector \mathbf{v} with initial point at the origin, $(0,0)$, and terminal point at $P=(a, b)$. The vector \mathbf{v} is shown in Figure 6.55. We can represent \mathbf{v} using \mathbf{i} and \mathbf{j} as $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$.

FIGURE 6.55 Using vector addition, vector \mathbf{v} is represented as $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$.

Representing Vectors in Rectangular Coordinates

Vector \mathbf{v}, from $(0,0)$ to (a, b), is represented as

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}
$$

The real numbers a and b are called the scalar components of \mathbf{v}. Note that

- a is the horizontal component of \mathbf{v}, and
- b is the vertical component of \mathbf{v}.

The vector sum $a \mathbf{i}+b \mathbf{j}$ is called a linear combination of the vectors \mathbf{i} and \mathbf{j}. The magnitude of $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ is given by

$$
\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}
$$

FIGURE 6.56 Sketching $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$ in the rectangular coordinate system

FIGURE 6.57(a)

$(0,0)$
FIGURE 6.57(b)

EXAMPLE 2 Representing a Vector in Rectangular

 Coordinates and Finding Its MagnitudeSketch the vector $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$ and find its magnitude.

SOLUTION

For the given vector $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}, a=-3$ and $b=4$. The vector can be represented with its initial point at the origin, $(0,0)$, as shown in Figure 6.56. The vector's terminal point is then $(a, b)=(-3,4)$. We sketch the vector by drawing an arrow from $(0,0)$ to $(-3,4)$. We determine the magnitude of the vector by using the distance formula. Thus, the magnitude is

$$
\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}=\sqrt{(-3)^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5
$$

GREAT QUESTION!

In Example 2, since $v=-3 i+4 j$, is it ok if I write the magnitude of v as $\|v\|=\sqrt{(-3 i)^{2}+(4 j)^{2}}$?
No. The vectors \mathbf{i} and \mathbf{j} are not included when determining the magnitude of $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$.

$$
\begin{gathered}
\text { Correct } \\
\mathbf{v}=a \mathbf{i}+b \mathbf{j} \\
\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Incorrect } \\
\mathbf{v}=a \mathbf{i}+b \mathbf{j} \\
\|\mathbf{v}\| \leq \sqrt{(a \mathbf{i})^{2}+(b \mathbf{j})^{2}}
\end{gathered}
$$

Check Point 2 Sketch the vector $\mathbf{v}=3 \mathbf{i}-3 \mathbf{j}$ and find its magnitude.

The vector in Example 2 was represented with its initial point at the origin. A vector whose initial point is at the origin is called a position vector. Any vector in rectangular coordinates whose initial point is not at the origin can be shown to be equal to a position vector. As shown in the following box, this gives us a way to represent vectors between any two points.

Representing Vectors in Rectangular Coordinates

Vector \mathbf{v} with initial point $P_{1}=\left(x_{1}, y_{1}\right)$ and terminal point $P_{2}=\left(x_{2}, y_{2}\right)$ is equal to the position vector

$$
\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j} .
$$

We can use congruent triangles, triangles with the same size and shape, to derive this formula. Begin with the right triangle in Figure 6.57(a). This triangle shows vector \mathbf{v} from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$. In Figure 6.57(b), we move vector \mathbf{v}, without changing its magnitude or its direction, so that its initial point is at the origin. Using this position vector in Figure 6.57(b), we see that

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j},
$$

where a and b are the components of \mathbf{v}. The equal vectors and the right angles in the right triangles in Figure 6.57(a) and (b) result in congruent triangles. The corresponding sides of these congruent triangles are equal, so that $a=x_{2}-x_{1}$ and $b=y_{2}-y_{1}$. This means that \mathbf{v} may be expressed as

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j} .
$$

> Horizontal component: x-coordinate of terminal point minus x-coordinate of initial point

Vertical component: y-coordinate of terminal point minus y-coordinate of initial point

Thus, any vector between two points in rectangular coordinates can be expressed in terms of \mathbf{i} and \mathbf{j}. In rectangular coordinates, the term vector refers to the position vector expressed in terms of \mathbf{i} and \mathbf{j} that is equal to it.

FIGURE 6.58 Representing the vector from $(3,-1)$ to $(-2,5)$ as a position vector

EXAMPLE 3 Representing a Vector in Rectangular Coordinates

Let \mathbf{v} be the vector from initial point $P_{1}=(3,-1)$ to terminal point $P_{2}=(-2,5)$. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

SOLUTION

We identify the values for the variables in the formula.

$$
\begin{array}{cc}
P_{1}=(3,-1) & P_{2}=(-2,5) \\
x_{1} \quad y_{1} & x_{2} \quad y_{2}
\end{array}
$$

Using these values, we write \mathbf{v} in terms of \mathbf{i} and \mathbf{j} as follows:

$$
\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}=(-2-3) \mathbf{i}+[5-(-1)] \mathbf{j}=-5 \mathbf{i}+6 \mathbf{j} .
$$

Figure 6.58 shows the vector from $P_{1}=(3,-1)$ to $P_{2}=(-2,5)$ represented in terms of \mathbf{i} and \mathbf{j} and as a position vector.

GREAT QUESTION!

When representing a vector from an initial point to a terminal point, does the order in which I perform the subtractions make a difference?
Yes. When writing the vector from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right), P_{2}$ must be the terminal point and the order in the subtractions is important:

$$
\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j} .
$$

$\left|x_{2}, y_{2}\right|$, the terminal point, is used first in each subtraction.

Notice how this differs from finding the distance from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$, where the order in which the subtractions are performed makes no difference:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \text { or } \quad d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

\int Check Point 3 Let \mathbf{v} be the vector from initial point $P_{1}=(-1,3)$ to terminal point $P_{2}=(2,7)$. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

Operations with Vectors in Terms of i and j

If vectors are expressed in terms of \mathbf{i} and \mathbf{j}, we can easily carry out operations such as vector addition, vector subtraction, and scalar multiplication. Recall the geometric definitions of these operations given earlier. Based on these ideas, we can add and subtract vectors using the following procedure:

Adding and Subtracting Vectors in Terms of i and j
If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$, then

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j} \\
\mathbf{v}-\mathbf{w} & =\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j}
\end{aligned}
$$

EXAMPLE 4 Adding and Subtracting Vectors

If $\mathbf{v}=5 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=6 \mathbf{i}-9 \mathbf{j}$, find each of the following vectors:
a. $\mathbf{v}+\mathbf{w}$
b. $\mathbf{v}-\mathbf{w}$.

SOLUTION

a. $\mathbf{v}+\mathbf{w}$	$=(5 \mathbf{i}+4 \mathbf{j})+(6 \mathbf{i}-9 \mathbf{j})$		These are the given vectors.
	$=(5+6) \mathbf{i}+[4+(-9)] \mathbf{j}$		Add the horizontal components. Add the vertical components.
	$=11 \mathbf{i}-5 \mathbf{j}$		Simplify.
b. $\mathbf{v}-\mathbf{w}$	$=(5 \mathbf{i}+4 \mathbf{j})-(6 \mathbf{i}-9 \mathbf{j})$		
	$=(5-6) \mathbf{i}+[4-(-9)] \mathbf{j}$		These are the given vectors. Subtract the horizontal components. Subtract the vertical components.
	$=-\mathbf{i}+13 \mathbf{j}$		Simplify.

Check Point 4 If $\mathbf{v}=7 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{w}=4 \mathbf{i}-5 \mathbf{j}$, find each of the following vectors:
a. $\mathbf{v}+\mathbf{w}$
b. $\mathbf{v}-\mathbf{w}$.

How do we perform scalar multiplication if vectors are expressed in terms of \mathbf{i} and \mathbf{j} ? We use the following procedure to multiply the vector \mathbf{v} by the scalar k :

Scalar Multiplication with a Vector in Terms of i and j

If $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ and k is a real number, then the scalar multiplication of the vector \mathbf{v} and the scalar k is

$$
k \mathbf{v}=(k a) \mathbf{i}+(k b) \mathbf{j} .
$$

EXAMPLE 5 Scalar Multiplication

If $\mathbf{v}=5 \mathbf{i}+4 \mathbf{j}$, find each of the following vectors:
a. $6 \mathbf{v}$
b. $-3 \mathbf{v}$.

SOLUTION

a. $\quad 6 \mathbf{v}=6(5 \mathbf{i}+4 \mathbf{j})$

$$
\begin{aligned}
& =(6 \cdot 5) \mathbf{i}+(6 \cdot 4) \mathbf{j} \\
& =30 \mathbf{i}+24 \mathbf{j}
\end{aligned}
$$

b. $-3 \mathbf{v}=-3(5 \mathbf{i}+4 \mathbf{j})$

$$
\begin{array}{ll}
=(-3 \cdot 5) \mathbf{i}+(-3 \cdot 4) \mathbf{j} & \text { Multiply } \\
=-15 \mathbf{i}-12 \mathbf{j} & \text { Simplify }
\end{array}
$$

The scalar multiplication is expressed with the given vector.

Multiply each component by 6.
Simplify.

The scalar multiplication is expressed with the given vector.

Multiply each component by -3 .

\oint Check Point 5 If $\mathbf{v}=7 \mathbf{i}+10 \mathbf{j}$, find each of the following vectors:

a. $8 \mathbf{v}$
b. $-5 \mathbf{v}$.

EXAMPLE 6 Vector Operations

If $\mathbf{v}=5 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=6 \mathbf{i}-9 \mathbf{j}$, find $4 \mathbf{v}-2 \mathbf{w}$.

SOLUTION

$$
\begin{array}{rlrl}
4 \mathbf{v}-2 \mathbf{w} & =4(5 \mathbf{i}+4 \mathbf{j})-2(6 \mathbf{i}-9 \mathbf{j}) & & \begin{array}{l}
\text { Operations are expressed with the } \\
\text { given vectors. }
\end{array} \\
& =20 \mathbf{i}+16 \mathbf{j}-12 \mathbf{i}+18 \mathbf{j} & & \text { Perform each scalar multiplication. } \\
& =(20-12) \mathbf{i}+(16+18) \mathbf{j} & & \text { Add horizontal and vertical components } \\
\text { to perform the vector addition. }
\end{array}
$$

Properties involving vector operations resemble familiar properties of real numbers. For example, the order in which vectors are added makes no difference:

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

Does this remind you of the commutative property $a+b=b+a$?
Just as 0 plays an important role in the properties of real numbers, the zero vector 0 plays exactly the same role in the properties of vectors.

The Zero Vector

The vector whose magnitude is 0 is called the zero vector, $\mathbf{0}$. The zero vector is assigned no direction. It can be expressed in terms of \mathbf{i} and \mathbf{j} using

$$
\mathbf{0}=0 \mathbf{i}+0 \mathbf{j} .
$$

Properties of vector addition and scalar multiplication are given as follows:

Properties of Vector Addition and Scalar Multiplication

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors, and c and d are scalars, then the following properties are true.

Vector Addition Properties

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ Commutative property
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ Associative property
3. $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} \quad$ Additive identity
4. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0} \quad$ Additive inverse

Scalar Multiplication Properties

1. $(c d) \mathbf{u}=c(d \mathbf{u})$
2. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
3. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
4. $1 \mathbf{u}=\mathbf{u}$
5. $0 \mathbf{u}=\mathbf{0}$
6. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$

Associative property
Distributive property
Distributive property
Multiplicative identity
Multiplication property of zero
Magnitude property

5 Find the unit vector in the direction of \mathbf{v}.

Unit Vectors

A unit vector is defined to be a vector whose magnitude is one. In many applications of vectors, it is helpful to find the unit vector that has the same direction as a given vector.

DISCOVERY

To find out why the procedure in the box produces a unit vector, work Exercise 112 in Exercise Set 6.6.

6 Write a vector in terms of its magnitude and direction.

FIGURE 6.59 Expressing a vector in terms of its magnitude, $\|\mathbf{v}\|$, and its direction angle, θ

Finding the Unit Vector that Has the Same Direction as a Given Nonzero Vector v

For any nonzero vector \mathbf{v}, the vector

$$
\frac{\mathbf{v}}{\|v\|}
$$

is the unit vector that has the same direction as \mathbf{v}. To find this vector, divide \mathbf{v} by its magnitude.

EXAMPLE 7 Finding a Unit Vector

Find the unit vector in the same direction as $\mathbf{v}=5 \mathbf{i}-12 \mathbf{j}$. Then verify that the vector has magnitude 1 .

SOLUTION

We find the unit vector in the same direction as \mathbf{v} by dividing \mathbf{v} by its magnitude. We first find the magnitude of \mathbf{v}.

$$
\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}=\sqrt{5^{2}+(-12)^{2}}=\sqrt{25+144}=\sqrt{169}=13
$$

The unit vector in the same direction as \mathbf{v} is

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{5 \mathbf{i}-12 \mathbf{j}}{13}=\frac{5}{13} \mathbf{i}-\frac{12}{13} \mathbf{j} . \quad \text { This is the scalar multiplication of } v \text { and } \frac{1}{13} .
$$

Now we must verify that the magnitude of this vector is 1 . Recall that the magnitude of $a \mathbf{i}+b \mathbf{j}$ is $\sqrt{a^{2}+b^{2}}$. Thus, the magnitude of $\frac{5}{13} \mathbf{i}-\frac{12}{13} \mathbf{j}$ is

$$
\sqrt{\left(\frac{5}{13}\right)^{2}+\left(-\frac{12}{13}\right)^{2}}=\sqrt{\frac{25}{169}+\frac{144}{169}}=\sqrt{\frac{169}{169}}=\sqrt{1}=1 .
$$

Check Point 7 Find the unit vector in the same direction as $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$. Then verify that the vector has magnitude 1 .

Writing a Vector in Terms of Its Magnitude and Direction

Consider the vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$. The components a and b can be expressed in terms of the magnitude of \mathbf{v} and the angle θ that \mathbf{v} makes with the positive x-axis. This angle is called the direction angle of \mathbf{v} and is shown in Figure 6.59. By the definitions of sine and cosine, we have

$$
\begin{aligned}
& \cos \theta=\frac{a}{\|\mathbf{v}\|} \quad \text { and } \quad \sin \theta=\frac{b}{\|\mathbf{v}\|} \\
& a=\|\mathbf{v}\| \cos \theta \quad b=\|\mathbf{v}\| \sin \theta .
\end{aligned}
$$

Thus,

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j} .
$$

Writing a Vector in Terms of Its Magnitude and Direction

Let \mathbf{v} be a nonzero vector. If θ is the direction angle measured from the positive x-axis to \mathbf{v}, then the vector can be expressed in terms of its magnitude and direction angle as

$$
\mathbf{v}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j}
$$

FIGURE 6.60 Vector \mathbf{v} represents a wind blowing at 20 miles per hour in the direction $\mathrm{N} 30^{\circ} \mathrm{W}$.

Solve applied problems involving vectors.

FIGURE 6.61 Force vectors

Direction angle of the resultant force

A vector that represents the direction and speed of an object in motion is called a velocity vector. In Example 8, we express a wind's velocity vector in terms of the wind's magnitude and direction.

EXAMPLE 8 Writing a Vector Whose Magnitude and Direction Are Given

The wind is blowing at 20 miles per hour in the direction $\mathrm{N} 30^{\circ} \mathrm{W}$. Express its velocity as a vector \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

SOLUTION

The vector \mathbf{v} is shown in Figure 6.60. The vector's direction angle, from the positive x-axis to \mathbf{v}, is

$$
\theta=90^{\circ}+30^{\circ}=120^{\circ}
$$

Because the wind is blowing at 20 miles per hour, the magnitude of \mathbf{v} is 20 miles per hour: $\|\mathbf{v}\|=20$. Thus,

$$
\begin{aligned}
\mathbf{v} & =\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j} & & \begin{array}{l}
\text { Use the formula for a vector in terms } \\
\text { of magnitude and direction. }
\end{array} \\
& =20 \cos 120^{\circ} \mathbf{i}+20 \sin 120^{\circ} \mathbf{j} & & \|v\|=20 \text { and } \theta=120^{\circ} . \\
& =20\left(-\frac{1}{2}\right) \mathbf{i}+20\left(\frac{\sqrt{3}}{2}\right) \mathbf{j} & & \cos 120^{\circ}=-\frac{1}{2} \text { and } \sin 120^{\circ}=\frac{\sqrt{3}}{2} . \\
& =-10 \mathbf{i}+10 \sqrt{3} \mathbf{j} & & \text { Simplify. }
\end{aligned}
$$

The wind's velocity can be expressed in terms of \mathbf{i} and \mathbf{j} as $\mathbf{v}=-10 \mathbf{i}+10 \sqrt{3} \mathbf{j} \ldots$
3 Check Point 8 The jet stream is blowing at 60 miles per hour in the direction $\mathrm{N} 45^{\circ} \mathrm{E}$. Express its velocity as a vector \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

Application

Many physical concepts can be represented by vectors. A vector that represents a pull or push of some type is called a force vector. If you are holding a 10-pound package, two force vectors are involved. The force of gravity is exerting a force of magnitude 10 pounds directly downward. This force is shown by vector \mathbf{F}_{1} in Figure 6.61. Assuming there is no upward or downward movement of the package, you are exerting a force of magnitude 10 pounds directly upward. This force is shown by vector \mathbf{F}_{2} in Figure 6.61. It has the same magnitude as the force exerted on your package by gravity, but it acts in the opposite direction.

If \mathbf{F}_{1} and \mathbf{F}_{2} are two forces acting on an object, the net effect is the same as if just the resultant force, $\mathbf{F}_{1}+\mathbf{F}_{2}$, acted on the object. If the object is not moving, as is the case with your 10-pound package, the vector sum of all forces is the zero vector.

EXAMPLE 9 Finding the Resultant Force

Two forces, \mathbf{F}_{1} and \mathbf{F}_{2}, of magnitude 10 and 30 pounds, respectively, act on an object. The direction of \mathbf{F}_{1} is $\mathrm{N} 20^{\circ} \mathrm{E}$ and the direction of \mathbf{F}_{2} is $\mathrm{N} 65^{\circ} \mathrm{E}$. Find the magnitude and the direction of the resultant force. Express the magnitude to the nearest hundredth of a pound and the direction angle to the nearest tenth of a degree.

SOLUTION

The vectors \mathbf{F}_{1} and \mathbf{F}_{2} are shown in Figure 6.62. The direction angle for \mathbf{F}_{1}, from the positive x-axis to the vector, is $90^{\circ}-20^{\circ}$, or 70°. We express \mathbf{F}_{1} using the formula for a vector in terms of its magnitude and direction.

FIGURE 6.63

$$
\begin{aligned}
\mathbf{F}_{1} & =\left\|\mathbf{F}_{1}\right\| \cos \theta \mathbf{i}+\left\|\mathbf{F}_{1}\right\| \sin \theta \mathbf{j} & & \\
& =10 \cos 70^{\circ} \mathbf{i}+10 \sin 70^{\circ} \mathbf{j} & & \left\|F_{1}\right\|=10 \text { and } \theta=70^{\circ} . \\
& \approx 3.42 \mathbf{i}+9.40 \mathbf{j} & & \text { Use a calculator. }
\end{aligned}
$$

Figure 6.62 illustrates that the direction angle for \mathbf{F}_{2}, from the positive x-axis to the vector, is $90^{\circ}-65^{\circ}$, or 25°. We express \mathbf{F}_{2} using the formula for a vector in terms of its magnitude and direction.

$$
\begin{aligned}
\mathbf{F}_{2} & =\left\|\mathbf{F}_{2}\right\| \cos \theta \mathbf{i}+\left\|\mathbf{F}_{2}\right\| \sin \theta \mathbf{j} & & \\
& =30 \cos 25^{\circ} \mathbf{i}+30 \sin 25^{\circ} \mathbf{j} & & \left\|F_{2}\right\|=30 \text { and } \theta=25^{\circ} \\
& \approx 27.19 \mathbf{i}+12.68 \mathbf{j} & & \text { Use a calculator. }
\end{aligned}
$$

The resultant force, \mathbf{F}, is $\mathbf{F}_{1}+\mathbf{F}_{2}$. Thus,

$$
\begin{array}{rlrl}
\mathbf{F} & =\mathbf{F}_{1}+\mathbf{F}_{2} & & \\
& \approx(3.42 \mathbf{i}+9.40 \mathbf{j})+(27.19 \mathbf{i}+12.68 \mathbf{j}) & & \text { Use } F_{1} \text { and } F_{2}, \text { found above. } \\
& =(3.42+27.19) \mathbf{i}+(9.40+12.68) \mathbf{j} & & \text { Add the horizontal components. } \\
& =30.61 \mathbf{i}+22.08 \mathbf{j} . & & \begin{array}{l}
\text { Add the vertical components. }
\end{array} \\
& \text { Simplify. }
\end{array}
$$

Figure $\mathbf{6 . 6 3}$ shows the resultant force, \mathbf{F}, without showing \mathbf{F}_{1} and \mathbf{F}_{2}.
Now that we have the resultant force vector, \mathbf{F}, we can find its magnitude.

$$
\|\mathbf{F}\|=\sqrt{a^{2}+b^{2}}=\sqrt{(30.61)^{2}+(22.08)^{2}} \approx 37.74
$$

The magnitude of the resultant force is approximately 37.74 pounds.
To find θ, the direction angle of the resultant force, we can use

$$
\cos \theta=\frac{a}{\|\mathbf{F}\|} \quad \text { or } \quad \sin \theta=\frac{b}{\|\mathbf{F}\|}
$$

These ratios are illustrated for the right triangle in Figure 6.63.
Using the first formula, we obtain

$$
\cos \theta=\frac{a}{\|\mathbf{F}\|} \approx \frac{30.61}{37.74}
$$

Thus,

$$
\theta=\cos ^{-1}\left(\frac{30.61}{37.74}\right) \approx 35.8^{\circ} . \quad \text { Use a calculator. }
$$

The direction angle of the resultant force is approximately 35.8°.
In summary, the two given forces are equivalent to a single force of approximately 37.74 pounds with a direction angle of approximately 35.8°.

Check Point 9 Two forces, \mathbf{F}_{1} and \mathbf{F}_{2}, of magnitude 30 and 60 pounds, respectively, act on an object. The direction of \mathbf{F}_{1} is $\mathrm{N} 10^{\circ} \mathrm{E}$ and the direction of \mathbf{F}_{2} is $\mathrm{N} 60^{\circ} \mathrm{E}$. Find the magnitude, to the nearest hundredth of a pound, and the direction angle, to the nearest tenth of a degree, of the resultant force.

We have seen that velocity vectors represent the direction and speed of moving objects. Boats moving in currents and airplanes flying in winds are situations in which two velocity vectors act simultaneously. For example, suppose v represents the velocity of a plane in still air. Further suppose that \mathbf{w} represents the velocity of the wind. The actual speed and direction of the plane is given by the vector $\mathbf{v}+\mathbf{w}$. This resultant vector describes the plane's speed and direction relative to the ground. Problems involving the resultant velocity of a boat or plane are solved using the same method that we used in Example 9 to find a single resultant force equivalent to two given forces.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A quantity that has both magnitude and direction is called a/an \qquad
2. A quantity that has magnitude but no direction is called a/an \qquad -.

In Exercises 3-5, refer to the vectors shown below.

3. The vectors that appear to be equal are \qquad and
4. The vector that appears to be a scalar multiple of \mathbf{v} is \qquad , where the scalar is positive and not 1 .
5. The vector that appears to be a scalar multiple of \mathbf{v} is \qquad , where the scalar is negative.
6. The vectors \mathbf{i} and \mathbf{j} both have magnitudes of 1 and are called \qquad vectors. The direction of vector \mathbf{i} is along the positive \qquad -axis. The direction of vector \mathbf{j} is along the positive \qquad -axis.
7. Consider vector \mathbf{v} from $(0,0)$ to (a, b) :

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}
$$

The horizontal component of \mathbf{v} is \qquad The vertical component of \mathbf{v} is \qquad The magnitude of \mathbf{v} is given by $\|\mathbf{v}\|=$ \qquad
8. A vector whose initial point is at the origin is called a/an \qquad vector.
9. Vector \mathbf{v} with initial point $P_{1}=\left(x_{1}, y_{1}\right)$ and terminal point $P_{2}=\left(x_{2}, y_{2}\right)$ is equal to the vector

$$
\mathbf{v}=(\square) \mathbf{i}+(\square) \mathbf{l}
$$

10. If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$, then

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=(\square) \mathbf{i}+(\square) \mathbf{j} \\
& \mathbf{v}-\mathbf{w}=(\square) \mathbf{~}+(\square) \mathbf{j}+(\square \\
& k \mathbf{v}=(\square
\end{aligned}
$$

11. For any nonzero vector \mathbf{v}, the unit vector that has the same direction as \mathbf{v} is \qquad To find this vector, divide \mathbf{v} by its \qquad _.
12. Let \mathbf{v} be a nonzero vector. If θ is the direction angle measured from the positive x-axis to \mathbf{v}, then the vector can be expressed in terms of its magnitude and direction angle as

$$
\mathbf{v}=\|\mathbf{v}\| \ldots \quad \mathbf{i}+\|\mathbf{v}\| \ldots
$$

13. If \mathbf{F}_{1} and \mathbf{F}_{2} are two forces acting on an object, the vector sum $\mathbf{F}_{1}+\mathbf{F}_{2}$ is called the \qquad force.

EXERCISE SET 6.6

Practice Exercises

In Exercises 1-4, \mathbf{u} and \mathbf{v} have the same direction. In each exercise:
a. Find $\|\mathbf{u}\|$.
b. Find $\|\mathbf{v}\|$.
c. Is $\mathbf{u}=\mathbf{v}$? Explain.
1.

2.

3.

4.

In Exercises 5-12, sketch each vector as a position vector and find its magnitude.
5. $\mathbf{v}=3 \mathbf{i}+\mathbf{j}$
6. $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$
7. $\mathbf{v}=\mathbf{i}-\mathbf{j}$
8. $\mathbf{v}=-\mathbf{i}-\mathbf{j}$
9. $\mathbf{v}=-6 \mathbf{i}-2 \mathbf{j}$
10. $\mathbf{v}=5 \mathbf{i}-2 \mathbf{j}$
11. $\mathbf{v}=-4 \mathbf{i}$
12. $\mathbf{v}=-5 \mathbf{j}$

In Exercises 13-20, let \mathbf{v} be the vector from initial point P_{1} to terminal point P_{2}. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.
13. $P_{1}=(-4,-4), P_{2}=(6,2)$
14. $P_{1}=(2,-5), P_{2}=(-6,6)$
15. $P_{1}=(-8,6), P_{2}=(-2,3)$
16. $P_{1}=(-7,-4), P_{2}=(0,-2)$
17. $P_{1}=(-1,7), P_{2}=(-7,-7)$
18. $P_{1}=(-1,6), P_{2}=(7,-5)$
19. $P_{1}=(-3,4), P_{2}=(6,4)$
20. $P_{1}=(4,-5), P_{2}=(4,3)$

In Exercises 21-38, let

$$
\mathbf{u}=2 \mathbf{i}-5 \mathbf{j}, \mathbf{v}=-3 \mathbf{i}+7 \mathbf{j}, \text { and } \mathbf{w}=-\mathbf{i}-6 \mathbf{j} .
$$

Find each specified vector or scalar.
21. $\mathbf{u}+\mathbf{v}$
22. $\mathbf{v}+\mathbf{w}$
23. $u-v$
24. $v-w$
25. $\mathbf{v}-\mathrm{u}$
26. $w-v$
27. 5 v
28. $6 v$
29. $-4 \mathbf{w}$
30. -7 w
31. $3 \mathbf{w}+2 \mathbf{v}$
32. $3 \mathbf{u}+4 \mathbf{v}$
33. $3 \mathbf{v}-4 \mathbf{w}$
34. $4 \mathbf{w}-3 \mathbf{v}$
35. $\|2 \mathbf{u}\|$
36. $\|-2 \mathbf{u}\|$
37. $\|\mathbf{w}-\mathbf{u}\|$
38. $\|\mathbf{u}-\mathbf{w}\|$

In Exercises 39-46, find the unit vector that has the same direction as the vector \mathbf{v}.
39. $\mathbf{v}=6 \mathbf{i}$
40. $\mathbf{v}=-5 \mathbf{j}$
41. $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$
42. $\mathbf{v}=8 \mathbf{i}-6 \mathbf{j}$
43. $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j}$
44. $\mathbf{v}=4 \mathbf{i}-2 \mathbf{j}$
45. $\mathbf{v}=\mathbf{i}+\mathbf{j}$
46. $\mathbf{v}=\mathbf{i}-\mathbf{j}$

In Exercises 47-52, write the vector \mathbf{v} in terms of \mathbf{i} and \mathbf{j} whose magnitude $\|\mathbf{v}\|$ and direction angle θ are given.
47. $\|\mathbf{v}\|=6, \theta=30^{\circ}$
48. $\|\mathbf{v}\|=8, \theta=45^{\circ}$
49. $\|\mathbf{v}\|=12, \theta=225^{\circ}$
50. $\|\mathbf{v}\|=10, \theta=330^{\circ}$
51. $\|\mathbf{v}\|=\frac{1}{2}, \theta=113^{\circ}$
52. $\|\mathbf{v}\|=\frac{1}{4}, \theta=200^{\circ}$

Practice Plus

In Exercises 53-56, let

$$
\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}, \mathbf{v}=6 \mathbf{i}-\mathbf{j}, \mathbf{w}=-3 \mathbf{i} .
$$

Find each specified vector or scalar.
53. $4 \mathbf{u}-(2 \mathbf{v}-\mathbf{w})$
54. $3 \mathbf{u}-(4 \mathbf{v}-\mathbf{w})$
55. $\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}$
56. $\|\mathbf{v}+\mathbf{w}\|^{2}-\|\mathbf{v}-\mathbf{w}\|^{2}$
69. $\|\mathbf{v}\|=1.5$ inches, $\theta=25^{\circ}$
70. $\|\mathbf{v}\|=1.8$ inches, $\theta=40^{\circ}$

In Exercises 57-60, let

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{i}+b_{1} \mathbf{j} \\
\mathbf{v} & =a_{2} \mathbf{i}+b_{2} \mathbf{j} \\
\mathbf{w} & =a_{3} \mathbf{i}+b_{3} \mathbf{j}
\end{aligned}
$$

Prove each property by obtaining the vector on each side of the equation. Have you proved a distributive, associative, or commutative property of vectors?
57. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
58. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
59. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
60. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$

In Exercises 61-64, find the magnitude $\|\mathbf{v}\|$, to the nearest hundredth, and the direction angle θ, to the nearest tenth of a degree, for each given vector \mathbf{v}.
61. $\mathbf{v}=-10 \mathbf{i}+15 \mathbf{j}$
62. $\mathbf{v}=2 \mathbf{i}-8 \mathbf{j}$
63. $\mathbf{v}=(4 \mathbf{i}-2 \mathbf{j})-(4 \mathbf{i}-8 \mathbf{j})$
64. $\mathbf{v}=(7 \mathbf{i}-3 \mathbf{j})-(10 \mathbf{i}-3 \mathbf{j})$

Application Exercises

In Exercises 65-68, a vector is described. Express the vector in terms of \mathbf{i} and \mathbf{j}. If exact values are not possible, round components to the nearest tenth.
65. A quarterback releases a football with a speed of 44 feet per second at an angle of 30° with the horizontal.
66. A child pulls a sled along level ground by exerting a force of 30 pounds on a handle that makes an angle of 45° with the ground.
67. A plane approaches a runway at 150 miles per hour at an angle of 8° with the runway.
68. A plane with an airspeed of 450 miles per hour is flying in the direction $\mathrm{N} 35^{\circ} \mathrm{W}$.

Vectors are used in computer graphics to determine lengths of shadows over flat surfaces. The length of the shadow for \mathbf{v} in the figure shown is the absolute value of the vector's horizontal component. In Exercises 69-70, the magnitude and direction angle of \mathbf{v} are given. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}. Then find the length of the shadow to the nearest tenth of an inch.

71. The magnitude and direction of two forces acting on an object are 70 pounds, $S 56^{\circ} \mathrm{E}$, and 50 pounds, $\mathrm{N} 72^{\circ} \mathrm{E}$, respectively. Find the magnitude, to the nearest hundredth of a pound, and the direction angle, to the nearest tenth of a degree, of the resultant force.
72. The magnitude and direction exerted by two tugboats towing a ship are 4200 pounds, $\mathrm{N} 65^{\circ} \mathrm{E}$, and 3000 pounds, $\mathrm{S} 58^{\circ} \mathrm{E}$, respectively. Find the magnitude, to the nearest pound, and the direction angle, to the nearest tenth of a degree, of the resultant force.
73. The magnitude and direction exerted by two tugboats towing a ship are 1610 kilograms, $\mathrm{N} 35^{\circ} \mathrm{W}$, and 1250 kilograms, $\mathrm{S} 55^{\circ} \mathrm{W}$, respectively. Find the magnitude, to the nearest kilogram, and the direction angle, to the nearest tenth of a degree, of the resultant force.
74. The magnitude and direction of two forces acting on an object are 64 kilograms, $\mathrm{N} 39^{\circ} \mathrm{W}$, and 48 kilograms, $\mathrm{S}_{5} 9^{\circ} \mathrm{W}$, respectively. Find the magnitude, to the nearest hundredth of a kilogram, and the direction angle, to the nearest tenth of a degree, of the resultant force.

The figure shows a box being pulled up a ramp inclined at 18° from the horizontal.

Use the following information to solve Exercises 75-76.

$$
\begin{aligned}
\overrightarrow{B A} & =\text { force of gravity } \\
\|\overrightarrow{B A}\| & =\text { weight of the box } \\
\|\overrightarrow{A C}\| & =\text { magnitude of the force needed to pull the box up } \\
& \text { the ramp } \\
|\overrightarrow{B C}| & =\text { magnitude of the force of the box against the } \\
& \text { ramp }
\end{aligned}
$$

75. If the box weighs 100 pounds, find the magnitude of the force needed to pull it up the ramp.
76. If a force of 30 pounds is needed to pull the box up the ramp, find the weight of the box.
In Exercises 77-78, round answers to the nearest pound.
77. a. Find the magnitude of the force required to keep a 3500 -pound car from sliding down a hill inclined at 5.5° from the horizontal.
b. Find the magnitude of the force of the car against the hill.
78. a. Find the magnitude of the force required to keep a 280-pound barrel from sliding down a ramp inclined at 12.5° from the horizontal.
b. Find the magnitude of the force of the barrel against the ramp.

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}, \ldots, \mathbf{F}_{n}$ acting on an object are in equilibrium if the resultant force is the zero vector:

$$
\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots+\mathbf{F}_{n}=\mathbf{0} .
$$

In Exercises 79-82, the given forces are acting on an object.
a. Find the resultant force.
b. What additional force is required for the given forces to be in equilibrium?
79. $\mathbf{F}_{1}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{F}_{2}=6 \mathbf{i}+2 \mathbf{j}$
80. $\mathbf{F}_{1}=-2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{F}_{2}=\mathbf{i}-\mathbf{j}, \quad \mathbf{F}_{3}=5 \mathbf{i}-12 \mathbf{j}$
81.

82.

83. The figure shows a small plane flying at a speed of 180 miles per hour on a bearing of $\mathrm{N} 50^{\circ} \mathrm{E}$. The wind is blowing from west to east at 40 miles per hour. The figure indicates that \mathbf{v} represents the velocity of the plane in still air and \mathbf{w} represents the velocity of the wind.

a. Express \mathbf{v} and \mathbf{w} in terms of their magnitudes and direction angles.
b. Find the resultant vector, $\mathbf{v}+\mathbf{w}$.
c. The magnitude of $\mathbf{v}+\mathbf{w}$, called the ground speed of the plane, gives its speed relative to the ground. Approximate the ground speed to the nearest mile per hour.
d. The direction angle of $\mathbf{v}+\mathbf{w}$ gives the plane's true course relative to the ground. Approximate the true course to the nearest tenth of a degree. What is the plane's true bearing?
84. Use the procedure outlined in Exercise 83 to solve this exercise. A plane is flying at a speed of 400 miles per hour on a bearing of $\mathrm{N} 50^{\circ} \mathrm{W}$. The wind is blowing at 30 miles per hour on a bearing of $\mathrm{N} 25^{\circ} \mathrm{E}$.
a. Approximate the plane's ground speed to the nearest mile per hour.
b. Approximate the plane's true course to the nearest tenth of a degree. What is its true bearing?
85. A plane is flying at a speed of 320 miles per hour on a bearing of $\mathrm{N} 70^{\circ} \mathrm{E}$. Its ground speed is 370 miles per hour and its true course is 30°. Find the speed, to the nearest mile per hour, and the direction angle, to the nearest tenth of a degree, of the wind.
86. A plane is flying at a speed of 540 miles per hour on a bearing of $\mathrm{S} 36^{\circ} \mathrm{E}$. Its ground speed is 500 miles per hour and its true bearing is $\mathrm{S} 44^{\circ} \mathrm{E}$. Find the speed, to the nearest mile per hour, and the direction angle, to the nearest tenth of a degree, of the wind.

Writing in Mathematics

87. What is a directed line segment?
88. What are equal vectors?
89. If vector \mathbf{v} is represented by an arrow, how is $-3 \mathbf{v}$ represented?
90. If vectors \mathbf{u} and \mathbf{v} are represented by arrows, describe how the vector sum $\mathbf{u}+\mathbf{v}$ is represented.
91. What is the vector \mathbf{i} ?
92. What is the vector \mathbf{j} ?
93. What is a position vector? How is a position vector represented using \mathbf{i} and \mathbf{j} ?
94. If \mathbf{v} is a vector between any two points in the rectangular coordinate system, explain how to write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.
95. If two vectors are expressed in terms of \mathbf{i} and \mathbf{j}, explain how to find their sum.
96. If two vectors are expressed in terms of \mathbf{i} and \mathbf{j}, explain how to find their difference.
97. If a vector is expressed in terms of \mathbf{i} and \mathbf{j}, explain how to find the scalar multiplication of the vector and a given scalar k.
98. What is the zero vector?
99. Describe one similarity between the zero vector and the number 0 .
100. Explain how to find the unit vector in the direction of any given vector \mathbf{v}.
101. Explain how to write a vector in terms of its magnitude and direction.
102. You are on an airplane. The pilot announces the plane's speed over the intercom. Which speed do you think is being reported: the speed of the plane in still air or the speed after the effect of the wind has been accounted for? Explain your answer.
103. Use vectors to explain why it is difficult to hold a heavy stack of books perfectly still for a long period of time. As you become exhausted, what eventually happens? What does this mean in terms of the forces acting on the books?

Critical Thinking Exercises

Make Sense? In Exercises 104-107, determine whether each statement makes sense or does not make sense, and explain your reasoning.
104. I used a vector to represent a wind velocity of 13 miles per hour from the west.
105. I used a vector to represent the average yearly rate of change in a man's height between ages 13 and 18.
106. Once I've found a unit vector \mathbf{u}, the vector $-\mathbf{u}$ must also be a unit vector.
107. The resultant force of two forces that each have a magnitude of one pound is a vector whose magnitude is two pounds.

In Exercises 108-111, use the figure shown to determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.

108. $\mathbf{A}+\mathbf{B}=\mathbf{E}$
109. $\mathbf{D}+\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{0}$
110. $\mathbf{B}-\mathbf{E}=\mathbf{G}-\mathbf{F}$
111. $\|\mathbf{A}\|=\|\mathbf{C}\|$
112. Let $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$. Show that $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector in the direction of \mathbf{v}.

In Exercises 113-114, refer to the navigational compass shown in the figure. The compass is marked clockwise in degrees that start at north 0°.

113. An airplane has an air speed of 240 miles per hour and a compass heading of 280°. A steady wind of 30 miles per hour is blowing in the direction of 265°. What is the plane's true speed relative to the ground? What is its compass heading relative to the ground?
114. Two tugboats are pulling on a large ship that has gone aground. One tug pulls with a force of 2500 pounds in a compass direction of 55°. The second tug pulls with a force of 2000 pounds in a compass direction of 95°. Find the magnitude and the compass direction of the resultant force.
115. You want to fly your small plane due north, but there is a 75-kilometer wind blowing from west to east.
a. Find the direction angle for where you should head the plane if your speed relative to the ground is 310 kilometers per hour.
b. If you increase your air speed, should the direction angle in part (a) increase or decrease? Explain your answer.

Preview Exercises

Exercises 116-118 will help you prepare for the material covered in the next section.
116. Find the obtuse angle θ, rounded to the nearest tenth of a degree, satisfying

$$
\cos \theta=\frac{3(-1)+(-2)(4)}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

where $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{w}=-\mathbf{i}+4 \mathbf{j}$.
117. If $\mathbf{w}=-2 \mathbf{i}+6 \mathbf{j}$, find the following vector:

$$
\frac{2(-2)+4(-6)}{\|\mathbf{w}\|^{2}} \mathbf{w} .
$$

118. Consider the triangle formed by vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}.

a. Use the magnitudes of the three vectors to write the Law of Cosines for the triangle shown in the figure: $\|\mathbf{u}\|^{2}=$?.
b. Use the coordinates of the points shown in the figure to write algebraic expressions for $\|\mathbf{u}\|,\|\mathbf{u}\|^{2},\|\mathbf{v}\|,\|\mathbf{v}\|^{2},\|\mathbf{w}\|$, and $\|\mathbf{w}\|^{2}$.

SECTION 6.7

The Dot Product

Objectives

(1) Find the dot product of two vectors.
(2) Find the angle between two vectors.
(3) Use the dot product to determine if two vectors are orthogonal.
(4) Find the projection of a vector onto another vector.
(5) Express a vector as the sum of two orthogonal vectors.
(6) Compute work.

Talk about hard work! I can see the weightlifter's muscles quivering from the exertion of holding the barbell in a stationary position above her head. Still, I'm not sure if she's doing as much work as I am, sitting at my desk with my brain quivering from studying trigonometric functions and their applications.

Would it surprise you to know that neither you nor the weightlifter are doing any work at all? The definition of work in physics and mathematics is not the same as what we mean by "work" in everyday use. To understand what is involved in real work, we turn to a new vector operation called the dot product.
(1) Find the dot product of two vectors.

The Dot Product of Two Vectors

The operations of vector addition and scalar multiplication result in vectors. By contrast, the dot product of two vectors results in a scalar (a real number), rather than a vector.

Definition of the Dot Product

If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$ are vectors, the dot product $\mathbf{v} \cdot \mathbf{w}$ is defined as follows:

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}
$$

The dot product of two vectors is the sum of the products of their horizontal components and their vertical components.

EXAMPLE 1 Finding Dot Products

If $\mathbf{v}=5 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{w}=-3 \mathbf{i}+4 \mathbf{j}$, find each of the following dot products:
a. $v \cdot w$
b. $w \cdot v$
c. $\mathbf{v} \cdot \mathbf{v}$.

SOLUTION

To find each dot product, multiply the two horizontal components, and then multiply the two vertical components. Finally, add the two products.
a. $\mathbf{v} \cdot \mathbf{w}=5(-3)+(-2)(4)=-15-8=-23$

$$
\begin{aligned}
& \text { Multiply the horizontal components } \\
& \text { and multiply the vertical components of } \\
& \mathbf{v}=5 \mathbf{i}-2 \mathbf{j} \text { and } \mathbf{w}=-3 \mathbf{i}+4 \mathbf{j} \text {. }
\end{aligned}
$$

b. $\mathbf{w} \cdot \mathbf{v}=-3(5)+4(-2)=-15-8=-23$

$$
\begin{aligned}
& \text { Multiply the horizontal components } \\
& \text { and multiply the vertical components of } \\
& \mathbf{w}=-3 \mathbf{i}+4 \mathbf{j} \text { and } \mathbf{v}=5 \mathbf{i}-\mathbf{j} \text {. }
\end{aligned}
$$

c. $\mathbf{v} \cdot \mathbf{v}=5(5)+(-2)(-2)=25+4=29$

Multiply the horizontal components and multiply the vertical components of

$$
\mathbf{v}=5 \mathbf{i}-2 \mathbf{j} \text { and } \mathbf{v}=5 \mathbf{i}-2 \mathbf{j} .
$$

Check Point 1 If $\mathbf{v}=7 \mathbf{i}-4 \mathbf{j}$ and $\mathbf{w}=2 \mathbf{i}-\mathbf{j}$, find each of the following dot products:
a. $\mathbf{v} \cdot \mathbf{w}$
b. $w \cdot v$
c. $\mathbf{w} \cdot \mathbf{w}$.

In Example 1 and Check Point 1, did you notice that $\mathbf{v} \cdot \mathbf{w}$ and $\mathbf{w} \cdot \mathbf{v}$ produced the same scalar? The fact that $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$ follows from the definition of the dot product. Properties of the dot product are given in the following box. Proofs for some of these properties are given in the appendix.

Properties of the Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors, and c is a scalar, then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $\mathbf{0} \cdot \mathbf{v}=0$
4. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
5. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$

FIGURE 6.64

The Angle between Two Vectors

The Law of Cosines can be used to derive another formula for the dot product. This formula will give us a way to find the angle between two vectors.

Figure 6.64 shows vectors $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$. By the definition of the dot product, we know that $\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}$. Our new formula for the dot product involves the angle between the vectors, shown as θ in the figure. Apply the Law of Cosines to the triangle shown in the figure.

$$
\begin{gathered}
\|\mathbf{u}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \quad \text { Use the Law of Cosines. } \\
\mathbf{u}=\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j} \\
\|\mathbf{u}\|=\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}} \\
\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j} \\
\|\mathbf{v}\|=\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}} \\
\|\mathbf{w}\|=\sqrt{2}=\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}
\end{gathered}
$$

$$
\begin{aligned}
\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2} & =\left(a_{1}^{2}+b_{1}^{2}\right)+\left(a_{2}^{2}+b_{2}^{2}\right)-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \\
a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}+b_{1}^{2}-2 b_{1} b_{2}+b_{2}^{2} & =a_{1}^{2}+b_{1}^{2}+a_{2}^{2}+b_{2}^{2}-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \\
-2 a_{1} a_{2}-2 b_{1} b_{2} & =-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \\
a_{1} a_{2}+b_{1} b_{2} & =\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
\end{aligned}
$$

Substitute the squares of the magnitudes of vectors u, v, and w into the Law of Cosines.

Square the binomials using $(A-B)^{2}=A^{2}-2 A B+B^{2}$.
Subtract $a_{1}^{2}, a_{2}^{2}, b_{1}^{2}$, and b_{2}^{2} from both sides of the equation.

Divide both sides by -2 .

By definition,

$\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}$.
$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$

Substitute $v \cdot w$ for the expression on the left side of the equation.

Alternative Formula for the Dot Product

If \mathbf{v} and \mathbf{w} are two nonzero vectors and θ is the smallest nonnegative angle between them, then

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

Find the angle between two vectors.

Solving the formula in the box for $\cos \theta$ gives us a formula for finding the angle between two vectors:

Formula for the Angle between Two Vectors

If \mathbf{v} and \mathbf{w} are two nonzero vectors and θ is the smallest nonnegative angle between \mathbf{v} and \mathbf{w}, then

$$
\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} \quad \text { and } \quad \theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

EXAMPLE 2 Finding the Angle between Two Vectors

Find the angle θ between the vectors $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{w}=-\mathbf{i}+4 \mathbf{j}$, shown in
Figure 6.65 at the top of the next page. Round to the nearest tenth of a degree.

FIGURE 6.65 Finding the angle between two vectors
(3) Use the dot product to determine if two vectors are orthogonal.

FIGURE 6.67 Orthogonal vectors: $\theta=90^{\circ}$ and $\cos \theta=0$

FIGURE 6.68 Orthogonal vectors

SOLUTION

Use the formula for the angle between two vectors.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} \\
& =\frac{(3 \mathbf{i}-2 \mathbf{j}) \cdot(-\mathbf{i}+4 \mathbf{j})}{\sqrt{3^{2}+(-2)^{2}} \sqrt{(-1)^{2}+4^{2}}} \\
& =\frac{3(-1)+(-2)(4)}{\sqrt{13} \sqrt{17}} \\
& =-\frac{11}{\sqrt{221}}
\end{aligned}
$$

Begin with the formula for the cosine of the angle between two vectors.
Substitute the given vectors in the numerator. Find the magnitude of each vector in the denominator.

Find the dot product in the numerator. Simplify in the denominator.

Perform the indicated operations.
The angle θ between the vectors is

$$
\theta=\cos ^{-1}\left(-\frac{11}{\sqrt{221}}\right) \approx 137.7^{\circ} . \quad \text { Use a calculator. } \quad \ldots
$$

0 Check Point 2 Find the angle between the vectors $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}$. Round to the nearest tenth of a degree.

Parallel and Orthogonal Vectors

Two vectors are parallel when the angle θ between the vectors is 0° or 180°. If $\theta=0^{\circ}$, the vectors point in the same direction. If $\theta=180^{\circ}$, the vectors point in opposite directions. Figure $\mathbf{6 . 6 6}$ shows parallel vectors.

$\theta=0^{\circ}$ and $\cos \theta=1$.
Vectors point in the same direction.

FIGURE 6.66 Parallel vectors
Two vectors are orthogonal when the angle between the vectors is 90°, shown in Figure 6.67. (The word orthogonal, rather than perpendicular, is used to describe vectors that meet at right angles.) We know that $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$. If \mathbf{v} and \mathbf{w} are orthogonal, then

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos 90^{\circ}=\|\mathbf{v}\|\|\mathbf{w}\|(0)=0
$$

Conversely, if \mathbf{v} and \mathbf{w} are vectors such that $\mathbf{v} \cdot \mathbf{w}=0$, then $\|\mathbf{v}\|=0$ or $\|\mathbf{w}\|=0$ or $\cos \theta=0$. If $\cos \theta=0$, then $\theta=90^{\circ}$, so \mathbf{v} and \mathbf{w} are orthogonal.

The preceding discussion is summarized as follows:

The Dot Product and Orthogonal Vectors

Two nonzero vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if $\mathbf{v} \cdot \mathbf{w}=0$. Because $\mathbf{0} \cdot \mathbf{v}=0$, the zero vector is orthogonal to every vector \mathbf{v}.

EXAMPLE 3 Determining Whether Vectors Are Orthogonal

Are the vectors $\mathbf{v}=6 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}$ orthogonal?
SOLUTION
The vectors are orthogonal if their dot product is 0 . Begin by finding $\mathbf{v} \cdot \mathbf{w}$.

$$
\mathbf{v} \cdot \mathbf{w}=(6 \mathbf{i}-3 \mathbf{j}) \cdot(\mathbf{i}+2 \mathbf{j})=6(1)+(-3)(2)=6-6=0
$$

The dot product is 0 . Thus, the given vectors are orthogonal. They are shown in Figure 6.68.
Check Point 3 Are the vectors $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{w}=6 \mathbf{i}-4 \mathbf{j}$ orthogonal?
4. Find the projection of a vector onto another vector.

FIGURE 6.69

Projection of a Vector onto Another Vector

You know how to add two vectors to obtain a resultant vector. We now reverse this process by expressing a vector as the sum of two orthogonal vectors. By doing this, you can determine how much force is applied in a particular direction. For example, Figure 6.69 shows a boat on a tilted ramp. The force due to gravity, \mathbf{F}, is pulling straight down on the boat. Part of this force, \mathbf{F}_{1}, is pushing the boat down the ramp. Another part of this force, \mathbf{F}_{2}, is pressing the boat against the ramp, at a right angle to the incline. These two orthogonal vectors, \mathbf{F}_{1} and \mathbf{F}_{2}, are called the vector components of \mathbf{F}. Notice that

$$
\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}
$$

A method for finding \mathbf{F}_{1} and \mathbf{F}_{2} involves projecting a vector onto another vector.
Figure 6.70 shows two nonzero vectors, \mathbf{v} and \mathbf{w}, with the same initial point. The angle between the vectors, θ, is acute in Figure 6.70(a) and obtuse in Figure 6.70(b). A third vector, called the vector projection of \mathbf{v} onto \mathbf{w}, is also shown in each figure, denoted by $\operatorname{proj}_{w} \mathbf{v}$.

FIGURE 6.70(a)

FIGURE 6.70(b)

How is the vector projection of \mathbf{v} onto \mathbf{w} formed? Draw the line segment from the terminal point of \mathbf{v} that forms a right angle with a line through \mathbf{w}, shown in red. The projection of \mathbf{v} onto \mathbf{w} lies on a line through \mathbf{w}, and is parallel to vector \mathbf{w}. This vector begins at the common initial point of \mathbf{v} and \mathbf{w}. It ends at the point where the dashed red line segment intersects the line through \mathbf{w}.

Our goal is to determine an expression for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$. We begin with its magnitude. By the definition of the cosine function,

$$
\begin{aligned}
\cos \theta & =\frac{\left\|\operatorname{proj}_{\mathbf{w}}\right\|}{\|\mathbf{v}\|}
\end{aligned} \begin{aligned}
& \begin{array}{c}
\text { This is the magnitude of the } \\
\text { vector projection of } \mathbf{v} \text { onto } \mathbf{w} .
\end{array} \\
& \|\mathbf{v}\| \cos \theta
\end{aligned}=\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\| \quad \text { Multiply both sides by }\|v\| .
$$

We can rewrite the right side of this equation and obtain another expression for the magnitude of the vector projection of \mathbf{v} onto \mathbf{w}. To do so, use the alternate formula for the dot product, $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$.

Divide both sides of $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$ by $\|\mathbf{w}\|$:

$$
\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}=\|\mathbf{v}\| \cos \theta .
$$

The expression on the right side of this equation, $\|\mathbf{v}\| \cos \theta$, is the same expression that appears in the formula for $\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\|$. Thus,

$$
\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\|=\|\mathbf{v}\| \cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}
$$

FIGURE 6.71 The vector projection of \mathbf{v} onto \mathbf{w}
5. Express a vector as the sum of two orthogonal vectors.

We use the formula for the magnitude of $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$ to find the vector itself. This is done by finding the scalar product of the magnitude and the unit vector in the direction of \mathbf{w}.

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}\right)\left(\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}
$$

$$
\begin{aligned}
& \text { This is the magnitude of } \\
& \text { the vector projection of } \\
& \mathbf{v} \text { onto } \mathbf{w} \text {. }
\end{aligned}
$$

The Vector Projection of v onto w

If \mathbf{v} and \mathbf{w} are two nonzero vectors, the vector projection of \mathbf{v} onto \mathbf{w} is

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}
$$

EXAMPLE 4 Finding the Vector Projection of

 One Vector onto AnotherIf $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=-2 \mathbf{i}+6 \mathbf{j}$, find the vector projection of \mathbf{v} onto \mathbf{w}.

SOLUTION

The vector projection of \mathbf{v} onto \mathbf{w} is found using the formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$.

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{w}} \mathbf{v} & =\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}=\frac{(2 \mathbf{i}+4 \mathbf{j}) \cdot(-2 \mathbf{i}+6 \mathbf{j})}{\left(\sqrt{(-2)^{2}+6^{2}}\right)^{2}} \mathbf{w} \\
& =\frac{2(-2)+4(6)}{(\sqrt{40})^{2}} \mathbf{w}=\frac{20}{40} \mathbf{w}=\frac{1}{2}(-2 \mathbf{i}+6 \mathbf{j})=-\mathbf{i}+3 \mathbf{j}
\end{aligned}
$$

The three vectors, \mathbf{v}, \mathbf{w}, and $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, are shown in Figure 6.71.
Check Point 4 If $\mathbf{v}=2 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}-\mathbf{j}$, find the vector projection of \mathbf{v} onto w.

We use the vector projection of \mathbf{v} onto $\mathbf{w}, \operatorname{proj}_{\mathbf{w}} \mathbf{v}$, to express \mathbf{v} as the sum of two orthogonal vectors.

The Vector Components of v

Let \mathbf{v} and \mathbf{w} be two nonzero vectors. Vector \mathbf{v} can be expressed as the sum of two orthogonal vectors, \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.

$$
\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}, \quad \mathbf{v}_{2}=\mathbf{v}-\mathbf{v}_{1}
$$

Thus, $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$. The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are called the vector components of \mathbf{v}. The process of expressing \mathbf{v} as $\mathbf{v}_{1}+\mathbf{v}_{2}$ is called the decomposition of \mathbf{v} into \mathbf{v}_{1} and \mathbf{v}_{2}.

EXAMPLE 5 Decomposing a Vector into Two Orthogonal Vectors

Let $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=-2 \mathbf{i}+6 \mathbf{j}$. Decompose \mathbf{v} into two vectors, \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.
(6) Compute work.

SOLUTION

The vectors $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=-2 \mathbf{i}+6 \mathbf{j}$ are the vectors we worked with in Example 4. We use the formulas in the box on the preceding page.

$$
\begin{aligned}
& \mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\mathbf{i}+3 \mathbf{j} \\
& \mathbf{v}_{2}=\mathbf{v}-\mathbf{v}_{1}=(2 \mathbf{i}+4 \mathbf{j})-(-\mathbf{i}+3 \mathbf{j})=3 \mathbf{i}+\mathbf{j}
\end{aligned} \quad \text { We obtained this vector in Example } 4 .
$$

$\$$ Check Point 5 Let $\mathbf{v}=2 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}-\mathbf{j}$. (These are the vectors from Check Point 4.) Decompose \mathbf{v} into two vectors, \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.

Work: An Application of the Dot Product

The bad news: Your car just died. The good news: It died on a level road just 200 feet from a gas station. Exerting a constant force of 90 pounds, and not necessarily whistling as you work, you manage to push the car to the gas station.

Although you did not whistle, you certainly did work pushing the car 200 feet from point A to point B. How much work did you do? If a constant force \mathbf{F} is applied to an object, moving it from point A to point B in the direction of the force, the work, W, done is

$$
W=(\text { magnitude of force })(\text { distance from } A \text { to } B) .
$$

You pushed with a force of 90 pounds for a distance of 200 feet. The work done by your force is

$$
W=(90 \text { pounds })(200 \text { feet })
$$

or 18,000 foot-pounds. Work is often measured in foot-pounds or in newton-meters.
The photo on the left shows an adult pulling a small child in a wagon. Work is being done. However, the situation is not quite the same as pushing your car. Pushing the car, the force you applied was along the line of motion. By contrast, the force of the adult pulling the wagon is not applied along the line of the wagon's motion. In this case, the dot product is used to determine the work done by the force.

Definition of Work

The work, W, done by a force \mathbf{F} moving an object from A to B is

$$
W=\mathbf{F} \cdot \overrightarrow{A B}
$$

When computing work, it is often easier to use the alternative formula for the dot product. Thus,

$$
W=\mathbf{F} \cdot \overrightarrow{A B}=\|\mathbf{F}\|\|\overrightarrow{A B}\| \cos \theta
$$

It is correct to refer to W as either the work done or the work done by the force.

EXAMPLE 6 Computing Work

A child pulls a sled along level ground by exerting a force of 30 pounds on a rope that makes an angle of 35° with the horizontal. How much work is done pulling the sled 200 feet?

SOLUTION

The situation is illustrated in Figure 6.72. The work done is

$$
W=\|\mathbf{F}\|\|\overrightarrow{A B}\| \cos \theta=(30)(200) \cos 35^{\circ} \approx 4915 .
$$

| Magnitude
 of the force
 is 30 pounds. | Distance
 is
 200 feet. |
| :---: | :---: | | The angle |
| :---: |
| between the |
| force and the |
| sled's motion |
| is 35°. |

Thus, the work done is approximately 4915 foot-pounds.

W Check Point 6 A child pulls a wagon along level ground by exerting a force of 20 pounds on a handle that makes an angle of 30° with the horizontal. How much work is done pulling the wagon 150 feet?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$ are vectors, the product $\mathbf{v} \cdot \mathbf{w}$, called the \qquad is defined as $\mathbf{v} \cdot \mathbf{w}=$ \qquad .
2. If \mathbf{v} and \mathbf{w} are two nonzero vectors and θ is the smallest nonnegative angle between them, then $\mathbf{v} \cdot \mathbf{w}=$ \qquad -.
3. If $\mathbf{v} \cdot \mathbf{w}=0$, then the vectors \mathbf{v} and \mathbf{w} are \qquad
4. True or false: Given two nonzero vectors \mathbf{v} and \mathbf{w}, \mathbf{v} can be decomposed into two vectors, one parallel to w and the other orthogonal to \mathbf{w}.
5. True or false: The definition of work indicates that work is a vector. \qquad

EXERCISE SET 6.7

Practice Exercises

In Exercises 1-8, use the given vectors to find $\mathbf{v} \cdot \mathbf{w}$ and $\mathbf{v} \cdot \mathbf{v}$.
$\mathbf{1 .} \mathbf{v}=3 \mathbf{i}+\mathbf{j}, \quad \mathbf{w}=\mathbf{i}+3 \mathbf{j} \quad \mathbf{2} . \mathbf{v}=3 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=\mathbf{i}+4 \mathbf{j}$
3. $\mathbf{v}=5 \mathbf{i}-4 \mathbf{j}, \quad \mathbf{w}=-2 \mathbf{i}-\mathbf{j}$
4. $\mathbf{v}=7 \mathbf{i}-2 \mathbf{j}, \quad \mathbf{w}=-3 \mathbf{i}-\mathbf{j}$
5. $\mathbf{v}=-6 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{w}=-10 \mathbf{i}-8 \mathbf{j}$
6. $\mathbf{v}=-8 \mathbf{i}-3 \mathbf{j}, \quad \mathbf{w}=-10 \mathbf{i}-5 \mathbf{j}$
7. $\mathbf{v}=5 \mathbf{i}, \quad \mathbf{w}=\mathbf{j}$
8. $\mathbf{v}=\mathbf{i}, \quad \mathbf{w}=-5 \mathbf{j}$

In Exercises 9-16, let

$$
\mathbf{u}=2 \mathbf{i}-\mathbf{j}, \quad \mathbf{v}=3 \mathbf{i}+\mathbf{j}, \quad \text { and } \quad \mathbf{w}=\mathbf{i}+4 \mathbf{j} .
$$

Find each specified scalar.
9. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$
10. $\mathbf{v} \cdot(\mathbf{u}+\mathbf{w})$
11. $\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
12. $\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{w}$
13. $(4 \mathbf{u}) \cdot \mathbf{v}$
14. $(5 v) \cdot w$
15. $4(\mathbf{u} \cdot \mathbf{v})$
16. $5(v \cdot w)$

In Exercises 17-22, find the angle between \mathbf{v} and \mathbf{w}. Round to the nearest tenth of a degree.
17. $\mathbf{v}=2 \mathbf{i}-\mathbf{j}, \quad \mathbf{w}=3 \mathbf{i}+4 \mathbf{j}$
18. $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}, \quad w=3 \mathbf{i}+6 \mathbf{j}$
19. $\mathbf{v}=-3 \mathbf{i}+2 \mathbf{j}, \quad \mathbf{w}=4 \mathbf{i}-\mathbf{j}$
20. $\mathbf{v}=\mathbf{i}+2 \mathbf{j}, \quad \mathbf{w}=4 \mathbf{i}-3 \mathbf{j}$
21. $\mathbf{v}=6 \mathbf{i}, \quad \mathbf{w}=5 \mathbf{i}+4 \mathbf{j}$
22. $\mathbf{v}=3 \mathbf{j}, \quad \mathbf{w}=4 \mathbf{i}+5 \mathbf{j}$

In Exercises 23-32, use the dot product to determine whether \mathbf{v} and \mathbf{w} are orthogonal.
23. $\mathbf{v}=\mathbf{i}+\mathbf{j}, \quad \mathbf{w}=\mathbf{i}-\mathbf{j} \quad$ 24. $\mathbf{v}=\mathbf{i}+\mathbf{j}, \quad \mathbf{w}=-\mathbf{i}+\mathbf{j}$
25. $\mathbf{v}=2 \mathbf{i}+8 \mathbf{j}, \quad \mathbf{w}=4 \mathbf{i}-\mathbf{j}$
26. $\mathbf{v}=8 \mathbf{i}-4 \mathbf{j}, \quad \mathbf{w}=-6 \mathbf{i}-12 \mathbf{j}$
27. $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}, \quad \mathbf{w}=-\mathbf{i}+\mathbf{j}$
28. $\mathbf{v}=5 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{w}=\mathbf{i}-\mathbf{j}$
29. $\mathbf{v}=3 \mathbf{i}, \quad \mathbf{w}=-4 \mathbf{i}$
30. $\mathbf{v}=5 \mathbf{i}, \quad \mathbf{w}=-6 \mathbf{i}$
31. $\mathbf{v}=3 \mathbf{i}, \quad \mathbf{w}=-4 \mathbf{j}$
32. $\mathbf{v}=5 \mathbf{i}, \quad \mathbf{w}=-6 \mathbf{j}$

In Exercises 33-38, find $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$. Then decompose \mathbf{v} into two vectors, \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.
33. $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j}, \quad \mathbf{w}=\mathbf{i}-\mathbf{j}$
34. $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j}, \quad \mathbf{w}=2 \mathbf{i}+\mathbf{j}$
35. $\mathbf{v}=\mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=-2 \mathbf{i}+5 \mathbf{j}$
36. $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}, \quad \mathbf{w}=-3 \mathbf{i}+6 \mathbf{j}$
37. $\mathbf{v}=\mathbf{i}+2 \mathbf{j}, \quad \mathbf{w}=3 \mathbf{i}+6 \mathbf{j}$
38. $\mathbf{v}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{w}=6 \mathbf{i}+3 \mathbf{j}$

Practice Plus

In Exercises 39-42, let

$$
\mathbf{u}=-\mathbf{i}+\mathbf{j}, \quad \mathbf{v}=3 \mathbf{i}-2 \mathbf{j}, \quad \text { and } \quad \mathbf{w}=-5 \mathbf{j} .
$$

Find each specified scalar or vector.
39. $5 \mathbf{u} \cdot(3 \mathbf{v}-4 \mathbf{w})$
40. $4 \mathbf{u} \cdot(5 \mathbf{v}-3 \mathbf{w})$
41. $\operatorname{proj}_{\mathbf{u}}(\mathbf{v}+\mathbf{w})$
42. $\operatorname{proj}_{\mathbf{u}}(\mathbf{v}-\mathbf{w})$

In Exercises 43-44, find the angle, in degrees, between \mathbf{v} and \mathbf{w}.
43. $\mathbf{v}=2 \cos \frac{4 \pi}{3} \mathbf{i}+2 \sin \frac{4 \pi}{3} \mathbf{j}, \quad \mathbf{w}=3 \cos \frac{3 \pi}{2} \mathbf{i}+3 \sin \frac{3 \pi}{2} \mathbf{j}$
44. $\mathbf{v}=3 \cos \frac{5 \pi}{3} \mathbf{i}+3 \sin \frac{5 \pi}{3} \mathbf{j}, \quad \mathbf{w}=2 \cos \pi \mathbf{i}+2 \sin \pi \mathbf{j}$

In Exercises 45-50, determine whether \mathbf{v} and \mathbf{w} are parallel, orthogonal, or neither.
45. $\mathbf{v}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{w}=6 \mathbf{i}-10 \mathbf{j}$
46. $\mathbf{v}=-2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=-6 \mathbf{i}+9 \mathbf{j}$
47. $\mathbf{v}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{w}=6 \mathbf{i}+10 \mathbf{j}$
48. $\mathbf{v}=-2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=-6 \mathbf{i}-9 \mathbf{j}$
49. $\mathbf{v}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{w}=6 \mathbf{i}+\frac{18}{5} \mathbf{j}$
50. $\mathbf{v}=-2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=-6 \mathbf{i}-4 \mathbf{j}$

Application Exercises

51. The components of $\mathbf{v}=240 \mathbf{i}+300 \mathbf{j}$ represent the respective number of gallons of regular and premium gas sold at a station. The components of $\mathbf{w}=2.90 \mathbf{i}+3.07 \mathbf{j}$ represent the respective prices per gallon for each kind of gas. Find $\mathbf{v} \cdot \mathbf{w}$ and describe what the answer means in practical terms.
52. The components of $\mathbf{v}=180 \mathbf{i}+450 \mathbf{j}$ represent the respective number of one-day and three-day videos rented from a video store. The components of $\mathbf{w}=3 \mathbf{i}+2 \mathbf{j}$ represent the prices to rent the one-day and three-day videos, respectively. Find $\mathbf{v} \cdot \mathbf{w}$ and describe what the answer means in practical terms.
53. Find the work done in pushing a car along a level road from point A to point $B, 80$ feet from A, while exerting a constant force of 95 pounds. Round to the nearest foot-pound.
54. Find the work done when a crane lifts a 6000 -pound boulder through a vertical distance of 12 feet. Round to the nearest foot-pound.
55. A wagon is pulled along level ground by exerting a force of 40 pounds on a handle that makes an angle of 32° with the horizontal. How much work is done pulling the wagon 100 feet? Round to the nearest foot-pound.
56. A wagon is pulled along level ground by exerting a force of 25 pounds on a handle that makes an angle of 38° with the horizontal. How much work is done pulling the wagon 100 feet? Round to the nearest foot-pound.
57. A force of 60 pounds on a rope is used to pull a box up a ramp inclined at 12° from the horizontal. The figure shows that the rope forms an angle of 38° with the horizontal. How much work is done pulling the box 20 feet along the ramp?

58. A force of 80 pounds on a rope is used to pull a box up a ramp inclined at 10° from the horizontal. The rope forms an angle of 33° with the horizontal. How much work is done pulling the box 25 feet along the ramp?
59. A force is given by the vector $\mathbf{F}=3 \mathbf{i}+2 \mathbf{j}$. The force moves an object along a straight line from the point $(4,9)$ to the point $(10,20)$. Find the work done if the distance is measured in feet and the force is measured in pounds.
60. A force is given by the vector $\mathbf{F}=5 \mathbf{i}+7 \mathbf{j}$. The force moves an object along a straight line from the point $(8,11)$ to the point $(18,20)$. Find the work done if the distance is measured in meters and the force is measured in newtons.
61. A force of 4 pounds acts in the direction of 50° to the horizontal. The force moves an object along a straight line from the point $(3,7)$ to the point $(8,10)$, with distance measured in feet. Find the work done by the force.
62. A force of 6 pounds acts in the direction of 40° to the horizontal. The force moves an object along a straight line from the point $(5,9)$ to the point $(8,20)$, with the distance measured in feet. Find the work done by the force.
63. Refer to Figure 6.69 on page 758. Suppose a boat weighs 700 pounds and is on a ramp inclined at 30°. Represent the force due to gravity, \mathbf{F}, using

$$
\mathbf{F}=-700 \mathbf{j} .
$$

a. Write a unit vector along the ramp in the upward direction.
b. Find the vector projection of \mathbf{F} onto the unit vector from part (a).
c. What is the magnitude of the vector projection in part (b)? What does this represent?
64. Refer to Figure 6.69 on page 758. Suppose a boat weighs 650 pounds and is on a ramp inclined at 30°. Represent the force due to gravity, \mathbf{F}, using

$$
\mathbf{F}=-650 \mathbf{j} .
$$

a. Write a unit vector along the ramp in the upward direction.
b. Find the vector projection of \mathbf{F} onto the unit vector from part (a).
c. What is the magnitude of the vector projection in part (b)? What does this represent?

Writing in Mathematics

65. Explain how to find the dot product of two vectors.
66. Using words and no symbols, describe how to find the dot product of two vectors with the alternative formula

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

67. Describe how to find the angle between two vectors.
68. What are parallel vectors?
69. What are orthogonal vectors?
70. How do you determine if two vectors are orthogonal?
71. Draw two vectors, \mathbf{v} and \mathbf{w}, with the same initial point. Show the vector projection of \mathbf{v} onto \mathbf{w} in your diagram. Then describe how you identified this vector.
72. How do you determine the work done by a force \mathbf{F} in moving an object from A to B when the direction of the force is not along the line of motion?
73. A weightlifter is holding a barbell perfectly still above his head, his body shaking from the effort. How much work is the weightlifter doing? Explain your answer.
74. Describe one way in which the everyday use of the word work is different from the definition of work given in this section.

Critical Thinking Exercises

Make Sense? In Exercises 75-78, determine whether each statement makes sense or does not make sense, and explain your reasoning.
75. Although I expected vector operations to produce another vector, the dot product of two vectors is not a vector, but a real number.
76. I've noticed that whenever the dot product is negative, the angle between the two vectors is obtuse.
77. I'm working with a unit vector, so its dot product with itself must be 1 .
78. The weightlifter does more work in raising 300 kilograms above her head than Atlas, who is supporting the entire world.

In Exercises 79-81, use the vectors

$$
\mathbf{u}=a_{1} \mathbf{i}+b_{1} \mathbf{j}, \quad \mathbf{v}=a_{2} \mathbf{i}+b_{2} \mathbf{j}, \quad \text { and } \quad \mathbf{w}=a_{3} \mathbf{i}+b_{3} \mathbf{j}
$$

to prove the given property.
79. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
80. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})$
81. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
82. If $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}$, find a vector orthogonal to \mathbf{v}.
83. Find a value of b so that $15 \mathbf{i}-3 \mathbf{j}$ and $-4 \mathbf{i}+b \mathbf{j}$ are orthogonal.
84. Prove that the projection of \mathbf{v} onto \mathbf{i} is $(\mathbf{v} \cdot \mathbf{i}) \mathbf{i}$.
85. Find two vectors \mathbf{v} and \mathbf{w} such that the projection of \mathbf{v} onto \mathbf{w} is \mathbf{v}.

Group Exercise

86. Group members should research and present a report on unusual and interesting applications of vectors.

Preview Exercises

Exercises 87-89 will help you prepare for the material covered in the first section of the next chapter.
87. a. Does $(4,-1)$ satisfy $x+2 y=2$?
b. Does $(4,-1)$ satisfy $x-2 y=6$?
88. Graph $x+2 y=2$ and $x-2 y=6$ in the same rectangular coordinate system. At what point do the graphs intersect?
89. Solve: $5(2 x-3)-4 x=9$.

CHAPTER 6

SUMMARY

DEFINITIONS AND CONCEPTS

6.1 and 6.2 The Law of Sines; The Law of Cosines

a. The Law of Sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

b. The Law of Sines is used to solve SAA, ASA, and SSA (the ambiguous case) triangles. The ambiguous case may result in no triangle, one triangle, or two triangles; see the box on page 685.
c. The area of a triangle equals one-half the product of the lengths of two sides times the sine of their included angle.
d. The Law of Cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

e. The Law of Cosines is used to find the side opposite the given angle in an SAS triangle; see the box at the bottom of the page on page 695 . The Law of Cosines is also used to find the angle opposite the longest side in an SSS triangle; see the box on page 696.
f. Heron's Formula for the Area of a Triangle

The area of a triangle with sides a, b, and c is $\sqrt{s(s-a)(s-b)(s-c)}$, where s is one-half its perimeter: $s=\frac{1}{2}(a+b+c)$.

6.3 and 6.4 Polar Coordinates; Graphs of Polar Equations

a. A point P in the polar coordinate system is represented by (r, θ), where r is the directed distance from the pole to the point and θ is the angle from the polar axis to line segment $O P$. The elements of the ordered pair (r, θ) are called the polar coordinates of P. See Figure 6.20 on page 703. When r in (r, θ) is negative, a point is located $|r|$ units along the ray opposite the terminal side of θ. Important information about the sign of r and the location of the point (r, θ) is found in the box on page 703.
b. Multiple Representations of Points

If n is any integer, $(r, \theta)=(r, \theta+2 n \pi)$ or $(r, \theta)=(-r, \theta+\pi+2 n \pi)$.
c. Relations between Polar and Rectangular Coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x}
$$

d. To convert a point from polar coordinates (r, θ) to rectangular coordinates (x, y), use $x=r \cos \theta$ and $y=r \sin \theta$.
e. A point in rectangular coordinates (x, y) can be converted to polar coordinates (r, θ). Use the procedure in the box on page 707.
f. To convert a rectangular equation to a polar equation, replace x with $r \cos \theta$ and y with $r \sin \theta$.
g. To convert a polar equation to a rectangular equation, use one or more of

$$
r^{2}=x^{2}+y^{2}, \quad r \cos \theta=x, \quad r \sin \theta=y, \quad \text { and } \quad \tan \theta=\frac{y}{x}
$$

It is often necessary to do something to the given polar equation before using the preceding expressions.
h. A polar equation is an equation whose variables are r and θ. The graph of a polar equation is the set of all points whose polar coordinates satisfy the equation.
i. Polar equations can be graphed using point plotting and symmetry (see the box on page 716).

Ex. 1, p. 683;
Ex. 2, p. 684;
Ex. 3, p. 685;
Ex. 4, p. 686
Ex. 5, p. 687

Ex. 6, p. 688

Ex. 1, p. 696;
Ex. 2, p. 697

Ex. 4, p. 698

Ex. 1, p. 703

Ex. 2, p. 704

Ex. 3, p. 706

Ex. 4, p. 707;
Ex. 5, p. 708
Ex. 6, p. 708
Ex. 7, p. 709

Ex. 1, p. 714

Ex. 2, p. 716

DEFINITIONS AND CONCEPTS

j. The graphs of $r=a \cos \theta$ and $r=a \sin \theta$ are circles. See the box on page 715. The graphs of $r=a \pm b \sin \theta$ and $r=a \pm b \cos \theta$ are called limaçons $(a>0$ and $b>0)$, shown in the box on page 718. The graphs of $r=a \sin n \theta$ and $r=a \cos n \theta, a \neq 0$, are rose curves with $2 n$ petals if n is even and n petals if n is odd. See the box on page 720. The graphs of $r^{2}=a^{2} \sin 2 \theta$ and $r^{2}=a^{2} \cos 2 \theta, a \neq 0$, are called lemniscates and are shown in the box on page 721 .

6.5 Complex Numbers in Polar Form; DeMoivre's Theorem

a. The complex number $z=a+b i$ is represented as a point (a, b) in the complex plane, shown in Figure 6.38 on page 726.
b. The absolute value of $z=a+b i$ is $|z|=|a+b i|=\sqrt{a^{2}+b^{2}}$.
c. The polar form of $z=a+b i$ is $z=r(\cos \theta+i \sin \theta)$, where $a=r \cos \theta, b=r \sin \theta, r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=\frac{b}{a}$. We call r the modulus and θ the argument of z, with $0 \leq \theta<2 \pi$.
d. Multiplying Complex Numbers in Polar Form: Multiply moduli and add arguments. See the box on page 729.
e. Dividing Complex Numbers in Polar Form: Divide moduli and subtract arguments. See the box on page 730.
f. DeMoivre's Theorem is used to find powers of complex numbers in polar form.

$$
[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

g. DeMoivre's Theorem can be used to find roots of complex numbers in polar form. The n distinct nth roots of $r(\cos \theta+i \sin \theta)$ are

$$
\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right]
$$

or

$$
\sqrt[n]{r}\left[\cos \left(\frac{\theta+360^{\circ} k}{n}\right)+i \sin \left(\frac{\theta+360^{\circ} k}{n}\right)\right]
$$

where $k=0,1,2, \ldots, n-1$.

6.6 Vectors

a. A vector is a directed line segment.
b. Equal vectors have the same magnitude and the same direction.
c. The vector $k \mathbf{v}$, the scalar multiple of the vector \mathbf{v} and the scalar k, has magnitude $|\mathbf{k}|\|\mathbf{v}\|$. The direction of $k \mathbf{v}$ is the same as that of \mathbf{v} if $k>0$ and opposite \mathbf{v} if $k<0$.
d. The sum $\mathbf{u}+\mathbf{v}$, called the resultant vector, can be expressed geometrically. Position \mathbf{u} and \mathbf{v} so that the terminal point of \mathbf{u} coincides with the initial point of \mathbf{v}. The vector $\mathbf{u}+\mathbf{v}$ extends from the initial point of \mathbf{u} to the terminal point of \mathbf{v}.
e. The difference of two vectors, $\mathbf{u}-\mathbf{v}$, is defined as $\mathbf{u}+(-\mathbf{v})$.
f. The vector \mathbf{i} is the unit vector whose direction is along the positive x-axis. The vector \mathbf{j} is the unit vector whose direction is along the positive y-axis.
g. Vector \mathbf{v}, from $(0,0)$ to (a, b), called a position vector, is represented as $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$, where a is the horizontal component and b is the vertical component. The magnitude of \mathbf{v} is given by $\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}$.
h. Vector \mathbf{v} from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is equal to the position vector $\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}$. In rectangular coordinates, the term "vector" refers to the position vector in terms of \mathbf{i} and \mathbf{j} that is equal to it.
i. Operations with Vectors in Terms of \mathbf{i} and \mathbf{j} If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$, then

- $\mathbf{v}+\mathbf{w}=\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j}$
- $\mathbf{v}-\mathbf{w}=\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j}$
- $k \mathbf{v}=\left(k a_{1}\right) \mathbf{i}+\left(k b_{1}\right) \mathbf{j}$
j. The zero vector $\mathbf{0}$ is the vector whose magnitude is 0 and is assigned no direction. Many properties of vector addition and scalar multiplication involve the zero vector. Some of these properties are listed in the box on page 746 .

Ex. 3, p. 717;
Ex. 4, p. 719;
Ex. 5, p. 720

Ex. 1, p. 727

Ex. 2, p. 727
Ex. 3, p. 728;
Ex. 4, p. 729

Ex. 5, p. 730

Ex. 6, p. 731

Ex. 7, p. 732;
Ex. 8, p. 732
Ex. 9, p. 733;
Ex. 10, p. 734

Ex. 1, p. 740
Figure 6.52, p. 741

Figure 6.53, p. 741

Figure 6.54, p. 742

Ex. 2, p. 743

Ex. 3, p. 744

Ex. 4, p. 745;
Ex. 5, p. 745;
Ex. 6, p. 746

DEFINITIONS AND CONCEPTS

k. The vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is the unit vector that has the same direction as \mathbf{v}.

1. A vector with magnitude $\|\mathbf{v}\|$ and direction angle θ, the angle that \mathbf{v} makes with the positive x-axis, can be expressed in terms of its magnitude and direction angle as

$$
\mathbf{v}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j} .
$$

6.7 The Dot Product

a. Definition of the Dot Product

Ex. 1, p. 755
If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$, the dot product of \mathbf{v} and \mathbf{w} is defined by $\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}$.
b. Alternative Formula for the Dot Product: $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$, where θ is the smallest nonnegative angle between \mathbf{v} and \mathbf{w}
c. Angle between Two Vectors

$$
\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} \quad \text { and } \quad \theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

d. Two vectors are orthogonal when the angle between them is 90°. To show that two vectors are orthogonal, show that their dot product is zero.
e. The vector projection of \mathbf{v} onto \mathbf{w} is given by

Ex. 4, p. 759

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}
$$

f. A vector may be expressed as the sum of two orthogonal vectors, called the vector components. See the box

Ex. 5, p. 759 at the bottom of the page on page 759 .
g. The work, W, done by a force \mathbf{F} moving an object from A to B is $W=\mathbf{F} \cdot \overrightarrow{A B}$.

Ex. 6, p. 761
Thus, $W=\|\mathbf{F}\|\|\overrightarrow{A B}\| \cos \theta$, where θ is the angle between the force and the direction of motion.

REVIEW EXERCISES

6.1 and 6.2

In Exercises 1-12, solve each triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. If no triangle exists, state "no triangle." If two triangles exist, solve each triangle.

1. $A=70^{\circ}, B=55^{\circ}, a=12$
2. $B=107^{\circ}, C=30^{\circ}, c=126$
3. $B=66^{\circ}, a=17, c=12$
4. $a=117, b=66, c=142$
5. $A=35^{\circ}, B=25^{\circ}, c=68$
6. $A=39^{\circ}, a=20, b=26$
7. $C=50^{\circ}, a=3, c=1$
8. $A=162^{\circ}, b=11.2, c=48.2$
9. $a=26.1, b=40.2, c=36.5$
10. $A=40^{\circ}, a=6, b=4$
11. $B=37^{\circ}, a=12.4, b=8.7$
12. $A=23^{\circ}, a=54.3, b=22.1$

In Exercises 13-16, find the area of the triangle having the given measurements. Round to the nearest square unit.
13. $C=42^{\circ}, a=4$ feet, $b=6$ feet
14. $A=22^{\circ}, b=4$ feet, $c=5$ feet
15. $a=2$ meters, $b=4$ meters, $c=5$ meters
16. $a=2$ meters, $b=2$ meters, $c=2$ meters
17. The A-frame cabin shown below is 35 feet wide. The roof of the cabin makes a 55° angle with the cabin's base. Find the length of one side of the roof from its ground level to the peak. Round to the nearest tenth of a foot.

18. Two cars leave a city at the same time and travel along straight highways that differ in direction by 80°. One car averages 60 miles per hour and the other averages 50 miles per hour. How far apart will the cars be after 30 minutes? Round to the nearest tenth of a mile.
19. Two airplanes leave an airport at the same time on different runways. One flies on a bearing of $\mathrm{N} 66.5^{\circ} \mathrm{W}$ at 325 miles per hour. The other airplane flies on a bearing of $\mathrm{S} 26.5^{\circ} \mathrm{W}$ at 300 miles per hour. How far apart will the airplanes be after two hours?
20. The figure shows three roads that intersect to bound a triangular piece of land. Find the lengths of the other two sides of the land to the nearest foot.

21. A commercial piece of real estate is priced at $\$ 5.25$ per square foot. Find the cost, to the nearest dollar, of a triangular lot measuring 260 feet by 320 feet by 450 feet.

6.3 and 6.4

In Exercises 22-27, plot each point in polar coordinates and find its rectangular coordinates.
22. $\left(4,60^{\circ}\right)$
23. $\left(3,150^{\circ}\right)$
24. $\left(-4, \frac{4 \pi}{3}\right)$
25. $\left(-2, \frac{5 \pi}{4}\right)$
26. $\left(-4,-\frac{\pi}{2}\right)$
27. $\left(-2,-\frac{\pi}{4}\right)$

In Exercises 28-30, plot each point in polar coordinates. Then find another representation (r, θ) of this point in which
a. $r>0,2 \pi<\theta<4 \pi$.
b. $r<0,0<\theta<2 \pi$.
c. $r>0,-2 \pi<\theta<0$.
28. $\left(3, \frac{\pi}{6}\right)$
29. $\left(2, \frac{2 \pi}{3}\right)$
30. $\left(3.5, \frac{\pi}{2}\right)$

In Exercises 31-36, the rectangular coordinates of a point are given. Find polar coordinates of each point.
31. $(-4,4)$
32. $(3,-3)$
33. $(5,12)$
34. $(-3,4)$
35. $(0,-5)$
36. $(1,0)$

In Exercises 37-39, convert each rectangular equation to a polar equation that expresses r in terms of θ.
37. $2 x+3 y=8$
38. $x^{2}+y^{2}=100$
39. $(x-6)^{2}+y^{2}=36$

In Exercises 40-46, convert each polar equation to a rectangular equation. Then use your knowledge of the rectangular equation to graph the polar equation in a polar coordinate system.
40. $r=3$
41. $\theta=\frac{3 \pi}{4}$
42. $r \cos \theta=-1$
43. $r=5 \csc \theta$
44. $r=3 \cos \theta$
45. $4 r \cos \theta+r \sin \theta=8$
46. $r^{2} \sin 2 \theta=-2$

In Exercises 47-49, test for symmetry with respect to
a. the polar axis.
b. the line $\theta=\frac{\pi}{2}$.
c. the pole.
47. $r=5+3 \cos \theta$
48. $r=3 \sin \theta$
49. $r^{2}=9 \cos 2 \theta$

In Exercises 50-56, graph each polar equation. Be sure to test for symmetry.
50. $r=3 \cos \theta$
51. $r=2+2 \sin \theta$
52. $r=\sin 2 \theta$
53. $r=2+\cos \theta$
54. $r=1+3 \sin \theta$
55. $r=1-2 \cos \theta$
56. $r^{2}=\cos 2 \theta$

6.5

In Exercises 57-60, plot each complex number. Then write the complex number in polar form. You may express the argument in degrees or radians.
57. $1-i$
58. $-2 \sqrt{3}+2 i$
59. $-3-4 i$
60. $-5 i$

In Exercises 61-64, write each complex number in rectangular form. If necessary, round to the nearest tenth.
61. $8\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
62. $4\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
63. $6\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
64. $0.6\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)$

In Exercises 65-67, find the product of the complex numbers. Leave answers in polar form.
65. $z_{1}=3\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)$
$z_{2}=5\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)$
66. $z_{1}=\cos 210^{\circ}+i \sin 210^{\circ}$ $z_{2}=\cos 55^{\circ}+i \sin 55^{\circ}$
67. $z_{1}=4\left(\cos \frac{3 \pi}{7}+i \sin \frac{3 \pi}{7}\right)$ $z_{2}=10\left(\cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}\right)$

In Exercises 68-70, find the quotient $\frac{z_{1}}{z_{2}}$ of the complex numbers.
Leave answers in polar form.
68. $z_{1}=10\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)$ $z_{2}=5\left(\cos 5^{\circ}+i \sin 5^{\circ}\right)$
69. $z_{1}=5\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$ $z_{2}=10\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
70. $z_{1}=2\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$ $z_{2}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$

In Exercises 71-75, use DeMoivre's Theorem to find the indicated power of the complex number. Write answers in rectangular form.
71. $\left[2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\right]^{3}$
72. $\left[4\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)\right]^{3}$
73. $\left[\frac{1}{2}\left(\cos \frac{\pi}{14}+i \sin \frac{\pi}{14}\right)\right]^{7}$
74. $(1-i \sqrt{3})^{2}$
75. $(-2-2 i)^{5}$

In Exercises 76-77, find all the complex roots. Write roots in polar form with θ in degrees.
76. The complex square roots of $49\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$
77. The complex cube roots of $125\left(\cos 165^{\circ}+i \sin 165^{\circ}\right)$

In Exercises 78-81, find all the complex roots. Write roots in rectangular form.
78. The complex fourth roots of $16\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
79. The complex cube roots of $8 i$
80. The complex cube roots of -1
81. The complex fifth roots of $-1-i$

6.6

In Exercises 82-84, sketch each vector as a position vector and find its magnitude.
82. $\mathbf{v}=-3 \mathbf{i}-4 \mathbf{j}$
83. $\mathbf{v}=5 \mathbf{i}-2 \mathbf{j}$
84. $\mathbf{v}=-3 \mathbf{j}$

In Exercises 85-86, let \mathbf{v} be the vector from initial point P_{1} to terminal point P_{2}. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.
85. $P_{1}=(2,-1), \quad P_{2}=(5,-3)$
86. $P_{1}=(-3,0), \quad P_{2}=(-2,-2)$

In Exercises 87-90, let

$$
\mathbf{v}=\mathbf{i}-5 \mathbf{j} \quad \text { and } \quad \mathbf{w}=-2 \mathbf{i}+7 \mathbf{j}
$$

Find each specified vector or scalar.
87. $v+w$
88. $\mathbf{w}-\mathrm{v}$
89. $6 \mathbf{v}-3 \mathbf{w}$
90. $\|-2 \mathbf{v}\|$

In Exercises 91-92, find the unit vector that has the same direction as the vector \mathbf{v}.
91. $\mathbf{v}=8 \mathbf{i}-6 \mathbf{j}$
92. $\mathbf{v}=-\mathbf{i}+2 \mathbf{j}$
93. The magnitude and direction angle of \mathbf{v} are $\|\mathbf{v}\|=12$ and $\theta=60^{\circ}$. Express \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.
94. The magnitude and direction of two forces acting on an object are 100 pounds, $\mathrm{N} 25^{\circ} \mathrm{E}$, and 200 pounds, $\mathrm{N} 80^{\circ} \mathrm{E}$, respectively. Find the magnitude, to the nearest pound, and the direction angle, to the nearest tenth of a degree, of the resultant force.
95. Your boat is moving at a speed of 15 miles per hour at an angle of 25° upstream on a river flowing at 4 miles per hour. The situation is illustrated in the figure below.

a. Find the vector representing your boat's velocity relative to the ground.
b. What is the speed of your boat, to the nearest mile per hour, relative to the ground?
c. What is the boat's direction angle, to the nearest tenth of a degree, relative to the ground?

6.7

96. If $\mathbf{u}=5 \mathbf{i}+2 \mathbf{j}, \mathbf{v}=\mathbf{i}-\mathbf{j}$, and $\mathbf{w}=3 \mathbf{i}-7 \mathbf{j}$, find $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$.

In Exercises 97-99, find the dot product $\mathbf{v} \cdot \mathbf{w}$. Then find the angle between \mathbf{v} and \mathbf{w} to the nearest tenth of a degree.
97. $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=7 \mathbf{i}-4 \mathbf{j}$
98. $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}, \quad \mathbf{w}=6 \mathbf{i}-11 \mathbf{j}$
99. $\mathbf{v}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{w}=\mathbf{i}-\mathbf{j}$

In Exercises 100-101, use the dot product to determine whether \mathbf{v} and \mathbf{w} are orthogonal.
100. $\mathbf{v}=12 \mathbf{i}-8 \mathbf{j}, \quad \mathbf{w}=2 \mathbf{i}+3 \mathbf{j}$
101. $\mathbf{v}=\mathbf{i}+3 \mathbf{j}, \quad \mathbf{w}=-3 \mathbf{i}-\mathbf{j}$

In Exercises 102-103, find $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$. Then decompose \mathbf{v} into two vectors, \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.
102. $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}, \quad \mathbf{w}=5 \mathbf{i}+4 \mathbf{j}$
103. $\mathbf{v}=-\mathbf{i}+2 \mathbf{j}, \quad \mathbf{w}=3 \mathbf{i}-\mathbf{j}$
104. A heavy crate is dragged 50 feet along a level floor. Find the work done if a force of 30 pounds at an angle of 42° is used.

CHAPTER 6 TEST

1. In oblique triangle $A B C, A=34^{\circ}, B=68^{\circ}$, and $a=4.8$. Find b to the nearest tenth.
2. In oblique triangle $A B C, C=68^{\circ}, a=5$, and $b=6$. Find c to the nearest tenth.
3. In oblique triangle $A B C, a=17$ inches, $b=45$ inches, and $c=32$ inches. Find the area of the triangle to the nearest square inch.
4. Plot $\left(4, \frac{5 \pi}{4}\right)$ in the polar coordinate system. Then write two other ordered pairs (r, θ) that name this point.
5. If the rectangular coordinates of a point are $(1,-1)$, find polar coordinates of the point.
6. Convert $x^{2}+(y+8)^{2}=64$ to a polar equation that expresses r in terms of θ.
7. Convert to a rectangular equation and then graph: $r=-4 \sec \theta$.

In Exercises 8-9, graph each polar equation.
8. $r=1+\sin \theta$
9. $r=1+3 \cos \theta$
10. Write $-\sqrt{3}+i$ in polar form.

In Exercises 11-13, perform the indicated operation. Leave answers in polar form.
11. $5\left(\cos 15^{\circ}+i \sin 15^{\circ}\right) \cdot 10\left(\cos 5^{\circ}+i \sin 5^{\circ}\right)$
12. $\frac{2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)}{4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)}$
13. $\left[2\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)\right]^{5}$
14. Find the three cube roots of 27 . Write roots in rectangular form.
15. If $P_{1}=(-2,3), P_{2}=(-1,5)$, and \mathbf{v} is the vector from P_{1} to P_{2}, a. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.
b. Find $\|\mathbf{v}\|$.

In Exercises 16-19, let

$$
\mathbf{v}=-5 \mathbf{i}+2 \mathbf{j} \quad \text { and } \quad \mathbf{w}=2 \mathbf{i}-4 \mathbf{j} .
$$

Find the specified vector, scalar, or angle.
16. $3 \mathbf{v}-4 \mathbf{w}$
17. $v \cdot w$
18. the angle between \mathbf{v} and \mathbf{w}, to the nearest degree
19. $\operatorname{proj}_{w} \mathbf{v}$
20. A small fire is sighted from ranger stations A and B. Station B is 1.6 miles due east of station A . The bearing of the fire from station A is $\mathrm{N} 35^{\circ} \mathrm{E}$ and the bearing of the fire from station B is $\mathrm{N} 50^{\circ} \mathrm{W}$. How far, to the nearest tenth of a mile, is the fire from station A?
21. The magnitude and direction of two forces acting on an object are 250 pounds, $\mathrm{N} 60^{\circ} \mathrm{E}$, and 150 pounds, $\mathrm{S}_{2} 5^{\circ} \mathrm{E}$. Find the magnitude, to the nearest pound, and the direction angle, to the nearest tenth of a degree, of the resultant force.
22. A child is pulling a wagon with a force of 40 pounds. How much work is done in moving the wagon 60 feet if the handle makes an angle of 35° with the ground? Round to the nearest foot-pound.

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-6)

Solve each equation or inequality in Exercises 1-4.

1. $x^{4}-x^{3}-x^{2}-x-2=0$
2. $2 \sin ^{2} \theta-3 \sin \theta+1=0, \quad 0 \leq \theta<2 \pi$
3. $x^{2}+2 x+3>11$
4. $\sin \theta \cos \theta=-\frac{1}{2}, \quad 0 \leq \theta<2 \pi$

In Exercises 5-6, graph one complete cycle.
5. $y=3 \sin (2 x-\pi)$
6. $y=-4 \cos \pi x$

In Exercises 7-8, verify each identity.
7. $\sin \theta \csc \theta-\cos ^{2} \theta=\sin ^{2} \theta$
8. $\cos \left(\theta+\frac{3 \pi}{2}\right)=\sin \theta$
9. Find the slope and y-intercept of the line whose equation is $2 x+4 y-8=0$.

In Exercises 10-11, find the exact value of each expression.
10. $2 \sin \frac{\pi}{3}-3 \tan \frac{\pi}{6}$
11. $\sin \left(\tan ^{-1} \frac{1}{2}\right)$

In Exercises 12-13, find the domain of the function whose equation is given.
12. $f(x)=\sqrt{5-x}$
13. $g(x)=\frac{x-3}{x^{2}-9}$
14. A ball is thrown vertically upward from a height of 8 feet with an initial velocity of 48 feet per second. The ball's height, $s(t)$, in feet, after t seconds is given by

$$
s(t)=-16 t^{2}+48 t+8
$$

After how many seconds does the ball reach its maximum height? What is the maximum height?
15. An object moves in simple harmonic motion described by $d=4 \sin 5 t$, where t is measured in seconds and d in meters. Find a. the maximum displacement; b. the frequency; and c. the time required for one cycle.
16. Use a half-angle formula to find the exact value of $\cos 22.5^{\circ}$.
17. If $\mathbf{v}=2 \mathbf{i}+7 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}-2 \mathbf{j}$, find $\mathbf{a} .3 \mathbf{v}-\mathbf{w}$ and $\mathbf{b} . \mathbf{v} \cdot \mathbf{w}$.
18. Express as a single logarithm with a coefficient of 1 : $\frac{1}{2} \log _{b} x-\log _{b}\left(x^{2}+1\right)$.
19. Write the slope-intercept form of the line passing through $(4,-1)$ and $(-8,5)$.
20. Psychologists can measure the amount learned, L, at time t using the model $L=A\left(1-e^{-k t}\right)$. The variable A represents the total amount to be learned and k is the learning rate. A student preparing for the SAT has 300 new vocabulary words to learn: $A=300$. This particular student can learn 20 vocabulary words after 5 minutes: If $t=5, L=20$.
a. Find k, the learning rate, correct to three decimal places.
b. Approximately how many words will the student have learned after 20 minutes?
c. How long will it take for the student to learn 260 words?

SYSTEMS of EQUATIONS AND INEQUALITIES

CHAPTER

Television, movies, and magazines place great emphasis on physical beauty. Our culture emphasizes physical appearance to such an extent that it is a central factor in the perception and judgment of others. The modern emphasis on thinness as the ideal body shape has been suggested as a major cause of eating disorders among adolescent women.

Cultural values of physical attractiveness change over time. During the 1950s, actress Jayne Mansfield embodied the postwar ideal: curvy, buxom, and big-hipped. Men, too, have been caught up in changes of how they "ought" to look. The 1960s ideal was the soft and scrawny hippie. Today's ideal man is tough and muscular.

Given the importance of culture in setting standards of attractiveness, how can you establish a healthy weight range for your age and height? In this chapter, we will use systems of inequalities to explore these skin-deep issues.

HERE'S WHERE YOU'LL FIND THESE APPLICATIONS:

You'll find a weight that fits you using the models (mathematical, not fashion) in Example 5 of Section 7.5 and Exercises 77-80 in Exercise Set 7.5. Exercises 85-86 use graphs and a formula for body-mass index to indicate whether you are obese, overweight, borderline overweight, normal weight, or underweight.

SECTION 7.1

Systems of Linear Equations in Two Variables

Objectives

(1) Decide whether an ordered pair is a solution of a linear system.
(2) Solve linear systems by substitution.
(3) Solve linear systems by addition.
4. Identify systems that do not have exactly one ordered-pair solution.
(5) Solve problems using systems of linear equations.

FIGURE 7.1
Source: Gerrig and Zimbardo, Psychology and Life, 18th Edition, Allyn and Bacon, 2008.
(1) Decide whether an ordered pair is a solution of a linear system.

Systems of Linear Equations and Their Solutions

All equations in the form $A x+B y=C$ are straight lines when graphed. Two such equations are called a system of linear equations or a linear system. A solution to a system of linear equations in two variables is an ordered pair that satisfies both equations in the system. For example, $(3,4)$ satisfies the system

$$
\left\{\begin{array}{l}
x+y=7 \quad(3+4 i \text { is, indeed, } 7 .) \\
x-y=-1 . \\
x-4 \mathrm{is}, \text { indeed, }-1 .)
\end{array}\right.
$$

Thus, $(3,4)$ satisfies both equations and is a solution of the system. The solution can be described by saying that $x=3$ and $y=4$. The solution can also be described using set notation. The solution set to the system is $\{(3,4)\}-$ that is, the set consisting of the ordered pair $(3,4)$.

A system of linear equations can have exactly one solution, no solution, or infinitely many solutions. We begin with systems that have exactly one solution.

EXAMPLE 1 Determining Whether Ordered Pairs Are Solutions of a System

Consider the system:

$$
\left\{\begin{array}{l}
x+2 y=2 \\
x-2 y=6 .
\end{array}\right.
$$

Determine if each ordered pair is a solution of the system:
a. $(4,-1)$
b. $(-4,3)$.

SOLUTION

a. We begin by determining whether $(4,-1)$ is a solution. Because 4 is the x-coordinate and -1 is the y-coordinate of $(4,-1)$, we replace x with 4 and y with -1 .

$$
\begin{array}{rlrl}
x+2 y & =2 & x-2 y & =6 \\
4+2(-1) & \stackrel{?}{=} 2 & 4-2(-1) & \stackrel{?}{=} 6 \\
4+(-2) & \stackrel{?}{=} 2 & 4-(-2) & \stackrel{?}{=} 6 \\
2 & =2, \text { true } & 4+2 & \stackrel{?}{=} 6 \\
6 & =6, \quad \text { true }
\end{array}
$$

The pair $(4,-1)$ satisfies both equations: It makes each equation true. Thus, the ordered pair is a solution of the system.
b. To determine whether $(-4,3)$ is a solution, we replace x with -4 and y with 3 .

$$
\begin{array}{rlrl}
x+2 y & =2 & x-2 y & =6 \\
-4+2 \cdot 3 & \stackrel{?}{=} 2 & -4-2 \cdot 3 & \stackrel{?}{=} 6 \\
-4+6 & \stackrel{?}{=} 2 & -4-6 & \stackrel{?}{=} 6 \\
2 & =2, \text { true } & -10 & =6, \text { false }
\end{array}
$$

GREAT QUESTION!

Can I use a rough sketch on scratch paper to solve a linear system by graphing?

No. When solving linear systems by graphing, neatly drawn graphs are essential for determining points of intersection.

- Use rectangular coordinate graph paper.
- Use a ruler or straightedge.
- Use a pencil with a sharp point.

GREAT QUESTION!

In the first step of the substitution method, how do I know which variable to isolate and in which equation?
You can choose both the variable and the equation. If possible, solve for a variable whose coefficient is 1 or -1 to avoid working with fractions.

GREAT QUESTION!

When I back-substitute the value for one of the variables, which equation should I use?
The equation from step 1 , in which one variable is expressed in terms of the other, is equivalent to one of the original equations. It is often easiest to back-substitute the obtained value into this equation to find the value of the other variable. After obtaining both values, get into the habit of checking the ordered-pair solution in both equations of the system.

Solving Linear Systems by Substitution

1. Solve either of the equations for one variable in terms of the other. (If one of the equations is already in this form, you can skip this step.)
2. Substitute the expression found in step 1 into the other equation. This will result in an equation in one variable.
3. Solve the equation containing one variable.
4. Back-substitute the value found in step 3 into one of the original equations. Simplify and find the value of the remaining variable.
5. Check the proposed solution in both of the system's given equations.

EXAMPLE 2 Solving a System by Substitution

Solve by the substitution method:

$$
\left\{\begin{aligned}
5 x-4 y & =9 \\
x-2 y & =-3
\end{aligned}\right.
$$

SOLUTION

Step 1 Solve either of the equations for one variable in terms of the other. We begin by isolating one of the variables in either of the equations. By solving for x in the second equation, which has a coefficient of 1 , we can avoid fractions.

$$
\begin{aligned}
x-2 y & =-3 & & \text { This is the second equation in the given system. } \\
x & =2 y-3 & & \text { Solve for } x \text { by adding } 2 y \text { to both sides. }
\end{aligned}
$$

Step 2 Substitute the expression from step 1 into the other equation. We substitute $2 y-3$ for x in the first equation.

$$
x=\begin{array}{r}
2 y-3 \\
5 \\
-4 y=9
\end{array}
$$

This gives us an equation in one variable, namely

$$
5(2 y-3)-4 y=9
$$

The variable x has been eliminated.
Step 3 Solve the resulting equation containing one variable.

$$
\begin{aligned}
5(2 y-3)-4 y & =9 & & \text { This is the equation containing one variable. } \\
10 y-15-4 y & =9 & & \text { Apply the distributive property. } \\
6 y-15 & =9 & & \text { Combine like terms. } \\
6 y & =24 & & \text { Add } 15 \text { to both sides. } \\
y & =4 & & \text { Divide both sides by } 6 .
\end{aligned}
$$

Step 4 Back-substitute the obtained value into one of the original equations. Now that we have the y-coordinate of the solution, we back-substitute 4 for y into one of the original equations to find x. Let's use both equations to show that we obtain the same value for x in either case.

Using the first equation: Using the second equation:

$$
\begin{array}{rlrl}
5 x-4 y & =9 & x-2 y & =-3 \\
5 x-4(4) & =9 & x-2(4) & =-3 \\
5 x-16 & =9 & x-8 & =-3 \\
5 x & =25 & x & =5 \\
x & =5 &
\end{array}
$$

With $x=5$ and $y=4$, the proposed solution is $(5,4)$.
Step 5 Check. Take a moment to show that $(5,4)$ satisfies both given equations. The solution set is $\{(5,4)\}$.

TECHNOLOGY

Graphic Connections

A graphing utility can be used to solve the system in Example 2. Solve each equation for y, graph the equations, and use the intersection feature. The utility displays the solution $(5,4)$ as $x=5, y=4$.

$[-10,10,1]$ by $[-10,10,1]$
$\$$ Check Point 2 Solve by the substitution method:

$$
\left\{\begin{array}{l}
3 x+2 y=4 \\
2 x+y=1 .
\end{array}\right.
$$

(3) Solve linear systems by addition.

Eliminating a Variable Using the Addition Method

The substitution method is most useful if one of the given equations has an isolated variable. A second, and frequently the easiest, method for solving a linear system is the addition method. Like the substitution method, the addition method involves eliminating a variable and ultimately solving an equation containing only one variable. However, this time we eliminate a variable by adding the equations.

For example, consider the following system of linear equations:

$$
\left\{\begin{aligned}
3 x-4 y & =11 \\
-3 x+2 y & =-7 .
\end{aligned}\right.
$$

When we add these two equations, the x-terms are eliminated. This occurs because the coefficients of the x-terms, 3 and -3 , are opposites (additive inverses) of each other:

$$
\left\{\begin{aligned}
3 x-4 y & =11 \\
\frac{-3 x+2 y}{-2 y} & =\frac{-7}{4} \quad \begin{array}{l}
\text { The sum is an equation } \\
\text { in one variable. }
\end{array} \\
y & =-2 .
\end{aligned} \begin{array}{l}
\text { Divide both sides by }-2 \text { and } \\
\text { solve for } y .
\end{array}\right.
$$

Now we can back-substitute -2 for y into one of the original equations to find x. It does not matter which equation you use; you will obtain the same value for x in either case. If we use either equation, we can show that $x=1$ and the solution $(1,-2)$ satisfies both equations in the system.

When we use the addition method, we want to obtain two equations whose sum is an equation containing only one variable. The key step is to obtain, for one of the variables, coefficients that differ only in sign. To do this, we may need to multiply one or both equations by some nonzero number so that the coefficients of one of the variables, x or y, become opposites. Then when the two equations are added, this variable is eliminated.

GREAT QUESTION!

Isn't the addition method also called the elimination method?

Although the addition method is also known as the elimination method, variables are eliminated when using both the substitution and addition methods. The name addition method specifically tells us that the elimination of a variable is accomplished by adding two equations.

Solving Linear Systems by Addition

1. If necessary, rewrite both equations in the form $A x+B y=C$.
2. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the x-coefficients or the sum of the y-coefficients is 0 .
3. Add the equations in step 2 . The sum is an equation in one variable.
4. Solve the equation in one variable.
5. Back-substitute the value obtained in step 4 into either of the given equations and solve for the other variable.
6. Check the solution in both of the original equations.

EXAMPLE 3 Solving a System by the Addition Method

Solve by the addition method:

$$
\left\{\begin{aligned}
3 x+2 y & =48 \\
9 x-8 y & =-24 .
\end{aligned}\right.
$$

SOLUTION

Step 1 Rewrite both equations in the form $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$. Both equations are already in this form. Variable terms appear on the left and constants appear on the right.
Step 2 If necessary, multiply either equation or both equations by appropriate numbers so that the sum of the \boldsymbol{x}-coefficients or the sum of the \boldsymbol{y}-coefficients is $\mathbf{0}$. We can eliminate x or y. Let's eliminate x. Consider the terms in x in each equation, that is, $3 x$ and $9 x$. To eliminate x, we can multiply each term of the first equation by -3 and then add the equations.

$$
\left\{\begin{array} { l }
{ 3 x + 2 y = 4 8 } \\
{ 9 x - 8 y = - 2 4 \xrightarrow [\text { No change }] { \text { Multiply by } - 3 } }
\end{array} \left\{\begin{array}{r}
-9 x-6 y=-144 \\
\underline{9 x-8 y}=\underline{-24}
\end{array}\right.\right.
$$

Step 3 Add the equations. Add: $-14 y=-168$
Step 4 Solve the equation in one variable. We solve $-14 y=-168$ by dividing both sides by -14 .

$$
\begin{aligned}
\frac{-14 y}{-14} & =\frac{-168}{-14} \quad \text { Divide both sides by }-14 . \\
y & =12 \quad \text { Simplify. }
\end{aligned}
$$

Step 5 Back-substitute and find the value for the other variable. We can backsubstitute 12 for y into either one of the given equations. We'll use the first one.

$$
\begin{array}{rlrl}
3 x+2 y & =48 \quad & & \text { This is the first equation in the given system. } \\
3 x+2(12) & =48 & & \text { Substitute } 12 \text { for } y . \\
3 x+24 & =48 & & \text { Multiply. } \\
3 x & =24 & & \text { Subtract } 24 \text { from both sides. } \\
x & =8 \quad & \text { Divide both sides by } 3 .
\end{array}
$$

We found that $y=12$ and $x=8$. The proposed solution is $(8,12)$.
Step 6 Check. Take a few minutes to show that $(8,12)$ satisfies both of the original equations in the system. The solution set is $\{(8,12)\}$.
$\$$ Check Point 3 Solve by the addition method:

$$
\left\{\begin{array}{l}
4 x+5 y=3 \\
2 x-3 y=7 .
\end{array}\right.
$$

Some linear systems have solutions that are not integers. If the value of one variable turns out to be a "messy" fraction, back-substitution might lead to cumbersome arithmetic. If this happens, you can return to the original system and use the addition method to find the value of the other variable.

EXAMPLE 4 Solving a System by the Addition Method

Solve by the addition method:

$$
\left\{\begin{array}{l}
2 x=7 y-17 \\
5 y=17-3 x .
\end{array}\right.
$$

SOLUTION

Step 1 Rewrite both equations in the form $\boldsymbol{A x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$. We first arrange the system so that variable terms appear on the left and constants appear on the right. We obtain

$$
\begin{cases}2 x-7 y=-17 & \text { Subtract } 7 y \text { from both sides of the first equation. } \\ 3 x+5 y=17 . & \text { Add } 3 x \text { to both sides of the second equation. }\end{cases}
$$

Step 2 If necessary, multiply either equation or both equations by appropriate numbers so that the sum of the \boldsymbol{x}-coefficients or the sum of the \boldsymbol{y}-coefficients is $\mathbf{0}$. We can eliminate x or y. Let's eliminate x by multiplying the first equation by 3 and the second equation by -2 .

$$
\begin{aligned}
\left\{\begin{aligned}
& 2 x-7 y==-17 \\
& 3 x+5 y=17 \xrightarrow{\text { Multiply by } 3 .} \\
& \text { Multiply by }-2 .
\end{aligned}\right. & \left\{\begin{array}{r}
6 x-21 y
\end{array}=-51\right. \\
-6 x-10 y & =-34
\end{aligned}
$$

Step 3 Add the equations.
Step 4 Solve the equation in one variable. We solve $-31 y=-85$ by dividing both sides by -31 .

$$
\begin{aligned}
\frac{-31 y}{-31} & =\frac{-85}{-31} \quad \text { Divide both sides by }-31 . \\
y & =\frac{85}{31} \quad \text { Simplify. }
\end{aligned}
$$

Step 5 Back-substitute and find the value for the other variable. Backsubstitution of $\frac{85}{31}$ for y into either of the given equations results in cumbersome arithmetic. Instead, let's use the addition method on the given system in the form $A x+B y=C$ to find the value for x. Thus, we eliminate y by multiplying the first equation by 5 and the second equation by 7 .

$$
\left\{\begin{aligned}
& 2 x-7 y=-17 \\
& 3 x+5 y=17 \xrightarrow[\text { Multiply by } 7 .]{\text { Multi } 5 .}\left\{\begin{aligned}
10 x-35 y & =-85 \\
21 x+35 y & = \\
31 x & =\frac{119}{34}
\end{aligned}\right. \\
& x=\frac{34}{31} \text { Divide both sides by } 31 .
\end{aligned}\right.
$$

We found that $y=\frac{85}{31}$ and $x=\frac{34}{31}$. The proposed solution is $\left(\frac{34}{31}, \frac{85}{31}\right)$.
Step 6 Check. For this system, a calculator is helpful in showing that $\left(\frac{34}{31}, \frac{85}{31}\right)$ satisfies both of the original equations in the system. The solution set is $\left\{\left(\frac{34}{31}, \frac{85}{31}\right)\right\}$.

Check Point 4 Solve by the addition method:

$$
\left\{\begin{array}{l}
2 x=9+3 y \\
4 y=8-3 x .
\end{array}\right.
$$

Linear Systems Having No Solution or Infinitely Many Solutions

We have seen that a system of linear equations in two variables represents a pair of lines. The lines either intersect at one point, are parallel, or are identical. Thus, there are three possibilities for the number of solutions to a system of two linear equations in two variables.

The Number of Solutions to a System of Two Linear Equations

The number of solutions to a system of two linear equations in two variables is given by one of the following. (See Figure 7.3.)

Number of Solutions	What This Means Graphically
Exactly one ordered-pair solution	The two lines intersect at one point.
No solution	The two lines are parallel.
Infinitely many solutions	The two lines are identical.

Exactly one solution

No solution (parallel lines)

Infinitely many solutions (lines coincide)

FIGURE 7.3 Possible graphs for a system of two linear equations in two variables

A linear system with no solution is called an inconsistent system. If you attempt to solve such a system by substitution or addition, you will eliminate both variables. A false statement, such as $0=12$, will be the result.

EXAMPLE 5 A System with No Solution

Solve the system:

$$
\left\{\begin{array}{l}
4 x+6 y=12 \\
6 x+9 y=12
\end{array}\right.
$$

FIGURE 7.4 The graph of an inconsistent system

SOLUTION

Because no variable is isolated, we will use the addition method. To obtain coefficients of x that differ only in sign, we multiply the first equation by 3 and multiply the second equation by -2 .
$\left\{\begin{aligned} 4 x+6 y=12 \\ 6 x+9 y=12\end{aligned} \xrightarrow[\text { Multiply by }-2 .]{\text { Mdd: }} \quad\left\{\begin{aligned} 12 x+18 y & =36 \\ -12 x-18 y & =-24\end{aligned} \quad \begin{array}{l}\text { There are no values of } x \\ \text { and } y \text { for which } 0=12 . \\ \text { No values of } x \text { and } y \\ \text { satisfy } 0 x+0 y=12 .\end{array}\right.\right.$

The false statement $0=12$ indicates that the system is inconsistent and has no solution. The solution set is the empty set, \varnothing.

The lines corresponding to the two equations in Example 5 are shown in Figure 7.4. The lines are parallel and have no point of intersection.

DISCOVERY

Show that the graphs of $4 x+6 y=12$ and $6 x+9 y=12$ must be parallel lines by solving each equation for y. What are the slope and y-intercept for each line? What does this mean? If a linear system is inconsistent, what must be true about the slopes and y-intercepts for the system's graphs?
$\$$ Check Point 5 Solve the system:

$$
\left\{\begin{array}{r}
5 x-2 y=4 \\
-10 x+4 y=7
\end{array}\right.
$$

A linear system that has at least one solution is called a consistent system. Lines that intersect and lines that coincide both represent consistent systems. If the lines coincide, then the consistent system has infinitely many solutions, represented by every point on either line.

The equations in a linear system with infinitely many solutions are called dependent. If you attempt to solve such a system by substitution or addition, you will eliminate both variables. However, a true statement, such as $10=10$, will be the result.

EXAMPLE 6 A System with Infinitely Many Solutions

Solve the system:

$$
\left\{\begin{aligned}
y & =3 x-2 \\
15 x-5 y & =10
\end{aligned}\right.
$$

SOLUTION

Because the variable y is isolated in $y=3 x-2$, the first equation, we can use the substitution method. We substitute the expression for y into the second equation.

$$
\begin{array}{rlrl}
y=3 x-2 & 15 x-5 \mid y & =10 & \\
\text { Substitute } 3 x-2 \text { for } y . \\
15 x-5(3 x-2) & =10 & & \text { The substitution results in an equation in one variable. } \\
15 x-15 x+10 & =10 & & \text { Apply the distributive property. } \\
\begin{array}{c}
\text { This statement is true } \\
\text { for all values of } x \text { and } y .
\end{array} & & 10 &
\end{array}
$$

FIGURE 7.5 The graph of a system with infinitely many solutions
(5) Solve problems using systems of linear equations.

In our final step, both variables have been eliminated and the resulting statement, $10=10$, is true. This true statement indicates that the system has infinitely many solutions. The solution set consists of all points (x, y) lying on either of the coinciding lines, $y=3 x-2$ or $15 x-5 y=10$, as shown in Figure 7.5.

We express the solution set for the system in one of two equivalent ways:

$$
\{(x, y) \mid y=3 x-2\} \quad \text { or } \quad\{(x, y) \mid 15 x-5 y=10\}
$$

> The set of all ordered pairs
> (x, y) such that $y=3 x-2$

The set of all ordered pairs
(x, y) such that $15 x-5 y=10$

GREAT QUESTION!

The system in Example 6 has infinitely many solutions. Does that mean that any ordered pair of numbers is a solution?
No. Although the system in Example 6 has infinitely many solutions, this does not mean that any ordered pair of numbers you can form will be a solution. The ordered pair (x, y) must satisfy one of the system's equations, $y=3 x-2$ or $15 x-5 y=10$, and there are infinitely many such ordered pairs. Because the graphs are coinciding lines, the ordered pairs that are solutions of one of the equations are also solutions of the other equation.

$\$$ Check Point 6 Solve the system:

$$
\left\{\begin{aligned}
x & =4 y-8 \\
5 x-20 y & =-40
\end{aligned}\right.
$$

Applications

We begin with applications that involve two unknown quantities. We will let x and y represent these quantities. We then model the verbal conditions of the problem with a system of linear equations in x and y.

Strategy for Problem Solving Using Systems of Equations

Step 1 Read the problem carefully. Attempt to state the problem in your own words and state what the problem is looking for. Use variables to represent unknown quantities.
Step 2 Write a system of equations that models the problem's conditions.
Step 3 Solve the system and answer the problem's question.
Step 4 Check the proposed solution in the original wording of the problem.

Chemists and pharmacists often have to change the concentration of solutions and other mixtures. In these situations, the amount of a particular ingredient in the solution or mixture is expressed as a percentage of the total.

EXAMPLE 7 Solving a Mixture Problem

A chemist working on a flu vaccine needs to mix a 10% sodium-iodine solution with a 60% sodium-iodine solution to obtain 50 milliliters of a 30% sodium-iodine solution. How many milliliters of the 10% solution and of the 60% solution should be mixed?

SOLUTION

Step 1 Use variables to represent unknown quantities.
Let $x=$ the number of milliliters of the 10% solution to be used in the mixture.
Let $y=$ the number of milliliters of the 60% solution to be used in the mixture.
Step 2 Write a system of equations that models the problem's conditions. The situation is illustrated in Figure 7.6.

The chemist needs 50 milliliters of a 30% sodium-iodine solution. We form a table that shows the amount of sodium-iodine in each of the three solutions.

Solution	Number of milliliters	\times	Percent of Sodium-Iodine
10\% Solution	x	$10 \%=0.1$	Amount of Sodium-Iodine
60% Solution	y	$60 \%=0.6$	$0.1 x$
30% Mixture	50	$30 \%=0.3$	$0.6 y$

The chemist needs to obtain a 50 -milliliter mixture.

The 50 -milliliter mixture must be 30% sodium-iodine. The amount of sodiumiodine must be 30% of 50 , or $(0.3)(50)=15$ milliliters.

Step 3 Solve the system and answer the problem's question. The system

$$
\begin{aligned}
x+y & =50 \\
0.1 x+0.6 y & =15
\end{aligned}
$$

can be solved by substitution or addition. Let's use substitution. Solving the first equation for y, we obtain $y=50-x$.

$$
y=\begin{array}{cc}
\square \\
50-x & 0.1 x+0.6 y
\end{array}
$$

We substitute $50-x$ for y in the second equation, $0.1 x+0.6 y=15$. This gives us an equation in one variable.

$$
\begin{aligned}
0.1 x+0.6(50-x) & =15 & & \text { This equation contains one variable, } x . \\
0.1 x+30-0.6 x & =15 & & \text { Apply the distributive property. } \\
-0.5 x+30 & =15 & & \text { Combine like terms. } \\
-0.5 x & =-15 & & \text { Subtract } 30 \text { from both sides. } \\
x & =\frac{-15}{-0.5}=30 & & \text { Divide both sides by }-0.5 .
\end{aligned}
$$

Back-substituting 30 for x in either of the system's equations $(x+y=50$ is easier to use) gives $y=20$. Because x represents the number of milliliters of the 10% solution and y the number of milliliters of the 60% solution, the chemist should mix 30 milliliters of the 10% solution with 20 milliliters of the 60% solution.

GREAT QUESTION!

Do I have to use x and y to represent a problem's variables?
No. Select letters that help you remember what the variables represent. For example, in Example 8, you may prefer using p and w rather than x and y :
$p=$ plane's average velocity in still air
$w=$ wind's average velocity.

Step 4 Check the proposed solution in the original wording of the problem. The problem states that the chemist needs 50 milliliters of a 30% sodium-iodine solution. The amount of sodium-iodine in this mixture is $0.3(50)$, or 15 milliliters. The amount of sodium-iodine in 30 milliliters of the 10% solution is $0.1(30)$, or 3 milliliters. The amount of sodium-iodine in 20 milliliters of the 60% solution is $0.6(20)=12$ milliliters. The amount of sodium-iodine in the two solutions used in the mixture is 3 milliliters +12 milliliters, or 15 milliliters, exactly as it should be.

Check Point 7 A chemist needs to mix an 18% acid solution with a 45% acid solution to obtain 12 liters of a 36% acid solution. How many liters of each of the acid solutions must be used?

We have seen that if an object moves at an average velocity v, the distance, s, covered in time t is given by the formula

$$
s=v t \quad \text { Distance equals velocity times time. }
$$

Recall that objects that move in accordance with this formula are said to be in uniform motion. Wind and water current have the effect of increasing or decreasing a traveler's velocity.

EXAMPLE 8 Solving a Uniform Motion Problem

When a small airplane flies with the wind, it can travel 450 miles in 3 hours. When the same airplane flies in the opposite direction against the wind, it takes 5 hours to fly the same distance. Find the average velocity of the plane in still air and the average velocity of the wind.

SOLUTION

Step 1 Use variables to represent unknown quantities.

Let $x=$ the average velocity of the plane in still air.
Let $y=$ the average velocity of the wind.
Step 2 Write a system of equations that models the problem's conditions. As it travels with the wind, the plane's average velocity is increased. The net average velocity is its average velocity in still air, x, plus the average velocity of the wind, y, given by the expression $x+y$. As it travels against the wind, the plane's average velocity is decreased. The net average velocity is its average velocity in still air, x, minus the average velocity of the wind, y, given by the expression $x-y$. Here is a chart that summarizes the problem's information and includes the increased and decreased velocities:

	Velocity	\times	Time	$=$
Trip with the Wind	$x+y$	3	Distance	
Trip against the Wind	$x-y$		5	$3(x+y)$

The problem states that the distance in each direction is 450 miles. We use this information to write our system of equations.

Step 3 Solve the system and answer the problem's question. We can simplify the system by dividing both sides of the equations by 3 and 5, respectively.

$$
\left\{\begin{array} { l }
{ 3 (x + y) = 4 5 0 \quad \xrightarrow { \text { Divide by } 3 . } } \\
{ 5 (x - y) = 4 5 0 \xrightarrow { \text { Divide by } 5 . } }
\end{array} \left\{\begin{array}{l}
x+y=150 \\
x-y=90
\end{array}\right.\right.
$$

Solve the system on the right by the addition method.

$$
\text { Add: } \quad \begin{aligned}
&\left\{\begin{array}{l}
x+y
\end{array}\right)=150 \\
& \underline{x-y}=\frac{90}{24} \\
& 2 x=120 \quad \text { Divide both sides by } 2 .
\end{aligned}
$$

Back-substituting 120 for x in either of the system's equations gives $y=30$. Because $x=120$ and $y=30$, the average velocity of the plane in still air is 120 miles per hour and the average velocity of the wind is 30 miles per hour.
Step 4 Check the proposed solution in the original wording of the problem. The problem states that the distance in each direction is 450 miles. The average velocity of the plane with the wind is $120+30=150$ miles per hour. In 3 hours, it travels $150 \cdot 3$, or 450 miles, which checks with the stated condition. Furthermore, the average velocity of the plane against the wind is $120-30=90$ miles per hour. In 5 hours, it travels $90 \cdot 5=450$ miles, which is the stated distance.

Check Point 8 With the current, a motorboat can travel 84 miles in 2 hours. Against the current, the same trip takes 3 hours. Find the average velocity of the boat in still water and the average velocity of the current.

Functions of Business: Break-Even Analysis

Suppose that a company produces and sells x units of a product. Its revenue is the money generated by selling x units of the product. Its cost is the cost of producing x units of the product.

Revenue and Cost Functions

A company produces and sells x units of a product.

Revenue Function

$$
R(x)=(\text { price per unit sold }) x
$$

Cost Function

$$
C(x)=\text { fixed cost }+(\text { cost per unit produced }) x
$$

The point of intersection of the graphs of the revenue and cost functions is called the break-even point. The x-coordinate of the point reveals the number of units that a company must produce and sell so that money coming in, the revenue, is equal to money going out, the cost. The y-coordinate of the break-even point gives the amount of money coming in and going out. Example 9 illustrates the use of the substitution method in determining a company's break-even point.

EXAMPLE 9 Finding a Break-Even Point

Technology is now promising to bring light, fast, and beautiful wheelchairs to millions of people with disabilities. A company is planning to manufacture these radically different wheelchairs. Fixed cost will be $\$ 500,000$ and it will cost $\$ 400$ to produce each wheelchair. Each wheelchair will be sold for $\$ 600$.
a. Write the cost function, C, of producing x wheelchairs.
b. Write the revenue function, R, from the sale of x wheelchairs.
c. Determine the break-even point. Describe what this means.

SOLUTION

a. The cost function is the sum of the fixed cost and variable cost.

b. The revenue function is the money generated from the sale of x wheelchairs.

Revenue per chair, $\$ 600$, times the number of chairs sold

$$
R(x)=600 x
$$

c. The break-even point occurs where the graphs of C and R intersect. Thus, we find this point by solving the system

$$
\left\{\begin{array} { l }
{ C (x) = 5 0 0 , 0 0 0 + 4 0 0 x } \\
{ R (x) = 6 0 0 x }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=500,000+400 x \\
y=600 x
\end{array}\right.\right.
$$

Using substitution, we can substitute $600 x$ for y in the first equation:

$$
\begin{array}{rlrl}
600 x & =500,000+400 x & & \text { Substitute } 600 \times \text { for } y \text { in } \\
200 x & =500,000 & & y=500,000+400 x . \\
x & =2500 . & & \text { Subtract } 400 \times \text { from both sides. } \\
x & & \text { Divide both sides by } 200 .
\end{array}
$$

Back-substituting 2500 for x in either of the system's equations (or functions), we obtain

$$
\begin{aligned}
& R(2500)=600(2500)=1,500,000 . \\
& \quad \text { We used } R(x)=600 x .
\end{aligned}
$$

FIGURE 7.7

Figure 7.7 shows the graphs of the revenue and cost functions for the wheelchair business. Similar graphs and models apply no matter how small or large a business venture may be.

The intersection point confirms that the company breaks even by producing and selling 2500 wheelchairs. Can you see what happens for $x<2500$? The red cost graph lies above the blue revenue graph. The cost is greater than the revenue and the business is losing money. Thus, if the company sells fewer than 2500 wheelchairs, the result is a loss. By contrast, look at what happens for $x>2500$. The blue revenue graph lies above the red cost graph. The revenue is greater than the cost and the business is making money. Thus, if the company sells more than 2500 wheelchairs, the result is a gain.

FIGURE 7.8

What does every entrepreneur, from a kid selling lemonade to Mark Zuckerberg, want to do? Generate profit, of course. The profit made is the money taken in, or the revenue, minus the money spent, or the cost. This relationship between revenue and cost allows us to define the profit function, $P(x)$.

The Profit Function

The profit, $P(x)$, generated after producing and selling x units of a product is given by the profit function

$$
P(x)=R(x)-C(x),
$$

where R and C are the revenue and cost functions, respectively.

The profit function for the wheelchair business in Example 7 is

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =600 x-(500,000+400 x) \\
& =200 x-500,000 .
\end{aligned}
$$

The graph of this profit function is shown in Figure 7.8. The red portion lies below the x-axis and shows a loss when fewer than 2500 wheelchairs are sold. The business is "in the red." The black portion lies above the x-axis and shows a gain when more than 2500 wheelchairs are sold. The wheelchair business is "in the black."

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A solution to a system of linear equations in two variables is an ordered pair that \qquad
2. When solving a system of linear equations by graphing, the system's solution is determined by locating \qquad _.
3. When solving

$$
\left\{\begin{array}{l}
3 x-2 y=5 \\
y=3 x-3
\end{array}\right.
$$

by the substitution method, we obtain $x=\frac{1}{3}$, so the solution set is \qquad -.
4. When solving

$$
\left\{\begin{array}{l}
2 x+10 y=9 \\
8 x+5 y=7
\end{array}\right.
$$

by the addition method, we can eliminate y by multiplying the second equation by \qquad and then adding the equations.
5. When solving

$$
\left\{\begin{array}{l}
4 x-3 y=15 \\
3 x-2 y=10
\end{array}\right.
$$

by the addition method, we can eliminate y by multiplying the first equation by 2 and the second equation by \qquad , and then adding the equations.
6. When solving

$$
\left\{\begin{aligned}
12 x-21 y & =24 \\
4 x-7 y & =7
\end{aligned}\right.
$$

by the addition method, we obtain $0=3$, so the solution set is \qquad .The linear system is a/an system. If you attempt to solve such a system by graphing, you will obtain two lines that are \qquad -.
7. When solving

$$
\left\{\begin{array}{l}
x=3 y+2 \\
5 x-15 y=10
\end{array}\right.
$$

by the substitution method, we obtain $10=10$, so the solution set is
The equations in this system are called \qquad . If you attempt to solve such a system by graphing, you will obtain two lines that
8. The total amount of acid in x milliliters of a 9% acid solution and y milliliters of a 60% acid solution is represented by
9. If x represents the average velocity of a plane in still air and y represents the average velocity of the wind, the plane's velocity with the wind is represented by \qquad and the plane's velocity against the wind is represented by \qquad —.

EXERCISE SET 7.1

Practice Exercises

In Exercises 1-4, determine whether the given ordered pair is a solution of the system.

> 1. $(2,3)$
> $\left\{\begin{array}{l}x+3 y=11 \\ x-5 y=-13\end{array}\right.$
3. $(2,5)$
$\left\{\begin{aligned} 2 x+3 y & =17 \\ x+4 y & =16\end{aligned}\right.$
2. $(-3,5)$
$\left\{\begin{array}{l}9 x+7 y=8 \\ 8 x-9 y=-69\end{array}\right.$
4. $(8,5)$
$\left\{\begin{array}{l}5 x-4 y=20 \\ 3 y=2 x+1\end{array}\right.$

In Exercises 5-18, solve each system by the substitution method.
5. $\left\{\begin{array}{l}x+y=4 \\ y=3 x\end{array}\right.$
6. $\left\{\begin{array}{l}x+y=6 \\ y=2 x\end{array}\right.$
7. $\left\{\begin{array}{l}x+3 y=8 \\ y=2 x-9\end{array}\right.$
8. $\left\{\begin{array}{l}2 x-3 y=-13 \\ y=2 x+7\end{array}\right.$
9. $\left\{\begin{array}{l}x=4 y-2 \\ x=6 y+8\end{array}\right.$
10. $\left\{\begin{array}{l}x=3 y+7 \\ x=2 y-1\end{array}\right.$
11. $\left\{\begin{aligned} 5 x+2 y & =0 \\ x-3 y & =0\end{aligned}\right.$
12. $\left\{\begin{array}{l}4 x+3 y=0 \\ 2 x-y=0\end{array}\right.$
13. $\left\{\begin{array}{l}2 x+5 y=-4 \\ 3 x-y=11\end{array}\right.$
14. $\left\{\begin{aligned} 2 x+5 y & =1 \\ -x+6 y & =8\end{aligned}\right.$
15. $\left\{\begin{array}{l}2 x-3 y=8-2 x \\ 3 x+4 y=x+3 y+14\end{array}\right.$
16. $\left\{\begin{array}{l}3 x-4 y=x-y+4 \\ 2 x+6 y=5 y-4\end{array}\right.$
17. $\left\{\begin{array}{l}y=\frac{1}{3} x+\frac{2}{3} \\ y=\frac{5}{7} x-2\end{array}\right.$
18. $\left\{\begin{array}{l}y=-\frac{1}{2} x+2 \\ y=\frac{3}{4} x+7\end{array}\right.$

In Exercises 19-30, solve each system by the addition method.
19. $\left\{\begin{array}{l}x+y=1 \\ x-y=3\end{array}\right.$
20. $\left\{\begin{array}{l}x+y=6 \\ x-y=-2\end{array}\right.$
10. If $x+y$ represents a motorboat's average velocity with the current, in miles per hour, its distance after 4 hours is representd by \qquad —.
11. A company's \qquad function is the money generated by selling x units of its product. The difference between this function and the company's cost function is called its \qquad function.
12. A company has a graph that shows the money it generates by selling x units of its product. It also has a graph that shows its cost of producing x units of its product. The point of intersection of these graphs is called the company's \qquad
45. Three times a first number decreased by a second number is 1 . The first number increased by twice the second number is 12 . Find the numbers.
46. The sum of three times a first number and twice a second number is 8 . If the second number is subtracted from twice the first number, the result is 3 . Find the numbers.

Practice Plus

In Exercises 47-48, solve each system by the method of your choice.
47. $\left\{\begin{array}{l}\frac{x+2}{2}-\frac{y+4}{3}=3 \\ \frac{x+y}{5}=\frac{x-y}{2}-\frac{5}{2}\end{array}\right.$
48. $\left\{\begin{array}{l}\frac{x-y}{3}=\frac{x+y}{2}-\frac{1}{2} \\ \frac{x+2}{2}-4=\frac{y+4}{3}\end{array}\right.$

In Exercises 49-50, solve each system for x and y, expressing either value in terms of a or b, if necessary. Assume that $a \neq 0$ and $b \neq 0$.
49. $\left\{\begin{aligned} 5 a x+4 y & =17 \\ a x+7 y & =22\end{aligned}\right.$
50. $\left\{\begin{array}{l}4 a x+b y=3 \\ 6 a x+5 b y=8\end{array}\right.$
51. For the linear function $f(x)=m x+b, f(-2)=11$ and $f(3)=-9$. Find m and b.
52. For the linear function $f(x)=m x+b, f(-3)=23$ and $f(2)=-7$. Find m and b.

Use the graphs of the linear functions to solve Exercises 53-54.

53. Write the linear system whose solution set is $\{(6,2)\}$. Express each equation in the system in slope-intercept form.
54. Write the linear system whose solution set is \varnothing. Express each equation in the system in slope-intercept form.

Application Exercises

55. A wine company needs to blend a California wine with a 5% alcohol content and a French wine with a 9\% alcohol content to obtain 200 gallons of wine with a 7% alcohol content. How many gallons of each kind of wine must be used?
56. A jeweler needs to mix an alloy with a 16% gold content and an alloy with a 28% gold content to obtain 32 ounces of a new alloy with a 25% gold content. How many ounces of each of the original alloys must be used?
57. For thousands of years, gold has been considered one of Earth's most precious metals. One hundred percent pure gold is 24 -karat gold, which is too soft to be made into jewelry. In the United States, most gold jewelry is 14-karat gold, approximately 58% gold. If 18 -karat gold is 75% gold and 12 -karat gold is 50% gold, how much of each should be used to make a 14 -karat gold bracelet weighing 300 grams?
58. In the "Peanuts" cartoon shown, solve the problem that is sending Peppermint Patty into an agitated state. How much cream and how much milk, to the nearest thousandth of a gallon, must be mixed together to obtain 50 gallons of cream that contains 12.5% butterfat?

Peanuts © 1978 Peanuts Worldwide LLC. Used by permission of Universal Uclick. All rights reserved.
59. The manager of a candystand at a large multiplex cinema has a popular candy that sells for $\$ 1.60$ per pound. The manager notices a different candy worth $\$ 2.10$ per pound that is not selling well. The manager decides to form a mixture of both types of candy to help clear the inventory of the more expensive type. How many pounds of each kind of candy should be used to create a 75 -pound mixture selling for $\$ 1.90$ per pound?
60. A grocer needs to mix raisins at $\$ 2.00$ per pound with granola at $\$ 3.25$ per pound to obtain 10 pounds of a mixture that costs $\$ 2.50$ per pound. How many pounds of raisins and how many pound of granola must be used?
61. When a small plane flies with the wind, it can travel 800 miles in 5 hours. When the plane flies in the opposite direction, against the wind, it takes 8 hours to fly the same distance. Find the average velocity of the plane in still air and the average velocity of the wind.
62. When a plane flies with the wind, it can travel 4200 miles in 6 hours. When the plane flies in the opposite direction, against the wind, it takes 7 hours to fly the same distance. Find the average velocity of the plane in still air and the average velocity of the wind.
63. A boat's crew rowed 16 kilometers downstream, with the current, in 2 hours. The return trip upstream, against the current, covered the same distance, but took 4 hours. Find the crew's average rowing velocity in still water and the average velocity of the current.
64. A motorboat traveled 36 miles downstream, with the current, in 1.5 hours. The return trip upstream, against the current, covered the same distance, but took 2 hours. Find the boat's average velocity in still water and the average velocity of the current.
65. With the current, you can canoe 24 miles in 4 hours. Against the same current, you can canoe only $\frac{3}{4}$ of this distance in 6 hours. Find your average velocity in still water and the average velocity of the current.
66. With the current, you can row 24 miles in 3 hours. Against the same current, you can row only $\frac{3}{4}$ of this distance in 4 hours. Find your average rowing velocity in still water and the average velocity of the current.

The figure shows the graphs of the cost and revenue functions for a company that manufactures and sells small radios. Use the information in the figure to solve Exercises 67-72.

67. How many radios must be produced and sold for the company to break even?
68. More than how many radios must be produced and sold for the company to have a profit?
69. Use the formulas shown in the voice balloons to find $R(200)-C(200)$. Describe what this means for the company.
70. Use the formulas shown in the voice balloons to find $R(300)-C(300)$. Describe what this means for the company.
71. a. Use the formulas shown in the voice balloons to write the company's profit function, P, from producing and selling x radios.
b. Find the company's profit if 10,000 radios are produced and sold.
72. a. Use the formulas shown in the voice balloons to write the company's profit function, P, from producing and selling x radios.
b. Find the company's profit if 20,000 radios are produced and sold.
Exercises 73-76 describe a number of business ventures. For each exercise,
a. Write the cost function, C.
b. Write the revenue function, R.
c. Determine the break-even point. Describe what this means.
73. A company that manufactures small canoes has a fixed cost of $\$ 18,000$. It costs $\$ 20$ to produce each canoe. The selling price is $\$ 80$ per canoe. (In solving this exercise, let x represent the number of canoes produced and sold.)
74. A company that manufactures bicycles has a fixed cost of $\$ 100,000$. It costs $\$ 100$ to produce each bicycle. The selling price is $\$ 300$ per bike. (In solving this exercise, let x represent the number of bicycles produced and sold.)
75. You invest in a new play. The cost includes an overhead of $\$ 30,000$, plus production costs of $\$ 2500$ per performance. A sold-out performance brings in $\$ 3125$. (In solving this exercise, let x represent the number of sold-out performances.)
76. You invested $\$ 30,000$ and started a business writing greeting cards. Supplies cost 2ϕ per card and you are selling each card for $50 \not \subset$. (In solving this exercise, let x represent the number of cards produced and sold.)

An important application of systems of equations arises in connection with supply and demand. As the price of a product increases, the demand for that product decreases. However, at higher prices, suppliers are willing to produce greater quantities of the product. The price at which supply and demand are equal is called the equilibrium price. The quantity supplied and demanded at that price is called the equilibrium quantity. Exercises 77-78 involve supply and demand.
77. The following models describe wages for low-skilled labor.

Source: O'Sullivan and Sheffrin, Economics, Prentice Hall, 2007.
a. Solve the system and find the equilibrium number of workers, in millions, and the equilibrium hourly wage.
b. Use your answer from part (a) to complete this statement:
If workers are paid \qquad per hour, there will be
\qquad million available workers and \qquad million workers will be hired.
c. In 2007 , the federal minimum wage was set at $\$ 5.15$ per hour. Substitute 5.15 for p in the demand model, $p=-0.325 x+5.8$, and determine the millions of workers employers will hire at this price.
d. At a minimum wage of $\$ 5.15$ per hour, use the supply model, $p=0.375 x+3$, to determine the millions of available workers. Round to one decimal place.
e. At a minimum wage of $\$ 5.15$ per hour, use your answers from parts (c) and (d) to determine how many more people are looking for work than employers are willing to hire.
78. The following models describe demand and supply for threebedroom rental apartments.

a. Solve the system and find the equilibrium quantity and the equilibrium price.
b. Use your answer from part (a) to complete this statement:

When rents are \qquad per month, consumers will demand ___ apartments and suppliers will offer _ apartments for rent.
79. The bar graph indicates that fewer U.S. adults are getting married.

Source: U.S. Census Bureau

The data can be modeled by the following system of linear equations:

$$
\left\{\begin{array}{rc}
-3 x+10 y=160 \\
x+2 y=142 . & \begin{array}{c}
\text { Percentage of never-married American } \\
\text { adults, } y, x \text { years after } 1970
\end{array} \\
\begin{array}{l}
\text { Percentage of married American } \\
\text { adults, } y, x \text { years after } 1970
\end{array}
\end{array}\right.
$$

a. Use these models to determine the year, rounded to the nearest year, when the percentage of never-married adults will be the same as the percentage of married adults. For that year, approximately what percentage of Americans, rounded to the nearest percent, will belong to each group?
b. How is your approximate solution from part (a) shown by the following graphs?

80. The bar graph shows the percentage of Americans for and against the death penalty for a person convicted of murder.

Source: Newsweek poll
The data can be modeled by the following system of equations:

$$
\left\{\begin{aligned}
& 13 x+12 y=992 \\
&-x+y=16 .
\end{aligned} \begin{array}{l}
\text { The percent, } y, \text { in favor of the } \\
\text { death penalty } x \text { years after } 1988
\end{array}\right.
$$

In which year will the percentage of Americans in favor of the death penalty be the same as the percentage of Americans who oppose it? For that year, what percent will be for the death penalty and what percent will be against it?
81. We opened this section with a study showing that late in the semester, procrastinating students reported more symptoms of physical illness than their nonprocrastinating peers.
a. At the beginning of the semester, procrastinators reported an average of 0.8 symptoms, increasing at a rate of 0.45 symptoms per week. Write a function that models the average number of symptoms after x weeks.
b. At the beginning of the semester, nonprocrastinators reported an average of 2.6 symptoms, increasing at a rate of 0.15 symptoms per week. Write a function that models the average number of symptoms after x weeks.
c. By which week in the semester did both groups report the same number of symptoms of physical illness? For that week, how many symptoms were reported by each group? How is this shown in Figure 7.1 on page 772?
82. Although Social Security is a problem, some projections indicate that there's a much bigger time bomb ticking in the federal budget, and that's Medicare. In 2000, the cost of Social Security was 5.48% of the gross domestic product, increasing by 0.04% of the GDP per year. In 2000, the cost of Medicare was 1.84% of the gross domestic product, increasing by 0.17% of the GDP per year.
(Source: Congressional Budget Office)
a. Write a function that models the cost of Social Security as a percentage of the GDP x years after 2000 .
b. Write a function that models the cost of Medicare as a percentage of the GDP x years after 2000 .
c. In which year will the cost of Medicare and Social Security be the same? For that year, what will be the cost of each program as a percentage of the GDP? Which program will have the greater cost after that year?
83. The graphs show the percentage of American adults in two living arrangements from 1960 through 2008.

Living Arrangements of U.S. Adults

Source: U.S. Census Bureau
a. Write the slope-intercept equation of the line that models the percentage of U.S. adults living alone, y, x years after 1960. Round the value of the slope, m, to one decimal place.
b. Write the slope-intercept equation of the line that models the percentage of married U.S. adults living with kids, y, x years after 1960. Round the value of the slope, m, to one decimal place.
c. Use the models from parts (a) and (b) to project the year in which the percentage of adults living alone will be the same as the percentage of married adults living with kids. What percentage of U.S. adults will belong to each group during that year?
84. The graphs show that the U.S. public has taken a more conservative stance on gun control for the period from 1999 through 2009.
U.S. Public Opinion on Gun Control

Source: pewresearch.org
a. Write the slope-intercept equation of the line that models the percentage of the U.S. public that favors gun control, y, x years after 1999 .
b. Write the slope-intercept equation of the line that models the percentage of the U.S. public against gun control, y, x years after 1999 .
c. Use the models from parts (a) and (b) to project the year, to the nearest whole year, during which the percentage in favor of gun control was the same as the percentage against gun control. What percentage of the U.S. public, to the nearest percent, shared each of these opinions during that year?

Use a system of linear equations to solve Exercises 85-92.
Looking for Mr. Goodbar? It's probably not a good idea if you want to look like Mr. Universe or Julia Roberts. The graph shows the four candy bars with the highest fat content, representing grams of fat and calories in each bar. Exercises 85-88 are based on the graph.

Candy Bars with the Highest Fat Content

Source: Krantz and Sveum, The World's Worsts, HarperCollins, 2005
85. One Mr. Goodbar and two Mounds bars contain 780 calories. Two Mr. Goodbars and one Mounds bar contain 786 calories. Find the caloric content of each candy bar.
86. One Snickers bar and two Reese's Peanut Butter Cups contain 737 calories. Two Snickers bars and one Reese's Peanut Butter Cup contain 778 calories. Find the caloric content of each candy bar.
87. A collection of Halloween candy contains a total of five Mr. Goodbars and Mounds bars. Chew on this: The grams of fat in these candy bars exceed the daily maximum desirable fat intake of 70 grams by 7.1 grams. How many bars of each kind of candy are contained in the Halloween collection?
88. A collection of Halloween candy contains a total of 12 Snickers bars and Reese's Peanut Butter Cups. Chew on this: The grams of fat in these candy bars exceed twice the daily maximum desirable fat intake of 70 grams by 26.5 grams. How many bars of each kind of candy are contained in the Halloween collection?
89. A hotel has 200 rooms. Those with kitchen facilities rent for $\$ 100$ per night and those without kitchen facilities rent for $\$ 80$ per night. On a night when the hotel was completely occupied, revenues were $\$ 17,000$. How many of each type of room does the hotel have?
90. A new restaurant is to contain two-seat tables and four-seat tables. Fire codes limit the restaurant's maximum occupancy to 56 customers. If the owners have hired enough servers to handle 17 tables of customers, how many of each kind of table should they purchase?
91. A rectangular lot whose perimeter is 360 feet is fenced along three sides. An expensive fencing along the lot's length costs $\$ 20$ per foot and an inexpensive fencing along the two side widths costs only $\$ 8$ per foot. The total cost of the fencing along the three sides comes to $\$ 3280$. What are the lot's dimensions?
92. A rectangular lot whose perimeter is 320 feet is fenced along three sides. An expensive fencing along the lot's length costs $\$ 16$ per foot and an inexpensive fencing along the two side widths costs only $\$ 5$ per foot. The total cost of the fencing along the three sides comes to $\$ 2140$. What are the lot's dimensions?

In Exercises 93-94, an isosceles triangle containing two angles with equal measure is shown. The degree measure of each triangle's three interior angles and an exterior angle is represented with variables. Find the measure of the three interior angles.
93.

94.

Writing in Mathematics

95. What is a system of linear equations? Provide an example with your description.
96. What is the solution of a system of linear equations?
97. Explain how to solve a system of equations using the substitution method. Use $y=3-3 x$ and $3 x+4 y=6$ to illustrate your explanation.
98. Explain how to solve a system of equations using the addition method. Use $3 x+5 y=-2$ and $2 x+3 y=0$ to illustrate your explanation.
99. When is it easier to use the addition method rather than the substitution method to solve a system of equations?
100. When using the addition or substitution method, how can you tell if a system of linear equations has infinitely many solutions? What is the relationship between the graphs of the two equations?
101. When using the addition or substitution method, how can you tell if a system of linear equations has no solution? What is the relationship between the graphs of the two equations?
102. Describe the break-even point for a business.

Technology Exercise

103. Verify your solutions to any five exercises in Exercises 5-42 by using a graphing utility to graph the two equations in the system in the same viewing rectangle. Then use the intersection feature to display the solution.

Critical Thinking Exercises

Make Sense? In Exercises 104-107, determine whether each statement makes sense or does not make sense, and explain your reasoning.
104. Each equation in a system of linear equations has infinitely many ordered-pair solutions.
105. Every linear system has infinitely many ordered-pair solutions.
106. I should mix 6 liters of a 50% acid solution with 4 liters of a 25% acid solution to obtain 10 liters of a 75% acid solution.
107. You told me that you flew against the wind from Miami to Seattle, 2800 miles, in 7 hours and, at the same time, your friend flew with the wind from Seattle to Miami in only 5.6 hours. You have not given me enough information to determine the average velocity of the wind.
108. Write a system of equations having $\{(-2,7)\}$ as a solution set. (More than one system is possible.)
109. Solve the system for x and y in terms of $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$, and c_{2} :

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

110. Two identical twins can only be distinguished by the characteristic that one always tells the truth and the other always lies. One twin tells you of a lucky number pair: "When I multiply my first lucky number by 3 and my second lucky number by 6 , the addition of the resulting numbers produces a sum of 12 . When I add my first lucky number and twice my second lucky number, the sum is 5 ." Which twin is talking?
111. A marching band has 52 members, and there are 24 in the pom-pom squad. They wish to form several hexagons and squares like those diagrammed below. Can it be done with no people left over?

Group Exercise

112. The group should write four different word problems that can be solved using a system of linear equations in two variables. All of the problems should be on different topics. The group should turn in the four problems and their algebraic solutions.

Preview Exercises

Exercises 113-115 will help you prepare for the material covered in the next section.
113. If $x=3, y=2$, and $z=-3$, does the ordered triple (x, y, z) satisfy the equation $2 x-y+4 z=-8$?
114. Consider the following equations:

$$
\begin{cases}5 x-2 y-4 z=3 & \text { Equation } 1 \\ 3 x+3 y+2 z=-3 . & \text { Equation } 2\end{cases}
$$

Use this process to eliminate z : Copy Equation 1 and multiply Equation 2 by 2 . Then add the equations.
115. Write an equation involving a, b, and c based on the following description:
When the value of x in $y=a x^{2}+b x+c$ is 4, the value of y is 1682 .

SECTION 7.2

Systems of Linear Equations in Three Variables

Objectives

(1) Verify the solution of a system of linear equations in three variables.
2. Solve systems of linear equations in three variables.
(3) Solve problems using systems in three variables.

All animals sleep, but the length of time they sleep varies widely: Cattle sleep for only a few minutes at a time. We humans seem to need more sleep than other animals, up to eight hours a day. Without enough sleep, we have difficulty concentrating, make mistakes in routine tasks, lose energy, and feel bad-tempered. There is a relationship between hours of sleep and death rate per year per 100,000 people. How many hours of sleep will put you in the group with the minimum death rate? In this section, we will answer this question by solving a system of linear equations with more than two variables.

1 Verify the solution of a system of linear equations in three variables.

FIGURE 7.9

Systems of Linear Equations in Three Variables and Their Solutions

An equation such as $x+2 y-3 z=9$ is called a linear equation in three variables. In general, any equation of the form

$$
A x+B y+C z=D,
$$

where A, B, C, and D are real numbers such that A, B, and C are not all 0 , is a linear equation in three variables: $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}. The graph of this linear equation in three variables is a plane in three-dimensional space.

The process of solving a system of three linear equations in three variables is geometrically equivalent to finding the point of intersection (assuming that there is one) of three planes in space. (See Figure 7.9.) A solution of a system of linear equations in three variables is an ordered triple of real numbers that satisfies all equations of the system. The solution set of the system is the set of all its solutions.

EXAMPLE 1 Determining Whether an Ordered Triple Satisfies a System

Show that the ordered triple $(-1,2,-2)$ is a solution of the system:

$$
\left\{\begin{aligned}
x+2 y-3 z & =9 \\
2 x-y+2 z & =-8 \\
-x+3 y-4 z & =15 .
\end{aligned}\right.
$$

SOLUTION

Because -1 is the x-coordinate, 2 is the y-coordinate, and -2 is the z-coordinate of ($-1,2,-2$), we replace x with $-1, y$ with 2 , and z with -2 in each of the three equations.

$$
\begin{aligned}
x+2 y-3 z & =9 \\
-1+2(2)-3(-2) & \stackrel{?}{?} 9 \\
-1+4+6 & \stackrel{?}{=} 9 \\
9 & =9, \quad \text { true }
\end{aligned}
$$

$$
\begin{array}{r}
-x+3 y-4 z=15 \\
-(-1)+3(2)-4(-2) \stackrel{?}{?} 15 \\
1+6+8 \stackrel{?}{=} 15
\end{array}
$$

$$
15=15, \text { true }
$$

The ordered triple $(-1,2,-2)$ satisfies the three equations: It makes each equation true. Thus, the ordered triple is a solution of the system.

Solve systems of linear equations in three variables.

GREAT QUESTION!

When solving a linear system in three variables, which variable should I eliminate first?
It does not matter which variable you eliminate first, as long as you eliminate the same variable in two different pairs of equations.

Solving Systems of Linear Equations in Three Variables by Eliminating Variables

The method for solving a system of linear equations in three variables is similar to that used on systems of linear equations in two variables. We use addition to eliminate any variable, reducing the system to two equations in two variables. Once we obtain a system of two equations in two variables, we use addition or substitution to eliminate a variable. The result is a single equation in one variable. We solve this equation to get the value of the remaining variable. Other variable values are found by back-substitution.

Solving Linear Systems in Three Variables by Eliminating Variables

1. Reduce the system to two equations in two variables. This is usually accomplished by taking two different pairs of equations and using the addition method to eliminate the same variable from both pairs.
2. Solve the resulting system of two equations in two variables using addition or substitution. The result is an equation in one variable that gives the value of that variable.
3. Back-substitute the value of the variable found in step 2 into either of the equations in two variables to find the value of the second variable.
4. Use the values of the two variables from steps 2 and 3 to find the value of the third variable by back-substituting into one of the original equations.
5. Check the proposed solution in each of the original equations.

EXAMPLE 2 Solving a System in Three Variables

Solve the system:

$$
\left\{\begin{aligned}
5 x-2 y-4 z & =3 \quad \text { Equation } 1 \\
3 x+3 y+2 z & =-3 \quad \text { Equation } 2 \\
-2 x+5 y+3 z & =3 . \quad \text { Equation } 3
\end{aligned}\right.
$$

SOLUTION

There are many ways to proceed. Because our initial goal is to reduce the system to two equations in two variables, the central idea is to take two different pairs of equations and eliminate the same variable from both pairs.
Step 1 Reduce the system to two equations in two variables. We choose any two equations and use the addition method to eliminate a variable. Let's eliminate z using Equations 1 and 2. We do so by multiplying Equation 2 by 2. Then we add equations.
(Equation 1)
(Equation 2)

$$
\left\{\begin{array} { l }
{ 5 x - 2 y - 4 z = 3 } \\
{ 3 x + 3 y + 2 z = - 3 } \\
{ \xrightarrow [\text { Add: }] { \text { Multiply by } 2 . } }
\end{array} \left\{\begin{array}{l}
5 x-2 y-4 z
\end{array}=3 \begin{array}{l}
\text { No change } \\
6 x+6 y+4 z \\
11 x+4 y=-6
\end{array}\right.\right.
$$

$\left\{\begin{array}{rlr}5 x-2 y-4 z & =3 & \text { Equation 1 } \\ 3 x+3 y+2 z & =-3 & \text { Equation 2 } \\ -2 x+5 y+3 z & =3 & \text { Equation 3 }\end{array}\right.$
Now we must eliminate the same variable using another pair of equations. We can eliminate z from Equations 2 and 3. First, we multiply Equation 2 by -3 . Next, we multiply Equation 3 by 2. Finally, we add equations.
(Equation 2)
(Equation 3)

$$
\left\{\begin{aligned}
3 x+3 y+2 z=-3 \\
-2 x+5 y+3 z=3
\end{aligned} \xrightarrow[\text { Multiply by } 2 .]{\begin{array}{l}
\text { Multiply by }-3 .
\end{array} \begin{array}{l}
-9 x-9 y-6 z=9 \\
-4 x+10 y+6 z
\end{array}=\frac{6}{-13 x+y}=15 \quad \text { Equation } 5}\right.
$$

Equation 4, $11 x+4 y=-3$, obtained on the previous page, and Equation 5, $-13 x+y=15$, obtained above, give us a system of two equations in two variables:

$$
\left\{\begin{aligned}
11 x+4 y & =-3 \\
-13 x+y & =15
\end{aligned} \quad \text { Equation } 4\right.
$$

Step 2 Solve the resulting system of two equations in two variables. We will use the addition method to solve Equations 4 and 5 for x and y. To do so, we multiply Equation 5 on both sides by -4 and add this to Equation 4.

Step 3 Use back-substitution in one of the equations in two variables to find the value of the second variable. We back-substitute -1 for x in either Equation 4 or 5 to find the value of y.

$$
\begin{aligned}
-13 x+y & =15 & & \text { Equation } 5 \\
-13(-1)+y & =15 & & \text { Substitute }-1 \text { for } x \\
13+y & =15 & & \text { Multiply. } \\
y & =2 & & \text { Subtract } 13 \text { from both sides. }
\end{aligned}
$$

Step 4 Back-substitute the values found for two variables into one of the original equations to find the value of the third variable. We can now use any one of the original equations and back-substitute the values of x and y to find the value for z. We will use Equation 2.

$$
\begin{array}{rlrl}
3 x+3 y+2 z & =-3 & & \text { Equation } 2 \\
3(-1)+3(2)+2 z & =-3 & & \text { Substitute }-1 \text { for } x \text { and } 2 \text { for } y \\
3+2 z & =-3 & & \text { Multiply and then add: } \\
& & 3(-1)+3(2)=-3+6=3 . \\
2 z & =-6 & & \text { Subtract } 3 \text { from both sides. } \\
z & =-3 & & \text { Divide both sides by } 2 .
\end{array}
$$

With $x=-1, y=2$, and $z=-3$, the proposed solution is the ordered triple $(-1,2,-3)$.
Step 5 Check. Check the proposed solution, $(-1,2,-3)$, by substituting the values for x, y, and z into each of the three original equations. These substitutions yield three true statements. Thus, the solution set is $\{(-1,2,-3)\}$.
Check Point 2 Solve the system:

$$
\left\{\begin{aligned}
x+4 y-z= & 20 \\
3 x+2 y+z & =8 \\
2 x-3 y+2 z & =-16
\end{aligned}\right.
$$

In some examples, one of the variables is already eliminated from a given equation. In this case, the missing variable should be eliminated from the other two equations, thereby making it possible to omit one of the elimination steps. We illustrate this idea in Example 3.

EXAMPLE 3 Solving a System of Equations with a Missing Term

Solve the system:

$$
\left\{\begin{aligned}
x+z & =8 \\
x+y+2 z & =17 \\
x+2 y+z & =16 .
\end{aligned} \quad \text { Equation 1 } \quad \text { Equation } 20\right.
$$

SOLUTION

Step 1 Reduce the system to two equations in two variables. Because Equation 1 contains only x and z, we could omit one of the elimination steps by eliminating y using Equations 2 and 3. This will give us two equations in x and z. To eliminate y using Equations 2 and 3, we multiply Equation 2 by -2 and add Equation 3.

DISCOVERY

Solve Equation 1 for z and then replace z with $8-x$ in Equations 2 and 3. Solve the resulting system of two equations in two variables. Compare your solution method with the one shown on the right. Which method do you prefer?

$$
\left\{\begin{array} { r }
{ x + y + 2 z = 1 7 } \\
{ x + 2 y + z = 1 6 }
\end{array} \xrightarrow [\text { No change }] { \text { Add: } } \left\{\begin{array} { r l }
{ - 2 x - 2 y - 4 z } & { = - 3 4 } \\
{ x + 2 y + z } & { = \frac { 1 6 } { - x } }
\end{array} \quad \left\{\begin{array}{rl}
-2 z & =-18
\end{array}\right.\right.\right.
$$

Equation 4
Equation 4 and the given Equation 1 provide us with a system of two equations in two variables:

$$
\left\{\begin{aligned}
x+z & =8 \\
-x-3 z & =-18 .
\end{aligned}\right.
$$

Step 2 Solve the resulting system of two equations in two variables. We will solve Equations 1 and 4 for x and z.

$$
\left\{\begin{array}{rlr}
x+z & =8 & \text { Equation 1 } \\
\underline{-x-3 z} & =-18 & \text { Equation } 4
\end{array}\right]=\begin{aligned}
-2 z & =-10 \\
z & =5
\end{aligned} \text { Divide both sides by }-2 .
$$

Step 3 Use back-substitution in one of the equations in two variables to find the value of the second variable. To find x, we back-substitute 5 for z in either Equation 1 or 4 . We will use Equation 1.

$$
\begin{aligned}
x+z & =8 & & \text { Equation } 1 \\
x+5 & =8 & & \text { Substitute } 5 \text { for } z \\
x & =3 & & \text { Subtract } 5 \text { from both sides. }
\end{aligned}
$$

Step 4 Back-substitute the values found for two variables into one of the original equations to find the value of the third variable. To find y, we back-substitute 3 for x and 5 for z into Equation 2 or 3 . We cannot use Equation 1 because y is missing in this equation. We will use Equation 2.

$$
\begin{aligned}
x+y+2 z & =17 & & \text { Equation } 2 \\
3+y+2(5) & =17 & & \text { Substitute } 3 \text { for } x \text { and } 5 \text { for } z \\
y+13 & =17 & & \text { Multiply and add. } \\
y & =4 & & \text { Subtract } 13 \text { from both sides. }
\end{aligned}
$$

We found that $z=5, x=3$, and $y=4$. Thus, the proposed solution is the ordered triple $(3,4,5)$.
Step 5 Check. Substituting 3 for $x, 4$ for y, and 5 for z into each of the three original equations yields three true statements. Consequently, the solution set is $\{(3,4,5)\}$.
\oint Check Point 3 Solve the system:

$$
\left\{\begin{aligned}
2 y-z & =7 \\
x+2 y+z & =17 \\
2 x-3 y+2 z & =-1
\end{aligned}\right.
$$

3. Solve problems using systems in three variables.

TECHNOLOGY

The graph of

$$
y=104.5 x^{2}-1501.5 x+6016
$$

is displayed in a $[3,12,1]$ by [500, 2000, 100] viewing rectangle. The minimum function feature shows that the lowest point on the graph, the vertex, is approximately (7.2, 622.5). Men who average 7.2 hours of sleep are in the group with the lowest death rate, approximately 622.5 deaths per 100,000 males.

A system of linear equations in three variables represents three planes. The three planes may not always intersect at one point. The planes may have no common point of intersection and represent an inconsistent system with no solution. By contrast, the planes may coincide or intersect along a line. In these cases, the planes have infinitely many points in common and represent systems with infinitely many solutions. Systems of linear equations in three variables that are inconsistent or that contain dependent equations will be discussed in Chapter 6.

Applications

Systems of equations may allow us to find models for data without using a graphing utility. Three data points that do not lie on or near a line determine the graph of a quadratic function of the form $y=a x^{2}+b x+c, a \neq 0$. Quadratic functions often model situations in which values of y are decreasing and then increasing, suggesting the bowl-like shape of a parabola.

EXAMPLE 4 Modeling Data Relating Sleep and Death Rate

In a study relating sleep and death rate, the following data were obtained. Use the function $y=a x^{2}+b x+c$ to model the data.

\boldsymbol{x} (Average Number of Hours of Sleep)	\boldsymbol{y} (Death Rate per Year per 100,000 Males)
4	1682
7	626
9	967

SOLUTION

We need to find values for a, b, and c in $y=a x^{2}+b x+c$. We can do so by solving a system of three linear equations in a, b, and c. We obtain the three equations by using the values of x and y from the data as follows:

$$
\begin{aligned}
& \boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \quad \text { Use the quadratic function to model the data. } \\
& \text { When } x=4, y=1682: \\
& \text { When } x=7, y=626: \\
& \text { When } x=9, y=967:
\end{aligned}\left\{\begin{array} { r }
{ 1 6 8 2 = a \cdot 4 ^ { 2 } + b \cdot 4 + c } \\
{ 6 2 6 = a \cdot 7 ^ { 2 } + b \cdot 7 + c } \\
{ 9 6 7 = a \cdot 9 ^ { 2 } + b \cdot 9 + c }
\end{array} \text { or } \quad \left\{\begin{array}{l}
16 a+4 b+c=1682 \\
49 a+7 b+c=626 \\
81 a+9 b+c=967 .
\end{array}\right.\right.
$$

The easiest way to solve this system is to eliminate c from two pairs of equations, obtaining two equations in a and b. Solving this system gives $a=104.5$, $b=-1501.5$, and $c=6016$. We now substitute the values for a, b, and c into $y=a x^{2}+b x+c$. The function that models the given data is

$$
y=104.5 x^{2}-1501.5 x+6016
$$

$$
\bullet \bullet \bullet
$$

We can use the model that we obtained in Example 4 to find the death rate of males who average, say, 6 hours of sleep. First, write the model in function notation:

$$
f(x)=104.5 x^{2}-1501.5 x+6016
$$

Substitute 6 for x :

$$
f(6)=104.5(6)^{2}-1501.5(6)+6016=769
$$

According to the model, the death rate for males who average 6 hours of sleep is 769 deaths per 100,000 males.

3 Check Point 4 Find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the points $(1,4),(2,1)$, and $(3,4)$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A solution of a system of linear equations in three variables is an ordered \qquad of real numbers that satisfies all/some of the equations in the system.

Circle the correct choice.

2. Consider the following system:

$$
\left\{\begin{aligned}
x+y-z & =-1 \\
2 x-2 y-5 z & =7 \text { Equation 1 } \\
4 x+y-2 z & =7 .
\end{aligned}\right.
$$

We can eliminate x from Equations 1 and 2 by multiplying Equation 1 by \qquad and adding equations. We can eliminate x from Equations 1 and 3 by multiplying Equation 1 by \qquad and adding equations.
3. Consider the following system:

$$
\left\{\begin{aligned}
x+y+z=2 & \text { Equation 1 } \\
2 x-3 y=3 & \text { Equation 2 } \\
10 y-z=12 . & \text { Equation 3 }
\end{aligned}\right.
$$

Equation 2 does not contain the variable \qquad .To obtain a second equation that does not contain this variable, we can \qquad —.

EXERCISE SET 7.2

Practice Exercises

In Exercises 1-4, determine if the given ordered triple is a solution of the system.

1. $(2,-1,3)$

$$
\left\{\begin{aligned}
x+y+z= & 4 \\
x-2 y-z= & 1 \\
2 x-y-2 z= & -1
\end{aligned}\right.
$$

3. $(4,1,2)$

$$
\left\{\begin{aligned}
x-2 y & =2 \\
2 x+3 y & =11 \\
y-4 z & =-7
\end{aligned}\right.
$$

2. $(5,-3,-2)$

$$
\left\{\begin{aligned}
x+y+z= & 0 \\
x+2 y-3 z= & 5 \\
3 x+4 y+2 z= & -1
\end{aligned}\right.
$$

4. $(-1,3,2)$
$\left\{\begin{aligned} x-2 z & =-5 \\ y-3 z & =-3 \\ 2 x-z & =-4\end{aligned}\right.$

Solve each system in Exercises 5-18.
5. $\left\{\begin{array}{l}x+y+2 z=11 \\ x+y+3 z=14 \\ x+2 y-z=5\end{array}\right.$
6. $\left\{\begin{aligned} 2 x+y-2 z= & -1 \\ 3 x-3 y-z= & 5 \\ x-2 y+3 z= & 6\end{aligned}\right.$
7. $\left\{\begin{aligned} 4 x-y+2 z & =11 \\ x+2 y-z & =-1 \\ 2 x+2 y-3 z & =-1\end{aligned}\right.$
8. $\left\{\begin{aligned} x-y+3 z & =8 \\ 3 x+y-2 z & =-2 \\ 2 x+4 y+z & =0\end{aligned}\right.$
9. $\left\{\begin{array}{l}3 x+2 y-3 z=-2 \\ 2 x-5 y+2 z=-2 \\ 4 x-3 y+4 z=10\end{array}\right.$
10. $\left\{\begin{array}{l}2 x+3 y+7 z=13 \\ 3 x+2 y-5 z=-22 \\ 5 x+7 y-3 z=-28\end{array}\right.$
11. $\left\{\begin{aligned} 2 x-4 y+3 z & =17 \\ x+2 y-z & =0 \\ 4 x-y-z & =6\end{aligned}\right.$
12. $\left\{\begin{aligned} x+z & =3 \\ x+2 y-z & =1 \\ 2 x-y+z & =3\end{aligned}\right.$
13. $\left\{\begin{aligned} 2 x+y & =2 \\ x+y-z & =4 \\ 3 x+2 y+z & =0\end{aligned}\right.$
14. $\left\{\begin{aligned} x+3 y+5 z & =20 \\ y-4 z & =-16 \\ 3 x-2 y+9 z & =36\end{aligned}\right.$
15. $\left\{\begin{aligned} x+y & =-4 \\ y-z & =1 \\ 2 x+y+3 z & =-21\end{aligned}\right.$
16. $\left\{\begin{array}{l}x+y=4 \\ x+z=4 \\ y+z=4\end{array}\right.$
17. $\left\{\begin{aligned} 3(2 x+y)+5 z & =-1 \\ 2(x-3 y+4 z) & =-9 \\ 4(1+x) & =-3(z-3 y)\end{aligned}\right.$
18. $\left\{\begin{aligned} 7 z-3 & =2(x-3 y) \\ 5 y+3 z-7 & =4 x \\ 4+5 z & =3(2 x-y)\end{aligned}\right.$

In Exercises 19-22, find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the given points.
19. $(-1,6),(1,4),(2,9)$
20. $(-2,7),(1,-2),(2,3)$
21. $(-1,-4),(1,-2),(2,5)$
22. $(1,3),(3,-1),(4,0)$

In Exercises 23-24, let x represent the first number, y the second number, and z the third number. Use the given conditions to write a system of equations. Solve the system and find the numbers.
23. The sum of three numbers is 16 . The sum of twice the first number, 3 times the second number, and 4 times the third number is 46 . The difference between 5 times the first number and the second number is 31 . Find the three numbers.
24. The following is known about three numbers: Three times the first number plus the second number plus twice the third number is 5 . If 3 times the second number is subtracted from the sum of the first number and 3 times the third number, the result is 2 . If the third number is subtracted from 2 times the first number and 3 times the second number, the result is 1 . Find the numbers.

Practice Plus

Solve each system in Exercises 25-26.
25. $\left\{\begin{array}{l}\frac{x+2}{6}-\frac{y+4}{3}+\frac{z}{2}=0 \\ \frac{x+1}{2}+\frac{y-1}{2}-\frac{z}{4}=\frac{9}{2} \\ \frac{x-5}{4}+\frac{y+1}{3}+\frac{z-2}{2}=\frac{19}{4}\end{array}\right.$
26. $\left\{\begin{array}{l}\frac{x+3}{2}-\frac{y-1}{2}+\frac{z+2}{4}=\frac{3}{2} \\ \frac{x-5}{2}+\frac{y+1}{3}-\frac{z}{4}=-\frac{25}{6} \\ \frac{x-3}{4}-\frac{y+1}{2}+\frac{z-3}{2}=-\frac{5}{2}\end{array}\right.$

In Exercises 27-28, find the equation of the quadratic function $y=a x^{2}+b x+c$ whose graph is shown. Select three points whose coordinates appear to be integers.
27.

28.

In Exercises 29-30, solve each system for (x, y, z) in terms of the nonzero constants a, b, and c.
29. $\left\{\begin{aligned} a x-b y-2 c z & =21 \\ a x+b y+c z & =0 \\ 2 a x-b y+c z & =14\end{aligned}\right.$ 30. $\left\{\begin{aligned} a x-b y+2 c z & =-4 \\ a x+3 b y-c z & =1 \\ 2 a x+b y+3 c z & =2\end{aligned}\right.$

Application Exercises

31. You throw a ball straight up from a rooftop. The ball misses the rooftop on its way down and eventually strikes the ground. A mathematical model can be used to describe the relationship for the ball's height above the ground, y, after x seconds. Consider the following data:

$\left.$	\boldsymbol{x}, seconds after the ball is
thrown	\quad
---	---
the ground	\right\rvert\,
:---:	:---:
3	176
4	104

a. Find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the given points.
b. Use the function in part (a) to find the value for y when $x=5$. Describe what this means.
32. A mathematical model can be used to describe the relationship between the number of feet a car travels once the brakes are applied, y, and the number of seconds the car is in motion after the brakes are applied, x. A research firm collects the following data:

\boldsymbol{x}, seconds in motion after brakes are applied	\boldsymbol{y}, feet car travels once the brakes are applied
1	46
2	84
3	114

a. Find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the given points.
b. Use the function in part (a) to find the value for y when $x=6$. Describe what this means.

Use a system of linear equations in three variables to solve Exercises 33-41.

The bar graph shows the average annual spending per person on selected items in 1980 and 2010. All dollar amounts are adjusted for inflation. Use this display to solve Exercises 33-34.

Source: U.S. Bureau of Economic Analysis
33. In this exercise, we refer to annual spending per person in 2010. The combined spending on housing, vehicles/gas, and health care was $\$ 13,840$. The difference between spending on housing and spending on vehicles/gas was $\$ 3864$. The difference between spending on housing and spending on health care was $\$ 695$. Find the average per-person spending on housing, vehicles/gas, and health care in 2010.
34. In this exercise, we refer to annual spending per person in 1980. The combined spending on housing, vehicles/gas, and health care was $\$ 7073$. The difference between spending on housing and spending on vehicles/gas was $\$ 1247$. The difference between spending on housing and spending on health care was $\$ 1466$. Find the average per-person spending on housing, vehicles/gas, and health care in 1980.
35. On a recent trip to the convenience store, you picked up 2 gallons of milk, 5 bottles of water, and 6 snack-size bags of chips. Your total bill (before tax) was $\$ 19.00$. If a bottle of water costs twice as much as a bag of chips, and a gallon of milk costs $\$ 2.00$ more than a bottle of water, how much does each item cost?
36. On a recent trip to the convenience store, you picked up 1 gallon of milk, 7 bottles of water, and 4 snack-size bags of chips. Your total bill (before tax) was $\$ 17.00$. If a bottle of water costs twice as much as a bag of chips, and a gallon of milk costs $\$ 2.00$ more than a bottle of water, how much does each item cost?
37. At a college production of A Streetcar Named Desire, 400 tickets were sold. The ticket prices were $\$ 8, \$ 10$, and $\$ 12$, and the total income from ticket sales was $\$ 3700$. How many tickets of each type were sold if the combined number of $\$ 8$ and $\$ 10$ tickets sold was 7 times the number of $\$ 12$ tickets sold?
38. A certain brand of razor blades comes in packages of 6,12 , and 24 blades, costing $\$ 2, \$ 3$, and $\$ 4$ per package, respectively. A store sold 12 packages containing a total of 162 razor blades and took in $\$ 35$. How many packages of each type were sold?
39. A person invested $\$ 6700$ for one year, part at 8%, part at 10%, and the remainder at 12%. The total annual income from these investments was $\$ 716$. The amount of money invested at 12% was $\$ 300$ more than the amount invested at 8% and 10% combined. Find the amount invested at each rate.
40. A person invested $\$ 17,000$ for one year, part at 10%, part at 12%, and the remainder at 15%. The total annual income from these investments was $\$ 2110$. The amount of money invested at 12% was $\$ 1000$ less than the amount invested at 10% and 15% combined. Find the amount invested at each rate.
41. In the following triangle, the degree measures of the three interior angles and two of the exterior angles are represented with variables. Find the measure of each interior angle.

Writing in Mathematics

42. What is a system of linear equations in three variables?
43. How do you determine whether a given ordered triple is a solution of a system in three variables?
44. Describe in general terms how to solve a system in three variables.
45. AIDS is taking a deadly toll on southern Africa. Describe how to use the techniques that you learned in this section to obtain a model for African life span using projections with AIDS, shown by the red graph in the figure. Let x represent the number of years after 1985 and let y represent African life span in that year.

Source: United Nations

Technology Exercises

46. Does your graphing utility have a feature that allows you to solve linear systems by entering coefficients and constant terms? If so, use this feature to verify the solutions to any five exercises that you worked by hand from Exercises 5-16.
47. Verify your results in Exercises $19-22$ by using a graphing utility to graph the resulting parabola. Trace along the curve and convince yourself that the three points given in the exercise lie on the parabola.

Critical Thinking Exercises

Make Sense? In Exercises 48-51, determine whether each statement makes sense or does not make sense, and explain your reasoning.
48. Solving a system in three variables, I found that $x=3$ and $y=-1$. Because z represents a third variable, z cannot equal 3 or -1 .
49. A system of linear equations in three variables, x, y, and z, cannot contain an equation in the form $y=m x+b$.
50. I'm solving a three-variable system in which one of the given equations has a missing term, so it will not be necessary to use any of the original equations twice when I reduce the system to two equations in two variables.
51. Because the percentage of the U.S. population that was foreign-born decreased from 1910 through 1970 and then increased after that, a quadratic function of the form $f(x)=a x^{2}+b x+c$, rather than a linear function of the form $f(x)=m x+b$, should be used to model the data.
52. Describe how the system

$$
\left\{\begin{aligned}
x+y-z-2 w & =-8 \\
x-2 y+3 z+w & =18 \\
2 x+2 y+2 z-2 w & =10 \\
2 x+y-z+w & =3
\end{aligned}\right.
$$

could be solved. Is it likely that in the near future a graphing utility will be available to provide a geometric solution (using intersecting graphs) to this system? Explain.
53. A modernistic painting consists of triangles, rectangles, and pentagons, all drawn so as to not overlap or share sides. Within each rectangle are drawn 2 red roses and each pentagon contains 5 carnations. How many triangles, rectangles, and pentagons appear in the painting if the painting contains a total of 40 geometric figures, 153 sides of geometric figures, and 72 flowers?

Group Exercise

54. Group members should develop appropriate functions that model each of the projections shown in Exercise 45.

Preview Exercises

Exercises 55-57 will help you prepare for the material covered in the next section.
55. Subtract: $\frac{3}{x-4}-\frac{2}{x+2}$.
56. Add: $\frac{5 x-3}{x^{2}+1}+\frac{2 x}{\left(x^{2}+1\right)^{2}}$.
57. Solve:

$$
\left\{\begin{aligned}
A+B & =3 \\
2 A-2 B+C & =17 \\
4 A-2 C & =14
\end{aligned}\right.
$$

SECTION 7.3

Objectives

(1) Decompose $\frac{P}{Q}$, where Q has only distinct linear factors.
(2) Decompose $\frac{P}{Q}$, where Q has repeated linear factors.
(3) Decompose $\frac{P}{Q}$, where Q has a nonrepeated prime quadratic factor.
(4) Decompose $\frac{P}{Q}$, where Q has a prime, repeated quadratic factor.

The rising and setting of the sun suggest the obvious: Things change over time. Calculus is the study of rates of change, allowing the motion of the rising sun to be measured by "freezing the frame" at one instant in time. If you are given a function, calculus reveals its rate of change at any "frozen" instant. In this section, you will learn an algebraic technique used in calculus to find a function if its rate of change is known. The technique involves expressing a given function in terms of simpler functions.

The Idea behind Partial Fraction Decomposition

We know how to use common denominators to write a sum or difference of rational expressions as a single rational expression. For example,

$$
\begin{aligned}
& \frac{3}{x-4}-\frac{2}{x+2}=\frac{3(x+2)-2(x-4)}{(x-4)(x+2)} \\
& =\frac{3 x+6-2 x+8}{(x-4)(x+2)}=\frac{x+14}{(x-4)(x+2)} .
\end{aligned}
$$

For solving the kind of calculus problem described in the section opener, we must reverse this process:

> This is the partial fraction
> decomposition of $\frac{x+14}{(x-4)(x+2)}$.

Each of the two fractions on the right is called a partial fraction. The sum of these fractions is called the partial fraction decomposition of the rational expression on the left-hand side.

Partial fraction decompositions can be written for rational expressions of the form $\frac{P(x)}{Q(x)}$, where P and Q have no common factors and the highest power in the numerator is less than the highest power in the denominator. In this section, we will show you how to write the partial fraction decompositions for each of the following rational expressions:

$$
\begin{array}{cc}
\frac{9 x^{2}-9 x+6}{(2 x-1)(x+2)(x-2)} & \begin{array}{l}
P(x)=9 x^{2}-9 x+6 ; \text { highest power }=2 \\
\begin{array}{l}
Q(x)=(2 x-1)(x+2)(x-2) ; \text { multiplying factors, } \\
\text { highest power }=3 .
\end{array} \\
\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}} .
\end{array} \begin{array}{l}
P(x)=5 x^{3}-3 x^{2}+7 x-3 ; \text { highest power }=3 \\
\begin{array}{c}
Q(x)=\left(x^{2}+1\right)^{2} ; \text { squaring the expression, } \\
\text { highest power }=4 .
\end{array}
\end{array},
\end{array}
$$

The partial fraction decomposition of a rational expression depends on the factors of the denominator. We consider four cases involving different kinds of factors in the denominator:

1. The denominator is a product of distinct linear factors.
2. The denominator is a product of linear factors, some of which are repeated.
3. The denominator has prime quadratic factors, none of which is repeated.
4. The denominator has a repeated prime quadratic factor.

The Partial Fraction Decomposition of a Rational Expression with Distinct Linear Factors in the Denominator

If the denominator of a rational expression has a linear factor of the form $a x+b$, then the partial fraction decomposition will contain a term of the form

$$
\begin{array}{cc}
\frac{A}{a x+b} \cdot & \text { Constant } \\
\text { Linear factor }
\end{array}
$$

Each distinct linear factor in the denominator produces a partial fraction of the form constant over linear factor. For example,

$$
\frac{9 x^{2}-9 x+6}{(2 x-1)(x+2)(x-2)}=\frac{A}{2 x-1}+\frac{B}{x+2}+\frac{C}{x-2} .
$$

We write a constant over each linear factor in the denominator.

The Partial Fraction Decomposition of $\frac{P(x)}{Q(x)}: Q(x)$ Has Distinct Linear Factors

The form of the partial fraction decomposition for a rational expression with distinct linear factors in the denominator is

$$
\begin{aligned}
& \frac{P(x)}{\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right)\left(a_{3} x+b_{3}\right) \cdots\left(a_{n} x+b_{n}\right)} \\
&=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\frac{A_{3}}{a_{3} x+b_{3}}+\cdots+\frac{A_{n}}{a_{n} x+b_{n}} .
\end{aligned}
$$

EXAMPLE 1 Partial Fraction Decomposition with Distinct Linear Factors

Find the partial fraction decomposition of

$$
\frac{x+14}{(x-4)(x+2)} .
$$

SOLUTION

We begin by setting up the partial fraction decomposition with the unknown constants. Write a constant over each of the two distinct linear factors in the denominator.

$$
\frac{x+14}{(x-4)(x+2)}=\frac{A}{x-4}+\frac{B}{x+2}
$$

Our goal is to find A and B. We do this by multiplying both sides of the equation by the least common denominator, $(x-4)(x+2)$.

$$
(x-4)(x+2) \frac{x+14}{(x-4)(x+2)}=(x-4)(x+2)\left(\frac{A}{x-4}+\frac{B}{x+2}\right)
$$

We use the distributive property on the right side.

$$
\begin{aligned}
& (x-4)(x+2) \frac{x+14}{(x-4)(x+2)} \\
& \quad=(x-4)(x+2) \frac{A}{(x-4)}+(x-4)(x+2) \frac{B}{(x+2)}
\end{aligned}
$$

Dividing out common factors in numerators and denominators, we obtain

$$
x+14=A(x+2)+B(x-4) .
$$

To find values for A and B that make both sides equal, we will express the sides in exactly the same form by writing the variable x-terms and then writing the constant terms. Apply the distributive property on the right side.

$$
\begin{array}{rll}
x+14 & =A x+2 A+B x-4 B & \text { Distribute } A \text { and } B \text { over the parentheses. } \\
x+14=A x+B x+2 A-4 B & \text { Rearrange terms. } \\
\sqrt{1} x+14=(A+B) x+(2 A-4 B) & \begin{array}{l}
\text { Rewrite to identify the coefficient of } x \\
\text { and the constant term. }
\end{array}
\end{array}
$$

As shown by the arrows, if two polynomials are equal, coefficients of like powers of x must be equal $(A+B=1)$ and their constant terms must be equal ($2 A-4 B=14$). Consequently, A and B satisfy the following two equations:

$$
\left\{\begin{aligned}
A+B & =1 \\
2 A-4 B & =14 .
\end{aligned}\right.
$$

We can use the addition method to solve this linear system in two variables. By multiplying the first equation by -2 and adding equations, we obtain $A=3$ and $B=-2$. Thus,

$$
\frac{x+14}{(x-4)(x+2)}=\frac{A}{x-4}+\frac{B}{x+2}=\frac{3}{x-4}+\frac{-2}{x+2}\left(\text { or } \frac{3}{x-4}-\frac{2}{x+2}\right) .
$$

Steps in Partial Fraction Decomposition

1. Set up the partial fraction decomposition with the unknown constants A, B, C, etc., in the numerators of the decomposition.
2. Multiply both sides of the resulting equation by the least common denominator.
3. Simplify the right side of the equation.
4. Write both sides in descending powers, equate coefficients of like powers of x, and equate constant terms.
5. Solve the resulting linear system for A, B, C, etc.
6. Substitute the values for A, B, C, etc., into the equation in step 1 and write the partial fraction decomposition.

GREAT QUESTION!

Is there any way to speed up the process of finding partial fraction decompositions?

Sometimes. In certain situations, you can use the equation in step 2, the identity obtained after clearing fractions, to determine the constants A, B, C, etc., needed to write the partial fraction decomposition. In Example 1, the identity obtained after fractions were cleared was

$$
x+14=A(x+2)+B(x-4) .
$$

Using suitable choices for x, we can quickly find A and B.

As in the solution to Example 1, $A=3$ and $B=-2$. This shortcut sometimes makes life easier by letting you skip steps 3,4 , and 5 in the box. The downside: Using suitable choices for x to determine constants does not always work.
$\$$ Check Point 1 Find the partial fraction decomposition of $\frac{5 x-1}{(x-3)(x+4)}$.
(2) Decompose $\frac{P}{Q}$, where Q has repeated linear factors.

The Partial Fraction Decomposition of a Rational Expression with Linear Factors in the Denominator, Some of Which Are Repeated

Suppose that $(a x+b)^{n}$ is a factor of the denominator. This means that the linear factor $a x+b$ is repeated n times. When this occurs, the partial fraction decomposition will contain a sum of n fractions for this factor of the denominator.

The Partial Fraction Decomposition of $\frac{P(x)}{Q(x)}$: $Q(x)$ Has Repeated Linear Factors

The form of the partial fraction decomposition for a rational expression containing the linear factor $a x+b$ occurring n times as its denominator is

$$
\frac{P(x)}{(a x+b)^{n}}=\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\frac{A_{3}}{(a x+b)^{3}}+\cdots+\frac{A_{n}}{(a x+b)^{n}} .
$$

EXAMPLE 2 Partial Fraction Decomposition with a Repeated Linear Factor

Find the partial fraction decomposition of $\frac{x-18}{x(x-3)^{2}}$.

SOLUTION

GREAT QUESTION!

When setting up the partial fraction decomposition for

$$
\frac{x-18}{x(x-3)^{2}}
$$

can I just use a constant over
$x-3$ and another constant over $x-3$? After all,

$$
(x-3)^{2}=(x-3)(x-3)
$$

No. Avoid this common error:

Step 1 Set up the partial fraction decomposition with the unknown constants. Because the linear factor $x-3$ occurs twice, we must include one fraction with a constant numerator for each power of $x-3$.

$$
\frac{x-18}{x(x-3)^{2}}=\frac{A}{x}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}
$$

Step 2 Multiply both sides of the resulting equation by the least common denominator. We clear fractions, multiplying both sides by $x(x-3)^{2}$, the least common denominator.

$$
x(x-3)^{2}\left[\frac{x-18}{x(x-3)^{2}}\right]=x(x-3)^{2}\left[\frac{A}{x}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}\right]
$$

We use the distributive property on the right side.

$$
x(x-3)^{2} \cdot \frac{x-18}{x(x-3)^{2}}=x(x-3)^{2} \cdot \frac{A}{\not x}+x(x-3)^{2} \cdot \frac{B}{(x-3)}+x(x-3)^{2} \cdot \frac{C}{(x-3)^{2}}
$$

Dividing out common factors in numerators and denominators, we obtain

$$
x-18=A(x-3)^{2}+B x(x-3)+C x . \quad \begin{gathered}
\text { You can use this } \\
\text { equation to find } \\
C(\text { let } x=3) \text { and } \\
\text { to find } A(\text { let } x=0) .
\end{gathered}
$$

Step 3 Simplify the right side of the equation. Square $x-3$. Then apply the distributive property.

$$
\begin{array}{ll}
x-18=A\left(x^{2}-6 x+9\right)+B x(x-3)+C x & \text { Square } x-3 \text { using } \\
& (A-B)^{2}=A^{2}-2 A B+B^{2} . \\
x-18=A x^{2}-6 A x+9 A+B x^{2}-3 B x+C x & \text { Apply the distributive property. }
\end{array}
$$

Step 4 Write both sides in descending powers, equate coefficients of like powers of \boldsymbol{x}, and equate constant terms. The left side, $x-18$, is in descending powers of $x: x-18 x^{0}$. We will write the right side in descending powers of x.
$x-18=A x^{2}+B x^{2}-6 A x-3 B x+C x+9 A \quad$ Rearrange terms on the right side.
Express both sides in the same form.

$$
\begin{aligned}
0 x^{2}+1 x-18=(A+B) x^{2}+(-6 A-3 B+C) x+9 A & \begin{array}{l}
\text { Rewrite to identify } \\
\\
\text { coefficients and the } \\
\text { constant term. }
\end{array}
\end{aligned}
$$

Equating coefficients of like powers of x and equating constant terms results in the following system of linear equations:

$$
\left\{\begin{aligned}
A+B & =0 \\
-6 A-3 B+C & =1 \\
9 A & =-18 .
\end{aligned}\right.
$$

Step 5 Solve the resulting system for $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}. Dividing both sides of the last equation by 9 , we obtain $A=-2$. Substituting -2 for A in the first equation, $A+B=0$, gives $-2+B=0$, so $B=2$. We find C by substituting -2 for A and 2 for B in the middle equation, $-6 A-3 B+C=1$. We obtain $C=-5$.
Step 6 Substitute the values of A, B, and C, and write the partial fraction decomposition. With $A=-2, B=2$, and $C=-5$, the required partial fraction decomposition is

$$
\frac{x-18}{x(x-3)^{2}}=\frac{A}{x}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}=-\frac{2}{x}+\frac{2}{x-3}-\frac{5}{(x-3)^{2}} .
$$

\oiint Check Point 2 Find the partial fraction decomposition of $\frac{x+2}{x(x-1)^{2}}$.

GREAT QUESTION!

In Examples 1 and 2, the denominators of the given rational expressions were factored. What do I do when I have to determine a partial fraction decomposition in which the denominator of the given rational expression is not already factored?
Begin by factoring the denominator. Then apply the steps needed to obtain the partial fraction decomposition.
(3) Decompose $\frac{P}{Q}$, where Q has a nonrepeated prime quadratic factor.

The Partial Fraction Decomposition of a Rational Expression with Prime, Nonrepeated Quadratic Factors in the Denominator

Our final two cases of partial fraction decomposition involve prime quadratic factors of the form $a x^{2}+b x+c$. Based on our work with the discriminant, we know that $a x^{2}+b x+c$ is prime and cannot be factored over the integers if $b^{2}-4 a c<0$ or if $b^{2}-4 a c$ is not a perfect square.

The Partial Fraction Decomposition of $\frac{P(x)}{Q(x)}: Q(x)$ Has a Nonrepeated,
Prime Quadratic Factor
If $a x^{2}+b x+c$ is a prime quadratic factor of $Q(x)$, the partial fraction decomposition will contain a term of the form

$$
\frac{A x+B}{a x^{2}+b x+c} \text { Quadratic factor }
$$

The voice balloons in the box show that each distinct prime quadratic factor in the denominator produces a partial fraction of the form linear numerator over quadratic factor.

Here's an example of a partial fraction decomposition containing a linear numerator over a quadratic factor:

$$
\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+4} .
$$

We write a constant over the linear factor in the denominator.

We write a linear numerator over the prime quadratic factor in the denominator.

Our next example illustrates how a linear system in three variables is used to determine values for A, B, and C.

EXAMPLE 3 Partial Fraction Decomposition

Find the partial fraction decomposition of

$$
\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)} .
$$

SOLUTION

Step 1 Set up the partial fraction decomposition with the unknown constants. We put a constant (A) over the linear factor and a linear expression $(B x+C)$ over the prime quadratic factor.

$$
\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+4}
$$

Step 2 Multiply both sides of the resulting equation by the least common denominator. We clear fractions, multiplying both sides by $(x-2)\left(x^{2}+2 x+4\right)$, the least common denominator.

$$
(x-2)\left(x^{2}+2 x+4\right)\left[\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)}\right]=(x-2)\left(x^{2}+2 x+4\right)\left[\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+4}\right]
$$

We use the distributive property on the right side.

$$
\begin{aligned}
& (x-2)\left(x^{2}+2 x+4\right) \cdot \frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)} \\
& \quad=(x-2)\left(x^{2}+2 x+4\right) \cdot \frac{A}{x-2}+(x-2)\left(x^{2}+2 x+4\right) \cdot \frac{B x+C}{x^{2}+2 x+4}
\end{aligned}
$$

Dividing out common factors in numerators and denominators, we obtain

$$
3 x^{2}+17 x+14=A\left(x^{2}+2 x+4\right)+(B x+C)(x-2)
$$

Step 3 Simplify the right side of the equation. We simplify on the right side by distributing A over each term in parentheses and multiplying $(B x+C)(x-2)$ using the FOIL method.

$$
3 x^{2}+17 x+14=A x^{2}+2 A x+4 A+B x^{2}-2 B x+C x-2 C
$$

Step 4 Write both sides in descending powers, equate coefficients of like powers of \boldsymbol{x}, and equate constant terms. The left side, $3 x^{2}+17 x+14$, is in descending powers of x. We write the right side in descending powers of x

$$
3 x^{2}+17 x+14=A x^{2}+B x^{2}+2 A x-2 B x+C x+4 A-2 C
$$

and express both sides in the same form.

$$
3 x^{2}+17 x+14=(A+B) x^{2}+(2 A-2 B+C) x+(4 A-2 C)
$$

Equating coefficients of like powers of x and equating constant terms results in the following system of linear equations:

$$
\left\{\begin{aligned}
A+B & =3 \\
2 A-2 B+C & =17 \\
4 A-2 C & =14 .
\end{aligned}\right.
$$

Step 5 Solve the resulting system for $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}. Because the first equation involves A and B, we can obtain another equation in A and B by eliminating C from the second and third equations. Multiply the second equation by 2 and add equations. Solving in this manner, we obtain $A=5, B=-2$, and $C=3$.
Step 6 Substitute the values of A, B, and C, and write the partial fraction decomposition. With $A=5, B=-2$, and $C=3$, the required partial fraction decomposition is

$$
\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+4}=\frac{5}{x-2}+\frac{-2 x+3}{x^{2}+2 x+4} .
$$

TECHNOLOGY

Numeric Connections

You can use the TABLE feature of a graphing utility to check a partial fraction decomposition. To check the result of Example 3, enter the given rational function and its partial fraction decomposition:

$$
\begin{aligned}
& y_{1}=\frac{3 x^{2}+17 x+14}{(x-2)\left(x^{2}+2 x+4\right)} \\
& y_{2}=\frac{5}{x-2}+\frac{-2 x+3}{x^{2}+2 x+4}
\end{aligned}
$$

$\bar{\chi}$	Y/	Yz
8	-28571	
-1	${ }_{0}$	$\stackrel{5}{6}$
0 1 2	$\begin{aligned} & -1.75 \\ & -4.7 .7 \\ & \text { ERifikit } \end{aligned}$	$\begin{aligned} & -1.75 \\ & -4.8 .7 \\ & \text { Efifik } \end{aligned}$
$\frac{3}{3}$		

No matter how far up or down we scroll, $y_{1}=y_{2}$, so the decomposition appears to be correct.
$\$$ Check Point 3 Find the partial fraction decomposition of

$$
\frac{8 x^{2}+12 x-20}{(x+3)\left(x^{2}+x+2\right)}
$$

(4) Decompose $\frac{P}{Q}$, where Q has a prime, repeated quadratic factor.

The Partial Fraction Decomposition of a Rational Expression with a Prime, Repeated Quadratic Factor in the Denominator

Suppose that $\left(a x^{2}+b x+c\right)^{n}$ is a factor of the denominator and that $a x^{2}+b x+c$ cannot be factored further. This means that the quadratic factor $a x^{2}+b x+c$ occurs n times. When this occurs, the partial fraction decomposition will contain a linear numerator for each power of $a x^{2}+b x+c$.

$$
\begin{aligned}
& \text { The Partial Fraction Decomposition of } \frac{P(x)}{\mathrm{Q}(x)}: \mathrm{Q}(x) \text { Has a Prime, Repeated } \\
& \text { Quadratic Factor } \\
& \text { The form of the partial fraction decomposition for a rational expression } \\
& \text { containing the prime factor } a x^{2}+b x+c \text { occurring } n \text { times as its denominator is } \\
& \frac{P(x)}{\left(a x^{2}+b x+c\right)^{n}}=\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(a x^{2}+b x+c\right)^{3}}+\cdots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}} .
\end{aligned}
$$

EXAMPLE 4 Partial Fraction Decomposition with a Repeated Quadratic Factor

GREAT QUESTION!

When setting up partial fraction decompositions, when should I use constant numerators and when should I use linear numerators?
When the denominator of a rational expression contains a power of a linear factor, set up the partial fraction decomposition with constant numerators (A, B, C, etc.). When the denominator of a rational expression contains a power of a prime quadratic factor, set up the partial fraction decomposition with linear numerators $(A x+B, C x+D$, etc. $)$.

Find the partial fraction decomposition of

$$
\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}
$$

SOLUTION

Step 1 Set up the partial fraction decomposition with the unknown constants. Because the quadratic factor $x^{2}+1$ occurs twice, we must include one fraction with a linear numerator for each power of $x^{2}+1$.

$$
\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}
$$

Step 2 Multiply both sides of the resulting equation by the least common denominator. We clear fractions, multiplying both sides by $\left(x^{2}+1\right)^{2}$, the least common denominator.

$$
\left(x^{2}+1\right)^{2}\left[\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}\right]=\left(x^{2}+1\right)^{2}\left[\frac{A x+B}{x^{2}+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}\right]
$$

Now we multiply and simplify.

$$
5 x^{3}-3 x^{2}+7 x-3=\left(x^{2}+1\right)(A x+B)+C x+D
$$

Step 3 Simplify the right side of the equation. We multiply $\left(x^{2}+1\right)(A x+B)$ using the FOIL method.

$$
5 x^{3}-3 x^{2}+7 x-3=A x^{3}+B x^{2}+A x+B+C x+D
$$

Step 4 Write both sides in descending powers, equate coefficients of like powers of \boldsymbol{x}, and equate constant terms.

$$
\begin{aligned}
& 5 x^{3}-3 x^{2}+7 x-3=A x^{3}+B x^{2}+A x+C x+B+D \\
& 5 x^{3}-3 x^{2}+7 x-3=A x^{3}+B x^{2}+(A+C) x+(B+D)
\end{aligned}
$$

Equating coefficients of like powers of x and equating constant terms results in the following system of linear equations:

$$
\left\{\begin{aligned}
A & =5 \\
B & =-3 \\
A+C & =7 \quad \text { With } A=5, \text { we immediately obtain } C=2 \\
B+D & =-3 .
\end{aligned} \text { With } B=-3, \text { we immediately obtain } D=0 .\right.
$$

Step 5 Solve the resulting system for $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and \boldsymbol{D}. Based on our observations in step $4, A=5, B=-3, C=2$, and $D=0$.
Step 6 Substitute the values of A, B, C, and D, and write the partial fraction decomposition.

$$
\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}=\frac{5 x-3}{x^{2}+1}+\frac{2 x}{\left(x^{2}+1\right)^{2}}
$$

$\$$ Check Point 4 Find the partial fraction decomposition of $\frac{2 x^{3}+x+3}{\left(x^{2}+1\right)^{2}}$.

GREAT QUESTION!

When a rational expression contains a power of a factor in the denominator, how many fractions do I have to include in the partial fraction decomposition?
When a rational expression contains a power of a factor in the denominator, be sure to set up the partial fraction decomposition to allow for every natural-number power of that factor less than or equal to the power. Example:

$$
\begin{gathered}
\frac{2 x+1}{(x-5)^{2} x^{3}} \\
=\frac{A}{x-5}+\frac{B}{(x-5)^{2}}+\frac{C}{x}+\frac{D}{x^{2}}+\frac{E}{x^{3}}
\end{gathered}
$$

Although $(x-5)^{2}$ and x^{2} are quadratic, they are still expressed as powers of linear factors, $x-5$ and x. Thus, the numerators are constant.

CONCEPT AND VOCABULARY CHECK

Determine whether each partial fraction decomposition is set up correctly. If the setup is incorrect, make the necessary changes to produce the correct decomposition.

1. Correct or incorrect:

$$
\frac{7 x}{(x+2)(x-3)}=\frac{A}{x+2}+\frac{B}{x-3}
$$

2. Correct or incorrect:

$$
\frac{3 x}{(x+5)(x-4)^{2}}=\frac{A}{x+5}+\frac{B}{x-4}+\frac{C}{x-4}
$$

\qquad
3. Correct or incorrect:

$$
\frac{1}{(x+1)\left(x^{2}+4\right)}=\frac{A}{x+1}+\frac{B}{x^{2}+4}
$$

4. Correct or incorrect:

$$
\frac{7 x-5}{\left(x^{2}+x+1\right)^{2}}=\frac{A x+B}{x^{2}+x+1}+\frac{C x+D}{\left(x^{2}+x+1\right)^{2}}
$$

EXERCISE SET 7.3

Practice Exercises

In Exercises 1-8, write the form of the partial fraction decomposition of the rational expression. It is not necessary to solve for the constants.

1. $\frac{11 x-10}{(x-2)(x+1)}$
2. $\frac{5 x+7}{(x-1)(x+3)}$
3. $\frac{6 x^{2}-14 x-27}{(x+2)(x-3)^{2}}$
4. $\frac{3 x+16}{(x+1)(x-2)^{2}}$
5. $\frac{5 x^{2}-6 x+7}{(x-1)\left(x^{2}+1\right)}$
6. $\frac{5 x^{2}-9 x+19}{(x-4)\left(x^{2}+5\right)}$
7. $\frac{x^{3}+x^{2}}{\left(x^{2}+4\right)^{2}}$
8. $\frac{7 x^{2}-9 x+3}{\left(x^{2}+7\right)^{2}}$

In Exercises 9-42, write the partial fraction decomposition of each rational expression.
9. $\frac{x}{(x-3)(x-2)}$
10. $\frac{1}{x(x-1)}$
11. $\frac{3 x+50}{(x-9)(x+2)}$
12. $\frac{5 x-1}{(x-2)(x+1)}$
13. $\frac{7 x-4}{x^{2}-x-12}$
14. $\frac{9 x+21}{x^{2}+2 x-15}$
15. $\frac{4}{2 x^{2}-5 x-3}$
16. $\frac{x}{x^{2}+2 x-3}$
17. $\frac{4 x^{2}+13 x-9}{x(x-1)(x+3)}$
18. $\frac{4 x^{2}-5 x-15}{x(x+1)(x-5)}$
19. $\frac{4 x^{2}-7 x-3}{x^{3}-x}$
20. $\frac{2 x^{2}-18 x-12}{x^{3}-4 x}$
21. $\frac{6 x-11}{(x-1)^{2}}$
23. $\frac{x^{2}-6 x+3}{(x-2)^{3}}$
25. $\frac{x^{2}+2 x+7}{x(x-1)^{2}}$
22. $\frac{x}{(x+1)^{2}}$
24. $\frac{2 x^{2}+8 x+3}{(x+1)^{3}}$
26. $\frac{3 x^{2}+49}{x(x+7)^{2}}$
27. $\frac{x^{2}}{(x-1)^{2}(x+1)}$
28. $\frac{x^{2}}{(x-1)^{2}(x+1)^{2}}$
29. $\frac{5 x^{2}-6 x+7}{(x-1)\left(x^{2}+1\right)}$
30. $\frac{5 x^{2}-9 x+19}{(x-4)\left(x^{2}+5\right)}$
31. $\frac{5 x^{2}+6 x+3}{(x+1)\left(x^{2}+2 x+2\right)}$
32. $\frac{9 x+2}{(x-2)\left(x^{2}+2 x+2\right)}$
33. $\frac{x+4}{x^{2}\left(x^{2}+4\right)}$
34. $\frac{10 x^{2}+2 x}{(x-1)^{2}\left(x^{2}+2\right)}$
35. $\frac{6 x^{2}-x+1}{x^{3}+x^{2}+x+1}$
36. $\frac{3 x^{2}-2 x+8}{x^{3}+2 x^{2}+4 x+8}$
37. $\frac{x^{3}+x^{2}+2}{\left(x^{2}+2\right)^{2}}$
38. $\frac{x^{2}+2 x+3}{\left(x^{2}+4\right)^{2}}$
39. $\frac{x^{3}-4 x^{2}+9 x-5}{\left(x^{2}-2 x+3\right)^{2}}$
40. $\frac{3 x^{3}-6 x^{2}+7 x-2}{\left(x^{2}-2 x+2\right)^{2}}$
41. $\frac{4 x^{2}+3 x+14}{x^{3}-8}$
42. $\frac{3 x-5}{x^{3}-1}$

Practice Plus

In Exercises 43-46, perform each long division and write the partial fraction decomposition of the remainder term.
43. $\frac{x^{5}+2}{x^{2}-1}$
44. $\frac{x^{5}}{x^{2}-4 x+4}$
45. $\frac{x^{4}-x^{2}+2}{x^{3}-x^{2}}$
46. $\frac{x^{4}+2 x^{3}-4 x^{2}+x-3}{x^{2}-x-2}$

In Exercises 47-50, write the partial fraction decomposition of each rational expression.
47. $\frac{1}{x^{2}-c^{2}} \quad(c \neq 0)$
48. $\frac{a x+b}{x^{2}-c^{2}} \quad(c \neq 0)$
49. $\frac{a x+b}{(x-c)^{2}} \quad(c \neq 0)$
50. $\frac{1}{x^{2}-a x-b x+a b} \quad(a \neq b)$

Application Exercises

51. Find the partial fraction decomposition for $\frac{1}{x(x+1)}$ and use
the result to find the following sum:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{99 \cdot 100}
$$

52. Find the partial fraction decomposition for $\frac{2}{x(x+2)}$ and use
the result to find the following sum:

$$
\frac{2}{1 \cdot 3}+\frac{2}{3 \cdot 5}+\frac{2}{5 \cdot 7}+\cdots+\frac{2}{99 \cdot 101}
$$

Writing in Mathematics

53. Explain what is meant by the partial fraction decomposition of a rational expression.
54. Explain how to find the partial fraction decomposition of a rational expression with distinct linear factors in the denominator.
55. Explain how to find the partial fraction decomposition of a rational expression with a repeated linear factor in the denominator.
56. Explain how to find the partial fraction decomposition of a rational expression with a prime quadratic factor in the denominator.
57. Explain how to find the partial fraction decomposition of a rational expression with a repeated, prime quadratic factor in the denominator.
58. How can you verify your result for the partial fraction decomposition for a given rational expression without using a graphing utility?

Technology Exercise

59. Use the TABLE feature of a graphing utility to verify any three of the decompositions that you obtained in Exercises 9-42.

Critical Thinking Exercises

Make Sense? In Exercises 60-63, determine whether each statement makes sense or does not make sense, and explain your reasoning.
60. Partial fraction decomposition involves finding a single rational expression for a given sum or difference of rational expressions.
61. I apply partial fraction decompositions for rational expressions of the form $\frac{P(x)}{Q(x)}$, where P and Q have no common factors and the degree of P is greater than the degree of Q.
62. Because $x+5$ is linear and $x^{2}-3 x+2$ is quadratic, I set up the following partial fraction decomposition:

$$
\frac{7 x^{2}+9 x+3}{(x+5)\left(x^{2}-3 x+2\right)}=\frac{A}{x+5}+\frac{B x+C}{x^{2}-3 x+2} .
$$

63. Because $(x+3)^{2}$ consists of two factors of $x+3$, I set up the following partial fraction decomposition:

$$
\frac{5 x+2}{(x+3)^{2}}=\frac{A}{x+3}+\frac{B}{x+3} .
$$

64. Use an extension of the Great Question! on page 548 to describe how to set up the partial fraction decomposition of a rational expression that contains powers of a prime cubic factor in the denominator. Give an example of such a decomposition.
65. Find the partial fraction decomposition of

$$
\frac{4 x^{2}+5 x-9}{x^{3}-6 x-9}
$$

Preview Exercises

Exercises 66-68 will help you prepare for the material covered in the next section.
66. Solve by the substitution method:

$$
\left\{\begin{array}{l}
4 x+3 y=4 \\
y=2 x-7
\end{array}\right.
$$

67. Solve by the addition method:

$$
\left\{\begin{array}{l}
2 x+4 y=-4 \\
3 x+5 y=-3
\end{array}\right.
$$

68. Graph $x-y=3$ and $(x-2)^{2}+(y+3)^{2}=4$ in the same rectangular coordinate system. What are the two intersection points? Show that each of these ordered pairs satisfies both equations.

SECTION 7.4

Systems of Nonlinear Equations in Two Variables

Objectives

(1) Recognize systems of nonlinear equations in two variables.
2. Solve nonlinear systems by substitution.
(3) Solve nonlinear systems by addition.
4. Solve problems using systems of nonlinear equations.
(1) Recognize systems of nonlinear equations in two variables.

Systems of Nonlinear Equations and Their Solutions

A system of two nonlinear equations in two variables, also called a nonlinear system, contains at least one equation that cannot be expressed in the form $A x+B y=C$. Here are two examples:

$$
\left\{\begin{aligned}
x^{2} & =2 y+10 \\
3 x-y & =9
\end{aligned} \begin{array}{c}
y=x^{2}+3 \\
\begin{array}{c}
\text { Not in the form } \\
A x+B y=C . \\
\text { The term } x^{2} \text { is } \\
\text { not linear. }
\end{array} \\
x^{2}+y^{2}=9 .
\end{array} \quad \begin{array}{c}
\text { Neither equation is in } \\
\text { the form } A x+B y=C . \\
\text { The terms } x^{2} \text { and } y^{2} \text { are } \\
\text { not linear. }
\end{array}\right.
$$

A solution of a nonlinear system in two variables is an ordered pair of real numbers that satisfies both equations in the system. The solution set of the system is the set of all such ordered pairs. As with linear systems in two variables, the solution of a nonlinear system (if there is one) corresponds to the intersection point(s) of the graphs of the equations in the system. Unlike linear systems, the graphs can be circles, parabolas, or anything other than two lines. We will solve nonlinear systems using the substitution method and the addition method.

2 Solve nonlinear systems by substitution.

Eliminating a Variable Using the Substitution Method

The substitution method involves converting a nonlinear system into one equation in one variable by an appropriate substitution. The steps in the solution process are exactly the same as those used to solve a linear system by substitution. However, when you obtain an equation in one variable, this equation may not be linear. In our first example, this equation is quadratic.

EXAMPLE 1 Solving a Nonlinear System by the Substitution Method

Solve by the substitution method:

$$
\left\{\begin{aligned}
x^{2} & =2 y+10 & & \text { (The graph is a parabola.) } \\
3 x-y & =9 . & & \text { (The graph is a line.) }
\end{aligned}\right.
$$

SOLUTION

Step 1 Solve one of the equations for one variable in terms of the other. We begin by isolating one of the variables raised to the first power in either of the equations. By solving for y in the second equation, which has a coefficient of -1 , we can avoid fractions.

$$
\begin{aligned}
3 x-y & =9 & & \text { This is the second equation in the given system. } \\
3 x & =y+9 & & \text { Add } y \text { to both sides. } \\
3 x-9 & =y & & \text { Subtract } 9 \text { from both sides. }
\end{aligned}
$$

Step 2 Substitute the expression from step 1 into the other equation. We substitute $3 x-9$ for y in the first equation.

$$
y=\begin{array}{|c}
\boxed{3 x-9}
\end{array} x^{2}=2[y+10
$$

This gives us an equation in one variable, namely,

$$
x^{2}=2(3 x-9)+10
$$

The variable y has been eliminated.

Step 3 Solve the resulting equation containing one variable.

$$
\begin{array}{rlrl}
x^{2} & =2(3 x-9)+10 & & \text { This is the equation containing one vari } \\
x^{2} & =6 x-18+10 & & \text { Use the distributive property. } \\
x^{2} & =6 x-8 & & \text { Combine numerical terms on the right. } \\
x^{2}-6 x+8 & =0 & & \begin{array}{l}
\text { Move all terms to one side and set the } \\
\text { quadratic equation equal to } 0 .
\end{array} \\
(x-4)(x-2) & =0 & & \text { Factor. } \\
x-4 & =0 \quad \text { or } \quad x-2=0 & & \text { Set each factor equal to } 0 . \\
x & =4 & x=2 & \text { Solve for } x .
\end{array}
$$

Step 4 Back-substitute the obtained values into the equation from step 1. Now that we have the x-coordinates of the solutions, we back-substitute 4 for x and 2 for x into the equation $y=3 x-9$.

$$
\begin{array}{lll}
\text { If } x \text { is } 4, & y=3(4)-9=3, & \text { so }(4,3) \text { is a solution. } \\
\text { If } x \text { is } 2, & y=3(2)-9=-3, & \text { so }(2,-3) \text { is a solution. }
\end{array}
$$

FIGURE 7.10 Points of intersection illustrate the nonlinear system's solutions.

GREAT QUESTION!

Why is the graph of
$(x-2)^{2}+(y+3)^{2}=4$ a circle?
Recall that

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

describes a circle with center (h, k) and radius r.

Step 5 Check the proposed solutions in both of the system's given equations. We begin by checking $(4,3)$. Replace x with 4 and y with 3 .

$$
\begin{array}{rrrl}
x^{2}=2 y+10 & 3 x-y & =9 & \\
4^{2} \stackrel{?}{=} 2(3)+10 & 3(4)-3 \stackrel{?}{=} 9 & & \text { Lese are the given equat }=4 \text { and } y=3 . \\
16 \stackrel{?}{=} 6+10 & 12-3 \stackrel{?}{=} 9 & & \text { Simplify. } \\
16=16, \text { true } & 9 & =9, & \text { true }
\end{array} \text { True statements result. }
$$

The ordered pair $(4,3)$ satisfies both equations. Thus, $(4,3)$ is a solution of the system. Now let's check $(2,-3)$. Replace x with 2 and y with -3 in both given equations.

$$
\begin{array}{rlrl}
x^{2}=2 y+10 & 3 x-y & =9 & \\
2^{2} \stackrel{?}{=} 2(-3)+10 & 3(2)-(-3) \stackrel{?}{=} 9 & & \text { Lese } x=2 \text { and } y=-3 . \\
4 \stackrel{?}{=}-6+10 & 6+3 & \stackrel{?}{=} 9 & \\
4=4, \text { Simplify. } \\
4 & 9 & =9, & \text { true }
\end{array} \text { True statements result. }
$$

The ordered pair $(2,-3)$ also satisfies both equations and is a solution of the system. The solutions are $(4,3)$ and $(2,-3)$, and the solution set is $\{(4,3),(2,-3)\}$.

Figure 7.10 shows the graphs of the equations in the system and the solutions as intersection points.
$\$$ Check Point 1 Solve by the substitution method:

$$
\left\{\begin{aligned}
x^{2} & =y-1 \\
4 x-y & =-1 .
\end{aligned}\right.
$$

EXAMPLE 2 Solving a Nonlinear System by the Substitution Method Solve by the substitution method:

$$
\left\{\begin{aligned}
x-y=3 & \text { (The graph is a line.) } \\
(x-2)^{2}+(y+3)^{2}=4 . & \text { (The graph is a circle.) }
\end{aligned}\right.
$$

SOLUTION

Graphically, we are finding the intersection of a line and a circle with center $(2,-3)$ and radius 2.
Step 1 Solve one of the equations for one variable in terms of the other. We will solve for x in the linear equation - that is, the first equation. (We could also solve for y.)

$$
\begin{aligned}
x-y & =3 & \text { This is the first equation in the given system. } \\
x & =y+3 & \text { Add } y \text { to both sides. }
\end{aligned}
$$

Step 2 Substitute the expression from step 1 into the other equation. We substitute $y+3$ for x in the second equation.

$$
x=y \quad \begin{array}{r}
y \\
y+3 \\
(y-2)^{2}+(y+3)^{2}=4
\end{array}
$$

This gives an equation in one variable, namely,

$$
(y+3-2)^{2}+(y+3)^{2}=4
$$

The variable x has been eliminated.

FIGURE 7.11 Points of intersection illustrate the nonlinear system's solutions.

Solve nonlinear systems by addition.

Step 3 Solve the resulting equation containing one variable.

$$
\begin{array}{rlrl}
(y+3-2)^{2}+(y+3)^{2} & =4 & & \text { This is the equation containing one } \\
(y+1)^{2}+(y+3)^{2} & =4 & & \text { Combine numerical terms in the first } \\
y^{2}+2 y+1+y^{2}+6 y+9 & =4 & & \text { Use the formula }(A+B)^{2}=A^{2}+2 \\
2 y^{2}+8 y+10 & =4 & & \text { square } y+1 \text { and } y+3 . \\
2 y^{2}+8 y+6 & =0 & & \begin{array}{l}
\text { Combine like terms on the left. } \\
\text { subtract } 4 \text { from both sides and set } \\
2\left(y^{2}+4 y+3\right)
\end{array} \\
\text { equation equal to } 0 .
\end{array} ~ \begin{array}{lrl}
\text { Factor out } 2 . \\
2(y+3)(y+1) & =0 & \\
\text { Factor completely. } \\
y+3=0 \text { or } y+1 & =0 & \\
\text { Set each variable factor equal to } 0 . \\
y=-3 & y & =-1
\end{array} \begin{array}{ll}
\text { Solve for } y .
\end{array}
$$

Step 4 Back-substitute the obtained values into the equation from step 1. Now that we have the y-coordinates of the solutions, we back-substitute -3 for y and -1 for y in the equation $x=y+3$.

$$
\begin{array}{lll}
\text { If } y=-3: & x=-3+3=0, & \text { so }(0,-3) \text { is a solution. } \\
\text { If } y=-1: & x=-1+3=2, & \text { so }(2,-1) \text { is a solution. }
\end{array}
$$

Step 5 Check the proposed solutions in both of the system's given equations. Take a moment to show that each ordered pair satisfies both given equations, $x-y=3$ and $(x-2)^{2}+(y+3)^{2}=4$. The solutions are $(0,-3)$ and $(2,-1)$, and the solution set of the given system is $\{(0,-3),(2,-1)\}$.

Figure 7.11 shows the graphs of the equations in the system and the solutions as intersection points.
$\$$ Check Point 2 Solve by the substitution method:

$$
\left\{\begin{aligned}
x+2 y & =0 \\
(x-1)^{2}+(y-1)^{2} & =5
\end{aligned}\right.
$$

Eliminating a Variable Using the Addition Method

In solving linear systems with two variables, we learned that the addition method works well when each equation is in the form $A x+B y=C$. For nonlinear systems, the addition method can be used when each equation is in the form $A x^{2}+B y^{2}=C$. If necessary, we will multiply either equation or both equations by appropriate numbers so that the coefficients of x^{2} or y^{2} will have a sum of 0 . We then add equations. The sum will be an equation in one variable.

EXAMPLE 3 Solving a Nonlinear System by the Addition Method

Solve the system:

$$
\left\{\begin{aligned}
4 x^{2}+y^{2} & =13 \quad \text { Equation 1 } \\
x^{2}+y^{2} & =10 . \quad \text { Equation 2 }
\end{aligned}\right.
$$

SOLUTION

We can use the same steps that we did when we solved linear systems by the addition method.

FIGURE 7.12 A system with four solutions

Step 1 Write both equations in the form $\boldsymbol{A} \boldsymbol{x}^{2}+\boldsymbol{B} \boldsymbol{y}^{2}=\boldsymbol{C}$. Both equations are already in this form, so we can skip this step.
Step 2 If necessary, multiply either equation or both equations by appropriate numbers so that the sum of the \boldsymbol{x}^{2}-coefficients or the sum of the \boldsymbol{y}^{2}-coefficients is $\mathbf{0}$. We can eliminate y^{2} by multiplying Equation 2 by -1 .

$$
\left\{\begin{array} { r }
{ 4 x ^ { 2 } + y ^ { 2 } = 1 3 } \\
{ x ^ { 2 } + y ^ { 2 } = 1 0 \xrightarrow { \text { Multiply by } - 1 . } }
\end{array} \quad \left\{\begin{array}{l}
4 x^{2}+y^{2}=13 \\
-x^{2}-y^{2}=-10
\end{array}\right.\right.
$$

Steps 3 and 4 Add equations and solve for the remaining variable.

$$
\begin{aligned}
\left\{\begin{array}{rlrl}
4 x^{2}+y^{2} & =13 \\
-x^{2}-y^{2} & =\underline{-10} & & \\
\underline{3 x^{2}} & =3 & & \text { Add equations. } \\
x^{2} & =1 & & \text { Divide both sides by } 3 . \\
x & = \pm 1 & & \begin{array}{l}
\text { Use the square root property: } \\
\text { If } x^{2}=c, \text { then } x= \pm \sqrt{c}
\end{array}
\end{array} . \begin{array}{rlrl}
& & &
\end{array}\right)
\end{aligned}
$$

Step 5 Back-substitute and find the values for the other variable. We must back-substitute each value of x into either one of the original equations. Let's use $x^{2}+y^{2}=10$, Equation 2. If $x=1$,

$$
\begin{aligned}
1^{2}+y^{2} & =10 & & \text { Replace } \times \text { with } 1 \text { in Equation } 2 . \\
y^{2} & =9 & & \text { Subtract } 1 \text { from both sides. } \\
y & = \pm 3 . & & \text { Apply the square root property. }
\end{aligned}
$$

$(1,3)$ and $(1,-3)$ are solutions. If $x=-1$,

$$
\begin{aligned}
(-1)^{2}+y^{2} & =10 & & \text { Replace } \times \text { with }-1 \text { in Equation } 2 . \\
y^{2} & =9 & & \text { The steps are the same as before. } \\
y & = \pm 3 . & &
\end{aligned}
$$

$(-1,3)$ and $(-1,-3)$ are solutions.
Step 6 Check. Take a moment to show that each of the four ordered pairs satisfies the given equations, $4 x^{2}+y^{2}=13$ and $x^{2}+y^{2}=10$. The solution set of the given system is $\{(1,3),(1,-3),(-1,3),(-1,-3)\}$.

Figure $\mathbf{7 . 1 2}$ shows the graphs of the equations in the system and the solutions as intersection points.
Φ Check Point 3 Solve the system:

$$
\left\{\begin{array}{l}
3 x^{2}+2 y^{2}=35 \\
4 x^{2}+3 y^{2}=48
\end{array}\right.
$$

In solving nonlinear systems, we include only ordered pairs with real numbers in the solution set. We have seen that each of these ordered pairs corresponds to a point of intersection of the system's graphs.

GREAT QUESTION!

When solving nonlinear systems, do I really have to go to the hassle of checking my solutions?
Yes. Extra solutions may be introduced that do not satisfy both equations in the system. Therefore, you should get into the habit of checking all proposed pairs in each of the system's two equations.

FIGURE 7.13 A system with one real solution

EXAMPLE 4 Solving a Nonlinear System by the Addition Method

Solve the system:

$$
\left\{\begin{aligned}
y & =x^{2}+3 & & \text { Equation } 1 \text { (The graph is a parabola.) } \\
x^{2}+y^{2} & =9 . & & \text { Equation } 2 \text { (The graph is a circle.) }
\end{aligned}\right.
$$

SOLUTION

We could use substitution because Equation 1, $y=x^{2}+3$, has y expressed in terms of x, but substituting $x^{2}+3$ for y in $x^{2}+y^{2}=9$ would result in a fourthdegree equation. However, we can rewrite Equation 1 by subtracting x^{2} from both sides and adding the equations to eliminate the x^{2}-terms.

$$
\begin{aligned}
& \begin{array}{l}
\text { Notice how } \\
\text { like terms } \\
\text { are arranged } \\
\text { in columns. }
\end{array}=3 \\
& x^{2}+y^{2}=\underline{9} \\
& y+y^{2}=12 \quad \text { Subtract } x^{2} \text { from both sides of Equation } 1 . \\
& \text { Add the equation } 2 .
\end{aligned}
$$

We now solve this quadratic equation.

$$
\begin{array}{rlrl}
y+y^{2} & =12 & & \text { This is the equation containing one variable. } \\
y^{2}+y-12 & =0 & \begin{array}{l}
\text { Subtract } 12 \text { from both sides and set the } \\
\text { quadratic equation equal to } 0 .
\end{array} \\
(y+4)(y-3) & =0 & & \text { Factor. } \\
y+4=0 \text { or } y-3 & =0 & & \text { Set each factor equal to } 0 . \\
y=-4 & y & =3 & \text { Solve for } y .
\end{array}
$$

To complete the solution, we must back-substitute each value of y into either one of the original equations. We will use $y=x^{2}+3$, Equation 1. First, we substitute -4 for y.

$$
\begin{aligned}
-4 & =x^{2}+3 \\
-7 & =x^{2} \quad \text { Subtract } 3 \text { from both sides. }
\end{aligned}
$$

Because the square of a real number cannot be negative, the equation $x^{2}=-7$ does not have real-number solutions. We will not include the imaginary solutions, $x= \pm \sqrt{-7}$, or $i \sqrt{7}$ and $-i \sqrt{7}$, in the ordered pairs that make up the solution set. Thus, we move on to our other value for $y, 3$, and substitute this value into Equation 1.

$$
\begin{array}{ll}
y=x^{2}+3 & \text { This is Equation } 1 . \\
3=x^{2}+3 & \text { Back-substitute } 3 \text { for } y \\
0=x^{2} & \text { Subtract } 3 \text { from both sides. } \\
0=x & \text { Solve for } x .
\end{array}
$$

We showed that if $y=3$, then $x=0$. Thus, $(0,3)$ is the solution with a real ordered pair. Take a moment to show that $(0,3)$ satisfies the given equations, $y=x^{2}+3$ and $x^{2}+y^{2}=9$. The solution set of the system is $\{(0,3)\}$. Figure $\mathbf{7 . 1 3}$ shows the system's graphs and the solution as an intersection point.
$\$$ Check Point 4 Solve the system:

$$
\left\{\begin{aligned}
y & =x^{2}+5 \\
x^{2}+y^{2} & =25 .
\end{aligned}\right.
$$

Applications

Many geometric problems can be modeled and solved by the use of systems of nonlinear equations. We will use our step-by-step strategy for solving problems using mathematical models that are created from verbal conditions.

EXAMPLE 5 An Application of a Nonlinear System

You have 36 yards of fencing to build the enclosure in Figure 7.14. Some of this fencing is to be used to build an internal divider. If you'd like to enclose 54 square yards, what are the dimensions of the enclosure?

SOLUTION

Step 1 Use variables to represent unknown quantities. Let $x=$ the enclosure's length and $y=$ the enclosure's width. These variables are shown in Figure 7.14.
Step 2 Write a system of equations modeling the problem's conditions. The first condition is that you have 36 yards of fencing.

Adding like terms, we can express the equation that models the verbal conditions for the fencing as $2 x+3 y=36$.

The second condition is that you'd like to enclose 54 square yards.The rectangle's area, the product of its length and its width, must be 54 square yards.

Step 3 Solve the system and answer the problem's question. We must solve the system

$$
\left\{\begin{aligned}
2 x+3 y & =36 \quad \text { Equation 1 } \\
x y & =54 .
\end{aligned}\right.
$$

We will use substitution. Because Equation 1 has no coefficients of 1 or -1 , we will work with Equation 2 and solve for y. Dividing both sides of $x y=54$ by x, we obtain

$$
y=\frac{54}{x} .
$$

Now we substitute $\frac{54}{x}$ for y in Equation 1 and solve for x.

$$
\begin{aligned}
2 x+3 y & =36 & & \text { This is Equation } 1 . \\
2 x+3 \cdot \frac{54}{x} & =36 & & \text { Substitute } \frac{54}{x} \text { for } y . \\
2 x+\frac{162}{x} & =36 & & \text { Multiply. }
\end{aligned}
$$

FIGURE 7.14 (repeated)

$$
\begin{array}{rlrlrl}
x\left(2 x+\frac{162}{x}\right) & =36 \cdot x & & & \text { Clear fractions by multiplying both sides by } x . \\
2 x^{2}+162 & =36 x & & \text { Use the distributive property on the left side. } \\
2 x^{2}-36 x+162 & =0 & & \begin{array}{l}
\text { Subtract } 36 x \text { from both sides and set the } \\
\text { quadratic equation equal to } O .
\end{array} \\
2\left(x^{2}-18 x+81\right) & =0 & & \text { Factor out } 2 . \\
2(x-9)^{2} & =0 & & \text { Factor completely using } \\
x-9 & =0 & & A^{2}-2 A B+B^{2}=(A-B)^{2} . \\
x & =9 & & \text { Set the repeated factor equal to zero. } x .
\end{array}
$$

We back-substitute this value of x into $y=\frac{54}{x}$.

$$
\text { If } x=9, \quad y=\frac{54}{9}=6 .
$$

This means that the dimensions of the enclosure in Figure 7.14 are 9 yards by 6 yards.
Step 4 Check the proposed solution in the original wording of the problem. Take a moment to check that a length of 9 yards and a width of 6 yards results in 36 yards of fencing and an area of 54 square yards.

5 Check Point 5 Find the length and width of a rectangle whose perimeter is 20 feet and whose area is 21 square feet.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A system of two equations in two variables that contains at least one equation that cannot be expressed in the form $A x+B y=C$ is called a system of \qquad equations.
2. When solving

$$
\left\{\begin{array}{l}
x^{2}-4 y=4 \\
x+y=-1
\end{array}\right.
$$

by the substitution method, we obtain $x=-4$ or $x=0$, so the solution set is \qquad .
3. When solving

$$
\left\{\begin{array}{l}
3 x^{2}+2 y^{2}=35 \\
4 x^{2}+3 y^{2}=48
\end{array}\right.
$$

by the addition method, we can eliminate x^{2} by multiplying the first equation by -4 and the second equation by \qquad and then adding the equations.
4. When solving

$$
\left\{\begin{array}{l}
x^{2}+4 y^{2}=16 \\
x^{2}-y^{2}=1
\end{array}\right.
$$

by the addition method, we obtain $y^{2}=3$, so the solution set is \qquad .

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=13 \\
x^{2}-y=7
\end{array}\right.
$$

by the addition method, we can eliminate x^{2} by multiplying the second equation by \qquad and then adding the equations. We obtain \qquad , a quadratic equation in y.
6. When solving

$$
\left\{\begin{array}{l}
x^{2}+4 y^{2}=20 \\
x y=4
\end{array}\right.
$$

by the substitution method, we can eliminate y by solving the second equation for y. We obtain
$y=$ \qquad .Then we substitute \qquad for \qquad in the first equation.

EXERCISE SET 7.4

Practice Exercises

In Exercises 1-18, solve each system by the substitution method.

1. $\left\{\begin{array}{l}x+y=2 \\ y=x^{2}-4\end{array}\right.$
2. $\left\{\begin{array}{l}x-y=-1 \\ y=x^{2}+1\end{array}\right.$
3. $\left\{\begin{array}{l}x+y=2 \\ y=x^{2}-4 x+4\end{array}\right.$
4. $\left\{\begin{array}{l}2 x+y=-5 \\ y=x^{2}+6 x+7\end{array}\right.$
5. $\left\{\begin{array}{l}y=x^{2}-4 x-10 \\ y=-x^{2}-2 x+14\end{array}\right.$
6. $\left\{\begin{array}{l}y=x^{2}+4 x+5 \\ y=x^{2}+2 x-1\end{array}\right.$
7. $\left\{\begin{array}{l}x^{2}+y^{2}=25 \\ x-y=1\end{array}\right.$
8. $\left\{\begin{array}{l}x^{2}+y^{2}=5 \\ 3 x-y=5\end{array}\right.$
9. $\left\{\begin{array}{l}x y=6 \\ 2 x-y=1\end{array}\right.$
10. $\left\{\begin{array}{l}x y=-12 \\ x-2 y+14=0\end{array}\right.$
11. $\left\{\begin{array}{l}y^{2}=x^{2}-9 \\ 2 y=x-3\end{array}\right.$
12. $\left\{\begin{array}{l}x^{2}+y=4 \\ 2 x+y=1\end{array}\right.$
13. $\left\{\begin{array}{l}x y=3 \\ x^{2}+y^{2}=10\end{array}\right.$
14. $\left\{\begin{array}{l}x y=4 \\ x^{2}+y^{2}=8\end{array}\right.$
15. $\left\{\begin{array}{l}x+y=1 \\ x^{2}+x y-y^{2}=-5\end{array}\right.$
16. $\left\{\begin{array}{l}x+y=-3 \\ x^{2}+2 y^{2}=12 y+18\end{array}\right.$
17. $\left\{\begin{array}{l}x+y=1 \\ (x-1)^{2}+(y+2)^{2}=10\end{array}\right.$
18. $\left\{\begin{array}{l}2 x+y=4 \\ (x+1)^{2}+(y-2)^{2}=4\end{array}\right.$

In Exercises 19-28, solve each system by the addition method.
19. $\left\{\begin{array}{l}x^{2}+y^{2}=13 \\ x^{2}-y^{2}=5\end{array}\right.$
20. $\left\{\begin{array}{l}4 x^{2}-y^{2}=4 \\ 4 x^{2}+y^{2}=4\end{array}\right.$
21. $\left\{\begin{array}{l}x^{2}-4 y^{2}=-7 \\ 3 x^{2}+y^{2}=31\end{array}\right.$
22. $\left\{\begin{array}{l}3 x^{2}-2 y^{2}=-5 \\ 2 x^{2}-y^{2}=-2\end{array}\right.$
23. $\left\{\begin{array}{l}3 x^{2}+4 y^{2}-16=0 \\ 2 x^{2}-3 y^{2}-5=0\end{array}\right.$
24. $\left\{\begin{aligned} 16 x^{2}-4 y^{2}-72 & =0 \\ x^{2}-y^{2}-3 & =0\end{aligned}\right.$
25. $\left\{\begin{array}{l}x^{2}+y^{2}=25 \\ (x-8)^{2}+y^{2}=41\end{array}\right.$
26. $\left\{\begin{array}{l}x^{2}+y^{2}=5 \\ x^{2}+(y-8)^{2}=41\end{array}\right.$
27. $\left\{\begin{array}{l}y^{2}-x=4 \\ x^{2}+y^{2}=4\end{array}\right.$
28. $\left\{\begin{array}{l}x^{2}-2 y=8 \\ x^{2}+y^{2}=16\end{array}\right.$

In Exercises 29-42, solve each system by the method of your choice.
29. $\left\{\begin{array}{l}3 x^{2}+4 y^{2}=16 \\ 2 x^{2}-3 y^{2}=5\end{array}\right.$
30. $\left\{\begin{array}{l}x+y^{2}=4 \\ x^{2}+y^{2}=16\end{array}\right.$
31. $\left\{\begin{array}{l}2 x^{2}+y^{2}=18 \\ x y=4\end{array}\right.$
32. $\left\{\begin{array}{l}x^{2}+4 y^{2}=20 \\ x y=4\end{array}\right.$
33. $\left\{\begin{array}{l}x^{2}+4 y^{2}=20 \\ x+2 y=6\end{array}\right.$
34. $\left\{\begin{array}{l}3 x^{2}-2 y^{2}=1 \\ 4 x-y=3\end{array}\right.$
35. $\left\{\begin{array}{l}x^{3}+y=0 \\ x^{2}-y=0\end{array}\right.$
36. $\left\{\begin{array}{r}x^{3}+y=0 \\ 2 x^{2}-y=0\end{array}\right.$
37. $\left\{\begin{array}{l}x^{2}+(y-2)^{2}=4 \\ x^{2}-2 y=0\end{array}\right.$
38. $\left\{\begin{array}{l}x^{2}-y^{2}-4 x+6 y-4=0 \\ x^{2}+y^{2}-4 x-6 y+12=0\end{array}\right.$
39. $\left\{\begin{array}{l}y=(x+3)^{2} \\ x+2 y=-2\end{array}\right.$
40. $\left\{\begin{array}{l}(x-1)^{2}+(y+1)^{2}=5 \\ 2 x-y=3\end{array}\right.$
41. $\left\{\begin{array}{l}x^{2}+y^{2}+3 y=22 \\ 2 x+y=-1\end{array}\right.$
42. $\left\{\begin{array}{l}x-3 y=-5 \\ x^{2}+y^{2}-25=0\end{array}\right.$

In Exercises 43-46, let x represent one number and let y represent the other number. Use the given conditions to write a system of nonlinear equations. Solve the system and find the numbers.
43. The sum of two numbers is 10 and their product is 24 . Find the numbers.
44. The sum of two numbers is 20 and their product is 96 . Find the numbers.
45. The difference between the squares of two numbers is 3 . Twice the square of the first number increased by the square of the second number is 9 . Find the numbers.
46. The difference between the squares of two numbers is 5 . Twice the square of the second number subtracted from three times the square of the first number is 19 . Find the numbers.

Practice Plus

In Exercises 47-52, solve each system by the method of your choice.
47. $\left\{\begin{array}{l}2 x^{2}+x y=6 \\ x^{2}+2 x y=0\end{array}\right.$
48. $\left\{\begin{array}{l}4 x^{2}+x y=30 \\ x^{2}+3 x y=-9\end{array}\right.$
49. $\left\{\begin{array}{l}-4 x+y=12 \\ y=x^{3}+3 x^{2}\end{array}\right.$
50. $\left\{\begin{array}{l}-9 x+y=45 \\ y=x^{3}+5 x^{2}\end{array}\right.$
51. $\left\{\begin{array}{l}\frac{3}{x^{2}}+\frac{1}{y^{2}}=7 \\ \frac{5}{x^{2}}-\frac{2}{y^{2}}=-3\end{array}\right.$
52. $\left\{\begin{array}{l}\frac{2}{x^{2}}+\frac{1}{y^{2}}=11 \\ \frac{4}{x^{2}}-\frac{2}{y^{2}}=-14\end{array}\right.$

In Exercises 53-54, make a rough sketch in a rectangular coordinate system of the graphs representing the equations in each system.
53. The system, whose graphs are a line with positive slope and a parabola whose equation has a positive leading coefficient, has two solutions.
54. The system, whose graphs are a line with negative slope and a parabola whose equation has a negative leading coefficient, has one solution.

Application Exercises

55. A planet's orbit follows a path described by $16 x^{2}+4 y^{2}=64$. A comet follows the parabolic path $y=x^{2}-4$. Where might the comet intersect the orbiting planet?
56. A system for tracking ships indicates that a ship lies on a path described by $2 y^{2}-x^{2}=1$. The process is repeated and the ship is found to lie on a path described by $2 x^{2}-y^{2}=1$. If it is known that the ship is located in the first quadrant of the coordinate system, determine its exact location.
57. Find the length and width of a rectangle whose perimeter is 36 feet and whose area is 77 square feet.
58. Find the length and width of a rectangle whose perimeter is 40 feet and whose area is 96 square feet.

Use the formula for the area of a rectangle and the Pythagorean Theorem to solve Exercises 59-60.
59. A small television has a picture with a diagonal measure of 10 inches and a viewing area of 48 square inches. Find the length and width of the screen.

60. The area of a rug is 108 square feet and the length of its diagonal is 15 feet. Find the length and width of the rug.

61. The figure shows a square floor plan with a smaller square area that will accommodate a combination fountain and pool. The floor with the fountain-pool area removed has an area of 21 square meters and a perimeter of 24 meters. Find the dimensions of the floor and the dimensions of the square that will accommodate the pool.

62. The area of the rectangular piece of cardboard shown below is 216 square inches. The cardboard is used to make an open box by cutting a 2 -inch square from each corner and turning up the sides. If the box is to have a volume of 224 cubic inches, find the length and width of the cardboard that must be used.

63. The bar graph shows that compared to a century ago, work in the United States now involves mostly white-collar service jobs.

The Changing Pattern of Work in the United States, 1900-2005

Source: U.S. Department of Labor
The data can be modeled by linear and quadratic functions.

$$
\begin{array}{ll}
\text { White collar } & 0.5 x-y=-18 \\
\text { Blue collar } & y=-0.004 x^{2}+0.23 x+41
\end{array}
$$

In each function, x represents the number of years after 1900 and y represents the percentage of the total U.S. labor force.
a. Based on the information in the graph, it appears that there was a year when the percentage of white-collar workers in the labor force was the same as the percentage of blue-collar workers in the labor force. According to the graph, between which two decades did this occur?
b. Solve a nonlinear system to determine the year described in part (a). Round to the nearest year. What percentage of the labor force, to the nearest percent, consisted of whitecollar workers and what percentage consisted of bluecollar workers?
c. According to the graph, for which year was the percentage of white-collar workers the same as the percentage of farmers? What percentage of U.S. workers were in each of these groups?
d. Solve a linear system to determine the year described in part (c). Round to the nearest year. Use the models to find the percentage of the labor force consisting of white-collar workers and the percentage consisting of farmers. How well do your answers model the actual data specified in part (c)?

Writing in Mathematics

64. What is a system of nonlinear equations? Provide an example with your description.
65. Explain how to solve a nonlinear system using the substitution method. Use $x^{2}+y^{2}=9$ and $2 x-y=3$ to illustrate your explanation.
66. Explain how to solve a nonlinear system using the addition method. Use $x^{2}-y^{2}=5$ and $3 x^{2}-2 y^{2}=19$ to illustrate your explanation.

Technology Exercises

67. Verify your solutions to any five exercises from Exercises 1-42 by using a graphing utility to graph the two equations in the system in the same viewing rectangle. Then use the intersection feature to verify the solutions.
68. Write a system of equations, one equation whose graph is a line and the other whose graph is a parabola, that has no ordered pairs that are real numbers in its solution set. Graph the equations using a graphing utility and verify that you are correct.

Critical Thinking Exercises

Make Sense? In Exercises 69-72, determine whether each statement makes sense or does not make sense, and explain your reasoning.
69. I use the same steps to solve nonlinear systems as I did to solve linear systems, although I don't obtain linear equations when a variable is eliminated.
70. I graphed a nonlinear system that modeled the orbits of Earth and Mars, and the graphs indicated the system had a solution with a real ordered pair.
71. Without using any algebra, it's obvious that the nonlinear system consisting of $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=25$ does not have real-number solutions.
72. I think that the nonlinear system consisting of $x^{2}+y^{2}=36$ and $y=(x-2)^{2}-3$ is easier to solve graphically than by using the substitution method or the addition method.

In Exercises 73-76, determine whether each statement is true or
false. If the statement is false, make the necessary change(s) to produce a true statement.
73. A system of two equations in two variables whose graphs are a circle and a line can have four real ordered-pair solutions.
74. A system of two equations in two variables whose graphs are a parabola and a circle can have four real ordered-pair solutions.
75. A system of two equations in two variables whose graphs are two circles must have at least two real ordered-pair solutions.
76. A system of two equations in two variables whose graphs are a parabola and a circle cannot have only one real orderedpair solution.
77. The points of intersection of the graphs of $x y=20$ and $x^{2}+y^{2}=41$ are joined to form a rectangle. Find the area of the rectangle.
78. Find a and b in this figure.

Solve the systems in Exercises 79-80.
79. $\left\{\begin{array}{l}\log _{y} x=3 \\ \log _{y}(4 x)=5\end{array}\right.$
80. $\left\{\begin{array}{l}\log x^{2}=y+3 \\ \log x=y-1\end{array}\right.$

Preview Exercises

Exercises 81-83 will help you prepare for the material covered in the next section. In each exercise, graph the linear function.
81. $2 x-3 y=6$
82. $f(x)=-\frac{2}{3} x$
83. $f(x)=-2$

CHAPTER 7

Mid-Chapter Check Point

WHAT YOU KNOW: We learned to solve systems of equations. We solved linear and nonlinear systems in two variables by the substitution method and by the addition method. We solved linear systems in three variables by eliminating a variable, reducing the system to two equations in two variables. We saw that some linear systems, called inconsistent systems, have no solution, whereas other linear systems, called dependent systems, have infinitely many solutions. We applied systems to a variety of situations, including finding the break-even point for a business, finding a quadratic function from three points on its graph, and finding a rational function's partial fraction decomposition.
In Exercises 1-12, solve each system by the method of your choice.

1. $\left\{\begin{array}{l}x=3 y-7 \\ 4 x+3 y=2\end{array}\right.$
2. $\left\{\begin{array}{l}3 x+4 y=-5 \\ 2 x-3 y=8\end{array}\right.$
3. $\left\{\begin{array}{l}\frac{2 x}{3}+\frac{y}{5}=6 \\ \frac{x}{6}-\frac{y}{2}=-4\end{array}\right.$
4. $\left\{\begin{array}{l}y=4 x-5 \\ 8 x-2 y=10\end{array}\right.$
5. $\left\{\begin{array}{l}2 x+5 y=3 \\ 3 x-2 y=1\end{array}\right.$
6. $\left\{\begin{array}{l}\frac{x}{12}-y=\frac{1}{4} \\ 4 x-48 y=16\end{array}\right.$
7. $\left\{\begin{array}{rr}2 x-y+2 z= & -8 \\ x+2 y-3 z= & 9 \\ 3 x-y-4 z= & 3\end{array}\right.$
8. $\left\{\begin{aligned} x-3 z & =-5 \\ 2 x-y+2 z & =16 \\ 7 x-3 y-5 z & =19\end{aligned}\right.$
9. $\left\{\begin{array}{l}x^{2}+y^{2}=9 \\ x+2 y-3=0\end{array}\right.$
10. $\left\{\begin{array}{l}3 x^{2}+2 y^{2}=14 \\ 2 x^{2}-y^{2}=7\end{array}\right.$
11. $\left\{\begin{array}{l}y=x^{2}-6 \\ x^{2}+y^{2}=8\end{array}\right.$
12. $\left\{\begin{array}{l}x-2 y=4 \\ 2 y^{2}+x y=8\end{array}\right.$

In Exercises 13-16, write the partial fraction decomposition of each rational expression.
13. $\frac{x^{2}-6 x+3}{(x-2)^{3}}$
14. $\frac{10 x^{2}+9 x-7}{(x+2)\left(x^{2}-1\right)}$
15. $\frac{x^{2}+4 x-23}{(x+3)\left(x^{2}+4\right)}$
16. $\frac{x^{3}}{\left(x^{2}+4\right)^{2}}$
17. A company is planning to manufacture PDAs (personal digital assistants). The fixed cost will be $\$ 400,000$ and it will cost $\$ 20$ to produce each PDA. Each PDA will be sold for $\$ 100$.
a. Write the cost function, C, of producing x PDAs.
b. Write the revenue function, R, from the sale of x PDAs.
c. Write the profit function, P, from producing and selling x PDAs.
d. Determine the break-even point. Describe what this means.
18. Roses sell for $\$ 3$ each and carnations for $\$ 1.50$ each. If a mixed bouquet of 20 flowers consisting of roses and carnations costs $\$ 39$, how many of each type of flower is in the bouquet?
19. At the north campus of a small liberal arts college, 10% of the students are women. At the south campus, 50% of the students are women. The campuses are merged into one east campus. If 40% of the 1200 students at the east campus are women, how many students did the north and south campuses have before the merger?
20. With the current, you can row 9 miles in 2 hours. Against the current, your return trip takes 6 hours. Find your average rowing velocity in still water and the average velocity of the current.
21. Find the measure of each angle whose degree measure is represented with a variable.
22. Find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the points $(-1,0)$, $(1,4)$, and $(2,3)$.

23. Find the length and width of a rectangle whose perimeter is 21 meters and whose area is 20 square meters.

SECTION 7.5

Objectives

(1) Graph a linear inequality in two variables.
2. Graph a nonlinear inequality in two variables.
(3) Use mathematical models involving linear inequalities.
(4) Graph a system of inequalities.

We opened the chapter noting that the modern emphasis on thinness as the ideal body shape has been suggested as a major cause of eating disorders. In this section (Example 5), as well as in the Exercise Set (Exercises 77-80), we use systems of linear inequalities in two variables that will enable you to establish a healthy weight range for your height and age.

Linear Inequalities in Two Variables and Their Solutions

We have seen that equations in the form $A x+B y=C$ are straight lines when graphed. If we change the symbol $=$ to $>,<, \geq$, or \leq, we obtain a linear inequality in two variables. Some examples of linear inequalities in two variables are $x+y>2,3 x-5 y \leq 15$, and $2 x-y<4$.

A solution of an inequality in two variables, x and y, is an ordered pair of real numbers with the following property: When the x-coordinate is substituted for x and the y-coordinate is substituted for y in the inequality, we obtain a true statement. For example, $(3,2)$ is a solution of the inequality $x+y>1$. When 3 is substituted for x and 2 is substituted for y, we obtain the true statement $3+2>1$, or $5>1$.

Because there are infinitely many pairs of numbers that have a sum greater than 1, the inequality $x+y>1$ has infinitely many solutions. Each ordered-pair solution is said to satisfy the inequality. Thus, $(3,2)$ satisfies the inequality $x+y>1$.

Graph a linear inequality in two variables.

FIGURE 7.16 Preparing to graph $2 x-3 y \geq 6$

The Graph of a Linear Inequality in Two Variables

We know that the graph of an equation in two variables is the set of all points whose coordinates satisfy the equation. Similarly, the graph of an inequality in two variables is the set of all points whose coordinates satisfy the inequality.

Let's use Figure $\mathbf{7 . 1 5}$ to get an idea of what the graph of a linear inequality in two variables looks like. Part of the figure shows the graph of the linear equation $x+y=2$. The line divides the points in the rectangular coordinate system into three sets. First, there is the set of points along the line, satisfying $x+y=2$. Next, there is the set of points in the green region above the line. Points in the green region satisfy the linear inequality $x+y>2$. Finally, there is the set of points in the purple region below the line. Points in the purple region satisfy the linear inequality $x+y<2$.

A half-plane is the set of all the points on one side of a line. In Figure 7.15, the green region is a

FIGURE 7.15 half-plane. The purple region is also a half-plane. A half-plane is the graph of a linear inequality that involves $>$ or $<$. The graph of a linear inequality that involves \geq or \leq is a half-plane and a line. A solid line is used to show that a line is part of a solution set. A dashed line is used to show that a line is not part of a solution set.

Graphing a Linear Inequality in Two Variables

1. Replace the inequality symbol with an equal sign and graph the corresponding linear equation. Draw a solid line if the original inequality contains $\mathrm{a} \leq$ or \geq symbol. Draw a dashed line if the original inequality contains a $<$ or $>$ symbol.
2. Choose a test point from one of the half-planes. (Do not choose a point on the line.) Substitute the coordinates of the test point into the inequality.
3. If a true statement results, shade the half-plane containing this test point. If a false statement results, shade the half-plane not containing this test point.

EXAMPLE 1 Graphing a Linear Inequality in Two Variables

Graph: $2 x-3 y \geq 6$.

SOLUTION

Step 1 Replace the inequality symbol by = and graph the linear equation. We need to graph $2 x-3 y=6$. We can use intercepts to graph this line.

$$
\begin{aligned}
& \text { We set } y=0 \text { to find } \\
& \text { the } \boldsymbol{x} \text {-intercept. } \\
& 2 x-3 y=6 \\
& 2 x-3 \cdot 0=6 \\
& 2 x=6 \\
& x=3 \\
& \text { We set } x=0 \text { to find } \\
& \text { the } \boldsymbol{y} \text {-intercept. } \\
& 2 x-3 y=6 \\
& 2 \cdot 0-3 y=6 \\
& -3 y=6 \\
& y=-2
\end{aligned}
$$

The x-intercept is 3 , so the line passes through (3,0). The y-intercept is -2 , so the line passes through $(0,-2)$. Using the intercepts, the line is shown in Figure 7.16 as a solid line. This is because the inequality $2 x-3 y \geq 6$ contains a \geq symbol, in which equality is included.

FIGURE 7.17 The graph of $2 x-3 y \geq 6$

Step 2 Choose a test point from one of the half-planes and not from the line. Substitute its coordinates into the inequality. The line $2 x-3 y=6$ divides the plane into three parts - the line itself and two half-planes. The points in one halfplane satisfy $2 x-3 y>6$. The points in the other half-plane satisfy $2 x-3 y<6$. We need to find which half-plane belongs to the solution of $2 x-3 y \geq 6$. To do so, we test a point from either half-plane. The origin, $(0,0)$, is the easiest point to test.

$$
\begin{array}{rlrl}
2 x-3 y & \geq 6 & \text { This is the given inequality. } \\
2 \cdot 0-3 \cdot 0 & \stackrel{?}{\gtrless} 6 & \text { Test }(O, O) \text { by substituting } O \text { for } x \text { and } O \text { for } y \text {. } \\
0-0 & \stackrel{?}{\geq} 6 & \text { Multiply. } \\
0 \geq 6 & \text { This statement is false. }
\end{array}
$$

Step 3 If a false statement results, shade the half-plane not containing the test point. Because 0 is not greater than or equal to 6 , the test point, (0,0), is not part of the solution set. Thus, the half-plane below the solid line $2 x-3 y=6$ is part of the solution set. The solution set is the line and the half-plane that does not contain the point $(0,0)$, indicated by shading this half-plane. The graph is shown using green shading and a blue line in Figure 7.17.

$\$$ Check Point 1 Graph: $4 x-2 y \geq 8$.

When graphing a linear inequality, choose a test point that lies in one of the halfplanes and not on the line dividing the half-planes. The test point $(0,0)$ is convenient because it is easy to calculate when 0 is substituted for each variable. However, if $(0,0)$ lies on the dividing line and not in a half-plane, a different test point must be selected.

EXAMPLE 2 Graphing a Linear Inequality in Two Variables

Graph: $y>-\frac{2}{3} x$.

SOLUTION

Step 1 Replace the inequality symbol by $=$ and graph the linear equation. Because we are interested in graphing $y>-\frac{2}{3} x$, we begin by graphing $y=-\frac{2}{3} x$. We can use the slope and the y-intercept to graph this linear function.

$$
\begin{aligned}
y & =-\frac{2}{3} x+0 \\
\text { Slope } & =\frac{-2}{3}=\frac{\text { rise }}{\text { run }} \quad y \text {-intercept }=0
\end{aligned}
$$

The y-intercept is 0 , so the line passes through $(0,0)$. Using the y-intercept and the slope, the line is shown in Figure 7.18 as a dashed line. This is because the inequality $y>-\frac{2}{3} x$ contains a $>$ symbol, in which equality is not included.
Step 2 Choose a test point from one of the half-planes and not from the line. Substitute its coordinates into the inequality. We cannot use $(0,0)$ as a test point because it lies on the line and not in a half-plane. Let's use $(1,1)$, which lies in the half-plane above the line.

$$
\begin{array}{ll}
y>-\frac{2}{3} x & \text { This is the given inequality. } \\
1>-\frac{2}{3} \cdot 1 & \text { Test }(1,1) \text { by substituting } 1 \text { for } x \text { and } 1 \text { for } y . \\
1>-\frac{2}{3} & \text { This statement is true. }
\end{array}
$$

Step 3 If a true statement results, shade the half-plane containing the test point. Because 1 is greater than $-\frac{2}{3}$, the test point $(1,1)$ is part of the solution set. All the points on the same side of the line $y=-\frac{2}{3} x$ as the point $(1,1)$ are members of the solution set. The solution set is the half-plane that contains the point $(1,1)$, indicated by shading this half-plane. The graph is shown using green shading and a dashed blue line in Figure 7.18.

TECHNOLOGY

Most graphing utilities can graph inequalities in two variables with the SHADE feature. The procedure varies by model, so consult your manual. For most graphing utilities, you must first solve for y if it is not already isolated. The figure shows the graph of $y>-\frac{2}{3} x$. Most displays do not distinguish between dashed and solid boundary lines.

Check Point 2 Graph: $y>-\frac{3}{4} x$.

Graphing Linear Inequalities without Using Test Points

You can graph inequalities in the form $y>m x+b$ or $y<m x+b$ without using test points. The inequality symbol indicates which half-plane to shade.

- If $y>m x+b$, shade the half-plane above the line $y=m x+b$.
- If $y<m x+b$, shade the half-plane below the line $y=m x+b$.

Observe how this is illustrated in Figure 7.18 in the margin on the previous page. The graph of $y>-\frac{2}{3} x$ is the half-plane above the line $y=-\frac{2}{3} x$.

It is also not necessary to use test points when graphing inequalities involving half-planes on one side of a vertical or a horizontal line.

For the Vertical Line $x=a$:

- If $x>a$, shade the half-plane to the right of $x=a$.
- If $x<a$, shade the half-plane to the left of $x=a$.

For the Horizontal Line $\boldsymbol{y}=\boldsymbol{b}$:

- If $y>b$, shade the half-plane above $y=b$.
- If $y<b$, shade the half-plane below $y=b$.

GREAT QUESTION!

When is it important to use test points to graph linear inequalities?
Continue using test points to graph inequalities in the form $A x+B y>C$ or $A x+B y<C$. The graph of $A x+B y>C$ can lie above or below the line given by $A x+B y=C$, depending on the values of A and B. The same comment applies to the graph of $A x+B y<C$.

EXAMPLE 3 Graphing Inequalities without Using Test Points

Graph each inequality in a rectangular coordinate system:
a. $y \leq-3$
b. $x>2$.

SOLUTION
a. $y \leq-3$
 -3. The line is solid because equality is included in $y \leq-3$. Because of the less than part of \leq, shade the half-plane below the horizontal line.

b. $x>2$

Graph $x=\mathbf{2}$, a vertical line with x-intercept 2. The line is dashed because equality is not included in $x>2$. Because of $>$, the greater than symbol, shade the half-plane to the right of the vertical line.

$\$$ Check Point 3 Graph each inequality in a rectangular coordinate system:
a. $y>1$
b. $x \leq-2$.
2. Graph a nonlinear inequality in two variables.

Graphing a Nonlinear Inequality in Two Variables

Example 4 illustrates that a nonlinear inequality in two variables is graphed in the same way that we graph a linear inequality.

EXAMPLE 4 Graphing a Nonlinear Inequality in Two Variables

Graph: $x^{2}+y^{2} \leq 9$.

SOLUTION

Step 1 Replace the inequality symbol with $=$ and graph the nonlinear equation. We need to graph $x^{2}+y^{2}=9$. The graph is a circle of radius 3 with its center at the origin. The graph is shown in Figure 7.19 as a solid circle because equality is included in the \leq symbol.
Step 2 Choose a test point from one of the regions and not from the circle. Substitute its coordinates into the inequality. The circle divides the plane into three parts - the circle itself, the region inside the circle, and the region outside the circle. We need to determine whether the region inside or outside the circle is included in the solution. To do so, we will use the test point $(0,0)$ from inside the circle.

$$
\begin{aligned}
x^{2}+y^{2} \leq 9 & \text { This is the given inequality. } \\
0^{2}+0^{2} \stackrel{?}{\leq} 9 & \text { Test }(O, O) \text { by substituting } O \text { for } x \text { and } O \text { for } y . \\
0+0 \stackrel{?}{=} 9 & \text { Square } O: O^{2}=0 \\
0 \leq 9 & \text { Add. This statement is true. }
\end{aligned}
$$

Step 3 If a true statement results, shade the region containing the test point. The true statement tells us that all the points inside the circle satisfy $x^{2}+y^{2} \leq 9$. The graph is shown using green shading and a solid blue circle in Figure 7.20.

FIGURE 7.19 Preparing to graph $x^{2}+y^{2} \leq 9$

FIGURE 7.20 The graph of $x^{2}+y^{2} \leq 9$

Check Point 4 Graph: $x^{2}+y^{2} \geq 16$.

(3) Use mathematical models involving linear inequalities.

Modeling with Systems of Linear Inequalities

Just as two or more linear equations make up a system of linear equations, two or more linear inequalities make up a system of linear inequalities. A solution of a system of linear inequalities in two variables is an ordered pair that satisfies each inequality in the system.

EXAMPLE 5 Does Your Weight Fit You?

The latest guidelines, which apply to both men and women, give healthy weight ranges, rather than specific weights, for your height. Figure $\mathbf{7 . 2 1}$ shows the healthy weight region for various heights for people between the ages of 19 and 34 , inclusive.

FIGURE 7.21
Source: U.S. Department of Health and Human Services
If x represents height, in inches, and y represents weight, in pounds, the healthy weight region in Figure 7.21 can be modeled by the following system of linear inequalities:

$$
\left\{\begin{array}{l}
4.9 x-y \geq 165 \\
3.7 x-y \leq 125 .
\end{array}\right.
$$

Show that point A in Figure $\mathbf{7 . 2 1}$ is a solution of the system of inequalities that describes healthy weight.

FIGURE 7.21 (repeated)

SOLUTION

Point A has coordinates $(70,170)$. This means that if a person is 70 inches tall, or 5 feet 10 inches, and weighs 170 pounds, then that person's weight is within the healthy weight region. We can show that $(70,170)$ satisfies the system of inequalities by substituting 70 for x and 170 for y in each inequality in the system.

$$
\begin{aligned}
4.9 x-y & \geq 165 \\
4.9(70)-170 & \stackrel{?}{\geq} 165 \\
343-170 & \stackrel{?}{ } 165 \\
173 & \geq 165, \quad \text { true }
\end{aligned}
$$

$$
\begin{aligned}
3.7 x-y & \leq 125 \\
3.7(70)-170 & \stackrel{?}{\leq} 125 \\
259-170 & \stackrel{?}{\leq} 125 \\
89 & \leq 125, \quad \text { true }
\end{aligned}
$$

The coordinates $(70,170)$ make each inequality true. Thus, $(70,170)$ satisfies the system for the healthy weight region and is a solution of the system.
\bigcirc Check Point 5 Show that point B in Figure 7.21 is a solution of the system of inequalities that describes healthy weight.

Graphing Systems of Linear Inequalities

The solution set of a system of linear inequalities in two variables is the set of all ordered pairs that satisfy each inequality in the system. Thus, to graph a system of inequalities in two variables, begin by graphing each individual inequality in the same rectangular coordinate system. Then find the region, if there is one, that is common to every graph in the system. This region of intersection gives a picture of the system's solution set.

EXAMPLE 6 Graphing a System of Linear Inequalities

Graph the solution set of the system:

$$
\left\{\begin{array}{c}
x-y<1 \\
2 x+3 y \geq 12
\end{array}\right.
$$

SOLUTION

Replacing each inequality symbol with an equal sign indicates that we need to graph $x-y=1$ and $2 x+3 y=12$. We can use intercepts to graph these lines.

$$
\begin{aligned}
& x-y=1 \quad 2 x+3 y=12 \\
& x \text {-intercept: } x-0=1 \quad \begin{array}{c}
\text { Set } y=0 \text { in } \\
\text { each equation. }
\end{array} \quad x \text {-intercept: } \quad 2 x+3 \cdot 0=12 \\
& x=1 \quad 2 x=12 \\
& \text { The line passes through }(1,0) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
y \text {-intercept: } \quad 0-y & =1 \quad \begin{array}{r}
\text { Set } x=0 \text { in } \\
\text { each equation. }
\end{array} \\
-y & =1 \\
y & =-1
\end{aligned}
$$

The line passes through $(0,-1)$.

The line passes through $(6,0)$. y-intercept: $\quad 2 \cdot 0+3 y=12$
$3 y=12$
$y=4$
The line passes through $(0,4)$.

Now we are ready to graph the solution set of the system of linear inequalities.

Graph $x-y<1$. The blue line, $x-y=1$, is dashed: Equality is not included in $x-y<1$. Because $(0,0)$ makes the inequality true ($0-0<1$, or $0<1$, is true), shade the halfplane containing $(0,0)$ in yellow.

The graph of $x-y<1$

The solution set of the system is graphed as the intersection (the overlap) of the two half-planes. This is the region in which the yellow shading and the green vertical shading overlap.

The graph of $x-y<1$ and $2 x+3 y \geq 12$
$\$$ Check Point 6 Graph the solution set of the system:

$$
\left\{\begin{array}{c}
x-3 y<6 \\
2 x+3 y \geq-6 .
\end{array}\right.
$$

EXAMPLE 7 Graphing a System of Inequalities

Graph the solution set of the system:

$$
\left\{\begin{array}{l}
y \geq x^{2}-4 \\
x-y \geq 2
\end{array}\right.
$$

SOLUTION

We begin by graphing $y \geq x^{2}-4$. Because equality is included in \geq, we graph $y=x^{2}-4$ as a solid parabola. Because $(0,0)$ makes the inequality $y \geq x^{2}-4$ true (we obtain $0 \geq-4$), we shade the interior portion of the parabola containing $(0,0)$, shown in yellow in Figure 7.22.

FIGURE 7.23 Adding the graph of $x-y \geq 2$

FIGURE 7.24 The graph of $y \geq x^{2}-4$ and $x-y \geq 2$

FIGURE 7.22 The graph of $y \geq x^{2}-4$
Now we graph $x-y \geq 2$ in the same rectangular coordinate system. First we graph the line $x-y=2$ using its x-intercept, 2, and its y-intercept, -2 . Because $(0,0)$ makes the inequality $x-y \geq 2$ false (we obtain $0 \geq 2$), we shade the halfplane below the line. This is shown in Figure $\mathbf{7 . 2 3}$ using green vertical shading.

The solution of the system is shown in Figure 7.24 by the intersection (the overlap) of the solid yellow and green vertical shadings. The graph of the system's solution set consists of the region enclosed by the parabola and the line. To find the points of intersection of the parabola and the line, use the substitution method to solve the nonlinear system containing $y=x^{2}-4$ and $x-y=2$. Take a moment to show that the solutions are $(-1,-3)$ and $(2,0)$, as shown in Figure 7.24.

FIGURE 7.25 A system of inequalities with no solution

FIGURE 7.26 The graph of $x-y<2$

FIGURE 7.27 The graph of $x-y<2$ and $-2 \leq x<4$

GREAT QUESTION!

In Example 7, how did you graph $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}-\mathbf{4}$?
We used the parabola's vertex and its x-intercepts.

$$
\begin{aligned}
& y=1 x^{2}+0 x-4 \\
& a=1 \quad b=0 \quad c=-4
\end{aligned}
$$

- $a>0$: opens upward
- Vertex:

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)=(0, f(0))=(0,-4)
$$

- x-intercepts:

$$
\begin{aligned}
x^{2}-4 & =0 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

The graph of $y=x^{2}-4$, shown in blue in Figure 7.22 on the previous page, passes through $(-2,0)$ and $(2,0)$ with a vertex at $(0,-4)$.

Check Point 7 Graph the solution set of the system:

$$
\left\{\begin{aligned}
y & \geq x^{2}-4 \\
x+y & \leq 2
\end{aligned}\right.
$$

A system of inequalities has no solution if there are no points in the rectangular coordinate system that simultaneously satisfy each inequality in the system. For example, the system

$$
\left\{\begin{array}{l}
2 x+3 y \geq 6 \\
2 x+3 y \leq 0
\end{array}\right.
$$

whose separate graphs are shown in Figure 7.25, has no overlapping region. Thus, the system has no solution. The solution set is \varnothing, the empty set.

EXAMPLE 8 Graphing a System of Inequalities

Graph the solution set of the system:

$$
\left\{\begin{array}{r}
x-y<2 \\
-2 \leq x<4 \\
y<3
\end{array}\right.
$$

SOLUTION

We begin by graphing $x-y<2$, the first given inequality. The line $x-y=2$ has an x-intercept of 2 and a y-intercept of -2 . The test point $(0,0)$ makes the inequality $x-y<2$ true, and its graph is shown in Figure 7.26.

Now, let's consider the second given inequality, $-2 \leq x<4$. Replacing the inequality symbols by $=$, we obtain $x=-2$ and $x=4$, graphed as red vertical lines in Figure 7.27. The line of $x=4$ is not included. Because x is between -2 and 4 , we shade the region between the vertical lines. We must intersect this region with the yellow region in Figure 7.26. The resulting region is shown in yellow and green vertical shading in Figure 7.27.

Finally, let's consider the third given inequality, $y<3$. Replacing the inequality symbol by $=$, we obtain $y=3$, which graphs as a horizontal line. Because of the less than symbol in $y<3$, the graph consists of the half-plane below the line $y=3$. We must intersect this half-plane with the region in Figure 7.27. The resulting region is shown in yellow and green vertical shading in Figure 7.28. This region represents the graph of the solution set of the given system.

FIGURE 7.28 The graph of $x-y<2$ and $-2 \leq x<4$ and $y<3$

In Figure 7.28 it may be difficult to tell where the graph of $x-y=2$ intersects the vertical line $x=4$. Using the substitution method, it can be determined that this intersection point is $(4,2)$. Take a moment to verify that the four intersection points in Figure 7.28 are, clockwise from upper left, $(-2,3),(4,3),(4,2)$, and $(-2,-4)$. These points are shown as open dots because none satisfies all three of the system's inequalities.

0 Check Point 8 Graph the solution set of the system:

$$
\left\{\begin{array}{l}
x+y<2 \\
-2 \leq x<1 \\
y>-3
\end{array}\right.
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The ordered pair $(3,2)$ is a/an \qquad of the inequality $x+y>1$ because when 3 is substituted for \qquad and 2 is substituted for \qquad , the true statement \qquad is obtained.
2. The set of all points that satisfy a linear inequality in two variables is called the \qquad of the inequality.
3. The set of all points on one side of a line is called a/an \qquad —.
4. True or false: The graph of $2 x-3 y>6$ includes the line $2 x-3 y=6$.
5. True or false: The graph of the linear equation $2 x-3 y=6$ is used to graph the linear inequality $2 x-3 y>6$.
6. True or false: When graphing $4 x-2 y \geq 8$, to determine which side of the line to shade, choose a test point on $4 x-2 y=8$. \qquad
7. When graphing $x^{2}+y^{2}>25$, to determine whether to shade the region inside the circle or the region outside the circle, we can use \qquad as a test point.
8. The solution set of the system

$$
\left\{\begin{array}{c}
x-y<1 \\
2 x+3 y \geq 12 .
\end{array}\right.
$$

is the set of ordered pairs that satisfy and \qquad
9. True or false:The graph of the solution set of the system

$$
\left\{\begin{array}{c}
x-3 y<6 \\
2 x+3 y \geq-6 .
\end{array}\right.
$$

includes the intersection point of $x-3 y=6$ and $2 x+3 y=-6$. \qquad

EXERCISE SET 7.5

Practice Exercises

In Exercises 1-26, graph each inequality.

1. $x+2 y \leq 8$
2. $3 x-6 y \leq 12$
3. $x-2 y>10$
4. $2 x-y>4$
5. $y \leq \frac{1}{3} x$
6. $y \leq \frac{1}{4} x$
7. $y>2 x-1$
8. $y>3 x+2$
9. $x \leq 1$
10. $x \leq-3$
11. $y>1$
12. $y>-3$
13. $x^{2}+y^{2} \leq 1$
14. $x^{2}+y^{2} \leq 4$
15. $x^{2}+y^{2}>25$
16. $x^{2}+y^{2}>36$
17. $(x-2)^{2}+(y+1)^{2}<9$
18. $(x+2)^{2}+(y-1)^{2}<16$
19. $y<x^{2}-1$
20. $y<x^{2}-9$
21. $y \geq x^{2}-9$
22. $y \geq x^{2}-1$
23. $y>2^{x}$
24. $y \leq 3^{x}$
25. $y \geq \log _{2}(x+1)$
26. $y \geq \log _{3}(x-1)$

In Exercises 27-62, graph the solution set of each system of inequalities or indicate that the system has no solution.
27. $\left\{\begin{array}{l}3 x+6 y \leq 6 \\ 2 x+y \leq 8\end{array}\right.$ 28. $\left\{\begin{array}{l}x-y \geq 4 \\ x+y \leq 6\end{array}\right.$
29. $\left\{\begin{array}{l}2 x-5 y \leq 10 \\ 3 x-2 y>6\end{array}\right.$
30. $\left\{\begin{array}{l}2 x-y \leq 4 \\ 3 x+2 y>-6\end{array}\right.$
31. $\left\{\begin{array}{l}y>2 x-3 \\ y<-x+6\end{array}\right.$
32. $\left\{\begin{array}{l}y<-2 x+4 \\ y<x-4\end{array}\right.$
33. $\left\{\begin{array}{l}x+2 y \leq 4 \\ y \geq x-3\end{array}\right.$
34. $\left\{\begin{array}{l}x+y \leq 4 \\ y \geq 2 x-4\end{array}\right.$
35. $\left\{\begin{array}{l}x \leq 2 \\ y \geq-1\end{array}\right.$
36. $\left\{\begin{array}{l}x \leq 3 \\ y \leq-1\end{array}\right.$
37. $-2 \leq x<5$
38. $-2<y \leq 5$
39. $\left\{\begin{array}{l}x-y \leq 1 \\ x \geq 2\end{array}\right.$
40. $\left\{\begin{array}{c}4 x-5 y \geq-20 \\ x \geq-3\end{array}\right.$
41. $\left\{\begin{array}{l}x+y>4 \\ x+y<-1\end{array}\right.$
42. $\left\{\begin{array}{l}x+y>3 \\ x+y<-2\end{array}\right.$
43. $\left\{\begin{array}{l}x+y>4 \\ x+y>-1\end{array}\right.$
44. $\left\{\begin{array}{l}x+y>3 \\ x+y>-2\end{array}\right.$
45. $\left\{\begin{array}{l}y \geq x^{2}-1 \\ x-y \geq-1\end{array}\right.$
46. $\left\{\begin{array}{l}y \geq x^{2}-4 \\ x-y \geq 2\end{array}\right.$
47. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 16 \\ x+y>2\end{array}\right.$
48. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 4 \\ x+y>1\end{array}\right.$
49. $\left\{\begin{array}{l}x^{2}+y^{2}>1 \\ x^{2}+y^{2}<16\end{array}\right.$
50. $\left\{\begin{array}{l}x^{2}+y^{2}>1 \\ x^{2}+y^{2}<9\end{array}\right.$
51. $\left\{\begin{array}{l}(x-1)^{2}+(y+1)^{2}<25 \\ (x-1)^{2}+(y+1)^{2} \geq 16\end{array}\right.$
52. $\left\{\begin{array}{l}(x+1)^{2}+(y-1)^{2}<16 \\ (x+1)^{2}+(y-1)^{2} \geq 4\end{array}\right.$
53. $\left\{\begin{array}{r}x^{2}+y^{2} \leq 1 \\ y-x^{2}>0\end{array}\right.$
54. $\left\{\begin{array}{r}x^{2}+y^{2}<4 \\ y-x^{2} \geq 0\end{array}\right.$
55. $\left\{\begin{array}{l}x^{2}+y^{2}<16 \\ y \geq 2^{x}\end{array}\right.$
56. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 16 \\ y<2^{x}\end{array}\right.$
57. $\left\{\begin{array}{l}x-y \leq 2 \\ x>-2 \\ y \leq 3\end{array}\right.$
58. $\left\{\begin{array}{l}3 x+y \leq 6 \\ x>-2 \\ y \leq 4\end{array}\right.$
59. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 2 x+5 y<10 \\ 3 x+4 y \leq 12\end{array}\right.$
60. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 2 x+y<4 \\ 2 x-3 y \leq 6\end{array}\right.$
61. $\left\{\begin{array}{l}3 x+y \leq 6 \\ 2 x-y \leq-1 \\ x>-2 \\ y<4\end{array}\right.$
62. $\left\{\begin{array}{c}2 x+y \leq 6 \\ x+y>2 \\ 1 \leq x \leq 2 \\ y<3\end{array}\right.$

Practice Plus

In Exercises 63-64, write each sentence as an inequality in two variables. Then graph the inequality.
63. The y-variable is at least 4 more than the product of -2 and the x-variable.
64. The y-variable is at least 2 more than the product of -3 and the x-variable.

In Exercises 65-68, write the given sentences as a system of inequalities in two variables. Then graph the system.
65. The sum of the x-variable and the y-variable is at most 4. The y-variable added to the product of 3 and the x-variable does not exceed 6 .
66. The sum of the x-variable and the y-variable is at most 3 . The y-variable added to the product of 4 and the x-variable does not exceed 6 .
67. The sum of the x-variable and the y-variable is no more than 2. The y-variable is no less than the difference between the square of the x-variable and 4 .
68. The sum of the squares of the x-variable and the y-variable is no more than 25 . The sum of twice the y-variable and the x-variable is no less than 5 .

In Exercises 69-70, rewrite each inequality in the system without absolute value bars. Then graph the rewritten system in rectangular coordinates.
69. $\left\{\begin{array}{l}|x| \leq 2 \\ |y| \leq 3\end{array}\right.$
70. $\left\{\begin{array}{l}|x| \leq 1 \\ |y| \leq 2\end{array}\right.$

The graphs of solution sets of systems of inequalities involve finding the intersection of the solution sets of two or more inequalities. By contrast, in Exercises 71-72, you will be graphing the union of the solution sets of two inequalities.
71. Graph the union of $y>\frac{3}{2} x-2$ and $y<4$.
72. Graph the union of $x-y \geq-1$ and $5 x-2 y \leq 10$.

Without graphing, in Exercises 73-76, determine if each system has no solution or infinitely many solutions.
73. $\left\{\begin{array}{l}3 x+y<9 \\ 3 x+y>9\end{array}\right.$
74. $\left\{\begin{array}{l}6 x-y \leq 24 \\ 6 x-y>24\end{array}\right.$
75. $\left\{\begin{array}{l}(x+4)^{2}+(y-3)^{2} \leq 9 \\ (x+4)^{2}+(y-3)^{2} \geq 9\end{array}\right.$
76. $\left\{\begin{array}{l}(x-4)^{2}+(y+3)^{2} \leq 24 \\ (x-4)^{2}+(y+3)^{2} \geq 24\end{array}\right.$

Application Exercises

The figure shows the healthy weight region for various heights for people ages 35 and older.

Source: U.S. Department of Health and Human Services
If x represents height, in inches, and y represents weight, in pounds, the healthy weight region can be modeled by the following system of linear inequalities:

$$
\left\{\begin{array}{l}
5.3 x-y \geq 180 \\
4.1 x-y \leq 140
\end{array}\right.
$$

Use this information to solve Exercises 77-80.
77. Show that point A is a solution of the system of inequalities that describes healthy weight for this age group.
78. Show that point B is a solution of the system of inequalities that describes healthy weight for this age group.
79. Is a person in this age group who is 6 feet tall weighing 205 pounds within the healthy weight region?
80. Is a person in this age group who is 5 feet 8 inches tall weighing 135 pounds within the healthy weight region?
81. Many elevators have a capacity of 2000 pounds.
a. If a child averages 50 pounds and an adult 150 pounds, write an inequality that describes when x children and y adults will cause the elevator to be overloaded.
b. Graph the inequality. Because x and y must be positive, limit the graph to quadrant I only.
c. Select an ordered pair satisfying the inequality. What are its coordinates and what do they represent in this situation?
82. A patient is not allowed to have more than 330 milligrams of cholesterol per day from a diet of eggs and meat. Each egg provides 165 milligrams of cholesterol. Each ounce of meat provides 110 milligrams.
a. Write an inequality that describes the patient's dietary restrictions for x eggs and y ounces of meat.
b. Graph the inequality. Because x and y must be positive, limit the graph to quadrant I only.
c. Select an ordered pair satisfying the inequality. What are its coordinates and what do they represent in this situation?
83. On your next vacation, you will divide lodging between large resorts and small inns. Let x represent the number of nights spent in large resorts. Let y represent the number of nights spent in small inns.
a. Write a system of inequalities that models the following conditions:

You want to stay at least 5 nights. At least one night should be spent at a large resort. Large resorts average $\$ 200$ per night and small inns average $\$ 100$ per night. Your budget permits no more than $\$ 700$ for lodging.
b. Graph the solution set of the system of inequalities in part (a).
c. Based on your graph in part (b), what is the greatest number of nights you could spend at a large resort and still stay within your budget?
84. A person with no more than $\$ 15,000$ to invest plans to place the money in two investments. One investment is high risk, high yield; the other is low risk, low yield. At least $\$ 2000$ is to be placed in the high-risk investment. Furthermore, the amount invested at low risk should be at least three times the amount invested at high risk. Find and graph a system of inequalities that describes all possibilities for placing the money in the high- and low-risk investments.

The graph of an inequality in two variables is a region in the rectangular coordinate system. Regions in coordinate systems have numerous applications. For example, the regions in the following two graphs indicate whether a person is obese, overweight, borderline overweight, normal weight, or underweight.

Source: Centers for Disease Control and Prevention
The horizontal axis shows a person's age. The vertical axis shows that person's body-mass index (BMI), computed using the following formula:

$$
\mathrm{BMI}=\frac{703 W}{H^{2}}
$$

The variable W represents weight, in pounds. The variable H represents height, in inches. Use this information to solve Exercises 85-86.
85. A man is 20 years old, 72 inches (6 feet) tall, and weighs 200 pounds.
a. Compute the man's BMI. Round to the nearest tenth.
b. Use the man's age and his BMI to locate this information as a point in the coordinate system for males. Is this person obese, overweight, borderline overweight, normal weight, or underweight?

86. A woman is 25 years old, 66 inches (5 feet, 6 inches) tall, and weighs 105 pounds.
a. Compute the woman's BMI. Round to the nearest tenth.
b. Use the woman's age and her BMI to locate this information as a point in the coordinate system for females. Is this person obese, overweight, borderline overweight, normal weight, or underweight?

Writing in Mathematics

87. What is a linear inequality in two variables? Provide an example with your description.
88. How do you determine if an ordered pair is a solution of an inequality in two variables, x and y ?
89. What is a half-plane?
90. What does a solid line mean in the graph of an inequality?
91. What does a dashed line mean in the graph of an inequality?
92. Compare the graphs of $3 x-2 y>6$ and $3 x-2 y \leq 6$. Discuss similarities and differences between the graphs.
93. What is a system of linear inequalities?
94. What is a solution of a system of linear inequalities?
95. Explain how to graph the solution set of a system of inequalities.
96. What does it mean if a system of linear inequalities has no solution?

Technology Exercises

Graphing utilities can be used to shade regions in the rectangular coordinate system, thereby graphing an inequality in two variables. Read the section of the user's manual for your graphing utility that describes how to shade a region. Then use your graphing utility to graph the inequalities in Exercises 97-102.
97. $y \leq 4 x+4$
98. $y \geq \frac{2}{3} x-2$
99. $y \geq x^{2}-4$
100. $y \geq \frac{1}{2} x^{2}-2$
101. $2 x+y \leq 6$
102. $3 x-2 y \geq 6$
103. Does your graphing utility have any limitations in terms of graphing inequalities? If so, what are they?
104. Use a graphing utility with a SHADE feature to verify any five of the graphs that you drew by hand in Exercises 1-26.
105. Use a graphing utility with a SHADE feature to verify any five of the graphs that you drew by hand for the systems in Exercises 27-62.

Critical Thinking Exercises

Make Sense? In Exercises 106-109, determine whether each statement makes sense or does not make sense, and explain your reasoning.
106. When graphing a linear inequality, I should always use $(0,0)$ as a test point because it's easy to perform the calculations when 0 is substituted for each variable.
107. When graphing $3 x-4 y<12$, it's not necessary for me to graph the linear equation $3 x-4 y=12$ because the inequality contains a $<$ symbol, in which equality is not included.
108. The reason that systems of linear inequalities are appropriate for modeling healthy weight is because guidelines give healthy weight ranges, rather than specific weights, for various heights.
109. I graphed the solution set of $y \geq x+2$ and $x \geq 1$ without using test points.
In Exercises 110-113, write a system of inequalities for each graph.

110.

111.

112.

113.

114. Write a system of inequalities whose solution set includes every point in the rectangular coordinate system.
115. Sketch the graph of the solution set for the following system of inequalities:

$$
\left\{\begin{array}{l}
y \geq n x+b(n<0, b>0) \\
y \leq m x+b(m>0, b>0)
\end{array}\right.
$$

Preview Exercises

Exercises 116-118 will help you prepare for the material covered in the next section.
116. a. Graph the solution set of the system:

$$
\left\{\begin{array}{r}
x+y \geq 6 \\
x \leq 8 \\
y \geq 5 .
\end{array}\right.
$$

b. List the points that form the corners of the graphed region in part (a).
c. Evaluate $3 x+2 y$ at each of the points obtained in part (b).
117. a. Graph the solution set of the system:

$$
\left\{\begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
3 x-2 x & \leq 6 \\
y & \leq-x+7
\end{aligned}\right.
$$

b. List the points that form the corners of the graphed region in part (a).
c. Evaluate $2 x+5 y$ at each of the points obtained in part (b).
118. Bottled water and medical supplies are to be shipped to survivors of an earthquake by plane. The bottled water weighs 20 pounds per container and medical kits weigh 10 pounds per kit. Each plane can carry no more than 80,000 pounds. If x represents the number of bottles of water to be shipped per plane and y represents the number of medical kits per plane, write an inequality that models each plane's 80,000 -pound weight restriction.

SECTION 7.6

Objectives

(1) Write an objective function describing a quantity that must be maximized or minimized.
(2) Use inequalities to describe limitations in a situation.
(3) Use linear programming to solve problems.
(1) Write an objective function describing a quantity that must be maximized or minimized.

West Berlin children at Tempelhof
airport watch fleets of U.S. airplanes
bringing in supplies to circumvent
the Soviet blockade. The airlift
began June 28,1948 , and continued
for 15 months.

The Berlin Airlift (1948-1949) was an operation by the United States and Great Britain in response to military action by the former Soviet Union: Soviet troops closed all roads and rail lines between West Germany and Berlin, cutting off supply routes to the city. The Allies used a mathematical technique developed during World War II to maximize the amount of supplies transported. During the 15 -month airlift, 278,228 flights provided basic necessities to blockaded Berlin, saving one of the world's great cities.

In this section, we will look at an important application of systems of linear inequalities. Such systems arise in linear programming, a method for solving problems in which a particular quantity that must be maximized or minimized is limited by other factors. Linear programming is one of the most widely used tools in management science. It helps businesses allocate resources to manufacture products in a way that will maximize profit. Linear programming accounts for more than 50% and perhaps as much as 90% of all computing time used for management decisions in business. The Allies used linear programming to save Berlin.

Objective Functions in Linear Programming

Many problems involve quantities that must be maximized or minimized. Businesses are interested in maximizing profit. An operation in which bottled water and medical kits are shipped to earthquake survivors needs to maximize the number of survivors helped by this shipment. An objective function is an algebraic expression in two or more variables describing a quantity that must be maximized or minimized.

EXAMPLE 1 Writing an Objective Function

Bottled water and medical supplies are to be shipped to survivors of an earthquake by plane. Each container of bottled water will serve 10 people and each medical kit will aid 6 people. If x represents the number of bottles of water to be shipped and y represents the number of medical kits, write the objective function that models the number of people that can be helped.

SOLUTION

Because each bottle of water serves 10 people and each medical kit aids 6 people, we have

Using z to represent the number of people helped, the objective function is

$$
z=10 x+6 y .
$$

Unlike the functions that we have seen so far, the objective function is an equation in three variables. For a value of x and a value of y, there is one and only one value of z. Thus, z is a function of x and y.

Check Point 1 A company manufactures bookshelves and desks for computers. Let x represent the number of bookshelves manufactured daily and y the number of desks manufactured daily. The company's profits are $\$ 25$ per bookshelf and $\$ 55$ per desk. Write the objective function that models the company's total daily profit, z, from x bookshelves and y desks. (Check Points 2 through 4 are related to this situation, so keep track of your answers.)

Constraints in Linear Programming

Ideally, the number of earthquake survivors helped in Example 1 should increase without restriction so that every survivor receives water and medical supplies. However, the planes that ship these supplies are subject to weight and volume restrictions. In linear programming problems, such restrictions are called constraints. Each constraint is expressed as a linear inequality. The list of constraints forms a system of linear inequalities.

EXAMPLE 2 Writing a Constraint

Each plane can carry no more than 80,000 pounds. The bottled water weighs 20 pounds per container and each medical kit weighs 10 pounds. Let x represent the number of bottles of water to be shipped and y the number of medical kits. Write an inequality that models this constraint.

SOLUTION

Because each plane can carry no more than 80,000 pounds, we have

The plane's weight constraint is modeled by the inequality

$$
20 x+10 y \leq 80,000
$$

$$
\bullet \bullet \bullet
$$

Check Point 2 To maintain high quality, the company in Check Point 1 should not manufacture more than a total of 80 bookshelves and desks per day. Write an inequality that models this constraint.

In addition to a weight constraint on its cargo, each plane has a limited amount of space in which to carry supplies. Example 3 demonstrates how to express this constraint.

EXAMPLE 3 Writing a Constraint

Each plane can carry a total volume of supplies that does not exceed 6000 cubic feet. Each water bottle is 1 cubic foot and each medical kit also has a volume of 1 cubic foot. With x still representing the number of water bottles and y the number of medical kits, write an inequality that models this second constraint.

SOLUTION

Because each plane can carry a volume of supplies that does not exceed 6000 cubic feet, we have

The plane's volume constraint is modeled by the inequality $x+y \leq 6000$.
In summary, here's what we have described so far in this aid-to-earthquakesurvivors situation:

$$
\begin{array}{rlrl}
z & =10 x+6 y & & \begin{array}{l}
\text { This is the objective function modeling the number of } \\
\text { people helped with } x \text { bottles of water and } y \text { medical kits. }
\end{array} \\
\left\{\begin{array}{rlrl}
20 x+10 y \leq 80,000 & & \text { These are the constraints based on each plane's } \\
x+y & \leq 6000 . & & \text { weight and volume limitations. }
\end{array}\right.
\end{array}
$$

Check Point 3 To meet customer demand, the company in Check Point 1 must manufacture between 30 and 80 bookshelves per day, inclusive. Furthermore, the company must manufacture at least 10 and no more than 30 desks per day. Write an inequality that models each of these sentences. Then summarize what you have described about this company by writing the objective function for its profits and the three constraints.
(3) Use linear programming to solve problems.

Solving Problems with Linear Programming

The problem in the earthquake situation described previously is to maximize the number of survivors who can be helped, subject to each plane's weight and volume constraints. The process of solving this problem is called linear programming, based on a theorem that was proven during World War II.

Solving a Linear Programming Problem

Let $z=a x+b y$ be an objective function that depends on x and y. Furthermore, z is subject to a number of constraints on x and y. If a maximum or minimum value of z exists, it can be determined as follows:

1. Graph the system of inequalities representing the constraints.
2. Find the value of the objective function at each corner, or vertex, of the graphed region. The maximum and minimum of the objective function occur at one or more of the corner points.

FIGURE 7.29 The region in quadrant I representing the constraints $20 x+10 y \leq 80,000$ and $x+y \leq 6000$

FIGURE 7.30

EXAMPLE 4 Solving a Linear Programming Problem

Determine how many bottles of water and how many medical kits should be sent on each plane to maximize the number of earthquake survivors who can be helped.

SOLUTION

We must maximize $z=10 x+6 y$ subject to the following constraints:

$$
\left\{\begin{aligned}
20 x+10 y & \leq 80,000 \\
x+y & \leq 6000
\end{aligned}\right.
$$

Step 1 Graph the system of inequalities representing the constraints. Because x (the number of bottles of water per plane) and y (the number of medical kits per plane) must be nonnegative, we need to graph the system of inequalities in quadrant I and its boundary only.

To graph the inequality $20 x+10 y \leq 80,000$, we graph the equation $20 x+10 y=80,000$ as a solid blue line (Figure 7.29). Setting $y=0$, the x-intercept is 4000 and setting $x=0$, the y-intercept is 8000 . Using $(0,0)$ as a test point, the inequality is satisfied, so we shade below the blue line, as shown in yellow in Figure 7.29.

Now we graph $x+y \leq 6000$ by first graphing $x+y=6000$ as a solid red line. Setting $y=0$, the x-intercept is 6000 . Setting $x=0$, the y-intercept is 6000 . Using $(0,0)$ as a test point, the inequality is satisfied, so we shade below the red line, as shown using green vertical shading in Figure 7.29.

We use the addition method to find where the lines $20 x+10 y=80,000$ and $x+y=6000$ intersect.

$$
\left\{\begin{aligned}
20 x+10 y=80,000 \\
x+y=6000 \\
\text { Add: }
\end{aligned} \underset{\begin{array}{rl}
\text { No change } \\
\text { Multiply by }-10 .
\end{array}}{\left\{\begin{aligned}
20 x+10 y & =80,000 \\
-10 x-10 y & = \\
x & =\frac{-60,000}{} \\
x & =2000
\end{aligned}\right.}\right.
$$

Back-substituting 2000 for x in $x+y=6000$, we find $y=4000$, so the intersection point is $(2000,4000)$.

The system of inequalities representing the constraints is shown by the region in which the yellow shading and the green vertical shading overlap in Figure 7.29. The graph of the system of inequalities is shown again in Figure 7.30. The red and blue line segments are included in the graph.

Step 2 Find the value of the objective function at each corner of the graphed region. The maximum and minimum of the objective function occur at one or more of the corner points. We must evaluate the objective function, $z=10 x+6 y$, at the four corners, or vertices, of the region in Figure 7.30.

Corner $(\boldsymbol{x}, \boldsymbol{y})$
$(0,0)$
$(4000,0)$
$(2000,4000)$
$(0,6000)$

$$
\begin{aligned}
& \text { Objective Function } \\
& z=\mathbf{1 0 x}+\mathbf{6} \boldsymbol{y} \\
& z=10(0)+6(0)=0 \\
& z=10(4000)+6(0)=40,000 \\
& z=10(2000)+6(4000)=44,000 \leftarrow \text { maximum } \\
& z=10(0)+6(6000)=36,000
\end{aligned}
$$

Thus, the maximum value of z is 44,000 and this occurs when $x=2000$ and $y=4000$. In practical terms, this means that the maximum number of earthquake survivors who can be helped with each plane shipment is 44,000 . This can be accomplished by sending 2000 water bottles and 4000 medical kits per plane. ©. ©

Check Point 4 For the company in Check Points $1-3$, how many bookshelves and how many desks should be manufactured per day to obtain maximum profit? What is the maximum daily profit?

FIGURE 7.31 The graph of $x+2 y \leq 5$ and $x-y \leq 2$ in quadrant I

FIGURE 7.32 The line with slope -2 with the greatest y-intercept that intersects the shaded region passes through one of its vertices.

EXAMPLE 5 Solving a Linear Programming Problem

Find the maximum value of the objective function

$$
z=2 x+y
$$

subject to the following constraints:

$$
\left\{\begin{array}{r}
x \geq 0, y \geq 0 \\
x+2 y \leq 5 \\
x-y \leq 2
\end{array}\right.
$$

SOLUTION

We begin by graphing the region in quadrant I $(x \geq 0, y \geq 0)$ formed by the constraints. The graph is shown in Figure 7.31.

Now we evaluate the objective function at the four vertices of this region.

$$
\begin{aligned}
& \text { Objective function: } \boldsymbol{z}=\mathbf{2 x}+\boldsymbol{y} \\
& \text { At }(0,0): \quad z=2 \cdot 0+0=0 \\
& \text { At }(2,0): \quad z=2 \cdot 2+0=4 \quad \text { Maximum } \\
& \text { At }(3,1): \quad z=2 \cdot 3+1=7 \quad \text { value of } z \\
& \text { At }(0,2.5): \quad z=2 \cdot 0+2.5=2.5
\end{aligned}
$$

Thus, the maximum value of z is 7 , and this occurs when $x=3$ and $y=1$. \ldots.
We can see why the objective function in Example 5 has a maximum value that occurs at a vertex by solving the equation for y.

$$
\begin{array}{ll}
z=2 x+y & \text { This is the objective function of Example } 5 . \\
y=-2 x+z & \begin{array}{l}
\text { Solve for } y . \text { Recall that the slope-intercept form } \\
\text { of a line is } y=m x+b .
\end{array} \\
\text { Slope }=-\mathbf{2} \quad y \text {-intercept }=z &
\end{array}
$$

In this form, z represents the y-intercept of the objective function. The equation describes infinitely many parallel lines, each with slope -2 . The process in linear programming involves finding the maximum z-value for all lines that intersect the region determined by the constraints. Of all the lines whose slope is -2 , we're looking for the one with the greatest y-intercept that intersects the given region. As we see in Figure 7.32, such a line will pass through one (or possibly more) of the vertices of the region.

Check Point 5 Find the maximum value of the objective function $z=3 x+5 y$ subject to the constraints $x \geq 0, y \geq 0, x+y \geq 1, x+y \leq 6$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A method for finding the maximum or minimum value of a quantity that is subject to various limitations is called \qquad
2. An algebraic expression in two or more variables describing a quantity that must be maximized or minimized is called a/an \qquad function.
3. A system of linear inequalities is used to represent restrictions, or \qquad , on a function that must be maximized or minimized. Using the graph of such a system of inequalities, the maximum and minimum values of the function occur at one or more of the \qquad points.

EXERCISE SET 7.6

Practice Exercises

In Exercises 1-4, find the value of the objective function at each corner of the graphed region. What is the maximum value of the objective function? What is the minimum value of the objective function?

1. Objective Function
$z=5 x+6 y$

2. Objective Function $z=40 x+50 y$

3. Objective Function

$$
z=3 x+2 y
$$

4. Objective Function $z=30 x+45 y$

In Exercises 5-14, an objective function and a system of linear inequalities representing constraints are given.
a. Graph the system of inequalities representing the constraints.
b. Find the value of the objective function at each corner of the graphed region.
c. Use the values in part (b) to determine the maximum value of the objective function and the values of x and y for which the maximum occurs.
5. Objective Function

$$
z=3 x+2 y
$$

Constraints

$$
\left\{\begin{array}{c}
x \geq 0, y \geq 0 \\
2 x+y \leq 8 \\
x+y \geq 4
\end{array}\right.
$$

6. Objective Function Constraints

$$
z=2 x+3 y
$$

$$
\left\{\begin{array}{l}
x \geq 0, y \geq 0 \\
2 x+y \leq 8 \\
2 x+3 y \leq 12
\end{array}\right.
$$

7. Objective Function

$$
z=4 x+y
$$ Constraints

$$
\left\{\begin{array}{l}
x \geq 0, y \geq 0 \\
2 x+3 y \leq 12 \\
x+y \geq 3
\end{array}\right.
$$

8. Objective Function Constraints
9. Objective Function Constraints
10. Objective Function Constraints
11. Objective Function Constraints
12. Objective Function Constraints
13. Objective Function Constraints
14. Objective Function Constraints

Application Exercises

15. A television manufacturer makes rear-projection and plasma televisions. The profit per unit is $\$ 125$ for the rear-projection televisions and $\$ 200$ for the plasma televisions.
a. Let $x=$ the number of rear-projection televisions manufactured in a month and let $y=$ the number of plasma televisions manufactured in a month. Write the objective function that models the total monthly profit.
b. The manufacturer is bound by the following constraints:

- Equipment in the factory allows for making at most 450 rear-projection televisions in one month.
- Equipment in the factory allows for making at most 200 plasma televisions in one month.
- The cost to the manufacturer per unit is $\$ 600$ for the rear-projection televisions and $\$ 900$ for the plasma televisions. Total monthly costs cannot exceed $\$ 360,000$.
Write a system of three inequalities that models these constraints.
c. Graph the system of inequalities in part (b). Use only the first quadrant and its boundary, because x and y must both be nonnegative.
d. Evaluate the objective function for total monthly profit at each of the five vertices of the graphed region. [The vertices should occur at $(0,0),(0,200),(300,200),(450,100)$, and (450, 0).]
e. Complete the missing portions of this statement: The television manufacturer will make the greatest profit by manufacturing \qquad rear-projection televisions each month and \qquad plasma televisions each month. The maximum monthly profit is $\$$ \qquad —.

16. a. A student earns $\$ 10$ per hour for tutoring and $\$ 7$ per hour as a teacher's aide. Let $x=$ the number of hours each week spent tutoring and let $y=$ the number of hours each week spent as a teacher's aide. Write the objective function that models total weekly earnings.
b. The student is bound by the following constraints:

- To have enough time for studies, the student can work no more than 20 hours per week.
- The tutoring center requires that each tutor spend at least three hours per week tutoring.
- The tutoring center requires that each tutor spend no more than eight hours per week tutoring.
Write a system of three inequalities that models these constraints.
c. Graph the system of inequalities in part (b). Use only the first quadrant and its boundary, because x and y are nonnegative.
d. Evaluate the objective function for total weekly earnings at each of the four vertices of the graphed region. [The vertices should occur at $(3,0),(8,0),(3,17)$, and $(8,12)$.]
e. Complete the missing portions of this statement: The student can earn the maximum amount per week by tutoring for ___ hours per week and working as a teacher's aide for ___ hours per week. The maximum amount that the student can earn each week is $\$$

Use the two steps for solving a linear programming problem, given in the box on page 837, to solve the problems in Exercises 17-23.
17. A manufacturer produces two models of mountain bicycles. The times (in hours) required for assembling and painting each model are given in the following table:

	Model \boldsymbol{A}	Model \boldsymbol{B}
Assembling	5	4
Painting	2	3

The maximum total weekly hours available in the assembly department and the paint department are 200 hours and 108 hours, respectively. The profits per unit are $\$ 25$ for model A and $\$ 15$ for model B. How many of each type should be produced to maximize profit?
18. A large institution is preparing lunch menus containing foods A and B. The specifications for the two foods are given in the following table:

Food	Units of Fat per Ounce	Units of Carbohydrates per Ounce	Units of Protein per Ounce
A	1	2	1
B	1	1	1

Each lunch must provide at least 6 units of fat per serving, no more than 7 units of protein, and at least 10 units of carbohydrates. The institution can purchase food A for $\$ 0.12$ per ounce and food B for $\$ 0.08$ per ounce. How many ounces of each food should a serving contain to meet the dietary requirements at the least cost?
19. Food and clothing are shipped to survivors of a natural disaster. Each carton of food will feed 12 people, while each carton of clothing will help 5 people. Each 20 -cubicfoot box of food weighs 50 pounds and each 10-cubic-foot box of clothing weighs 20 pounds. The commercial carriers transporting food and clothing are bound by the following constraints:

- The total weight per carrier cannot exceed 19,000 pounds.
- The total volume must be less than 8000 cubic feet.

How many cartons of food and clothing should be sent with each plane shipment to maximize the number of people who can be helped?
20. On June 24, 1948, the former Soviet Union blocked all land and water routes through East Germany to Berlin. A gigantic airlift was organized using American and British planes to bring food, clothing, and other supplies to the more than 2 million people in West Berlin. The cargo capacity was 30,000 cubic feet for an American plane and 20,000 cubic feet for a British plane. To break the Soviet blockade, the Western Allies had to maximize cargo capacity but were subject to the following restrictions:

- No more than 44 planes could be used.
- The larger American planes required 16 personnel per flight, double that of the requirement for the British planes. The total number of personnel available could not exceed 512.
- The cost of an American flight was $\$ 9000$ and the cost of a British flight was $\$ 5000$. Total weekly costs could not exceed $\$ 300,000$.
Find the number of American and British planes that were used to maximize cargo capacity.

21. A theater is presenting a program for students and their parents on drinking and driving. The proceeds will be donated to a local alcohol information center. Admission is $\$ 2.00$ for parents and $\$ 1.00$ for students. However, the situation has two constraints: The theater can hold no more than 150 people and every two parents must bring at least one student. How many parents and students should attend to raise the maximum amount of money?
22. You are about to take a test that contains computation problems worth 6 points each and word problems worth 10 points each. You can do a computation problem in 2 minutes and a word problem in 4 minutes. You have 40 minutes to take the test and may answer no more than 12 problems. Assuming you answer all the problems attempted correctly, how many of each type of problem must you answer to maximize your score? What is the maximum score?
23. In 1978, a ruling by the Civil Aeronautics Board allowed Federal Express to purchase larger aircraft. Federal Express's options included 20 Boeing 727s that United Airlines was retiring and/or the French-built Dassault Fanjet Falcon 20. To aid in their decision, executives at Federal Express analyzed the following data:

	Boeing 727	Falcon 20
Direct Operating Cost	$\$ 1400$ per hour	$\$ 500$ per hour
Payload	42,000 pounds	6000 pounds

Federal Express was faced with the following constraints:

- Hourly operating cost was limited to $\$ 35,000$.
- Total payload had to be at least 672,000 pounds.
- Only twenty 727s were available.

Given the constraints, how many of each kind of aircraft should Federal Express have purchased to maximize the number of aircraft?

Writing in Mathematics

24. What kinds of problems are solved using the linear programming method?
25. What is an objective function in a linear programming problem?
26. What is a constraint in a linear programming problem? How is a constraint represented?
27. In your own words, describe how to solve a linear programming problem.
28. Describe a situation in your life in which you would really like to maximize something, but you are limited by at least two constraints. Can linear programming be used in this situation? Explain your answer.

Critical Thinking Exercises

Make Sense? In Exercises 29-32, determine whether each statement makes sense or does not make sense, and explain your reasoning.
29. In order to solve a linear programming problem, I use the graph representing the constraints and the graph of the objective function.
30. I use the coordinates of each vertex from my graph representing the constraints to find the values that maximize or minimize an objective function.
31. I need to be able to graph systems of linear inequalities in order to solve linear programming problems.
32. An important application of linear programming for businesses involves maximizing profit.
33. Suppose that you inherit $\$ 10,000$. The will states how you must invest the money. Some (or all) of the money must be invested in stocks and bonds. The requirements are that at least $\$ 3000$ be invested in bonds, with expected returns of $\$ 0.08$ per dollar, and at least $\$ 2000$ be invested in stocks, with expected returns of $\$ 0.12$ per dollar. Because the stocks are medium risk, the final stipulation requires that the investment in bonds should never be less than the investment in stocks. How should the money be invested so as to maximize your expected returns?
34. Consider the objective function $z=A x+B y \quad(A>0$ and $B>0$) subject to the following constraints: $2 x+3 y \leq 9, x-y \leq 2, x \geq 0$, and $y \geq 0$. Prove that the objective function will have the same maximum value at the vertices $(3,1)$ and $(0,3)$ if $A=\frac{2}{3} B$.

Group Exercises

35. Group members should choose a particular field of interest. Research how linear programming is used to solve problems in that field. If possible, investigate the solution of a specific practical problem. Present a report on your findings, including the contributions of George Dantzig, Narendra Karmarkar, and L. G. Khachion to linear programming.
36. Members of the group should interview a business executive who is in charge of deciding the product mix for a business. How are production policy decisions made? Are other methods used in conjunction with linear programming? What are these methods? What sort of academic background, particularly in mathematics, does this executive have? Present a group report addressing these questions, emphasizing the role of linear programming for the business.

Preview Exercises

Exercises 37-39 will help you prepare for the material covered in the first section of the next chapter.
37. Solve the system:

$$
\left\{\begin{aligned}
x+y+2 z & =19 \\
y+2 z & =13 \\
z & =5
\end{aligned}\right.
$$

What makes it fairly easy to find the solution?
38. Solve the system:

$$
\left\{\begin{aligned}
w-x+2 y-2 z= & -1 \\
x-\frac{1}{3} y+z= & \frac{8}{3} \\
y-z= & 1 \\
z= & 3
\end{aligned}\right.
$$

Express the solution set in the form $\{(w, x, y, z)\}$. What makes it fairly easy to find the solution?
39. Consider the following array of numbers:

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
4 & -3 & -15
\end{array}\right]
$$

Rewrite the array as follows: Multiply each number in the top row by -4 and add this product to the corresponding number in the bottom row. Do not change the numbers in the top row.

SUMMARY

DEFINITIONS AND CONCEPTS

7.1 Systems of Linear Equations in Two Variables

a. Two equations in the form $A x+B y=C$ are called a system of linear equations. A solution of the system is an ordered pair that satisfies both equations in the system.
b. Systems of linear equations in two variables can be solved by eliminating a variable, using the substitution method (see the box on page 774) or the addition method (see the box on page 776).
c. Some linear systems have no solution and are called inconsistent systems; others have infinitely many solutions. The equations in a linear system with infinitely many solutions are called dependent. For details, see the box on page 778 .
d. Functions of Business

Revenue Function

$$
R(x)=(\text { price per unit sold }) x
$$

Cost Function

$$
C(x)=\text { fixed cost }+(\text { cost per unit produced }) x
$$

Profit Function

$$
P(x)=R(x)-C(x)
$$

The point of intersection of the graphs of R and C is the break-even point. The x-coordinate of the point reveals the number of units that a company must produce and sell so that the money coming in, the revenue, is equal to the money going out, the cost. The y-coordinate gives the amount of money coming in and going out.

7.2 Systems of Linear Equations in Three Variables

a. Three equations in the form $A x+B y+C z=D$ are called a system of linear equations in three variables. A solution of the system is an ordered triple that satisfies all three equations in the system.
b. A system of linear equations in three variables can be solved by eliminating variables. Use the addition method to eliminate any variable, reducing the system to two equations in two variables. Use substitution or the addition method to solve the resulting system in two variables. Details are found in the box on page 793.
c. Three points that do not lie on a line determine the graph of a quadratic function $y=a x^{2}+b x+c$. Use the three given points to create a system of three equations. Solve the system to find a, b, and c.

7.3 Partial Fractions

a. Partial fraction decomposition is used on rational expressions in which the numerator and denominator have no common factors and the highest power in the numerator is less than the highest power in the denominator. The steps in partial fraction decomposition are given in the box on page 803 .
b. Include one partial fraction with a constant numerator for each distinct linear factor in the denominator. Include one partial fraction with a constant numerator for each power of a repeated linear factor in the denominator.
c. Include one partial fraction with a linear numerator for each distinct prime quadratic factor in the denominator. Include one partial fraction with a linear numerator for each power of a prime, repeated quadratic factor in the denominator.

7.4 Systems of Nonlinear Equations in Two Variables

a. A system of two nonlinear equations in two variables contains at least one equation that cannot be expressed as $A x+B y=C$.
b. Systems of nonlinear equations in two variables can be solved algebraically by eliminating all occurrences of one of the variables by the substitution or addition methods.

EXAMPLES

Ex. 1, p. 772

Ex. 2, p. 774;
Ex. 3, p. 776;
Ex. 4, p. 777
Ex. 5, p. 778;
Ex. 6, p. 779

Ex. 9, p. 783;
Figure 7.8, p. 785

Ex. 1, p. 792

Ex. 2, p. 793;
Ex. 3, p. 795

Ex. 4, p. 796

Ex. 1, p. 802;
Ex. 2, p. 804

Ex. 3, p. 806;
Ex. 4, p. 808

Ex. 1, p. 812;
Ex. 2, p. 813;
Ex. 3, p. 814;
Ex. 4, p. 816

7.5 Systems of Inequalities

a. A linear inequality in two variables can be written in the form $A x+B y>C, A x+B y \geq C, A x+B y<C$, or $A x+B y \leq C$.
b. The procedure for graphing a linear inequality in two variables is given in the box on page 823 . A nonlinear inequality in two variables is graphed using the same procedure.
c. To graph the solution set of a system of inequalities, graph each inequality in the system in the same rectangular coordinate system. Then find the region, if there is one, that is common to every graph in the system.

Ex. 1, p. 823;
Ex. 2, p. 824;
Ex. 3, p. 826;
Ex. 4, p. 826
Ex. 6, p. 828;
Ex. 7, p. 829; Ex. 8, p. 830

7.6 Linear Programming

a. An objective function is an algebraic expression in three variables describing a quantity that must be maximized or minimized.
b. Constraints are restrictions, expressed as linear inequalities.
c. Linear programming is a method for solving problems in which an objective function that must be maximized or minimized is limited by constraints. Steps for solving a linear programming problem are given in the box on page 837 .

Ex. 1, p. 835

Ex. 2, p. 836; Ex. 3, p. 837
Ex. 4, p. 838;
Ex. 5, p. 839

REVIEW EXERCISES

7.1

In Exercises 1-5, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets.

1. $\left\{\begin{array}{l}y=4 x+1 \\ 3 x+2 y=13\end{array}\right.$
2. $\left\{\begin{aligned} x+4 y & =14 \\ 2 x-y & =1\end{aligned}\right.$
3. $\left\{\begin{array}{l}5 x+3 y=1 \\ 3 x+4 y=-6\end{array}\right.$
4. $\left\{\begin{array}{l}2 y-6 x=7 \\ 3 x-y=9\end{array}\right.$
5. $\left\{\begin{array}{l}4 x-8 y=16 \\ 3 x-6 y=12\end{array}\right.$
6. A company is planning to manufacture computer desks. The fixed cost will be $\$ 60,000$ and it will cost $\$ 200$ to produce each desk. Each desk will be sold for $\$ 450$.
a. Write the cost function, C, of producing x desks.
b. Write the revenue function, R, from the sale of x desks.
c. Determine the break-even point. Describe what this means.

Adele Bloch-Bauer, I (1907), Gustav Klimt/Neue Galerie/Art Resource, NY

Boy with a Pipe (1905), Pablo Picasso. © 2011 Picasso Estate/ARS

Talk about paintings by numbers: In 2007, this glittering Klimt set the record for the most ever paid for a painting, a title that had been held by Picasso's Boy with a Pipe. Combined, the two paintings sold for $\$ 239$ million. The difference between the selling price for Klimt's work and the selling price for Picasso's work was $\$ 31$ million. Find the amount paid for each painting.
8. The music business is evolving into a digital marketplace. The bar graph shows that from 2004 through 2009, CD album sales declined, while digital track sales grew.

Source: RIAA
a. In 2004,142 million digital tracks were sold. For the period shown by the graph, this has increased at an average rate of 219 million digital tracks per year. Write a function that models the sale of digital tracks, y, in millions, x years after 2004.
b. The function $95 x+y=770$ models the number of albums sold, y, in millions, x years after 2004. Use this model and the model you obtained in part (a) to determine when digital track sales caught up with album sales. How many digital tracks and how many albums were sold in that year?
9. A travel agent offers two package vacation plans. The first plan costs $\$ 360$ and includes 3 days at a hotel and a rental car for 2 days. The second plan costs $\$ 500$ and includes 4 days at a hotel and a rental car for 3 days. The daily charge for the hotel is the same under each plan, as is the daily charge for the car. Find the cost per day for the hotel and for the car.
10. A chemist needs to mix a solution that is 34% silver nitrate with one that is 4% silver nitrate to obtain 100 milliliters of a mixture that is 7% silver nitrate. How many milliliters of each of the solutions must be used?
11. When a plane flies with the wind, it can travel 2160 miles in 3 hours. When the plane flies in the opposite direction, against the wind, it takes 4 hours to fly the same distance. Find the average velocity of the plane in still air and the average velocity of the wind.

7.2

Solve each system in Exercises 12-13.
12. $\left\{\begin{array}{l}2 x-y+z=1 \\ 3 x-3 y+4 z=5 \\ 4 x-2 y+3 z=4\end{array}\right.$
13. $\left\{\begin{aligned} x+2 y-z & =5 \\ 2 x-y+3 z & =0 \\ 2 y+z & =1\end{aligned}\right.$
14. Find the quadratic function $y=a x^{2}+b x+c$ whose graph passes through the points $(1,4),(3,20)$, and $(-2,25)$.
15. 20th Century Death The greatest cause of death in the 20th century was disease, killing 1390 million people. The bar graph shows the five leading causes of death in that century, excluding disease.

Source: Wikipedia
War, famine, and tobacco combined resulted in 306 million deaths. The difference between the number of deaths from war and famine was 13 million. The difference between the number of deaths from war and tobacco was 53 million. Find the number of 20th century deaths from war, famine, and tobacco.
18. $\frac{4 x^{2}-3 x-4}{x(x+2)(x-1)}$
19. $\frac{2 x+1}{(x-2)^{2}}$
20. $\frac{2 x-6}{(x-1)(x-2)^{2}}$
21. $\frac{3 x}{(x-2)\left(x^{2}+1\right)}$
22. $\frac{7 x^{2}-7 x+23}{(x-3)\left(x^{2}+4\right)}$
23. $\frac{x^{3}}{\left(x^{2}+4\right)^{2}}$
24. $\frac{4 x^{3}+5 x^{2}+7 x-1}{\left(x^{2}+x+1\right)^{2}}$

7.4

In Exercises 25-35, solve each system by the method of your choice.
25. $\left\{\begin{array}{l}5 y=x^{2}-1 \\ x-y=1\end{array}\right.$
26. $\left\{\begin{array}{l}y=x^{2}+2 x+1 \\ x+y=1\end{array}\right.$
27. $\left\{\begin{array}{l}x^{2}+y^{2}=2 \\ x+y=0\end{array}\right.$
28. $\left\{\begin{aligned} 2 x^{2}+y^{2} & =24 \\ x^{2}+y^{2} & =15\end{aligned}\right.$
29. $\left\{\begin{aligned} x y-4 & =0 \\ y-x & =0\end{aligned}\right.$
30. $\left\{\begin{array}{l}y^{2}=4 x \\ x-2 y+3=0\end{array}\right.$
31. $\left\{\begin{array}{l}x^{2}+y^{2}=10 \\ y=x+2\end{array}\right.$
32. $\left\{\begin{array}{l}x y=1 \\ y=2 x+1\end{array}\right.$
33. $\left\{\begin{array}{l}x+y+1=0 \\ x^{2}+y^{2}+6 y-x=-5\end{array}\right.$
34. $\left\{\begin{array}{l}x^{2}+y^{2}=13 \\ x^{2}-y=7\end{array}\right.$
35. $\left\{\begin{array}{l}2 x^{2}+3 y^{2}=21 \\ 3 x^{2}-4 y^{2}=23\end{array}\right.$
36. The perimeter of a rectangle is 26 meters and its area is 40 square meters. Find its dimensions.
37. Find the coordinates of all points (x, y) that lie on the line whose equation is $2 x+y=8$, so that the area of the rectangle shown in the figure is 6 square units.

38. Two adjoining square fields with an area of 2900 square feet are to be enclosed with 240 feet of fencing. The situation is represented in the figure. Find the length of each side where a variable appears.

7.3

In Exercises 16-24, write the partial fraction decomposition of each rational expression.
16. $\frac{x}{(x-3)(x+2)}$
17. $\frac{11 x-2}{x^{2}-x-12}$

7.5

In Exercises 39-45, graph each inequality.
39. $3 x-4 y>12$
40. $y \leq-\frac{1}{2} x+2$
41. $x<-2$
42. $y \geq 3$
43. $x^{2}+y^{2}>4$
44. $y \leq x^{2}-1$
45. $y \leq 2^{x}$

In Exercises 46-55, graph the solution set of each system of inequalities or indicate that the system has no solution.
46. $\left\{\begin{array}{l}3 x+2 y \geq 6 \\ 2 x+y \geq 6\end{array}\right.$
47. $\left\{\begin{aligned} 2 x-y & \geq 4 \\ x+2 y & <2\end{aligned}\right.$
48. $\left\{\begin{array}{l}y<x \\ y \leq 2\end{array}\right.$
49. $\left\{\begin{array}{l}x+y \leq 6 \\ y \geq 2 x-3\end{array}\right.$
50. $\left\{\begin{array}{l}0 \leq x \leq 3 \\ y>2\end{array}\right.$
51. $\left\{\begin{array}{l}2 x+y<4 \\ 2 x+y>6\end{array}\right.$
52. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 16 \\ x+y<2\end{array}\right.$
53. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 9 \\ y<-3 x+1\end{array}\right.$
54. $\left\{\begin{array}{l}y>x^{2} \\ x+y<6 \\ y<x+6\end{array}\right.$
55. $\left\{\begin{array}{l}y \geq 0 \\ 3 x+2 y \geq 4 \\ x-y \leq 3\end{array}\right.$

7.6

56. Find the value of the objective function $z=2 x+3 y$ at each corner of the graphed region shown. What is the maximum value of the objective function? What is the minimum value of the objective function?

In Exercises 57-59, graph the region determined by the constraints. Then find the maximum value of the given objective function, subject to the constraints.
57. Objective Function

Constraints

$$
\begin{array}{r}
z=2 x+3 y \\
\left\{\begin{array}{r}
x \geq 0, y \geq 0 \\
x+y \leq 8 \\
3 x+2 y \geq 6
\end{array}\right.
\end{array}
$$

58. Objective Function Constraints
59. Objective Function Constraints
60. A paper manufacturing company converts wood pulp to writing paper and newsprint. The profit on a unit of writing paper is $\$ 500$ and the profit on a unit of newsprint is $\$ 350$.
a. Let x represent the number of units of writing paper produced daily. Let y represent the number of units of newsprint produced daily. Write the objective function that models total daily profit.
b. The manufacturer is bound by the following constraints:

- Equipment in the factory allows for making at most 200 units of paper (writing paper and newsprint) in a day.
- Regular customers require at least 10 units of writing paper and at least 80 units of newsprint daily.
Write a system of inequalities that models these constraints.
c. Graph the inequalities in part (b). Use only the first quadrant, because x and y must both be positive. (Suggestion: Let each unit along the x - and y-axes represent 20.)
d. Evaluate the objective function at each of the three vertices of the graphed region.
e. Complete the missing portions of this statement: The company will make the greatest profit by producing ___ units of writing paper and \qquad units of newsprint each day. The maximum daily profit is \$

61. A manufacturer of lightweight tents makes two models whose specifications are given in the following table:

	Cutting Time per Tent	Assembly Time per Tent
Model A	0.9 hour	0.8 hour
Model B	1.8 hours	1.2 hours

On a monthly basis, the manufacturer has no more than 864 hours of labor available in the cutting department and at most 672 hours in the assembly division. The profits come to $\$ 25$ per tent for model A and $\$ 40$ per tent for model B. How many of each should be manufactured monthly to maximize the profit?

CHAPTER 7 TEST

In Exercises 1-5, solve the system.

1. $\left\{\begin{array}{l}x=y+4 \\ 3 x+7 y=-18\end{array}\right.$
2. $\left\{\begin{array}{l}2 x+5 y=-2 \\ 3 x-4 y=20\end{array}\right.$
3. $\left\{\begin{aligned} x+y+z & =6 \\ 3 x+4 y-7 z & =1 \\ 2 x-y+3 z & =5\end{aligned}\right.$
4. $\left\{\begin{array}{l}x^{2}+y^{2}=25 \\ x+y=1\end{array}\right.$
5. $\left\{\begin{array}{l}2 x^{2}-5 y^{2}=-2 \\ 3 x^{2}+2 y^{2}=35\end{array}\right.$
6. Find the partial fraction decomposition for $\frac{x}{(x+1)\left(x^{2}+9\right)}$.

In Exercises 7-10, graph the solution set of each inequality or system of inequalities.
7. $x-2 y<8$
8. $\left\{\begin{aligned} x \geq 0, y & \geq 0 \\ 3 x+y & \leq 9 \\ 2 x+3 y & \geq 6\end{aligned}\right.$
9. $\left\{\begin{array}{l}x^{2}+y^{2}>1 \\ x^{2}+y^{2}<4\end{array}\right.$
10. $\left\{\begin{array}{l}y \leq 1-x^{2} \\ x^{2}+y^{2} \leq 9\end{array}\right.$
11. Find the maximum value of the objective function $z=3 x+5 y$ subject to the following constraints: $x \geq 0, y \geq 0, x+y \leq 6, x \geq 2$.
12. Health experts agree that cholesterol intake should be limited to 300 mg or less each day. Three ounces of shrimp and 2 ounces of scallops contain 156 mg of cholesterol. Five ounces of shrimp and 3 ounces of scallops contain 45 mg of cholesterol less than the suggested maximum daily intake. Determine the cholesterol content in an ounce of each item.
13. A company is planning to produce and sell a new line of computers. The fixed cost will be $\$ 360,000$ and it will cost $\$ 850$ to produce each computer. Each computer will be sold for $\$ 1150$.
a. Write the cost function, C, of producing x computers.
b. Write the revenue function, R, from the sale of x computers.
c. Determine the break-even point. Describe what this means.
14. A chemist needs to mix a 20% acid solution with a 50% acid solution to obtain 60 ounces of a 30% acid solution. How many ounces of each of the solutions must be used?
15. When a plane flies with the wind, it can travel 1600 kilometers in 2 hours. When the plane flies in the opposite direction, against the wind, it takes 3 hours to travel 1950 kilometers. Find the average velocity of the plane in still air and the average velocity of the wind.
16. Find the quadratic function whose graph passes through the points $(-1,-2),(2,1)$, and $(-2,1)$.
17. The rectangular plot of land shown in the figure is to be fenced along three sides using 39 feet of fencing. No fencing is to be placed along the river's edge. The area of the plot is 180 square feet. What are its dimensions?

18. A manufacturer makes two types of jet skis, regular and deluxe. The profit on a regular jet ski is $\$ 200$ and the profit on the deluxe model is $\$ 250$. To meet customer demand, the company must manufacture at least 50 regular jet skis per week and at least 75 deluxe models. To maintain high quality, the total number of both models of jet skis manufactured by the company should not exceed 150 per week. How many jet skis of each type should be manufactured per week to obtain maximum profit? What is the maximum weekly profit?

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-7)

The figure shows the graph of $y=f(x)$ and its two vertical asymptotes. Use the graph to solve Exercises 1-10.

1. Find the domain and the range of f.
2. Find the zeros.
3. What is the relative maximum and where does it occur?
4. Find the interval(s) on which f is decreasing.
5. Is $f(-0.7)$ positive or negative?
6. Find $(f \circ f)(-1)$.
7. Use arrow notation to complete this statement:

$$
f(x) \rightarrow-\infty \text { as }
$$

\qquad or as \qquad
8. Does f appear to be even, odd, or neither?
9. Graph $g(x)=f(x+2)-1$.
10. Graph $h(x)=\frac{1}{2} f\left(\frac{1}{2} x\right)$.

In Exercises 11-21, solve each equation, inequality, or system of equations.
11. $\sqrt{x^{2}-3 x}=2 x-6$
12. $4 x^{2}=8 x-7$
13. $\left|\frac{x}{3}+2\right|<4$
14. $\frac{x+5}{x-1}>2$
15. $2 x^{3}+x^{2}-13 x+6=0$
16. $6 x-3(5 x+2)=4(1-x)$
17. $\log (x+3)+\log x=1$
18. $3^{x+2}=11$
19. $x^{\frac{1}{2}}-2 x^{\frac{1}{4}}-15=0$
20. $\left\{\begin{array}{l}3 x-y=-2 \\ 2 x^{2}-y=0\end{array}\right.$
21. $\left\{\begin{aligned} x+2 y+3 z & =-2 \\ 3 x+3 y+10 z & =-2 \\ 2 y-5 z & =6\end{aligned}\right.$

In Exercises 22-28, graph each equation, function, or inequality in a rectangular coordinate system. If two functions are indicated, graph both in the same system.
22. $f(x)=(x+2)^{2}-4$
23. $2 x-3 y \leq 6$
24. $y=3^{x-2}$
25. $f(x)=\frac{x^{2}-x-6}{x+1}$
26. $f(x)=2 x-4$ and f^{-1}
27. $(x-2)^{2}+(y-4)^{2}>9$
28. $f(x)=|x|$ and $g(x)=-|x-2|$

In Exercises 29-30, let $f(x)=2 x^{2}-x-1$ and $g(x)=1-x$.
29. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
30. Find $\frac{f(x+h)-f(x)}{h}$ and simplify.

In Exercises 31-32, write the linear function in slope-intercept form satisfying the given conditions.
31. Graph of f passes through $(2,4)$ and $(4,-2)$.
32. Graph of g passes through $(-1,0)$ and is perpendicular to the line whose equation is $x+3 y-6=0$.
33. You invested $\$ 4000$ in two stocks paying 12% and 14% annual interest. At the end of the year, the total interest from these investments was $\$ 508$. How much was invested at each rate?
34. The length of a rectangle is 1 meter more than twice the width. If the rectangle's area is 36 square meters, find its dimensions.
35. What interest rate is required for an investment of $\$ 6000$ subject to continuous compounding to grow to $\$ 18,000$ in 10 years?

In Exercises 36-37, verify each identity.
36. $\sec \theta-\cos \theta=\tan \theta \sin \theta$
37. $\tan x+\tan y=\frac{\sin (x+y)}{\cos x \cos y}$

In Exercises 38-39, solve each equation.
38. $\sin \theta=\tan \theta, \quad 0 \leq \theta<2 \pi$
39. $2+\cos 2 \theta=3 \cos \theta, \quad 0 \leq \theta<2 \pi$
40. In oblique triangle $A B C, A=12^{\circ}, B=75^{\circ}$, and $a=20$. Find b to the nearest tenth.

MATRICES AND DETERMINANTS

 F．f．ox

Share
\qquad者

 afler

O

You are being drawn deeper inta

 cylerspace，spending more time online each week．With constantly improving high－resolution images，cyberspace is reshaping your life by nourishing shared enthusiasms．The people who built your computer talk of bandwidth that will give you the visual experience，in high－definition 3－D format，of being in the same room with a person who is actually in another city．Rectangular arrays of numbers，called matrices，play a central role in representing computer images and in the forthcoming technology of tele－immersion．HERE＇S WHERE YOU＇LL FIND THESE APPLICATIONS：

The use of rectangular arrays of numbers in the digital representation of images and the manipulation of images on a computer screen is discussed in Examples 8 and 9 in Section 8．3．

SECTION 8.1

Objectives

(1) Write the augmented matrix for a linear system.
2. Perform matrix row operations.
(3) Use matrices and Gaussian elimination to solve systems.
(4) Use matrices and Gauss-Jordan elimination to solve systems.
(1) Write the augmented matrix for a linear system.

GREAT QUESTION!

Do linear systems have to be expressed in a special form when writing augmented matrices?
Yes. Variable terms must be on one side of each equation and constants must be on the other side. Furthermore, the variables must be in the same order in each equation.

Matrix Solutions to Linear Systems

In Chapter 5, we used systems of inequalities to establish healthy weight ranges for men and women of various ages and heights. Now it's time to step on the scale. The data below show the average weight of American adults, by age.

Average Weight by Age

	$\begin{gathered} \text { Ages } \\ \mathbf{2 0 - 2 9} \end{gathered}$	$\begin{aligned} & \text { Ages } \\ & \text { 30-39 } \end{aligned}$	$\begin{aligned} & \text { Ages } \\ & \text { 40-49 } \end{aligned}$	$\begin{gathered} \text { Ages } \\ \mathbf{5 0}-59 \end{gathered}$	$\begin{aligned} & \text { Ages } \\ & 60-69 \end{aligned}$	$\begin{gathered} \text { Ages } \\ 70-79 \end{gathered}$	$\begin{aligned} & \text { Ages } \\ & 80+ \end{aligned}$
Men	[188	194	202	199	198	187	168
Women	L156	165	171	172	171	156	142

Source: National Center for Health Statistics

The 14 numbers inside the brackets are arranged in two rows and seven columns. This rectangular array of 14 numbers, arranged in rows and columns and placed in brackets, is an example of a matrix (plural: matrices). The numbers inside the brackets are called elements of the matrix. Matrices are used to display information and to solve systems of linear equations. Because systems involving two equations in two variables can easily be solved by substitution or addition, we will focus on matrix solutions to systems of linear equations in three or more variables.

Augmented Matrices

A matrix gives us a shortened way of writing a system of equations. The first step in solving a system of linear equations using matrices is to write the augmented matrix. An augmented matrix has a vertical bar separating the columns of the matrix into two groups. The coefficients of each variable are placed to the left of the vertical line and the constants are placed to the right. If any variable is missing, its coefficient is 0 . Here are two examples:

System of Linear Equations

$$
\begin{aligned}
& \left\{\begin{aligned}
3 x+y+2 z & =31 \\
x+y+2 z & =19 \\
x+3 y+2 z & =25
\end{aligned}\right. \\
& \left\{\begin{aligned}
x+2 y-5 z & =-19 \\
y+3 z & =9 \\
z & =4
\end{aligned}\right.
\end{aligned}
$$

Augmented Matrix

$\left[\begin{array}{lll|l}3 & 1 & 2 & 31 \\ 1 & 1 & 2 & 19 \\ 1 & 3 & 2 & 25\end{array}\right]$
$\left[\begin{array}{rrr|r}1 & 2 & -5 & -19 \\ 0 & 1 & 3 & 9 \\ 0 & 0 & 1 & 4\end{array}\right]$.

Our goal in solving a system of linear equations in three variables using matrices is to produce a matrix with 1 s down the diagonal from upper left to lower right on the left side of the vertical bar, called the main diagonal, and 0s below the 1s. In general, the matrix will be of the form

$$
\left[\begin{array}{lll|l}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f
\end{array}\right],
$$

where a through f represent real numbers. The third row of this matrix gives us the value of one variable. The other variables can then be found by back-substitution.

GREAT QUESTION!

Can you clarify what I'm supposed to do to find $k R_{i}+\boldsymbol{R}_{j}$? Which row do I work with and which row do I replace?
When performing the row operation

$$
k R_{i}+R_{j}
$$

you use row i to find the products. However, elements in row \boldsymbol{i} do not change. It is the elements in row \boldsymbol{j} that change: Add k times the elements in row i to the corresponding elements in row j. Replace elements in row j by these sums.

Matrix Row Operations

A matrix with 1s down the main diagonal and 0s below the 1 s is said to be in rowechelon form. How do we produce a matrix in this form? We use row operations on the augmented matrix. These row operations are just like what you did when solving a linear system by the addition method. The difference is that we no longer write the variables, usually represented by x, y, and z.

Matrix Row Operations

The following row operations produce matrices that represent systems with the same solution set:

1. Two rows of a matrix may be interchanged. This is the same as interchanging two equations in a linear system.
2. The elements in any row may be multiplied by a nonzero number. This is the same as multiplying both sides of an equation by a nonzero number.
3. The elements in any row may be multiplied by a nonzero number, and these products may be added to the corresponding elements in any other row. This is the same as multiplying both sides of an equation by a nonzero number and then adding equations to eliminate a variable.
Two matrices are row equivalent if one can be obtained from the other by a sequence of row operations.

Each matrix row operation in the preceding box can be expressed symbolically as follows:

1. Interchange the elements in the i th and j th rows: $R_{i} \leftrightarrow R_{j}$.
2. Multiply each element in the i th row by k : $k R_{i}$.
3. Add k times the elements in row i to the corresponding elements in row j : $k R_{i}+R_{j}$.

EXAMPLE 1 Performing Matrix Row Operations

Use the matrix

$$
\left[\begin{array}{rrr|r}
3 & 18 & -12 & 21 \\
1 & 2 & -3 & 5 \\
-2 & -3 & 4 & -6
\end{array}\right]
$$

and perform each indicated row operation:
a. $R_{1} \leftrightarrow R_{2}$
b. $\frac{1}{3} R_{1}$
c. $2 R_{2}+R_{3}$.

SOLUTION

a. The notation $R_{1} \leftrightarrow R_{2}$ means to interchange the elements in row 1 and row 2. This results in the row-equivalent matrix

$$
\left[\begin{array}{rrr|r}
1 & 2 & -3 & 5 \\
3 & 18 & -12 & 21 \\
-2 & -3 & 4 & -6
\end{array}\right] \begin{aligned}
& \text { This was row } 2 \text {; now it's row } 1 .
\end{aligned} \begin{aligned}
& \text { This was row } 1 ; \text { now it's row } 2 .
\end{aligned}
$$

b. The notation $\frac{1}{3} R_{1}$ means to multiply each element in row 1 by $\frac{1}{3}$. This results in the row-equivalent matrix

$$
\left[\begin{array}{ccc|c}
\frac{1}{3}(3) & \frac{1}{3}(18) & \frac{1}{3}(-12) & \frac{1}{3}(21) \\
1 & 2 & -3 & 5 \\
-2 & -3 & 4 & -6
\end{array}\right]=\left[\begin{array}{rrr|r}
1 & 6 & -4 & 7 \\
1 & 2 & -3 & 5 \\
-2 & -3 & 4 & -6
\end{array}\right]
$$

$\left[\begin{array}{rrr|r}3 & 18 & -12 & 21 \\ 1 & 2 & -3 & 5 \\ -2 & -3 & 4 & -6\end{array}\right]$
The given matrix (repeated)
c. The notation $2 R_{2}+R_{3}$ means to add 2 times the elements in row 2 to the corresponding elements in row 3. Replace the elements in row 3 by these sums. First, we find 2 times the elements in row 2 , namely, $1,2,-3$, and 5 :

$$
2(1) \text { or } 2, \quad 2(2) \text { or } 4, \quad 2(-3) \text { or }-6, \quad 2(5) \text { or } 10 .
$$

Now we add these products to the corresponding elements in row 3. Although we use row 2 to find the products, row 2 does not change. It is the elements in row 3 that change, resulting in the row-equivalent matrix
$\left.\left.\begin{array}{c}\text { Replace row 3 by the } \\ \text { sum of itself and } \\ \text { 2 times row 2. }\end{array}\right]\left[\begin{array}{ccc}3 & 18 & -12 \\ 1 & 2 & -3 \\ -2+2=0 & -3+4=1 & 4+(-6)=-2\end{array}\right] \begin{array}{c}21 \\ -6+10=4\end{array}\right]=\left[\begin{array}{rrr|r}3 & 18 & -12 & 21 \\ 1 & 2 & -3 & 5 \\ 0 & 1 & -2 & 4\end{array}\right]$.

W Check Point 1 Use the matrix

$$
\left[\begin{array}{rrr|r}
4 & 12 & -20 & 8 \\
1 & 6 & -3 & 7 \\
-3 & -2 & 1 & -9
\end{array}\right]
$$

and perform each indicated row operation:
a. $R_{1} \leftrightarrow R_{2}$
b. $\frac{1}{4} R_{1}$
c. $3 R_{2}+R_{3}$.
. Use matrices and Gaussian elimination to solve systems.

Solving Linear Systems Using Gaussian Elimination

The process that we use to solve linear systems using matrix row operations is called Gaussian elimination, after the German mathematician Carl Friedrich Gauss (1777-1855). Here are the steps used in Gaussian elimination:

Solving Linear Systems of Three Equations with Three Variables Using Gaussian Elimination

1. Write the augmented matrix for the system.
2. Use matrix row operations to simplify the matrix to a row-equivalent matrix in row-echelon form, with 1 s down the main diagonal from upper left to lower right, and 0 s below the 1 s in the first and second columns.

3. Write the system of linear equations corresponding to the matrix in step 2 and use back-substitution to find the system's solution.

EXAMPLE 2 Gaussian Elimination with Back-Substitution

Use matrices to solve the system:

$$
\left\{\begin{aligned}
3 x+y+2 z & =31 \\
x+y+2 z & =19 \\
x+3 y+2 z & =25
\end{aligned}\right.
$$

SOLUTION

Step 1 Write the augmented matrix for the system.

$$
\begin{array}{ll}
\text { Linear System } & \\
\left\{\begin{aligned}
3 x+y+2 z & =31 \\
x+y+2 z & =19 \\
x+3 y+2 z & =25
\end{aligned}\right. & {\left[\begin{array}{lll|l}
3 & 1 & 2 & 31 \\
1 & 1 & 2 & 19 \\
1 & 3 & 2 & 25
\end{array}\right]}
\end{array}
$$

Step 2 Use matrix row operations to simplify the matrix to row-echelon form, with 1 s down the main diagonal from upper left to lower right, and 0 s below the 1 s in the first and second columns. Our first step in achieving this goal is to get 1 in the top position of the first column.

$$
\left.\underset{\substack{\text { We want } 1 \text { in } \\
\text { this position. }}}{\substack{3 \\
1}} \begin{array}{lll|l}
1 & 2 & 31 \\
1 & 3 & 2 & 19 \\
25
\end{array}\right]
$$

To get 1 in this position, we interchange row 1 and row 2: $R_{1} \leftrightarrow R_{2}$. (We could also interchange row 1 and row 3 to attain our goal.)

$$
\left[\begin{array}{lll|l}
1 & 1 & 2 & 19 \\
3 & 1 & 2 & 31 \\
1 & 3 & 2 & 25
\end{array}\right] \quad \text { This was row } 2 \text {; now it's row } 1 .
$$

Now we want to get 0 s below the 1 in the first column.

$$
\begin{gathered}
\begin{array}{c}
\text { We want } 0 \text { in } \\
\text { these positions. }
\end{array}
\end{gathered}\left[\begin{array}{lll|l}
1 & 1 & 2 & 19 \\
3 & 1 & 2 & 31 \\
1 & 3 & 2 & 25
\end{array}\right]
$$

To get a 0 where there is now a 3 , multiply the top row of numbers by -3 and add these products to the second row of numbers: $-3 R_{1}+R_{2}$. To get a 0 where there is now a 1 , multiply the top row of numbers by -1 and add these products to the third row of numbers: $-1 R_{1}+R_{3}$. Although we are using row 1 to find the products, the numbers in row 1 do not change.

We want 1 in this position.

We move on to the second column. To get 1 in the desired position, we multiply -2 by its reciprocal, $-\frac{1}{2}$. Therefore, we multiply all the numbers in the second row by $-\frac{1}{2}:-\frac{1}{2} R_{2}$.

$$
-\frac{1}{2} R_{\mathbf{2}}\left[\begin{array}{ccc|c}
1 & 1 & 2 & 19 \\
-\frac{1}{2}(0) & -\frac{1}{2}(-2) & -\frac{1}{2}(-4) & -\frac{1}{2}(-26) \\
0 & 2 & 0 & 6
\end{array}\right]=\left[\begin{array}{lll|l}
1 & 1 & 2 & 19 \\
0 & 1 & 2 & 13 \\
0 & 2 & 0 & 6
\end{array}\right] .
$$

$\left[\begin{array}{lll|c}1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 2 & 0 & 6\end{array}\right]$

We want 0 in this position.
The matrix from the bottom of the previous page (repeated)

$$
\begin{array}{r}
\substack{\text { Replace row } 3 \text { by } \\
-2 R_{2}+R_{3} .}
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & 2 \\
0 & 1 & 2 \\
-2(0)+0 & -2(1)+2 & -2(2)+0 & 19 \\
-2(13)+6
\end{array}\right]=\left[\begin{array}{rrr|r}
1 & 1 & 2 & 19 \\
0 & 1 & 2 & 13 \\
0 & 0 & -4 & -20
\end{array}\right]
$$

We move on to the third column. To get 1 in the desired position, we multiply -4 by its reciprocal, $-\frac{1}{4}$. Therefore, we multiply all the numbers in the third row by $-\frac{1}{4}$: $-\frac{1}{4} R_{3}$.

$$
-\frac{1}{4} R_{3}\left[\begin{array}{ccc|c}
1 & 1 & 2 & 19 \\
0 & 1 & 2 & 13 \\
-\frac{1}{4}(0) & -\frac{1}{4}(0) & -\frac{1}{4}(-4) & -\frac{1}{4}(-20)
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & 2 & 19 \\
0 & 1 & 2 & 13 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

We now have the desired matrix in row-echelon form, with 1 s down the main diagonal and 0s below the 1s in the first and second columns.
Step 3 Write the system of linear equations corresponding to the matrix in step 2 and use back-substitution to find the system's solution. The system represented by the matrix in step 2 is

$$
\left[\begin{array}{lll|r}
1 & 1 & 2 & 19 \\
0 & 1 & 2 & 13 \\
0 & 0 & 1 & 5
\end{array}\right] \rightarrow\left\{\begin{array} { r }
{ 1 x + 1 y + 2 z = 1 9 } \\
{ 0 x + 1 y + 2 z = 1 3 } \\
{ 0 x + 0 y + 1 z = 5 }
\end{array} \text { or } \quad \left\{\begin{array}{r}
x+y+2 z=19 \\
y+2 z=13 \\
z=5
\end{array}\right.\right.
$$

We immediately see from equation (3) that the value for z is 5 . To find y, we backsubstitute 5 for z in the second equation.

$$
\begin{aligned}
y+2 z & =13 \quad & & \text { Equation (2) } \\
y+2(5) & =13 & & \text { Substitute } 5 \text { for } z . \\
y+10 & =13 \quad & & \text { Multiply. } \\
y & =3 \quad & & \text { Subtract } 10 \text { from both sides and solve for } y .
\end{aligned}
$$

Finally, back-substitute 3 for y and 5 for z in the first equation.

$$
\begin{aligned}
x+y+2 z & =19 & & \text { Equation (1) } \\
x+3+2(5) & =19 & & \text { Substitute } 3 \text { for } y \text { and } 5 \text { for } z . \\
x+13 & =19 & & \text { Multiply and add. } \\
x & =6 \quad & & \text { Subtract } 13 \text { from both sides and solve for } x .
\end{aligned}
$$

With $z=5, y=3$, and $x=6$, the solution set of the original system is $\{(6,3,5)\}$. Check to see that the solution satisfies all three equations in the given system.
$\$$ Check Point 2 Use matrices to solve the system:

$$
\left\{\begin{aligned}
2 x+y+2 z & =18 \\
x-y+2 z & =9 \\
x+2 y-z & =6
\end{aligned}\right.
$$

Modern supercomputers are capable of solving systems with more than 600,000 variables. The augmented matrices for such systems are huge, but the solution using matrices is exactly like what we did in Example 2. Work with the augmented matrix, one column at a time. Get 1s down the main diagonal from upper left to lower right and 0 s below the 1 s . Let's see how this works for a linear system involving four equations in four variables.

EXAMPLE 3 Gaussian Elimination with Back-Substitution

Use matrices to solve the system:

$$
\left\{\begin{aligned}
2 w+x+3 y-z & =6 \\
w-x+2 y-2 z & =-1 \\
w-x-y+z & =-4 \\
-w+2 x-2 y-z & =-7
\end{aligned}\right.
$$

SOLUTION

Step 1 Write the augmented matrix for the system.

Linear System

$$
\left\{\begin{aligned}
2 w+x+3 y-z & =6 \\
w-x+2 y-2 z & =-1 \\
w-x-y+z & =-4 \\
-w+2 x-2 y-z & =-7
\end{aligned}\right.
$$

$\left[\begin{array}{rrrr|r}2 & 1 & 3 & -1 & 6 \\ 1 & -1 & 2 & -2 & -1 \\ 1 & -1 & -1 & 1 & -4 \\ -1 & 2 & -2 & -1 & -7\end{array}\right]$

Step 2 Use matrix row operations to simplify the matrix to row-echelon form, with 1 s down the main diagonal from upper left to lower right, and 0 s below the 1s in the first, second, and third columns. Our first step in achieving this goal is to get 1 in the top position of the first column. To do this, we interchange row 1 and row 2: $R_{1} \leftrightarrow R_{2}$.

Now we use the 1 at the top of the first column to get 0 s below it.

Use the previous matrix and: Replace row 2 by $-2 R_{1}+R_{2}$. Replace row 3 by $-1 R_{1}+R_{3}$. Replace row 4 by $1 R_{1}+R_{4}$.$\quad\left[\begin{array}{rrrr\|r}1 & -1 & 2 & -2 & -17 \\ 0 & 3 & -1 & 3 & 8 \\ 0 & 0 & -3 & 3 & -3 \\ 0 & 1 & 0 & -3 & -8\end{array}\right]$We want 1 in this position.

We move on to the second column. We can obtain 1 in the desired position by multiplying the numbers in the second row by $\frac{1}{3}$, the reciprocal of 3 .

$$
\left[\begin{array}{cccc|c}
1 & -1 & 2 & -2 & -1 \\
\frac{1}{3}(0) & \frac{1}{3}(3) & \frac{1}{3}(-1) & \frac{1}{3}(3) & \frac{1}{3}(8) \\
0 & 0 & -3 & 3 & -3 \\
0 & 1 & 0 & -3 & -8
\end{array}\right]=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -2 & -1 \\
0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\
0 & 0 & -3 & 3 & -3 \\
0 & 1 & 0 & -3 & -8
\end{array}\right] \quad \frac{1}{3} R_{2}
$$

$$
\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -2 & -1 \\
0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\
0 & 0 & -3 & 3 & -3 \\
0 & 1 & 0 & -3 & -8
\end{array}\right]
$$

We want 0 s in these positions. The top position already has a 0 .

The matrix from the bottom of the previous page (repeated)

So far, our matrix row operations have resulted in the matrix that we repeated in the margin. Now we use the 1 in the second row, second column position to get 0 s below it.

We move on to the third column. We can obtain 1 in the desired position by multiplying the numbers in the third row by $-\frac{1}{3}$, the reciprocal of -3 .
$\left[\begin{array}{rrrr|r}1 & -1 & 2 & -2 & -1 \\ 0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\ -\frac{1}{3}(0) & -\frac{1}{3}(0) & -\frac{1}{3}(-3) & -\frac{1}{3}(3) & -\frac{1}{3}(-3) \\ 0 & 0 & \frac{1}{3} & -4 & -\frac{32}{3}\end{array}\right]=\left[\begin{array}{rrrr|r}1 & -1 & 2 & -2 & -1 \\ 0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & \frac{1}{3} & -4 & -\frac{32}{3}\end{array}\right] \quad-\frac{1}{3} R_{3}$

> We want
> 0 in this
> position.

Now we use the 1 in the third column to get 0 below it.

We move on to the fourth column. Because we want 1 s down the diagonal from upper left to lower right, we want 1 where there is now $-\frac{11}{3}$. We can obtain 1 in this position by multiplying the numbers in the fourth row by $-\frac{3}{11}$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & -1 & 2 & -2 & -1 \\
0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\
0 & 0 & 1 & -1 & 1 \\
-\frac{3}{11}(0) & -\frac{3}{11}(0) & -\frac{3}{11}(0) & -\frac{3}{11}\left(-\frac{11}{3}\right) & -\frac{3}{11}(-11)
\end{array}\right] } \\
&=\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -2 & -1 \\
0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

We now have the desired matrix in row-echelon form, with 1 s down the main diagonal and 0 s below the 1 s . An equivalent row-echelon matrix can be obtained using a graphing utility and the REF command on the augmented matrix.
Step 3 Write the system of linear equations corresponding to the matrix in step 2 and use back-substitution to find the system's solution. The system represented by the matrix in step 2 is

$$
\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -2 & -1 \\
0 & 1 & -\frac{1}{3} & 1 & \frac{8}{3} \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left\{\begin{array} { r }
{ 1 w - 1 x + 2 y - 2 z = - 1 } \\
{ 0 w + 1 x - \frac { 1 } { 3 } y + 1 z = \frac { 8 } { 3 } } \\
{ 0 w + 0 x + 1 y - 1 z = 1 } \\
{ 0 w + 0 x + 0 y + 1 z = 3 }
\end{array} \text { or } \quad \left\{\begin{array}{r}
w-x+2 y-2 z=-1 \\
x-\frac{1}{3} y+z=\frac{8}{3} \\
y-z=1 \\
z=3 .
\end{array}\right.\right.
$$

We immediately see that the value for z is 3 . We can now use back-substitution to find the values for y, x, and w.

These are the
four equations from the last column.

Let's agree to write the solution for the system in the alphabetical order of the variables from left to right, namely (w, x, y, z). Thus, the solution set is $\{(-2,1,4,3)\}$. We can verify the solution by substituting the value for each variable into the original system of equations and obtaining four true statements.
\oint Check Point 3 Use matrices to solve the system:

$$
\left\{\begin{aligned}
w-3 x-2 y+z & =-3 \\
2 w-7 x-y+2 z & =1 \\
3 w-7 x-3 y+3 z & =-5 \\
5 w+x+4 y-2 z & =18
\end{aligned}\right.
$$

Use matrices and Gauss-Jordan elimination to solve systems.

Solving Linear Systems Using Gauss-Jordan Elimination

Using Gaussian elimination, we obtain a matrix in row-echelon form, with 1s down the main diagonal and 0s below the 1s. A second method, called Gauss-Jordan elimination, after Carl Friedrich Gauss and Wilhelm Jordan (1842-1899), continues the process until a matrix with 1 s down the main diagonal and 0 s in every position above and below each 1 is found. Such a matrix is said to be in reduced row-echelon form. For a system of three linear equations in three variables, x, y, and z, we must get the augmented matrix into the form

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c
\end{array}\right] .
$$

Based on this matrix, we conclude that $x=a, y=b$, and $z=c$.

Solving Linear Systems Using Gauss-Jordan Elimination

1. Write the augmented matrix for the system.
2. Use matrix row operations to simplify the matrix to a row-equivalent matrix in reduced row-echelon form, with 1s down the main diagonal from upper left to lower right, and 0 s above and below the 1 s .
a. Get 1 in the upper left-hand corner.
b. Use the 1 in the first column to get 0 s below it.
c. Get 1 in the second row, second column.
d. Use the 1 in the second column to make the remaining entries in the second column 0 .
e. Get 1 in the third row, third column.
f. Use the 1 in the third column to make the remaining entries in the third column 0 .
g. Continue this procedure as far as possible.
3. Use the reduced row-echelon form of the matrix in step 2 to write the system's solution set. (Back-substitution is not necessary.)

TECHNOLOGY

Most graphing utilities can convert a matrix to reduced rowechelon form. Enter the system's augmented matrix and name it A. Then use the RREF (reduced row-echelon form) command on matrix A.

EXAMPLE 4 Using Gauss-Jordan Elimination

Use Gauss-Jordan elimination to solve the system:

$$
\left\{\begin{aligned}
3 x+y+2 z & =31 \\
x+y+2 z & =19 \\
x+3 y+2 z & =25
\end{aligned}\right.
$$

SOLUTION

In Example 2, we used Gaussian elimination to obtain the following matrix:
$\left.\begin{array}{c|ccc|r}\hline \text { We want } & 1 & 1 & 2 & 19 \\ \begin{array}{c}\text { Os in these } \\ \text { positions. }\end{array} & \mathrm{U} & 1 & 2 & 13 \\ & 0 & 0 & 1 & 5\end{array}\right]$.

To use Gauss-Jordan elimination, we need 0s both above and below the 1 s in the main diagonal. We use the 1 in the second row, second column to get a 0 above it.

$$
\begin{gathered}
\begin{array}{c}
\text { Replace row } 1 \\
\text { in the previous } \\
\text { matrix by } \\
-1 R_{2}+R_{1}
\end{array}
\end{gathered}\left[\begin{array}{rrr|r|r}
1 & 0 & 0 & 6 & \begin{array}{c}
\text { We want } \\
0
\end{array} 1 \\
0 & 2 & 13 & \begin{array}{c}
\text { os in these } \\
\text { positions. }
\end{array} \\
0 & 0 & 1 & 5
\end{array}\right]
$$

We use the 1 in the third column to get 0 s above it.

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right] \quad \begin{aligned}
& \text { Replace row } 2 \text { in the previous } \\
& \text { matrix by }-2 R_{3}+R_{2} .
\end{aligned}
$$

This last matrix corresponds to

$$
x=6, \quad y=3, \quad z=5 .
$$

As we found in Example 2, the solution set is $\{(6,3,5)\}$.
Check Point 4 Solve the system in Check Point 2 using Gauss-Jordan elimination. Begin by working with the matrix that you obtained in Check Point 2.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A rectangular array of numbers, arranged in rows and columns and placed in brackets, is called a/an \qquad -.
The numbers inside the brackets are called \qquad -.
2. Consider the matrix

$$
\left[\begin{array}{rrr|r}
1 & 1 & -1 & -2 \\
-3 & -4 & 2 & 4 \\
2 & 1 & 1 & 6
\end{array}\right] .
$$

We can obtain 0 in the position shaded by a rectangle if we multiply the top row of numbers by \qquad and add these products to the \qquad row of numbers. We can obtain 0 in the position shaded by an oval if we multiply the top row of numbers by \qquad and add these products to the \qquad row of numbers.
3. The augmented matrix for the system

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x+y+4 z=-4 \\
3 x+z=1 \\
4 x+3 y+z=8
\end{array}\right. \\
& \text { is }\left[\begin{array}{l}
--\mid- \\
---|-|
\end{array}\right] .
\end{aligned}
$$

4. Using Gauss-Jordan elimination to solve the system

$$
\left\{\begin{aligned}
x-y+z & =-4 \\
5 x+y-2 z & =12 \\
2 x-3 y+4 z & =-15
\end{aligned}\right.
$$

we obtain the matrix

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -2
\end{array}\right] .
$$

The system's solution set is \qquad

EXERCISE SET 8.1

Practice Exercises

In Exercises 1-8, write the augmented matrix for each system of linear equations.

1. $\left\{\begin{aligned} 2 x+y+2 z & =2 \\ 3 x-5 y-z & =4 \\ x-2 y-3 z & =-6\end{aligned}\right.$
2. $\left\{\begin{aligned} 3 x-2 y+5 z & =31 \\ x+3 y-3 z & =-12 \\ -2 x-5 y+3 z & =11\end{aligned}\right.$
3. $\left\{\begin{aligned} x-y+z & =8 \\ y-12 z & =-15 \\ z & =1\end{aligned}\right.$
4. $\left\{\begin{aligned} x-2 y+3 z & =9 \\ y+3 z & =5 \\ z & =2\end{aligned}\right.$
5. $\left\{\begin{aligned} 5 x-2 y-3 z & =0 \\ x+y & =5 \\ 2 x-3 z & =4\end{aligned}\right.$
6. $\left\{\begin{aligned} x-2 y+z & =10 \\ 3 x+y & =5 \\ 7 x+2 z & =2\end{aligned}\right.$
7. $\left\{\begin{aligned} 2 w+5 x-3 y+z & =2 \\ 3 x+y & =4 \\ w-x+5 y & =9 \\ 5 w-5 x-2 y & =1\end{aligned}\right.$
8. $\left\{\begin{aligned} 4 w+7 x-8 y+z & =3 \\ 5 x+y & =5 \\ w-x-y & =17 \\ 2 w-2 x+11 y & =4\end{aligned}\right.$

In Exercises 9-12, write the system of linear equations represented by the augmented matrix. Use x, y, and z, or, if necessary, w, x, y, and z, for the variables.
9. $\left[\begin{array}{rrr|r}5 & 0 & 3 & -11 \\ 0 & 1 & -4 & 12 \\ 7 & 2 & 0 & 3\end{array}\right]$
10. $\left[\begin{array}{rrr|r}7 & 0 & 4 & -13 \\ 0 & 1 & -5 & 11 \\ 2 & 7 & 0 & 6\end{array}\right]$
11. $\left[\begin{array}{rrrr|r}1 & 1 & 4 & 1 & 3 \\ -1 & 1 & -1 & 0 & 7 \\ 2 & 0 & 0 & 5 & 11 \\ 0 & 0 & 12 & 4 & 5\end{array}\right]$
12. $\left[\begin{array}{rrrr|r}4 & 1 & 5 & 1 & 6 \\ 1 & -1 & 0 & -1 & 8 \\ 3 & 0 & 0 & 7 & 4 \\ 0 & 0 & 11 & 5 & 3\end{array}\right]$

In Exercises 13-18, perform each matrix row operation and write the new matrix.
13. $\left[\begin{array}{rrr|r}2 & -6 & 4 & 10 \\ 1 & 5 & -5 & 0 \\ 3 & 0 & 4 & 7\end{array}\right] \quad \frac{1}{2} R_{1}$
14. $\left[\begin{array}{rrr|r}3 & -12 & 6 & 9 \\ 1 & -4 & 4 & 0 \\ 2 & 0 & 7 & 4\end{array}\right] \quad \frac{1}{3} R_{1}$
5. True or false: Back-substitution is required to solve linear systems using Gaussian elimination.
6. True or false: Back-substitution is required to solve linear systems using Gauss-Jordan elimination. \qquad
25. $\left\{\begin{aligned} 2 x-y-z & =4 \\ x+y-5 z & =-4 \\ x-2 y & =4\end{aligned}\right.$
26. $\left\{\begin{aligned} x-3 z & =-2 \\ 2 x+2 y+z & =4 \\ 3 x+y-2 z & =5\end{aligned}\right.$
27. $\left\{\begin{array}{l}x+y+z=4 \\ x-y-z=0 \\ x-y+z=2\end{array}\right.$
28. $\left\{\begin{aligned} 3 x+y-z & =0 \\ x+y+2 z & =6 \\ 2 x+2 y+3 z & =10\end{aligned}\right.$
29. $\left\{\begin{array}{l}x+2 y=z-1 \\ x=4+y-z \\ x+y-3 z=-2\end{array}\right.$
30. $\left\{\begin{array}{c}2 x+y=z+1 \\ 2 x=1+3 y-z \\ x+y+z=4\end{array}\right.$
31. $\left\{\begin{aligned} 3 a-b-4 c & =3 \\ 2 a-b+2 c & =-8 \\ a+2 b-3 c & =9\end{aligned}\right.$
32. $\left\{\begin{aligned} 3 a+b-c & =0 \\ 2 a+3 b-5 c & =1 \\ a-2 b+3 c & =-4\end{aligned}\right.$
33. $\left\{\begin{array}{l}2 x+2 y+7 z=-1 \\ 2 x+y+2 z=2 \\ 4 x+6 y+z=15\end{array}\right.$
34. $\left\{\begin{array}{l}3 x+2 y+3 z=3 \\ 4 x-5 y+7 z=1 \\ 2 x+3 y-2 z=6\end{array}\right.$
35. $\left\{\begin{aligned} & w+x+y+z=4 \\ & 2 w+x-2 y-z= 0 \\ & w-2 x-y-2 z=-2 \\ & 3 w+2 x+y+3 z=4\end{aligned}\right.$
36. $\left\{\begin{aligned} w+x+y+z & =5 \\ w+2 x-y-2 z & =-1 \\ w-3 x-3 y-z & =-1 \\ 2 w-x+2 y-z & =-2\end{aligned}\right.$
37. $\left\{\begin{aligned} 3 w-4 x+y+z & =9 \\ w+x-y-z & =0 \\ 2 w+x+4 y-2 z & =3 \\ -w+2 x+y-3 z & =3\end{aligned}\right.$
38. $\left\{\begin{aligned} 2 w+y-3 z & =8 \\ w-x+4 z & =-10 \\ 3 w+5 x-y-z & =20 \\ w+x-y-z & =6\end{aligned}\right.$

Practice Plus

39. Find the quadratic function $f(x)=a x^{2}+b x+c$ for which $f(-2)=-4, f(1)=2$, and $f(2)=0$.
40. Find the quadratic function $f(x)=a x^{2}+b x+c$ for which $f(-1)=5, f(1)=3$, and $f(2)=5$.
41. Find the cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ for which $f(-1)=0, f(1)=2, f(2)=3$, and $f(3)=12$.
42. Find the cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ for which $f(-1)=3, f(1)=1, f(2)=6$, and $f(3)=7$.
43. Solve the system:

$$
\left\{\begin{aligned}
2 \ln w+\ln x+3 \ln y-2 \ln z & =-6 \\
4 \ln w+3 \ln x+\ln y-\ln z & =-2 \\
\ln w+\ln x+\ln y+\ln z & =-5 \\
\ln w+\ln x-\ln y-\ln z & =5
\end{aligned}\right.
$$

(Hint: Let $A=\ln w, B=\ln x, C=\ln y$, and $D=\ln z$. Solve the system for A, B, C, and D. Then use the logarithmic equations to find w, x, y, and z.)
44. Solve the system:

$$
\left\{\begin{aligned}
\ln w+\ln x+\ln y+\ln z & =-1 \\
-\ln w+4 \ln x+\ln y-\ln z & =0 \\
\ln w-2 \ln x+\ln y-2 \ln z & =11 \\
-\ln w-2 \ln x+\ln y+2 \ln z & =-3 .
\end{aligned}\right.
$$

(Hint: Let $A=\ln w, B=\ln x, C=\ln y$, and $D=\ln z$. Solve the system for A, B, C, and D. Then use the logarithmic equations to find w, x, y, and z.)

Application Exercises

45. A ball is thrown straight upward. A position function

$$
s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

can be used to describe the ball's height, $s(t)$, in feet, after t seconds.

a. Use the points labeled in the graph to find the values of a, v_{0}, and s_{0}. Solve the system of linear equations involving a, v_{0}, and s_{0} using matrices.
b. Find and interpret $s(3.5)$. Identify your solution as a point on the graph shown.
c. After how many seconds does the ball reach its maximum height? What is its maximum height?
46. A football is kicked straight upward. A position function

$$
s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

can be used to describe the ball's height, $s(t)$, in feet, after t seconds.

a. Use the points labeled in the graph to find the values of a, v_{0}, and s_{0}. Solve the system of linear equations involving a, v_{0}, and s_{0} using matrices.
b. Find and interpret $s(7)$. Identify your solution as a point on the graph shown.
c. After how many seconds does the ball reach its maximum height? What is its maximum height?

Write a system of linear equations in three or four variables to solve Exercises 47-50. Then use matrices to solve the system.
47. Three foods have the following nutritional content per ounce.

	Calories	Protein (in grams)	Vitamin C (in milligrams)
Food \boldsymbol{A}	40	5	30
Food \boldsymbol{B}	200	2	10
Food \boldsymbol{C}	400	4	300

If a meal consisting of the three foods allows exactly 660 calories, 25 grams of protein, and 425 milligrams of vitamin C, how many ounces of each kind of food should be used?
48. A furniture company produces three types of desks: a children's model, an office model, and a deluxe model. Each desk is manufactured in three stages: cutting, construction, and finishing. The time requirements for each model and manufacturing stage are given in the following table.

	Children's Model	Office Model	Deluxe Model
Cutting	2 hr	3 hr	2 hr
Construction	2 hr	1 hr	3 hr
Finishing	1 hr	1 hr	2 hr

Each week the company has available a maximum of 100 hours for cutting, 100 hours for construction, and 65 hours for finishing. If all available time must be used, how many of each type of desk should be produced each week?
49. Imagine the entire global population as a village of precisely 200 people. The bar graph shows some numeric observations based on this scenario.

Earth's Population as a Village of 200 People

Source: Gary Rimmer, Number Freaking, The Disinformation Company Ltd., 2006

Combined, there are 183 Asians, Africans, Europeans, and Americans in the village. The number of Asians exceeds the number of Africans and Europeans by 70. The difference between the number of Europeans and Americans is 15 . If the number of Africans is doubled, their population exceeds the number of Europeans and Americans by 23. Determine the number of Asians, Africans, Europeans, and Americans in the global village.
50. The bar graph shows the number of rooms, bathrooms, fireplaces, and elevators in the U.S. White House.

The U.S. White House by the Numbers

Source: The White House

Combined, there are 198 rooms, bathrooms, fireplaces, and elevators. The number of rooms exceeds the number of bathrooms and fireplaces by 69 . The difference between the number of fireplaces and elevators is 25 . If the number of bathrooms is doubled, it exceeds the number of fireplaces and elevators by 39 . Determine the number of rooms, bathrooms, fireplaces, and elevators in the U.S. White House.

Writing in Mathematics

51. What is a matrix?
52. Describe what is meant by the augmented matrix of a system of linear equations.
53. In your own words, describe each of the three matrix row operations. Give an example with each of the operations.
54. Describe how to use row operations and matrices to solve a system of linear equations.
55. What is the difference between Gaussian elimination and Gauss-Jordan elimination?

Technology Exercises

56. Most graphing utilities can perform row operations on matrices. Consult the owner's manual for your graphing utility to learn proper keystrokes for performing these operations. Then duplicate the row operations of any three exercises that you solved from Exercises 13-18.
57. If your graphing utility has a REF (row-echelon form) command or a RREF (reduced row-echelon form) command, use this feature to verify your work with any five systems that you solved from Exercises 21-38.
58. Solve using a graphing utility's REF or RREF command:

$$
\left\{\begin{aligned}
2 x_{1}-2 x_{2}+3 x_{3}-x_{4} & =12 \\
x_{1}+2 x_{2}-x_{3}+2 x_{4}-x_{5} & =-7 \\
x_{1}+ & x_{3}+x_{4}-5 x_{5}= \\
-x_{1}+x_{2}-x_{3}-2 x_{4}-3 x_{5}= & 0 \\
x_{1}-x_{2}-r x_{4}+ & 4
\end{aligned}\right.
$$

862 Chapter 8 Matrices and Determinants

Critical Thinking Exercises

Make Sense? In Exercises 59-62, determine whether each statement makes sense or does not make sense, and explain your reasoning.
59. Matrix row operations remind me of what I did when solving a linear system by the addition method, although I no longer write the variables.
60. When I use matrices to solve linear systems, the only arithmetic involves multiplication or a combination of multiplication and addition.
61. When I use matrices to solve linear systems, I spend most of my time using row operations to express the system's augmented matrix in row-echelon form.
62. Using row operations on an augmented matrix, I obtain a row in which 0 s appear to the left of the vertical bar, but 6 appears on the right, so the system I'm working with has no solution.
In Exercises 63-66, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
63. A matrix row operation such as $-\frac{4}{5} R_{1}+R_{2}$ is not permitted because of the negative fraction.
64. The augmented matrix for the system

$$
\left\{\begin{array}{r}
x-3 y=5 \\
y-2 z=7 \\
2 x+z=4
\end{array} \text { is } \quad\left[\begin{array}{rr|r}
1 & -3 & 5 \\
1 & -2 & 7 \\
2 & 1 & 4
\end{array}\right] .\right.
$$

65. In solving a linear system of three equations in three variables, we begin with the augmented matrix and use row operations to obtain a row-equivalent matrix with 0s down the diagonal from left to right and 1 s below each 0 .
66. The row operation $k R_{i}+R_{j}$ indicates that it is the elements in row i that change
67. The table shows the daily production level and profit for a business.

\boldsymbol{x} (Number of Units	30	50	100
Produced Daily)			

Use the quadratic function $y=a x^{2}+b x+c$ to determine the number of units that should be produced each day for maximum profit. What is the maximum daily profit?

Preview Exercises

Exercises 68-70 will help you prepare for the material covered in the next section. In each exercise, refer to the following system:

$$
\left\{\begin{array}{r}
3 x-4 y+4 z=7 \\
x-y-2 z=2 \\
2 x-3 y+6 z=5
\end{array}\right.
$$

68. Show that $(12 z+1,10 z-1, z)$ satisfies the system for $z=0$.
69. Show that $(12 z+1,10 z-1, z)$ satisfies the system for $z=1$.
70. a. Select a value for z other than 0 or 1 and show that $(12 z+1,10 z-1, z)$ satisfies the system.
b. Based on your work in Exercises 68-70(a), how does this system differ from those in Exercises 21-34?

SECTION 8.2

Inconsistent and Dependent Systems and Their Applications

Objectives

(1) Apply Gaussian elimination to systems without unique solutions.
2. Apply Gaussian elimination to systems with more variables than equations.
(3) Solve problems involving systems without unique solutions.

Traffic jams getting you down? Powerful computers, able to solve systems with hundreds of thousands of variables in a single bound, may promise a gridlockfree future. The computer in your car could be linked to a central computer that manages traffic flow by controlling traffic lights, rerouting you away from traffic congestion, issuing weather reports, and selecting the best
 route to your destination. New technologies could eventually drive your car at a steady 75 miles per hour along automated highways as you comfortably nap. In this section, we look at the role of linear systems without unique solutions in a future free of traffic jams.

Linear systems can have one solution, no solution, or infinitely many solutions. We can use Gaussian elimination on systems with three or more variables to determine how many solutions such systems may have. In the case of systems with no solution or infinitely many solutions, it is impossible to rewrite the augmented matrix in the desired form with 1s down the main diagonal from upper left to lower right, and 0s below the 1 s . Let's see what this means by looking at a system that has no solution.

EXAMPLE 1 A System with No Solution

Use Gaussian elimination to solve the system:

$$
\left\{\begin{aligned}
x-y-2 z & =2 \\
2 x-3 y+6 z & =5 \\
3 x-4 y+4 z & =12
\end{aligned}\right.
$$

SOLUTION

DISCOVERY

Use the addition method to solve Example 1. Describe what happens. Why does this mean that there is no solution?

Step 1 Write the augmented matrix for the system.

Linear System

$\left\{\begin{aligned} x-y-2 z & =2 \\ 2 x-3 y+6 z & =5 \\ 3 x-4 y+4 z & =12\end{aligned}\right.$

Augmented Matrix
$\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 2 & -3 & 6 & 5 \\ 3 & -4 & 4 & 12\end{array}\right]$

Step 2 Attempt to simplify the matrix to row-echelon form, with $1 s$ down the main diagonal and 0 s below the 1s. Notice that the augmented matrix already has a 1 in the top position of the first column. Now we want 0 s below the 1 . To get the first 0 , multiply row 1 by -2 and add these products to row 2 . To get the second 0 , multiply row 1 by -3 and add these products to row 3. Performing these operations, we obtain the following matrix:

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { We want } 1 \text { in } \\
\text { this position. }
\end{array}
\end{array} \begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & -1 & 10 & 1 \\
0 & -1 & 10 & 6
\end{array}\right] . \begin{aligned}
& \text { Use the augmented matrix and: } \\
& \text { Replace row } 2 \text { by }-2 R_{1}+R_{2} \\
& \text { Replace row } 3 \text { by }-3 R_{1}+R_{3}
\end{aligned}
$$

Moving on to the second column, we obtain 1 in the desired position by multiplying row 2 by -1 .

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & -1 & -2 & 2 \\
-1(0) & -1(-1) & -1(10) & -1(1) \\
0 & -1 & 10 & 6
\end{array}\right]=\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & 1 & -10 & -1 \\
0 & -1 & 10 & 6
\end{array}\right] \begin{array}{r}
-1 R_{2} \\
\hline
\end{array}} \\
\text { We want } 0 \text { in this position. }
\end{gathered}
$$

Now we want a 0 below the 1 in column 2 . To get the 0 , multiply row 2 by 1 and add these products to row 3. (Equivalently, add row 2 to row 3.) We obtain the following matrix:

$$
\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & 1 & -10 & -1 \\
0 & 0 & 0 & 5
\end{array}\right] . \begin{aligned}
& \text { Replace row } 3 \text { in the previous } \\
& \text { matrix by } 1 R_{2}+R_{3} .
\end{aligned}
$$

It is impossible to convert this last matrix to the desired form of 1 s down the main diagonal. If we translate the last row back into equation form, we get

$$
0 x+0 y+0 z=5, \quad \begin{aligned}
& \text { There are no values } \\
& \text { of } x, y, \text { and } z \text { for } \\
& \text { which } 0=5
\end{aligned}
$$

which is false. Regardless of which values we select for x, y, and z, the last equation can never be a true statement. Consequently, the system has no solution. The solution set is \varnothing, the empty set.

Check Point 1 Use Gaussian elimination to solve the system:

$$
\left\{\begin{aligned}
x-2 y-z= & -5 \\
2 x-3 y-z= & 0 \\
3 x-4 y-z= & 1
\end{aligned}\right.
$$

Recall that the graph of a system of three linear equations in three variables consists of three planes. When these planes intersect in a single point, the system has precisely one ordered-triple solution. When the planes have no point in common, the system has no solution, like the one in Example 1. Figure 8.1 illustrates some of the geometric possibilities for these inconsistent systems.

Three planes are parallel with no common intersection point.

Two planes are parallel with no common intersection point.

Planes intersect two at a time. There is no intersection point common to all three planes.

FIGURE 8.1 Three planes may have no common point of intersection.
Now let's see what happens when we apply Gaussian elimination to a system with infinitely many solutions. Representing the solution set for these systems can be a bit tricky.

EXAMPLE 2 A System with an Infinite Number of Solutions

Use Gaussian elimination to solve the following system:

$$
\left\{\begin{array}{r}
3 x-4 y+4 z=7 \\
x-y-2 z=2 \\
2 x-3 y+6 z=5 .
\end{array}\right.
$$

SOLUTION

As always, we start with the augmented matrix.

$$
\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & 1 & -10 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

If we translate row 3 of the matrix into equation form, we obtain

$$
0 x+0 y+0 z=0
$$

or

$$
0=0 .
$$

This equation results in a true statement regardless of which values we select for x, y, and z. Consequently, the equation $0 x+0 y+0 z=0$ is dependent on the other two equations in the system in the sense that it adds no new information about the variables. Thus, we can drop it from the system, which can now be expressed in the form

$$
\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & 1 & -10 & -1
\end{array}\right] . \begin{aligned}
& \text { This is the last matrix from } \\
& \text { above with row } 3 \text { omitted. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
3 & -4 & 4 & 7 \\
1 & -1 & -2 & 2 \\
2 & -3 & 6 & 5
\end{array}\right] \xrightarrow[\begin{array}{c}
R_{1} \leftrightarrow R_{2} \\
\text { Interchange rows } \\
1 \text { and } 2 .
\end{array}]{\substack{\text { and }}}\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
3 & -4 & 4 & 7 \\
2 & -3 & 6 & 5
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { Replace row 2 } \\
\text { by }-3 R_{1}+R_{2} . \\
\text { Replace row 3 } \\
\text { by }-2 R_{1}+R_{3} .
\end{array}}} \\
& {\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & -1 & 10 & 1 \\
0 & -1 & 10 & 1
\end{array}\right] \xrightarrow[\begin{array}{c}
-1 R_{2} \\
\text { Multiply row 2 } \\
\text { by }-1 .
\end{array}]{\left[\begin{array}{rrr|r}
1 & -1 & -2 & 2 \\
0 & 1 & -10 & -1 \\
0 & -1 & 10 & 1
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { Replace row 3 } \\
\text { by } 1 R_{2}+R_{3} .
\end{array}} .\left[\begin{array}{rl}
\\
\hline
\end{array}\right]}}
\end{aligned}
$$

The original system is equivalent to the system

$$
\left\{\begin{aligned}
x-y & -2 z=2 \quad \text { This is the system represented } \\
y-10 z=-1 . & \text { by the matrix at the bottom of the previous page. }
\end{aligned}\right.
$$

Although neither of these equations gives a value for z, we can use them to express x and y in terms of z. From the last equation, we obtain

$$
y=10 z-1 . \quad \text { Add } 10 z \text { to both sides and isolate } y .
$$

Back-substituting for y into the first equation obtained from the final matrix, we can find x in terms of z.

$$
\begin{aligned}
x-y-2 z & =2 & & \begin{array}{l}
\text { This is the first equation } \\
\text { obtained from the final matrix. }
\end{array} \\
x-(10 z-1)-2 z & =2 & & \text { Because } y=10 z-1, \\
x-10 z+1-2 z & =2 & & \text { Substitute } 10 z-1 \text { for } y . \\
x-12 z+1 & =2 & & \text { Apply the distributive property. } \\
x & =12 z+1 & & \text { Combine like terms. }
\end{aligned}
$$

We have now found two equations expressing x and y in terms of z :

$$
\begin{aligned}
& x=12 z+1 \\
& y=10 z-1 .
\end{aligned}
$$

Because no value is determined for z, we can find a solution of the system by letting z equal any real number and then using these equations to obtain x and y. For example, if $z=1$, then

$$
\begin{aligned}
& x=12 z+1=12(1)+1=13 \text { and } \\
& y=10 z-1=10(1)-1=9 .
\end{aligned}
$$

Consequently, $(13,9,1)$ is a solution of the system. On the other hand, if we let $z=-1$, then

$$
\begin{aligned}
& x=12 z+1=12(-1)+1=-11 \text { and } \\
& y=10 z-1=10(-1)-1=-11 .
\end{aligned}
$$

Thus, $(-11,-11,-1)$ is another solution of the system.
We see that for any arbitrary choice of z, every ordered triple of the form $(12 z+1,10 z-1, z)$ is a solution of the system. The solution set of this system with dependent equations is

$$
\{(12 z+1,10 z-1, z)\} .
$$

We have seen that when three planes have no point in common, the corresponding system has no solution. When the system has infinitely many solutions, like the one in Example 2, the three planes intersect in more than one point. Figure 8.2 illustrates geometric possibilities for systems with dependent equations.

The planes intersect
along a common line.

The planes coincide.
FIGURE 8.2 Three planes may intersect at infinitely many points.
(2) Apply Gaussian elimination to systems with more variables than equations.

DISCOVERY

Let $z=1$ for the solution

$$
(5 z+4,-3 z+2, z)
$$

What solution do you obtain? Substitute these three values in the two original equations:

$$
\left\{\begin{aligned}
3 x+7 y+6 z & =26 \\
x+2 y+z & =8
\end{aligned}\right.
$$

Show that each equation is satisfied. Repeat this process for two other values of z.
$\$$ Check Point 2 Use Gaussian elimination to solve the following system:

$$
\left\{\begin{aligned}
x-2 y-z & =5 \\
2 x-5 y+3 z & =6 \\
x-3 y+4 z & =1
\end{aligned}\right.
$$

Nonsquare Systems

Up to this point, we have encountered only square systems in which the number of equations is equal to the number of variables. In a nonsquare system, the number of variables differs from the number of equations. In Example 3, we have two equations and three variables.

EXAMPLE 3 A System with Fewer Equations Than Variables

Use Gaussian elimination to solve the system:

$$
\left\{\begin{aligned}
3 x+7 y+6 z & =26 \\
x+2 y+z & =8
\end{aligned}\right.
$$

SOLUTION

We begin with the augmented matrix.
$\left[\begin{array}{lll|r}3 & 7 & 6 & 26 \\ 1 & 2 & 1 & 8\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|c}1 & 2 & 1 & 8 \\ 3 & 7 & 6 & 26\end{array}\right] \xrightarrow{\begin{array}{l}\text { Replace row 2 } \\ \text { by-3R }+R_{2}\end{array}}\left[\begin{array}{lll|l}1 & 2 & 1 & 8 \\ 0 & 1 & 3 & 2\end{array}\right]$
Because the matrix $\left[\begin{array}{lll|l}1 & 2 & 1 & 8 \\ 0 & 1 & 3 & 2\end{array}\right]$ has 1s down the diagonal that begins with the upper-left entry and a 0 below the leading 1 , we translate this matrix back into equation form.

$$
\left\{\begin{aligned}
x+2 y+z & =8 \quad \text { Equation 1 } \\
y+3 z & =2 \quad \text { Equation 2 }
\end{aligned}\right.
$$

We can let z equal any real number and use back-substitution to express x and y in terms of z.

Equation 2

$$
\begin{aligned}
y+3 z & =2 \\
y & =-3 z+2
\end{aligned}
$$

Equation 1

$$
\begin{aligned}
x+2 y+z & =8 \\
x+2(-3 z+2)+z & =8 \\
x-6 z+4+z & =8 \\
x-5 z+4 & =8 \\
x & =5 z+4
\end{aligned}
$$

For any arbitrary choice of z, every ordered triple of the form $(5 z+4,-3 z+2, z)$ is a solution of the system. We can express the system's solution set as

$$
\{(5 z+4,-3 z+2, z)\}
$$

0 Check Point 3 Use Gaussian elimination to solve the system:

$$
\left\{\begin{array}{l}
x+2 y+3 z=70 \\
x+y+z=60
\end{array}\right.
$$

3 Solve problems involving systems without unique solutions.

FIGURE 8.3 The intersections of four one-way streets

Applications

How will computers be programmed to control traffic flow and avoid congestion? They will be required to solve systems continually based on the following premise: If traffic is to keep moving, during any period of time the number of cars entering an intersection must equal the number of cars leaving that intersection. Let's see what this means by looking at the intersections of four one-way city streets.

EXAMPLE 4 Traffic Control

Figure 8.3 shows the intersections of four one-way streets. As you study the figure, notice that 300 cars per hour want to enter intersection I_{1} from the north on 27th Avenue. Also, 200 cars per hour want to head east from intersection I_{2} on Palm Drive. The letters w, x, y, and z stand for the number of cars passing between the intersections.
a. If the traffic is to keep moving, at each intersection the number of cars entering per hour must equal the number of cars leaving per hour. Use this idea to set up a linear system of equations involving w, x, y, and z.
b. Use Gaussian elimination to solve the system.
c. If construction on 27th Avenue limits z to 50 cars per hour, how many cars per hour must pass between the other intersections to keep traffic flowing?

SOLUTION

a. Set up the system by considering one intersection at a time, referring to Figure 8.3.
For Intersection I_{1} : Because $300+700=1000$ cars enter I_{1} and $w+z$ cars leave the intersection, then $w+z=1000$.
For Intersection I_{2} : Because $w+x$ cars enter the intersection and $200+900=1100$ cars leave I_{2}, then $w+x=1100$.
For Intersection I_{3} : Figure 8.3 indicates that $300+400=700$ cars enter and $x+y$ leave, so $x+y=700$.
For Intersection I_{4} : With $y+z$ cars entering and $200+400=600$ cars exiting, traffic will keep flowing if $y+z=600$.

The system of equations that models this situation is given by

$$
\left\{\begin{aligned}
w+z & =1000 \\
w+x & =1100 \\
x+y & =700 \\
y+z & =600
\end{aligned}\right.
$$

b. To solve this system using Gaussian elimination, we begin with the augmented matrix.
System of Linear Equations (showing missing variables with 0 coefficients)

$$
\left\{\begin{array}{l}
1 w+0 x+0 y+1 z=1000 \\
1 w+1 x+0 y+0 z=1100 \\
0 w+1 x+1 y+0 z=700 \\
0 w+0 x+1 y+1 z=600
\end{array}\right.
$$

Augmented Matrix

$\left[\begin{array}{rrrr|r}1 & 0 & 0 & 1 & 1000 \\ 1 & 1 & 0 & 0 & 1100 \\ 0 & 1 & 1 & 0 & 700 \\ 0 & 0 & 1 & 1 & 600\end{array}\right]$

FIGURE 8.4 With z limited to 50 cars per hour, values for w, x, and y are determined.

We can now use row operations to obtain the following matrix:

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 1000 \\
0 & 1 & 0 & -1 & 100 \\
0 & 0 & 1 & 1 & 600 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] . \begin{array}{r}
w+z=1000 \\
x-z=100 \\
y+z=600
\end{array}
$$

The last row of the matrix shows that the system in the voice balloons has dependent equations and infinitely many solutions. To write the solution set containing these infinitely many solutions, let z equal any real number. Use the three equations in the voice balloons to express w, x, and y in terms of z :

$$
w=1000-z, \quad x=100+z, \quad \text { and } \quad y=600-z
$$

With z arbitrary, the alphabetically ordered solution (w, x, y, z) enables us to express the system's solution set as

$$
\{(1000-z, 100+z, 600-z, z)\} .
$$

c. We are given that construction limits z to 50 cars per hour. Because $z=50$, we substitute 50 for z in the system's ordered solution:

$$
\begin{array}{ll}
(1000-z, 100+z, 600-z, z) & \text { Use the system's solution. } \\
=(1000-50,100+50,600-50,50) & z=50 \\
=(950,150,550,50) . &
\end{array}
$$

Thus, $w=950, x=150$, and $y=550$. (See Figure 8.4.) With construction on 27th Avenue, this means that to keep traffic flowing, 950 cars per hour must be routed between I_{1} and $I_{2}, 150$ per hour between I_{3} and I_{2}, and 550 per hour between I_{3} and I_{4}.
\oint Check Point 4 Figure 8.5 shows a system of four one-way streets. The numbers in the figure denote the number of cars per minute that travel in the direction shown.
a. Use the requirement that the number of cars entering each of the intersections per minute must equal the number of cars leaving per minute to set up a system of equations in w, x, y, and z.
b. Use Gaussian elimination to solve the system.
c. If construction limits z to 10 cars per minute, how many cars per minute must pass between the other intersections to keep traffic flowing?

FIGURE 8.5

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.
Using Gaussian elimination on linear systems in three variables, we obtained each of the matrices shown in Exercises 1 through 3. State whether the linear system has one solution, no solution, or infinitely many solutions.

1. $\left[\begin{array}{rrr|r}1 & 1 & 1 & 6 \\ 0 & 1 & 1 & -6 \\ 0 & 0 & 0 & -27\end{array}\right]$ -
2. $\left[\begin{array}{rrr|r}1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 0 & 1 & 5\end{array}\right]$
3. $\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 0 & 1 & -10 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$
4. True or false: If $\{(2 z+3,5 z-1, z)\}$ is the solution set of a system with dependent equations, then $(5,4,1)$ is a solution of this system.
5. Using Gaussian elimination to solve

$$
\left\{\begin{aligned}
3 x+2 y-2 z & =0 \\
x-y+z & =5,
\end{aligned}\right.
$$

we obtain the matrix

$$
\left[\begin{array}{rrr|r}
1 & -1 & 1 & 5 \\
0 & 1 & -1 & -3
\end{array}\right] .
$$

Translating this matrix back into equation form gives

$$
\begin{cases} & \text { Equation 1 } \\ & \text { Equation 2 }\end{cases}
$$

Solving Equation 2 for y in terms of z results in $y=$ \qquad Substituting this expression for y in Equation 1 gives $x=$ \qquad .The system's solution set is \qquad —.

EXERCISE SET 8.2

Practice Exercises

In Exercises 1-24, use Gaussian elimination to find the complete solution to each system of equations, or show that none exists.

1. $\left\{\begin{aligned} 5 x+12 y+z & =10 \\ 2 x+5 y+2 z & =-1 \\ x+2 y-3 z & =5\end{aligned}\right.$
2. $\left\{\begin{aligned} 2 x-4 y+z & =3 \\ x-3 y+z & =5 \\ 3 x-7 y+2 z & =12\end{aligned}\right.$
3. $\left\{\begin{aligned} 5 x+8 y-6 z & =14 \\ 3 x+4 y-2 z & =8 \\ x+2 y-2 z & =3\end{aligned}\right.$
4. $\left\{\begin{aligned} 5 x-11 y+6 z & =12 \\ -x+3 y-2 z & =-4 \\ 3 x-5 y+2 z & =4\end{aligned}\right.$
5. $\left\{\begin{aligned} 3 x+4 y+2 z & =3 \\ 4 x-2 y-8 z & =-4 \\ x+y-z & =3\end{aligned}\right.$
6. $\left\{\begin{aligned} 2 x-y-z & =0 \\ x+2 y+z & =3 \\ 3 x+4 y+2 z & =8\end{aligned}\right.$
7. $\left\{\begin{aligned} 8 x+5 y+11 z & =30 \\ -x-4 y+2 z & =3 \\ 2 x-y+5 z & =12\end{aligned}\right.$
8. $\left\{\begin{aligned} x+y-10 z & =-4 \\ x-7 z & =-5 \\ 3 x+5 y-36 z & =-10\end{aligned}\right.$
9. $\left\{\begin{aligned} w-2 x-y-3 z & =-9 \\ w+x-y & =0 \\ 3 w+4 x+z & =6 \\ 2 x-2 y+z & =3\end{aligned}\right.$
10. $\left\{\begin{aligned} 2 w+x-2 y-z & =3 \\ w-2 x+y+z & =4 \\ -w-8 x+7 y+5 z & =13 \\ 3 w+x-2 y+2 z & =6\end{aligned}\right.$
11. $\left\{\begin{aligned} 2 w+x-y & =3 \\ w-3 x+2 y & =-4 \\ 3 w+x-3 y+z & =1 \\ w+2 x-4 y-z & =-2\end{aligned}\right.$
12. $\left\{\begin{array}{l}2 w-x+3 y+z=0 \\ 3 w+2 x+4 y-z=0 \\ 5 w-2 x-2 y-z=0 \\ 2 w+3 x-7 y-5 z=0\end{array}\right.$
13. $\left\{\begin{aligned} w-3 x+y-4 z & =4 \\ -2 w+x+2 y & =-2 \\ 3 w-2 x+y-6 z & =2 \\ -w+3 x+2 y-z & =-6\end{aligned}\right.$
14. $\left\{\begin{aligned} 3 w+2 x-y+2 z & =-12 \\ 4 w-x+y+2 z & =1 \\ w+x+y+z & =-2 \\ -2 w+3 x+2 y-3 z & =10\end{aligned}\right.$
15. $\left\{\begin{array}{l}2 x+y-z=2 \\ 3 x+3 y-2 z=3\end{array}\right.$ 16. $\left\{\begin{array}{r}3 x+2 y-z=5 \\ x+2 y-z=1\end{array}\right.$
16. $\left\{\begin{aligned} x+2 y+3 z & =5 \\ y-5 z & =0\end{aligned}\right.$
17. $\left\{\begin{aligned} 3 x-y+4 z & =8 \\ y+2 z & =1\end{aligned}\right.$
18. $\left\{\begin{aligned} x+y-2 z & =2 \\ 3 x-y-6 z & =-7\end{aligned}\right.$
19. $\left\{\begin{aligned}-2 x-5 y+10 z & =19 \\ x+2 y-4 z & =12\end{aligned}\right.$
20. $\left\{\begin{aligned} w+x-y+z & =-2 \\ 2 w-x+2 y-z & =7 \\ -w+2 x+y+2 z & =-1\end{aligned}\right.$
21. $\left\{\begin{aligned} 2 w-3 x+4 y+z & =7 \\ w-x+3 y-5 z & =10 \\ 3 w+x-2 y-2 z & =6\end{aligned}\right.$
22. $\left\{\begin{aligned} w+2 x+3 y-z & =7 \\ 2 x-3 y+z & =4 \\ w-4 x+y & =3\end{aligned}\right.$
23. $\left\{\begin{aligned} w-x+z & =0 \\ w-4 x+y+2 z & =0 \\ 3 w-y+2 z & =0\end{aligned}\right.$

Practice Plus

In Exercises 25-28, the first screen shows the augmented matrix, A, for a nonsquare linear system of three equations in four variables, w, x, y, and z. The second screen shows the reduced row-echelon form of matrix A. For each exercise,
a. Write the system represented by A.
b. Use the reduced row-echelon form of A to find the system's complete solution.
25.

26.

27.

28.

Application Exercises

The figure for Exercises 29-32 shows the intersections of three one-way streets. To keep traffic moving, the number of cars per minute entering an intersection must equal the number exiting that intersection. For intersection $I_{1}, x+10$ cars enter and $y+14$ cars exit per minute. Thus, $x+10=y+14$.

29. Write an equation for intersection I_{2} that keeps traffic moving.
30. Write an equation for intersection I_{3} that keeps traffic moving.
31. Use Gaussian elimination to solve the system formed by the equation given prior to Exercise 29 and the two equations that you obtained in Exercises 29-30.
32. Use your ordered solution obtained in Exercise 31 to solve this exercise. If construction limits z to 4 cars per minute, how many cars per minute must pass between the other intersections to keep traffic flowing?
33. The figure shows the intersections of four one-way streets.

a. Set up a system of equations that keeps traffic moving.
b. Use Gaussian elimination to solve the system.
c. If construction limits z to 50 cars per hour, how many cars per hour must pass between the other intersections to keep traffic moving?
34. The vitamin content per ounce for three foods is given in the following table.

	Milligrams per Ounce		
	Thiamin	Riboflavin	Niacin
Food A	3	7	1
Food B	1	5	3
Food C	3	8	2

a. Use matrices to show that no combination of these foods can provide exactly 14 mg of thiamin, 32 mg of riboflavin, and 9 mg of niacin.
b. Use matrices to describe in practical terms what happens if the riboflavin requirement is increased by 5 mg and the other requirements stay the same.
35. Three foods have the following nutritional content per ounce.

	Units per Ounce		
	Vitamin A	Iron	Calcium
Food 1	20	20	10
Food 2	30	10	10
Food 3	10	10	30

a. A diet must consist precisely of 220 units of vitamin A, 180 units of iron, and 340 units of calcium. However, the dietician runs out of Food 1. Use a matrix approach to show that under these conditions the dietary requirements cannot be met.
b. Now suppose that all three foods are available. Use matrices to give two possible ways to meet the iron and calcium requirements with the three foods.
36. A company that manufactures products A, B, and C does both manufacturing and testing. The hours needed to manufacture and test each product are shown in the table.

	Hours Needed Weekly to Manufacture	Hours Needed Weekly to Test
Product \boldsymbol{A}	7	2
Product \boldsymbol{B}	6	2
Product \boldsymbol{C}	3	1

The company has exactly 67 hours per week available for manufacturing and 20 hours per week available for testing. Give two different combinations for the number of products that can be manufactured and tested weekly.

Writing in Mathematics

37. Describe what happens when Gaussian elimination is used to solve an inconsistent system.
38. Describe what happens when Gaussian elimination is used to solve a system with dependent equations.
39. In solving a system of dependent equations in three variables, one student simply said that there are infinitely many solutions. A second student expressed the solution set as $\{(4 z+3,5 z-1, z)\}$. Which is the better form of expressing the solution set and why?

Technology Exercise

40. a. The figure shows the intersections of a number of one-way streets. The numbers given represent traffic flow at a peak period (from 4 p.m. to 5:30 p.m.). Use the figure to write a linear system of six equations in seven variables based on the idea that at each intersection the number of cars entering must equal the number of cars leaving.
b. Use a graphing utility with a REF or RREF command to find the complete solution to the system.

Critical Thinking Exercises

Make Sense? In Exercises 41-44, determine whether each statement makes sense or does not make sense, and explain your reasoning.
41. I omitted row 3 from $\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 0 & 1 & -10 & -1 \\ 0 & 0 & 0 & 5\end{array}\right]$ and expressed the system in the form $\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 0 & 1 & -10 & -1\end{array}\right]$.
42. I omitted row 3 from $\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 0 & 1 & -10 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and expressed the
system in the form $\left[\begin{array}{rrr|r}1 & -1 & -2 & 2 \\ 0 & 1 & -10 & -1\end{array}\right]$.
43. I solved a nonsquare system in which the number of equations was the same as the number of variables.
44. Models for controlling traffic flow are based on an equal number of cars entering an intersection and leaving that intersection.
45. Consider the linear system

$$
\left\{\begin{aligned}
x+3 y+z & =a^{2} \\
2 x+5 y+2 a z & =0 \\
x+y+a^{2} z & =-9
\end{aligned}\right.
$$

For which values of a will the system be inconsistent?

Group Exercise

46. Before beginning this exercise, the group needs to read and solve Exercise 40.
a. A political group is planning a demonstration on 95th Street between 113th Place and 117th Court for 5 P.m. Wednesday. The problem becomes one of minimizing traffic flow on 95th Street (between 113th and 117th) without causing traffic tie-ups on other streets. One possible solution is to close off traffic on 95th Street between 113th and 117th (let $x_{6}=0$). What can group members conclude about x_{7} under these conditions?
b. Working with a matrix allows us to simplify the problem caused by the political demonstration, but it did not actually solve the problem. There are an infinite number of solutions; each value of x_{7} we choose gives us a new picture. We also assumed x_{6} was equal to 0 ; changing that assumption would also lead to different solutions. With your group, design another solution to the traffic flow problem caused by the political demonstration.

Preview Exercises

Exercises 47-49 will help you prepare for the material covered in the next section. In each exercise, perform the indicated operation or operations.
47. $-6-(-5)$
48. $1(-4)+2(5)+3(-6)$
49. $\frac{1}{2}[8-(-8)]$

SECTION 8.3

Objectives

(1) Use matrix notation.
2) Understand what is meant by equal matrices.
(3) Add and subtract matrices.
(4) Perform scalar multiplication.
(5) Solve matrix equations.
(6) Multiply matrices.
(7) Model applied situations with matrix operations.

Matrix Operations and Their Applications

Use your smartphone to read your e-mail. Turn on your computer to write a paper. When you need to do research, use the Internet to browse through art museums and photography exhibits. When you need a break, load a flight simulator program and fly through a photorealistic computer world. As different as these experiences may be, they all share one thingyou're looking at images based on
 matrices. Matrices have applications in numerous fields, including the technology of digital photography in which pictures are represented by numbers rather than film. In this section, we turn our attention to matrix algebra and some of its applications.

Notations for Matrices

We have seen that an array of numbers, arranged in rows and columns and placed in brackets, is called a matrix. We can represent a matrix in two different ways.

- A capital letter, such as A, B, or C, can denote a matrix.
- A lowercase letter enclosed in brackets, such as that shown below, can denote a matrix.

$$
A=\left[a_{i j}\right] \quad \begin{gathered}
\text { Matrix } A \text { with } \\
\text { elements } a_{i j}
\end{gathered}
$$

A general element in matrix A is denoted by $a_{i j}$. This refers to the element in the i th row and j th column. For example, a_{32} is the element of A located in the third row, second column.

A matrix of order $\boldsymbol{m} \times \boldsymbol{n}$ has m rows and n columns. If $m=n$, a matrix has the same number of rows as columns and is called a square matrix.

EXAMPLE 1 Matrix Notation

Let

$$
A=\left[\begin{array}{rrr}
3 & 2 & 0 \\
-4 & -5 & -\frac{1}{5}
\end{array}\right] .
$$

a. What is the order of A ?
b. If $A=\left[a_{i j}\right]$, identify a_{23} and a_{12}.

SOLUTION

a. The matrix has 2 rows and 3 columns, so it is of order 2×3.
b. The element a_{23} is in the second row and third column. Thus, $a_{23}=-\frac{1}{5}$. The element a_{12} is in the first row and second column. Consequently, $a_{12}=2$.

\oint Check Point 1 Let

$$
A=\left[\begin{array}{rr}
5 & -2 \\
-3 & \pi \\
1 & 6
\end{array}\right]
$$

a. What is the order of A ?
b. Identify a_{12} and a_{31}.
(2) Understand what is meant by equal matrices.

Equality of Matrices

Two matrices are equal if and only if they have the same order and corresponding elements are equal.

Definition of Equality of Matrices

Two matrices A and B are equal if and only if they have the same order $m \times n$ and $a_{i j}=b_{i j}$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.

For example, if $A=\left[\begin{array}{cc}x & y+1 \\ z & 6\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 5 \\ 3 & 6\end{array}\right]$, then $A=B$ if and only if $x=1, y+1=5$ (so $y=4$), and $z=3$.
(3) Add and subtract matrices.

Matrix Addition and Subtraction

Table 8.1 shows that matrices of the same order can be added or subtracted by simply adding or subtracting corresponding elements.

Table 8.1 Adding and Subtracting Matrices
Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be matrices of order $m \times n$.
$\left.\begin{array}{|l|l|l}\hline \text { Definition } & \text { The Definition in Words } & \text { Example } \\ \hline \begin{array}{l}\text { Matrix } \text { Addition } \\ A+B=\left[a_{i j}+b_{i j}\right]\end{array} & \begin{array}{l}\text { Matrices of the same order are added by } \\ \text { adding the elements in corresponding } \\ \text { positions. }\end{array} & {\left[\begin{array}{rr}1 & -2 \\ 3 & 5\end{array}\right]+\left[\begin{array}{rr}-1 & 6 \\ 0 & 4\end{array}\right]} \\ \hline \begin{array}{l}\text { Matrix Subtraction } \\ A-B=\left[a_{i j}-b_{i j}\right]\end{array} & \begin{array}{l}\text { Matrices of the same order are } \\ \text { subtracted by subtracting the elements } \\ \text { in corresponding positions. }\end{array} & {\left[\begin{array}{rr}1+(-1) & -2+6 \\ 3+0 & 5+4\end{array}\right]=\left[\begin{array}{ll}0 & 4 \\ 3 & 9\end{array}\right]} \\ \hline 3 & 5\end{array}\right]-\left[\begin{array}{rr}-1 & 6 \\ 0 & 4\end{array}\right]$.

The sum or difference of two matrices of different orders is undefined. For example, consider the matrices

$$
A=\left[\begin{array}{ll}
0 & 3 \\
4 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 9 \\
4 & 5 \\
2 & 3
\end{array}\right] .
$$

The order of A is 2×2; the order of B is 3×2. These matrices are of different orders and cannot be added or subtracted.

TECHNOLOGY

Graphing utilities can add and subtract matrices. Enter the matrices and name them $[A]$ and $[B]$. Then use a keystroke sequence similar to

$$
\begin{array}{l|l|l|}
\hline[A] & + & {[B]} \\
\hline[A] & - & {[B]} \\
\text { ENTER } \\
\hline
\end{array}
$$

Consult your manual and verify the results in Example 2.

EXAMPLE 2 Adding and Subtracting Matrices

Perform the indicated matrix operations:
a. $\left[\begin{array}{rrr}0 & 5 & 3 \\ -2 & 6 & -8\end{array}\right]+\left[\begin{array}{rrr}-2 & 3 & 5 \\ 7 & -9 & 6\end{array}\right]$
b. $\left[\begin{array}{rr}-6 & 7 \\ 2 & -3\end{array}\right]-\left[\begin{array}{rr}-5 & 6 \\ 0 & -4\end{array}\right]$.

SOLUTION

a. $\left[\begin{array}{rrr}0 & 5 & 3 \\ -2 & 6 & -8\end{array}\right]+\left[\begin{array}{rrr}-2 & 3 & 5 \\ 7 & -9 & 6\end{array}\right]$ $=\left[\begin{array}{lrr}0+(-2) & 5+3 & 3+5 \\ -2+7 & 6+(-9) & -8+6\end{array}\right] \quad \begin{aligned} & \text { Add the corresponding elements } \\ & \text { in the } 2 \times 3 \text { matrices. }\end{aligned}$ $=\left[\begin{array}{rrr}-2 & 8 & 8 \\ 5 & -3 & -2\end{array}\right]$

Simplify.
b. $\left[\begin{array}{rr}-6 & 7 \\ 2 & -3\end{array}\right]-\left[\begin{array}{rr}-5 & 6 \\ 0 & -4\end{array}\right]$
$=\left[\begin{array}{rr}-6-(-5) & 7-6 \\ 2-0 & -3-(-4)\end{array}\right]$
$=\left[\begin{array}{rr}-1 & 1 \\ 2 & 1\end{array}\right]$
Subtract the corresponding elements in the 2×2 matrices.

Simplify. $\bullet \bullet$ •
$\$$ Check Point 2 Perform the indicated matrix operations:
a. $\left[\begin{array}{rr}-4 & 3 \\ 7 & -6\end{array}\right]+\left[\begin{array}{ll}6 & -3 \\ 2 & -4\end{array}\right]$
b. $\left[\begin{array}{rr}5 & 4 \\ -3 & 7 \\ 0 & 1\end{array}\right]-\left[\begin{array}{rr}-4 & 8 \\ 6 & 0 \\ -5 & 3\end{array}\right]$.

A matrix whose elements are all equal to 0 is called a zero matrix. If A is an $m \times n$ matrix and 0 is the $m \times n$ zero matrix, then $A+0=A$. For example,

$$
\left[\begin{array}{rr}
-5 & 2 \\
3 & 6
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
-5 & 2 \\
3 & 6
\end{array}\right] .
$$

The $m \times n$ zero matrix is called the additive identity for $m \times n$ matrices.
For any matrix A, the additive inverse of A, written $-A$, is the matrix with the same order as A such that every element of $-A$ is the opposite of the corresponding element of A. Because corresponding elements are added in matrix addition, $A+(-A)$ is a zero matrix. For example,

$$
\left[\begin{array}{rr}
-5 & 2 \\
3 & 6
\end{array}\right]+\left[\begin{array}{rr}
5 & -2 \\
-3 & -6
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Properties of matrix addition are similar to properties for adding real numbers.

Properties of Matrix Addition

If A, B, and C are $m \times n$ matrices and 0 is the $m \times n$ zero matrix, then the following properties are true.

1. $A+B=B+A$

Commutative property of addition
2. $(A+B)+C=A+(B+C)$

Associative property of addition
3. $A+0=0+A=A$

Additive identity property
4. $A+(-A)=(-A)+A=0$

Additive inverse property

TECHNOLOGY

You can verify the algebraic solution in Example 3(b) by first entering the matrices $[A]$ and $[B]$ into your graphing utility. The screen below shows the required computation.

Scalar Multiplication

A matrix of order 1×1, such as [6], contains only one entry. To distinguish this matrix from the number 6 , we refer to 6 as a scalar. In general, in our work with matrices, we will refer to real numbers as scalars.

To multiply a matrix A by a scalar c, we multiply each entry in A by c. For example,

$$
4\left[\begin{array}{rr}
2 & 5 \\
-3 & 0
\end{array}\right]=\left[\begin{array}{rr}
4(2) & 4(5) \\
4(-3) & 4(0)
\end{array}\right]=\left[\begin{array}{rr}
8 & 20 \\
-12 & 0
\end{array}\right]
$$

Scalar Matrix

Definition of Scalar Multiplication

If $A=\left[a_{i j}\right]$ is a matrix of order $m \times n$ and c is a scalar, then the matrix $c A$ is the $m \times n$ matrix given by

$$
c A=\left[c a_{i j}\right]
$$

This matrix is obtained by multiplying each element of A by the real number c. We call $c A$ a scalar multiple of A.

EXAMPLE 3 Scalar Multiplication

If $A=\left[\begin{array}{rr}-1 & 4 \\ 3 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -3 \\ 5 & -6\end{array}\right]$, find the following matrices:
a. $-5 B$
b. $2 A+3 B$.

SOLUTION
a. $-5 B=-5\left[\begin{array}{ll}2 & -3 \\ 5 & -6\end{array}\right]=\left[\begin{array}{ll}-5(2) & -5(-3) \\ -5(5) & -5(-6)\end{array}\right]=\left[\begin{array}{ll}-10 & 15 \\ -25 & 30\end{array}\right]$

Multiply each element by $\mathbf{- 5}$.

b. $2 A+3 B=2\left[\begin{array}{rr}-1 & 4 \\ 3 & 0\end{array}\right]+3\left[\begin{array}{ll}2 & -3 \\ 5 & -6\end{array}\right]$

$$
=\left[\begin{array}{rr}
2(-1) & 2(4) \\
2(3) & 2(0)
\end{array}\right]+\left[\begin{array}{ll}
3(2) & 3(-3) \\
3(5) & 3(-6)
\end{array}\right]
$$

Multiply each
element in A by 2.
Multiply each element in B by 3.
$=\left[\begin{array}{rr}-2 & 8 \\ 6 & 0\end{array}\right]+\left[\begin{array}{rr}6 & -9 \\ 15 & -18\end{array}\right]=\left[\begin{array}{rr}-2+6 & 8+(-9) \\ 6+15 & 0+(-18)\end{array}\right]$
Perform the addition of these 2×2
matrices by adding corresponding elements.

$$
=\left[\begin{array}{rr}
4 & -1 \\
21 & -18
\end{array}\right]
$$

Check Point 3 If $A=\left[\begin{array}{rr}-4 & 1 \\ 3 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & -2 \\ 8 & 5\end{array}\right]$, find the following
matrices:
a. $-6 B$
b. $3 A+2 B$.

DISCOVERY

Verify each of the four properties listed in the box using

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
2 & -4 \\
-5 & 3
\end{array}\right], \\
& B=\left[\begin{array}{rr}
4 & 0 \\
1 & -6
\end{array}\right],
\end{aligned}
$$

$c=4$, and $d=2$.

Properties of scalar multiplication are similar to properties for multiplying real numbers.

Properties of Scalar Multiplication

If A and B are $m \times n$ matrices, and c and d are scalars, then the following properties are true.

$$
\begin{array}{ll}
\text { 1. }(c d) A=c(d A) & \text { Associative property } \\
\text { 2. } 1 A=A & \text { Scalar identity proper } \\
\text { 3. } c(A+B)=c A+c B & \text { Distributive property } \\
\text { 4. }(c+d) A=c A+d A & \text { Distributive property }
\end{array}
$$

Have you noticed the many similarities between addition of real numbers and matrix addition, subtraction of real numbers and matrix subtraction, and multiplication of real numbers and scalar multiplication? Example 4 shows how these similarities can be used to solve matrix equations involving matrix addition, matrix subtraction, and scalar multiplication.

EXAMPLE 4 Solving a Matrix Equation

Solve for X in the matrix equation

$$
2 X+A=B
$$

where $A=\left[\begin{array}{rr}1 & -5 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}-6 & 5 \\ 9 & 1\end{array}\right]$.

SOLUTION

We begin by solving the matrix equation for X.

$$
\begin{aligned}
2 X+A & =B & & \text { This is the given matrix equation. } \\
2 X & =B-A & & \text { Subtract matrix } A \text { from both sides. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We multiply both sides } \\
& \text { by } \frac{1}{2} \text { rather than divide } \\
& \text { both sides by } 2 \text {. This is in } \\
& \text { anticipation of performing } \\
& \text { scalar multiplication. }
\end{aligned}
$$

Now we use the matrices A and B to find the matrix X.

$$
\begin{aligned}
& X=\frac{1}{2}\left(\left[\begin{array}{rr}
-6 & 5 \\
9 & 1
\end{array}\right]-\left[\begin{array}{rr}
1 & -5 \\
0 & 2
\end{array}\right]\right) \begin{array}{l}
\text { Substitute the matrices into } \\
X=\frac{1}{2}(B-A) . \\
\end{array} \begin{array}{l}
\text { Subtract matrices by subtracting } \\
\\
\\
=\left[\begin{array}{rr}
-7 & 10 \\
9 & -1
\end{array}\right] \\
\left.\begin{array}{rr}
-\frac{7}{2} & 5 \\
\frac{9}{2} & -\frac{1}{2}
\end{array}\right]
\end{array} \begin{array}{l}
\text { Perresponding elements. } \\
\text { multiplying each element by } \frac{1}{2} .
\end{array} \\
&
\end{aligned}
$$

Take a few minutes to show that this matrix satisfies the given equation $2 X+A=B$. Substitute the matrix for X and the given matrices for A and B into the equation. The matrices on each side of the equal sign, $2 X+A$ and B, should be equal.
6) Multiply matrices.

FIGURE 8.6 Finding corresponding elements when multiplying matrices
\int Check Point 4 Solve for X in the matrix equation $3 X+A=B$, where

$$
A=\left[\begin{array}{rr}
2 & -8 \\
0 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
-10 & 1 \\
-9 & 17
\end{array}\right] .
$$

Matrix Multiplication

We do not multiply two matrices by multiplying the corresponding entries of the matrices. Instead, we must think of matrix multiplication as row-by-column multiplication. To better understand how this works, let's begin with the definition of matrix multiplication for matrices of order 2×2.

Definition of Matrix Multiplication: 2×2 Matrices

$$
\begin{array}{r}
{\left[\begin{array}{cc}
\begin{array}{c}
\text { Row } 1 \text { of } A \\
\times \text { Column } 1 \\
\text { of } B
\end{array} & \left.\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right] \\
\times \begin{array}{c}
\text { Row } 1 \text { of } A \\
\text { of } B
\end{array} \\
\hline \begin{array}{c}
\text { Row } 2 \text { of } A \\
\times \text { Column } 1 \\
\text { of } B
\end{array} & \begin{array}{c}
\text { Row } 2 \text { of } A \\
\times \text { Column 2 } \\
\text { of } B
\end{array}
\end{array}\right.}
\end{array}
$$

Notice that we obtain the element in the i th row and j th column in $A B$ by performing computations with elements in the i th row of A and the j th column of B. For example, we obtain the element in the first row and first column of $A B$ by performing computations with elements in the first row of A and the first column of B.

1. Multiply each element in row 1 of A by the corresponding element in column 1 of B.
2. Add these products.
3. Record the sum as the element in row 1 , column 1 of the product matrix.

You may wonder how to find the corresponding elements in step 1 in the voice balloon. The element at the far left of row 1 corresponds to the element at the top of column 1 . The second element from the left of row 1 corresponds to the second element from the top of column 1. This is illustrated in Figure 8.6.

EXAMPLE 5 Multiplying Matrices

Find $A B$, given

$$
A=\left[\begin{array}{ll}
2 & 3 \\
4 & 7
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & 1 \\
5 & 6
\end{array}\right] .
$$

SOLUTION

We will perform a row-by-column computation.

$$
\begin{aligned}
A B= & {\left[\begin{array}{ll}
2 & 3 \\
4 & 7
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
5 & 6
\end{array}\right] } \\
& \text { Row } 1 \text { of } A \times \text { Column } 1 \text { of } B \quad \text { Row } 1 \text { of } A \times \text { Column } 2 \text { of } B \\
= & {\left[\begin{array}{ll}
2(0)+3(5) & 2(1)+3(6) \\
4(0)+7(5) & 4(1)+7(6)
\end{array}\right]=\left[\begin{array}{ll}
15 & 20 \\
35 & 46
\end{array}\right] } \\
& \text { Row } 2 \text { of } A \times \text { Column } 1 \text { of } B \quad \text { Row } 2 \text { of } A \times \text { Column } 2 \text { of } B
\end{aligned}
$$

\oint Check Point 5 Find $A B$, given $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 6 \\ 1 & 0\end{array}\right]$.
We can generalize the process of Example 5 to multiply an $m \times n$ matrix and an $n \times p$ matrix. For the product of two matrices to be defined, the number of columns of the first matrix must equal the number of rows of the second matrix.

First Matrix Second Matrix
$m \times n \quad n \times p$

The number of columns in the first matrix must be the same as the number of rows in the second matrix.

GREAT QUESTION!

Is there a diagram I can use to determine the order of the matrix product $A B$?
Yes. The following diagram illustrates the first sentence in the box defining matrix multiplication.

Definition of Matrix Multiplication

The product of an $m \times n$ matrix, A, and an $n \times p$ matrix, B, is an $m \times p$ matrix, $A B$, whose elements are found as follows: The element in the i th row and j th column of $A B$ is found by multiplying each element in the i th row of A by the corresponding element in the j th column of B and adding the products.

To find a product $A B$, each row of A must have the same number of elements as each column of B. We obtain $p_{i j}$, the element in the i th row and j th column in $A B$, by performing computations with elements in the i th row of A and the j th column of B :

When multiplying corresponding elements, keep in mind that the element at the far left of row i corresponds to the element at the top of column j. The element second from the left in row i corresponds to the element second from the top in column j. Likewise, the element third from the left in row i corresponds to the element third from the top in column j, and so on.

EXAMPLE 6 Multiplying Matrices

Matrices A and B are defined as follows:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] .
$$

Find each product: a. $A B$ b. $B A$.

SOLUTION

a. Matrix A is a 1×3 matrix and matrix B is a 3×1 matrix. Thus, the product $A B$ is a 1×1 matrix.

$$
\left.\left.\begin{array}{rl}
A & =\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
A B & =\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
\text { Matrix A } \\
5 \\
5
\end{array}\right] \\
& \\
\text { The order of } A B \\
\text { is } 1 \times 1 .
\end{array}\right] \begin{array}{l}
\text { Matrix B } \\
\text { equal. }
\end{array}\right]
$$

b. Matrix B is a 3×1 matrix and matrix A is a 1×3 matrix. Thus, the product $B A$ is a 3×3 matrix.

$$
\begin{aligned}
& \text { Matrix B Matrix A } \\
& \begin{array}{|c}
3 \times 1 \\
\text { These are } \\
\text { equal. } \\
\text { The order of } B A
\end{array} \\
& \text { is } 3 \times 3 \text {. } \\
& B A=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \text { We perform a row-by-column computation. } \\
& \begin{array}{l|l}
\text { Row } 1 \text { of } B \times \\
\text { Column } 1 \text { of } A & \begin{array}{c}
\text { Row } 1 \text { of } B \times \\
\text { Column } 2 \text { of } A
\end{array}
\end{array} \begin{array}{l}
\text { Row } 1 \text { of } B \times \\
\text { Column } 3 \text { of } A
\end{array} \\
& =\begin{array}{l}
\text { Row } 2 \text { of } B \times \\
\text { Column } 1 \text { of } A
\end{array}\left[\begin{array}{lll}
(4)(1) & (4)(2) & (4)(3) \\
(5)(1) & (5)(2) & (5)(3) \\
(6)(1) & (6)(2) & (6)(3)
\end{array}\right] \begin{array}{l}
\begin{array}{l}
\text { Row } 2 \text { of } B \times \\
\text { Column } 2 \text { of } A \\
\begin{array}{l}
\text { Row } 2 \text { of } B \times \\
\text { Column } 3 \text { of } A
\end{array}
\end{array}{ }^{2}+ \\
\hline
\end{array} \\
& \begin{array}{l|l|l}
\text { Row } 3 \text { of } B \times \\
\text { Column } 1 \text { of } A & \begin{array}{l}
\text { Row } 3 \text { of } B \times \\
\text { Column } 2 \text { of } A
\end{array} & \begin{array}{c}
\text { Row } 3 \text { of } B \times \\
\text { Column } 3 \text { of } A
\end{array}
\end{array} \\
& =\left[\begin{array}{rrr}
4 & 8 & 12 \\
5 & 10 & 15 \\
6 & 12 & 18
\end{array}\right] \\
& \text { Simplify. }
\end{aligned}
$$

In Example 6, did you notice that $A B$ and $B A$ are different matrices? For most matrices A and $B, A B \neq B A$. Because matrix multiplication is not commutative, be careful about the order in which matrices appear when performing this operation.

3 Check Point 6 If $A=\left[\begin{array}{lll}2 & 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 3 \\ 7\end{array}\right]$, find $A B$ and $B A$.

Blitzer Banus
 Arthur Cayley

Matrices were first studied intensively by the English mathematician Arthur Cayley (1821-1895). Before reaching the age of 25 , he published 25 papers, setting a pattern of prolific creativity that lasted throughout his life. Cayley was a lawyer, painter, mountaineer, and Cambridge professor whose greatest invention was that of matrices and matrix theory. Cayley's matrix algebra, especially the noncommutativity of multiplication $(A B \neq B A)$, opened up a new area of mathematics called abstract algebra.
\qquad

EXAMPLE 7 Multiplying Matrices

Where possible, find each product:
a. $\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & 2 & -1 & 6\end{array}\right]$
b. $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & 2 & -1 & 6\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$.

SOLUTION

a. The first matrix is a 2×2 matrix and the second is a 2×4 matrix. The product will be a 2×4 matrix.

First Matrix Second Matrix

2×2
These are equal.

The order of the product is 2×4.

| Row $2 \times$ Row $2 \times$ Row $2 \times$
 Column 1 Column 2 Column 3 | Row $2 \times$
 Column 4 |
| :--- | :--- | :--- | :--- |

$=\left[\begin{array}{rrrr}4+0 & 8+4 & 12-2 & 16+12 \\ 1+0 & 2+6 & 3-3 & 4+18\end{array}\right]$
$=\left[\begin{array}{rrrr}4 & 12 & 10 & 28 \\ 1 & 8 & 0 & 22\end{array}\right]$
b. $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & 2 & -1 & 6\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right] \underset{\substack{\text { First matrix } \\ 2 \times 4}}{\substack{\text { Second matrix } \\ 2 \times 2}}$ to multiply the matrices.

The number of columns in the first matrix does not equal the number of rows in the second matrix. Thus, the product of these two matrices is undefined.
\bigcirc Check Point 7 Where possible, find each product:
a. $\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]\left[\begin{array}{rrrr}2 & 3 & -1 & 6 \\ 0 & 5 & 4 & 1\end{array}\right]$
b. $\left[\begin{array}{rrrr}2 & 3 & -1 & 6 \\ 0 & 5 & 4 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]$.

DISCOVERY

Verify the properties listed in the box using

$$
\begin{aligned}
A & =\left[\begin{array}{rr}
3 & 2 \\
-1 & 4
\end{array}\right], \\
B & =\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right], \\
C & =\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right],
\end{aligned}
$$

and $c=3$.
(7) Model applied situations with matrix operations.

FIGURE 8.9 Changing contrast: the letter L

Although matrix multiplication is not commutative, it does obey many of the properties of real numbers.

Properties of Matrix Multiplication

If A, B, and C are matrices and c is a scalar, then the following properties are true. (Assume the order of each matrix is such that all operations in these properties are defined.)

1. $(A B) C=A(B C)$

Associative property of matrix multiplication
2. $A(B+C)=A B+A C$

Distributive properties of matrix multiplication $(A+B) C=A C+B C$
3. $c(A B)=(c A) B \quad$ Associative property of scalar multiplication

Applications

All of the still images that you see on the Web have been created or manipulated on a computer in a digital format-made up of hundreds of thousands, or even millions, of tiny squares called pixels. Pixels are created by dividing an image into a grid. The computer can change the brightness of every square or pixel in this grid. A digital camera captures photos in this digital format. Also, you can scan pictures to convert them into digital format. Example 8 illustrates the role that matrices play in this technology.

EXAMPLE 8 Matrices and Digital Photography

The letter L in Figure 8.7 is shown using 9 pixels in a 3×3 grid. The colors possible in the grid are shown in Figure 8.8. Each color is represented by a specific number: $0,1,2$, or 3 .

FIGURE 8.7 The letter L

FIGURE 8.8 Color levels
a. Find a matrix that represents a digital photograph of this letter L .
b. Increase the contrast of the letter L by changing the dark gray to black and the light gray to white. Use matrix addition to accomplish this.

SOLUTION

a. Look at the L and the background in Figure 8.7. Because the L is dark gray, color level 2 , and the background is light gray, color level 1, a digital photograph of Figure 8.7 can be represented by the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right] .
$$

b. We can make the L black, color level 3 , by increasing each 2 in the above matrix to 3 . We can make the background white, color level 0 , by decreasing each 1 in the above matrix to 0 . This is accomplished using the following matrix addition:

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]+\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & -1 & -1 \\
1 & 1 & -1
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
3 & 0 & 0 \\
3 & 3 & 0
\end{array}\right] .
$$

The picture corresponding to the matrix sum to the right of the equal sign is shown in Figure 8.9.

FIGURE 8.10

Check Point 8 Change the contrast of the letter Lin Figure 8.7 on the previous page by making the L light gray and the background black. Use matrix addition to accomplish this.

Blitzer Bonus || Images of Space

Photographs sent back from space use matrices with thousands of pixels. Each pixel is assigned a number from 0 to 63 representing its color -0 for pure white and 63 for pure black. In the image of Saturn shown here, matrix operations provide false colors that emphasize the banding of the planet's upper atmosphere.

We have seen how functions can be transformed using translations, reflections, stretching, and shrinking. In a similar way, matrix operations are used to transform and manipulate computer graphics.

EXAMPLE 9 Transformations of an Image

The quadrilateral in Figure 8.10 can be represented by the matrix

$$
\begin{gathered}
c \\
\text { Coordinates of vertices } \\
A=\left[\begin{array}{rrrr}
-2 & -1 & 3 & 1 \\
-3 & 2 & 4 & -2
\end{array}\right] . \begin{array}{r}
x \text {-coordinates } \\
y \text {-coordinates }
\end{array}
\end{gathered}
$$

Each column in the matrix gives the coordinates of a vertex, or corner, of the quadrilateral. Use matrix operations to perform the following transformations:
a. Move the quadrilateral 4 units to the right and 1 unit down.
b. Shrink the quadrilateral to half its perimeter.
c. Let $B=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$. Find $B A$. What effect does this have on the quadrilateral in Figure 8.10?

SOLUTION

a. We translate the quadrilateral 4 units right and 1 unit down by adding 4 to each x-coordinate and subtracting 1 from each y-coordinate. This is accomplished using the following matrix addition:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
-2 & -1 & 3 & 1 \\
-3 & 2 & 4 & -2
\end{array}\right]+\left[\begin{array}{rrrr}
4 & 4 & 4 & 4 \\
-1 & -1 & -1 & -1
\end{array}\right]=\left[\begin{array}{rrrr}
2 & 3 & 7 & 5 \\
-4 & 1 & 3 & -3
\end{array}\right] .} \\
& \begin{array}{c}
\text { This matrix represents the } \\
\text { original quadrilateral. }
\end{array}
\end{aligned} \begin{gathered}
\text { This matrix represents the } \\
\text { Shanst } 4 \text { units to the right } \\
\text { and } 1 \text { unit down. }
\end{gathered}
$$

Each column in the matrix on the right gives the coordinates of a vertex of the translated quadrilateral. The original quadrilateral and the translated image are shown in Figure 8.11.

FIGURE 8.12 Shrinking the quadrilateral to half the original perimeter
b. We shrink the quadrilateral in Figure 8.10, shown in blue in Figure 8.12, to half its perimeter by multiplying each x-coordinate and each y-coordinate by $\frac{1}{2}$. This is accomplished using the following scalar multiplication:

$$
\frac{1}{2}\left[\begin{array}{rrrr}
-2 & -1 & 3 & 1 \\
-3 & 2 & 4 & -2
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\
-\frac{3}{2} & 1 & 2 & -1
\end{array}\right] .
$$

This matrix represents the original quadrilateral.

This matrix represents the quadrilateral with half the original perimeter.

Each column in the matrix on the right gives the coordinates of a vertex of the reduced quadrilateral. The original quadrilateral and the reduced image are shown in Figure 8.12.
c. We begin by finding $B A$. Keep in mind that A represents the original quadrilateral, shown in blue in Figure 8.13.

FIGURE 8.13

$$
\begin{aligned}
B A & =\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-2 & -1 & 3 & 1 \\
-3 & 2 & 4 & -2
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
(-1)(-2)+0(-3) & (-1)(-1)+0(2) & (-1)(3)+0(4) & (-1)(1)+0(-2) \\
0(-2)+1(-3) & 0(-1)+1(2) & 0(3)+1(4) & 0(1)+1(-2)
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
2 & 1 & -3 & -1 \\
-3 & 2 & 4 & -2
\end{array}\right]
\end{aligned}
$$

Each column in the matrix multiplication gives the coordinates of a vertex of the transformed image. The original quadrilateral and this transformed image are shown in Figure 8.13. Notice that each x-coordinate on the original blue image is replaced with its opposite on the transformed red image. We can conclude that multiplication by $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$ reflected the blue
quadrilateral about the y-axis.
$\$$ Check Point 9 Consider the triangle represented by the matrix

$$
A=\left[\begin{array}{lll}
0 & 3 & 4 \\
0 & 5 & 2
\end{array}\right]
$$

Use matrix operations to perform the following transformations:
a. Move the triangle 3 units to the left and 1 unit down.
b. Enlarge the triangle to twice its original perimeter.

Illustrate your results in parts (a) and (b) by showing the original triangle and the transformed image in a rectangular coordinate system.
c. Let $B=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Find $B A$. What effect does this have on the original triangle?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The notation a_{34} refers to the element in the \qquad row and \qquad column of a matrix.
2. The order of $A=\left[\begin{array}{lll}2 & 3 & 7\end{array}\right]$ is \qquad .
3. A matrix that has the same number of rows as columns is called a/an \qquad matrix.
4. True or false: Matrices of different orders can be added.
5. True or false: The scalar multiple $-4 A$ is obtained by multiplying each element of A by -4 .
6. If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then $A B$ is defined as an \qquad \times \qquad matrix. To find the product $A B$, the number of \qquad in matrix A must equal the number of \qquad in matrix B.
7. True or false: Matrices of different orders can sometimes be multiplied.
8. True or false: Matrix multiplication is commutative. \qquad -

EXERCISE SET 8.3

Practice Exercises

In Exercises 1-4,
a. Give the order of each matrix.
b. If $A=\left[a_{i j}\right]$, identify a_{32} and a_{23}, or explain why identification is not possible.

1. $\left[\begin{array}{rrr}4 & -7 & 5 \\ -6 & 8 & -1\end{array}\right]$
2. $\left[\begin{array}{rrr}-6 & 4 & -1 \\ -9 & 0 & \frac{1}{2}\end{array}\right]$
3. $\left[\begin{array}{rrrr}1 & -5 & \pi & e \\ 0 & 7 & -6 & -\pi \\ -2 & \frac{1}{2} & 11 & -\frac{1}{5}\end{array}\right]$
4. $\left[\begin{array}{rrrr}-4 & 1 & 3 & -5 \\ 2 & -1 & \pi & 0 \\ 1 & 0 & -e & \frac{1}{5}\end{array}\right]$

In Exercises 5-8, find values for the variables so that the matrices in each exercise are equal.
5. $\left[\begin{array}{l}x \\ 4\end{array}\right]=\left[\begin{array}{l}6 \\ y\end{array}\right]$
6. $\left[\begin{array}{l}x \\ 7\end{array}\right]=\left[\begin{array}{c}11 \\ y\end{array}\right]$
7. $\left[\begin{array}{rr}x & 2 y \\ z & 9\end{array}\right]=\left[\begin{array}{rr}4 & 12 \\ 3 & 9\end{array}\right]$
8. $\left[\begin{array}{rr}x & y+3 \\ 2 z & 8\end{array}\right]=\left[\begin{array}{rr}12 & 5 \\ 6 & 8\end{array}\right]$

In Exercises 9-16, find the following matrices:
a. $A+B$
b. $A-B$
c. $-4 A$
d. $3 A+2 B$.
9. $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}5 & 9 \\ 0 & 7\end{array}\right]$
10. $A=\left[\begin{array}{rr}-2 & 3 \\ 0 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}8 & 1 \\ 5 & 4\end{array}\right]$
11. $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4 \\ 5 & 6\end{array}\right], \quad B=\left[\begin{array}{rr}2 & -1 \\ 3 & -2 \\ 0 & 1\end{array}\right]$
12. $A=\left[\begin{array}{rrr}3 & 1 & 1 \\ -1 & 2 & 5\end{array}\right], \quad B=\left[\begin{array}{rrr}2 & -3 & 6 \\ -3 & 1 & -4\end{array}\right]$
13. $A=\left[\begin{array}{r}2 \\ -4 \\ 1\end{array}\right], \quad B=\left[\begin{array}{r}-5 \\ 3 \\ -1\end{array}\right]$
14. $A=\left[\begin{array}{lll}6 & 2 & -3\end{array}\right], B=\left[\begin{array}{lll}4 & -2 & 3\end{array}\right]$
15. $A=\left[\begin{array}{rrr}2 & -10 & -2 \\ 14 & 12 & 10 \\ 4 & -2 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}6 & 10 & -2 \\ 0 & -12 & -4 \\ -5 & 2 & -2\end{array}\right]$
16. $A=\left[\begin{array}{rrr}6 & -3 & 5 \\ 6 & 0 & -2 \\ -4 & 2 & -1\end{array}\right], \quad B=\left[\begin{array}{rrr}-3 & 5 & 1 \\ -1 & 2 & -6 \\ 2 & 0 & 4\end{array}\right]$

In Exercises 17-26, let

$$
A=\left[\begin{array}{rr}
-3 & -7 \\
2 & -9 \\
5 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
-5 & -1 \\
0 & 0 \\
3 & -4
\end{array}\right]
$$

Solve each matrix equation for X.
17. $X-A=B$
18. $X-B=A$
19. $2 X+A=B$
20. $3 X+A=B$
21. $3 X+2 A=B$
22. $2 X+5 A=B$
23. $B-X=4 A$
24. $A-X=4 B$
25. $4 A+3 B=-2 X$
26. $4 B+3 A=-2 X$

In Exercises 27-36, find (if possible) the following matrices:
a. $A B$
b. $B A$
27. $A=\left[\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right], \quad B=\left[\begin{array}{rr}3 & -2 \\ -1 & 6\end{array}\right]$
28. $A=\left[\begin{array}{rr}3 & -2 \\ 1 & 5\end{array}\right], \quad B=\left[\begin{array}{rr}0 & 0 \\ 5 & -6\end{array}\right]$
29. $A=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right], \quad B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$
30. $A=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right], \quad B=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
31. $A=\left[\begin{array}{rrr}1 & -1 & 4 \\ 4 & -1 & 3 \\ 2 & 0 & -2\end{array}\right], \quad B=\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 2 & 4 \\ 1 & -1 & 3\end{array}\right]$
32. $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 5 & 0 & -2 \\ 3 & -2 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & -4 & 5 \\ 3 & -1 & 2\end{array}\right]$
33. $A=\left[\begin{array}{ll}4 & 2 \\ 6 & 1 \\ 3 & 5\end{array}\right], \quad B=\left[\begin{array}{rrr}2 & 3 & 4 \\ -1 & -2 & 0\end{array}\right]$
34. $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1 \\ 4 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}3 & 2 & 0 \\ -1 & -3 & 5\end{array}\right]$
35. $A=\left[\begin{array}{rrrr}2 & -3 & 1 & -1 \\ 1 & 1 & -2 & 1\end{array}\right], \quad B=\left[\begin{array}{rr}1 & 2 \\ -1 & 1 \\ 5 & 4 \\ 10 & 5\end{array}\right]$
36. $A=\left[\begin{array}{rrrr}2 & -1 & 3 & 2 \\ 1 & 0 & -2 & 1\end{array}\right], \quad B=\left[\begin{array}{rr}-1 & 2 \\ 1 & 1 \\ 3 & -4 \\ 6 & 5\end{array}\right]$

In Exercises 37-44, perform the indicated matrix operations given that A, B, and C are defined as follows. If an operation is not defined, state the reason.

$$
A=\left[\begin{array}{rr}
4 & 0 \\
-3 & 5 \\
0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rr}
5 & 1 \\
-2 & -2
\end{array}\right] \quad C=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

37. $4 B-3 C$
38. $5 C-2 B$
39. $B C+C B$
40. $A(B+C)$
41. $A-C$
42. $B-A$
43. $A(B C)$
44. $A(C B)$

Practice Plus

In Exercises 45-50, let

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad C=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \\
& D=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] .
\end{aligned}
$$

45. Find the product of the sum of A and B and the difference between C and D.
46. Find the product of the difference between A and B and the sum of C and D.
47. Use any three of the matrices to verify a distributive property.
48. Use any three of the matrices to verify an associative property.

In Exercises 49-50, suppose that the vertices of a computer graphic are points, (x, y), represented by the matrix

$$
Z=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

49. Find $B Z$ and explain why this reflects the graphic about the x-axis.
50. Find $C Z$ and explain why this reflects the graphic about the y-axis.

Application Exercises

The + sign in the figure is shown using 9 pixels in a 3×3 grid. The color levels are given to the right of the figure. Each color is represented by a specific number: 0, 1, 2, or 3. Use this information to solve Exercises 51-52.

51. a. Find a matrix that represents a digital photograph of the + sign.
b. Adjust the contrast by changing the black to dark gray and the light gray to white. Use matrix addition to accomplish this.
c. Adjust the contrast by changing the black to light gray and the light gray to dark gray. Use matrix addition to accomplish this.
52. a. Find a matrix that represents a digital photograph of the + sign.
b. Adjust the contrast by changing the black to dark gray and the light gray to black. Use matrix addition to accomplish this.
c. Adjust the contrast by leaving the black alone and changing the light gray to white. Use matrix addition to accomplish this.

The figure shows the letter L in a rectangular coordinate system.

The figure can be represented by the matrix

$$
B=\left[\begin{array}{llllll}
0 & 3 & 3 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 5 & 5
\end{array}\right]
$$

Each column in the matrix describes a point on the letter. The order of the columns shows the direction in which a pencil must move to draw the letter. The L is completed by connecting the last point in the matrix, $(0,5)$, to the starting point, $(0,0)$. Use these ideas to solve Exercises 53-60.
53. Use matrix operations to move the $L 2$ units to the left and 3 units down. Then graph the letter and its transformation in a rectangular coordinate system.
54. Use matrix operations to move the L 2 units to the right and 3 units down. Then graph the letter and its transformation in a rectangular coordinate system.
55. Reduce the L to half its perimeter and move the reduced image 1 unit up. Then graph the letter and its transformation.
56. Reduce the L to half its perimeter and move the reduced image 2 units up. Then graph the letter and its transformation.
57. a. If $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, find $A B$.
b. Graph the object represented by matrix $A B$. What effect does the matrix multiplication have on the letter L represented by matrix B ?
58. a. If $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$, find $A B$.
b. Graph the object represented by matrix $A B$. What effect does the matrix multiplication have on the letter L represented by matrix B ?
(In Exercises 59-60, be sure to refer to matrix B described in the second column on the previous page.)
59. a. If $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$, find $A B$.
b. Graph the object represented by matrix $A B$. What effect does the matrix multiplication have on the letter L represented by matrix B ?
60. a. If $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$, find $A B$.
b. Graph the object represented by matrix $A B$. What effect does the matrix multiplication have on the letter L represented by matrix B ?
61. Completing the transition to adulthood is measured by one or more of the following: leaving home, finishing school, getting married, having a child, or being financially independent. The bar graph shows the percentage of Americans, ages 20 and 30, who had completed the transition to adulthood in 1960 and in 2000.

Percentage Having Completed the Transition to Adulthood

Source: James M. Henslin, Sociology, Eleventh Edition, Pearson, 2012.
a. Use a 2×2 matrix to represent the data for 2000 . Entries in the matrix should be percents that are organized as follows:

Men Women

Call this matrix A.
b. Use a 2×2 matrix to represent the data for 1960. Call this matrix B.
c. Find $B-A$. What does this matrix represent?
62. The table gives an estimate of basic caloric needs for different age groups and activity levels.

Age Range	Sedentary		Moderately Active	Active	
$19-30$	2400	2000	2700	2100	3000
$31-50$	2200	1800	2500	2000	2900
$51+$	2000	1600	2300	1800	2600
			Men	Women	

Source: USA Today
a. Use a 3×3 matrix to represent the daily caloric needs, by age and activity level, for men. Call this matrix M.
b. Use a 3×3 matrix to represent the daily caloric needs, by age and activity level, for women. Call this matrix W.
c. Find $M-W$. What does this matrix represent?
63. The final grade in a particular course is determined by grades on the midterm and final. The grades for five students and the two grading systems are modeled by the following matrices. Call the first matrix A and the second B.

Midterm	Final	$\begin{gathered} \text { System } \\ 1 \end{gathered}$	$\begin{gathered} \text { System } \\ 2 \end{gathered}$
Student $1\lceil 76$	92	Midterm $\quad 0.5$	0.37
Student 274	84	Final 0.5	0.7]
Student 394	86		
Student 484	62		
Student 5 [58	80		

a. Describe the grading system that is represented by matrix B.
b. Compute the matrix $A B$ and assign each of the five students a final course grade first using system 1 and then using system 2. $(89.5-100=A, 79.5-89.4=B$, $69.5-79.4=C, 59.5-69.4=D$, below $59.5=F$)
64. In a certain county, the proportion of voters in each age group registered as Republicans, Democrats, or Independents is given by the following matrix, which we'll call A.

Age		
$\left.\begin{array}{ccc}\text { 18-30 } & \mathbf{3 1 - 5 0} & \text { Over 50 } \\ \text { Republicans } \\ \text { Democrats } \\ \text { Independents }\end{array} \begin{array}{ccc}0.40 & 0.30 & 0.70 \\ 0.30 & 0.60 & 0.25 \\ 0.30 & 0.10 & 0.05\end{array}\right]$		

The distribution, by age and gender, of this county's voting population is given by the following matrix, which we'll call B.

		Male	Female
	18-30	6000	8000
Age	31-50	12,000	14,000
	Over 50	14,000	16,000

a. Calculate the product $A B$.
b. How many female Democrats are there?
c. How many male Republicans are there?

Writing in Mathematics

65. What is meant by the order of a matrix? Give an example with your explanation.
66. What does $a_{i j}$ mean?
67. What are equal matrices?
68. How are matrices added?
69. Describe how to subtract matrices.
70. Describe matrices that cannot be added or subtracted.
71. Describe how to perform scalar multiplication. Provide an example with your description.
72. Describe how to multiply matrices.
73. Describe when the multiplication of two matrices is not defined.
74. If two matrices can be multiplied, describe how to determine the order of the product.
75. Low-resolution digital photographs use 262,144 pixels in a 512×512 grid. If you enlarge a low-resolution digital photograph enough, describe what will happen.

Technology Exercise

76. Use the matrix feature of a graphing utility to verify each of your answers to Exercises 37-44.

Critical Thinking Exercises

Make Sense? In Exercises 77-80, determine whether each statement makes sense or does not make sense, and explain your reasoning.
77. I added matrices of the same order by adding corresponding elements.
78. I multiplied an $m \times n$ matrix and an $n \times p$ matrix by multiplying corresponding elements.
79. I'm working with two matrices that can be added but not multiplied.
80. I'm working with two matrices that can be multiplied but not added.
81. Find two matrices A and B such that $A B=B A$.
82. Consider a square matrix such that each element that is not on the diagonal from upper left to lower right is zero. Experiment with such matrices (call each matrix A) by finding $A A$. Then write a sentence or two describing a method for multiplying this kind of matrix by itself.
83. If $A B=-B A$, then A and B are said to be anticommutative. Are $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ anticommutative?

Group Exercise

84. The interesting and useful applications of matrix theory are nearly unlimited. Applications of matrices range from representing digital photographs to predicting long-range trends in the stock market. Members of the group should research an application of matrices that they find intriguing. The group should then present a seminar to the class about this application.

Preview Exercises

Exercises 85-87 will help you prepare for the material covered in the next section.
85. Multiply:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

After performing the multiplication, describe what happens to the elements in the first matrix.
86. Use Gauss-Jordan elimination to solve the system:

$$
\left\{\begin{aligned}
-x-y-z & =1 \\
4 x+5 y & =0 \\
y-3 z & =0
\end{aligned}\right.
$$

87. Multiply and write the linear system represented by the following matrix multiplication:

$$
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

CHAPTER 8

Mid-Chapter Check Point

WHAT YOU KNOW: We learned to use matrices to solve systems of linear equations. Gaussian elimination required simplifying the augmented matrix to one with 1 s down the main diagonal and 0s below the 1s. Gauss-Jordan elimination simplified the augmented matrix to one with 1 s down the main diagonal and 0 s above and below each 1. Such a matrix, in reduced row-echelon form, did not require back-substitution to solve the system. We applied Gaussian elimination to systems with no solution, as well as to represent the solution set for systems with infinitely many solutions, including nonsquare systems. We learned how to perform operations with matrices, including matrix addition, matrix subtraction, scalar multiplication, and matrix multiplication.

In Exercises 1-5, use matrices to find the complete solution to each system of equations, or show that none exists.

1. $\left\{\begin{aligned} x+2 y-3 z & =-7 \\ 3 x-y+2 z & =8 \\ 2 x-y+z & =5\end{aligned}\right.$
2. $\left\{\begin{aligned} 2 x+4 y+5 z & =2 \\ x+y+2 z & =1 \\ 3 x+5 y+7 z & =4\end{aligned}\right.$
3. $\left\{\begin{aligned} x-2 y+2 z & =-2 \\ 2 x+3 y-z & =1\end{aligned}\right.$ 4. $\left\{\begin{aligned} w+x+y+z & =6 \\ w-x+3 y+z & =-14 \\ w+2 x-3 z & =12 \\ 2 w+3 x+6 y+z & =1\end{aligned}\right.$
4. $\left\{\begin{aligned} 2 x-2 y+2 z & =5 \\ x-y+z & =2 \\ 2 x+y-z & =1\end{aligned}\right.$

In Exercises 6-10, perform the indicated matrix operations or solve the matrix equation for X given that A, B, and C are defined as follows. If an operation is not defined, state the reason.

$$
A=\left[\begin{array}{rr}
0 & 2 \\
-1 & 3 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{rr}
4 & 1 \\
-6 & -2
\end{array}\right] \quad C=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

6. $2 C-\frac{1}{2} B$
7. $A(B+C)$
8. $A(B C)$
9. $A+C$
10. $2 X-3 C=B$

SECTION 8.4

Objectives

(1) Find the multiplicative inverse of a square matrix.
(2) Use inverses to solve matrix equations.
(3) Encode and decode messages.
I) Find the multiplicative inverse of a square matrix.

Multiplicative Inverses of Matrices and Matrix Equations

In 1939, Britain's secret service hired top chess players, mathematicians, and other masters of logic to break the code used by the Nazis in communications between headquarters and troops. The project, which employed over 10,000 people, broke the code less than a year later, providing the Allies with information about Nazi troop movements throughout World War II.

Messages must often be sent in such a way that the real meaning is hidden from everyone but the sender and the recipient. In this section, we will look at the role that matrices and their inverses play in this process.

The Multiplicative Identity Matrix

For the real numbers, we know that 1 is the multiplicative identity because $a \cdot 1=1 \cdot a=a$. Is there a similar property for matrix multiplication? That is, is there a matrix I such that $A I=A$ and $I A=A$? The answer is yes. A square matrix with 1 s down the main diagonal from upper left to lower right and 0 s elsewhere does not change the elements in a matrix in products with that matrix. In the case of 2×2 matrices,

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$$
\begin{gathered}
\text { The elements in the matrix } \\
\text { do not change. }
\end{gathered} \quad \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text {. }
$$

The elements in the matrix do not change.

The $n \times n$ square matrix with 1 s down the main diagonal from upper left to lower right and Os elsewhere is called the multiplicative identity matrix of order \boldsymbol{n}. This matrix is designated by I_{n}. For example,

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and so on.

The Multiplicative Inverse of a Matrix

The multiplicative identity matrix, I_{n}, will help us to define a new concept: the multiplicative inverse of a matrix. To do so, let's consider a similar concept, the multiplicative inverse of a nonzero number, a. Recall that the multiplicative inverse of a is $\frac{1}{a}$. The multiplicative inverse has the following property:

$$
a \cdot \frac{1}{a}=1 \quad \text { and } \quad \frac{1}{a} \cdot a=1
$$

We can define the multiplicative inverse of a square matrix in a similar manner.

Definition of the Multiplicative Inverse of a Square Matrix
Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix A^{-1} (read:" A inverse") such that

$$
A A^{-1}=I_{n} \quad \text { and } \quad A^{-1} A=I_{n},
$$

then A^{-1} is the multiplicative inverse of A.

We have seen that matrix multiplication is not commutative. Thus, to show that a matrix B is the multiplicative inverse of the matrix A, find both $A B$ and $B A$. If B is the multiplicative inverse of A, both products ($A B$ and $B A$) will be the multiplicative identity matrix, I_{n}.

EXAMPLE 1 The Multiplicative Inverse of a Matrix

Show that B is the multiplicative inverse of A, where

$$
A=\left[\begin{array}{rr}
-1 & 3 \\
2 & -5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] .
$$

SOLUTION

To show that B is the multiplicative inverse of A, we must find the products $A B$ and $B A$. If B is the multiplicative inverse of A, then $A B$ will be the multiplicative identity matrix and $B A$ will be the multiplicative identity matrix. Because A and B are 2×2 matrices, $n=2$. Thus, we denote the multiplicative identity matrix as I_{2}; it is also a 2×2 matrix. We must show that

- $A B=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and
- $B A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Let's first show $A B=I_{2}$.

$$
\begin{aligned}
A B & =\left[\begin{array}{rr}
-1 & 3 \\
2 & -5
\end{array}\right]\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
-1(5)+3(2) & -1(3)+3(1) \\
2(5)+(-5)(2) & 2(3)+(-5)(1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Let's now show $B A=I_{2}$.

$$
\begin{aligned}
B A & =\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 3 \\
2 & -5
\end{array}\right] \\
& =\left[\begin{array}{ll}
5(-1)+3(2) & 5(3)+3(-5) \\
2(-1)+1(2) & 2(3)+1(-5)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Both products give the multiplicative identity matrix. Thus, B is the multiplicative inverse of A and we can designate B as $A^{-1}=\left[\begin{array}{ll}5 & 3 \\ 2 & 1\end{array}\right]$.
Φ Check Point 1 Show that B is the multiplicative inverse of A, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right] .
$$

TECHNOLOGY

You can use a graphing utility to find the inverse of the matrix in Example 2. Enter the matrix and name it A. The screens show A and A^{-1}. Verify that this is correct by showing that
$A A^{-1}=I_{2} \quad$ and $\quad A^{-1} A=I_{2}$.

$[\mathrm{CH}]^{-1}$

One method for finding the multiplicative inverse of a matrix A is to begin by denoting the elements in A^{-1} with variables. Using the equation $A A^{-1}=I_{n}$, we can find a value for each element in the multiplicative inverse that is represented by a variable. Example 2 shows how this is done.

EXAMPLE 2 Finding the Multiplicative Inverse of a Matrix

Find the multiplicative inverse of

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]
$$

SOLUTION

Let us denote the multiplicative inverse by

$$
A^{-1}=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]
$$

Because A is a 2×2 matrix, we use the equation $A A^{-1}=I_{2}$ to find values for w, x, y, and z.

$$
\begin{gathered}
A \\
{\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{cc}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rr}
2 w+y & 2 x+z \\
5 w+3 y & 5 x+3 z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { Use row-by-column matrix multiplication on the }} \\
\text { left side of }\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{gathered}
$$

We now equate corresponding elements to obtain the following two systems of linear equations:

$$
\left\{\begin{array} { l }
{ 2 w + y = 1 } \\
{ 5 w + 3 y = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
2 x+z=0 \\
5 x+3 z=1
\end{array}\right.\right.
$$

Each of these systems can be solved using the addition method.

$$
\begin{aligned}
& \left\{\begin{array}{rlrl}
2 w+y=1 \\
5 w+3 y=0 & \text { Multiply by }-3 . \\
\text { No change }
\end{array} \quad \begin{array}{rl}
-6 w-3 y & =-3 \\
\text { Add: } & \frac{5 w+3 y}{-w}
\end{array}=\frac{0}{-w}\right. \\
& w=3 \\
& y=-5 \\
& \left\{\begin{aligned}
2 x+z=0 \\
5 x+3 z=1
\end{aligned} \begin{array}{rl}
\text { Multiply by }-3 . \\
\text { No change }
\end{array} \quad \begin{array}{rl}
-6 x-3 z & =0 \\
\text { Add: } & \begin{array}{rl}
5 x+3 z & = \\
\hline x &
\end{array} \\
& \\
\text { Use back-substitution. } &
\end{array}\right.
\end{aligned}
$$

Using these values, we have

$$
A^{-1}=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{rr}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

\int Check Point 2 Find the multiplicative inverse of $A=\left[\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right]$.

Only square matrices of order $n \times n$ have multiplicative inverses, but not every square matrix possesses a multiplicative inverse. For example, suppose that you apply the procedure of Example 2 to $A=\left[\begin{array}{ll}-6 & 4 \\ -3 & 2\end{array}\right]$:

Multiplying matrices on the left and equating corresponding elements results in inconsistent systems with no solutions. There are no values for w, x, y, and z. This shows that matrix A does not have a multiplicative inverse.

A nonsquare matrix, one with a different number of rows than columns, cannot have a multiplicative inverse. If A is an $m \times n$ matrix and B is an $n \times m$ matrix $(n \neq m)$, then the products $A B$ and $B A$ are of different orders. This means that they could not be equal to each other, so that $A B$ and $B A$ could not both equal the multiplicative identity matrix.

If a square matrix has a multiplicative inverse, that inverse is unique. This means that the square matrix has no more than one inverse. If a square matrix has a multiplicative inverse, it is said to be invertible or nonsingular. If a square matrix has no multiplicative inverse, it is called singular.

A Quick Method for Finding the Multiplicative Inverse
 of a 2×2 Matrix

The same method used in Example 2 can be used to develop the general form of the multiplicative inverse of a 2×2 matrix. The following rule enables us to calculate the multiplicative inverse, if there is one:

Multiplicative Inverse of a 2×2 Matrix
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.
The matrix A is invertible if and only if $a d-b c \neq 0$. If $a d-b c=0$, then A does not have a multiplicative inverse.

EXAMPLE 3 Using the Quick Method to Find a Multiplicative Inverse

Find the multiplicative inverse of

$$
A=\left[\begin{array}{rr}
-1 & -2 \\
3 & 4
\end{array}\right] .
$$

SOLUTION

$$
A=\left[\begin{array}{rr}
a & b \\
-1 & -2 \\
3 & 4
\end{array}\right] \begin{aligned}
& \text { This is the given matrix. } \\
& \text { We've designated the } \\
& \text { elements } a, b, c, \text { and } d .
\end{aligned}
$$

$$
A=\begin{array}{cc}
a & b \\
{\left[\begin{array}{rr}
-1 & -2 \\
3 & 4
\end{array}\right]} \\
c & d
\end{array}
$$

The given matrix (repeated)

$$
\begin{array}{rlr}
A^{-1} & =\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] & \begin{array}{l}
\text { This is the formula for } \\
\text { the inverse of }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
\end{array} \\
& =\frac{1}{(-1)(4)-(-2)(3)}\left[\begin{array}{rr}
4 & -(-2) \\
-3 & -1
\end{array}\right] \begin{array}{l}
\text { Apply the formula with } \\
a=-1, b=-2, c=3, \\
\text { and } d=4 .
\end{array}
\end{array}
$$

Simplify.
Perform the scalar
multiplication by
multiplying each
element in the matrix by $\frac{1}{2}$.

The inverse of $A=\left[\begin{array}{rr}-1 & -2 \\ 3 & 4\end{array}\right]$ is $A^{-1}=\left[\begin{array}{rr}2 & 1 \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right]$.
We can verify this result by showing that $A A^{-1}=I_{2}$ and $A^{-1} A=I_{2}$.

$\$$ Check Point 3 Find the multiplicative inverse of

$$
A=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]
$$

Finding Multiplicative Inverses of $\boldsymbol{n} \times \boldsymbol{n}$ Matrices with \boldsymbol{n} Greater Than 2

To find the multiplicative inverse of a 3×3 invertible matrix, we begin by denoting the elements in the multiplicative inverse with variables. Here is an example:
$\left[\begin{array}{rrr}-1 & -1 & -1 \\ 4 & 5 & 0 \\ 0 & 1 & -3\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

$$
\begin{aligned}
& \text { This is matrix } A \text { whose } \\
& \text { inverse we wish to find. } \quad \text { This } \\
& \text { represents } A^{-1} \text {. }
\end{aligned}
$$

This is the multiplicative identity matrix, I_{3}.

We multiply the matrices on the left, using the row-by-column definition of matrix multiplication.

$$
\left[\begin{array}{ccc}
-x_{1}-y_{1}-z_{1} & -x_{2}-y_{2}-z_{2} & -x_{3}-y_{3}-z_{3} \\
4 x_{1}+5 y_{1}+0 z_{1} & 4 x_{2}+5 y_{2}+0 z_{2} & 4 x_{3}+5 y_{3}+0 z_{3} \\
0 x_{1}+1 y_{1}-3 z_{1} & 0 x_{2}+1 y_{2}-3 z_{2} & 0 x_{3}+1 y_{3}-3 z_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We now equate corresponding entries to obtain the following three systems of linear equations:

$$
\left\{\begin{array} { r }
{ - x _ { 1 } - y _ { 1 } - z _ { 1 } = 1 } \\
{ 4 x _ { 1 } + 5 y _ { 1 } + 0 z _ { 1 } = 0 } \\
{ 0 x _ { 1 } + y _ { 1 } - 3 z _ { 1 } = 0 }
\end{array} \quad \left\{\begin{array} { r }
{ - x _ { 2 } - y _ { 2 } - z _ { 2 } = 0 } \\
{ 4 x _ { 2 } + 5 y _ { 2 } + 0 z _ { 2 } = 1 } \\
{ 0 x _ { 2 } + y _ { 2 } - 3 z _ { 2 } = 0 }
\end{array} \quad \left\{\begin{array}{l}
-x_{3}-y_{3}-z_{3}=0 \\
4 x_{3}+5 y_{3}+0 z_{3}=0 \\
0 x_{3}+y_{3}-3 z_{3}=1 .
\end{array}\right.\right.\right.
$$

Notice that the variables on the left of the equal signs have the same coefficients in each system. We can use Gauss-Jordan elimination to solve all three systems at once. Form an augmented matrix that contains the coefficients of the three systems to the left of the vertical line and the constants for the systems to the right.

$$
\left[\begin{array}{rrr|rrr}
-1 & -1 & -1 & 1 & 0 & 0 \\
4 & 5 & 0 & 0 & 1 & 0 \\
0 & 1 & -3 & 0 & 0 & 1
\end{array}\right]
$$

Coefficients of the
 three systems

Constants on the right in each of the three systems

To solve all three systems using Gauss-Jordan elimination, we must obtain $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ to the left of the vertical line. Use matrix row operations, working one column at a time. Obtain 1 in the required position. Then obtain 0 s in the other two positions. Using these operations, we obtain the matrix

$$
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 15 & 4 & -5 \\
0 & 1 & 0 & -12 & -3 & 4 \\
0 & 0 & 1 & -4 & -1 & 1
\end{array}\right] .
$$

This augmented matrix provides the solutions to the three systems of equations. They are given by

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & 15 \\
0 & 1 & 0 & -12 \\
0 & 0 & 1 & -4
\end{array}\right] \quad \begin{aligned}
& x_{1}=15 \\
& y_{1}=-12 \\
& z_{1}=-4
\end{aligned}
$$

and $\left[\begin{array}{rrr|r}1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -1\end{array}\right] \quad \begin{aligned} & x_{2}=4 \\ & y_{2}=-3 \\ & z_{2}=-1\end{aligned}$ and $\left[\begin{array}{rrr|r}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1\end{array}\right] \begin{aligned} & x_{3}=-5 \\ & y_{3}=4 \\ & z_{3}=1 .\end{aligned}$
Using the preceding nine values, the inverse matrix is

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right]=\left[\begin{array}{rrr}
15 & 4 & -5 \\
-12 & -3 & 4 \\
-4 & -1 & 1
\end{array}\right] .
$$

Take a second look at the matrix obtained at the point where Gauss-Jordan elimination was completed. This matrix is shown, again, below. Notice that the 3×3 matrix to the right of the vertical bar is the multiplicative inverse of A. Also notice that the multiplicative identity matrix, I_{3} is the matrix that appears to the left of the vertical bar.
$\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 15 & 4 & -5 \\
0 & 1 & 0 & -12 & -3 & 4 \\
0 & 0 & 1 & -4 & -1 & 1\end{array}\right]$

\[\)| This is is the |
| :---: |
| multiplicitive |
| identity, $I_{3} .$ |

\]

The observations in the voice balloons and the procedures followed above give us a general method for finding the multiplicative inverse of an invertible matrix. This method is given at the top of the next page.

GREAT QUESTION!

Should I use the procedure in the box for finding the multiplicative inverse of a 2×2 matrix?
No. Because we have a quick method for finding the multiplicative inverse of a 2×2 matrix, the procedure on the right is recommended for matrices of order 3×3 or greater when a graphing utility is not being used.

Procedure for Finding the Multiplicative Inverse of an Invertible Matrix To find A^{-1} for any $n \times n$ matrix A for which A^{-1} exists,

1. Form the augmented matrix $\left[A \mid I_{n}\right]$, where I_{n} is the multiplicative identity matrix of the same order as the given matrix A.
2. Perform row operations on $\left[A \mid I_{n}\right]$ to obtain a matrix of the form $\left[I_{n} \mid B\right]$.

This is equivalent to using Gauss-Jordan elimination to change A into the identity matrix.
3. Matrix B is A^{-1}.
4. Verify the result by showing that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$.

EXAMPLE 4 Finding the Multiplicative Inverse of a 3×3 Matrix

Find the multiplicative inverse of

$$
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & -2 & 1 \\
-2 & -3 & 0
\end{array}\right]
$$

SOLUTION

Step 1 Form the augmented matrix $\left[A \mid I_{3}\right]$.

Step 2 Perform row operations on $\left[A \mid I_{3}\right]$ to obtain a matrix of the form $\left[I_{3} \mid B\right]$. To the left of the vertical dividing line, we want 1s down the diagonal from upper left to lower right and 0s elsewhere.

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{rrr|rrr}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 & 1 & 0 \\
-2 & -3 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\begin{array}{l}
\text { Replace row } 3 \\
\text { by } 2 R_{1}+R_{3} .
\end{array} \\
\left.\left[\begin{array}{rrr|rrr}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & -5 & 2 & 2 & 0 & 1
\end{array}\right] \xrightarrow[\begin{array}{lll|lll}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 & 1 & 0 \\
0 & -5 & 2 & 2 & 0 & 1
\end{array}]\right]{\substack{\text { Replace row } 1 \text { by } 1 R_{2}+R_{1} . \\
\text { Replace row } 3 \text { by } 5 R_{2}+R_{3} .}}\left[\begin{array}{rrrrrr}
1 & 0 & \frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} & 2 & -\frac{5}{2} & 1
\end{array}\right]
\end{array}\right] \begin{array}{l}
-2 R_{3}
\end{array}\right]
\end{aligned}
$$

This is the multiplicative inverse of A.

TECHNOLOGY

We can use a graphing utility to verify the inverse matrix we found in Example 4. Enter the elements in matrix A and press x^{-1} to display A^{-1}.

TECHNOLOGY

The matrix

$$
A=\left[\begin{array}{ll}
4 & 6 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

has no multiplicative inverse because

$$
\begin{aligned}
a d-b c & =4 \cdot 3-6 \cdot 2 \\
& =12-12=0
\end{aligned}
$$

When we try to find the inverse with a graphing utility, an ERror message occurs, indicating the matrix is singular.

ERR: SINGULAR MAT
igQuit.
2:Goto

Step 3 Matrix \boldsymbol{B} is $\boldsymbol{A}^{\mathbf{- 1}}$. The last matrix shown at the bottom of the previous page is in the form $\left[I_{3} \mid B\right]$. The multiplicative identity matrix is on the left of the vertical bar. Matrix B, the multiplicative inverse of A, is on the right. Thus, the multiplicative inverse of A is

$$
A^{-1}=\left[\begin{array}{rrr}
3 & -3 & 1 \\
-2 & 2 & -1 \\
-4 & 5 & -2
\end{array}\right]
$$

Step 4 Verify the result by showing that $A A^{-1}=I_{3}$ and $A^{-1} A=I_{3}$. Try confirming the result by multiplying A and A^{-1} to obtain I_{3}. Do you obtain I_{3} if you reverse the order of the multiplication?

We have seen that not all square matrices have multiplicative inverses. If the row operations in step 2 result in all zeros in a row or column to the left of the vertical line, the given matrix does not have a multiplicative inverse.
6 Check Point 4 Find the multiplicative inverse of

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
-1 & 2 & 3 \\
1 & -1 & 0
\end{array}\right] .
$$

Summary: Finding Multiplicative Inverses for Invertible Matrices

Use a graphing utility with matrix capabilities, or
a. If the matrix is 2×2 : The inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

b. If the matrix A is $n \times n$ where $n>2$: Use the procedure on page 894 . Form $\left[A \mid I_{n}\right]$ and use row transformations to obtain $\left[I_{n} \mid B\right]$. Then $A^{-1}=B$.

Solving Systems of Equations Using Multiplicative

 Inverses of MatricesMatrix multiplication can be used to represent a system of linear equations.

Linear System

$\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$

Matrix Form of the System
$\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$

The matrix	The matrix contains the cystem's	The matrix contains the system's constain the system's coefficients.
constants.		

You can work with the matrix form of the system and obtain the form of the linear system on the left. To do so, perform the matrix multiplication on the left side of the matrix equation. Then equate the corresponding elements.

The matrix equation

$$
\begin{array}{rll}
{\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} & =\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] \\
\downarrow & \downarrow & \downarrow \\
A & X & = \\
& & =
\end{array}
$$

A is the coefficient matrix of the system, and X and B are matrices containing one column, called column matrices. The matrix B is called the constant matrix.

Here is a specific example of a linear system and its matrix form:

Linear System

$\left\{\begin{aligned} x-y+z & =2 \\ -2 y+z & =2 \\ -2 x-3 y & =\frac{1}{2}\end{aligned}\right.$

Matrix Form

Coefficients $\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & -2 & 1 \\ -2 & -3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ \frac{1}{2}\end{array}\right]$ Constants

| A, the
 coefficient
 matrix | X |
| :--- | :--- | | B, the |
| :---: |
| constant |
| matrix |

The matrix equation $A X=B$ can be solved using A^{-1} if it exists.

$$
\left.\begin{array}{rl}
A X & =B
\end{array} \quad \begin{array}{l}
\text { This is the matrix equation. } \\
A^{-1} A X=A^{-1} B
\end{array} \begin{array}{l}
\text { Multiply both sides by } A^{-1} . \text { Because matrix } \\
\text { multiplication is not commutative, put } A^{-1} \text { in } \\
\text { the same left position on both sides. }
\end{array}\right\} \begin{aligned}
& \text { The multiplicative inverse property tells us that } \\
& I_{n} X=A^{-1} A=I_{n^{*}} \\
& X
\end{aligned}
$$

We see that if $A X=B$, then $X=A^{-1} B$.

Solving a System Using A^{-1}

If $A X=B$ has a unique solution, then $X=A^{-1} B$. To solve a linear system of equations, multiply A^{-1} and B to find X.

EXAMPLE 5 Using the Inverse of a Matrix to Solve a System

Solve the system by using A^{-1}, the inverse of the coefficient matrix:

$$
\left\{\begin{aligned}
x-y+z & =2 \\
-2 y+z & =2 \\
-2 x-3 y & =\frac{1}{2}
\end{aligned}\right.
$$

SOLUTION

The linear system can be written as

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & -2 & 1 \\
-2 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
2 \\
\frac{1}{2}
\end{array}\right] .} \\
A
\end{gathered}
$$

The solution is given by $X=A^{-1} B$. Consequently, we must find A^{-1}. We found the inverse of matrix A in Example 4. Using this result,

$$
X=A^{-1} B=\left[\begin{array}{rrr}
3 & -3 & 1 \\
-2 & 2 & -1 \\
-4 & 5 & -2
\end{array}\right]\left[\begin{array}{c}
2 \\
2 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{r}
3 \cdot 2+(-3) \cdot 2+1 \cdot \frac{1}{2} \\
-2 \cdot 2+2 \cdot 2+(-1) \cdot \frac{1}{2} \\
-4 \cdot 2+5 \cdot 2+(-2) \cdot \frac{1}{2}
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] .
$$

Thus, $x=\frac{1}{2}, y=-\frac{1}{2}$, and $z=1$. The solution set is $\left\{\left(\frac{1}{2},-\frac{1}{2}, 1\right)\right\}$.
$\$$ Check Point 5 Solve the system by using A^{-1}, the inverse of the coefficient matrix that you found in Check Point 4:

$$
\left\{\begin{aligned}
x+2 z & =6 \\
-x+2 y+3 z & =-5 \\
x-y & =6
\end{aligned}\right.
$$

Applications of Matrix Inverses to Coding

A cryptogram is a message written so that no one other than the intended recipient can understand it.To encode a message, we begin by assigning a number to each letter in the alphabet: $A=1, B=2, C=3, \ldots, Z=26$, and a space $=0$. For example, the numerical equivalent of the word MATH is $13,1,20,8$. The numerical equivalent of the message is then converted into a matrix. Finally, an invertible matrix can be used to convert the message into code. The multiplicative inverse of this matrix can be used to decode the message.

Encoding a Word or Message

1. Express the word or message numerically.
2. List the numbers in step 1 by columns and form a square matrix. If you do not have enough numbers to form a square matrix, put zeros in any remaining spaces in the last column.
3. Select any square invertible matrix, called the coding matrix, the same size as the matrix in step 2 . Multiply the coding matrix by the square matrix that expresses the message numerically. The resulting matrix is the coded matrix.
4. Use the numbers, by columns, from the coded matrix in step 3 to write the encoded message.

EXAMPLE 6 Encoding a Word

Use matrices to encode the word MATH.

SOLUTION

Step 1 Express the word numerically. As shown previously, the numerical equivalent of MATH is $13,1,20,8$.
Step 2 List the numbers in step 1 by columns and form a square matrix. The 2×2 matrix for the numerical equivalent of MATH, $13,1,20,8$, is

$$
\left[\begin{array}{rr}
13 & 20 \\
1 & 8
\end{array}\right] .
$$

Step 3 Multiply the matrix in step 2 by a square invertible matrix. We will use $\left[\begin{array}{rr}-2 & -3 \\ 3 & 4\end{array}\right]$ as the coding matrix.

Step 4 Use the numbers, by columns, from the coded matrix in step 3 to write the encoded message. The encoded message is $-29,43,-64,92$.
15 Check Point 6 Use the coding matrix in Example 6, $\left[\begin{array}{rr}-2 & -3 \\ 3 & 4\end{array}\right]$, to encode
the word BASE. -

The inverse of a coding matrix can be used to decode a word or message that was encoded.

Decoding a Word or Message That Was Encoded

1. Find the multiplicative inverse of the coding matrix.
2. Multiply the multiplicative inverse of the coding matrix and the coded matrix.
3. Express the numbers, by columns, from the matrix in step 2 as letters.

EXAMPLE 7 Decoding a Word

Decode -29, 43, -64, 92 from Example 6.

SOLUTION

Step 1 Find the inverse of the coding matrix. The coding matrix in Example 6 was $\left[\begin{array}{rr}-2 & -3 \\ 3 & 4\end{array}\right]$. We use the formula for the multiplicative inverse of a 2×2 matrix to find the multiplicative inverse of this matrix. It is $\left[\begin{array}{rr}4 & 3 \\ -3 & -2\end{array}\right]$.
Step 2 Multiply the multiplicative inverse of the coding matrix and the coded matrix.

$$
\left[\begin{array}{rr}
4 & 3 \\
-3 & -2
\end{array}\right]\left[\begin{array}{rr}
-29 & -64 \\
43 & 92
\end{array}\right]=\left[\begin{array}{rr}
4(-29)+3(43) & 4(-64)+3(92) \\
-3(-29)-2(43) & -3(-64)-2(92)
\end{array}\right]
$$

Step 3 Express the numbers, by columns, from the matrix in step 2 as letters. The numbers are $13,1,20$, and 8 . Using letters, the decoded message is MATH. \ldots. $\$$ Check Point 7 Decode the word that you encoded in Check Point 6.

Decoding is simple for an authorized receiver who knows the coding matrix. Because any invertible matrix can be used for the coding matrix, decoding a cryptogram for an unauthorized receiver who does not know this matrix is extremely difficult.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The multiplicative identity matrix of order 2 is

$$
I_{2}=
$$

\qquad
2. The multiplicative identity matrix of order 3 is

$$
I_{3}=
$$

\qquad
3. For $n \times n$ matrices A and B, if $A B=I_{n}$ and $B A=I_{n}$, then B is called the \qquad of A.
4. True or false: Only square matrices have multiplicative inverses. \qquad
5. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the matrix A is invertible if and only if \qquad -.
6. If a square matrix does not have a multiplicative inverse, it is called
7. True or false: $A=\overline{\left[\begin{array}{ll}3 & 2 \\ 9 & 6\end{array}\right]}$ is invertible. \qquad
8. To find the multiplicative inverse of an invertible matrix A, we perform row operations on $\left[A \mid I_{n}\right]$ to obtain a matrix of the form $\left[I_{n} \mid B\right]$, where $B=$ \qquad
9. If the matrix equation $A X=B$ has a unique solution, then we can solve the equation using $X=$ \qquad

EXERCISE SET 8.4

Practice Exercises

In Exercises 1-12, find the products $A B$ and $B A$ to determine whether B is the multiplicative inverse of A.

1. $A=\left[\begin{array}{rr}4 & -3 \\ -5 & 4\end{array}\right], \quad B=\left[\begin{array}{ll}4 & 3 \\ 5 & 4\end{array}\right]$
2. $A=\left[\begin{array}{rr}-2 & -1 \\ -1 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
3. $A=\left[\begin{array}{rr}-4 & 0 \\ 1 & 3\end{array}\right], \quad B=\left[\begin{array}{rr}-2 & 4 \\ 0 & 1\end{array}\right]$
4. $A=\left[\begin{array}{rr}-2 & 4 \\ 1 & -2\end{array}\right], \quad B=\left[\begin{array}{rr}1 & 2 \\ -1 & -2\end{array}\right]$
5. $A=\left[\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
6. $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 3\end{array}\right], \quad B=\left[\begin{array}{rr}\frac{3}{2} & -\frac{5}{2} \\ -1 & 2\end{array}\right]$
7. $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
8. $A=\left[\begin{array}{rrr}-2 & 1 & -1 \\ -5 & 2 & -1 \\ 3 & -1 & 1\end{array}\right], \quad B=\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & 1\end{array}\right]$
9. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3\end{array}\right], \quad B=\left[\begin{array}{rrr}\frac{7}{2} & -3 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2}\end{array}\right]$
10. $A=\left[\begin{array}{lll}0 & 2 & 0 \\ 3 & 3 & 2 \\ 2 & 5 & 1\end{array}\right], \quad B=\left[\begin{array}{rrr}-3.5 & -1 & 2 \\ 0.5 & 0 & 0 \\ 4.5 & 2 & -3\end{array}\right]$
11. $A=\left[\begin{array}{rrrr}0 & 0 & -2 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1\end{array}\right], \quad B=\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2\end{array}\right]$
12. $A=\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$

In Exercises 13-18, use the fact that if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ to find the inverse of each matrix, if possible. Check that $A A^{-1}=I_{2}$ and $A^{-1} A=I_{2}$.
13. $A=\left[\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right]$
14. $A=\left[\begin{array}{rr}0 & 3 \\ 4 & -2\end{array}\right]$
15. $A=\left[\begin{array}{rr}3 & -1 \\ -4 & 2\end{array}\right]$
16. $A=\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$
17. $A=\left[\begin{array}{rr}10 & -2 \\ -5 & 1\end{array}\right]$
18. $A=\left[\begin{array}{rr}6 & -3 \\ -2 & 1\end{array}\right]$

In Exercises 19-28, find A^{-1} by forming $[A \mid I]$ and then using row operations to obtain $[I \mid B]$, where $A^{-1}=[B]$. Check that $A A^{-1}=I$ and $A^{-1} A=I$.
19. $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6\end{array}\right]$
20. $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9\end{array}\right]$
21. $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ -2 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$
22. $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]$
23. $A=\left[\begin{array}{rrr}2 & 2 & -1 \\ 0 & 3 & -1 \\ -1 & -2 & 1\end{array}\right]$
24. $A=\left[\begin{array}{lll}2 & 4 & -4 \\ 1 & 3 & -4 \\ 2 & 4 & -3\end{array}\right]$
25. $A=\left[\begin{array}{rrr}5 & 0 & 2 \\ 2 & 2 & 1 \\ -3 & 1 & -1\end{array}\right]$
26. $A=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$
27. $A=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
28. $A=\left[\begin{array}{rrrr}2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

In Exercises 29-32, write each linear system as a matrix equation in the form $A X=B$, where A is the coefficient matrix and B is the constant matrix.
29. $\left\{\begin{array}{l}6 x+5 y=13 \\ 5 x+4 y=10\end{array}\right.$
30. $\left\{\begin{array}{l}7 x+5 y=23 \\ 3 x+2 y=10\end{array}\right.$
31. $\left\{\begin{array}{l}x+3 y+4 z=-3 \\ x+2 y+3 z=-2 \\ x+4 y+3 z=-6\end{array}\right.$
32. $\left\{\begin{aligned} x+4 y-z & =3 \\ x+3 y-2 z & =5 \\ 2 x+7 y-5 z & =12\end{aligned}\right.$

In Exercises 33-36, write each matrix equation as a system of linear equations without matrices.
33. $\left[\begin{array}{ll}4 & -7 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-3 \\ 1\end{array}\right]$
34. $\left[\begin{array}{rr}3 & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}6 \\ -7\end{array}\right]$
35. $\left[\begin{array}{rrr}2 & 0 & -1 \\ 0 & 3 & 0 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}6 \\ 9 \\ 5\end{array}\right]$
36. $\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-4 \\ 2 \\ 4\end{array}\right]$

In Exercises 37-42,
a. Write each linear system as a matrix equation in the form $A X=B$.
b. Solve the system using the inverse that is given for the coefficient matrix.

The inverse of
37. $\left\{\begin{array}{l}2 x+6 y+6 z=8 \\ 2 x+7 y+6 z=10 \\ 2 x+7 y+7 z=9\end{array}\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7\end{array}\right]\right.$ is $\left[\begin{array}{rrr}\frac{7}{2} & 0 & -3 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$.
38. $\left\{\begin{array}{r}x+2 y+5 z=2 \\ 2 x+3 y+8 z=3 \\ -x+y+2 z=3\end{array}\left[\begin{array}{rrr}1 & 2 & 5 \\ 2 & 3 & 8 \\ -1 & 1 & 2\end{array}\right]\right.$ is $\left[\begin{array}{rrr}2 & -1 & -1 \\ 12 & -7 & -2 \\ -5 & 3 & 1\end{array}\right]$.
39. $\left\{\begin{aligned} x-y+z & =8 \\ 2 y-z & =-7 \\ 2 x+3 y & =1\end{aligned}\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]\right.$ is $\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$.
40. $\left\{\begin{array}{r}x-6 y+3 z=11 \\ 2 x-7 y+3 z=14 \\ 4 x-12 y+5 z=25\end{array}\left[\begin{array}{rrr}1 & -6 & 3 \\ 2 & -7 & 3 \\ 4 & -12 & 5\end{array}\right]\right.$ is $\left[\begin{array}{rrr}1 & -6 & 3 \\ 2 & -7 & 3 \\ 4 & -12 & 5\end{array}\right]$.
41. $\left\{\begin{aligned} w-x+2 y & =-3 \\ x-y+z & =4 \\ -w+x-y+2 z & =2 \\ -x+y-2 z & =-4\end{aligned}\right.$

The inverse of
$\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2\end{array}\right]$ is $\left[\begin{array}{rrrr}0 & 0 & -1 & -1 \\ 1 & 4 & 1 & 3 \\ 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -1\end{array}\right]$.
42. $\left\{\begin{aligned} 2 w+y+z & =6 \\ 3 w+z & =9 \\ -w+x-2 y+z & =4 \\ 4 w-x+y & =6\end{aligned}\right.$

The inverse of
$\left[\begin{array}{rrrr}2 & 0 & 1 & 1 \\ 3 & 0 & 0 & 1 \\ -1 & 1 & -2 & 1 \\ 4 & -1 & 1 & 0\end{array}\right]$ is $\left[\begin{array}{rrrr}-1 & 2 & -1 & -1 \\ -4 & 9 & -5 & -6 \\ 0 & 1 & -1 & -1 \\ 3 & -5 & 3 & 3\end{array}\right]$

Practice Plus

In Exercises 43-44, find A^{-1} and check.
43. $A=\left[\begin{array}{rr}e^{x} & e^{3 x} \\ -e^{3 x} & e^{5 x}\end{array}\right]$
44. $A=\left[\begin{array}{cc}e^{2 x} & -e^{x} \\ e^{3 x} & e^{2 x}\end{array}\right]$

In Exercises 45-46, if I is the multiplicative identity matrix of order 2 , find $(I-A)^{-1}$ for the given matrix A.
45. $\left[\begin{array}{rr}8 & -5 \\ -3 & 2\end{array}\right]$
46. $\left[\begin{array}{rr}7 & -5 \\ -4 & 3\end{array}\right]$

In Exercises 47-48, find $(A B)^{-1}, A^{-1} B^{-1}$, and $B^{-1} A^{-1}$. What do you observe?
47. $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right] \quad B=\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right]$
48. $A=\left[\begin{array}{ll}2 & -9 \\ 1 & -4\end{array}\right] \quad B=\left[\begin{array}{ll}9 & 5 \\ 7 & 4\end{array}\right]$
49. Prove the following statement:

If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right], a \neq 0, b \neq 0, c \neq 0$,
then $A^{-1}=\left[\begin{array}{ccc}\frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c}\end{array}\right]$.
50. Prove the following statement:

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a d-b c \neq 0$,
then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.
(Hint: Use the method of Example 2 on page 630.)

Application Exercises

In Exercises 51-52, use the coding matrix

$$
A=\left[\begin{array}{rr}
4 & -1 \\
-3 & 1
\end{array}\right] \text { and its inverse } A^{-1}=\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]
$$

to encode and then decode the given message.

51. HELP

52. LOVE

In Exercises 53-54, use the coding matrix

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
1 & -1 & 0 \\
3 & 0 & 2 \\
-1 & 0 & -1
\end{array}\right] \text { and its inverse } \\
A^{-1} & =\left[\begin{array}{rrr}
0 & 1 & 2 \\
-1 & 1 & 2 \\
0 & -1 & -3
\end{array}\right] \text { to write a cryptogram for each }
\end{aligned}
$$

message. Check your result by decoding the cryptogram.
53. $\begin{array}{ccccccccc}\text { S } & \text { E } & \text { N } & \text { D } & - & \text { C } & \text { A } & \text { S } & \text { H } \\ 19 & 5 & 14 & 4 & 0 & 3 & 1 & 19 & 8\end{array}$

$$
\text { Use }\left[\begin{array}{rrr}
19 & 4 & 1 \\
5 & 0 & 19 \\
14 & 3 & 8
\end{array}\right]
$$

54. S T A Y - W E L L $\begin{array}{lllllllll}19 & 20 & 1 & 25 & 0 & 23 & 5 & 12 & 12\end{array}$

$$
\text { Use }\left[\begin{array}{rrr}
19 & 25 & 5 \\
20 & 0 & 12 \\
1 & 23 & 12
\end{array}\right]
$$

Writing in Mathematics

55. What is the multiplicative identity matrix?
56. If you are given two matrices, A and B, explain how to determine if B is the multiplicative inverse of A.
57. Explain why a matrix that does not have the same number of rows and columns cannot have a multiplicative inverse.
58. Explain how to find the multiplicative inverse for a 2×2 invertible matrix.
59. Explain how to find the multiplicative inverse for a 3×3 invertible matrix.
60. Explain how to write a linear system of three equations in three variables as a matrix equation.
61. Explain how to solve the matrix equation $A X=B$.
62. What is a cryptogram?
63. It's January 1, and you've written down your major goal for the year. You do not want those closest to you to see what you've written in case you do not accomplish your objective. Consequently, you decide to use a coding matrix to encode your goal. Explain how this can be accomplished.
64. A year has passed since Exercise 63. (Time flies when you're solving exercises in precalculus books.) It's been a terrific year and so many wonderful things have happened that you can't remember your goal from a year ago. You consult your personal journal and you find the encoded message and the coding matrix. How can you use these to find your original goal?

Technology Exercises

In Exercises 65-70, use a graphing utility to find the multiplicative inverse of each matrix. Check that the displayed inverse is correct.
65. $\left[\begin{array}{rr}3 & -1 \\ -2 & 1\end{array}\right]$
66. $\left[\begin{array}{rr}-4 & 1 \\ 6 & -2\end{array}\right]$
67. $\left[\begin{array}{rrr}-2 & 1 & -1 \\ -5 & 2 & -1 \\ 3 & -1 & 1\end{array}\right]$
68. $\left[\begin{array}{rrr}1 & 1 & -1 \\ -3 & 2 & -1 \\ 3 & -3 & 2\end{array}\right]$
69. $\left[\begin{array}{rrrr}7 & -3 & 0 & 2 \\ -2 & 1 & 0 & -1 \\ 4 & 0 & 1 & -2 \\ -1 & 1 & 0 & -1\end{array}\right]$
70. $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \\ 4 & 0 & 0 & 2\end{array}\right]$

In Exercises 71-76, write each system in the form $A X=B$. Then solve the system by entering A and B into your graphing utility and computing $A^{-1} B$.
71. $\left\{\begin{aligned} x-y+z & =-6 \\ 4 x+2 y+z & =9 \\ 4 x-2 y+z & =-3\end{aligned}\right.$
72. $\left\{\begin{aligned} y+2 z & =0 \\ -x+y & =1 \\ 2 x-y+z & =-1\end{aligned}\right.$
73. $\left\{\begin{array}{l}3 x-2 y+z=-2 \\ 4 x-5 y+3 z=-9 \\ 2 x-y+5 z=-5\end{array}\right.$
74. $\left\{\begin{aligned} x-y & =1 \\ 6 x+y+20 z & =14 \\ y+3 z & =1\end{aligned}\right.$
75. $\left\{\begin{aligned} v-3 x+z & =-3 \\ w+y & =-1 \\ x+z & =7 \\ v+w-x+4 y & =-8 \\ v+w+x+y+z & =8\end{aligned}\right.$
76. $\left\{\begin{aligned} w+x+y+z & =4 \\ w+3 x-2 y+2 z & =7 \\ 2 w+2 x+y+z & =3 \\ w-x+2 y+3 z & =5\end{aligned}\right.$

In Exercises 77-78, use a coding matrix A of your choice. Use a graphing utility to find the multiplicative inverse of your coding matrix. Write a cryptogram for each message. Check your result by decoding the cryptogram. Use your graphing utility to perform all necessary matrix multiplications.

77. A	R	R	I	V	E	D	-	S	A	F	E	L	Y
1	18	18	9	22	5	4	0	19	1	6	5	12	25
78. A	R	T	-	E	N	R	I	C	H	E	S		
1	18	20	0	5	14	18	9	3	8	5	19		

Critical Thinking Exercises

Make Sense? In Exercises 79-82, determine whether each statement makes sense or does not make sense, and explain your reasoning.
79. I found the multiplicative inverse of a 2×3 matrix.
80. I used Gauss-Jordan elimination to find the multiplicative inverse of a 3×3 matrix.
81. I used matrix multiplication to represent a system of linear equations.
82. I made an encoding error by selecting the wrong square invertible matrix.

In Exercises 83-88, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
83. All square 2×2 matrices have inverses because there is a formula for finding these inverses.
84. Two 2×2 invertible matrices can have a matrix sum that is not invertible.
85. To solve the matrix equation $A X=B$ for X, multiply A and the inverse of B.
86. $(A B)^{-1}=A^{-1} B^{-1}$, assuming A, B, and $A B$ are invertible.
87. $(A+B)^{-1}=A^{-1}+B^{-1}$, assuming A, B, and $A+B$ are invertible.
88. $\left[\begin{array}{rr}1 & -3 \\ -1 & 3\end{array}\right]$ is an invertible matrix.
89. Give an example of a 2×2 matrix that is its own inverse.
90. If $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right]$, find $\left(A^{-1}\right)^{-1}$.
91. Find values of a for which the following matrix is not invertible:

$$
\left[\begin{array}{rr}
1 & a+1 \\
a-2 & 4
\end{array}\right] .
$$

Group Exercise

92. Each person in the group should work with one partner. Send a coded word or message to each other by giving your partner the coded matrix and the coding matrix that you selected. Once messages are sent, each person should decode the message received.

Preview Exercises

Exercises 93-95 will help you prepare for the material covered in the next section. Simplify the expression in each exercise.
93. $2(-5)-(-3)(4)$
94. $\frac{2(-5)-1(-4)}{5(-5)-6(-4)}$
95. $2(-30-(-3))-3(6-9)+(-1)(1-15)$

SECTION 8.5

Objectives

(1) Evaluate a second-order determinant.
2. Solve a system of linear equations in two variables using Cramer's Rule.
(3) Evaluate a third-order determinant.
4. Solve a system of linear equations in three variables using Cramer's Rule.
(5) Evaluate higher-order determinants.
(1) Evaluate a second-order determinant.

GREAT QUESTION!

What does the definition of a determinant mean? What am I supposed to do?
To evaluate a second-order determinant, find the difference of the product of the two diagonals.

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

Definition of the Determinant of a 2×2 Matrix

The determinant of the matrix $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$ is denoted by $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ and is defined by

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

We also say that the value of the second-order determinant $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is
$a_{1} b_{2}-a_{2} b_{1}$.

Example 1 illustrates that the determinant of a matrix may be positive or negative. A determinant can also have 0 as its value.

DISCOVERY

Write and then evaluate three determinants, one whose value is positive, one whose value is negative, and one whose value is 0 .
2. Solve a system of linear equations in two variables using Cramer's Rule.

EXAMPLE 1 Evaluating the Determinant of a 2×2 Matrix

Evaluate the determinant of each of the following matrices:
a. $\left[\begin{array}{ll}5 & 6 \\ 7 & 3\end{array}\right]$
b. $\left[\begin{array}{rr}2 & 4 \\ -3 & -5\end{array}\right]$.

SOLUTION

We multiply and subtract as indicated.
a. $\left|\begin{array}{ll}5 \\ \chi^{-} & { }_{3}^{6}\end{array}\right|=5 \cdot 3-7 \cdot 6=15-42=-27$
b. $\left|\begin{array}{r}2 \\ -3\end{array}{\underset{-}{4}}_{4}^{4}\right|=2(-5)-(-3)(4)=-10+12=2$
The value of the secondorder determinant is -27 .
The value of the secondorder determinant is 2 . •• •

S Check Point 1 Evaluate the determinant of each of the following matrices:
a. $\left[\begin{array}{rr}10 & 9 \\ 6 & 5\end{array}\right]$
b. $\left[\begin{array}{rr}4 & 3 \\ -5 & -8\end{array}\right]$.

Solving Systems of Linear Equations

in Two Variables Using Determinants
Determinants can be used to solve a linear system in two variables. In general, such a system appears as

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2} .
\end{array}\right.
$$

Let's first solve this system for x using the addition method. We can solve for x by eliminating y from the equations. Multiply the first equation by b_{2} and the second equation by $-b_{1}$. Then add the two equations:

$$
\left\{\begin{array}{rl}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array} \xrightarrow[\text { Add: }]{\text { Multiply by } b_{2} .} \begin{array}{rl}
{\text { Multiply by }-b_{1} .}_{a_{1} b_{2} x+b_{1} b_{2} y} & =c_{1} b_{2} \\
-a_{2} b_{1} x-b_{1} b_{2} y & =\frac{-c_{2} b_{1}}{\left(a_{1} b_{2}-a_{2} b_{1}\right) x}
\end{array}=\begin{array}{c}
c_{1} b_{2}-c_{2} b_{1} \\
x
\end{array}=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}} .\right.
$$

Because

$$
\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|=c_{1} b_{2}-c_{2} b_{1} \quad \text { and } \quad\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1},
$$

we can express our answer for x as the quotient of two determinants:

$$
x=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

Similarly, we could use the addition method to solve our system for y, again expressing y as the quotient of two determinants. This method of using determinants to solve the linear system, called Cramer's Rule, is summarized in the box at the top of the next page.

Solving a Linear System in Two Variables Using Determinants

Cramer's Rule

If

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2},
\end{array}\right.
$$

then

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|},
$$

where

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0 .
$$

Here are some helpful tips when solving

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

using determinants:

1. Three different determinants are used to find x and y. The determinants in the denominators for x and y are identical. The determinants in the numerators for x and y differ. In abbreviated notation, we write

$$
x=\frac{D_{x}}{D} \quad \text { and } \quad y=\frac{D_{y}}{D} \text {, where } D \neq 0 \text {. }
$$

2. The elements of D, the determinant in the denominator, are the coefficients of the variables in the system.

$$
D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

3. D_{x}, the determinant in the numerator of x, is obtained by replacing the x-coefficients, in D, a_{1} and a_{2}, with the constants on the right sides of the equations, c_{1} and c_{2}.

$$
D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \text { and } D_{x}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right| \begin{aligned}
& \text { Replace the column with a and and } a_{2} \\
& \text { with the constants } c_{1} \text { and } c_{2} \text { to get } D_{x} .
\end{aligned}
$$

4. D_{y}, the determinant in the numerator for y, is obtained by replacing the y-coefficients, in D, b_{1} and b_{2}, with the constants on the right sides of the equations, c_{1} and c_{2}.

$$
D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \text { and } D_{y}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \begin{aligned}
& \text { Replace the column with } b_{1} \text { and } b_{2} \\
& \text { with the constants } c_{1} \text { and } c_{2} \text { to get } D_{y} .
\end{aligned}
$$

EXAMPLE 2 Using Cramer's Rule to Solve a Linear System

Use Cramer's Rule to solve the system:

$$
\left\{\begin{array}{l}
5 x-4 y=2 \\
6 x-5 y=1 .
\end{array}\right.
$$

SOLUTION

Because

$$
x=\frac{D_{x}}{D} \quad \text { and } \quad y=\frac{D_{y}}{D},
$$

we will set up and evaluate the three determinants D, D_{x}, and D_{y}.

1. D, the determinant in both denominators, consists of the x - and y-coefficients.

$$
D=\left|\begin{array}{ll}
5 & -4 \\
6 & -5
\end{array}\right|=(5)(-5)-(6)(-4)=-25+24=-1
$$

Because this determinant is not zero, we continue to use Cramer's Rule to solve the system.
2. D_{x}, the determinant in the numerator for x, is obtained by replacing the x-coefficients in $D, 5$ and 6 , by the constants on the right sides of the equations, 2 and 1.

$$
D_{x}=\left|\begin{array}{ll}
2 & -4 \\
1 & -5
\end{array}\right|=(2)(-5)-(1)(-4)=-10+4=-6
$$

3. D_{y}, the determinant in the numerator for y, is obtained by replacing the y-coefficients in $D,-4$ and -5 , by the constants on the right sides of the equations, 2 and 1.

$$
D_{y}=\left|\begin{array}{ll}
5 & 2 \\
6 & 1
\end{array}\right|=(5)(1)-(6)(2)=5-12=-7
$$

4. Thus,

$$
x=\frac{D_{x}}{D}=\frac{-6}{-1}=6 \quad \text { and } \quad y=\frac{D_{y}}{D}=\frac{-7}{-1}=7 .
$$

As always, the solution $(6,7)$ can be checked by substituting these values into the original equations. The solution set is $\{(6,7)\}$.

Evaluate a third-order determinant.

The Determinant of a 3×3 Matrix

Associated with every square matrix is a real number called its determinant. The determinant for a 3×3 matrix is defined as follows:

Definition of a Third-Order Determinant

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}-a_{3} b_{2} c_{1}-b_{3} c_{2} a_{1}-c_{3} a_{2} b_{1}
$$

The six terms and the three factors in each term in this complicated evaluation formula, $a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}-a_{3} b_{2} c_{1}-b_{3} c_{2} a_{1}-c_{3} a_{2} b_{1}$, can be rearranged, and then we can apply the distributive property. We obtain

$$
\begin{aligned}
& a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1} \\
= & a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
= & a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| .
\end{aligned}
$$

You can evaluate each of the second-order determinants and obtain the three expressions in parentheses in the second step.

In summary, we now have arranged the definition of a third-order determinant as follows:

Definition of the Determinant of a 3×3 Matrix

A third-order determinant is defined by

Here are some tips that may be helpful when evaluating the determinant of a 3×3 matrix:

Evaluating the Determinant of a 3×3 Matrix

1. Each of the three terms in the definition contains two factors - a numerical factor and a second-order determinant.
2. The numerical factor in each term is an element from the first column of the third-order determinant.
3. The minus sign precedes the second term.
4. The second-order determinant that appears in each term is obtained by crossing out the row and the column containing the numerical factor.

The minor of an element is the determinant that remains after deleting the row and column of that element. For this reason, we call this method expansion by minors.

EXAMPLE 3 Evaluating the Determinant of a 3×3 Matrix

Evaluate the determinant of the following matrix:

$$
\left[\begin{array}{rrr}
4 & 1 & 0 \\
-9 & 3 & 4 \\
-3 & 8 & 1
\end{array}\right] .
$$

TECHNOLOGY

A graphing utility can be used to evaluate the determinant of a matrix. Enter the matrix and call it A. Then use the determinant command. The screen below verifies our result in Example 3.

SOLUTION

We know that each of the three terms in the determinant contains a numerical factor and a second-order determinant. The numerical factors are from the first column of the given matrix. They are highlighted in red in the following matrix:

$$
\left[\begin{array}{rrr}
4 & 1 & 0 \\
-9 & 3 & 4 \\
-3 & 8 & 1
\end{array}\right]
$$

We find the minor for each numerical factor by deleting the row and column of that element:

The minor for
-3 is $\left|\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right|$.

Now we have three numerical factors, $4,-9$, and -3 , and three second-order determinants. We multiply each numerical factor by its second-order determinant to find the three terms of the third-order determinant:

$$
4\left|\begin{array}{ll}
3 & 4 \\
8 & 1
\end{array}\right|, \quad-9\left|\begin{array}{ll}
1 & 0 \\
8 & 1
\end{array}\right|, \quad-3\left|\begin{array}{ll}
1 & 0 \\
3 & 4
\end{array}\right| .
$$

Based on the preceding definition, we subtract the second term from the first term and add the third term:

Don't forget to
 supply the minus sign.

$\left|\begin{array}{rrr}4 & 1 & 0 \\ -9 & 3 & 4 \\ -3 & 8 & 1\end{array}\right|=4\left|\begin{array}{ll}3 & 4 \\ 8 & 1\end{array}\right|-(-9)\left|\begin{array}{ll}1 & 0 \\ 8 & 1\end{array}\right|-3\left|\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right| \begin{aligned} & \text { Begin by evaluating the three } \\ & \text { second-order determinants. }\end{aligned}$
$=4(3 \cdot 1-8 \cdot 4)+9(1 \cdot 1-8 \cdot 0)-3(1 \cdot 4-3 \cdot 0)$
$=4(3-32)+9(1-0)-3(4-0) \quad$ Multiply within parentheses.
$=4(-29)+9(1)-3(4) \quad$ Subtract within parentheses.
$=-116+9-12 \quad$ Multiply.
$=-119 \quad$ Add and subtract as indicated. 00
$\$$ Check Point 3 Evaluate the determinant of the following matrix:

$$
\left[\begin{array}{rrr}
2 & 1 & 7 \\
-5 & 6 & 0 \\
-4 & 3 & 1
\end{array}\right] .
$$

The six terms in the definition of a third-order determinant can be rearranged and factored in a variety of ways. Thus, it is possible to expand a determinant by minors about any row or any column. Minus signs must be supplied preceding any element appearing in a position where the sum of its row and its column is an odd number. For example, expanding about the elements in column 2 gives us

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|-b_{3}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| .
$$

Minus sign is supplied because b_{3} appears in row 3 and column 2; $3+2=5$, an odd number.

GREAT QUESTION!

Is there a way I can remember the signs for the numerical factors of the minors?
Yes. Keep in mind that you can expand a determinant by minors about any row or column. Use alternating plus and minus signs to precede the numerical factors of the minors according to the following sign array:

$$
\left|\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

Solve a system of linear equations in three variables using Cramer's Rule.

Expanding by minors about column 3, we obtain

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| .
$$

Minus sign must be supplied because c_{2} appears in row 2 and column 3 ;
$2+3=5$, an odd number.

When evaluating a 3×3 determinant using expansion by minors, you can expand about any row or column. To simplify the arithmetic, if a row or column contains one or more 0 s , expand about that row or column.

EXAMPLE 4 Evaluating a Third-Order Determinant

Evaluate:

$$
\left|\begin{array}{rrr}
9 & 5 & 0 \\
-2 & -3 & 0 \\
1 & 4 & 2
\end{array}\right| .
$$

SOLUTION

Note that the last column has two 0s. We will expand the determinant about the elements in that column.

$$
\begin{array}{rlr}
\left|\begin{array}{rrr}
9 & 5 & 0 \\
-2 & -3 & 0 \\
1 & 4 & 2
\end{array}\right| & =0\left|\begin{array}{rr}
-2 & -3 \\
1 & 4
\end{array}\right|-0\left|\begin{array}{ll}
9 & 5 \\
1 & 4
\end{array}\right|+2\left|\begin{array}{rr}
9 & 5 \\
-2 & -3
\end{array}\right| \\
& =0-0+2[9(-3)-(-2) 5] \quad & \text { Evaluate the second-order } \\
& =2(-27+10) & \\
& =2(-17) & \text { determinant whose numerical } \\
& & \text { factor is not } 0 .
\end{array}
$$

$$
=-34
$$

Φ Check Point 4 Evaluate:

$$
\left|\begin{array}{rrr}
6 & 4 & 0 \\
-3 & -5 & 3 \\
1 & 2 & 0
\end{array}\right| .
$$

Solving Systems of Linear Equations
 in Three Variables Using Determinants

Cramer's Rule can be applied to solving systems of linear equations in three variables. The determinants in the numerator and denominator of all variables are third-order determinants.

Solving Three Equations in Three Variables Using Determinants

Cramer's Rule
If

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right.
$$

then

$$
x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, \text { and } z=\frac{D_{z}}{D}, \text { where } D \neq 0
$$

These four third-order determinants are given by

$$
\begin{aligned}
D & =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \text { These are the coefficients of the variables } x, y \text {, and } z \text {. } \\
D_{x} & =\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \begin{array}{l}
\text { Replace } x \text {-coefficients in } D \text { with the constants on the right } \\
\text { of the three equations. }
\end{array} \\
D_{y} & =\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| \begin{array}{l}
\text { Replace } y \text {-coefficients in } D \text { with the constants on the right } \\
\text { of thee equations. }
\end{array} \\
D_{z} & =\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right| \quad \begin{array}{l}
\text { Replace } z \text {-coefficients in } D \text { with the constants on the right } \\
\text { of the three equations. }
\end{array}
\end{aligned}
$$

EXAMPLE 5 Using Cramer's Rule to Solve

 a Linear System in Three VariablesUse Cramer's Rule to solve:

SOLUTION

$$
\left\{\begin{aligned}
x+2 y-z & =-4 \\
x+4 y-2 z & =-6 \\
2 x+3 y+z & =3
\end{aligned}\right.
$$

Because

$$
x=\frac{D_{x}}{D}, \quad y=\frac{D_{y}}{D}, \quad \text { and } \quad z=\frac{D_{z}}{D},
$$

we need to set up and evaluate four determinants.

Step 1 Set up the determinants.

1. D, the determinant in all three denominators, consists of the x-, y-, and z-coefficients.

$$
D=\left|\begin{array}{rrr}
1 & 2 & -1 \\
1 & 4 & -2 \\
2 & 3 & 1
\end{array}\right|
$$

2. D_{x}, the determinant in the numerator for x, is obtained by replacing the x-coefficients in $D, 1,1$, and 2 , with the constants on the right sides of the equations, $-4,-6$, and 3 .

$$
D_{x}=\left|\begin{array}{rrr}
-4 & 2 & -1 \\
-6 & 4 & -2 \\
3 & 3 & 1
\end{array}\right|
$$

3. D_{y}, the determinant in the numerator for y, is obtained by replacing the y-coefficients in $D, 2,4$, and 3, with the constants on the right sides of the equations, $-4,-6$, and 3 .

$$
D_{y}=\left|\begin{array}{rrr}
1 & -4 & -1 \\
1 & -6 & -2 \\
2 & 3 & 1
\end{array}\right|
$$

4. D_{z}, the determinant in the numerator for z, is obtained by replacing the z-coefficients in $D,-1,-2$, and 1 , with the constants on the right sides of the equations, $-4,-6$, and 3 .

$$
D_{z}=\left|\begin{array}{rrr}
1 & 2 & -4 \\
1 & 4 & -6 \\
2 & 3 & 3
\end{array}\right|
$$

GREAT QUESTION!

Can I use \boldsymbol{D}, the determinant in each denominator, to find the determinants in the numerators?

No. To find D_{x}, D_{y}, and D_{z}, you'll need to apply the evaluation process for a 3×3 determinant three more times. The values of D_{x}, D_{y}, and D_{z} cannot be obtained from the number that occurs in the computation of D.

Step 2 Evaluate the four determinants.

$$
\begin{aligned}
D=\left|\begin{array}{lrr}
1 & 2 & -1 \\
1 \\
4 & -2 \\
3 & 1
\end{array}\right| & =1\left|\begin{array}{rr}
4 & -2 \\
3 & 1
\end{array}\right|-\underset{\uparrow}{1}\left|\begin{array}{rr}
2 & -1 \\
3 & 1
\end{array}\right|+\underset{\uparrow}{2}\left|\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right| \\
& =1(4+6)-1(2+3)+2(-4+4) \\
& =1(10)-1(5)+2(0)=5
\end{aligned}
$$

Using the same technique to evaluate each determinant, we obtain

$$
D_{x}=-10, \quad D_{y}=5, \quad \text { and } \quad D_{z}=20
$$

Step 3 Substitute these four values and solve the system.

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{-10}{5}=-2 \\
& y=\frac{D_{y}}{D}=\frac{5}{5}=1 \\
& z=\frac{D_{z}}{D}=\frac{20}{5}=4
\end{aligned}
$$

The solution $(-2,1,4)$ can be checked by substitution into the original three equations. The solution set is $\{(-2,1,4)\}$.

C Check Point 5 Use Cramer's Rule to solve the system:

$$
\left\{\begin{aligned}
3 x-2 y+z= & 16 \\
2 x+3 y-z= & -9 \\
x+4 y+3 z & =2
\end{aligned}\right.
$$

GREAT QUESTION!

What should I do if \boldsymbol{D}, the determinant in the denominator of Cramer's Rule, is zero?
If $D=0$, the system is inconsistent or contains dependent equations. Use a method other than Cramer's Rule to determine the solution set. For systems in two variables, use the substitution method or the addition method. For systems in three variables, use Gaussian elimination.

Speaking of Cramer meltdown, there's another situation in which Cramer's Rule is useless. This involves nonsquare systems such as

$$
\left\{\begin{aligned}
3 x+7 y+6 z & =26 \\
x+2 y+z & =8
\end{aligned}\right.
$$

Determinants are only associated with square matrices. Gaussian elimination must be used to solve systems with fewer equations than variables. (This system is solved in Example 3 on page 866.)

In essence, the use of Cramer's Rule to determine solution sets is only an alternative to Gaussian elimination in some situations.

The Determinant of Any $\mathbf{n} \times \mathbf{n}$ Matrix

The determinant of a matrix with n rows and n columns is said to be an \boldsymbol{n} th-order determinant. The value of an n th-order determinant $(n>2)$ can be found in terms of determinants of order $n-1$. For example, we found the value of a third-order determinant in terms of determinants of order 2.

We can generalize this idea for fourth-order determinants and higher. We have seen that the minor of the element $a_{i j}$ is the determinant obtained by deleting the i th row and the j th column in the given array of numbers. The cofactor of the element $a_{i j}$ is $(-1)^{i+j}$ times the minor of $a_{i j}$. If the sum of the row and column $(i+j)$ is even, the cofactor is the same as the minor. If the sum of the row and column $(i+j)$ is odd, the cofactor is the opposite of the minor.

Let's see what this means in the case of a fourth-order determinant.

EXAMPLE 6 Evaluating the Determinant of a 4×4 Matrix

Evaluate the determinant of the following matrix:

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 3 & 0 \\
-1 & 1 & 0 & 2 \\
0 & 2 & 0 & -3 \\
2 & 3 & -4 & 1
\end{array}\right] .
$$

SOLUTION

$$
\left.\begin{array}{rl}
|A| & =\left|\begin{array}{rrrr}
1 & -2 & 3 & 0 \\
-1 & 1 & 0 & 2 \\
0 & 2 & 0 & -3 \\
2 & 3 & -4 & 1
\end{array}\right| \\
& =(-1)^{1+3}(3)\left|\begin{array}{rrr}
-1 & 1 & 2 \\
0 & 2 & -3 \\
2 & 3 & 1
\end{array}\right|+(-1)^{4+3}(-4)\left|\begin{array}{rrr}
1 & -2 & 0 \\
-1 & 1 & 2 \\
0 & 2 & -3
\end{array}\right| \\
& \begin{array}{l}
\text { Wis in row 1, } \\
\text { column 3. }
\end{array} \\
& =3 \left\lvert\, \begin{array}{rrr}
-1 & 1 & 2 \\
\text { will expand as in the third columng the third column. }
\end{array}\right. \\
\begin{array}{rrr}
-4 & \text { is in row 4, } \\
\text { column 3. }
\end{array} \\
0 & 2
\end{array}|+4| \begin{array}{rrr}
1 & -2 & 0 \\
-1 & 1 & 2 \\
0 & 3 & 1
\end{array} \right\rvert\, \begin{aligned}
& \text { The determinant that follows } 3 \text { is } \\
& \text { obtained by crossing out the row and } \\
& \text { the column (row } 1 \text {, column 3) in the } \\
& \text { original determinant. The minor for }-4 \\
& \text { is obtained in a similar manner. }
\end{aligned}
$$

Evaluate the two third-order determinants to get

$$
|A|=3(-25)+4(-1)=-79 .
$$

$\$$ Check Point 6 Evaluate the determinant of the following matrix:

$$
A=\left[\begin{array}{rrrr}
0 & 4 & 0 & -3 \\
-1 & 1 & 5 & 2 \\
1 & -2 & 0 & 6 \\
3 & 0 & 0 & 1
\end{array}\right]
$$

If a linear system has n equations, Cramer's Rule requires you to compute $n+1$ determinants of nth order. The excessive number of calculations required to perform Cramer's Rule for systems with four or more equations makes it an inefficient method for solving large systems.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\left|\begin{array}{ll}5 & 4 \\ 2 & 3\end{array}\right|=--{ }^{-}---{ }_{-}{ }^{-}=-$

The value of this second-order \qquad
is \qquad -
2. Using Cramer's Rule to solve

$$
\left\{\begin{array}{l}
x+y=8 \\
x-y=-2
\end{array}\right.
$$

we obtain

$$
x=\frac{|--|}{|--|} \text { and } \quad y=\frac{|--|}{|--|} \text {. }
$$

3. $\left.\left|\begin{array}{lll}3 & 2 & 1 \\ 4 & 3 & 1 \\ 5 & 1 & 1\end{array}\right|=\left.3\right|_{---} ^{-}|-4|_{--}^{-}|+5|_{--}^{-} \right\rvert\,$

EXERCISE SET 8.5

Practice Exercises

Evaluate each determinant in Exercises 1-10.

1. $\left|\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right|$
2. $\left|\begin{array}{ll}4 & 8 \\ 5 & 6\end{array}\right|$
3. $\left|\begin{array}{rr}-4 & 1 \\ 5 & 6\end{array}\right|$
4. $\left|\begin{array}{rr}7 & 9 \\ -2 & -5\end{array}\right|$
5. $\left|\begin{array}{rr}-7 & 14 \\ 2 & -4\end{array}\right|$
6. $\left|\begin{array}{rr}1 & -3 \\ -8 & 2\end{array}\right|$
7. $\left|\begin{array}{ll}-5 & -1 \\ -2 & -7\end{array}\right|$
8. $\left|\begin{array}{rr}\frac{1}{5} & \frac{1}{6} \\ -6 & 5\end{array}\right|$
9. $\left|\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{8} & -\frac{3}{4}\end{array}\right|$
10. $\left|\begin{array}{rr}\frac{2}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{3}{4}\end{array}\right|$

For Exercises 11-22, use Cramer's Rule to solve each system.
11. $\left\{\begin{array}{l}x+y=7 \\ x-y=3\end{array}\right.$
12. $\left\{\begin{aligned} 2 x+y & =3 \\ x-y & =3\end{aligned}\right.$
13. $\left\{\begin{aligned} 12 x+3 y & =15 \\ 2 x-3 y & =13\end{aligned}\right.$
14. $\left\{\begin{aligned} x-2 y & =5 \\ 5 x-y & =-2\end{aligned}\right.$
15. $\left\{\begin{array}{l}4 x-5 y=17 \\ 2 x+3 y=3\end{array}\right.$
16. $\left\{\begin{array}{l}3 x+2 y=2 \\ 2 x+2 y=3\end{array}\right.$
17. $\left\{\begin{array}{r}x+2 y=3 \\ 3 x-4 y=4\end{array}\right.$
18. $\left\{\begin{array}{l}2 x-9 y=5 \\ 3 x-3 y=11\end{array}\right.$
19. $\left\{\begin{array}{l}3 x-4 y=4 \\ 2 x+2 y=12\end{array}\right.$
20. $\left\{\begin{array}{l}3 x=7 y+1 \\ 2 x=3 y-1\end{array}\right.$
21. $\left\{\begin{array}{l}2 x=3 y+2 \\ 5 x=51-4 y\end{array}\right.$
22. $\left\{\begin{aligned} y & =-4 x+2 \\ 2 x & =3 y+8\end{aligned}\right.$

Evaluate each determinant in Exercises 23-28.
23. $\left|\begin{array}{rrr}3 & 0 & 0 \\ 2 & 1 & -5 \\ 2 & 5 & -1\end{array}\right|$
24. $\left|\begin{array}{rrr}4 & 0 & 0 \\ 3 & -1 & 4 \\ 2 & -3 & 5\end{array}\right|$
25. $\left|\begin{array}{rrr}3 & 1 & 0 \\ -3 & 4 & 0 \\ -1 & 3 & -5\end{array}\right|$
26. $\left|\begin{array}{rrr}2 & -4 & 2 \\ -1 & 0 & 5 \\ 3 & 0 & 4\end{array}\right|$
27. $\left|\begin{array}{rrr}1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & 4 & -5\end{array}\right|$
28. $\left|\begin{array}{rrr}1 & 2 & 3 \\ 2 & 2 & -3 \\ 3 & 2 & 1\end{array}\right|$

In Exercises 29-36, use Cramer's Rule to solve each system.
29. $\left\{\begin{aligned} x+y+z & =0 \\ 2 x-y+z & =-1 \\ -x+3 y-z & =-8\end{aligned}\right.$
30. $\left\{\begin{aligned} x-y+2 z & =3 \\ 2 x+3 y+z & =9 \\ -x-y+3 z & =11\end{aligned}\right.$
31. $\left\{\begin{aligned} 4 x-5 y-6 z & =-1 \\ x-2 y-5 z & =-12 \\ 2 x-y & =7\end{aligned}\right.$
32. $\left\{\begin{aligned} x-3 y+z & =-2 \\ x+2 y & =8 \\ 2 x-y & =1\end{aligned}\right.$
33. $\left\{\begin{array}{l}x+y+z=4 \\ x-2 y+z=7 \\ x+3 y+2 z=4\end{array}\right.$
34. $\left\{\begin{array}{l}2 x+2 y+3 z=10 \\ 4 x-y+z=-5 \\ 5 x-2 y+6 z=1\end{array}\right.$
35. $\left\{\begin{aligned} x+2 z & =4 \\ 2 y-z & =5 \\ 2 x+3 y & =13\end{aligned}\right.$
36. $\left\{\begin{array}{l}3 x+2 z=4 \\ 5 x-y=-4 \\ 4 y+3 z=22\end{array}\right.$

Evaluate each determinant in Exercises 37-40.
37. $\left|\begin{array}{rrrr}4 & 2 & 8 & -7 \\ -2 & 0 & 4 & 1 \\ 5 & 0 & 0 & 5 \\ 4 & 0 & 0 & -1\end{array}\right|$
38. $\left|\begin{array}{rrrr}3 & -1 & 1 & 2 \\ -2 & 0 & 0 & 0 \\ 2 & -1 & -2 & 3 \\ 1 & 4 & 2 & 3\end{array}\right|$

40. $\left|\begin{array}{rrrr}1 & -3 & 2 & 0 \\ -3 & -1 & 0 & -2 \\ 2 & 1 & 3 & 1 \\ 2 & 0 & -2 & 0\end{array}\right|$

Practice Plus

In Exercises 41-42, evaluate each determinant.
41. $\left|\begin{array}{rl}\left|\begin{array}{rr}3 & 1 \\ -2 & 3\end{array}\right| & \left|\begin{array}{rr}7 & 0 \\ 1 & 5\end{array}\right| \\ \left|\begin{array}{rr}3 & 0 \\ 0 & 7\end{array}\right| & \left|\begin{array}{rr}9 & -6 \\ 3 & 5\end{array}\right|\end{array}\right|$
42. $\left.\left|\begin{array}{rr}\left|\begin{array}{rr}5 & 0 \\ 4 & -3\end{array}\right| \\ \left|\begin{array}{rr}7 & -5 \\ 4 & 6\end{array}\right| & \left|\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right| \\ 4 & 1 \\ -3 & 5\end{array}\right| \right\rvert\,$

In Exercises 43-44, write the system of linear equations for which Cramer's Rule yields the given determinants.
43. $D=\left|\begin{array}{rr}2 & -4 \\ 3 & 5\end{array}\right|, \quad D_{x}=\left|\begin{array}{rr}8 & -4 \\ -10 & 5\end{array}\right|$
44. $D=\left|\begin{array}{rr}2 & -3 \\ 5 & 6\end{array}\right|, \quad D_{x}=\left|\begin{array}{rr}8 & -3 \\ 11 & 6\end{array}\right|$

In Exercises 45-48, solve each equation for x.
45. $\left|\begin{array}{rr}-2 & x \\ 4 & 6\end{array}\right|=32$
46. $\left|\begin{array}{ll}x+3 & -6 \\ x-2 & -4\end{array}\right|=28$
47. $\left|\begin{array}{rrr}1 & x & -2 \\ 3 & 1 & 1 \\ 0 & -2 & 2\end{array}\right|=-8$
48. $\left|\begin{array}{rrr}2 & x & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 4\end{array}\right|=39$

Application Exercises

Determinants are used to find the area of a triangle whose vertices are given by three points in a rectangular coordinate system. The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is

$$
\text { Area }= \pm \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

where the \pm symbol indicates that the appropriate sign should be chosen to yield a positive area. Use this information to work Exercises 49-50.
49. Use determinants to find the area of the triangle whose vertices are $(3,-5),(2,6)$, and $(-3,5)$.
50. Use determinants to find the area of the triangle whose vertices are $(1,1),(-2,-3)$, and $(11,-3)$.
Determinants are used to show that three points lie on the same line (are collinear). If

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are collinear. If the determinant does not equal 0 , then the points are not collinear. Use this information to work Exercises 51-52.
51. Are the points $(3,-1),(0,-3)$, and $(12,5)$ collinear?
52. Are the points $(-4,-6),(1,0)$, and $(11,12)$ collinear?

Determinants are used to write an equation of a line passing through two points. An equation of the line passing through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

Use this information to work Exercises 53-54.
53. Use the determinant to write an equation of the line passing through $(3,-5)$ and $(-2,6)$. Then expand the determinant, expressing the line's equation in slope-intercept form.
54. Use the determinant to write an equation of the line passing through $(-1,3)$ and $(2,4)$. Then expand the determinant, expressing the line's equation in slope-intercept form.

Writing in Mathematics

55. Explain how to evaluate a second-order determinant.
56. Describe the determinants D_{x} and D_{y} in terms of the coefficients and constants in a system of two equations in two variables.
57. Explain how to evaluate a third-order determinant.
58. When expanding a determinant by minors, when is it necessary to supply minus signs?
59. Without going into too much detail, describe how to solve a linear system in three variables using Cramer's Rule.
60. In applying Cramer's Rule, what should you do if $D=0$?
61. The process of solving a linear system in three variables using Cramer's Rule can involve tedious computation. Is there a way of speeding up this process, perhaps using Cramer's Rule to find the value for only one of the variables? Describe how this process might work, presenting a specific example with your description. Remember that your goal is still to find the value for each variable in the system.
62. If you could use only one method to solve linear systems in three variables, which method would you select? Explain why this is so.

Technology Exercises

63. Use the feature of your graphing utility that evaluates the determinant of a square matrix to verify any five of the determinants that you evaluated by hand in Exercises 1-10, 23-28, or 37-40.

In Exercises 64-65, use a graphing utility to evaluate the determinant for the given matrix.
64. $\left[\begin{array}{rrrr}3 & -2 & -1 & 4 \\ -5 & 1 & 2 & 7 \\ 2 & 4 & 5 & 0 \\ -1 & 3 & -6 & 5\end{array}\right]$
65. $\left[\begin{array}{rrrrr}8 & 2 & 6 & -1 & 0 \\ 2 & 0 & -3 & 4 & 7 \\ 2 & 1 & -3 & 6 & -5 \\ -1 & 2 & 1 & 5 & -1 \\ 4 & 5 & -2 & 3 & -8\end{array}\right]$
66. What is the fastest method for solving a linear system with your graphing utility?

Critical Thinking Exercises

Make Sense? In Exercises 67-70, determine whether each statement makes sense or does not make sense, and explain your reasoning.
67. I'm solving a linear system using a determinant that contains two rows and three columns.
68. I can speed up the tedious computations required by Cramer's Rule by using the value of D to determine the value of D_{x}.
69. When using Cramer's Rule to solve a linear system, the number of determinants that I set up and evaluate is the same as the number of variables in the system.
70. Using Cramer's Rule to solve a linear system, I found the value of D to be zero, so the value of each variable is zero.
71. a. Evaluate: $\left|\begin{array}{ll}a & a \\ 0 & a\end{array}\right|$.
b. Evaluate: $\left|\begin{array}{lll}a & a & a \\ 0 & a & a \\ 0 & 0 & a\end{array}\right|$.
c. Evaluate: $\left|\begin{array}{llll}a & a & a & a \\ 0 & a & a & a \\ 0 & 0 & a & a \\ 0 & 0 & 0 & a\end{array}\right|$.
d. Describe the pattern in the given determinants.
e. Describe the pattern in the evaluations.
72. Evaluate: $\left|\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4\end{array}\right|$.
73. What happens to the value of a second-order determinant if the two columns are interchanged?
74. Consider the system

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

Use Cramer's Rule to prove that if the first equation of the system is replaced by the sum of the two equations, the resulting system has the same solution as the original system.
75. Show that the equation of a line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the determinant equation in Exercises 53-54.

Group Exercise

76. We have seen that determinants can be used to solve linear equations, give areas of triangles in rectangular coordinates, and determine equations of lines. Not impressed with these applications? Members of the group should research an application of determinants that they find intriguing. The group should then present a seminar to the class about this application.

Preview Exercises

Exercises 77-79 will help you prepare for the material covered in the first section of the next chapter.
77. Consider the equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
a. Set $y=0$ and find the x-intercepts.
b. Set $x=0$ and find the y-intercepts.
78. Divide both sides of $25 x^{2}+16 y^{2}=400$ by 400 and simplify.
79. Complete the square and write the circle's equation in standard form:

$$
x^{2}+y^{2}-2 x+4 y=4
$$

Then give the center and radius of the circle and graph the equation.

SUMMARY

DEFINITIONS AND CONCEPTS

8.1 Matrix Solutions to Linear Systems

a. Matrix row operations are described in the box on page 851.

Ex. 1, p. 851
b. To solve a linear system using Gaussian elimination, begin with the system's augmented matrix. Use matrix row operations to get 1 s down the main diagonal from upper left to lower right, and 0 s below the 1 s . Such a matrix is in row-echelon form. Details are in the box on page 852 .
c. To solve a linear system using Gauss-Jordan elimination, use the procedure of Gaussian elimination, but obtain 0 s above and below the 1 s in the main diagonal from upper left to lower right. Such a matrix is in reduced row-echelon form. Details are in the box on page 857 .

Ex. 2, p. 852;
Ex. 3, p. 855

Ex. 4, p. 858

8.2 Inconsistent and Dependent Systems and Their Applications

a. If Gaussian elimination results in a matrix with a row containing all 0 s to the left of the vertical line and a

Ex. 1, p. 863

Ex. 2, p. 864

Ex. 3, p. 866
c. In nonsquare systems, the number of variables differs from the number of equations.

8.3 Matrix Operations and Their Applications

a. A matrix of order $m \times n$ has m rows and n columns. Two matrices are equal if and only if they have the same order and corresponding elements are equal.
b. Matrix Addition and Subtraction: Matrices of the same order are added or subtracted by adding or subtracting corresponding elements. Properties of matrix addition are given in the box on page 874.
c. Scalar Multiplication: If A is a matrix and c is a scalar, then $c A$ is the matrix formed by multiplying each element in A by c. Properties of scalar multiplication are given in the box on page 876.
d. Matrix Multiplication: The product of an $m \times n$ matrix A and an $n \times p$ matrix B is an $m \times p$ matrix $A B$. The element in the i th row and j th column of $A B$ is found by multiplying each element in the i th row of A by the corresponding element in the j th column of B and adding the products. Matrix multiplication is not commutative: $A B \neq B A$. Properties of matrix multiplication are given in the box on page 881 .

Ex. 1, p. 872

Ex. 2, p. 874

Ex. 3, p. 875;
Ex. 4, p. 876
Ex. 5, p. 877;
Ex. 6, p. 878;
Ex. 7, p. 880

Ex. 1, p. 889

Ex. 2, p. 890;
Ex. 3, p. 891;
Ex. 4, p. 894
Ex. 5, p. 896

Ex. 1, p. 903

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

b. Cramer's Rule for solving systems of linear equations in two variables uses three second-order determinants and is stated in the box on page 904.
c. To evaluate an n th-order determinant, where $n>2$,

1. Select a row or column about which to expand.
2. Multiply each element $a_{i j}$ in the row or column by $(-1)^{i+j}$ times the determinant obtained by deleting the i th row and the j th column in the given array of numbers.
3. The value of the determinant is the sum of the products found in step 2.
d. Cramer's Rule for solving systems of linear equations in three variables uses four third-order determinants and is stated in the box beginning on page 908.
e. Cramer's Rule cannot be used to determine solution sets with inconsistent or dependent systems.

REVIEW EXERCISES

8.1

In Exercises 1-2, perform each matrix row operation and write the new matrix.

1. $\left[\begin{array}{rrr|r}1 & 2 & 2 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 5 & 4 & 1\end{array}\right] \quad-5 R_{2}+R_{3}$
2. $\left[\begin{array}{rrr|r}2 & -2 & 1 & -1 \\ 1 & 2 & -1 & 2 \\ 6 & 4 & 3 & 5\end{array}\right] \quad \frac{1}{2} R_{1}$

In Exercises 3-5, solve each system of equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
3. $\left\{\begin{aligned} x+2 y+3 z & =-5 \\ 2 x+y+z & =1 \\ x+y-z & =8\end{aligned}\right.$ 4. $\left\{\begin{aligned} x-2 y+z & =0 \\ y-3 z & =-1 \\ 2 y+5 z & =-2\end{aligned}\right.$
5. $\left\{\begin{aligned} 3 x_{1}+5 x_{2}-8 x_{3}+5 x_{4} & =-8 \\ x_{1}+2 x_{2}-3 x_{3}+x_{4} & =-7 \\ 2 x_{1}+3 x_{2}-7 x_{3}+3 x_{4} & =-11 \\ 4 x_{1}+8 x_{2}-10 x_{3}+7 x_{4} & =-10\end{aligned}\right.$
6. The table shows the pollutants in the air in a city on a typical summer day.

\boldsymbol{x}	
(Hours after 6 A.m.)	\boldsymbol{y} (Amount of Pollutants in the Air, in parts per million)
2	98
4	138
10	162

a. Use the function $y=a x^{2}+b x+c$ to model the data. Use either Gaussian elimination with back-substitution or Gauss-Jordan elimination to find the values for a, b, and c.
b. Use the function to find the time of day at which the city's air pollution level is at a maximum. What is the maximum level?
7. Sociologists Joseph Kahl and Dennis Gilbert developed a six-tier model to portray the class structure of the United States. The bar graph represents the percentage of Americans who are members of each of the six social classes.

The United States Social Class Ladder

> Percentage of the Population

Source: James Henslin, Sociology, Ninth Edition, Allyn and Bacon, 2011.
Combined, members of the capitalist class, the uppermiddle class, the lower-middle class, and the working class make up 80% of the U.S. population. The percentage of the population belonging to the lower-middle class exceeds the percentage belonging to capitalist and upper-middle classes by 18%. The difference between the percentage belonging to the lower-middle class and the working class is 4%. If the percentage belonging to the upper-middle class is tripled, it exceeds the percentage belonging to the capitalist and lowermiddle classes by 10%. Determine the percentage of the U.S. population who are members of the capitalist class, the upper-middle class, the lower-middle class, and the working class.

8.2

In Exercises 8-11, use Gaussian elimination to find the complete solution to each system, or show that none exists.
8. $\left\{\begin{aligned} 2 x-3 y+z & =1 \\ x-2 y+3 z & =2 \\ 3 x-4 y-z & =1\end{aligned}\right.$
9. $\left\{\begin{aligned} x-3 y+z & =1 \\ -2 x+y+3 z & =-7 \\ x-4 y+2 z & =0\end{aligned}\right.$
10. $\left\{\begin{aligned} x_{1}+4 x_{2}+3 x_{3}-6 x_{4}= & 5 \\ x_{1}+3 x_{2}+x_{3}-4 x_{4} & =3 \\ 2 x_{1}+8 x_{2}+7 x_{3}-5 x_{4} & =11 \\ 2 x_{1}+5 x_{2}-6 x_{4} & =4\end{aligned}\right.$
11. $\left\{\begin{aligned} 2 x+3 y-5 z & =15 \\ x+2 y-z & =4\end{aligned}\right.$
12. The figure shows the intersections of three oneway streets. The numbers given represent traffic flow, in cars per hour, at a peak period (from 4 р.м. to 6 P.м.).
a. Use the idea that the number of cars entering
 each intersection per hour must equal the number of cars leaving per hour to set up a system of linear equations involving x, y, and z.
b. Use Gaussian elimination to solve the system.
c. If construction limits the value of z to 400 , how many cars per hour must pass between the other intersections to keep traffic flowing?

8.3

13. Find values for x, y, and z so that the following matrices are equal:

$$
\left[\begin{array}{rr}
2 x & y+7 \\
z & 4
\end{array}\right]=\left[\begin{array}{rr}
-10 & 13 \\
6 & 4
\end{array}\right]
$$

In Exercises 14-27, perform the indicated matrix operations given that A, B, C, and D are defined as follows. If an operation is not defined, state the reason.

$$
\begin{array}{ll}
A=\left[\begin{array}{rrr}
2 & -1 & 2 \\
5 & 3 & -1
\end{array}\right] & B=\left[\begin{array}{rr}
0 & -2 \\
3 & 2 \\
1 & -5
\end{array}\right] \\
C=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 1 & 2 \\
-1 & 2 & 1
\end{array}\right] & D=\left[\begin{array}{rrr}
-2 & 3 & 1 \\
3 & -2 & 4
\end{array}\right]
\end{array}
$$

14. $A+D$
15. $2 B$
16. $D-A$
17. $B+C$
18. $3 A+2 D$
19. $-2 A+4 D$
20. $-5(A+D)$
21. $A B$
22. $B A$
23. $B D$
24. $D B$
25. $A B-B A$
26. $(A-D) C$
27. $B(A C)$
28. Solve for X in the matrix equation

$$
3 X+A=B
$$

where $A=\left[\begin{array}{rr}4 & 6 \\ -5 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}-2 & -12 \\ 4 & 1\end{array}\right]$.
In Exercises 29-30, use nine pixels in a 3×3 grid and the color levels shown.

29. Write a 3×3 matrix that represents a digital photograph of the letter T in dark gray on a light gray background.
30. Find a matrix B so that $A+B$ increases the contrast of the letter T by changing the dark gray to black and the light gray to white.

The figure shows a right triangle in a rectangular coordinate system.

The figure can be represented by the matrix

$$
B=\left[\begin{array}{rrr}
0 & 2 & 2 \\
0 & 0 & -4
\end{array}\right]
$$

Use the triangle and the matrix that represents it to solve Exercises 31-36.
31. Use matrix operations to move the triangle 2 units to the left and 1 unit up. Then graph the triangle and its transformation in a rectangular coordinate system.
32. Use matrix operations to reduce the triangle to half its perimeter and move the reduced image 2 units down. Then graph the triangle and its transformation in a rectangular coordinate system.

In Exercises 33-36, find AB and graph the resulting image. What effect does the multiplication have on the triangle represented by matrix B ?
33. $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
34. $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
35. $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
36. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

8.4

In Exercises 37-38, find the products $A B$ and $B A$ to determine whether B is the multiplicative inverse of A.
37. $A=\left[\begin{array}{ll}2 & 7 \\ 1 & 4\end{array}\right], \quad B=\left[\begin{array}{rr}4 & -7 \\ -1 & 3\end{array}\right]$
38. $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & -7 \\ 0 & -1 & 4\end{array}\right], \quad B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 7 \\ 0 & 1 & 2\end{array}\right]$

In Exercises 39-42, find A^{-1}. Check that $A A^{-1}=I$ and $A^{-1} A=I$.
39. $A=\left[\begin{array}{rr}1 & -1 \\ -2 & 3\end{array}\right]$
40. $A=\left[\begin{array}{ll}0 & 1 \\ 5 & 3\end{array}\right]$
41. $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ 2 & 1 & 0 \\ 1 & 0 & -3\end{array}\right]$
42. $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ 4 & 13 & -7 \\ 5 & 16 & -8\end{array}\right]$

In Exercises 43-44,
a. Write each linear system as a matrix equation in the form $A X=B$.
b. Solve the system using the inverse that is given for the coefficient matrix.
43. $\left\{\begin{aligned} x+y+2 z & =7 \\ y+3 z & =-2 \\ 3 x-2 z & =0\end{aligned}\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & -2\end{array}\right]\right.$ is $\left[\begin{array}{rrr}-2 & 2 & 1 \\ 9 & -8 & -3 \\ -3 & 3 & 1\end{array}\right]$.
44. $\left\{\begin{array}{rl}x-y+2 z & =12 \\ y-z & =-5 \\ x & 2 z\end{array}=10 \quad\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 2\end{array}\right]\right.$ is $\left[\begin{array}{rrr}2 & 2 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 1\end{array}\right]$.
45. Use the coding matrix $A=\left[\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right]$ and its inverse $A^{-1}=\left[\begin{array}{rr}3 & -2 \\ -4 & 3\end{array}\right]$ to encode and then decode the word RULE.

8.5

In Exercises 46-51, evaluate each determinant.
46. $\left|\begin{array}{rr}3 & 2 \\ -1 & 5\end{array}\right|$
47. $\left|\begin{array}{ll}-2 & -3 \\ -4 & -8\end{array}\right|$
48. $\left|\begin{array}{rrr}2 & 4 & -3 \\ 1 & -1 & 5 \\ -2 & 4 & 0\end{array}\right|$
49. $\left|\begin{array}{rrr}4 & 7 & 0 \\ -5 & 6 & 0 \\ 3 & 2 & -4\end{array}\right|$
50. $\left|\begin{array}{rrrr}1 & 1 & 0 & 2 \\ 0 & 3 & 2 & 1 \\ 0 & -2 & 4 & 0 \\ 0 & 3 & 0 & 1\end{array}\right|$
51. $\left|\begin{array}{llll}2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2\end{array}\right|$

In Exercises 52-55, use Cramer's Rule to solve each system.
52. $\left\{\begin{aligned} x-2 y & =8 \\ 3 x+2 y & =-1\end{aligned}\right.$
53. $\left\{\begin{array}{l}7 x+2 y=0 \\ 2 x+y=-3\end{array}\right.$
54. $\left\{\begin{aligned} x+2 y+2 z & =5 \\ 2 x+4 y+7 z & =19 \\ -2 x-5 y-2 z & =8\end{aligned}\right.$
55. $\left\{\begin{aligned} 2 x+y & =-4 \\ y-2 z & =0 \\ 3 x-2 z & =-11\end{aligned}\right.$
56. Use the quadratic function $y=a x^{2}+b x+c$ to model the following data:

\boldsymbol{x} (Age of a Driver)	\boldsymbol{y} (Average Number of Automobile Accidents per Day in the United States)
20	400
40	150
60	400

Use Cramer's Rule to determine values for a, b, and c. Then use the model to write a statement about the average number of automobile accidents in which 30-year-olds and 50-year-olds are involved daily.

CHAPTER 8 TEST

In Exercises 1-2, solve each system of equations using matrices.

1. $\left\{\begin{aligned} x+2 y-z & =-3 \\ 2 x-4 y+z & =-7 \\ -2 x+2 y-3 z & =4\end{aligned}\right.$
2. $\left\{\begin{aligned} x-2 y+z & =2 \\ 2 x-y-z & =1\end{aligned}\right.$

In Exercises 3-6, let

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 0 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]
$$

Carry out the indicated operations.

3. $2 B+3 C$
4. $A B$
5. C^{-1}
6. $B C-3 B$
7. If $A=\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 3 & 3 \\ 1 & -1 & -2\end{array}\right]$ and $B=\left[\begin{array}{rrr}-3 & 2 & 0 \\ 7 & -4 & 1 \\ -5 & 3 & -1\end{array}\right]$, show that
B is the inverse of A.
8. Consider the system

$$
\left\{\begin{aligned}
3 x+5 y & =9 \\
2 x-3 y & =-13
\end{aligned}\right.
$$

a. Express the system in the form $A X=B$, where A, X, and B are appropriate matrices.
b. Find A^{-1}, the inverse of the coefficient matrix.
c. Use A^{-1} to solve the given system.
9. Evaluate: $\left|\begin{array}{rrr}4 & -1 & 3 \\ 0 & 5 & -1 \\ 5 & 2 & 4\end{array}\right|$.
10. Solve for x only using Cramer's Rule:

$$
\left\{\begin{array}{r}
3 x+y-2 z=-3 \\
2 x+7 y+3 z=9 \\
4 x-3 y-z=7
\end{array}\right.
$$

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-8)

Solve each equation or inequality in Exercises 1-6.

1. $2 x^{2}=4-x$
2. $5 x+8 \leq 7(1+x)$
3. $\sqrt{2 x+4}-\sqrt{x+3}-1=0$
4. $3 x^{3}+8 x^{2}-15 x+4=0$
5. $e^{2 x}-14 e^{x}+45=0$
6. $\log _{3} x+\log _{3}(x+2)=1$
7. Use matrices to solve this system:

$$
\left\{\begin{aligned}
x-y+z & =17 \\
2 x+3 y+z & =8 \\
-4 x+y+5 z & =-2
\end{aligned}\right.
$$

8. Solve for y using Cramer's Rule:

$$
\left\{\begin{aligned}
x-2 y+z & =7 \\
2 x+y-z & =0 \\
3 x+2 y-2 z & =-2
\end{aligned}\right.
$$

9. If $f(x)=\sqrt{4 x-7}$, find $f^{-1}(x)$.
10. Graph: $f(x)=\frac{x}{x^{2}-16}$.
11. Use the graph of $f(x)=4 x^{4}-4 x^{3}-25 x^{2}+x+6$ shown in the figure to factor the polynomial completely.

12. Graph $y=\log _{2} x$ and $y=\log _{2}(x+1)$ in the same rectangular coordinate system.
13. Use the exponential decay model $A=A_{0} e^{k t}$ to solve this problem. A radioactive substance has a half-life of 40 days. There are initially 900 grams of the substance.
a. Find the decay model for this substance. Round k to the nearest thousandth.
b. How much of the substance will remain after 10 days? Round to the nearest hundredth of a gram.
14. Multiply the matrices: $\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{rr}4 & -1 \\ 2 & 0 \\ 1 & 1\end{array}\right]$.
15. Find the partial fraction decomposition of

$$
\frac{3 x^{2}+17 x-38}{(x-3)(x-2)(x+2)} .
$$

In Exercises 16-19, graph each equation, function, or inequality in a rectangular coordinate system.
16. $y=-\frac{2}{3} x-1$
17. $3 x-5 y<15$
18. $f(x)=x^{2}-2 x-3$
19. $(x-1)^{2}+(y+1)^{2}=9$
20. Use synthetic division to divide $x^{3}-6 x+4$ by $x-2$.
21. Graph: $y=2 \sin 2 \pi x, \quad 0 \leq x \leq 2$.
22. Find the exact value of $\cos \left[\tan ^{-1}\left(-\frac{4}{3}\right)\right]$.
23. Verify the identity: $\frac{\cos 2 x}{\cos x-\sin x}=\cos x+\sin x$.
24. Solve on the interval $[0,2 \pi): \cos ^{2} x+\sin x+1=0$.
25. If $\mathbf{v}=-6 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{w}=-7 \mathbf{i}+3 \mathbf{j}$, find $4 \mathbf{w}-5 \mathbf{v}$.

CONIC SECTIONS AND ANALYTIC GEOMETRY

CHAPTER

 9Arcmoripples in water to the path on which humanity journeys through space, certain eurves occur naturally. throughout the universe. Over two thousand years ago, the ancient Greeks studied these curves, called conic sections, without regard to their immediate usefulness simply because studying them elicited ideas that were exciting, challenging, and interesting. The ancient Greeks could not have imagined the applications of these curves in the twenty-first century. They enable the Hubble Space Telescope, a large satellite about the size of a school bus orbiting 375 miles above Earth, to gather distant rays of light and focus them into spectaculâr images of our evolving universe. They provide doctors with a procedure for dissolving kidney stones painlessly without invasive surgery. In this chapter, we use the rectangular coordinate system to study the conic sections. and the mathematics behind their surprising applications.

HERE'S WHERE YOU'LL FIND
 THESE APPLICATIONS THAT
 MOVE BEYOND PLANET EARTH:

- Planetary orbits: Section 9.1, page 928; Exercise Set 9.1, Exercise 78
- Halley’s Comet: Blitzer Bonus on page 929
- Hubble Space Telescope: Section 9.3, pages 948 and 956.

For a kidney stone here on Earth, see Section 9.1, page 928.

SECTION 9.1

Objectives

(1) Graph ellipses centered at the origin.
(2) Write equations of ellipses in standard form.
(3) Graph ellipses not centered at the origin.
(4) Solve applied problems involving ellipses.

You took on a summer job driving a truck, delivering books that were ordered online.

You're an avid reader, so just being around books sounded appealing. However, now you're feeling a bit shaky driving the truck for the first time. It's 10 feet wide and 9 feet high; compared to your compact car, it feels like you're behind the wheel of a tank. Up ahead you see a sign at the semielliptical entrance to a tunnel: Caution! Tunnel is 10 Feet High at Center Peak. Then you see another sign: Caution! Tunnel Is 40 Feet Wide. Will your truck clear the opening of the tunnel's archway?

Mathematics is present in the movements of planets, bridge and tunnel construction, navigational systems used to keep track of a ship's location, manufacture of lenses for telescopes, and even in a procedure for disintegrating kidney stones. The mathematics behind these applications involves conic sections. Conic sections are curves that result from the intersection of a right circular cone and a plane. Figure 9.1 illustrates the four conic sections: the circle, the ellipse, the parabola, and the hyperbola.

FIGURE 9.1 Obtaining the conic sections by intersecting a plane and a cone

In this section, we study the symmetric oval-shaped curve known as the ellipse. We will use a geometric definition for an ellipse to derive its equation. With this equation, we will determine if your delivery truck will clear the tunnel's entrance.

Definition of an Ellipse

Figure 9.2 illustrates how to draw an ellipse. Place pins at two fixed points, each of which is called a focus (plural: foci). If the ends of a fixed length of string are fastened to the pins and we draw the string taut with a pencil, the path traced by the pencil will be an ellipse. Notice that the sum of the distances of the pencil point from the foci remains constant because the length of the string is fixed. This procedure for drawing an ellipse illustrates its geometric definition.

FIGURE 9.3

Definition of an Ellipse

An ellipse is the set of all points, P, in a plane the sum of whose distances from two fixed points, F_{1} and F_{2}, is constant (see Figure 9.3). These two fixed points are called the foci (plural of focus). The midpoint of the segment connecting the foci is the center of the ellipse.

Figure 9.4 illustrates that an ellipse can be elongated in any direction. In this section, we will limit our discussion to ellipses that are elongated horizontally or vertically. The line through the foci intersects the ellipse at two points, called the vertices (singular: vertex). The line segment that joins the vertices is the major axis. Notice that the midpoint of the major axis is the center of the ellipse. The line segment whose endpoints are on the ellipse and that is perpendicular to the major axis at the center is called the minor axis of the ellipse.

FIGURE 9.4 Horizontal and vertical elongations of an ellipse

Standard Form of the Equation of an Ellipse

The rectangular coordinate system gives us a unique way of describing an ellipse. It enables us to translate an ellipse's geometric definition into an algebraic equation.

We start with Figure 9.5 to obtain an ellipse's equation. We've placed an ellipse that is elongated horizontally into a rectangular coordinate system. The foci are on the x-axis at $(-c, 0)$ and $(c, 0)$, as in Figure 9.5. In this way, the center of the ellipse is at the origin. We let (x, y) represent the coordinates of any point on the ellipse.

What does the definition of an ellipse tell us about the point (x, y) in Figure 9.5? For any point (x, y) on the ellipse, the sum of the distances to the two foci, $d_{1}+d_{2}$, must be constant. As we shall see, it is convenient to denote this constant by $2 a$. Thus, the point (x, y) is on the ellipse if and only if

$$
\begin{aligned}
d_{1}+d_{2} & =2 a . \\
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}} & =2 a \quad \text { Use the distance formula. }
\end{aligned}
$$

After eliminating radicals and simplifying, we obtain

$$
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) .
$$

Look at the triangle in Figure 9.5. Notice that the distance from F_{1} to F_{2} is $2 c$. Because the length of any side of a triangle is less than the sum of the lengths of the other two sides, $2 c<d_{1}+d_{2}$. Equivalently, $2 c<2 a$ and $c<a$. Consequently,

GREAT QUESTION!

Which equation do I need to use for locating the foci of an ellipse?
The form $c^{2}=a^{2}-b^{2}$ is the one you should remember. When finding the foci, this form is easy to manipulate.
$a^{2}-c^{2}>0$. For convenience, let $b^{2}=a^{2}-c^{2}$. Substituting b^{2} for $a^{2}-c^{2}$ in the preceding equation, $\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right)$, we obtain

$$
\begin{aligned}
b^{2} x^{2}+a^{2} y^{2} & =a^{2} b^{2} \\
\frac{b^{2} x^{2}}{a^{2} b^{2}}+\frac{a^{2} y^{2}}{a^{2} b^{2}} & =\frac{a^{2} b^{2}}{a^{2} b^{2}} \quad \text { Divide both sides by } a^{2} b^{2} . \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =1 . \quad \text { Simplify. }
\end{aligned}
$$

This last equation is the standard form of the equation of an ellipse centered at the origin. There are two such equations, one for a horizontal major axis and one for a vertical major axis.

Standard Forms of the Equations of an Ellipse

The standard form of the equation of an ellipse with center at the origin, and major and minor axes of lengths $2 a$ and $2 b$ (where a and b are positive, and $a^{2}>b^{2}$) is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Figure 9.6 illustrates that the vertices are on the major axis, a units from the center. The foci are on the major axis, c units from the center. For both equations, $b^{2}=a^{2}-c^{2}$. Equivalently, $c^{2}=a^{2}-b^{2}$.

FIGURE 9.6(a) Major axis is horizontal with length $2 a$.

FIGURE 9.6(b) Major axis is vertical with length $2 a$.

The intercepts shown in Figure 9.6(a) can be obtained algebraically. Let's do this for

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

\boldsymbol{x}-intercepts: Set $\boldsymbol{y}=0$.
y-intercepts: Set $\boldsymbol{x}=\mathbf{0}$.

$$
\begin{aligned}
\frac{x^{2}}{a^{2}} & =1 \\
x^{2} & =a^{2} \\
x & = \pm a
\end{aligned}
$$

$$
\frac{y^{2}}{b^{2}}=1
$$

$$
y^{2}=b^{2}
$$

$$
y= \pm b
$$

x-intercepts are $-a$ and a. The graph passes through $(-a, 0)$ and $(a, 0)$, which are the vertices.
y-intercepts are $-b$ and b.
The graph passes through
$(0,-b)$ and $(0, b)$.

Graph ellipses centered at the origin.

TECHNOLOGY

We graph $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ with a graphing utility by solving for y.

$$
\begin{aligned}
\frac{y^{2}}{4} & =1-\frac{x^{2}}{9} \\
y^{2} & =4\left(1-\frac{x^{2}}{9}\right) \\
y & = \pm 2 \sqrt{1-\frac{x^{2}}{9}}
\end{aligned}
$$

Notice that the square root property requires us to define two functions. Enter

$$
y_{1}=2 \boxed{\sqrt{ }}(1 \boxed{-} x \triangle \wedge \boxed{\ddots} 9)
$$

and

$$
y_{2}=-y_{1} .
$$

To see the true shape of the ellipse, use the

ZOOM SQUARE

feature so that one unit on the y-axis is the same length as one unit on the x-axis.

$[-4.5,4.5,1]$ by $[-3,3,1]$

Using the Standard Form of the Equation of an Ellipse

We can use the standard form of an ellipse's equation to graph the ellipse. Although the definition of the ellipse is given in terms of its foci, the foci are not part of the graph. A complete graph of an ellipse can be obtained without graphing the foci.

EXAMPLE 1 Graphing an Ellipse Centered at the Origin

Graph and locate the foci: $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

SOLUTION

The given equation is the standard form of an ellipse's equation with $a^{2}=9$ and $b^{2}=4$.

$$
\begin{gathered}
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \\
\begin{array}{c}
a^{2}=9 \text {. This is } \\
\text { the larger of the } \\
\text { two denominators. }
\end{array} \begin{array}{c}
b^{2}=4 \text {. This is } \\
\text { the smaller of the } \\
\text { two denominators. }
\end{array}
\end{gathered}
$$

Because the denominator of the x^{2}-term is greater than the denominator of the y^{2}-term, the major axis is horizontal. Based on the standard form of the equation, we know the vertices are $(-a, 0)$ and $(a, 0)$. Because $a^{2}=9, a=3$. Thus, the vertices are $(-3,0)$ and (3,0), shown in Figure 9.7.

Now let us find the endpoints of the vertical minor axis. According to the standard form of the equation, these endpoints are $(0,-b)$ and $(0, b)$. Because $b^{2}=4, b=2$.
 Thus, the endpoints of the minor axis are $(0,-2)$ and $(0,2)$. They are shown in Figure 9.7.

FIGURE 9.7 The graph of $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
Finally, we find the foci, which are located at $(-c, 0)$ and $(c, 0)$. We can use the formula $c^{2}=a^{2}-b^{2}$ to do so. We know that $a^{2}=9$ and $b^{2}=4$. Thus,

$$
c^{2}=a^{2}-b^{2}=9-4=5
$$

Because $c^{2}=5, c=\sqrt{5}$. The foci, $(-c, 0)$ and $(c, 0)$, are located at $(-\sqrt{5}, 0)$ and $(\sqrt{5}, 0)$. They are shown in Figure 9.7.

You can sketch the ellipse in Figure 9.7 by locating endpoints on the major and minor axes.

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1
$$

Endpoints of the major
axis are 3 units to the
right and left of the center.
:---
axis are 2 units up and
down from the center.

\int Check Point 1 Graph and locate the foci: $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$

FIGURE 9.8 The graph of $25 x^{2}+16 y^{2}=400$, or $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$

Write equations of ellipses in standard form.

EXAMPLE 2 Graphing an Ellipse Centered at the Origin

Graph and locate the foci: $25 x^{2}+16 y^{2}=400$.

SOLUTION

We begin by expressing the equation in standard form. Because we want 1 on the right side, we divide both sides by 400 .

$$
\begin{array}{r}
\frac{25 x^{2}}{400}+\frac{16 y^{2}}{400}=\frac{400}{400} \\
\frac{x^{2}}{16}+\frac{y^{2}}{25}=1 \\
b^{2}=16 . \text { This is } \\
\text { the smaller of the } \begin{array}{l}
a^{2}=25 . \text { This is } \\
\text { two denominators. } \\
\text { the larger of the } \\
\text { two denominators. }
\end{array}
\end{array}
$$

The equation is the standard form of an ellipse's equation with $a^{2}=25$ and $b^{2}=16$. Because the denominator of the y^{2}-term is greater than the denominator of the x^{2}-term, the major axis is vertical. Based on the standard form of the equation, we know the vertices are $(0,-a)$ and $(0, a)$. Because $a^{2}=25, a=5$. Thus, the vertices are $(0,-5)$ and $(0,5)$, shown in Figure 9.8.

Now let us find the endpoints of the horizontal minor axis. According to the standard form of the equation, these endpoints are $(-b, 0)$ and $(b, 0)$. Because $b^{2}=16, b=4$. Thus, the endpoints of the minor axis are $(-4,0)$ and $(4,0)$. They are shown in Figure 9.8.

Finally, we find the foci, which are located at $(0,-c)$ and $(0, c)$. We can use the formula $c^{2}=a^{2}-b^{2}$ to do so. We know that $a^{2}=25$ and $b^{2}=16$. Thus,

$$
c^{2}=a^{2}-b^{2}=25-16=9
$$

Because $c^{2}=9, c=3$. The foci, $(0,-c)$ and $(0, c)$, are located at $(0,-3)$ and $(0,3)$. They are shown in Figure 9.8.

You can sketch the ellipse in Figure 9.8 by locating endpoints on the major and minor axes.

Check Point 2 Graph and locate the foci: $16 x^{2}+9 y^{2}=144$.

In Examples 1 and 2, we used the equation of an ellipse to find its foci and vertices. In the next example, we reverse this procedure.

EXAMPLE 3 Finding the Equation of an Ellipse from Its Foci and Vertices

Find the standard form of the equation of an ellipse with foci at $(-1,0)$ and $(1,0)$ and vertices $(-2,0)$ and $(2,0)$.

SOLUTION

Because the foci are located at $(-1,0)$ and $(1,0)$, on the x-axis, the major axis is horizontal. The center of the ellipse is midway between the foci, located at $(0,0)$. Thus, the form of the equation is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

We need to determine the values for a^{2} and b^{2}. The distance from the center, $(0,0)$, to either vertex, $(-2,0)$ or $(2,0)$, is 2 . Thus, $a=2$.

$$
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1
$$

We must still find b^{2}. The distance from the center, $(0,0)$, to either focus, $(-1,0)$ or $(1,0)$, is 1 , so $c=1$. Using $c^{2}=a^{2}-b^{2}$, we have

$$
1^{2}=2^{2}-b^{2}
$$

and

$$
b^{2}=2^{2}-1^{2}=4-1=3
$$

Substituting 3 for b^{2} in $\frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$ gives us the standard form of the ellipse's
equation. The equation is

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

\int Check Point 3 Find the standard form of the equation of an ellipse with foci at $(-2,0)$ and $(2,0)$ and vertices $(-3,0)$ and $(3,0)$. at the origin.

Translations of Ellipses

Horizontal and vertical translations can be used to graph ellipses that are not centered at the origin. Figure 9.9 illustrates that the graphs of

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { and } \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

have the same size and shape. However, the graph of the first equation is centered at (h, k) rather than at the origin.

FIGURE 9.9 Translating an ellipse's graph

Table 9.1 gives the standard forms of equations of ellipses centered at (h, k) and shows their graphs.

Table 9.1 Standard Forms of Equations of Ellipses Centered at (h,k)

Foci are c units right and c units left of center, where $c^{2}=a^{2}-b^{2}$.
$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$

Foci are c units above and c units below the center, where $c^{2}=a^{2}-b^{2}$.

Center	Major Axis	Vertices

$(h-a, k)$
$(h+a, k)$

Parallel to the y-axis, vertical

$$
\begin{align*}
& (h, k-a) \tag{h,k}\\
& (h, k+a)
\end{align*}
$$

EXAMPLE 4 Graphing an Ellipse Centered at (h, k)
Graph: $\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1$. Where are the foci located?

SOLUTION

To graph the ellipse, we need to know its center, (h, k). In the standard forms of equations centered at $(h, k), h$ is the number subtracted from x and k is the number subtracted from y.

$$
\begin{aligned}
& \begin{array}{l}
\text { This is }(x-h)^{2}, \\
\text { with } h=1 .
\end{array} \\
& \frac{(x-1)^{2}}{4}+\frac{(y-(-2))^{2}}{9}=1 \\
& \text { with } k=-2 .
\end{aligned}
$$

We see that $h=1$ and $k=-2$. Thus, the center of the ellipse, (h, k), is $(1,-2)$. We can graph the ellipse by locating endpoints on the major and minor axes. To do this, we must identify a^{2} and b^{2}.

$$
\begin{aligned}
& \quad \frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1 \\
& \begin{array}{c}
b^{2}=4 \text {. This is the } \\
\text { smaller of the two } \\
\text { denominators. }
\end{array} \quad \begin{array}{c}
a^{2}=9 \text {. This is the } \\
\text { larger of the two } \\
\text { denominators. }
\end{array}
\end{aligned}
$$

The larger number is under the expression involving y. This means that the major axis is vertical and parallel to the y-axis.

FIGURE 9.10 The graph of an ellipse centered at $(1,-2)$

GREAT QUESTION!

Can you remind me how to complete the square?
To complete the square on $x^{2}+b x$, take half the coefficient of x. Then square this number. By adding the square of half the coefficient of x, a perfect square trinomial will result. Once you've completed the square, remember that changes made on the left side of the equation must also be made on the right side of the equation.

We can sketch the ellipse by locating endpoints on the major and minor axes.

$$
\frac{(x-1)^{2}}{2^{2}}+\frac{(y+2)^{2}}{3^{2}}=1
$$

Endpoints of the minor axis are 2 units to the right and left of the center.

Endpoints of the major axis (the vertices) are 3 units up and down from the center.

We categorize the observations in the voice balloons as follows:

Using the center and these four points, we can sketch the ellipse shown in Figure 9.10.

With $c^{2}=a^{2}-b^{2}$, we have $c^{2}=9-4=5$. So the foci are located $\sqrt{5}$ units above and below the center, at $(1,-2+\sqrt{5})$ and $(1,-2-\sqrt{5})$.

$$
\oint \text { Check Point } 4 \text { Graph: } \frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1 . \text { Where are the foci located? }
$$

In some cases, it is necessary to convert the equation of an ellipse to standard form by completing the square on x and y. For example, suppose that we wish to graph the ellipse whose equation is

$$
9 x^{2}+4 y^{2}-18 x+16 y-11=0 .
$$

Because we plan to complete the square on both x and y, we need to rearrange terms so that

- x-terms are arranged in descending order.
- y-terms are arranged in descending order.
- the constant term appears on the right.

$$
\begin{aligned}
& 9 x^{2}+4 y^{2}-18 x+16 y-11=0 \\
&\left(9 x^{2}-18 x\right)+\left(4 y^{2}+16 y\right)=11 \\
& 9\left(x^{2}-2 x+\square\right)+4\left(y^{2}+4 y+\square\right)=11 \\
& \begin{array}{c}
\text { We added } 9 \cdot 1, \text { or } 9, \quad \text { We also added } 4 \cdot 4, \text { or } 16, \\
\text { to the left side. }
\end{array} \\
& \text { to the left side. } \\
& 9\left(x^{2}-2 x+1\right)+4\left(y^{2}+4 y+4\right)=11+9+16
\end{aligned}
$$

9 and 16 , added on the left side, must also be added on the right side.

$$
\begin{aligned}
9(x-1)^{2}+4(y+2)^{2} & =36 \\
\frac{9(x-1)^{2}}{36}+\frac{4(y+2)^{2}}{36} & =\frac{36}{36} \\
\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9} & =1
\end{aligned}
$$

This is the given equation.
Group terms and add 11 to both sides.
To complete the square, coefficients of x^{2} and y^{2} must be 1. Factor out 9 and 4, respectively.

Complete each square by adding the square of half the coefficient of x and y, respectively.

Factor.

Divide both sides by 36 .

Simplify.

The equation is now in standard form. This is precisely the form of the equation that we graphed in Example 4.
4. Solve applied problems involving ellipses.

Whispering in an elliptical dome

Applications

Ellipses have many applications. German scientist Johannes Kepler (1571-1630) showed that the planets in our solar system move in elliptical orbits, with the sun at a focus. Earth satellites also travel in elliptical orbits, with Earth at a focus.

Planets move in elliptical orbits.

One intriguing aspect of the ellipse is that a ray of light or a sound wave emanating from one focus will be reflected from the ellipse to exactly the other focus. A whispering gallery is an elliptical room with an elliptical, dome-shaped ceiling. People standing at the foci can whisper and hear each other quite clearly, while persons in other locations in the room cannot hear them. Statuary Hall in the U.S. Capitol Building is elliptical. President John Quincy Adams, while a member of the House of Representatives, was aware of this acoustical phenomenon. He situated his desk at a focal point of the elliptical ceiling, easily eavesdropping on the private conversations of other House members located near the other focus.

The elliptical reflection principle is used in a procedure for disintegrating kidney stones. The patient is placed within a device that is elliptical in shape. The patient is placed so the kidney is centered at one focus, while ultrasound waves from the other focus hit the walls and are reflected to the kidney stone. The convergence of the ultrasound waves at the kidney stone causes vibrations that shatter it into fragments. The small pieces can then be passed painlessly through the patient's system. The patient recovers in days, as opposed to up to six weeks if surgery is used instead.

Disintegrating kidney stones

Ellipses are often used for supporting arches of bridges and in tunnel construction. This application forms the basis of our next example.

Blitzer Bonus Halley's Comet

Halley's Comet has an elliptical orbit with the sun at one focus. The comet returns every 76.3 years. The first recorded sighting was in 239 b.c. It was last seen in 1986. At that time, spacecraft went close to the comet, measuring its nucleus to be 7 miles long and 4 miles wide. By 2024, Halley's Comet will have reached the farthest point in its elliptical orbit before returning to be next visible from Earth in 2062.

The elliptical orbit of Halley's Comet

EXAMPLE 5 An Application Involving an Ellipse

A semielliptical archway over a one-way road has a height of 10 feet and a width of 40 feet (see Figure 9.11). Your truck has a width of 10 feet and a height of 9 feet. Will your truck clear the opening of the archway?

SOLUTION

Because your truck's width is 10 feet, to determine the

FIGURE 9.11
A semielliptical archway clearance, we must find the height of the archway 5 feet from the center. If that height is 9 feet or less, the truck will not clear the opening.

In Figure 9.12, we've constructed a coordinate system with the x-axis on the ground and the origin at the center of the archway. Also shown is the truck, whose height is 9 feet.

FIGURE 9.12

Using the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we can express the equation of the blue archway in Figure 9.12 as $\frac{x^{2}}{20^{2}}+\frac{y^{2}}{10^{2}}=1$, or $\frac{x^{2}}{400}+\frac{y^{2}}{100}=1$.

As shown in Figure 9.12, the edge of the 10 -foot-wide truck corresponds to $x=5$. We find the height of the archway 5 feet from the center by substituting 5 for x and solving for y.

$$
\begin{aligned}
\frac{5^{2}}{400}+\frac{y^{2}}{100} & =1 & & \text { Substitute } 5 \text { for } x \text { in } \frac{x^{2}}{400}+\frac{y^{2}}{100}=1 . \\
\frac{25}{400}+\frac{y^{2}}{100} & =1 & & \text { Square } 5 . \\
400\left(\frac{25}{400}+\frac{y^{2}}{100}\right) & =400(1) & & \text { Clear fractions by multiplying both sides by } 400 . \\
25+4 y^{2} & =400 & & \text { Use the distributive property and simplify. } \\
4 y^{2} & =375 & & \text { Subtract } 25 \text { from both sides. } \\
y^{2} & =\frac{375}{4} & & \text { Divide both sides by } 4 . \\
y & =\sqrt{\frac{375}{4}} & & \begin{array}{l}
\text { Take only the positive square root. The archway is } \\
\text { above the } x \text {-axis, so } y \text { is nonnegative. }
\end{array} \\
& \approx 9.68 & & \text { Use a calculator. }
\end{aligned}
$$

Thus, the height of the archway 5 feet from the center is approximately 9.68 feet. Because your truck's height is 9 feet, there is enough room for the truck to clear the archway.

Check Point 5 Will a truck that is 12 feet wide and has a height of 9 feet clear the opening of the archway described in Example 5?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The set of all points in a plane the sum of whose distances from two fixed points is constant is a/an \qquad .The two fixed points are called the \qquad The midpoint of the line segment connecting the two fixed points is the \qquad
2. Consider the following equation in standard form:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1 .
$$

The value of a^{2} is \qquad , so the x-intercepts are \qquad and \qquad The graph passes through \qquad and , which are the vertices.
The value of b^{2} is \qquad , so the y-intercepts are \qquad and \qquad The graph passes through ——_and and —.
3. Consider the following equation in standard form:

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1 .
$$

The value of a^{2} is \qquad so the y-intercepts are
\qquad and \qquad The graph passes through
\qquad and \qquad , which are the vertices.
The value of b^{2} is \qquad , so the x-intercepts are
\qquad and \qquad The graph passes through
\qquad and \qquad
4. Consider an ellipse centered at the origin whose major axis is vertical. The equation of this ellipse in standard form indicates that $a^{2}=9$ and $b^{2}=4$. Thus, $c^{2}=$ \qquad The foci are located at \qquad and \qquad
5. The graph of $\frac{(x+1)^{2}}{25}+\frac{(y-4)^{2}}{9}=1$ has its center at \qquad .
6. If the center of an ellipse is $(3,-2)$, the major axis is horizontal and parallel to the x-axis, and the distance from the center of the ellipse to its vertices is $a=5$ units, then the coordinates of the vertices are
\qquad and \qquad —.
7. If the foci of an ellipse are located at $(-8,6)$ and $(10,12)$, then the coordinates of the center of the ellipse are \qquad .
8. In the equation $3\left(x^{2}+4 x\right)+4\left(y^{2}-2 y\right)=32$, we complete the square on x by adding \qquad within the first parentheses. We complete the square on y by adding \qquad within the second parentheses. Thus, we must add \qquad to the right side of the equation.

EXERCISE SET 9.1

Practice Exercises

In Exercises 1-18, graph each ellipse and locate the foci.

1. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
2. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
3. $\frac{x^{2}}{9}+\frac{y^{2}}{36}=1$
4. $\frac{x^{2}}{16}+\frac{y^{2}}{49}=1$
5. $\frac{x^{2}}{25}+\frac{y^{2}}{64}=1$
6. $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
7. $\frac{x^{2}}{49}+\frac{y^{2}}{81}=1$
8. $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
9. $\frac{x^{2}}{\frac{9}{4}}+\frac{y^{2}}{\frac{25}{4}}=1$
10. $\frac{x^{2}}{\frac{81}{4}}+\frac{y^{2}}{\frac{25}{16}}=1$
11. $x^{2}=1-4 y^{2}$
12. $y^{2}=1-4 x^{2}$
13. $25 x^{2}+4 y^{2}=100$
14. $9 x^{2}+4 y^{2}=36$
15. $4 x^{2}+16 y^{2}=64$
16. $4 x^{2}+25 y^{2}=100$
17. $7 x^{2}=35-5 y^{2}$
18. $6 x^{2}=30-5 y^{2}$

In Exercises 19-24, find the standard form of the equation of each ellipse and give the location of its foci.
19.

20.

21.

22.

23.

24.

In Exercises 25-36, find the standard form of the equation of each ellipse satisfying the given conditions.
25. Foci: $(-5,0),(5,0)$; vertices: $(-8,0),(8,0)$
26. Foci: $(-2,0),(2,0)$; vertices: $(-6,0),(6,0)$
27. Foci: $(0,-4),(0,4)$; vertices: $(0,-7),(0,7)$
28. Foci: $(0,-3),(0,3)$; vertices: $(0,-4),(0,4)$
29. Foci: $(-2,0),(2,0)$; y-intercepts: -3 and 3
30. Foci: $(0,-2),(0,2) ; x$-intercepts: -2 and 2
31. Major axis horizontal with length 8 ; length of minor axis $=4$; center: $(0,0)$
32. Major axis horizontal with length 12 ; length of minor axis $=6$; center: $(0,0)$
33. Major axis vertical with length 10 ; length of minor axis $=4$; center: $(-2,3)$
34. Major axis vertical with length 20 ; length of minor axis $=10$; center: $(2,-3)$
35. Endpoints of major axis: $(7,9)$ and $(7,3)$

Endpoints of minor axis: $(5,6)$ and $(9,6)$
36. Endpoints of major axis: $(2,2)$ and $(8,2)$

Endpoints of minor axis: $(5,3)$ and $(5,1)$
In Exercises 37-50, graph each ellipse and give the location of its foci.
37. $\frac{(x-2)^{2}}{9}+\frac{(y-1)^{2}}{4}=1$
38. $\frac{(x-1)^{2}}{16}+\frac{(y+2)^{2}}{9}=1$
39. $(x+3)^{2}+4(y-2)^{2}=16$
40. $(x-3)^{2}+9(y+2)^{2}=18$
41. $\frac{(x-4)^{2}}{9}+\frac{(y+2)^{2}}{25}=1$
42. $\frac{(x-3)^{2}}{9}+\frac{(y+1)^{2}}{16}=1$
43. $\frac{x^{2}}{25}+\frac{(y-2)^{2}}{36}=1$
44. $\frac{(x-4)^{2}}{4}+\frac{y^{2}}{25}=1$
45. $\frac{(x+3)^{2}}{9}+(y-2)^{2}=1$
46. $\frac{(x+2)^{2}}{16}+(y-3)^{2}=1$
47. $\frac{(x-1)^{2}}{2}+\frac{(y+3)^{2}}{5}=1$
48. $\frac{(x+1)^{2}}{2}+\frac{(y-3)^{2}}{5}=1$
49. $9(x-1)^{2}+4(y+3)^{2}=36$
50. $36(x+4)^{2}+(y+3)^{2}=36$

In Exercises 51-56, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci.
51. $9 x^{2}+25 y^{2}-36 x+50 y-164=0$
52. $4 x^{2}+9 y^{2}-32 x+36 y+64=0$
53. $9 x^{2}+16 y^{2}-18 x+64 y-71=0$
54. $x^{2}+4 y^{2}+10 x-8 y+13=0$
55. $4 x^{2}+y^{2}+16 x-6 y-39=0$
56. $4 x^{2}+25 y^{2}-24 x+100 y+36=0$

Practice Plus

In Exercises 57-62, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
57. $\left\{\begin{array}{l}x^{2}+y^{2}=1 \\ x^{2}+9 y^{2}=9\end{array}\right.$
58. $\left\{\begin{aligned} x^{2}+y^{2} & =25 \\ 25 x^{2}+y^{2} & =25\end{aligned}\right.$
59. $\left\{\begin{aligned} \frac{x^{2}}{25}+\frac{y^{2}}{9} & =1 \\ y & =3\end{aligned}\right.$
60. $\left\{\begin{aligned} \frac{x^{2}}{4}+\frac{y^{2}}{36} & =1 \\ x & =-2\end{aligned}\right.$
61. $\left\{\begin{aligned} 4 x^{2}+y^{2} & =4 \\ 2 x-y & =2\end{aligned}\right.$
62. $\left\{\begin{aligned} 4 x^{2}+y^{2} & =4 \\ x+y & =3\end{aligned}\right.$

In Exercises 63-64, graph each semiellipse.
63. $y=-\sqrt{16-4 x^{2}}$
64. $y=-\sqrt{4-4 x^{2}}$

Application Exercises

65. Will a truck that is 8 feet wide carrying a load that reaches 7 feet above the ground clear the semielliptical arch on the one-way road that passes under the bridge shown in the figure?

66. A semielliptic archway has a height of 20 feet and a width of 50 feet, as shown in the figure. Can a truck 14 feet high and 10 feet wide drive under the archway without going into the other lane?

67. The elliptical ceiling in Statuary Hall in the U.S. Capitol Building is 96 feet long and 23 feet tall.

a. Using the rectangular coordinate system in the figure shown, write the standard form of the equation of the elliptical ceiling.
b. John Quincy Adams discovered that he could overhear the conversations of opposing party leaders near the left side of the chamber if he situated his desk at the focus at the right side of the chamber. How far from the center of the ellipse along the major axis did Adams situate his desk? (Round to the nearest foot.)
68. If an elliptical whispering room has a height of 30 feet and a width of 100 feet, where should two people stand if they would like to whisper back and forth and be heard?

Writing in Mathematics

69. What is an ellipse?
70. Describe how to graph $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
71. Describe how to locate the foci for $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
72. Describe one similarity and one difference between the graphs of $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$.
73. Describe one similarity and one difference between the graphs of $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and $\frac{(x-1)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$.
74. An elliptipool is an elliptical pool table with only one pocket. A pool shark places a ball on the table, hits it in what appears to be a random direction, and yet it bounces off the edge, falling directly into the pocket. Explain why this happens.

Technology Exercises

75. Use a graphing utility to graph any five of the ellipses that you graphed by hand in Exercises 1-18.
76. Use a graphing utility to graph any three of the ellipses that you graphed by hand in Exercises 37-50. First solve the given equation for y by using the square root property. Enter each of the two resulting equations to produce each half of the ellipse.
77. Use a graphing utility to graph any one of the ellipses that you graphed by hand in Exercises 51-56. Write the equation as a quadratic equation in y and use the quadratic formula to solve for y. Enter each of the two resulting equations to produce each half of the ellipse.
78. Write an equation for the path of each of the following elliptical orbits. Then use a graphing utility to graph the two ellipses in the same viewing rectangle. Can you see why early astronomers had difficulty detecting that these orbits are ellipses rather than circles?

- Earth's orbit: Length of major axis: 186 million miles

Length of minor axis: 185.8 million miles

- Mars's orbit: Length of major axis: 283.5 million miles

Length of minor axis: 278.5 million miles

Critical Thinking Exercises

Make Sense? In Exercises 79-82, determine whether each statement makes sense or does not make sense, and explain your reasoning.
79. I graphed an ellipse with a horizontal major axis and foci on the y-axis.
80. I graphed an ellipse that was symmetric about its major axis but not symmetric about its minor axis.
81. You told me that an ellipse centered at the origin has vertices at $(-5,0)$ and $(5,0)$, so I was able to graph the ellipse.
82. In a whispering gallery at our science museum, I stood at one focus, my friend stood at the other focus, and we had a clear conversation, very little of which was heard by the 25 museum visitors standing between us.
83. Find the standard form of the equation of an ellipse with vertices at $(0,-6)$ and $(0,6)$, passing through $(2,-4)$.
84. An Earth satellite has an elliptical orbit described by

$$
\frac{x^{2}}{(5000)^{2}}+\frac{y^{2}}{(4750)^{2}}=1
$$

(All units are in miles.) The coordinates of the center of Earth are $(16,0)$.
a. The perigee of the satellite's orbit is the point that is nearest Earth's center. If the radius of Earth is approximately 4000 miles, find the distance of the perigee above Earth's surface.
b. The apogee of the satellite's orbit is the point that is the greatest distance from Earth's center. Find the distance of the apogee above Earth's surface.
85. The equation of the red ellipse in the figure shown is

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

Write the equation for each circle shown in the figure.

86. What happens to the shape of the graph of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as $\frac{c}{a} \rightarrow 0$, where $c^{2}=a^{2}-b^{2}$?

Preview Exercises

Exercises 87-89 will help you prepare for the material covered in the next section.
87. Divide both sides of $4 x^{2}-9 y^{2}=36$ by 36 and simplify. How does the simplified equation differ from that of an ellipse?
88. Consider the equation $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
a. Find the x-intercepts.
b. Explain why there are no y-intercepts.
89. Consider the equation $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$.
a. Find the y-intercepts.
b. Explain why there are no x-intercepts.

SECTION 9.2 The Hyperbola

Objectives

(1) Locate a hyperbola's vertices and foci.
(2) Write equations of hyperbolas in standard form.
(3) Graph hyperbolas centered at the origin.
(4) Graph hyperbolas not centered at the origin.
(5) Solve applied problems involving hyperbolas.

FIGURE 9.14 The two branches of a hyperbola

St. Mary's Cathedral of hyperbolas: Their of called branches. Although each branch might look like a parabola, its shape is actually quite different.

The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum of the distances to the foci is a constant. By contrast, for a hyperbola the difference of the distances to the foci is a constant. curve with two parts known as the hyperbola.

Definition of a Hyperbola

Figure 9.13 shows a cylindrical lampshade casting two shadows on a wall. These shadows indicate the distinguishing feature

Conic sections are often used to create unusual architectural designs. The top of St. Mary's Cathedral in San Francisco is a 2135-cubic-foot dome with walls rising 200 feet above the floor and supported by four massive concrete pylons that extend 94 feet into the ground. Cross sections of the roof are parabolas and hyperbolas. In this section, we study the

Definition of a Hyperbola

A hyperbola is the set of points in a plane the difference of whose distances from two fixed points, called foci, is constant.

Figure 9.14 illustrates the two branches of a hyperbola. The line through the foci intersects the hyperbola at two points, called the vertices. The line segment that joins the vertices is the transverse axis. The midpoint of the transverse axis is the center of the hyperbola. Notice that the center lies midway between the vertices, as well as midway between the foci.

FIGURE 9.15

GREAT QUESTION!

Which equation do I need to use for locating the foci of a hyperbola?
The form $c^{2}=a^{2}+b^{2}$ is the one you should remember. When finding the foci, this form is easy to manipulate.

Standard Form of the Equation of a Hyperbola

The rectangular coordinate system enables us to translate a hyperbola's geometric definition into an algebraic equation. Figure $\mathbf{9 . 1 5}$ is our starting point for obtaining an equation. We place the foci, F_{1} and F_{2}, on the x-axis at the points $(-c, 0)$ and $(c, 0)$. Note that the center of this hyperbola is at the origin. We let (x, y) represent the coordinates of any point, P, on the hyperbola.

What does the definition of a hyperbola tell us about the point (x, y) in Figure 9.15? For any point (x, y) on the hyperbola, the absolute value of the difference of the distances from the two foci, $\left|d_{2}-d_{1}\right|$, must be constant. We denote this constant by $2 a$, just as we did for the ellipse. Thus, the point (x, y) is on the hyperbola if and only if

$$
\begin{aligned}
\left|d_{2}-d_{1}\right| & =2 a \\
\left|\sqrt{(x+c)^{2}+(y-0)^{2}}-\sqrt{(x-c)^{2}+(y-0)^{2}}\right| & =2 a \quad \text { Use the distance formula. }
\end{aligned}
$$

After eliminating radicals and simplifying, we obtain

$$
\left(c^{2}-a^{2}\right) x^{2}-a^{2} y^{2}=a^{2}\left(c^{2}-a^{2}\right)
$$

For convenience, let $b^{2}=c^{2}-a^{2}$. Substituting b^{2} for $c^{2}-a^{2}$ in the preceding equation, we obtain

$$
\begin{aligned}
b^{2} x^{2}-a^{2} y^{2} & =a^{2} b^{2} \\
\frac{b^{2} x^{2}}{a^{2} b^{2}}-\frac{a^{2} y^{2}}{a^{2} b^{2}} & =\frac{a^{2} b^{2}}{a^{2} b^{2}} \quad \text { Divide both sides by } a^{2} b^{2} . \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 \quad \text { Simplify. }
\end{aligned}
$$

This last equation is called the standard form of the equation of a hyperbola centered at the origin. There are two such equations. The first is for a hyperbola in which the transverse axis lies on the x-axis. The second is for a hyperbola in which the transverse axis lies on the y-axis.

Standard Forms of the Equations of a Hyperbola

The standard form of the equation of a hyperbola with center at the origin is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

Figure 9.16(a) illustrates that for the equation on the left, the transverse axis lies on the x-axis. Figure 9.16(b) illustrates that for the equation on the right, the transverse axis lies on the y-axis. The vertices are a units from the center and the foci are c units from the center. For both equations, $b^{2}=c^{2}-a^{2}$. Equivalently, $c^{2}=a^{2}+b^{2}$.

FIGURE 9.16(a) Transverse axis lies on the x-axis.

FIGURE 9.16(b) Transverse axis lies on the y-axis.
(1) Locate a hyperbola's vertices
and foci.

GREAT QUESTION!

What's the difference between the equations for locating an ellipse's foci and locating a hyperbola's
foci?
Notice the sign difference between the following equations:
Finding an ellipse's foci:

$$
c^{2}=a^{2}-b^{2}
$$

Finding a hyperbola's foci:

$$
c^{2}=a^{2}+b^{2}
$$

FIGURE 9.17 The graph of $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

GREAT QUESTION!

How can I tell from a hyperbola's equation whether the transverse axis is horizontal or vertical?
When the x^{2}-term is preceded by a plus sign, the transverse axis is horizontal. When the y^{2}-term is preceded by a plus sign, the transverse axis is vertical.

Using the Standard Form of the Equation of a Hyperbola

We can use the standard form of the equation of a hyperbola to find its vertices and locate its foci. Because the vertices are a units from the center, begin by identifying a^{2} in the equation. In the standard form of a hyperbola's equation, \boldsymbol{a}^{2} is the number under the variable whose term is preceded by a plus sign $(+)$. If the x^{2}-term is preceded by a plus sign, the transverse axis lies along the x-axis. Thus, the vertices are a units to the left and right of the origin. If the y^{2}-term is preceded by a plus sign, the transverse axis lies along the y-axis. Thus, the vertices are a units above and below the origin.

We know that the foci are c units from the center. The substitution that is used to derive the hyperbola's equation, $c^{2}=a^{2}+b^{2}$, is needed to locate the foci when a^{2} and b^{2} are known.

EXAMPLE 1 Finding Vertices and Foci from a Hyperbola's Equation

Find the vertices and locate the foci for each of the following hyperbolas with the given equation:
a. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
b. $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$.

SOLUTION

Both equations are in standard form. We begin by identifying a^{2} and b^{2} in each equation.
a. The first equation is in the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

$$
a^{2}=16 . \text { This is the denominator }
$$

of the term preceded by a plus sign. of the term preceded by a minus sign.

Because the x^{2}-term is preceded by a plus sign, the transverse axis lies along the x-axis. Thus, the vertices are a units to the left and right of the origin. Based on the standard form of the equation, we know the vertices are $(-a, 0)$ and $(a, 0)$. Because $a^{2}=16, a=4$. Thus, the vertices are $(-4,0)$ and (4, 0), shown in Figure 9.17.

We use $c^{2}=a^{2}+b^{2}$ to find the foci, which are located at $(-c, 0)$ and $(c, 0)$. We know that $a^{2}=16$ and $b^{2}=9$; we need to find c^{2} in order to find c.

$$
c^{2}=a^{2}+b^{2}=16+9=25
$$

Because $c^{2}=25, c=5$. The foci are located at $(-5,0)$ and $(5,0)$. They are shown in Figure 9.17.
b. The second given equation is in the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.

$$
\frac{y^{2}}{9}-\frac{x^{2}}{16}=1
$$

[^10]

Focus $(0,-5)$
FIGURE 9.18 The graph of $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
(2) Write equations of hyperbolas in standard form.

FIGURE 9.19

Because the y^{2}-term in $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$ is preceded by a plus sign, the transverse axis lies along the y-axis. Thus, the vertices are a units above and below the origin. Based on the standard form of the equation, we know the vertices are $(0,-a)$ and $(0, a)$. Because $a^{2}=9, a=3$. Thus, the vertices are $(0,-3)$ and $(0,3)$, shown in Figure 9.18.

We use $c^{2}=a^{2}+b^{2}$ to find the foci, which are located at $(0,-c)$ and (0, c).

$$
c^{2}=a^{2}+b^{2}=9+16=25
$$

Because $c^{2}=25, c=5$. The foci are located at $(0,-5)$ and $(0,5)$. They are shown in Figure 9.18.
\int Check Point 1 Find the vertices and locate the foci for each of the following hyperbolas with the given equation:
a. $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$
b. $\frac{y^{2}}{25}-\frac{x^{2}}{16}=1$.

In Example 1, we used equations of hyperbolas to find their foci and vertices. In the next example, we reverse this procedure.

EXAMPLE 2 Finding the Equation of a Hyperbola from Its Foci and Vertices

Find the standard form of the equation of a hyperbola with foci at $(0,-3)$ and $(0,3)$ and vertices $(0,-2)$ and $(0,2)$, shown in Figure 9.19.

SOLUTION

Because the foci are located at $(0,-3)$ and $(0,3)$, on the y-axis, the transverse axis lies on the y-axis. The center of the hyperbola is midway between the foci, located at $(0,0)$. Thus, the form of the equation is

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

We need to determine the values for a^{2} and b^{2}. The distance from the center, $(0,0)$, to either vertex, $(0,-2)$ or $(0,2)$, is 2 , so $a=2$.

$$
\frac{y^{2}}{2^{2}}-\frac{x^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{y^{2}}{4}-\frac{x^{2}}{b^{2}}=1
$$

We must still find b^{2}. The distance from the center, $(0,0)$, to either focus, $(0,-3)$ or $(0,3)$, is 3. Thus, $c=3$. Using $c^{2}=a^{2}+b^{2}$, we have

$$
3^{2}=2^{2}+b^{2}
$$

and

$$
b^{2}=3^{2}-2^{2}=9-4=5
$$

Substituting 5 for b^{2} in $\frac{y^{2}}{4}-\frac{x^{2}}{b^{2}}=1$ gives us the standard form of the hyperbola's equation. The equation is

$$
\frac{y^{2}}{4}-\frac{x^{2}}{5}=1
$$

Check Point 2 Find the standard form of the equation of a hyperbola with foci at $(0,-5)$ and $(0,5)$ and vertices $(0,-3)$ and $(0,3)$.

The Asymptotes of a Hyperbola

As x and y get larger, the two branches of the graph of a hyperbola approach a pair of intersecting straight lines, called asymptotes. The asymptotes pass through the center of the hyperbola and are helpful in graphing hyperbolas.

Figure 9.20 shows the asymptotes for the graphs of hyperbolas centered at the origin. The asymptotes pass through the corners of a rectangle. Note that the dimensions of this rectangle are $2 a$ by $2 b$. The line segment of length $2 b$ is the conjugate axis of the hyperbola and is perpendicular to the transverse axis through the center of the hyperbola.

FIGURE 9.20 Asymptotes of a hyperbola

The Asymptotes of a Hyperbola Centered at the Origin

The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has a horizontal transverse axis and two asymptotes

$$
y=\frac{b}{a} x \quad \text { and } \quad y=-\frac{b}{a} x .
$$

The hyperbola $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ has a vertical transverse axis and two asymptotes

$$
y=\frac{a}{b} x \quad \text { and } \quad y=-\frac{a}{b} x .
$$

Why are $y= \pm \frac{b}{a} x$ the asymptotes for a hyperbola whose transverse axis is horizontal? The proof can be found in the appendix.
(3) Graph hyperbolas centered at
the origin.

Graphing Hyperbolas Centered at the Origin

Hyperbolas are graphed using vertices and asymptotes.

Graphing Hyperbolas

1. Locate the vertices.
2. Use dashed lines to draw the rectangle centered at the origin with sides parallel to the axes, crossing one axis at $\pm a$ and the other at $\pm b$.
3. Use dashed lines to draw the diagonals of this rectangle and extend them to obtain the asymptotes.
4. Draw the two branches of the hyperbola by starting at each vertex and approaching the asymptotes.

EXAMPLE 3 Graphing a Hyperbola

Graph and locate the foci: $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$.What are the equations of the asymptotes?

SOLUTION

Step 1 Locate the vertices. The given equation is in the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, with $a^{2}=25$ and $b^{2}=16$.

$$
a^{2}=25<\frac{x^{2}}{25}-\frac{y^{2}}{16}=\underbrace{}_{b^{2}=16}
$$

Based on the standard form of the equation with the transverse axis on the x-axis, we know that the vertices are $(-a, 0)$ and $(a, 0)$. Because $a^{2}=25, a=5$. Thus, the vertices are $(-5,0)$ and $(5,0)$, shown in Figure 9.21.
Step 2 Draw a rectangle. Because $a^{2}=25$ and $b^{2}=16, a=5$ and $b=4$. We construct a rectangle to find the asymptotes, using -5 and 5 on the x-axis (the vertices are located here) and -4 and 4 on the y-axis. The rectangle passes through these four points, shown using dashed lines in Figure 9.21.
Step 3 Draw extended diagonals for the rectangle to obtain the asymptotes. We draw dashed lines through the opposite corners of the rectangle, shown in Figure 9.21, to obtain the graph of the asymptotes. Based on the standard form of the hyperbola's equation, the equations for these asymptotes are

$$
y= \pm \frac{b}{a} x \quad \text { or } \quad y= \pm \frac{4}{5} x .
$$

Graph $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ by solving
for y :

$$
\begin{aligned}
& y_{1}=\frac{\sqrt{16 x^{2}-400}}{5} \\
& y_{2}=-\frac{\sqrt{16 x^{2}-400}}{5}=-y_{1} .
\end{aligned}
$$

$[-10,10,1]$ by $[-6,6,1]$

FIGURE 9.21 Preparing to graph $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$

FIGURE 9.22 The graph of $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$

Step 4 Draw the two branches of the hyperbola by starting at each vertex and approaching the asymptotes. The hyperbola is shown in Figure 9.22.

We now consider the foci, located at $(-c, 0)$ and $(c, 0)$. We find c using $c^{2}=a^{2}+b^{2}$.

$$
c^{2}=25+16=41
$$

Because $c^{2}=41, c=\sqrt{41}$. The foci are located at $(-\sqrt{41}, 0)$ and $(\sqrt{41}, 0)$, approximately $(-6.4,0)$ and $(6.4,0)$.
\int Check Point 3 Graph and locate the foci: $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$. What are the equations of the asymptotes?

EXAMPLE 4 Graphing a Hyperbola

Graph and locate the foci: $9 y^{2}-4 x^{2}=36$. What are the equations of the asymptotes?

SOLUTION

We begin by writing the equation in standard form. The right side should be 1 , so we divide both sides by 36 .

$$
\begin{aligned}
\frac{9 y^{2}}{36}-\frac{4 x^{2}}{36} & =\frac{36}{36} \\
\frac{y^{2}}{4}-\frac{x^{2}}{9} & =1 \quad \text { Simplify. The right side is now } 1 .
\end{aligned}
$$

Now we are ready to use our four-step procedure for graphing hyperbolas.
Step 1 Locate the vertices. The equation that we obtained is in the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, with $a^{2}=4$ and $b^{2}=9$.

$$
a^{2}=4 \quad \frac{y^{2}}{4}-\frac{x^{2}}{9}=1
$$

Based on the standard form of the equation with the transverse axis on the y-axis, we know that the vertices are $(0,-a)$ and $(0, a)$. Because $a^{2}=4, a=2$. Thus, the vertices are $(0,-2)$ and $(0,2)$, shown in Figure 9.23.
Step 2 Draw a rectangle. Because $a^{2}=4$ and $b^{2}=9, a=2$ and $b=3$. We construct a rectangle to find the asymptotes, using -2 and 2 on the y-axis (the vertices are located here) and -3 and 3 on the x-axis. The rectangle passes through these four points, shown using dashed lines in Figure 9.23.
Step 3 Draw extended diagonals of the rectangle to obtain the asymptotes. We draw dashed lines through the opposite corners of the rectangle, shown in Figure 9.23, to obtain the graph of the asymptotes. Based on the standard form of the hyperbola's equation, the equations of these asymptotes are

$$
y= \pm \frac{a}{b} x \quad \text { or } \quad y= \pm \frac{2}{3} x .
$$

Step 4 Draw the two branches of the hyperbola by starting at each vertex and approaching the asymptotes. The hyperbola is shown in Figure 9.24.

FIGURE 9.23 Preparing to graph $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$

FIGURE 9.24 The graph of $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$

We now consider the foci, located at $(0,-c)$ and $(0, c)$. We find c using $c^{2}=a^{2}+b^{2}$.

$$
c^{2}=4+9=13
$$

Because $c^{2}=13, c=\sqrt{13}$. The foci are located at $(0,-\sqrt{13})$ and $(0, \sqrt{13})$, approximately $(0,-3.6)$ and $(0,3.6)$.

Graph hyperbolas not centered at the origin.

Translations of Hyperbolas

The graph of a hyperbola can be centered at (h, k), rather than at the origin. Horizontal and vertical translations are accomplished by replacing x with $x-h$ and y with $y-k$ in the standard form of the hyperbola's equation.

Table 9.2 gives the standard forms of equations of hyperbolas centered at (h, k) and shows their graphs.

Table 9.2 Standard Forms of Equations of Hyperbolas Centered at (h, k)
Equation

$(x-h)^{2}$
a^{2}

EXAMPLE 5 Graphing a Hyperbola Centered at (h, k)

 Graph: $\frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$. Where are the foci located? What are the equations of the asymptotes?

FIGURE 9.25 Locating a hyperbola's center and vertices

GREAT QUESTION!

Do I have to use the equations for the asymptotes of a hyperbola centered at the origin, $y= \pm \frac{b}{a} x$ or $y= \pm \frac{a}{b} x$, to determine the equations of the asymptotes when the hyperbola's center is (h, k) ?

No. You can also use the pointslope form of a line's equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

to find the equations of the asymptotes. The center of the hyperbola, (h, k), is a point on each asymptote, so $x_{1}=h$ and $y_{1}=k$. The slopes, m, are $\pm \frac{b}{a}$ for a horizontal transverse axis and $\pm \frac{a}{b}$ for a vertical transverse axis.

SOLUTION

In order to graph the hyperbola, we need to know its center, (h, k). In the standard forms of equations centered at $(h, k), h$ is the number subtracted from x and k is the number subtracted from y.

We see that $h=2$ and $k=3$. Thus, the center of the hyperbola, (h, k), is $(2,3)$. We can graph the hyperbola by using vertices, asymptotes, and our four-step graphing procedure.
Step 1 Locate the vertices. To do this, we must identify a^{2}.

$$
\begin{aligned}
& \frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1 \text { The form of this equation is } \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 . \\
& a^{2}=16 \quad b^{2}=9
\end{aligned}
$$

Based on the standard form of the equation with a horizontal transverse axis, the vertices are a units to the left and right of the center. Because $a^{2}=16, a=4$. This means that the vertices are 4 units to the left and right of the center, $(2,3)$. Four units to the left of $(2,3)$ puts one vertex at $(2-4,3)$, or $(-2,3)$. Four units to the right of $(2,3)$ puts the other vertex at $(2+4,3)$, or $(6,3)$. The vertices are shown in Figure 9.25.
Step 2 Draw a rectangle. Because $a^{2}=16$ and $b^{2}=9, a=4$ and $b=3$. The rectangle passes through points that are 4 units to the right and left of the center (the vertices are located here) and 3 units above and below the center. The rectangle is shown using dashed lines in Figure 9.26.

FIGURE 9.26 The graph of $\frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$

Step 3 Draw extended diagonals of the rectangle to obtain the asymptotes. We draw dashed lines through the opposite corners of the rectangle, shown in Figure 9.26, to obtain the graph of the asymptotes. The equations of the asymptotes of the unshifted hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ are $y= \pm \frac{b}{a} x$, or $y= \pm \frac{3}{4} x$. Thus, the asymptotes for the hyperbola that is shifted two units to the right and three units up, namely,

$$
\frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1
$$

have equations that can be expressed as

$$
y-3= \pm \frac{3}{4}(x-2)
$$

Step 4 Draw the two branches of the hyperbola by starting at each vertex and approaching the asymptotes. The hyperbola is shown in Figure 9.26.

We now consider the foci, located c units to the right and left of the center. We find c using $c^{2}=a^{2}+b^{2}$.

$$
c^{2}=16+9=25
$$

Because $c^{2}=25, c=5$. This means that the foci are 5 units to the left and right of the center, $(2,3)$. Five units to the left of $(2,3)$ puts one focus at $(2-5,3)$, or $(-3,3)$. Five units to the right of $(2,3)$ puts the other focus at $(2+5,3)$, or $(7,3)$.
$\$$ Check Point 5 Graph: $\frac{(x-3)^{2}}{4}-\frac{(y-1)^{2}}{1}=1$. Where are the foci located? What are the equations of the asymptotes?
In our next example, it is necessary to convert the equation of a hyperbola to standard form by completing the square on x and y.

EXAMPLE 6 Graphing a Hyperbola Centered at (h, k)

Graph: $4 x^{2}-24 x-25 y^{2}+250 y-489=0$. Where are the foci located? What are the equations of the asymptotes?

SOLUTION

We begin by completing the square on x and y.

$4 x^{2}-24 x-25 y^{2}+250 y-489=0$	This is the given equation.
$\left(4 x^{2}-24 x\right)+\left(-25 y^{2}+250 y\right)=489$	Group terms and add 489 to bot sides.
$4\left(x^{2}-6 x+\square\right)-25\left(y^{2}-10 y+\square\right)=489$	Factor out 4 and -25 , respective so coefficients of x^{2} and y^{2} are 1 .
$4\left(x^{2}-6 x+9\right)-25\left(y^{2}-10 y+25\right)=489+36+(-625)$	Complete each square by adding the square of half the coefficient
We added $4 \cdot 9$, or We added $-25 \cdot 25$, or 36, to the left side. -625, to the left side.	x and y, respectively.
$4(x-3)^{2}-25(y-5)^{2}=-100$	Factor.
$4(x-3)^{2}-25(y-5)^{2}=-100$	
$\begin{array}{ccc}-100 & -100 & -100\end{array}$	Divide both sides by -100.
$(x-3)^{2}+(y-5)^{2}$	
$\frac{-25}{}+\frac{4}{4}=$	Simplify.
This is $(y-k)^{2}$, This is $(x-h)^{2}$, with $k=5$.	Write the equation in standard $(y-k)^{2} \quad(x-h)^{2}$
	form, $\frac{(y-k}{a^{2}}-\frac{(x-h)}{b^{2}}=1$.

GREAT QUESTION!

Shouldn't the center of
$\frac{(y-5)^{2}}{4}-\frac{(x-3)^{2}}{25}=1$
be $(5,3)$?
No. The hyperbola's center is $(3,5)$ because the equation shows that 3 is subtracted from x and 5 is subtracted from y. Many students tend to read the equation from left to right and get the center backward. The hyperbola's center is $n o t(5,3)$.

We see that $h=3$ and $k=5$. Thus, the center of the hyperbola, (h, k), is $(3,5)$. Because the x^{2}-term is being subtracted, the transverse axis is vertical and the hyperbola opens upward and downward.

We use our four-step procedure to obtain the graph of

$$
\begin{aligned}
& \frac{(y-5)^{2}}{4}-\frac{(x-3)^{2}}{25}=1 . \\
& a^{2}=4
\end{aligned} b^{2}=25 .
$$

Step 1 Locate the vertices. Based on the standard form of the equation with a vertical transverse axis, the vertices are a units above and below the center. Because $a^{2}=4, a=2$. This means that the vertices are 2 units above and below the center, $(3,5)$. This puts the vertices at $(3,7)$ and $(3,3)$, shown in Figure 9.27.
Step 2 Drawa rectangle. Because $a^{2}=4$ and $b^{2}=25, a=2$ and $b=5$. The rectangle passes through points that are 2 units above and below the center (the vertices are located here) and 5 units to the right and left of the center. The rectangle is shown using dashed lines in Figure 9.27.

FIGURE 9.27 The graph of $\frac{(y-5)^{2}}{4}-\frac{(x-3)^{2}}{25}=1$

Step 3 Draw extended diagonals of the rectangle to obtain the asymptotes. We draw dashed lines through the opposite corners of the rectangle, shown in Figure 9.27, to obtain the graph of the asymptotes. The equations of the asymptotes of the unshifted hyperbola $\frac{y^{2}}{4}-\frac{x^{2}}{25}=1$ are $y= \pm \frac{a}{b} x$, or $y= \pm \frac{2}{5} x$. Thus, the asymptotes for the hyperbola that is shifted three units to the right and five units up, namely,

$$
\frac{(y-5)^{2}}{4}-\frac{(x-3)^{2}}{25}=1
$$

have equations that can be expressed as

$$
y-5= \pm \frac{2}{5}(x-3) .
$$

Step 4 Draw the two branches of the hyperbola by starting at each vertex and approaching the asymptotes. The hyperbola is shown in Figure 9.27.

We now consider the foci, located c units above and below the center, $(3,5)$. We find c using $c^{2}=a^{2}+b^{2}$.

$$
c^{2}=4+25=29
$$

Because $c^{2}=29, c=\sqrt{29}$. The foci are located at $(3,5+\sqrt{29})$ and (3, $5-\sqrt{29}$).
-••
Check Point 6 Graph: $4 x^{2}-24 x-9 y^{2}-90 y-153=0$. Where are the foci located? What are the equations of the asymptotes?
(5) Solve applied problems involving hyperbolas.

The hyperbolic shape of a sonic boom

Orbits of comets

Applications

Hyperbolas have many applications. When a jet flies at a speed greater than the speed of sound, the shock wave that is created is heard as a sonic boom. The wave has the shape of a cone. The shape formed as the cone hits the ground is one branch of a hyperbola.

Halley's Comet, a permanent part of our solar system, travels around the sun in an elliptical orbit. Other comets pass through the solar system only once, following a hyperbolic path with the sun as a focus.

Hyperbolas are of practical importance in fields ranging from architecture to navigation. Cooling towers used in the design for nuclear power plants have cross sections that are both ellipses and hyperbolas. Three-dimensional solids whose cross sections are hyperbolas are used in some rather unique architectural creations, including the TWA building at Kennedy Airport in New York City and the St. Louis Science Center Planetarium.

EXAMPLE 7 An Application Involving Hyperbolas

An explosion is recorded by two microphones that are 2 miles apart. Microphone M_{1} received the sound 4 seconds before microphone M_{2}. Assuming sound travels at 1100 feet per second, determine the possible locations of the explosion relative to the location of the microphones.

SOLUTION

We begin by putting the microphones in a coordinate system. Because 1 mile $=5280$ feet, we place $M_{1} 5280$ feet on a horizontal axis to the right of the origin and $M_{2} 5280$ feet on a horizontal axis to the left of the origin. Figure 9.28 illustrates that the two microphones are 2 miles apart.

FIGURE 9.28 Locating an explosion on the branch of a hyperbola

FIGURE 9.28 (repeated) Locating an explosion on the branch of a hyperbola

We know that M_{2} received the sound 4 seconds after M_{1}. Because sound travels at 1100 feet per second, the difference between the distance from P to M_{1} and the distance from P to M_{2} is 4400 feet. The set of all points P (or locations of the explosion) satisfying these conditions fits the definition of a hyperbola, with microphones M_{1} and M_{2} at the foci.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \begin{aligned}
& \text { Use the standard form of the hyperbola's equation. } P(x, y), \text { the } \\
& \text { explosion point, lies on this hyperbola. We must find } a^{2} \text { and } b^{2}
\end{aligned}
$$

The difference between the distances, represented by $2 a$ in the derivation of the hyperbola's equation, is 4400 feet. Thus, $2 a=4400$ and $a=2200$.

$$
\begin{aligned}
\frac{x^{2}}{(2200)^{2}}-\frac{y^{2}}{b^{2}} & =1 \quad \text { substitute } 2200 \text { for } a \\
\frac{x^{2}}{4,840,000}-\frac{y^{2}}{b^{2}} & =1 \quad \text { square } 2200
\end{aligned}
$$

We must still find b^{2}. We know that $a=2200$. The distance from the center, $(0,0)$, to either focus, $(-5280,0)$ or $(5280,0)$, is 5280. Thus, $c=5280$. Using $c^{2}=a^{2}+b^{2}$, we have

$$
5280^{2}=2200^{2}+b^{2}
$$

and

$$
b^{2}=5280^{2}-2200^{2}=23,038,400
$$

The equation of the hyperbola with a microphone at each focus is

$$
\frac{x^{2}}{4,840,000}-\frac{y^{2}}{23,038,400}=1 . \text { Substitute } 23,038,400 \text { for } b^{2}
$$

We can conclude that the explosion occurred somewhere on the right branch (the branch closer to M_{1}) of the hyperbola given by this equation.

In Example 7, we determined that the explosion occurred somewhere along one branch of a hyperbola, but not exactly where on the hyperbola. If, however, we had received the sound from another pair of microphones, we could locate the sound along a branch of another hyperbola. The exact location of the explosion would be the point where the two hyperbolas intersect.

SCheck Point 7 Rework Example 7 assuming microphone M_{1} receives the sound 3 seconds before microphone M_{2}.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The set of all points in a plane the difference of whose distances from two fixed points is constant is a/an
\qquad the \qquad two fixed points are called the graph at two points, called the \qquad wh joined by the \qquad axis.
2. The vertices of $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$ are \qquad and \qquad The foci are located at \qquad and \qquad
3. The vertices of $\frac{y^{2}}{25}-\frac{x^{2}}{9}=1$ are \qquad and \qquad .
The foci are located at \qquad and \qquad
4. The two branches of the graph of a hyperbola approach a pair of intersecting lines, called \qquad These intersecting lines pass through the \qquad of the hyperbola.
5. The equation $9 x^{2}-4 y^{2}=36$ can be written in standard form by \qquad both sides by \qquad
6. The equations for the asymptotes of $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ are \qquad and \qquad —.
7. The equations for the asymptotes of $\frac{y^{2}}{4}-x^{2}=1$ are \qquad and \qquad
8. If the center of a hyperbola with a horizontal transverse axis is $(2,3)$ and $a^{2}=25$, then the coordinates of the vertices are \qquad and \qquad ـ.
9. The center of $\frac{(y+2)^{2}}{4}-\frac{(x-7)^{2}}{36}=1$ is \qquad .
10. In the equation $9\left(x^{2}-8 x\right)-16\left(y^{2}+2 y\right)=16$, we complete the square on x by adding \qquad within the first parentheses. We complete the square on y by adding \qquad within the second parentheses. Thus, we must add \qquad to the right side of the equation.

EXERCISE SET 9.2

Practice Exercises

In Exercises 1-4, find the vertices and locate the foci of each hyperbola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)-(d).

1. $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$
2. $\frac{x^{2}}{1}-\frac{y^{2}}{4}=1$
3. $\frac{y^{2}}{4}-\frac{x^{2}}{1}=1$
4. $\frac{y^{2}}{1}-\frac{x^{2}}{4}=1$
a.

b.

c.

d.

In Exercises 5-12, find the standard form of the equation of each hyperbola satisfying the given conditions.
5. Foci: $(0,-3),(0,3)$; vertices: $(0,-1),(0,1)$
6. Foci: $(0,-6),(0,6)$; vertices: $(0,-2),(0,2)$
7. Foci: $(-4,0),(4,0)$; vertices: $(-3,0),(3,0)$
8. Foci: $(-7,0),(7,0)$; vertices: $(-5,0),(5,0)$
9. Endpoints of transverse axis: $(0,-6),(0,6)$; asymptote: $y=2 x$
10. Endpoints of transverse axis: $(-4,0),(4,0)$; asymptote: $y=2 x$
11. Center: $(4,-2)$; Focus: $(7,-2)$; vertex: $(6,-2)$
12. Center: $(-2,1)$; Focus: $(-2,6)$; vertex: $(-2,4)$

In Exercises 13-26, use vertices and asymptotes to graph each hyperbola. Locate the foci and find the equations of the asymptotes.
13. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
14. $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$
15. $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$
16. $\frac{x^{2}}{144}-\frac{y^{2}}{81}=1$
17. $\frac{y^{2}}{16}-\frac{x^{2}}{36}=1$
18. $\frac{y^{2}}{25}-\frac{x^{2}}{64}=1$
19. $4 y^{2}-x^{2}=1$
20. $9 y^{2}-x^{2}=1$
21. $9 x^{2}-4 y^{2}=36$
22. $4 x^{2}-25 y^{2}=100$
23. $9 y^{2}-25 x^{2}=225$
24. $16 y^{2}-9 x^{2}=144$
25. $y= \pm \sqrt{x^{2}-2}$
26. $y= \pm \sqrt{x^{2}-3}$

In Exercises 27-32, find the standard form of the equation of each hyperbola.
27.

28.

29.

30.

31.

32.

In Exercises 33-42, use the center, vertices, and asymptotes to graph each hyperbola. Locate the foci and find the equations of the asymptotes.
33. $\frac{(x+4)^{2}}{9}-\frac{(y+3)^{2}}{16}=1$
34. $\frac{(x+2)^{2}}{9}-\frac{(y-1)^{2}}{25}=1$
35. $\frac{(x+3)^{2}}{25}-\frac{y^{2}}{16}=1$
36. $\frac{(x+2)^{2}}{9}-\frac{y^{2}}{25}=1$
37. $\frac{(y+2)^{2}}{4}-\frac{(x-1)^{2}}{16}=1$
38. $\frac{(y-2)^{2}}{36}-\frac{(x+1)^{2}}{49}=1$
39. $(x-3)^{2}-4(y+3)^{2}=4$
40. $(x+3)^{2}-9(y-4)^{2}=9$
41. $(x-1)^{2}-(y-2)^{2}=3$
42. $(y-2)^{2}-(x+3)^{2}=5$

In Exercises 43-50, convert each equation to standard form by completing the square on x and y. Then graph the hyperbola. Locate the foci and find the equations of the asymptotes.
43. $x^{2}-y^{2}-2 x-4 y-4=0$
44. $4 x^{2}-y^{2}+32 x+6 y+39=0$
45. $16 x^{2}-y^{2}+64 x-2 y+67=0$
46. $9 y^{2}-4 x^{2}-18 y+24 x-63=0$
47. $4 x^{2}-9 y^{2}-16 x+54 y-101=0$
48. $4 x^{2}-9 y^{2}+8 x-18 y-6=0$
49. $4 x^{2}-25 y^{2}-32 x+164=0$
50. $9 x^{2}-16 y^{2}-36 x-64 y+116=0$

Practice Plus

In Exercises 51-56, graph each relation. Use the relation's graph to determine its domain and range.
51. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
52. $\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$
53. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
54. $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
55. $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
56. $\frac{y^{2}}{4}-\frac{x^{2}}{25}=1$

In Exercises 57-60, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
57. $\left\{\begin{array}{l}x^{2}-y^{2}=4 \\ x^{2}+y^{2}=4\end{array}\right.$
58. $\left\{\begin{array}{l}x^{2}-y^{2}=9 \\ x^{2}+y^{2}=9\end{array}\right.$
59. $\left\{\begin{aligned} 9 x^{2}+y^{2} & =9 \\ y^{2}-9 x^{2} & =9\end{aligned}\right.$
60. $\left\{\begin{aligned} 4 x^{2}+y^{2} & =4 \\ y^{2}-4 x^{2} & =4\end{aligned}\right.$

Application Exercises

61. An explosion is recorded by two microphones that are 1 mile apart. Microphone M_{1} received the sound 2 seconds before microphone M_{2}. Assuming sound travels at 1100 feet per second, determine the possible locations of the explosion relative to the location of the microphones.
62. Radio towers A and $B, 200$ kilometers apart, are situated along the coast, with A located due west of B. Simultaneous radio signals are sent from each tower to a ship, with the signal from B received 500 microseconds before the signal from A.
a. Assuming that the radio signals travel 300 meters per microsecond, determine the equation of the hyperbola on which the ship is located.
b. If the ship lies due north of tower B, how far out at sea is it?
63. An architect designs two houses that are shaped and positioned like a part of the branches of the hyperbola whose equation is $625 y^{2}-400 x^{2}=250,000$, where x and y are in yards. How far apart are the houses at their closest point?

64. Scattering experiments, in which moving particles are deflected by various forces, led to the concept of the nucleus of an atom. In 1911, the physicist Ernest Rutherford (1871-1937) discovered that when alpha particles are directed toward the nuclei of gold atoms, they are eventually deflected along hyperbolic paths, illustrated in the figure. If a particle gets as close as 3 units to the nucleus along a hyperbolic path with an asymptote given by $y=\frac{1}{2} x$, what is the equation of its path?

Moiré patterns, such as those shown in Exercises 65-66, can appear when two repetitive patterns overlap to produce a third, sometimes unintended, pattern.
a. In each exercise, use the name of a conic section to describe the moiré pattern.
b. Select one of the following equations that can possibly describe a conic section within the moiré pattern:

$$
x^{2}+y^{2}=1 ; \quad x^{2}-y^{2}=1 ; \quad x^{2}+4 y^{2}=4
$$

Writing in Mathematics

67. What is a hyperbola?
68. Describe how to graph $\frac{x^{2}}{9}-\frac{y^{2}}{1}=1$.
69. Describe how to locate the foci of the graph of $\frac{x^{2}}{9}-\frac{y^{2}}{1}=1$.
70. Describe one similarity and one difference between the graphs of $\frac{x^{2}}{9}-\frac{y^{2}}{1}=1$ and $\frac{y^{2}}{9}-\frac{x^{2}}{1}=1$.
71. Describe one similarity and one difference between the graphs of $\frac{x^{2}}{9}-\frac{y^{2}}{1}=1$ and $\frac{(x-3)^{2}}{9}-\frac{(y+3)^{2}}{1}=1$.
72. How can you distinguish an ellipse from a hyperbola by looking at their equations?
73. In 1992, a NASA team began a project called Spaceguard Survey, calling for an international watch for comets that might collide with Earth. Why is it more difficult to detect a possible "doomsday comet" with a hyperbolic orbit than one with an elliptical orbit?

Technology Exercises

74. Use a graphing utility to graph any five of the hyperbolas that you graphed by hand in Exercises 13-26.
75. Use a graphing utility to graph any three of the hyperbolas that you graphed by hand in Exercises 33-42. First solve the given equation for y by using the square root property. Enter each of the two resulting equations to produce each branch of the hyperbola.
76. Use a graphing utility to graph any one of the hyperbolas that you graphed by hand in Exercises 43-50. Write the equation as a quadratic equation in y and use the quadratic formula to solve for y. Enter each of the two resulting equations to produce each branch of the hyperbola.
77. Use a graphing utility to graph $\frac{x^{2}}{4}-\frac{y^{2}}{9}=0$. Is the graph a hyperbola? In general, what is the graph of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$?
78. Graph $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ in the same viewing rectangle for values of a^{2} and b^{2} of your choice. Describe the relationship between the two graphs.
79. Write $4 x^{2}-6 x y+2 y^{2}-3 x+10 y-6=0$ as a quadratic equation in y and then use the quadratic formula to express y in terms of x. Graph the resulting two equations using a graphing utility in a $[-50,70,10]$ by $[-30,50,10]$ viewing rectangle. What effect does the $x y$-term have on the graph of the resulting hyperbola? What problems would you encounter if you attempted to write the given equation in standard form by completing the square?
80. Graph $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and $\frac{x|x|}{16}-\frac{y|y|}{9}=1$ in the same viewing rectangle. Explain why the graphs are not the same.

Critical Thinking Exercises

Make Sense? In Exercises 81-84, determine whether each statement makes sense or does not make sense, and explain your reasoning.
81. I changed the addition in an ellipse's equation to subtraction and this changed its elongation from horizontal to vertical.
82. I noticed that the definition of a hyperbola closely resembles that of an ellipse in that it depends on the distances between a set of points in a plane to two fixed points, the foci.
83. I graphed a hyperbola centered at the origin that had y-intercepts but no x-intercepts.
84. I graphed a hyperbola centered at the origin that was symmetric with respect to the x-axis and also symmetric with respect to the y-axis.
In Exercises 85-88, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
85. If one branch of a hyperbola is removed from a graph, then the branch that remains must define y as a function of x.
86. All points on the asymptotes of a hyperbola also satisfy the hyperbola's equation.
87. The graph of $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ does not intersect the line $y=-\frac{2}{3} x$.
88. Two different hyperbolas can never share the same asymptotes.
89. What happens to the shape of the graph of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ as $\frac{c}{a} \rightarrow \infty$, where $c^{2}=a^{2}+b^{2} ?$
90. Find the standard form of the equation of the hyperbola with vertices $(5,-6)$ and $(5,6)$, passing through $(0,9)$.
91. Find the equation of a hyperbola whose asymptotes are perpendicular.

Preview Exercises

Exercises 92-94 will help you prepare for the material covered in the next section.
In Exercises 92-93, graph each parabola with the given equation.
92. $y=x^{2}+4 x-5$
93. $y=-3(x-1)^{2}+2$
94. Isolate the terms involving y on the left side of the equation:

$$
y^{2}+2 y+12 x-23=0
$$

Then write the equation in an equivalent form by completing the square on the left side.

SECTION 9.3 The Parabola

Objectives

(1) Graph parabolas with vertices at the origin.
(2) Write equations of parabolas in standard form.
(3) Graph parabolas with vertices not at the origin.
(4) Solve applied problems involving parabolas.

At first glance, this image looks like columns of smoke rising from a fire into a starry sky. Those are, indeed, stars in the background, but you are not looking at ordinary smoke columns. These stand almost 6 trillion miles high and are 7000 light-years from Earth - more than 400 million times as far away as the sun.

This NASA photograph is one of a series of stunning images captured from the ends of the universe by the Hubble Space Telescope. The image shows infant star systems the size of our solar system emerging from the gas and dust that shrouded their creation. Using a parabolic mirror that is 94.5 inches in diameter, the Hubble has provided answers to many of the profound mysteries of the cosmos: How big and how old is the universe? How did the galaxies come to exist? Do other Earth-like planets orbit other sun-like stars? In this section, we study parabolas and their applications, including parabolic shapes that gather distant rays of light and focus them into spectacular images.

Definition of a Parabola

In Chapter 2, we studied parabolas, viewing them as graphs of quadratic functions in the form

$$
y=a(x-h)^{2}+k \quad \text { or } \quad y=a x^{2}+b x+c
$$

GREAT QUESTION!

What should I already know about graphing parabolas?
Here's a brief summary:
Graphing $y=a(x-h)^{2}+k$ and $y=a x^{2}+b x+c$

1. If $a>0$, the graph opens upward. If $a<0$, the graph opens downward.
2. The vertex of $y=a(x-h)^{2}+k$ is (h, k).

3. The x-coordinate of the vertex of $y=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$.

FIGURE 9.29

Parabolas can be given a geometric definition that enables us to include graphs that open to the left or to the right, as well as those that open obliquely. The definitions of ellipses and hyperbolas involved two fixed points, the foci. By contrast, the definition of a parabola is based on one point and a line.

Definition of a Parabola

A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus, that is not on the line (see Figure 9.29).

In Figure 9.29, find the line passing through the focus and perpendicular to the directrix. This is the axis of symmetry of the parabola. The point of intersection of the parabola with its axis of symmetry is called the vertex. Notice that the vertex is midway between the focus and the directrix.

Standard Form of the Equation of a Parabola

The rectangular coordinate system enables us to translate a parabola's geometric definition into an algebraic equation. Figure 9.30 is our starting point for obtaining an equation. We place the focus on the x-axis at the point $(p, 0)$. The directrix has an equation given by $x=-p$. The vertex, located midway between the focus and the directrix, is at the origin.

What does the definition of a parabola tell us about the point (x, y) in Figure 9.30? For any point (x, y) on the parabola, the distance d_{1} to the directrix is equal to the distance d_{2} to the focus. Thus, the point (x, y) is on the

FIGURE 9.30 parabola if and only if

$$
\begin{array}{rlrl}
d_{1} & =d_{2} . & & \\
\sqrt{(x+p)^{2}+(y-y)^{2}} & =\sqrt{(x-p)^{2}+(y-0)^{2}} & & \text { Use the distance formula. } \\
(x+p)^{2} & =(x-p)^{2}+y^{2} & & \begin{array}{l}
\text { Square both sides of the } \\
\text { equation. }
\end{array} \\
x^{2}+2 p x+p^{2} & =x^{2}-2 p x+p^{2}+y^{2} & & \text { Square } x+p \text { and } x-p . \\
2 p x & =-2 p x+y^{2} & & \text { Subtract } x^{2}+p^{2} \text { from both } \\
y^{2} & =4 p x & & \text { sides of the equation. } \\
\text { Solve for } y^{2} .
\end{array}
$$

This last equation is called the standard form of the equation of a parabola with its vertex at the origin. There are two such equations, one for a focus on the x-axis and one for a focus on the y-axis.

Standard Forms of the Equations of a Parabola

The standard form of the equation of a parabola with vertex at the origin is

$$
y^{2}=4 p x \quad \text { or } \quad x^{2}=4 p y
$$

Figure 9.31(a) at the top of the next page illustrates that for the equation on the left, the focus is on the x-axis, which is the axis of symmetry. Figure $9.31(b)$ illustrates that for the equation on the right, the focus is on the y-axis, which is the axis of symmetry.

GREAT QUESTION!

What is the relationship between the sign of p and the position of the focus from the vertex?
It is helpful to think of p as the directed distance from the vertex to the focus. If $p>0$, the focus lies p units to the right of the vertex or p units above the vertex. If $p<0$, the focus lies $|p|$ units to the left of the vertex or $|p|$ units below the vertex.

Graph parabolas with vertices at the origin.

FIGURE 9.31(a) Parabola with the x-axis as the axis of symmetry. If $p>0$, the graph opens to the right. If $p<0$, the graph opens to the left.

FIGURE 9.31(b) Parabola with the y-axis as the axis of symmetry. If $p>0$, the graph opens upward. If $p<0$, the graph opens downward.

Using the Standard Form of the Equation of a Parabola

We can use the standard form of the equation of a parabola to find its focus and directrix. Observing the graph's symmetry from its equation is helpful in locating the focus.

$$
y^{2}=4 p x
$$

The equation does not change if y is replaced with $-y$. There is x-axis symmetry and the focus is on the x-axis at $(p, 0)$.

$$
x^{2}=4 p y
$$

The equation does not change if x is replaced with $-x$. There is y-axis symmetry and the focus is on the y-axis at $(0, p)$.

Although the definition of a parabola is given in terms of its focus and its directrix, the focus and directrix are not part of the graph. The vertex, located at the origin, is a point on the graph of $y^{2}=4 p x$ and $x^{2}=4 p y$. Example 1 illustrates how you can find two additional points on the parabola.

EXAMPLE 1 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $y^{2}=12 x$. Then graph the parabola.

SOLUTION

The given equation, $y^{2}=12 x$, is in the standard form $y^{2}=4 p x$, so $4 p=12$.

$$
\begin{aligned}
& \text { No change if } y \text { is } \\
& \text { replaced with }-y . \\
& \text { The parabola has } \\
& x \text {-axis symmetry. } \\
& \text { This is } 4 p \text {. }
\end{aligned}
$$

We can find both the focus and the directrix by finding p.

$$
\begin{aligned}
4 p & =12 \\
p & =3 \quad \text { Divide both sides by } 4 .
\end{aligned}
$$

Because p is positive, the parabola, with its x-axis symmetry, opens to the right. The focus is 3 units to the right of the vertex, $(0,0)$.

$$
\text { Focus: } \quad(p, 0)=(3,0)
$$

Directrix: $\quad x=-p ; x=-3$
The focus, (3, 0), and directrix, $x=-3$, are shown in Figure 9.32.

TECHNOLOGY

We graph $y^{2}=12 x$ with a graphing utility by first solving for y. The screen shows the graphs of $y=\sqrt{12 x}$ and $y=-\sqrt{12 x}$. The graph fails the vertical line test. Because $y^{2}=12 x$ is not a function, you were not familiar with this form of the parabola's equation in Chapter 2.

To graph the parabola, we will use two points on the graph that lie directly above and below the focus. Because the focus is at $(3,0)$, substitute 3 for x in the parabola's equation, $y^{2}=12 x$.

$$
\begin{array}{ll}
y^{2}=12 \cdot 3 & \\
y^{2}=36 & \text { Replace } x \text { with } 3 \text { in } y^{2}=12 x . \\
y= \pm \sqrt{36}= \pm 6 & \\
\text { Simplify. } \\
\text { Apply the square root property. }
\end{array}
$$

The points on the parabola above and below the focus are $(3,6)$ and $(3,-6)$. The graph is sketched in Figure 9.32.

Check Point 1 Find the focus and directrix of the parabola given by $y^{2}=8 x$. Then graph the parabola.

In general, the points on a parabola $y^{2}=4 p x$ that lie above and below the focus, $(p, 0)$, are each at a distance $|2 p|$ from the focus. This is because if $x=p$, then $y^{2}=4 p x=4 p^{2}$, so $y= \pm 2 p$. The line segment joining these two points is called the latus rectum; its length is $|4 p|$.

The Latus Rectum and Graphing Parabolas

The latus rectum of a parabola is a line segment that passes through its focus, is parallel to its directrix, and has its endpoints on the parabola. Figure 9.33 shows that the length of the latus rectum for the graphs of $y^{2}=4 p x$ and $x^{2}=4 p y$ is $|4 p|$.

FIGURE 9.33 Endpoints of the latus rectum are helpful in determining a parabola's "width," or how it opens.

EXAMPLE 2 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $x^{2}=-8 y$. Then graph the parabola.

SOLUTION

The given equation, $x^{2}=-8 y$, is in the standard form $x^{2}=4 p y$, so $4 p=-8$.
No change if x is
replaced with $-x$.
The parabola has
y-axis symmetry.

$$
\begin{gathered}
x^{2}=-8 y \\
\text { This is } 4 p .
\end{gathered}
$$

FIGURE 9.34 The graph of $x^{2}=-8 y$

TECHNOLOGY

Graph $x^{2}=-8 y$ by first solving for $y: y=-\frac{x^{2}}{8}$. The graph passes the vertical line test. Because $x^{2}=-8 y$ is a function, you were familiar with the parabola's alternate algebraic form,
$y=-\frac{1}{8} x^{2}$, in Chapter 3. The form is $y=a x^{2}+b x+c$, with $a=-\frac{1}{8}, b=0$, and $c=0$.

$[-6,6,1]$ by $[-6,6,1]$
(2) Write equations of parabolas in standard form.

We can find both the focus and the directrix by finding p.

$$
\begin{aligned}
4 p & =-8 \\
p & =-2 \quad \text { Divide both sides by } 4
\end{aligned}
$$

Because p is negative, the parabola, with its y-axis symmetry, opens downward. The focus is 2 units below the vertex, $(0,0)$.

$$
\begin{array}{ll}
\text { Focus: } & (0, p)=(0,-2) \\
\text { Directrix: } & y=-p ; y=2
\end{array}
$$

The focus and directrix are shown in Figure 9.34.
To graph the parabola, we will use the vertex, $(0,0)$, and the two endpoints of the latus rectum. The length of the latus rectum is

$$
|4 p|=|4(-2)|=|-8|=8
$$

Because the graph has y-axis symmetry, the latus rectum extends 4 units to the left and 4 units to the right of the focus, $(0,-2)$. The endpoints of the latus rectum are $(-4,-2)$ and $(4,-2)$. Passing a smooth curve through the vertex and these two points, we sketch the parabola, shown in Figure 9.34.

Check Point 2 Find the focus and directrix of the parabola given by $x^{2}=-12 y$. Then graph the parabola.

In Examples 1 and 2, we used the equation of a parabola to find its focus and directrix. In the next example, we reverse this procedure.

EXAMPLE 3 Finding the Equation of a Parabola from Its Focus and Directrix

Find the standard form of the equation of a parabola with focus $(5,0)$ and directrix $x=-5$, shown in Figure 9.35.

SOLUTION

The focus is $(5,0)$. Thus, the focus is on the x-axis. We use the standard form of the equation in which there is x-axis symmetry, namely, $y^{2}=4 p x$.

We need to determine the value of p. Figure 9.35 shows that the focus is 5 units to the right of the vertex, $(0,0)$. Thus, p is positive and $p=5$. We substitute 5 for p in $y^{2}=4 p x$ to obtain the standard form of the equation of the parabola. The equation is

$$
y^{2}=4 \cdot 5 x \quad \text { or } \quad y^{2}=20 x
$$

FIGURE 9.35

Check Point 3 Find the standard form of the equation of a parabola with focus $(8,0)$ and directrix $x=-8$.

Translations of Parabolas

The graph of a parabola can have its vertex at (h, k), rather than at the origin. Horizontal and vertical translations are accomplished by replacing x with $x-h$ and y with $y-k$ in the standard form of the parabola's equation.

Table 9.3 gives the standard forms of equations of parabolas with vertex at (h, k). Figure 9.36 shows their graphs.

Table 9.3 Standard Forms of Equations of Parabolas with Vertex at (h,k)

Equation	Vertex	Axis of Symmetry	Focus	Directrix	Description
$(y-k)^{2}=4 p(x-h)$	(h, k)	Horizontal	$(h+p, k)$	$x=h-p$	If $p>0$, opens to the right. If $p<0$, opens to the left.
$(x-h)^{2}=4 p(y-k)$	(h, k)	Vertical	$(h, k+p)$	$y=k-p$	If $p>0$, opens upward. If $p<0$, opens downward.

GREAT QUESTION!

What are the main differences between parabolas whose equations contain y^{2} and parabolas whose equations contain x^{2} ?
If y is the squared term, there is horizontal symmetry and the parabola's equation is not a function. If x is the squared term, there is vertical symmetry and the parabola's equation is a function. Continue to think of p as the directed distance from the vertex, (h, k), to the focus.

FIGURE 9.36 Graphs of parabolas with vertex at (h, k) and $p>0$
The two parabolas shown in Figure 9.36 illustrate standard forms of equations for $p>0$. If $p<0$, a parabola with a horizontal axis of symmetry will open to the left and the focus will lie to the left of the directrix. If $p<0$, a parabola with a vertical axis of symmetry will open downward and the focus will lie below the directrix.

EXAMPLE 4 Graphing a Parabola with Vertex at (h, k)

Find the vertex, focus, and directrix of the parabola given by

$$
(x-3)^{2}=8(y+1) .
$$

Then graph the parabola.

SOLUTION

In order to find the focus and directrix, we need to know the vertex. In the standard forms of equations with vertex at $(h, k), h$ is the number subtracted from x and k is the number subtracted from y.

$$
\begin{aligned}
& \qquad(x-3)^{2}=8(y-(-1)) \\
& \begin{array}{c}
\text { This is }(x-h)^{2}, \\
\text { with } h=3 .
\end{array} \quad \begin{array}{l}
\text { This is } y-k \\
\text { with } k=-1
\end{array}
\end{aligned}
$$

We see that $h=3$ and $k=-1$. Thus, the vertex of the parabola is $(h, k)=(3,-1)$.
Now that we have the vertex, we can find both the focus and directrix by finding p.

$$
\begin{array}{cl}
(x-3)^{2}=8(y+1) & \begin{array}{l}
\text { The equation is in the standard form }(x-h)^{2}=4 p(y-k) . \\
\text { Because } x \text { is the squared term, there is vertical symmetry and }
\end{array} \\
\text { This is } 4 p . & \text { the parabola's equation is a function. }
\end{array}
$$

Because $4 p=8, p=2$. Based on the standard form of the equation, the axis of symmetry is vertical. With a positive value for p and a vertical axis of symmetry,

FIGURE 9.37 The graph of $(x-3)^{2}=8(y+1)$

TECHNOLOGY

Graph $(x-3)^{2}=8(y+1)$ by first solving for y :

$$
\begin{aligned}
& \frac{1}{8}(x-3)^{2}=y+1 \\
& y=\frac{1}{8}(x-3)^{2}-1
\end{aligned}
$$

The graph passes the vertical line test. Because $(x-3)^{2}=8(y+1)$ is a function, you were familiar with the parabola's alternate algebraic form, $y=\frac{1}{8}(x-3)^{2}-1$, in Chapter 3. The form is $y=a(x-h)^{2}+k$ with $a=\frac{1}{8}, h=3$, and $k=-1$.

$[-3,9,1]$ by $[-6,6,1]$
the parabola opens upward. Because $p=2$, the focus is located 2 units above the vertex, $(3,-1)$. Likewise, the directrix is located 2 units below the vertex.

Focus: $\quad(h, k+p)=(3,-1+2)=(3,1)$

> The vertex, (h, k),
> is $(3,-1)$.

$$
\text { The focus is } 2 \text { units }
$$ above the vertex, $(3,-1)$.

Directrix: $\quad y=k-p$
$y=-1-2=-3$
The directrix is 2 units below the vertex, $(3,-1)$.

Thus, the focus is $(3,1)$ and the directrix is $y=-3$. They are shown in Figure 9.37. To graph the parabola, we will use the vertex, $(3,-1)$, and the two endpoints of the latus rectum. The length of the latus rectum is

$$
|4 p|=|4 \cdot 2|=|8|=8
$$

Because the graph has vertical symmetry, the latus rectum extends 4 units to the left and 4 units to the right of the focus, $(3,1)$. The endpoints of the latus rectum are $(3-4,1)$, or $(-1,1)$, and $(3+4,1)$, or $(7,1)$. Passing a smooth curve through the vertex and these two points, we sketch the parabola, shown in Figure 9.37.

Check Point 4 Find the vertex, focus, and directrix of the parabola given by $(x-2)^{2}=4(y+1)$. Then graph the parabola.

In some cases, we need to convert the equation of a parabola to standard form by completing the square on x or y, whichever variable is squared. Let's see how this is done.

EXAMPLE 5 Graphing a Parabola with Vertex at (h, k)

Find the vertex, focus, and directrix of the parabola given by

$$
y^{2}+2 y+12 x-23=0
$$

Then graph the parabola.

SOLUTION

We convert the given equation to standard form by completing the square on the variable y. We isolate the terms involving y on the left side.

$$
\begin{aligned}
y^{2}+2 y+12 x-23 & =0 & & \text { This is the given equation. } \\
y^{2}+2 y & =-12 x+23 & & \text { Isolate the terms involving } y . \\
y^{2}+2 y+1 & =-12 x+23+1 & & \text { Complete the square by adding the } \\
(y+1)^{2} & =-12 x+24 & & \text { square of half the coefficient of } y .
\end{aligned}
$$

To express the equation $(y+1)^{2}=-12 x+24$ in the standard form $(y-k)^{2}=4 p(x-h)$, we factor out -12 on the right. The standard form of the parabola's equation is

$$
(y+1)^{2}=-12(x-2)
$$

FIGURE 9.38 The graph of $y^{2}+2 y+12 x-23=0$, or $(y+1)^{2}=-12(x-2)$

TECHNOLOGY

Graph $y^{2}+2 y+12 x-23=0$ by solving the equation for y.

$$
\begin{aligned}
& y^{2}+2 y+(12 x-23)=0 \\
& a=1 \quad b=2 \quad c=12 x-23
\end{aligned}
$$

Use the quadratic formula to solve for y and enter the resulting equations.

$$
\begin{aligned}
& y_{1}=\frac{-2+\sqrt{4-4(12 x-23)}}{2} \\
& y_{2}=\frac{-2-\sqrt{4-4(12 x-23)}}{2}
\end{aligned}
$$

$[-4,8,1]$ by $[-8,6,1]$
Solve applied problems involving parabolas.

We use $(y+1)^{2}=-12(x-2)$ to identify the vertex, (h, k), and the value for p needed to locate the focus and the directrix.

$$
\begin{array}{c|cl}
{[y-(-1)]^{2}=-12(x-2)} & \begin{array}{l}
\text { The equation is in the standard form } \\
(y-k)^{2}=4 p(x-h) . \text { Because } y \text { is the squared }
\end{array} \\
\begin{array}{ccc}
\text { This is }(y-k)^{2}, & \text { This is } & \text { This is } x-h, \\
\text { with } k=-1 . & 4 p . & \text { with } h=2 .
\end{array} \begin{array}{l}
\text { term, there is horizontal symmetry and the } \\
\text { parabola's equation is not a function. }
\end{array}
\end{array}
$$

We see that $h=2$ and $k=-1$. Thus, the vertex of the parabola is $(h, k)=(2,-1)$. Because $4 p=-12, p=-3$. Based on the standard form of the equation, the axis of symmetry is horizontal. With a negative value for p and a horizontal axis of symmetry, the parabola opens to the left. Because $p=-3$, the focus is located 3 units to the left of the vertex, $(2,-1)$. Likewise, the directrix is located 3 units to the right of the vertex.

Focus:
$(h+p, k)=(2+(-3),-1)=(-1,-1)$

The vertex, (h, k), The focus is 3 units is $(2,-1)$. to the left of the

$$
\begin{array}{ll}
\text { Directrix: } & x=h-p \\
& x=2-(-3)=5
\end{array}
$$

The directrix is 3 units to the right of the vertex, $(2,-1)$.

Thus, the focus is $(-1,-1)$ and the directrix is $x=5$. They are shown in Figure 9.38.
To graph the parabola, we will use the vertex, $(2,-1)$, and the two endpoints of the latus rectum. The length of the latus rectum is

$$
|4 p|=|4(-3)|=|-12|=12 .
$$

Because the graph has horizontal symmetry, the latus rectum extends 6 units above and 6 units below the focus, $(-1,-1)$. The endpoints of the latus rectum are $(-1,-1+6)$, or $(-1,5)$, and $(-1,-1-6)$, or $(-1,-7)$. Passing a smooth curve through the vertex and these two points, we sketch the parabola shown in Figure 9.38.

Check Point 5 Find the vertex, focus, and directrix of the parabola given by $y^{2}+2 y+4 x-7=0$. Then graph the parabola.

Applications

Parabolas have many applications. Cables hung between structures to form suspension bridges form parabolas. Arches constructed of steel and concrete, whose main purpose is strength, are usually parabolic in shape.

Suspension bridge

Arch bridge

We have seen that comets in our solar system travel in orbits that are ellipses and hyperbolas. Some comets follow parabolic paths. Only comets with elliptical orbits, such as Halley's Comet, return to our part of the galaxy.

Blitzer Bonus

The Hubble Space Telescope

The Hubble Space Telescope
For decades, astronomers hoped to create an observatory above the atmosphere that would provide an unobscured view of the universe. This vision was realized with the 1990 launching of the Hubble Space Telescope. The telescope initially had blurred vision due to problems with its parabolic mirror. The mirror had been ground two millionths of a meter smaller than design specifications. In 1993, astronauts from the Space Shuttle Endeavor equipped the telescope with optics to correct the blurred vision. "A small change for a mirror, a giant leap for astronomy," Christopher J. Burrows of the Space Telescope Science Institute said when clear images from the ends of the universe were presented to the public after the repair mission.

FIGURE 9.42

If a parabola is rotated about its axis of symmetry, a parabolic surface is formed. Figure 9.39(a) shows how a parabolic surface can be used to reflect light. Light originates at the focus. Note how the light is reflected by the parabolic surface, so that the outgoing light is parallel to the axis of symmetry. The reflective properties of parabolic surfaces are used in the design of searchlights [see Figure 9.39(b)] and automobile headlights.

FIGURE 9.39(a) Parabolic surface reflecting light

FIGURE 9.39(b) Light from the focus is reflected parallel to the axis of symmetry.

Figure 9.40(a) shows how a parabolic surface can be used to reflect incoming light. Note that light rays strike the surface and are reflected to the focus. This principle is used in the design of reflecting telescopes, radar, and television satellite dishes. Reflecting telescopes magnify the light from distant stars by reflecting the light from these bodies to the focus of a parabolic mirror [see Figure 9.40(b)].

EXAMPLE 6 Using the Reflection Property of Parabolas

An engineer is designing a flashlight using a parabolic reflecting mirror and a light source, shown in Figure 9.41. The casting has a diameter of 4 inches and a depth of 2 inches. What is the equation of the parabola used to shape the mirror? At what point should the light source be placed relative to the mirror's vertex?

SOLUTION

FIGURE 9.41 Designing a flashlight

We position the parabola with its vertex at the origin and opening upward (Figure 9.42). Thus, the focus is on the y-axis, located at $(0, p)$. We use the standard

Blitzer Banus

Five Things Scientists Learned from the Hubble Space Telescope

- The universe is approximately 13.7 billion years old.
- There is a high probability that the universe is expanding at ever-accelerating rates.
- New stars are created from clouds of gas and dust when giant galaxies collide.
- Dust rings around stars transform into planets.
- Planets are far more common than previously thought.

Source: Listomania, Harper Design, 2011
form of the equation in which there is y-axis symmetry, namely, $x^{2}=4 p y$. We need to find p. Because $(2,2)$ lies on the parabola, we let $x=2$ and $y=2$ in $x^{2}=4 p y$.

$$
\begin{array}{rlrl}
2^{2} & =4 p \cdot 2 & & \text { Substitute } 2 \text { for } x \text { and } 2 \text { for } y \text { in } x^{2}=4 p y . \\
4 & =8 p & & \text { Simplify. } \\
p & =\frac{1}{2} & & \text { Divide both sides of the equation by } 8 \text { and reduce } \\
& & \text { the resulting fraction. }
\end{array}
$$

We substitute $\frac{1}{2}$ for p in $x^{2}=4 p y$ to obtain the standard form of the equation of the parabola. The equation of the parabola used to shape the mirror is

$$
x^{2}=4 \cdot \frac{1}{2} y \quad \text { or } \quad x^{2}=2 y .
$$

The light source should be placed at the focus, $(0, p)$. Because $p=\frac{1}{2}$, the light should be placed at $\left(0, \frac{1}{2}\right)$, or $\frac{1}{2}$ inch above the vertex.

0 Check Point 6 In Example 6, suppose that the casting has a diameter of 6 inches and a depth of 4 inches. What is the equation of the parabola used to shape the mirror? At what point should the light source be placed relative to the mirror's vertex?
 in Figure 9.43.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The set of all points in a plane that are equidistant from a fixed line and a fixed point is a/an The fixed line is called the \qquad and the fixed point is called the \qquad -.
Use the graph shown to answer Exercises 2-5.

2. The equation of the parabola is of the form
a. $y^{2}=4 p x$
b. $x^{2}=4 p y$. \qquad
3. If $4 p=-28$, then the coordinates of the focus are
4. If $4 p=-28$, then the equation of the directrix is
5. If $4 p=-28$, then the length of the latus rectum is .The endpoints of the latus rectum are \qquad and \qquad -.

Use the graph shown to answer Exercises 6-9.

6. The equation of the parabola is of the form
a. $(y-1)^{2}=4 p(x+2)$
b. $(y+1)^{2}=4 p(x+2)$
c. $(x-2)^{2}=4 p(y-1)$
d. $(x+2)^{2}=4 p(y+1)$.
7. If $4 p=4$, then the coordinates of the focus are
8. If $4 p=4$, then the equation of the directrix is
9. If $4 p=4$, then the length of the latus rectum is __. The endpoints of the latus rectum are
\qquad and \qquad

EXERCISE SET 9.3

Practice Exercises

In Exercises 1-4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)-(d).

1. $y^{2}=4 x$
2. $x^{2}=4 y$
3. $x^{2}=-4 y$
4. $y^{2}=-4 x$
a.

b.

c.

d.

In Exercises 5-16, find the focus and directrix of the parabola with the given equation. Then graph the parabola.
5. $y^{2}=16 x$
6. $y^{2}=4 x$
7. $y^{2}=-8 x$
8. $y^{2}=-12 x$
9. $x^{2}=12 y$
10. $x^{2}=8 y$
11. $x^{2}=-16 y$
12. $x^{2}=-20 y$
13. $y^{2}-6 x=0$
14. $x^{2}-6 y=0$
15. $8 x^{2}+4 y=0$
16. $8 y^{2}+4 x=0$

In Exercises 17-30, find the standard form of the equation of each parabola satisfying the given conditions.
17. Focus: $(7,0)$; Directrix: $x=-7$
18. Focus: $(9,0)$; Directrix: $x=-9$
19. Focus: $(-5,0)$; Directrix: $x=5$
20. Focus: $(-10,0)$; Directrix: $x=10$
21. Focus: $(0,15)$; Directrix: $y=-15$
22. Focus: $(0,20)$; Directrix: $y=-20$
23. Focus: $(0,-25)$; Directrix: $\quad y=25$
24. Focus: $(0,-15)$; Directrix: $y=15$
25. Vertex: $(2,-3)$; Focus: $(2,-5)$
26. Vertex: $(5,-2)$; Focus: $(7,-2)$
27. Focus: $(3,2)$; Directrix: $\quad x=-1$
28. Focus: $(2,4)$; Directrix: $x=-4$
29. Focus: $(-3,4)$; Directrix: $\quad y=2$
30. Focus: $(7,-1)$; Directrix: $y=-9$

In Exercises 31-34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)-(d).
31. $(y-1)^{2}=4(x-1)$
32. $(x+1)^{2}=4(y+1)$
33. $(x+1)^{2}=-4(y+1)$
34. $(y-1)^{2}=-4(x-1)$
a.

b.

c.

d.

In Exercises 35-42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola.
35. $(x-2)^{2}=8(y-1)$
36. $(x+2)^{2}=4(y+1)$
37. $(x+1)^{2}=-8(y+1)$
38. $(x+2)^{2}=-8(y+2)$
39. $(y+3)^{2}=12(x+1)$
40. $(y+4)^{2}=12(x+2)$
41. $(y+1)^{2}=-8 x$
42. $(y-1)^{2}=-8 x$

In Exercises 43-48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola.
43. $x^{2}-2 x-4 y+9=0$
44. $x^{2}+6 x+8 y+1=0$
45. $y^{2}-2 y+12 x-35=0$
46. $y^{2}-2 y-8 x+1=0$
47. $x^{2}+6 x-4 y+1=0$
48. $x^{2}+8 x-4 y+8=0$

Practice Plus

In Exercises 49-54, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function?
49. $y^{2}+6 y-x+5=0$
50. $y^{2}-2 y-x-5=0$
51. $y=-x^{2}+4 x-3$
52. $y=-x^{2}-4 x+4$
53. $x=-4(y-1)^{2}+3$
54. $x=-3(y-1)^{2}-2$

In Exercises 55-60, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
55. $\left\{\begin{aligned}(y-2)^{2} & =x+4 \\ y & =-\frac{1}{2} x\end{aligned}\right.$
56. $\left\{\begin{aligned}(y-3)^{2} & =x-2 \\ x+y & =5\end{aligned}\right.$
57. $\left\{\begin{array}{l}x=y^{2}-3 \\ x=y^{2}-3 y\end{array}\right.$
58. $\left\{\begin{array}{l}x=y^{2}-5 \\ x^{2}+y^{2}=25\end{array}\right.$
59. $\left\{\begin{array}{l}x=(y+2)^{2}-1 \\ (x-2)^{2}+(y+2)^{2}=1\end{array}\right.$
60. $\left\{\begin{array}{l}x=2 y^{2}+4 y+5 \\ (x+1)^{2}+(y-2)^{2}=1\end{array}\right.$

Application Exercises

61. The reflector of a flashlight is in the shape of a parabolic surface. The casting has a diameter of 4 inches and a depth of 1 inch. How far from the vertex should the light bulb be placed?
62. The reflector of a flashlight is in the shape of a parabolic surface. The casting has a diameter of 8 inches and a depth of 1 inch. How far from the vertex should the light bulb be placed?
63. A satellite dish, like the one shown below, is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are reflected to the focus, where the receiver is located. The satellite dish shown has a diameter of 12 feet and a depth of 2 feet. How far from the base of the dish should the receiver be placed?

64. In Exercise 63, if the diameter of the dish is halved and the depth stays the same, how far from the base of the smaller dish should the receiver be placed?
65. The towers of the Golden Gate Bridge connecting San Francisco to Marin County are 1280 meters apart and rise 160 meters above the road. The cable between the towers has the shape of a parabola and the cable just touches the sides of the road midway between the towers. What is the height of the cable 200 meters from a tower? Round to the nearest meter.

66. The towers of a suspension bridge are 800 feet apart and rise 160 feet above the road. The cable between the towers has the shape of a parabola and the cable just touches the sides of the road midway between the towers. What is the height of the cable 100 feet from a tower?

67. The parabolic arch shown in the figure is 50 feet above the water at the center and 200 feet wide at the base. Will a boat that is 30 feet tall clear the arch 30 feet from the center?

68. A satellite dish in the shape of a parabolic surface has a diameter of 20 feet. If the receiver is to be placed 6 feet from the base, how deep should the dish be?

Writing in Mathematics

69. What is a parabola?
70. Explain how to use $y^{2}=8 x$ to find the parabola's focus and directrix.
71. If you are given the standard form of the equation of a parabola with vertex at the origin, explain how to determine if the parabola opens to the right, left, upward, or downward.
72. Describe one similarity and one difference between the graphs of $y^{2}=4 x$ and $(y-1)^{2}=4(x-1)$.
73. How can you distinguish parabolas from other conic sections by looking at their equations?
74. Look at the satellite dish shown in Exercise 63. Why must the receiver for a shallow dish be farther from the base of the dish than for a deeper dish of the same diameter?

Technology Exercises

75. Use a graphing utility to graph any five of the parabolas that you graphed by hand in Exercises 5-16.
76. Use a graphing utility to graph any three of the parabolas that you graphed by hand in Exercises 35-42. First solve the given equation for y, possibly using the square root property. Enter each of the two resulting equations to produce the complete graph.
Use a graphing utility to graph the parabolas in Exercises 77-78. Write the given equation as a quadratic equation in y and use the quadratic formula to solve for y. Enter each of the equations to produce the complete graph.
77. $y^{2}+2 y-6 x+13=0$
78. $y^{2}+10 y-x+25=0$

In Exercises 79-80, write each equation as a quadratic equation in y and then use the quadratic formula to express y in terms of x. Graph the resulting two equations using a graphing utility. What effect does the xy-term have on the graph of the resulting parabola?
79. $16 x^{2}-24 x y+9 y^{2}-60 x-80 y+100=0$
80. $x^{2}+2 \sqrt{3} x y+3 y^{2}+8 \sqrt{3} x-8 y+32=0$

Critical Thinking Exercises

Make Sense? In Exercises 81-84, determine whether each statement makes sense or does not make sense, and explain your reasoning.
81. I graphed a parabola that opened to the right and contained a maximum point.
82. Knowing that a parabola opening to the right has a vertex at $(-1,1)$ gives me enough information to determine its graph.
83. I noticed that depending on the values for A and B, assuming that they are both not zero, the graph of $A x^{2}+B y^{2}=C$ can represent any of the conic sections other than a parabola.
84. I'm using a telescope in which light from distant stars is reflected to the focus of a parabolic mirror.

In Exercises 85-88, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
85. The parabola whose equation is $x=2 y-y^{2}+5$ opens to the right.
86. If the parabola whose equation is $x=a y^{2}+b y+c$ has its vertex at $(3,2)$ and $a>0$, then it has no y-intercepts.
87. Some parabolas that open to the right have equations that define y as a function of x.
88. The graph of $x=a(y-k)+h$ is a parabola with vertex at (h, k).
89. Find the focus and directrix of a parabola whose equation is of the form $A x^{2}+E y=0, A \neq 0, E \neq 0$.
90. Write the standard form of the equation of a parabola whose points are equidistant from $y=4$ and $(-1,0)$.

Group Exercise

91. Consult the research department of your library or the Internet to find an example of architecture that incorporates one or more conic sections in its design. Share this example with other group members. Explain precisely how conic sections are used. Do conic sections enhance the appeal of the architecture? In what ways?

Preview Exercises

Exercises 92-94 will help you prepare for the material covered in the next section.
92. Simplify and write the equation in standard form in terms of x^{\prime} and y^{\prime} :

$$
\left[\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right)\right]\left[\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)\right]=1 .
$$

93. a. Make a sketch of an angle θ in standard position for which $\cot 2 \theta=-\frac{7}{24}$ and $90^{\circ}<2 \theta<180^{\circ}$.
b. Use your sketch from part (a) to determine the value of $\cos 2 \theta$.
c. Use the value of $\cos 2 \theta$ from part (b) and the identities

$$
\sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}} \text { and } \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}
$$

to determine the values of $\sin \theta$ and $\cos \theta$.
d. In part (c), why did we not write \pm before the radical in each formula?
94. The equation $3 x^{2}-2 \sqrt{3} x y+y^{2}+2 x+2 \sqrt{3} y=0$ is in the form $A x^{2}+B x y+C y^{2}+D x+E y+F=0$. Use the equation to determine the value of $B^{2}-4 A C$.

CHAPTER 9

WHAT YOU KNOW: We learned that the four conic sections are the circle, the ellipse, the hyperbola, and the parabola. Prior to this chapter, we graphed circles with center (h, k) and radius r :

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

In this chapter, you learned to graph ellipses centered at the origin and ellipses centered at (h, k) :

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1, a^{2}>b^{2} .
$$

We saw that the larger denominator $\left(a^{2}\right)$ determines whether the major axis is horizontal or vertical. We used vertices and asymptotes to graph hyperbolas centered at the origin and hyperbolas centered at (h, k) :
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad$ or $\quad \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$.
We used $c^{2}=a^{2}-b^{2}$ to locate the foci of an ellipse. We used $c^{2}=a^{2}+b^{2}$ to locate the foci of a hyperbola. Finally, we used the vertex and the latus rectum to graph parabolas with vertices at the origin and parabolas with vertices at (h, k) :

$$
(y-k)^{2}=4 p(x-h) \quad \text { or } \quad(x-h)^{2}=4 p(y-k)
$$

In Exercises 1-5, graph each ellipse. Give the location of the foci.

1. $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
2. $9 x^{2}+4 y^{2}=36$
3. $\frac{(x-2)^{2}}{16}+\frac{(y+1)^{2}}{25}=1$
4. $\frac{(x+2)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$
5. $x^{2}+9 y^{2}-4 x+54 y+49=0$

In Exercises 6-11, graph each hyperbola. Give the location of the foci and the equations of the asymptotes.
6. $\frac{x^{2}}{9}-y^{2}=1$
7. $\frac{y^{2}}{9}-x^{2}=1$
8. $y^{2}-4 x^{2}=16$
9. $4 x^{2}-49 y^{2}=196$
10. $\frac{(x-2)^{2}}{9}-\frac{(y+2)^{2}}{16}=1$
11. $4 x^{2}-y^{2}+8 x+6 y+11=0$

In Exercises 12-13, graph each parabola. Give the location of the focus and the directrix.
12. $(x-2)^{2}=-12(y+1)$
13. $y^{2}-2 x-2 y-5=0$

In Exercises 14-21, graph each equation.
14. $x^{2}+y^{2}=4$
15. $x+y=4$
16. $x^{2}-y^{2}=4$
17. $x^{2}+4 y^{2}=4$
18. $(x+1)^{2}+(y-1)^{2}=4$
19. $x^{2}+4(y-1)^{2}=4$
20. $(x-1)^{2}-(y-1)^{2}=4$
21. $(y+1)^{2}=4(x-1)$

In Exercises 22-27, find the standard form of the equation of the conic section satisfying the given conditions.
22. Ellipse; Foci: $(-4,0),(4,0)$; Vertices: $(-5,0),(5,0)$
23. Ellipse; Endpoints of major axis: $(-8,2),(10,2)$; Foci: $(-4,2),(6,2)$
24. Hyperbola; Foci: $(0,-3),(0,3)$; Vertices: $(0,-2),(0,2)$
25. Hyperbola; Foci: $(-4,5),(2,5)$; Vertices: $(-3,5),(1,5)$
26. Parabola; Focus: (4, 5); Directrix: $y=-1$
27. Parabola;Focus: $(-2,6)$; Directrix: $x=8$
28. A semielliptical archway over a one-way road has a height of 10 feet and a width of 30 feet. A truck has a width of 10 feet and a height of 9.5 feet. Will this truck clear the opening of the archway?
29. A lithotriper is used to disentegrate kidney stones. The patient is placed within an elliptical device with the kidney centered at one focus, while ultrasound waves from the other focus hit the walls and are reflected to the kidney stone, shattering the stone. Suppose that the length of the major axis of the ellipse is 40 centimeters and the length of the minor axis is 20 centimeters. How far from the kidney stone should the electrode that sends the ultrasound waves be placed in order to shatter the stone?
30. An explosion is recorded by two forest rangers, one at a primary station and the other at an outpost 6 kilometers away. The ranger at the primary station hears the explosion 6 seconds before the ranger at the outpost.
a. Assuming sound travels at 0.35 kilometer per second, write an equation in standard form that gives all the possible locations of the explosion. Use a coordinate system with the two ranger stations on the x-axis and the midpoint between the stations at the origin.
b. Graph the equation that gives the possible locations of the explosion. Show the locations of the ranger stations in your drawing.
31. A domed ceiling is a parabolic surface. Ten meters down from the top of the dome, the ceiling is 15 meters wide. For the best lighting on the floor, a light source should be placed at the focus of the parabolic surface. How far from the top of the dome, to the nearest tenth of a meter, should the light source be placed?

Objectives

(1) Identify conics without completing the square.
(2) Use rotation of axes formulas.
(3) Write equations of rotated conics in standard form.
4) Identify conics without rotating axes.

1. Identify conics without completing the square.

Richard E. Prince "The Cone of Apollonius" (detail), fiberglass, steel, paint, graphite, $51 \times 18 \times 14 \mathrm{in}$. Collection: Vancouver Art Gallery, Vancouver, Canada. Photo courtesy of Equinox Gallery, Vancouver, Canada.

To recognize a conic section, you often need to pay close attention to its graph. Graphs powerfully enhance our understanding of algebra and trigonometry. However, it is not possible for people who are blind-or sometimes, visually impaired-to see a graph. Creating informative materials for the blind and visually impaired is a challenge for instructors and mathematicians. Many people who are visually impaired "see" a graph by touching a three-dimensional representation of that graph, perhaps while it is described verbally.

Is it possible to identify conic sections in nonvisual ways? The answer is yes, and the methods for doing so are related to the coefficients in their equations. As we present these methods, think about how you learn them. How would your approach to studying mathematics change if we removed all graphs and replaced them with verbal descriptions?

Identifying Conic Sections without Completing the Square

Conic sections can be represented both geometrically (as intersecting planes and cones) and algebraically. The equations of the conic sections we have considered in the first three sections of this chapter can be expressed in the form

$$
A x^{2}+C y^{2}+D x+E y+F=0,
$$

in which A and C are not both zero. You can use A and C, the coefficients of x^{2} and y^{2}, respectively, to identify a conic section without completing the square.

Identifying a Conic Section without Completing the Square

A nondegenerate conic section of the form

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

in which A and C are not both zero, is

- a circle if $A=C$,
- a parabola if $A C=0$,
- an ellipse if $A \neq C$ and $A C>0$, and
- a hyperbola if $A C<0$.

EXAMPLE 1 Identifying a Conic Section without Completing the Square

Identify the graph of each of the following nondegenerate conic sections:
a. $4 x^{2}-25 y^{2}-24 x+250 y-489=0$
b. $x^{2}+y^{2}+6 x-2 y+6=0$
c. $y^{2}+12 x+2 y-23=0$
d. $9 x^{2}+25 y^{2}-54 x+50 y-119=0$.

SOLUTION

We use A, the coefficient of x^{2}, and C, the coefficient of y^{2}, to identify each conic section.
a. $4 x^{2}-25 y^{2}-24 x+250 y-489=0$

$$
\begin{aligned}
& A=4 \quad C=-25 \\
& A C=4(-25)=-100<0 .
\end{aligned}
$$

Because $A C<0$, the graph of the equation is a hyperbola.
b. $x^{2}+y^{2}+6 x-2 y+6=0$

$$
A=1 \quad C=1
$$

Because $A=C$, the graph of the equation is a circle.
c. We can write $y^{2}+12 x+2 y-23=0$ as

$$
\begin{aligned}
& 0 x^{2}+y^{2}+12 x+2 y-23=0 \\
& A=0 \quad C=1
\end{aligned}
$$

$A C=0(1)=0$.
Because $A C=0$, the graph of the equation is a parabola.
d. $9 x^{2}+25 y^{2}-54 x+50 y-119=0$

$$
A=9 \quad C=25
$$

$A C=9(25)=225>0$.
Because $A C>0$ and $A \neq C$, the graph of the equation is an ellipse. \cdots © Check Point 1 Identify the graph of each of the following nondegenerate conic sections:
a. $3 x^{2}+2 y^{2}+12 x-4 y+2=0$
b. $x^{2}+y^{2}-6 x+y+3=0$
c. $y^{2}-12 x-4 y+52=0$
d. $9 x^{2}-16 y^{2}-90 x+64 y+17=0$.

FIGURE 9.44 The graph of $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$, a rotated ellipse

Rotation of Axes

Figure 9.44 shows the graph of

$$
7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0
$$

The graph looks like an ellipse, although its major axis neither lies along the x-axis or y-axis nor is parallel to the x-axis or y-axis. Do you notice anything unusual about the equation? It contains an $x y$-term. However, look at what happens if we rotate the x - and y-axes through an angle of 30°. In the rotated $x^{\prime} y^{\prime}$-system, the major axis of the ellipse lies along the x^{\prime}-axis. We can write the equation of the ellipse in this rotated $x^{\prime} y^{\prime}$-system as

$$
\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{1}=1
$$

Observe that there is no $x^{\prime} y^{\prime}$-term in the equation.
Except for degenerate cases, the general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

represents one of the conic sections. However, due to the $x y$-term in the equation, these conic sections are rotated in such a way that their axes are no longer parallel to the x - and y-axes. To reduce these equations to forms of the conic sections with which you are already familiar, we use a procedure called rotation of axes.

Suppose that the x - and y-axes are rotated through a positive angle θ, resulting in a new $x^{\prime} y^{\prime}$-coordinate system. This system is shown in Figure 9.45(a). The origin in the $x^{\prime} y^{\prime}$-system is the same as the origin in the $x y$-system. Point P in Figure 9.45(b) has coordinates (x, y) relative to the $x y$-system and coordinates $\left(x^{\prime}, y^{\prime}\right)$ relative to the $x^{\prime} y^{\prime}$-system. Our goal is to obtain formulas relating the old and new coordinates. Thus, we need to express x and y in terms of x^{\prime}, y^{\prime}, and θ.

(a) Rotating the x - and y-axes through a positive angle θ

(b) Describing point P relative to the $x y$-system and the rotated $x^{\prime} y^{\prime}$-system

FIGURE 9.45 Rotating axes

Look at Figure 9.45(b). Notice that
$r=$ the distance from the origin O to point P.
$\alpha=$ the angle from the positive x^{\prime}-axis to the ray from O through P.
Using the definitions of sine and cosine, we obtain

$$
\begin{aligned}
\cos \alpha & =\frac{x^{\prime}}{r}: x^{\prime}=r \cos \alpha \\
\sin \alpha & =\frac{y^{\prime}}{r}: y^{\prime}=r \sin \alpha
\end{aligned} \quad \begin{aligned}
& \text { This is from the right triangle } \\
& \text { with a leg along the } x^{\prime} \text {-axis. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
x & =r \cos (\theta+\alpha) \\
& =r(\cos \theta \cos \alpha-\sin \theta \sin \alpha) \\
& =(r \cos \alpha) \cos \theta-(r \sin \alpha) \sin \theta \\
& =x^{\prime} \cos \theta-y^{\prime} \sin \theta .
\end{aligned}
$$

This is the third of the preceding equations.

$$
\begin{aligned}
& \text { Use the formula for the cosine of the } \\
& \text { sum of two angles. } \\
& \text { Apply the distributive property and } \\
& \text { rearrange factors. } \\
& \text { Use the first and second of the } \\
& \text { preceding equations: } x^{\prime}=r \cos \alpha \text { and } \\
& y^{\prime}=r \sin \alpha \text {. }
\end{aligned}
$$

Similarly,

$$
y=r \sin (\theta+\alpha)=r(\sin \theta \cos \alpha+\cos \theta \sin \alpha)=x^{\prime} \sin \theta+y^{\prime} \cos \theta .
$$

Rotation of Axes Formulas

Suppose an $x y$-coordinate system and an $x^{\prime} y^{\prime}$-coordinate system have the same origin and θ is the angle from the positive x-axis to the positive x^{\prime}-axis. If the coordinates of point P are (x, y) in the $x y$-system and $\left(x^{\prime}, y^{\prime}\right)$ in the rotated $x^{\prime} y^{\prime}$-system, then

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

EXAMPLE 2 Rotating Axes

Write the equation $x y=1$ in terms of a rotated $x^{\prime} y^{\prime}$-system if the angle of rotation from the x-axis to the x^{\prime}-axis is 45°. Express the equation in standard form. Use the rotated system to graph $x y=1$.

SOLUTION

With $\theta=45^{\circ}$, the rotation formulas for x and y are

$$
\begin{aligned}
x & =x^{\prime} \cos \theta-y^{\prime} \sin \theta=x^{\prime} \cos 45^{\circ}-y^{\prime} \sin 45^{\circ} \\
& =x^{\prime}\left(\frac{\sqrt{2}}{2}\right)-y^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) \\
y & =x^{\prime} \sin \theta+y^{\prime} \cos \theta=x^{\prime} \sin 45^{\circ}+y^{\prime} \cos 45^{\circ} \\
& =x^{\prime}\left(\frac{\sqrt{2}}{2}\right)+y^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right) .
\end{aligned}
$$

Now substitute these expressions for x and y in the given equation, $x y=1$.

$$
\begin{array}{rlrl}
x y & =1 \quad & \begin{array}{l}
\text { This is the given equation. } \\
{\left[\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right)\right]\left[\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)\right]}
\end{array} & =1 \\
\frac{2}{4}\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right) & =1 & & \begin{array}{l}
\text { Substitute the expressions for } x \text { and } \\
\\
y \text { from the rotation formulas. }
\end{array} \\
\frac{1}{2}\left(x^{\prime 2}-y^{\prime 2}\right) & =1 & & \text { Multiply: } \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{2}{4} . \\
\frac{x^{\prime 2}}{2}-\frac{y^{\prime 2}}{2} & =1 & & \text { Reduce } \frac{2}{4} \text { and multiply the binomials. } \\
a^{2}=2 & b^{2}=2 & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 .
\end{array}
$$

This equation expresses $x y=1$ in terms of the rotated $x^{\prime} y^{\prime}$-system. Can you see that this is the standard form of the equation of a hyperbola? The hyperbola's center is at $(0,0)$, with the transverse axis on the x^{\prime}-axis. The vertices are $(-a, 0)$ and $(a, 0)$. Because $a^{2}=2$, the vertices are $(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$, located on the x^{\prime}-axis. Based on the standard form of the hyperbola's equation, the equations for the asymptotes are

$$
y^{\prime}= \pm \frac{b}{a} x^{\prime} \quad \text { or } \quad y^{\prime}= \pm \frac{\sqrt{2}}{\sqrt{2}} x^{\prime}
$$

The equations of the asymptotes can be simplified to $y^{\prime}=x^{\prime}$ and $y^{\prime}=-x^{\prime}$, which correspond to the original x - and y-axes. The graph of the hyperbola is shown in Figure 9.46.

FIGURE 9.46 The graph of
$x y=1$ or $\frac{x^{\prime 2}}{2}-\frac{y^{\prime 2}}{2}=1$

2-Write the equation $x y=2$ in terms of a rotated $x^{\prime} y^{\prime}$-system if the angle of rotation from the x-axis to the x^{\prime}-axis is 45°. Express the equation in standard form. Use the rotated system to graph $x y=2$.
(3) Write equations of rotated conics in standard form.

Using Rotations to Transform Equations with $x y$-Terms to Standard Equations of Conic Sections

We have noted that the appearance of the term $B x y(B \neq 0)$ in the general seconddegree equation indicates that the graph of the conic section has been rotated. A rotation of axes through an appropriate angle can transform the equation to one of the standard forms of the conic sections in x^{\prime} and y^{\prime} in which no $x^{\prime} y^{\prime}$-term appears.

Amount of Rotation Formula

The general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0
$$

can be rewritten as an equation in x^{\prime} and y^{\prime} without an $x^{\prime} y^{\prime}$-term by rotating the axes through angle θ, where

$$
\cot 2 \theta=\frac{A-C}{B} .
$$

Before we learn to apply this formula, let's see how it can be derived. We begin with the general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0 .
$$

Then we rotate the axes through an angle θ. In terms of the rotated $x^{\prime} y^{\prime}$-system, the general second-degree equation can be written as

$$
\begin{aligned}
A\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)^{2} & +B\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right) \\
& +C\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)^{2}+D\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right) \\
& +E\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)+F=0
\end{aligned}
$$

After a lot of simplifying that involves expanding and collecting like terms, you will obtain the following equation:

We want a rotation that results in no $x^{\prime} y^{\prime}$-term.

$$
\begin{aligned}
\left(A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta\right) x^{\prime 2} & +\left[B\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2(C-A)(\sin \theta \cos \theta)\right] x^{\prime} y^{\prime} \\
& +\left(A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta\right) y^{\prime 2} \\
& +(D \cos \theta+E \sin \theta) x^{\prime} \\
& +(-D \sin \theta+E \cos \theta) y^{\prime}+F=0 .
\end{aligned}
$$

If this looks somewhat ghastly, take a deep breath and focus only on the $x^{\prime} y^{\prime}$-term. We want to choose θ so that the coefficient of this term is zero. This will give the required rotation that results in no $x^{\prime} y^{\prime}$-term.

$$
\begin{array}{rlrl}
B\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2(C-A) \sin \theta \cos \theta & =0 & & \text { Set the coefficient of the } x^{\prime} y^{\prime} \text {-term equal to } 0 . \\
B \cos 2 \theta+(C-A) \sin 2 \theta & =0 & \begin{array}{ll}
\text { Use the double-angle formulas: } \\
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \text { and }
\end{array} \\
B \cos 2 \theta & =-(C-A) \sin 2 \theta & & \text { subtract }(C-A) \sin 2 \theta \text { from both sides. } \\
B \cos 2 \theta & =(A-C) \sin 2 \theta & & \text { simplify. } \\
\frac{B \cos 2 \theta}{B \sin 2 \theta} & =\frac{(A-C) \sin 2 \theta}{B \sin 2 \theta} & & \text { Divide both sides by } B \sin 2 \theta . \\
\frac{\cos 2 \theta}{\sin 2 \theta} & =\frac{A-C}{B} & & \text { Simplify. } \\
\cot 2 \theta & =\frac{A-C}{B} & & \text { Apply a quotient identity: }
\end{array}
$$

If $\cot 2 \theta$ is positive, we will select θ so that $0^{\circ}<\theta<45^{\circ}$. If $\cot 2 \theta$ is negative, we will select θ so that $45^{\circ}<\theta<90^{\circ}$. Thus θ, the angle of rotation, is always an acute angle.

GREAT QUESTION!

What do I do after substituting the expressions for x and y from the rotation formulas into the given equation?
You must simplify the resulting equation by expanding and collecting like terms. Work through this process slowly and carefully, allowing lots of room on your paper.

If your rotation equations are correct but you obtain an equation that has an $x^{\prime} y^{\prime}$-term, you have made an error in the algebraic simplification.

Here is a step-by-step procedure for writing the equation of a rotated conic section in standard form:

Writing the Equation of a Rotated Conic in Standard Form

1. Use the given equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0
$$

to find $\cot 2 \theta$.

$$
\cot 2 \theta=\frac{A-C}{B}
$$

2. Use the expression for $\cot 2 \theta$ to determine θ, the angle of rotation.
3. Substitute θ in the rotation formulas

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \quad \text { and } \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

and simplify.
4. Substitute the expressions for x and y from the rotation formulas in the given equation and simplify. The resulting equation should have no $x^{\prime} y^{\prime}$-term.
5. Write the equation involving x^{\prime} and y^{\prime} in standard form.

Using the equation in step 5 , you can graph the conic section in the rotated $x^{\prime} y^{\prime}$-system.

EXAMPLE 3 Writing the Equation of a Rotated Conic Section in Standard Form

Rewrite the equation

$$
7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0
$$

in a rotated $x^{\prime} y^{\prime}$-system without an $x^{\prime} y^{\prime}$-term. Express the equation in the standard form of a conic section. Graph the conic section in the rotated system.

SOLUTION

Step 1 Use the given equation to find $\cot \mathbf{2 \theta}$. We need to identify the constants A, B, and C in the given equation.

The appropriate angle θ through which to rotate the axes satisfies the equation

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{7-13}{-6 \sqrt{3}}=\frac{-6}{-6 \sqrt{3}}=\frac{1}{\sqrt{3}} \text { or } \frac{\sqrt{3}}{3} .
$$

Step 2 Use the expression for cot 2θ to determine the angle of rotation. We have $\cot 2 \theta=\frac{\sqrt{3}}{3}$. Based on our knowledge of exact values for trigonometric functions, we conclude that $2 \theta=60^{\circ}$. Thus, $\theta=30^{\circ}$.

Step 3 Substitute θ in the rotation formulas $x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $\boldsymbol{y}=\boldsymbol{x}^{\prime} \sin \theta+\boldsymbol{y}^{\prime} \cos \boldsymbol{\theta}$ and simplify. Substituting 30° for θ,

$$
\begin{aligned}
& x=x^{\prime} \cos 30^{\circ}-y^{\prime} \sin 30^{\circ}=x^{\prime}\left(\frac{\sqrt{3}}{2}\right)-y^{\prime}\left(\frac{1}{2}\right)=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2} \\
& y=x^{\prime} \sin 30^{\circ}+y^{\prime} \cos 30^{\circ}=x^{\prime}\left(\frac{1}{2}\right)+y^{\prime}\left(\frac{\sqrt{3}}{2}\right)=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2} .
\end{aligned}
$$

Step 4 Substitute the expressions for \boldsymbol{x} and \boldsymbol{y} from the rotation formulas in the given equation and simplify.

$$
\begin{aligned}
& 7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0 \quad \text { This is the given equation. } \\
& 7\left(\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2}\right)^{2}-6 \sqrt{3}\left(\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2}\right)\left(\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}\right) \\
& +13\left(\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}\right)^{2}-16=0 \\
& 7\left(\frac{3 x^{\prime 2}-2 \sqrt{3} x^{\prime} y^{\prime}+y^{\prime 2}}{4}\right)-6 \sqrt{3}\left(\frac{\sqrt{3} x^{\prime 2}+3 x^{\prime} y^{\prime}-x^{\prime} y^{\prime}-\sqrt{3} y^{\prime 2}}{4}\right) \\
& +13\left(\frac{x^{\prime 2}+2 \sqrt{3} x^{\prime} y^{\prime}+3 y^{\prime 2}}{4}\right)-16=0 \quad \text { Square and multiply. } \\
& 7\left(3 x^{\prime 2}-2 \sqrt{3} x^{\prime} y^{\prime}+y^{\prime 2}\right)-6 \sqrt{3}\left(\sqrt{3} x^{\prime 2}+2 x^{\prime} y^{\prime}-\sqrt{3} y^{\prime 2}\right) \\
& +13\left(x^{\prime 2}+2 \sqrt{3} x^{\prime} y^{\prime}+3 y^{\prime 2}\right)-64=0 \quad \text { Multiply both sides by } 4 . \\
& 21 x^{\prime 2}-14 \sqrt{3} x^{\prime} y^{\prime}+7 y^{\prime 2}-18 x^{\prime 2}-12 \sqrt{3} x^{\prime} y^{\prime}+18 y^{\prime 2} \\
& +13 x^{\prime 2}+26 \sqrt{3} x^{\prime} y^{\prime}+39 y^{\prime 2}-64=0 \quad \text { Distribute throughout parentheses. } \\
& 21 x^{\prime 2}-18 x^{\prime 2}+13 x^{\prime 2}-14 \sqrt{3} x^{\prime} y^{\prime}-12 \sqrt{3} x^{\prime} y^{\prime}+26 \sqrt{3} x^{\prime} y^{\prime} \\
& +7 y^{\prime 2}+18 y^{\prime 2}+39 y^{\prime 2}-64=0 \quad \text { Rearrange terms. } \\
& 16 x^{\prime 2}+64 y^{\prime 2}-64=0 \quad \text { Combine like terms. }
\end{aligned}
$$

Do you see how we "lost" the $x^{\prime} y^{\prime}$-term in the last equation?

$$
-14 \sqrt{3} x^{\prime} y^{\prime}-12 \sqrt{3} x^{\prime} y^{\prime}+26 \sqrt{3} x^{\prime} y^{\prime}=-26 \sqrt{3} x^{\prime} y^{\prime}+26 \sqrt{3} x^{\prime} y^{\prime}=0 x^{\prime} y^{\prime}=0
$$

Step 5 Write the equation involving \boldsymbol{x}^{\prime} and \boldsymbol{y}^{\prime} in standard form. We can express $16 x^{\prime 2}+64 y^{\prime 2}-64=0$, an equation of an ellipse, in the standard form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

$$
\begin{array}{rlrl}
16 x^{\prime 2}+64 y^{\prime 2}-64 & =0 & \begin{array}{l}
\text { This equation describes the ellipse relative to a } \\
\text { system rotated through } 30^{\circ} .
\end{array} \\
16 x^{\prime 2}+64 y^{\prime 2} & =64 & & \text { Add } 64 \text { to both sides. } \\
\frac{16 x^{\prime 2}}{64}+\frac{64 y^{\prime 2}}{64} & =\frac{64}{64} & & \text { Divide both sides by } 64 . \\
\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{1} & =1 & & \text { Simplify. }
\end{array}
$$

FIGURE 9.44 (repeated) The graph of $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$ or $\frac{x^{\prime 2}}{4}-\frac{y^{\prime 2}}{1}=1$, a rotated ellipse

The equation $\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{1}=1$ is the standard form of the equation of an ellipse. The major axis is on the x^{\prime}-axis and the vertices are $(-2,0)$ and $(2,0)$. The minor axis is on the y^{\prime}-axis with endpoints $(0,-1)$ and $(0,1)$. The graph of the ellipse is shown in Figure 9.44. Does this graph look familiar? It should-you saw it earlier in this section on page 963.
Φ Check Point 3 Rewrite the equation

$$
2 x^{2}+\sqrt{3} x y+y^{2}-2=0
$$

in a rotated $x^{\prime} y^{\prime}$-system without an $x^{\prime} y^{\prime}$-term. Express the equation in the standard form of a conic section. Graph the conic section in the rotated system.

TECHNOLOGY

In order to graph a general second-degree equation in the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

using a graphing utility, it is necessary to solve for y. Rewrite the equation as a quadratic equation in y.

$$
C y^{2}+(B x+E) y+\left(A x^{2}+D x+F\right)=0
$$

By applying the quadratic formula, the graph of this equation can be obtained by entering

$$
y_{1}=\frac{-(B x+E)+\sqrt{(B x+E)^{2}-4 C\left(A x^{2}+D x+F\right)}}{2 C}
$$

and

$$
y_{2}=\frac{-(B x+E)-\sqrt{(B x+E)^{2}-4 C\left(A x^{2}+D x+F\right)}}{2 C} .
$$

The graph of

$$
7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0
$$

is shown on the right in a $[-2,2,1]$ by $[-2,2,1]$ viewing rectangle. The graph was obtained by entering the equations for y_{1} and y_{2} shown above with

$$
\begin{gathered}
A=7, B=-6 \sqrt{3}, C=13, D=0, E=0, \\
\text { and } F=-16 .
\end{gathered}
$$

In Example 3 and Check Point 3, we found θ, the angle of rotation, directly because we recognized $\frac{\sqrt{3}}{3}$ as the value of $\cot 60^{\circ}$. What do we do if $\cot 2 \theta$ is not the cotangent of one of the familiar angles? We use $\cot 2 \theta$ to find $\sin \theta$ and $\cos \theta$ as follows:

- Use a sketch of $\cot 2 \theta$ to find $\cos 2 \theta$.
- Find $\sin \theta$ and $\cos \theta$ using the identities

$$
\sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}} \quad \text { and } \quad \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}
$$

Because θ is an acute angle, the positive square roots are appropriate.

The resulting values for $\sin \theta$ and $\cos \theta$ are used to write the rotation formulas that give an equation with no $x^{\prime} y^{\prime}$-term.

EXAMPLE 4 Graphing the Equation of a Rotated Conic

Graph relative to a rotated $x^{\prime} y^{\prime}$-system in which the equation has no $x^{\prime} y^{\prime}$-term:

$$
16 x^{2}-24 x y+9 y^{2}+110 x-20 y+100=0
$$

SOLUTION

Step 1 Use the given equation to find cot 2θ. With $A=16, B=-24$, and $C=9$, we have

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{16-9}{-24}=-\frac{7}{24}
$$

Step 2 Use the expression for $\cot 2 \theta$ to determine $\sin \theta$ and $\cos \theta$. A rough sketch showing $\cot 2 \theta$ is given in Figure 9.47. Because θ is always acute and $\cot 2 \theta$ is negative, 2θ is in quadrant II. The third side of the triangle is found using $r=\sqrt{x^{2}+y^{2}}$. Thus, $r=\sqrt{(-7)^{2}+24^{2}}=\sqrt{625}=25$. By the definition of the cosine function,

$$
\cos 2 \theta=\frac{x}{r}=\frac{-7}{25}=-\frac{7}{25}
$$

Now we use identities to find values for $\sin \theta$ and $\cos \theta$.

$$
\begin{aligned}
\sin \theta & =\sqrt{\frac{1-\cos 2 \theta}{2}}=\sqrt{\frac{1-\left(-\frac{7}{25}\right)}{2}} \\
& =\sqrt{\frac{\frac{25}{25}+\frac{7}{25}}{2}}=\sqrt{\frac{\frac{32}{25}}{2}=\sqrt{\frac{32}{50}}}=\sqrt{\frac{16}{25}}=\frac{4}{5} \\
\cos \theta & =\sqrt{\frac{1+\cos 2 \theta}{2}}=\sqrt{\frac{1+\left(-\frac{7}{25}\right)}{2}} \\
& =\sqrt{\frac{25}{\frac{25}{2}-\frac{7}{25}}}=\sqrt{\frac{18}{25}}=\sqrt{\frac{18}{50}}=\sqrt{\frac{9}{25}}=\frac{3}{5}
\end{aligned}
$$

Step 3 Substitute $\sin \theta$ and $\cos \theta$ in the rotation formulas

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \text { and } y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

and simplify. Substituting $\frac{4}{5}$ for $\sin \theta$ and $\frac{3}{5}$ for $\cos \theta$,

$$
\begin{aligned}
& x=x^{\prime}\left(\frac{3}{5}\right)-y^{\prime}\left(\frac{4}{5}\right)=\frac{3 x^{\prime}-4 y^{\prime}}{5} \\
& y=x^{\prime}\left(\frac{4}{5}\right)+y^{\prime}\left(\frac{3}{5}\right)=\frac{4 x^{\prime}+3 y^{\prime}}{5}
\end{aligned}
$$

Step 4 Substitute the expressions for x and y from the rotation formulas in the given equation and simplify.

$$
\begin{gathered}
16 x^{2}-24 x y+9 y^{2}+110 x-20 y+100=0 \quad \begin{array}{l}
\text { This is the } \\
\text { given equation. }
\end{array} \\
16\left(\frac{3 x^{\prime}-4 y^{\prime}}{5}\right)^{2}-24\left(\frac{3 x^{\prime}-4 y^{\prime}}{5}\right)\left(\frac{4 x^{\prime}+3 y^{\prime}}{5}\right)+9\left(\frac{4 x^{\prime}+3 y^{\prime}}{5}\right)^{2} \begin{array}{l}
\text { Substitute the } \\
\text { expressions for } \\
\text { x and y from }
\end{array} \\
+110\left(\frac{3 x^{\prime}-4 y^{\prime}}{5}\right)-20\left(\frac{4 x^{\prime}+3 y^{\prime}}{5}\right)+100=0 \begin{array}{l}
\text { the rotation } \\
\text { formulas. }
\end{array}
\end{gathered}
$$

Work with the preceding equation. Take a few minutes to expand, multiply both sides of the equation by 25 , and combine like terms. You should obtain

$$
y^{\prime 2}+2 x^{\prime}-4 y^{\prime}+4=0
$$

an equation that has no $x^{\prime} y^{\prime}$-term.
Step 5 Write the equation involving \boldsymbol{x}^{\prime} and \boldsymbol{y}^{\prime} in standard form. With only one variable that is squared, we have the equation of a parabola. We need to write the equation in the standard form $(y-k)^{2}=4 p(x-h)$.

$$
\begin{aligned}
y^{\prime 2}+2 x^{\prime}-4 y^{\prime}+4 & =0 & & \text { This is the equation without an } x^{\prime} y^{\prime} \text {-term. } \\
y^{\prime 2}-4 y^{\prime} & =-2 x^{\prime}-4 & & \text { Isolate the terms involving } y^{\prime} . \\
y^{\prime 2}-4 y^{\prime}+4 & =-2 x^{\prime}-4+4 & & \begin{array}{l}
\text { Complete the square by adding the square } \\
\text { of half the coefficient of } y^{\prime} .
\end{array} \\
\left(y^{\prime}-2\right)^{2} & =-2 x^{\prime} & & \text { Factor. }
\end{aligned}
$$

The standard form of the parabola's equation in the rotated $x^{\prime} y^{\prime}$-system is

$$
\begin{aligned}
& \quad\left(y^{\prime}-2\right)^{2}=-2 x^{\prime} . \\
& \begin{array}{l}
\text { This is }\left(y^{\prime}-k\right)^{2}, \\
\text { with } k=2 .
\end{array} \quad \begin{array}{c}
\text { This is } \\
\text { 4p. }
\end{array} \quad \begin{array}{l}
\text { This is } x^{\prime}-h, \\
\text { with } h=0 .
\end{array}
\end{aligned}
$$

We see that $h=0$ and $k=2$. Thus, the vertex of the parabola in the $x^{\prime} y^{\prime}$-system is $(h, k)=(0,2)$.

We can use the $x^{\prime} y^{\prime}$-system to graph the parabola. Using a calculator to solve $\sin \theta=\frac{4}{5}$, we find that $\theta=\sin ^{-1} \frac{4}{5} \approx 53^{\circ}$. Rotate the axes through approximately 53°. With $4 p=-2$ and $p=-\frac{1}{2}$, the parabola's focus is $\frac{1}{2}$ unit to the left of the vertex, $(0,2)$. Thus, the focus in the $x^{\prime} y^{\prime}$-system is $\left(-\frac{1}{2}, 2\right)$.

To graph the parabola, we use the vertex, $(0,2)$, and the two endpoints of the latus rectum.

$$
\text { length of latus rectum }=|4 p|=|-2|=2
$$

The latus rectum extends 1 unit above and 1 unit below the focus, $\left(-\frac{1}{2}, 2\right)$. Thus, the endpoints of the latus rectum in the $x^{\prime} y^{\prime}$-system are $\left(-\frac{1}{2}, 3\right)$ and $\left(-\frac{1}{2}, 1\right)$. Using the rotated system, pass a smooth curve through the vertex and the two endpoints of the latus rectum. The graph of the parabola is shown in Figure 9.48.

Check Point 4 Graph relative to a rotated $x^{\prime} y^{\prime}$-system in which the equation has no $x^{\prime} y^{\prime}$-term:

$$
4 x^{2}-4 x y+y^{2}-8 \sqrt{5} x-16 \sqrt{5} y=0
$$

Identifying Conic Sections without Rotating Axes

We now know that the general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0
$$

can be rewritten as

$$
A^{\prime} x^{\prime 2}+C^{\prime} y^{\prime 2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0
$$

in a rotated $x^{\prime} y^{\prime}$-system. A relationship between the coefficients of the two equations is given by

$$
B^{2}-4 A C=-4 A^{\prime} C^{\prime} .
$$

We also know that A^{\prime} and C^{\prime} can be used to identify the graph of the rotated equation. Because $B^{2}-4 A C=-4 A^{\prime} C^{\prime}$, we can also use $B^{2}-4 A C$ to identify the graph of the general second-degree equation.

Identifying a Conic Section without a Rotation of Axes

A nondegenerate conic section of the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

is

- a parabola if $B^{2}-4 A C=0$,
- an ellipse or a circle if $B^{2}-4 A C<0$, and
- a hyperbola if $B^{2}-4 A C>0$.

EXAMPLE 5 Identifying a Conic Section without Rotating Axes

Identify the graph of

$$
11 x^{2}+10 \sqrt{3} x y+y^{2}-4=0 .
$$

SOLUTION

We use A, B, and C to identify the conic section.

TECHNOLOGY

Graphic Connections

The graph of

$$
11 x^{2}+10 \sqrt{3} x y+y^{2}-4=0
$$

is shown in a $\left[-1,1, \frac{1}{4}\right]$ by $\left[-1,1, \frac{1}{4}\right]$ viewing rectangle. The graph verifies that the equation represents a rotated hyperbola.

$$
\begin{gathered}
11 x^{2}+10 \sqrt{3} x y+y^{2}-4=0 \\
A=11 \quad B=10 \sqrt{3} \quad C=1 \\
B^{2}-4 A C=(10 \sqrt{3})^{2}-4(11)(1)=100 \cdot 3-44=256>0
\end{gathered}
$$

Because $B^{2}-4 A C>0$, the graph of the equation is a hyperbola.
\oint Check Point 5 Identify the graph of $3 x^{2}-2 \sqrt{3} x y+y^{2}+2 x+2 \sqrt{3} y=0$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A nondegenerate conic section in the form

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

in which A and C are not both zero is a/an if $A=C$, a/an \qquad if $A C=0, \mathrm{a} / \mathrm{an}$
\qquad
if $A \neq C$ and $A C>0$, and a/an \qquad if $A C<0$.
2. The general second-degree equation
$A x^{2}+B x y+C y^{2}+D x+E y+F=0, B \neq 0$
can be rewritten as an equation in x^{\prime} and y^{\prime} without an $x^{\prime} y^{\prime}$-term by rotating the axes through an acute angle θ that satisfies the equation
3. A nondegenerate conic section of the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

is a/an \qquad if $B^{2}-4 A C=0$, a/an \qquad
or a/an \qquad if $B^{2}-4 A C<0$, and a/an \qquad if $B^{2}-4 A C>0$.

EXERCISE SET 9.4

Practice Exercises

In Exercises 1-8, identify each equation without completing the square.

1. $y^{2}-4 x+2 y+21=0$
2. $y^{2}-4 x-4 y=0$
3. $4 x^{2}-9 y^{2}-8 x-36 y-68=0$
4. $9 x^{2}+25 y^{2}-54 x-200 y+256=0$
5. $4 x^{2}+4 y^{2}+12 x+4 y+1=0$
6. $9 x^{2}+4 y^{2}-36 x+8 y+31=0$
7. $100 x^{2}-7 y^{2}+90 y-368=0$
8. $y^{2}+8 x+6 y+25=0$

In Exercises 9-14, write each equation in terms of a rotated $x^{\prime} y^{\prime}$-system using θ, the angle of rotation. Write the equation involving x^{\prime} and y^{\prime} in standard form.
9. $x y=-1 ; \theta=45^{\circ}$
10. $x y=-4 ; \theta=45^{\circ}$
11. $x^{2}-4 x y+y^{2}-3=0 ; \theta=45^{\circ}$
12. $13 x^{2}-10 x y+13 y^{2}-72=0 ; \theta=45^{\circ}$
13. $23 x^{2}+26 \sqrt{3} x y-3 y^{2}-144=0 ; \theta=30^{\circ}$
14. $13 x^{2}-6 \sqrt{3} x y+7 y^{2}-16=0 ; \theta=60^{\circ}$

In Exercises 15-26, write the appropriate rotation formulas so that in a rotated system the equation has no $x^{\prime} y^{\prime}$-term.
15. $x^{2}+x y+y^{2}-10=0$
16. $x^{2}+4 x y+y^{2}-3=0$
17. $3 x^{2}-10 x y+3 y^{2}-32=0$
18. $5 x^{2}-8 x y+5 y^{2}-9=0$
19. $11 x^{2}+10 \sqrt{3} x y+y^{2}-4=0$
20. $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$
21. $10 x^{2}+24 x y+17 y^{2}-9=0$
22. $32 x^{2}-48 x y+18 y^{2}-15 x-20 y=0$
23. $x^{2}+4 x y-2 y^{2}-1=0$
24. $3 x y-4 y^{2}+18=0$
25. $34 x^{2}-24 x y+41 y^{2}-25=0$
26. $6 x^{2}-6 x y+14 y^{2}-45=0$

In Exercises 27-38,
a. Rewrite the equation in a rotated $x^{\prime} y^{\prime}$-system without an $x^{\prime} y^{\prime}$-term. Use the appropriate rotation formulas from Exercises 15-26.
b. Express the equation involving x^{\prime} and y^{\prime} in the standard form of a conic section.
c. Use the rotated system to graph the equation.
27. $x^{2}+x y+y^{2}-10=0$
28. $x^{2}+4 x y+y^{2}-3=0$
29. $3 x^{2}-10 x y+3 y^{2}-32=0$
30. $5 x^{2}-8 x y+5 y^{2}-9=0$
31. $11 x^{2}+10 \sqrt{3} x y+y^{2}-4=0$
32. $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$
33. $10 x^{2}+24 x y+17 y^{2}-9=0$
34. $32 x^{2}-48 x y+18 y^{2}-15 x-20 y=0$
35. $x^{2}+4 x y-2 y^{2}-1=0$
36. $3 x y-4 y^{2}+18=0$
37. $34 x^{2}-24 x y+41 y^{2}-25=0$
38. $6 x^{2}-6 x y+14 y^{2}-45=0$

In Exercises 39-44, identify each equation without applying a rotation of axes.
39. $5 x^{2}-2 x y+5 y^{2}-12=0$
40. $10 x^{2}+24 x y+17 y^{2}-9=0$
41. $24 x^{2}+16 \sqrt{3} x y+8 y^{2}-x+\sqrt{3} y-8=0$
42. $3 x^{2}-2 \sqrt{3} x y+y^{2}+2 x+2 \sqrt{3} y=0$
43. $23 x^{2}+26 \sqrt{3} x y-3 y^{2}-144=0$
44. $4 x y+3 y^{2}+4 x+6 y-1=0$

Practice Plus

In Exercises 45-48,

- If the graph of the equation is an ellipse, find the coordinates of the vertices on the minor axis.
- If the graph of the equation is a hyperbola, find the equations of the asymptotes.
- If the graph of the equation is a parabola, find the coordinates of the vertex.

Express answers relative to an $x^{\prime} y^{\prime}$-system in which the given equation has no $x^{\prime} y^{\prime}$-term. Assume that the $x^{\prime} y^{\prime}$-system has the same origin as the $x y$-system.
45. $5 x^{2}-6 x y+5 y^{2}-8=0$
46. $2 x^{2}-4 x y+5 y^{2}-36=0$
47. $x^{2}-4 x y+4 y^{2}+5 \sqrt{5} y-10=0$
48. $x^{2}+4 x y-2 y^{2}-6=0$

Writing in Mathematics

49. Explain how to identify the graph of

$$
A x^{2}+C y^{2}+D x+E y+F=0 .
$$

50. If there is a 60° angle from the positive x-axis to the positive x^{\prime}-axis, explain how to obtain the rotation formulas for x and y.
51. How do you obtain the angle of rotation so that a general second-degree equation has no $x^{\prime} y^{\prime}$-term in a rotated $x^{\prime} y^{\prime}$-system?
52. What is the most time-consuming part in using a graphing utility to graph a general second-degree equation with an $x y$-term?
53. Explain how to identify the graph of

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Technology Exercises

In Exercises 54-60, use a graphing utility to graph each equation.
54. $x^{2}+4 x y+y^{2}-3=0$
55. $7 x^{2}+8 x y+y^{2}-1=0$
56. $3 x^{2}+4 x y+6 y^{2}-7=0$
57. $3 x^{2}-6 x y+3 y^{2}+10 x-8 y-2=0$
58. $9 x^{2}+24 x y+16 y^{2}+90 x-130 y=0$
59. $x^{2}+4 x y+4 y^{2}+10 \sqrt{5} x-9=0$
60. $7 x^{2}+6 x y+2.5 y^{2}-14 x+4 y+9=0$

Critical Thinking Exercises

Make Sense? In Exercises 61-64, determine whether each statement makes sense or does not make sense, and explain your reasoning.
61. I graphed $2 x^{2}-3 y^{2}+6 y+4=0$ by using the procedure for writing the equation of a rotated conic in standard form.
62. In order to graph an ellipse whose equation contained an $x y$-term, I used a rotated coordinate system that placed the ellipse's center at the origin.
63. Although the algebra of rotations can get ugly, the main idea is that rotation through an appropriate angle will transform a general second-degree equation into an equation in x^{\prime} and y^{\prime} without an $x^{\prime} y^{\prime}$-term.
64. I can verify that $2 x y-9=0$ is the equation of a hyperbola by rotating the axes through 45° or by showing that $B^{2}-4 A C>0$.
65. Explain the relationship between the graph of $3 x^{2}-2 x y+3 y^{2}+2=0$ and the sound made by one hand clapping. Begin by following the directions for Exercises 27-38. (You will first need to write rotation formulas that eliminate the $x^{\prime} y^{\prime}$-term.)
66. What happens to the equation $x^{2}+y^{2}=r^{2}$ in a rotated $x^{\prime} y^{\prime}$-system?

In Exercises 67-68, let

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

be an equation of a conic section in an xy-coordinate system. Let $A^{\prime} x^{\prime 2}+B^{\prime} x^{\prime} y^{\prime}+C^{\prime} y^{\prime 2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0$ be the equation of the conic section in the rotated $x^{\prime} y^{\prime}$-coordinate system. Use the coefficients A^{\prime}, B^{\prime}, and C^{\prime}, shown in the equation with the voice balloon pointing to B^{\prime} on page 966 , to prove the following relationships.
67. $A^{\prime}+C^{\prime}=A+C$
68. $B^{\prime 2}-4 A^{\prime} C^{\prime}=B^{2}-4 A C$

Group Exercise

69. Many public and private organizations and schools provide educational materials and information for the blind and visually impaired. Using your library, resources on the World Wide Web, or local organizations, investigate how your group or college could make a contribution to enhance the study of mathematics for the blind and visually impaired. In relation to conic sections, group members should discuss how to create graphs in tactile, or touchable, form that show blind students the visual structure of the conics, including asymptotes, intercepts, end behavior, and rotations.

Preview Exercises

Exercises 70-72 will help you prepare for the material covered in the next section. In each exercise, graph the equation in a rectangular coordinate system.
70. $y^{2}=4(x+1)$
71. $y=\frac{1}{2} x^{2}+1, \quad x \geq 0$
72. $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$

SECTION 9.5

Objectives

(1) Use point plotting to graph plane curves described by parametric equations.
(2) Eliminate the parameter.
(3) Find parametric equations for functions.
(4) Understand the advantages of parametric representations.

What a baseball game! You got to see the great Albert Pujols of the Los Angeles Angels blast a powerful homer. In less than 8 seconds, the parabolic path of his home run took the ball a horizontal distance of over 1000 feet. Is there a way to model this path that gives both the ball's location and the time that it is in each of its positions? In this section, we look at ways of describing curves that reveal the where and the when of motion.

Plane Curves and Parametric Equations

You throw a ball from a height of 6 feet, with an initial velocity of 90 feet per second and at an angle of 40° with the horizontal. After t seconds, the location of the ball can be described by

Because we can use these equations to calculate the location of the ball at any time t, we can describe the path of the ball. For example, to determine the location when $t=1$ second, substitute 1 for t in each equation:

$$
\begin{gathered}
x=\left(90 \cos 40^{\circ}\right) t=\left(90 \cos 40^{\circ}\right)(1) \approx 68.9 \text { feet } \\
y=6+\left(90 \sin 40^{\circ}\right) t-16 t^{2}=6+\left(90 \sin 40^{\circ}\right)(1)-16(1)^{2} \approx 47.9 \text { feet. }
\end{gathered}
$$

This tells us that after one second, the ball has traveled a horizontal distance of approximately 68.9 feet, and the height of the ball is approximately 47.9 feet. Figure 9.49 displays this information and the results for calculations corresponding to $t=2$ seconds and $t=3$ seconds.

FIGURE 9.49 The location of a thrown ball after 1, 2, and 3 seconds

The voice balloons in Figure 9.49 tell where the ball is located and when the ball is at a given point (x, y) on its path. The variable t, called a parameter, gives the various times for the ball's location. The equations that describe where the ball is located express both x and y as functions of t and are called parametric equations.

$$
\begin{gathered}
x=\left(90 \cos 40^{\circ}\right) t \quad y=6+\left(90 \sin 40^{\circ}\right) t-16 t^{2} \\
\begin{array}{c}
\text { This is the } \\
\text { parametric } \\
\text { equation for } x .
\end{array} \\
\begin{array}{c}
\text { This is the } \\
\text { parametric } \\
\text { equation for } y .
\end{array}
\end{gathered}
$$

The collection of points (x, y) in Figure 9.49 is called a plane curve.

Plane Curves and Parametric Equations

Suppose that t is a number in an interval I. A plane curve is the set of ordered pairs (x, y), where

$$
x=f(t), \quad y=g(t) \quad \text { for } t \text { in interval } I .
$$

The variable t is called a parameter, and the equations $x=f(t)$ and $y=g(t)$ are called parametric equations for the curve.

Use point plotting to graph plane curves described by parametric equations.

Graphing Plane Curves

Graphing a plane curve represented by parametric equations involves plotting points in the rectangular coordinate system and connecting them with a smooth curve

Graphing a Plane Curve Described by Parametric Equations

1. Select some values of t on the given interval.
2. For each value of t, use the given parametric equations to compute x and y.
3. Plot the points (x, y) in the order of increasing t and connect them with a smooth curve.

FIGURE 9.50 The plane curve defined by $x=t^{2}-1, y=2 t$, $-2 \leq t \leq 2$

Eliminate the parameter.

TECHNOLOGY

A graphing utility can be used to obtain a plane curve represented by parametric equations. Set the mode to parametric and enter the equations. You must enter the minimum and maximum values for t and an increment setting for t (tstep). The setting t step determines the number of points the graphing utility will plot.

Shown below is the plane curve for

$$
\begin{aligned}
& x=t^{2}-1 \\
& y=2 t
\end{aligned}
$$

in a $[-5,5,1]$ by $[-5,5,1]$ viewing rectangle with t min $=-2, t$ max $=2$, and tstep $=0.01$.

Turn back a page and take a second look at Figure 9.49. Do you notice arrows along the curve? These arrows show the direction, or orientation, along the curve as t increases. After graphing a plane curve described by parametric equations, use arrows between the points to show the orientation of the curve corresponding to increasing values of t.

EXAMPLE 1 Graphing a Curve Defined by Parametric Equations

Graph the plane curve defined by the parametric equations:

$$
x=t^{2}-1, \quad y=2 t, \quad-2 \leq t \leq 2
$$

SOLUTION

Step 1 Select some values of \boldsymbol{t} on the given interval. We will select integral values of t on the interval $-2 \leq t \leq 2$. Let $t=-2,-1,0,1$, and 2 .
Step 2 For each value of t, use the given parametric equations to compute \boldsymbol{x} and y. We organize our work in a table. The first column lists the choices for the parameter t. The next two columns show the corresponding values for x and y. The last column lists the ordered pair (x, y).

\boldsymbol{t}	$\boldsymbol{x}=\boldsymbol{t}^{\mathbf{2}-\mathbf{1}}$	$\boldsymbol{y}=\mathbf{2 t}$	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$(-2)^{2}-1=4-1=3$	$2(-2)=-4$	$(3,-4)$
-1	$(-1)^{2}-1=1-1=0$	$2(-1)=-2$	$(0,-2)$
0	$0^{2}-1=-1$	$2(0)=0$	$(-1,0)$
1	$1^{2}-1=0$	$2(1)=2$	$(0,2)$
2	$2^{2}-1=4-1=3$	$2(2)=4$	$(3,4)$

Step 3 Plot the points (x, y) in the order of increasing t and connect them with a smooth curve. The plane curve defined by the parametric equations on the given interval is shown in Figure 9.50. The arrows show the direction, or orientation, along the curve as t varies from -2 to 2 .

Check Point 1 Graph the plane curve defined by the parametric equations:

$$
x=t^{2}+1, \quad y=3 t, \quad-2 \leq t \leq 2
$$

Eliminating the Parameter

The graph in Figure 9.50 shows the plane curve for $x=t^{2}-1, y=2 t,-2 \leq t \leq 2$. Even if we examine the parametric equations carefully, we may not be able to tell that the corresponding plane curve is a portion of a parabola. By eliminating the parameter, we can write one equation in x and y that is equivalent to the two parametric equations. The voice balloons illustrate this process.

Using $y=2 t$,
$t=\frac{y}{2}$.

Substitute the expression for t in the other parametric equation.

$\operatorname{Using} t=\frac{y}{2} \quad$ and $x=t^{2}-1$,

$$
x=\left(\frac{y}{2}\right)^{2}-1
$$

The rectangular equation (the equation in x and y), $x=\frac{y^{2}}{4}-1$, can be written as $y^{2}=4(x+1)$. This is the standard form of the equation of a parabola with vertex at $(-1,0)$ and axis of symmetry along the x-axis. Because the parameter t is restricted to the interval $[-2,2]$, the plane curve in the technology box on the left shows only a part of the parabola.

FIGURE 9.51 The plane curve for $x=\sqrt{t}$ and $y=\frac{1}{2} t+1$, or $y=\frac{1}{2} x^{2}+1, x \geq 0$

Our discussion illustrates a second method for graphing a plane curve described by parametric equations. Eliminate the parameter t and graph the resulting rectangular equation in x and y. However, you may need to change the domain of the rectangular equation to be consistent with the domain for the parametric equation in \boldsymbol{x}. This situation is illustrated in Example 2.

EXAMPLE 2 Finding and Graphing the Rectangular Equation of a Curve Defined Parametrically

Sketch the plane curve represented by the parametric equations

$$
x=\sqrt{t} \quad \text { and } \quad y=\frac{1}{2} t+1
$$

by eliminating the parameter.

SOLUTION

We eliminate the parameter t and then graph the resulting rectangular equation.

Begin with
the parametric
equations.

$x=\sqrt{t}$
$y=\frac{1}{2} t+1$

Substitute the expression for t in the other parametric equation.

Using $t=x^{2}$ and $y=\frac{1}{2} t+1$, $y=\frac{1}{2} x^{2}+1$.

Because t is not limited to a closed interval, you might be tempted to graph the entire bowl-shaped parabola whose equation is $y=\frac{1}{2} x^{2}+1$. However, take a second look at the parametric equation for x :

$$
x=\sqrt{t}
$$

This equation is defined only when $t \geq 0$. Thus, x is nonnegative. The plane curve is the parabola given by $y=\frac{1}{2} x^{2}+1$ with the domain restricted to $x \geq 0$. The plane curve is shown in Figure 9.51.

8 Check Point 2 sketch the plane curve represented by the parametric equations

$$
x=\sqrt{t} \quad \text { and } \quad y=2 t-1
$$

by eliminating the parameter.

Eliminating the parameter is not always a simple matter. In some cases, it may not be possible. When this occurs, you can use point plotting to obtain a plane curve.

Trigonometric identities can be helpful in eliminating the parameter. For example, consider the plane curve defined by the parametric equations

$$
x=\sin t, \quad y=\cos t, \quad 0 \leq t<2 \pi
$$

We use the trigonometric identity $\sin ^{2} t+\cos ^{2} t=1$ to eliminate the parameter. Square each side of each parametric equation and then add.

$$
\begin{aligned}
x^{2} & =\sin ^{2} t \\
y^{2} & =\cos ^{2} t \\
\overline{x^{2}+y^{2}} & =\overline{\sin ^{2} t+\cos ^{2} t} \quad \begin{aligned}
\text { This is the sum of the two equations } \\
\text { above the horizontal lines. }
\end{aligned}
\end{aligned}
$$

Using a Pythagorean identity, we write this equation as $x^{2}+y^{2}=1$. The plane curve is a circle with center $(0,0)$ and radius 1. It is shown in Figure 9.52.

EXAMPLE 3 Finding and Graphing the Rectangular Equation of a Curve Defined Parametrically

Sketch the plane curve represented by the parametric equations

$$
x=5 \cos t, \quad y=2 \sin t, \quad 0 \leq t \leq \pi
$$

by eliminating the parameter.

SOLUTION

We eliminate the parameter using the identity $\cos ^{2} t+\sin ^{2} t=1$. To apply the identity, divide the parametric equation for x by 5 and the parametric equation for y by 2 .

$$
\frac{x}{5}=\cos t \quad \text { and } \quad \frac{y}{2}=\sin t
$$

Square and add these two equations.

$$
\begin{aligned}
\frac{x^{2}}{25} & =\cos ^{2} t \\
\frac{y^{2}}{4} & =\sin ^{2} t \\
\frac{x^{2}}{25}+\frac{y^{2}}{4} & =\cos ^{2} t+\sin ^{2} t \quad \begin{array}{l}
\text { This is the sum of the two equations } \\
\text { above the horizontal lines. }
\end{array}
\end{aligned}
$$

Using a Pythagorean identity, we write this equation as

$$
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1 .
$$

This rectangular equation is the standard form of the equation for an ellipse centered at $(0,0)$.

$$
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
$$

$a^{2}=25$: Endpoints of
major axis are 5 units left
and right of center.

$b^{2}=4:$ Endpoints of
minor axis are 2 units
above and below center.

The ellipse is shown in Figure 9.53(a) at the top of the next page. However, this is not the plane curve. Because t is restricted to the interval $[0, \pi]$, the plane curve is only a portion of the ellipse. Use the starting and ending values for $t, 0$ and π, respectively, and a value of t in the interval $(0, \pi)$ to find which portion to include.

Begin at $t=0$.
$x=5 \cos t=5 \cos 0=5 \cdot 1=5$
$y=2 \sin t=2 \sin 0=2 \cdot 0=0$
Increase to $t=\frac{\pi}{2}$.
End at $t=\pi$.
$x=5 \cos t=5 \cos \frac{\pi}{2}=5 \cdot 0=0$
$x=5 \cos t=5 \cos \pi=5(-1)=-5$

$$
y=2 \sin t=2 \sin \frac{\pi}{2}=2 \cdot 1=2
$$

$$
y=2 \sin t=2 \sin \pi=2(0)=0
$$

Points on the plane curve include $(5,0)$, which is the starting point, $(0,2)$, and $(-5,0)$, which is the ending point. The plane curve is the top half of the ellipse, shown in Figure 9.53(b) on the next page.

FIGURE 9.53(a) The graph of $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$

FIGURE 9.53(b) The plane curve for $x=5 \cos t, y=2 \sin t$, $0 \leq t \leq \pi$
$\$$ Check Point 3 Sketch the plane curve represented by the parametric equations

$$
x=6 \cos t, y=4 \sin t, \pi \leq t \leq 2 \pi
$$

by eliminating the parameter.

Finding Parametric Equations

Infinitely many pairs of parametric equations can represent the same plane curve. If the plane curve is defined by the function $y=f(x)$, here is a procedure for finding a set of parametric equations:

Parametric Equations for the Function $y=f(x)$

One set of parametric equations for the plane curve defined by $y=f(x)$ is

$$
x=t \quad \text { and } \quad y=f(t),
$$

in which t is in the domain of f.

EXAMPLE 4 Finding Parametric Equations

Find a set of parametric equations for the parabola whose equation is $y=9-x^{2}$.

SOLUTION

Let $x=t$. Parametric equations for $y=f(x)$ are $x=t$ and $y=f(t)$. Thus, parametric equations for $y=9-x^{2}$ are

$$
x=t \quad \text { and } \quad y=9-t^{2} .
$$

Check Point 4 Find a set of parametric equations for the parabola whose equation is $y=x^{2}-25$.

You can write other sets of parametric equations for $y=9-x^{2}$ by starting with a different parametric equation for x. Here are three more sets of parametric equations for

$$
y=9-x^{2}:
$$

- If $x=t^{3}, y=9-\left(t^{3}\right)^{2}=9-t^{6}$.

Parametric equations are $x=t^{3}$ and $y=9-t^{6}$.

- If $x=t+1, y=9-(t+1)^{2}=9-\left(t^{2}+2 t+1\right)=8-t^{2}-2 t$.

Parametric equations are $x=t+1$ and $y=8-t^{2}-2 t$.

- If $x=\frac{t}{2}, y=9-\left(\frac{t}{2}\right)^{2}=9-\frac{t^{2}}{4}$.

Parametric equations are $x=\frac{t}{2}$ and $y=9-\frac{t^{2}}{4}$.
(4) Understand the advantages of parametric representations.

TECHNOLOGY

The ellipse shown was obtained using the parametric mode and the radian mode of a graphing utility.

$$
\begin{aligned}
& x(t)=2+3 \cos t \\
& y(t)=3+2 \sin t
\end{aligned}
$$

We used a $[-2,6,1]$ by $[-1,6,1]$ viewing rectangle with $t \mathrm{~min}=0$, t max $=6.2$, and t step $=0.1$.

When finding parametric equations for $y=9-x^{2}$, can we start with any choice for the parametric equation for x ? The answer is no. The substitution for \boldsymbol{x} must be a function that allows \boldsymbol{x} to take on all the values in the domain of the given rectangular equation. For example, the domain of the function $y=9-x^{2}$ is the set of all real numbers. If you incorrectly let $x=t^{2}$, these values of x exclude negative numbers that are included in $y=9-x^{2}$. The parametric equations

$$
x=t^{2} \quad \text { and } \quad y=9-\left(t^{2}\right)^{2}=9-t^{4}
$$

do not represent $y=9-x^{2}$ because only points for which $x \geq 0$ are obtained.

Advantages of Parametric Equations over Rectangular Equations

We opened this section with parametric equations that described the horizontal distance and the vertical height of your thrown baseball after t seconds. Parametric equations are frequently used to represent the path of a moving object. If t represents time, parametric equations give the location of a moving object and tell when the object is located at each of its positions. Rectangular equations tell where the moving object is located but do not reveal when the object is in a particular position.

When using technology to obtain graphs, parametric equations that represent relations that are not functions are often easier to use than their corresponding rectangular equations. It is far easier to enter the equation of an ellipse given by the parametric equations

$$
x=2+3 \cos t \quad \text { and } \quad y=3+2 \sin t
$$

than to use the rectangular equivalent

$$
\frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
$$

The rectangular equation must first be solved for y and then entered as two separate equations before a graphing utility reveals the ellipse.

Blitzer Banus || The Parametrization of DNA

The DNA molecule, structured like a spiraled ladder, consists of two parallel helices (singular: helix) that are intertwined.

Each helix can be described by a curve in three dimensions represented by parametric equations in x, y, and z : $x=a \cos t, y=a \sin t, z=b t$, where a and b are positive constants.

DNA, the molecule of biological inheritance, is hip. At least that's what a new breed of marketers would like you to believe. For $\$ 2500$, you can spit into a test tube and a Web-based company will tell you your risks for heart attack and other conditions.

It's been more than 55 years since James Watson and Francis Crick defined the structure, or shape, of DNA. A knowledge of how a molecule is structured does not always lead to an understanding of how it works, but it did in the case of DNA. The structure, which Watson and Crick announced in Nature in 1953, immediately suggested how the molecule could be reproduced and how it could contain biological information.

The structure of the DNA molecule reveals the vital role that trigonometric functions play in the genetic information and instruction codes necessary for the maintenance and continuation of life.

Linear functions and cycloids are used to describe rolling motion. The light at the rolling circle's center shows that it moves linearly. By contrast, the light at the circle's edge has rotational motion and traces out a cycloid.

A curve that is used in physics for much of the theory of light is called a cycloid. The path of a fixed point on the circumference of a circle as it rolls along a line is a cycloid. A point on the rim of a bicycle wheel traces out a cycloid curve, shown in Figure 9.54. If the radius of the circle is a, the parametric equations of the cycloid are

$$
x=a(t-\sin t) \quad \text { and } \quad y=a(1-\cos t)
$$

It is an extremely complicated task to represent the cycloid in rectangular form.

Cycloids are used to solve problems that involve the "shortest time." For example, Figure 9.55 shows a bead sliding down a wire. For the bead to travel along the wire in the shortest possible time, the shape of the wire should be that of an inverted cycloid.

FIGURE 9.54 The curve traced by a fixed point on the circumference of a circle rolling along a straight line is a cycloid.

FIGURE 9.55

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The pair of equations $x=\sqrt{t}$ and $y=2 t-1$ are called \qquad equations and the common variable t is called the \qquad The graph for this pair of equations is called a / an \qquad
2. Eliminating the parameter from $x=f(t)$ and $y=g(t)$ means eliminating \qquad from the pair of equations to obtain one equation in \qquad and \qquad only.
3. In order to eliminate the parameter from $x=3 \sin t$ and $y=2 \cos t$, isolate \qquad and \qquad square the two equations, and then use the identity
4. True or false: There is more than one way for pairs of parametric equations to represent the same plane curve. \qquad

EXERCISE SET 9.5

Practice Exercises

In Exercises 1-8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t.

1. $x=3-5 t, y=4+2 t ; t=1$
2. $x=7-4 t, y=5+6 t ; t=1$
3. $x=t^{2}+1, y=5-t^{3} ; t=2$
4. $x=t^{2}+3, y=6-t^{3} ; t=2$
5. $x=4+2 \cos t, y=3+5 \sin t ; t=\frac{\pi}{2}$
6. $x=2+3 \cos t, y=4+2 \sin t ; t=\pi$
7. $x=\left(60 \cos 30^{\circ}\right) t, y=5+\left(60 \sin 30^{\circ}\right) t-16 t^{2} ; t=2$
8. $x=\left(80 \cos 45^{\circ}\right) t, y=6+\left(80 \sin 45^{\circ}\right) t-16 t^{2} ; t=2$

In Exercises 9-20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t.
9. $x=t+2, y=t^{2} ;-2 \leq t \leq 2$
10. $x=t-1, y=t^{2} ;-2 \leq t \leq 2$
11. $x=t-2, y=2 t+1 ;-2 \leq t \leq 3$
12. $x=t-3, y=2 t+2 ;-2 \leq t \leq 3$
13. $x=t+1, y=\sqrt{t} ; t \geq 0$
14. $x=\sqrt{t}, y=t-1 ; t \geq 0$
15. $x=\cos t, y=\sin t ; 0 \leq t<2 \pi$
16. $x=-\sin t, y=-\cos t ; 0 \leq t<2 \pi$
17. $x=t^{2}, y=t^{3} ;-\infty<t<\infty$
18. $x=t^{2}+1, y=t^{3}-1 ;-\infty<t<\infty$
19. $x=2 t, y=|t-1| ;-\infty<t<\infty$
20. $x=|t+1|, y=t-2 ;-\infty<t<\infty$

In Exercises 21-40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that $-\infty<t<\infty$.)
21. $x=t, y=2 t$
22. $x=t, y=-2 t$
23. $x=2 t-4, y=4 t^{2}$
24. $x=t-2, y=t^{2}$
25. $x=\sqrt{t}, y=t-1$
26. $x=\sqrt{t}, y=t+1$
27. $x=2 \sin t, y=2 \cos t ; 0 \leq t<2 \pi$
28. $x=3 \sin t, y=3 \cos t ; 0 \leq t<2 \pi$
29. $x=1+3 \cos t, y=2+3 \sin t ; 0 \leq t<2 \pi$
30. $x=-1+2 \cos t, y=1+2 \sin t ; 0 \leq t<2 \pi$
31. $x=2 \cos t, y=3 \sin t ; 0 \leq t<2 \pi$
32. $x=3 \cos t, y=5 \sin t ; 0 \leq t<2 \pi$
33. $x=1+3 \cos t, y=-1+2 \sin t ; 0 \leq t \leq \pi$
34. $x=2+4 \cos t, y=-1+3 \sin t ; 0 \leq t \leq \pi$
35. $x=\sec t, y=\tan t$
36. $x=5 \sec t, y=3 \tan t$
37. $x=t^{2}+2, y=t^{2}-2$
38. $x=\sqrt{t}+2, y=\sqrt{t}-2$
39. $x=2^{t}, y=2^{-t}$; $t \geq 0$
40. $x=e^{t}, y=e^{-t} ; t \geq 0$

In Exercises 41-43, eliminate the parameter. Write the resulting equation in standard form.
41. A circle: $x=h+r \cos t, y=k+r \sin t$
42. An ellipse: $x=h+a \cos t, y=k+b \sin t$
43. A hyperbola: $x=h+a \sec t, y=k+b \tan t$
44. The following are parametric equations of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
x=x_{1}+t\left(x_{2}-x_{1}\right) \quad \text { and } \quad y=y_{1}+t\left(y_{2}-y_{1}\right)
$$

Eliminate the parameter and write the resulting equation in point-slope form.
In Exercises 45-52, use your answers from Exercises 41-44 and the parametric equations given in Exercises 41-44 to find a set of parametric equations for the conic section or the line.
45. Circle: Center: $(3,5)$; Radius: 6
46. Circle: Center: $(4,6)$; Radius: 9
47. Ellipse: Center: $(-2,3)$; Vertices: 5 units to the left and right of the center; Endpoints of Minor Axis: 2 units above and below the center
48. Ellipse: Center: $(4,-1)$; Vertices: 5 units above and below the center; Endpoints of Minor Axis: 3 units to the left and right of the center
49. Hyperbola: Vertices: $(4,0)$ and $(-4,0)$; Foci: $(6,0)$ and $(-6,0)$
50. Hyperbola: Vertices: $(0,4)$ and $(0,-4)$; Foci: $(0,5)$ and $(0,-5)$
51. Line: Passes through $(-2,4)$ and $(1,7)$
52. Line: Passes through $(3,-1)$ and $(9,12)$

In Exercises 53-56, find two different sets of parametric equations for each rectangular equation.
53. $y=4 x-3$
54. $y=2 x-5$
55. $y=x^{2}+4$
56. $y=x^{2}-3$

In Exercises 57-58, the parametric equations of four plane curves are given. Graph each plane curve and determine how they differ from each other.
57. a. $x=t$ and $y=t^{2}-4$
b. $x=t^{2}$ and $y=t^{4}-4$
c. $x=\cos t$ and $y=\cos ^{2} t-4$
d. $x=e^{t}$ and $y=e^{2 t}-4$
58. a. $x=t, y=\sqrt{4-t^{2}} ;-2 \leq t \leq 2$
b. $x=\sqrt{4-t^{2}}, y=t ;-2 \leq t \leq 2$
c. $x=2 \sin t, y=2 \cos t ; 0 \leq t<2 \pi$
d. $x=2 \cos t, y=2 \sin t ; 0 \leq t<2 \pi$

Practice Plus

In Exercises 59-62, sketch the plane curve represented by the given parametric equations. Then use interval notation to give each relation's domain and range.
59. $x=4 \cos t+2, y=4 \cos t-1$
60. $x=2 \sin t-3, y=2 \sin t+1$
61. $x=t^{2}+t+1, y=2 t$
62. $x=t^{2}-t+6, y=3 t$

In Exercises 63-68, sketch the function represented by the given parametric equations. Then use the graph to determine each of the following:
a. intervals, if any, on which the function is increasing and intervals, if any, on which the function is decreasing.
b. the number, if any, at which the function has a maximum and this maximum value, or the number, if any, at which the function has a minimum and this minimum value.
63. $x=2^{t}, y=t$
64. $x=e^{t}, y=t$
65. $x=\frac{t}{2}, y=2 t^{2}-8 t+3$
66. $x=\frac{t}{2}, y=-2 t^{2}+8 t-1$
67. $x=2(t-\sin t), y=2(1-\cos t) ; 0 \leq t \leq 2 \pi$
68. $x=3(t-\sin t), y=3(1-\cos t) ; 0 \leq t \leq 2 \pi$

Application Exercises

The path of a projectile that is launched h feet above the ground with an initial velocity of v_{0} feet per second and at an angle θ with the horizontal is given by the parametric equations

$$
x=\left(v_{0} \cos \theta\right) t \quad \text { and } \quad y=h+\left(v_{0} \sin \theta\right) t-16 t^{2}
$$

where t is the time, in seconds, after the projectile was launched. The parametric equation for x gives the projectile's horizontal distance, in feet. The parametric equation for y gives the projectile's height, in feet. Use these parametric equations to solve Exercises 69-70.
69. The figure shows the path for a baseball hit by Albert Pujols. The ball was hit with an initial velocity of 180 feet per second at an angle of 40° to the horizontal. The ball was hit at a height 3 feet off the ground.

a. Find the parametric equations that describe the position of the ball as a function of time.
b. Describe the ball's position after 1,2 , and 3 seconds. Round to the nearest tenth of a foot. Locate your solutions on the plane curve.
c. How long, to the nearest tenth of a second, is the ball in flight? What is the total horizontal distance that it travels before it lands? Is your answer consistent with the figure shown?
d. You meet Albert Pujols and he asks you to tell him something interesting about the path of the baseball that he hit. Use the graph to respond to his request. Then verify your observation algebraically.
70. The figure shows the path for a baseball that was hit with an initial velocity of 150 feet per second at an angle of 35° to the horizontal. The ball was hit at a height of 3 feet off the ground.

a. Find the parametric equations that describe the position of the ball as a function of time.
b. Describe the ball's position after 1,2 , and 3 seconds. Round to the nearest tenth of a foot. Locate your solutions on the plane curve.
c. How long is the ball in flight? (Round to the nearest tenth of a second.) What is the total horizontal distance that it travels, to the nearest tenth of a foot, before it lands? Is your answer consistent with the figure shown?
d. Use the graph to describe something about the path of the baseball that might be of interest to the player who hit the ball. Then verify your observation algebraically.

Writing in Mathematics

71. What are plane curves and parametric equations?
72. How is point plotting used to graph a plane curve described by parametric equations? Give an example with your description.
73. What is the significance of arrows along a plane curve?
74. What does it mean to eliminate the parameter? What useful information can be obtained by doing this?
75. Explain how the rectangular equation $y=5 x$ can have infinitely many sets of parametric equations.
76. Discuss how the parametric equations for the path of a projectile (see Exercises 69-70) and the ability to obtain plane curves with a graphing utility can be used by a baseball coach to analyze performances of team players.

Technology Exercises

77. Use a graphing utility in a parametric mode to verify any five of your hand-drawn graphs in Exercises 9-40.

In Exercises 78-82, use a graphing utility to obtain the plane curve represented by the given parametric equations.
78. Cycloid: $x=3(t-\sin t), y=3(1-\cos t)$; $[0,60,5] \times[0,8,1], 0 \leq t<6 \pi$
79. Cycloid: $x=2(t-\sin t), y=2(1-\cos t)$; $[0,60,5] \times[0,8,1], 0 \leq t<6 \pi$
80. Witch of Agnesi: $x=2 \cot t, y=2 \sin ^{2} t$; $[-6,6,1] \times[-4,4,1], 0 \leq t<2 \pi$
81. Hypocycloid: $x=4 \cos ^{3} t, y=4 \sin ^{3} t$; $[-5,5,1] \times[-5,5,1], 0 \leq t<2 \pi$
82. Lissajous Curve: $x=2 \cos t, y=\sin 2 t$; $[-3,3,1] \times[-2,2,1], 0 \leq t<2 \pi$

Use the equations for the path of a projectile given prior to Exercises 69-70 to solve Exercises 83-85.
In Exercises 83-84, use a graphing utility to obtain the path of a projectile launched from the ground $(h=0)$ at the specified values of θ and v_{0}. In each exercise, use the graph to determine the maximum height and the time at which the projectile reaches its maximum height. Also use the graph to determine the range of the projectile and the time it hits the ground. Round all answers to the nearest tenth.
83. $\theta=55^{\circ}, v_{0}=200$ feet per second
84. $\theta=35^{\circ}, v_{0}=300$ feet per second
85. A baseball player throws a ball with an initial velocity of 140 feet per second at an angle of 22° to the horizontal. The ball leaves the player's hand at a height of 5 feet.
a. Write the parametric equations that describe the ball's position as a function of time.
b. Use a graphing utility to obtain the path of the baseball.
c. Find the ball's maximum height and the time at which it reaches this height. Round all answers to the nearest tenth.
d. How long is the ball in the air?
e. How far does the ball travel?

Critical Thinking Exercises

Make Sense? In Exercises 86-89, determine whether each statement makes sense or does not make sense, and explain your reasoning.
86. Parametric equations allow me to use functions to describe curves that are not graphs of functions.
87. Parametric equations let me think of a curve as a path traced out by a moving point.
88. I represented $y=x^{2}-9$ with the parametric equations $x=t^{2}$ and $y=t^{4}-9$.
89. I found alternate pairs of parametric equations for the same rectangular equation.
90. Eliminate the parameter: $x=\cos ^{3} t$ and $y=\sin ^{3} t$.
91. The plane curve described by the parametric equations $x=3 \cos t$ and $y=3 \sin t, \quad 0 \leq t<2 \pi$, has a counterclockwise orientation. Alter one or both parametric equations so that you obtain the same plane curve with the opposite orientation.
92. The figure shows a circle of radius a rolling along a horizontal line. Point P traces out a cycloid. Angle t, in radians, is the angle through which the circle has rolled. C is the center of the circle.

Use the suggestions in parts (a) and (b) to prove that the parametric equations of the cycloid are $x=a(t-\sin t)$ and $y=a(1-\cos t)$.
a. Derive the parametric equation for x using the figure and

$$
x=O A-x A
$$

b. Derive the parametric equation for y using the figure and

$$
y=A C-B C
$$

Preview Exercises

Exercises 93-95 will help you prepare for the material covered in the next section.
93. Rewrite $r=\frac{4}{2+\cos \theta}$ by dividing the numerator and the denominator by 2 .
94. Complete the table of coordinates below. Where necessary, round to two decimal places. Then plot the resulting points, (r, θ), using a polar coordinate system.

$\boldsymbol{\theta}$	0	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$\boldsymbol{r}=\frac{4}{2+\cos \boldsymbol{\theta}}$						

95. a. Showing all steps, rewrite $\quad r=\frac{1}{3-3 \cos \theta} \quad$ as
$9 r^{2}=(1+3 r \cos \theta)^{2}$.
b. Express $9 r^{2}=(1+3 r \cos \theta)^{2}$ in rectangular coordinates. Which conic section is represented by the rectangular equation?

SECTION 9.6 Conic Sections in Polar Coordinates

Objectives

(1) Define conics in terms of a focus and a directrix.
2) Graph the polar equations of conics.

John Glenn made the first U.S.-manned flight around Earth

On the morning of February 20, 1962, millions of Americans collectively held their breath as the world's newest pioneer swept across the threshold of one of our last frontiers. Roughly one hundred miles above Earth, astronaut John Glenn sat comfortably in the weightless environment of a $9 \frac{1}{2}$-by-6-foot space capsule that offered the leg room of a Volkswagen "Beetle" and the aesthetics of a garbage can. Glenn became the first American to orbit Earth in a three-orbit mission that lasted slightly under 5 hours.

In this section's Exercise Set, you will see how John Glenn's historic orbit can be described using conic sections in polar coordinates. To obtain this model, we begin with a definition that permits a unified approach to the conic sections.
(1) Define conics in terms of a focus and a directrix.

FIGURE 9.57 The eccentricity for each conic
2. Graph the polar equations of conics.

The Focus-Directrix Definitions of the Conic Sections

The definition of a parabola is given in terms of a fixed point, the focus, and a fixed line, the directrix. By contrast, the definitions of an ellipse and a hyperbola are given in terms of two fixed points, the foci. It is possible to define each of these conic sections in terms of a point and a line. Figure $\mathbf{9 . 5 6}$ shows a conic section in the polar coordinate system. The fixed point, the focus, is at the pole. The fixed line, the directrix, is perpendicular to the polar axis.

FIGURE 9.56 A conic in the polar coordinate system

Focus-Directrix Definitions of the Conic Sections

Let F be a fixed point, the focus, and let D be a fixed line, the directrix, in a plane (Figure 9.56). A conic section, or conic, is the set of all points P in the plane such that

$$
\frac{P F}{P D}=e,
$$

where e is a fixed positive number, called the eccentricity.
If $e=1$, the conic is a parabola.
If $e<1$, the conic is an ellipse.
If $e>1$, the conic is a hyperbola.
Figure 9.57 illustrates the eccentricity for each type of conic. Notice that if $e=1$, the definition of the parabola is the same as the focus-directrix definition with which you are familiar.

Parabola
$\begin{aligned} \frac{P F}{P D} & =e \\ e & =1\end{aligned}$

Ellipse
$\frac{P F}{P D}=e$
$e<1$

Hyperbola

$$
\begin{aligned}
\frac{P F}{P D} & =\frac{P^{\prime} F}{P^{\prime} D^{\prime}}=e \\
e & >1
\end{aligned}
$$

Polar Equations of Conics

By locating a focus at the pole, all conics can be represented by similar equations in the polar coordinate system. In each of these equations,

- (r, θ) is a point on the graph of the conic.
- e is the eccentricity. (Remember that $e>0$.)
- p is the distance between the focus (located at the pole) and the directrix.

Standard Forms of the Polar Equations of Conics

Let the pole be a focus of a conic section of eccentricity e with the directrix p units from the focus. The equation of the conic is given by one of the four equations listed.
$r=\frac{e p}{1+e \cos \theta}$

$r=\frac{e p}{1+e \sin \theta}$

$r=\frac{e p}{1-e \cos \theta}$

$$
r=\frac{e p}{1-e \sin \theta}
$$

The graphs in the box illustrate two kinds of symmetry - symmetry with respect to the polar axis and symmetry with respect to the y-axis. If the equation contains $\cos \theta$, the polar axis is an axis of symmetry. If the equation contains $\sin \theta$, the line $\theta=\frac{\pi}{2}$, or the y-axis, is an axis of symmetry. Take a moment to verify these observations.

We will derive one of the equations displayed in the box. The other three equations are obtained in a similar manner. In Figure 9.58, let $P=(r, \theta)$ be any point on a conic section.

FIGURE 9.58

$$
\begin{aligned}
& \frac{P F}{P D}=e \quad \begin{array}{l}
\text { By definition, the ratio of the distance between } P \text { and the focus } \\
\text { to the distance between } P \text { and the directrix equals the positive } \\
\text { constant } e .
\end{array} \\
& \frac{r}{P D}=e \quad \begin{array}{l}
\text { Figure } 9.58 \text { shows that the distance from } P \text { to the focus, located } \\
\text { at the pole, is } r: P F=r .
\end{array} \\
& \frac{r}{p+F Q}=e \quad \begin{array}{l}
\text { Figure } 9.58 \text { shows that the distance from } P \text { to the directrix is } \\
p+F Q: P D=P+F Q .
\end{array} \\
& \frac{P+r \cos \theta}{p+}=e \quad \begin{array}{l}
\text { Using the triangle in the figure, } \cos \theta=\frac{F Q}{r} \text { and } F Q=r \cos \theta .
\end{array} \quad . \quad l
\end{aligned}
$$

By solving this equation for r, we will obtain the desired equation. Clear fractions by multiplying both sides by the least common denominator.

$$
\begin{aligned}
r & =e(p+r \cos \theta) & & \text { Multiply both sides by } p+r \cos \theta . \\
r & =e p+e r \cos \theta & & \text { Apply the distributive property. } \\
r-e r \cos \theta & =e p & & \text { Subtract er } \cos \theta \text { from both sides to collect terms } \\
r(1-e \cos \theta) & =e p & & \text { involving } r \text { on the same side. } \\
r & =\frac{e p}{1-e \cos \theta} & & \text { Divide both sides by } 1-e \cos \theta \text { and solve for } r .
\end{aligned}
$$

In summary, the standard forms of the polar equations of conics are

$$
r=\frac{e p}{1 \pm e \cos \theta} \text { and } r=\frac{e p}{1 \pm e \sin \theta} .
$$

In all forms, the constant term in the denominator is 1.

Graphing the Polar Equation of a Conic

1. If necessary, write the equation in one of the standard forms.
2. Use the standard form to determine values for e and p. Use the value of e to identify the conic.
3. Use the appropriate figure for the standard form of the equation shown in the box on page 986 to help guide the graphing process.

EXAMPLE 1 Graphing the Polar Equation of a Conic

Graph the polar equation:

$$
r=\frac{4}{2+\cos \theta} .
$$

SOLUTION

Step 1 Write the equation in one of the standard forms. The equation is not in standard form because the constant term in the denominator is not 1 .

$$
r=\frac{4}{2+\cos \theta}
$$

To obtain 1 in this position, divide the numerator and denominator by 2.

The equation in standard form is

$$
\begin{aligned}
& r= \frac{2}{1+\frac{1}{2} \cos \theta} \\
& e=\frac{1}{2}
\end{aligned} \quad \text { This equation is in the form } r=\frac{e p}{1+e \cos \theta} .
$$

Step 2 Use the standard form to find e and p, and identify the conic. The voice balloons show that

$$
e=\frac{1}{2} \quad \text { and } \quad e p=\frac{1}{2} p=2 .
$$

Thus, $e=\frac{1}{2}$ and $p=4$. Because $e=\frac{1}{2}<1$, the conic is an ellipse.

TECHNOLOGY

The graph of

$$
r=\frac{4}{2+\cos \theta}
$$

is obtained using the polar mode with angle measure in radians. To verify the hand-drawn graph in Figure 9.59(b), we used a $[-5,5,1]$ by $[-5,5,1]$ viewing rectangle with θ min $=0, \theta \max =2 \pi$, and θ step $=\frac{\pi}{48}$.

Step 3 Use the figure for the equation's standard form to guide the graphing process. The figure for the conic's standard form is shown in Figure 9.59(a). We have symmetry with respect to the polar axis. One focus is at the pole and the corresponding directrix is $x=4$, located four units to the right of the pole.

(a) Using $r=\frac{e p}{1+e \cos \theta}$ to graph

$$
r=\frac{2}{1+\frac{1}{2} \cos \theta}
$$

(b) The graph of
$r=\frac{4}{2+\cos \theta}$ or $r=\frac{2}{1+\frac{1}{2} \cos \theta}$

FIGURE 9.59
Figure 9.59(a) indicates that the major axis is on the polar axis. Thus, we find the vertices by selecting 0 and π for θ. The corresponding values for r are $\frac{4}{3}$ and 4, respectively. Figure $\mathbf{9 . 5 9}$ (b) shows the vertices, $\left(\frac{4}{3}, 0\right)$ and $(4, \pi)$.

You can sketch the upper half of the ellipse by plotting some points from $\theta=0$ to $\theta=\pi$.

$$
r=\frac{4}{2+\cos \theta}
$$

$\boldsymbol{\theta}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$
\boldsymbol{r}	2	2.7	3.1	3.5

Using symmetry with respect to the polar axis, you can sketch the lower half. The graph of the given equation is shown in Figure 9.59(b).

Check Point 1 Use the three steps shown in the preceding box on page 987 to graph the polar equation:

$$
r=\frac{4}{2-\cos \theta}
$$

EXAMPLE 2 Graphing the Polar Equation of a Conic

Graph the polar equation:

$$
r=\frac{12}{3+3 \sin \theta}
$$

SOLUTION

Step 1 Write the equation in one of the standard forms. The equation is not in standard form because the constant term in the denominator is not 1 . Divide the numerator and denominator by 3 to write the standard form.

$$
r=\frac{4-e p=4}{1+1 \sin \theta} \quad \text { This equation is in the form } r=\frac{e p}{1+e \sin \theta} \text {. }
$$

Step 2 Use the standard form to find e and p, and identify the conic. The voice balloons show that

$$
e=1 \quad \text { and } \quad e p=1 p=4
$$

Thus, $e=1$ and $p=4$. Because $e=1$, the conic is a parabola.
Step 3 Use the figure for the equation's standard form to guide the graphing process. Figure $9.60\left(\right.$ a) indicates that we have symmetry with respect to $\theta=\frac{\pi}{2}$. The focus is at the pole and, with $p=4$, the directrix is $y=4$, located four units above the pole.

Figure $9.60(a)$ indicates that the vertex is on the line $\theta=\frac{\pi}{2}$, or the y-axis. Thus, we find the vertex by selecting $\frac{\pi}{2}$ for θ. The corresponding value for r is 2 .
Figure 9.60(b) shows the vertex, $\left(2, \frac{\pi}{2}\right)$.

(a) Using $r=\frac{e p}{1+e \sin \theta}$ to graph $r=\frac{4}{1+\sin \theta}$

FIGURE 9.60

(b) The graph of $r=\frac{12}{3+3 \sin \theta}$ or
$r=\frac{4}{1+\sin \theta}$

To find where the parabola crosses the polar axis, select $\theta=0$ and $\theta=\pi$. The corresponding values for r are 4 and 4, respectively. Figure $9.60(\mathbf{b})$ shows the points $(4,0)$ and $(4, \pi)$ on the polar axis.

You can sketch the right half of the parabola by plotting some points from $\theta=0$ to $\theta=\frac{\pi}{2}$.

$$
r=\frac{12}{3+3 \sin \theta}
$$

$\boldsymbol{\theta}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
\boldsymbol{r}	2.7	2.3	2.1

Using symmetry with respect to $\theta=\frac{\pi}{2}$, you can sketch the left half. The graph of the given equation is shown in Figure 9.60(b).

Check Point 2 Use the three steps shown in the preceding box on page 987 to graph the polar equation:

$$
r=\frac{8}{4+4 \sin \theta}
$$

EXAMPLE 3 Graphing the Polar Equation of a Conic

Graph the polar equation:

$$
r=\frac{9}{3-6 \cos \theta} .
$$

SOLUTION

Step 1 Write the equation in one of the standard forms. We can obtain a constant term of 1 in the denominator by dividing each term by 3 .

$$
\begin{array}{cc}
e p=3 & 3 \\
r=\frac{\text { This equation is in the form }}{1-2 \cos \theta} & r=\frac{e p}{1-e \cos \theta}
\end{array}
$$

$$
e=2
$$

Step 2 Use the standard form to find e and p, and identify the conic. The voice balloons show that

$$
e=2 \quad \text { and } e p=2 p=3
$$

Thus, $e=2$ and $p=\frac{3}{2}$. Because $e=2>1$, the conic is a hyperbola.
Step 3 Use the figure for the equation's standard form to guide the graphing process. Figure 9.61(a) indicates that we have symmetry with respect to the polar axis. One focus is at the pole and, with $p=\frac{3}{2}$, the corresponding directrix is $x=-\frac{3}{2}$, located 1.5 units to the left of the pole.

Figure 9.61(a) indicates that the transverse axis is horizontal and the vertices lie on the polar axis. Thus, we find the vertices by selecting 0 and π for θ. Figure $9.61(b)$ shows the vertices, $(-3,0)$ and $(1, \pi)$.

To find where the hyperbola crosses the line $\theta=\frac{\pi}{2}$, select $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ for θ. Figure 9.61(b) shows the points $\left(3, \frac{\pi}{2}\right)$ and $\left(3, \frac{3 \pi}{2}\right)$ on the graph.

FIGURE 9.61
(a) $\mathrm{U} \operatorname{sing} r=\frac{e p}{1-e \cos \theta}$ to graph $r=\frac{3}{1-2 \cos \theta}$

(b) The graph of $r=\frac{9}{3-6 \cos \theta}$ or $r=\frac{3}{1-2 \cos \theta}$

We sketch the hyperbola by plotting some points from $\theta=0$ to $\theta=\pi$.

$$
r=\frac{3}{1-2 \cos \theta}
$$

$\boldsymbol{\theta}$	$\frac{\pi}{6}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$
\boldsymbol{r}	-4.1	1.5	1.1

Figure 9.61(b) shows the points $\left(\frac{\pi}{6},-4.1\right),\left(\frac{2 \pi}{3}, 1.5\right)$, and $\left(\frac{5 \pi}{6}, 1.1\right)$ on the graph. Observe that $\left(\frac{\pi}{6},-4.1\right)$ is on the lower half of the hyperbola. Using symmetry with respect to the polar axis, we sketch the entire hyperbola. The graph of the given equation is shown in Figure 9.61(b).

Check Point 3 Use the three steps shown in the preceding box on page 987 to graph the polar equation:

$$
r=\frac{9}{3-9 \cos \theta} .
$$

Blitzer Bonus || Modeling Planetary Motion

Polish astronomer Nicolaus Copernicus (1473-1543) was correct in stating that planets in our solar system revolve around the sun and not Earth. However, he incorrectly believed that celestial orbits move in perfect circles, calling his system "the ballet of the planets."

Table 9.4 indicates that the planets in our solar system have orbits with eccentricities that are much closer to 0 than to 1 . Most of these orbits are almost circular, which made it difficult for early astronomers to detect that they are actually ellipses.

German scientist and mathematician

Table 9.4 Eccentricities of Planetary Orbits

Mercury	0.2056	Jupiter	0.0484
Venus	0.0068	Saturn	0.0543
Earth	0.0167	Uranus	0.0460
Mars	0.0934	Neptune	0.0082

$$
r=\frac{\left(1-e^{2}\right) a}{1-e \cos \theta},
$$

where the length of the orbit's major axis is $2 a$. Describing planetary orbits, Kepler wrote, "The heavenly motions are nothing but a continuous song for several voices, to be perceived by the intellect, not by the ear."

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A conic section is the set of all points in the plane such that the ratio of the distance from a fixed point, called the \qquad to the distance from a fixed line,
called the \qquad equals a constant e, called
the \qquad If $e=1$, the conic is
a/an \qquad If $e<1$, the conic is a/an \qquad -.
If $e>1$, the conic is a/an \qquad .

Standard Forms of the Polar Equations of Conics

a. $r=\frac{e p}{1+e \cos \theta}$

Directrix is perpendicular to the polar axis at a distance p units to the right of the pole.
b. $\quad r=\frac{e p}{1-e \cos \theta}$

Directrix is perpendicular to the polar axis at a distance p units to the left of the pole.
c. $\quad r=\frac{e p}{1+e \sin \theta}$
d. $r=\frac{e p}{1-e \sin \theta}$

Directrix is parallel to the polar axis at a distance p units above the pole.
Directrix is parallel to the polar axis at a distance p units below the pole.

Use the four equations in the previous column to solve Exercises 2-4.
2. For all four equations shown in the previous column, the focus is at the \qquad and e represents the conic's \qquad -.
3. Consider the equation

$$
r=\frac{3}{1+3 \cos \theta} .
$$

$e=\ldots$, so this is the equation of a/an
$p=$ \qquad so the directrix is \qquad to the polar axis at a distance \qquad unit(s) to the \qquad of the pole.
4. Consider the equation

$$
r=\frac{2}{1-\sin \theta}
$$

$e=$ \qquad so this is the equation of a / an
$p=$ \qquad , so the directrix is \qquad to the polar axis at a distance \qquad unit(s) \qquad the pole.
5. The equation $r=\frac{12}{4-4 \cos \theta}$ is not in standard form because the constant term in the denominator is not \qquad .The equation can be written in standard form by \qquad -.

EXERCISE SET 9.6

Practice Exercises

In Exercises 1-8,
a. Identify the conic section that each polar equation represents.
b. Describe the location of a directrix from the focus located at the pole.

1. $r=\frac{3}{1+\sin \theta}$
2. $r=\frac{3}{1+\cos \theta}$
3. $r=\frac{6}{3-2 \cos \theta}$
4. $r=\frac{6}{3+2 \cos \theta}$
5. $r=\frac{8}{2+2 \sin \theta}$
6. $r=\frac{8}{2-2 \sin \theta}$
7. $r=\frac{12}{2-4 \cos \theta}$
8. $r=\frac{12}{2+4 \cos \theta}$

In Exercises 9-20, use the three steps shown in the box on page 0000 to graph each polar equation.
9. $r=\frac{1}{1+\sin \theta}$
10. $r=\frac{1}{1+\cos \theta}$
11. $r=\frac{2}{1-\cos \theta}$
12. $r=\frac{2}{1-\sin \theta}$
13. $r=\frac{12}{5+3 \cos \theta}$
14. $r=\frac{12}{5-3 \cos \theta}$
15. $r=\frac{6}{2-2 \sin \theta}$
16. $r=\frac{6}{2+2 \sin \theta}$
17. $r=\frac{8}{2-4 \cos \theta}$
18. $r=\frac{8}{2+4 \cos \theta}$
19. $r=\frac{12}{3-6 \cos \theta}$
20. $r=\frac{12}{3-3 \cos \theta}$

Practice Plus

In Exercises 21-28, describe a viewing rectangle, or window, such as $[-30,30,3]$ by $[-8,4,1]$, that shows a complete graph of each polar equation and minimizes unused portions of the screen.
21. $r=\frac{15}{3-2 \cos \theta}$
22. $r=\frac{16}{5-3 \cos \theta}$
23. $r=\frac{8}{1-\cos \theta}$
24. $r=\frac{8}{1+\cos \theta}$
25. $r=\frac{4}{1+3 \cos \theta}$
26. $r=\frac{16}{3+5 \cos \theta}$
27. $r=\frac{4}{5+5 \sin \theta}$
28. $r=\frac{2}{3+3 \sin \theta}$

Application Exercises

Halley's Comet has an elliptical orbit with the sun at one focus. Its orbit, shown in the figure below, is given approximately by

$$
r=\frac{1.069}{1+0.967 \sin \theta} .
$$

In the formula, r is measured in astronomical units. (One astronomical unit is the average distance from Earth to the sun, approximately 93 million miles.) Use the given formula and the figure to solve Exercises 29-30. Round to the nearest hundredth of an astronomical unit and the nearest million miles.

29. Find the distance from Halley's Comet to the sun at its shortest distance from the sun.
30. Find the distance from Halley's Comet to the sun at its greatest distance from the sun.
On February 20, 1962, John Glenn made the first U.S.-manned flight around the Earth for three orbits on Friendship 7. With Earth at one focus, the orbit of Friendship 7 is given approximately by

$$
r=\frac{4090.76}{1-0.0076 \cos \theta}
$$

where r is measured in miles from Earth's center. Use the formula and the figure shown to solve Exercises 31-32.

31. How far from Earth's center was John Glenn at his greatest distance from the planet? Round to the nearest mile. If the radius of Earth is 3960 miles, how far was he from Earth's surface at this point on the flight?
32. How far from Earth's center was John Glenn at his closest distance from the planet? Round to the nearest mile. If the radius of Earth is 3960 miles, how far was he from Earth's surface at this point on the flight?

Writing in Mathematics

33. How are the conics described in terms of a fixed point and a fixed line?
34. If all conics are defined in terms of a fixed point and a fixed line, how can you tell one kind of conic from another?
35. If you are given the standard form of the polar equation of a conic, how do you determine its eccentricity?
36. If you are given the standard form of the polar equation of a conic, how do you determine the location of a directrix from the focus at the pole?
37. Describe a strategy for graphing $r=\frac{1}{1+\sin \theta}$.
38. You meet an astronaut and she asks you to tell her something of interest about the elliptical orbit of John Glenn's first space voyage in 1962. Describe how to use the polar equation for orbits in the Blitzer Bonus on page 991, the equation for John Glenn's 1962 journey in Exercises 31-32, and a graphing utility to provide an interesting visual analysis.

Technology Exercises

Use the polar mode of a graphing utility with angle measure in radians to solve Exercises 39-42. Unless otherwise indicated, use $\theta \min =0, \theta \max =2 \pi$, and θ step $=\frac{\pi}{48}$. If you are not satisfied with the quality of the graph, experiment with smaller values for θ step.
39. Use a graphing utility to verify any five of your hand-drawn graphs in Exercises 9-20.
In Exercises 40-42, identify the conic that each polar equation represents. Then use a graphing utility to graph the equation.
40. $r=\frac{16}{4-3 \cos \theta}$
41. $r=\frac{12}{4+5 \sin \theta}$
42. $r=\frac{18}{6-6 \cos \theta}$

In Exercises 43-44, use a graphing utility to graph the equation. Then answer the given question.
43. $r=\frac{4}{1-\sin \left(\theta-\frac{\pi}{4}\right)}$; How does the graph differ from the graph of $r=\frac{4}{1-\sin \theta}$?
44. $r=\frac{3}{2+6 \cos \left(\theta+\frac{\pi}{3}\right)}$; How does the graph differ from the graph of $r=\frac{3}{2+6 \cos \theta}$?
45. Use the polar equation for planetary orbits,

$$
r=\frac{\left(1-e^{2}\right) a}{1-e \cos \theta}
$$

to find the polar equation of the orbit for Mercury and Earth.

$$
\begin{array}{ll}
\text { Mercury: } & e=0.2056 \text { and } a=36.0 \times 10^{6} \text { miles } \\
\text { Earth: } & e=0.0167 \text { and } a=92.96 \times 10^{6} \text { miles }
\end{array}
$$

Use a graphing utility to graph both orbits in the same viewing rectangle. What do you see about the orbits from their graphs that is not obvious from their equations?

Critical Thinking Exercises

Make Sense? In Exercxises 46-49, determine whether each statement makes sense or does not make sense, and explain your reasoning.
46. Eccentricity and polar coordinates enable me to see that ellipses, hyperbolas, and parabolas are a unified group of interrelated curves.
47. I graphed a conic in the form $r=\frac{e p}{1-e \cos \theta}$ that was symmetric with respect to the y-axis.
48. Given the focus is at the pole, I can write the polar equation of a conic section if I know its eccentricity and the rectangular equation of the directrix.
49. As long as I know how to graph in polar coordinates, a knowledge of conic sections is not necessary to graph the equations in Exercises 9-20.
50. Identify the conic and graph the equation:

$$
r=\frac{4 \sec \theta}{2 \sec \theta-1}
$$

In Exercises 51-52, write a polar equation of the conic that is named and described.
51. Ellipse: a focus at the pole; vertex: $(4,0) ; e=\frac{1}{2}$
52. Hyperbola: a focus at the pole; directrix: $x=-1 ; e=\frac{3}{2}$
53. Identify the conic and write its equation in rectangular coordinates: $r=\frac{1}{2-2 \cos \theta}$.
54. Prove that the polar equation of a planet's elliptical orbit is

$$
r=\frac{\left(1-e^{2}\right) a}{1-e \cos \theta}
$$

where e is the eccentricity and $2 a$ is the length of the major axis.

Preview Exercises

Exercises 55-57 will help you prepare for the material covered in the first section of the next chapter.
55. Evaluate $\frac{(-1)^{n}}{3^{n}-1}$ for $n=1,2,3$, and 4 .
56. Find the product of all positive integers from n down through 1 for $n=5$.
57. Evaluate $j^{2}+1$ for all consecutive integers from 1 to 6 , inclusive. Then find the sum of the six evaluations.

CHAPTER 9

Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

9.1 The Ellipse

a. An ellipse is the set of all points in a plane the sum of whose distances from two fixed points, the foci, is constant.
b. Standard forms of the equations of an ellipse with center at the origin are $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ [foci: $(-c, 0),(c, 0)$] and $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ [foci: $\left.(0,-c),(0, c)\right]$, where $c^{2}=a^{2}-b^{2}$ and $a^{2}>b^{2}$. See the box on page 922 and

Ex. 1, p. 923;
Ex. 2, p. 924;
Ex. 3, p. 924 Figure 9.6.
c. Standard forms of the equations of an ellipse centered at (h, k) are $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ and Ex. 4, p. 926 $\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1, a^{2}>b^{2}$. See Table 9.1 on page 926.

9.2 The Hyperbola

a. A hyperbola is the set of all points in a plane the difference of whose distances from two fixed points, the foci, is constant.
b. Standard forms of the equations of a hyperbola with center at the origin are $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ [foci: $(-c, 0),(c, 0)$] and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1[$ foci: $(0,-c),(0, c)]$, where $c^{2}=a^{2}+b^{2}$. See the box on page 934 and Figure 9.16.

Ex. 1, p. 935;
Ex. 2, p. 936

DEFINITIONS AND CONCEPTS

c. Asymptotes for $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are $y= \pm \frac{b}{a} x$. Asymptotes for $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ are $y= \pm \frac{a}{b} x$.
d. A procedure for graphing hyperbolas is given in the box on page 937 .
e. Standard forms of the equations of a hyperbola centered at (h, k) are $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ and $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$. See Table 9.2 on page 940.

9.3 The Parabola

a. A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus.
b. Standard forms of the equations of parabolas with vertex at the origin are $y^{2}=4 p x$ [focus: $(p, 0)$] and $x^{2}=4 p y$ [focus: $(0, p)$]. See the box on page 949 and Figure 9.31 on page 950 .
c. A parabola's latus rectum is a line segment that passes through its focus, is parallel to its directrix, and has its endpoints on the parabola. The length of the latus rectum for $y^{2}=4 p x$ and $x^{2}=4 p y$ is $|4 p|$. A parabola can be graphed using the vertex and endpoints of the latus rectum.
d. Standard forms of the equations of a parabola with vertex at (h, k) are $(y-k)^{2}=4 p(x-h)$ and $(x-h)^{2}=4 p(y-k)$. See Table 9.3 on page 953 and Figure 9.36.

9.4 Rotation of Axes

a. A nondegenerate conic section of the form $A x^{2}+C y^{2}+D x+E y+F=0$ in which A and C are not both zero is $\mathbf{1}$. a circle if $A=C$; 2. a parabola if $A C=0$; 3. an ellipse if $A \neq C$ and $A C>0$; 4. a hyperbola if $A C<0$.
b. Rotation of Axes Formulas
θ is the angle from the positive x-axis to the positive x^{\prime}-axis.

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \quad \text { and } \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

c. Amount of Rotation Formula

The general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

can be rewritten in x^{\prime} and y^{\prime} without an $x^{\prime} y^{\prime}$-term by rotating the axes through angle θ, where $\cot 2 \theta=\frac{A-C}{B}$ and θ is an acute angle.
d. If 2θ in $\cot 2 \theta$ is one of the familiar angles such as $30^{\circ}, 45^{\circ}$, or 60°, write the equation of a rotated conic in standard form using the five-step procedure in the box on page 967 .
e. If $\cot 2 \theta$ is not the cotangent of one of the more familiar angles, use a sketch of $\cot 2 \theta$ to find $\cos 2 \theta$. Then use

$$
\sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}} \text { and } \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}
$$

to find values for $\sin \theta$ and $\cos \theta$ in the rotation formulas.
f. A nondegenerate conic section of the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

is 1. a parabola if $B^{2}-4 A C=0 ; \mathbf{2}$. an ellipse or a circle if $B^{2}-4 A C<0 ; \mathbf{3}$. a hyperbola if $B^{2}-4 A C>0$.

9.5 Parametric Equations

a. The relationship between the parametric equations $x=f(t)$ and $y=g(t)$ and plane curves is described in the first box on page 975 .
b. Point plotting can be used to graph a plane curve described by parametric equations. See the second box on page 975 .
c. Plane curves can be sketched by eliminating the parameter t and graphing the resulting rectangular equation. It is sometimes necessary to change the domain of the rectangular equation to be consistent with the domain for the parametric equation in x.
d. Infinitely many pairs of parametric equations can represent the same plane curve. One pair for $y=f(x)$ is $x=t$ and $y=f(t)$, in which t is in the domain of f.

Ex. 3, p. 938;
Ex. 4, p. 939
Ex. 5, p. 940;
Ex. 6, p. 942

Ex. 1, p. 950;
Ex. 3, p. 952
Ex. 2, p. 951

Ex. 4, p. 953;
Ex. 5, p. 954

Ex. 1, p. 962

Ex. 2, p. 965

Ex. 3, p. 967

Ex. 4, p. 970

Ex. 5, p. 972

Ex. 1, p. 976

Ex. 2, p. 977;
Ex. 3, p. 978

Ex. 4, p. 979

DEFINITIONS AND CONCEPTS

9.6 Conic Sections in Polar Coordinates

a. The focus-directrix definitions of the conic sections are given in the box on page 985 . For all points on a conic, the ratio of the distance from a fixed point (focus) and the distance from a fixed line (directrix) is constant and is called its eccentricity. If $e=1$, the conic is a parabola. If $e<1$, the conic is an ellipse. If $e>1$, the conic is a hyperbola
b. Standard forms of the polar equations of conics are

$$
r=\frac{e p}{1 \pm e \cos \theta} \quad \text { and } \quad r=\frac{e p}{1 \pm e \sin \theta},
$$

in which (r, θ) is a point on the conic's graph, e is the eccentricity, and p is the distance between the focus (located at the pole) and the directrix. Details are shown in the box on page 986.
c. A procedure for graphing the polar equation of a conic is given in the box on page 987 .

REVIEW EXERCISES

Ex. 1, p. 987;
Ex. 2, p. 988;
Ex. 3, p. 990
9.1

In Exercises 1-8, graph each ellipse and locate the foci.

1. $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$
2. $\frac{y^{2}}{25}+\frac{x^{2}}{16}=1$
3. $4 x^{2}+y^{2}=16$
4. $4 x^{2}+9 y^{2}=36$
5. $\frac{(x-1)^{2}}{16}+\frac{(y+2)^{2}}{9}=1$
6. $\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{16}=1$
7. $4 x^{2}+9 y^{2}+24 x-36 y+36=0$
8. $9 x^{2}+4 y^{2}-18 x+8 y-23=0$

In Exercises 9-11, find the standard form of the equation of each ellipse satisfying the given conditions.
9. Foci: $(-4,0),(4,0)$; Vertices: $(-5,0),(5,0)$
10. Foci: $(0,-3),(0,3)$; Vertices: $(0,-6),(0,6)$
11. Major axis horizontal with length 12 ; length of minor axis $=4$; center: $(-3,5)$.
12. A semielliptical arch supports a bridge that spans a river 20 yards wide. The center of the arch is 6 yards above the river's center. Write an equation for the ellipse so that the x-axis coincides with the water level and the y-axis passes through the center of the arch.

13. A semielliptic archway has a height of 15 feet at the center and a width of 50 feet, as shown in the figure. The 50 -foot width consists of a two-lane road. Can a truck that is 12 feet high and 14 feet wide drive under the archway without going into the other lane?

14. An elliptical pool table has a ball placed at each focus. If one ball is hit toward the side of the table, explain what will occur.

9.2

In Exercises 15-22, graph each hyperbola. Locate the foci and find the equations of the asymptotes.
15. $\frac{x^{2}}{16}-y^{2}=1$
16. $\frac{y^{2}}{16}-x^{2}=1$
17. $9 x^{2}-16 y^{2}=144$
18. $4 y^{2}-x^{2}=16$
19. $\frac{(x-2)^{2}}{25}-\frac{(y+3)^{2}}{16}=1$
20. $\frac{(y+2)^{2}}{25}-\frac{(x-3)^{2}}{16}=1$
21. $y^{2}-4 y-4 x^{2}+8 x-4=0$
22. $x^{2}-y^{2}-2 x-2 y-1=0$

In Exercises 23-24, find the standard form of the equation of each hyperbola satisfying the given conditions.
23. Foci: $(0,-4),(0,4)$; Vertices: $(0,-2),(0,2)$
24. Foci: $(-8,0),(8,0)$; Vertices: $(-3,0),(3,0)$
25. Explain why it is not possible for a hyperbola to have foci at $(0,-2)$ and $(0,2)$ and vertices at $(0,-3)$ and $(0,3)$.
26. Radio tower M_{2} is located 200 miles due west of radio tower M_{1}. The situation is illustrated in the figure shown, where a coordinate system has been superimposed. Simultaneous radio signals are sent from each tower to a ship, with the signal from M_{2} received 500 microseconds before the signal from M_{1}. Assuming that radio signals travel at 0.186 mile per microsecond, determine the equation of the hyperbola on which the ship is located.

9.3

In Exercises 27-33, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola.
27. $y^{2}=8 x$
28. $x^{2}+16 y=0$
29. $(y-2)^{2}=-16 x$
30. $(x-4)^{2}=4(y+1)$
31. $x^{2}+4 y=4$
32. $y^{2}-4 x-10 y+21=0$
33. $x^{2}-4 x-2 y=0$

In Exercises 34-35, find the standard form of the equation of each parabola satisfying the given conditions.
34. Focus: $(12,0)$; Directrix: $x=-12$
35. Focus: $(0,-11)$; Directrix: $y=11$
36. An engineer is designing headlight units for automobiles. The unit has a parabolic surface with a diameter of 12 inches and a depth of 3 inches. The situation is illustrated in the figure, where a coordinate system has been superimposed. What is the equation of the parabola in this system? Where should the light source be placed? Describe this placement relative to the vertex.

37. The George Washington Bridge spans the Hudson River from New York to New Jersey. Its two towers are 3500 feet apart and rise 316 feet above the road. As shown in the figure, the cable between the towers has the shape of a parabola and the cable just touches the sides of the road midway between the towers. What is the height of the cable 1000 feet from a tower?

38. The giant satellite dish in the figure shown is in the shape of a parabolic surface. Signals strike the surface and are reflected to the focus, where the receiver is located. The diameter of the dish is 300 feet and its depth is 44 feet. How far, to the nearest foot, from the base of the dish should the receiver be placed?

9.4

In Exercises 39-46, identify the conic represented by each equation without completing the square or using a rotation of axes.
39. $y^{2}+4 x+2 y-15=0$
40. $x^{2}+16 y^{2}-160 y+384=0$
41. $16 x^{2}+64 x+9 y^{2}-54 y+1=0$
42. $4 x^{2}-9 y^{2}-8 x+12 y-144=0$
43. $5 x^{2}+2 \sqrt{3} x y+3 y^{2}-18=0$
44. $5 x^{2}-8 x y+7 y^{2}-9 \sqrt{5} x-9=0$
45. $x^{2}+6 x y+9 y^{2}-2 y=0$
46. $x^{2}-2 x y+3 y^{2}+2 x+4 y-1=0$

In Exercises 47-51,
a. Rewrite the equation in a rotated $x^{\prime} y^{\prime}$-system without an $x^{\prime} y^{\prime}$-term.
b. Express the equation involving x^{\prime} and y^{\prime} in the standard form of a conic section.
c. Use the rotated system to graph the equation.
47. $x y-4=0$
48. $x^{2}+x y+y^{2}-1=0$
49. $4 x^{2}+10 x y+4 y^{2}-9=0$
50. $6 x^{2}-6 x y+14 y^{2}-45=0$
51. $x^{2}+2 \sqrt{3} x y+3 y^{2}-12 \sqrt{3} x+12 y=0$

9.5

In Exercises 52-57, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve.
52. $x=2 t-1, y=1-t ;-\infty<t<\infty$
53. $x=t^{2}, y=t-1 ;-1 \leq t \leq 3$
54. $x=4 t^{2}, y=t+1 ;-\infty<t<\infty$
55. $x=4 \sin t, y=3 \cos t ; 0 \leq t<\pi$
56. $x=3+2 \cos t, y=1+2 \sin t ; 0 \leq t<2 \pi$
57. $x=3 \sec t, y=3 \tan t ; 0 \leq t \leq \frac{\pi}{4}$
58. Find two different sets of parametric equations for $y=x^{2}+6$.
59. The path of a projectile that is launched h feet above the ground with an initial velocity of v_{0} feet per second and at an angle θ with the horizontal is given by the parametric equations

$$
x=\left(v_{0} \cos \theta\right) t \quad \text { and } \quad y=h+\left(v_{0} \sin \theta\right) t-16 t^{2}
$$

where t is the time, in seconds, after the projectile was launched. A football player throws a football with an initial velocity of 100 feet per second at an angle of 40° to the horizontal. The ball leaves the player's hand at a height of 6 feet.
a. Find the parametric equations that describe the position of the ball as a function of time.
b. Describe the ball's position after 1,2 , and 3 seconds. Round to the nearest tenth of a foot.
c. How long, to the nearest tenth of a second, is the ball in flight? What is the total horizontal distance that it travels before it lands?
d. Graph the parametric equations in part (a) using a graphing utility. Use the graph to determine when the ball is at its maximum height. What is its maximum height? Round answers to the nearest tenth.

9.6

In Exercises 60-65,

a. If necessary, write the equation in one of the standard forms for a conic in polar coordinates.
b. Determine values for e and p. Use the value of e to identify the conic section.
c. Graph the given polar equation.
60. $r=\frac{4}{1-\sin \theta}$
61. $r=\frac{6}{1+\cos \theta}$
62. $r=\frac{6}{2+\sin \theta}$
63. $r=\frac{2}{3-2 \cos \theta}$
64. $r=\frac{6}{3+6 \sin \theta}$
65. $r=\frac{8}{4+16 \cos \theta}$

CHAPTER 9 TEST

In Exercises 1-5, graph the conic section with the given equation. For ellipses, find the foci. For hyperbolas, find the foci and give the equations of the asymptotes. For parabolas, find the vertex, focus, and directrix.

1. $9 x^{2}-4 y^{2}=36$
2. $x^{2}=-8 y$
3. $\frac{(x+2)^{2}}{25}+\frac{(y-5)^{2}}{9}=1$
4. $4 x^{2}-y^{2}+8 x+2 y+7=0$
5. $(x+5)^{2}=8(y-1)$

In Exercises 6-8, find the standard form of the equation of the conic section satisfying the given conditions.
6. Ellipse; Foci: $(-7,0),(7,0)$; Vertices: $(-10,0),(10,0)$
7. Hyperbola; Foci: $(0,-10),(0,10)$; Vertices: $(0,-7),(0,7)$
8. Parabola; Focus: $(50,0)$; Directrix: $x=-50$
9. A sound whispered at one focus of a whispering gallery can be heard at the other focus. The figure below shows a whispering gallery whose cross section is a semielliptical arch with a height of 24 feet and a width of 80 feet. How far from the room's center should two people stand so that they can whisper back and forth and be heard?

10. An engineer is designing headlight units for cars. The unit shown in the figure below has a parabolic surface with a diameter of 6 inches and a depth of 3 inches.

a. Using the coordinate system that has been positioned on the unit, find the parabola's equation.
b. If the light source is located at the focus, describe its placement relative to the vertex.

In Exercises 11-12, identify each equation without completing the square or using a rotation of axes.
11. $x^{2}+9 y^{2}+10 x-18 y+25=0$
12. $x^{2}+y^{2}+x y+3 x-y-3=0$
13. For the equation

$$
7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0
$$

determine what angle of rotation would eliminate the $x^{\prime} y^{\prime}$-term in a rotated $x^{\prime} y^{\prime}$-system.

In Exercises 14-15, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve.
14. $x=t^{2}, y=t-1 ;-\infty<t<\infty$
15. $x=1+3 \sin t, y=2 \cos t ; 0 \leq t<2 \pi$

In Exercises 16-17, identify the conic section and graph the polar equation.
16. $r=\frac{2}{1-\cos \theta}$
17. $r=\frac{4}{2+\sin \theta}$

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-9)

Solve each equation or inequality in Exercises 1-7.

1. $2(x-3)+5 x=8(x-1)$
2. $-3(2 x-4)>2(6 x-12)$
3. $x-5=\sqrt{x+7}$
4. $(x-2)^{2}=20$
5. $|2 x-1| \geq 7$
6. $3 x^{3}+4 x^{2}-7 x+2=0$
7. $\log _{2}(x+1)+\log _{2}(x-1)=3$

Solve each system in Exercises 8-10.
8. $\left\{\begin{array}{l}3 x+4 y=2 \\ 2 x+5 y=-1\end{array}\right.$
9. $\left\{\begin{array}{l}2 x^{2}-y^{2}=-8 \\ x-y=6\end{array}\right.$
10. (Use matrices.)

$$
\left\{\begin{aligned}
& x-y+z= 17 \\
&-4 x+y+5 z= 2 \\
& 2 x+3 y+z=8
\end{aligned}\right.
$$

In Exercises 11-13, graph each equation, function, or system in a rectangular coordinate system.
11. $f(x)=(x-1)^{2}-4$
12. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
13. $\left\{\begin{aligned} 5 x+y & \leq 10 \\ y & \geq \frac{1}{4} x+2\end{aligned}\right.$
14. a. List all possible rational roots of

$$
32 x^{3}-52 x^{2}+17 x+3=0
$$

b. The graph of $f(x)=32 x^{3}-52 x^{2}+17 x+3$ is shown in a $[-1,3,1]$ by $[-2,6,1]$ viewing rectangle. Use the graph of f and synthetic division to solve the equation in part (a).
15. The figure shows the graph of $y=f(x)$ and its two vertical asymptotes.

a. Find the domain and the range of f.
b. What is the relative minimum and where does it occur?
c. Find the interval on which f is increasing.
d. Find $f(-1)-f(0)$.
e. Find $(f \circ f)(1)$.
f. Use arrow notation to complete this statement:

$$
f(x) \rightarrow \infty \text { as }
$$

\qquad or as \qquad .
g. Graph $g(x)=f(x-2)+1$.
h. Graph $h(x)=-f(2 x)$.
16. If $f(x)=x^{2}-4$ and $g(x)=x+2$, find $(g \circ f)(x)$.
17. Expand using logarithmic properties. Where possible, evaluate logarithmic expressions.

$$
\log _{5}\left(\frac{x^{3} \sqrt{y}}{125}\right)
$$

18. Write the slope-intercept form of the equation of the line passing through $(1,-4)$ and $(-5,8)$.
19. Rent-a-Truck charges a daily rental rate for a truck of $\$ 39$ plus $\$ 0.16$ a mile. A competing agency, Ace Truck Rentals, charges $\$ 25$ a day plus $\$ 0.24$ a mile for the same truck. How many miles must be driven in a day to make the daily cost of both agencies the same? What will be the cost?
20. The local cable television company offers two deals. Basic cable service with one movie channel costs $\$ 35$ per month. Basic service with two movie channels cost $\$ 45$ per month. Find the charge for the basic cable service and the charge for each movie channel.
21. Verify the identity: $\frac{\csc \theta-\sin \theta}{\sin \theta}=\cot ^{2} \theta$.
22. Graph one complete cycle of $y=2 \cos (2 x+\pi)$.
23. If $\mathbf{v}=3 \mathbf{i}-6 \mathbf{j}$ and $\mathbf{w}=\mathbf{i}+\mathbf{j}$, find $(\mathbf{v} \cdot \mathbf{w}) \mathbf{w}$.
24. Solve for $\theta: \sin 2 \theta=\sin \theta, 0 \leq \theta<2 \pi$.
25. In oblique triangle $A B C, A=64^{\circ}, B=72^{\circ}$, and $a=13.6$. Solve the triangle. Round lengths to the nearest tenth.

This page intentionally left blank

SEQUENCES, INDUCTION, AND PROBÁBILITY

Something incredible has happened. your

 college roommate, a gifted athlete, has been given a six-year contract with a professional baseball team. He will be playing against the likes of Albert Pujols and Justin Verlander. Management offers him three options. One is a beginning salary of $\$ 1,700,000$ with annual increases of $\$ 70,000$ per year starting in the second year. A second option is $\$ 1,700,000$ the first year with an annual increase of 2% per year beginning in the second year. The third option involves less money the first year—\$1,500,000—but there is an annual increase of 9% yearly after that. Which option offers the most money over the six-year contract?

SECTION 10.1

Objectives

Find particular terms of a sequence from the general term.(2) Use recursion formulas.
(3) Use factorial notation.
(4) Use summation notation.

Blitzer Bonus

Fibonacci Numbers on the Piano Keyboard

Numbers in the Fibonacci sequence can be found in an octave on the piano keyboard. The octave contains 2 black keys in one cluster and 3 black keys in another cluster, for a total of 5 black keys. It also has 8 white keys, for a total of 13 keys. The numbers $2,3,5,8$, and 13 are the third through seventh terms of the Fibonacci sequence.

Sequences and Summation Notation

Sequences

Many creations in nature involve intricate mathematical designs, including a variety of spirals. For example, the arrangement of the individual florets in the head of a sunflower forms spirals. In some species, there are 21 spirals in the clockwise direction and 34 in the counterclockwise direction. The precise numbers depend on the species of sunflower: 21 and 34 , or 34 and 55 , or 55 and 89 , or even 89 and 144 .

This observation becomes even more interesting when we consider a sequence of numbers investigated by Leonardo of Pisa,
 also known as Fibonacci, an Italian mathematician of the thirteenth century. The Fibonacci sequence of numbers is an infinite sequence that begins as follows:

$$
1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots .
$$

The first two terms are 1. Every term thereafter is the sum of the two preceding terms. For example, the third term, 2, is the sum of the first and second terms: $1+1=2$. The fourth term, 3 , is the sum of the second and third terms: $1+2=3$, and so on. Did you know that the number of spirals in a daisy or a sunflower, 21 and 34 , are two Fibonacci numbers? The number of spirals in a pine cone, 8 and 13, and a pineapple, 8 and 13, are also Fibonacci numbers.

We can think of the Fibonacci sequence as a function. The terms of the sequence

$$
1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

are the range values for a function f whose domain is the set of positive integers.

Domain:	1,	2,	3,	4,	5,	6,	7,	\ldots
	\downarrow							
Range:	1,	1,	2,	3,	5,	8,	13,	\ldots

Thus, $f(1)=1, f(2)=1, f(3)=2, f(4)=3, f(5)=5, f(6)=8, f(7)=13$, and so on.

The letter a with a subscript is used to represent function values of a sequence, rather than the usual function notation. The subscripts make up the domain of the sequence and they identify the location of a term. Thus, a_{1} represents the first term of the sequence, a_{2} represents the second term, a_{3} the third term, and so on. This notation is shown for the first six terms of the Fibonacci sequence:

The notation a_{n} represents the nth term, or general term, of a sequence. The entire sequence is represented by $\left\{a_{n}\right\}$.

Find particular terms of a sequence from the general term.

GREAT QUESTION!

What effect does $(-1)^{n}$ have on the terms of a sequence?

The factor $(-1)^{n}$ in the general term of a sequence causes the signs of the terms to alternate between positive and negative, depending on whether n is even or odd.

Definition of a Sequence

An infinite sequence $\left\{a_{n}\right\}$ is a function whose domain is the set of positive integers. The function values, or terms, of the sequence are represented by

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

Sequences whose domains consist only of the first n positive integers are called finite sequences.

EXAMPLE 1 Writing Terms of a Sequence from the General Term

Write the first four terms of the sequence whose nth term, or general term, is given:
a. $a_{n}=3 n+4$
b. $a_{n}=\frac{(-1)^{n}}{3^{n}-1}$.

SOLUTION

a. We need to find the first four terms of the sequence whose general term is $a_{n}=3 n+4$. To do so, we replace n in the formula with $1,2,3$, and 4 .

$\begin{gathered} a_{1}, \text { ist } \\ \text { term } \end{gathered}$	$\begin{gathered} a_{2}, 2 \text { 2nd } \\ \text { term } \end{gathered}$
$a_{3,} 3 \text { 3rd }$	$a_{\substack{4 \\ \text { term }}}$

The first four terms are $7,10,13$, and 16 . The sequence defined by $a_{n}=3 n+4$ can be written as

$$
7,10,13,16, \ldots, 3 n+4, \ldots
$$

b. We need to find the first four terms of the sequence whose general term is $a_{n}=\frac{(-1)^{n}}{3^{n}-1}$. To do so, we replace each occurrence of n in the formula with $1,2,3$, and 4 .

$$
\begin{aligned}
& \underset{\substack{a_{1}, \text { ist } \\
\text { term }}}{\substack{(-1)^{1} \\
3^{1}-1}}=\frac{-1}{3-1}=-\frac{1}{2} \quad \stackrel{\substack{a_{2}, \text { 2nd } \\
\text { term }}}{ } \frac{(-1)^{2}}{3^{2}-1}=\frac{1}{9-1}=\frac{1}{8}
\end{aligned}
$$

The first four terms are $-\frac{1}{2}, \frac{1}{8},-\frac{1}{26}$, and $\frac{1}{80}$. The sequence defined by $\frac{(-1)^{n}}{3^{n}-1}$ can be written as

$$
-\frac{1}{2}, \frac{1}{8},-\frac{1}{26}, \frac{1}{80}, \ldots, \frac{(-1)^{n}}{3^{n}-1}, \ldots
$$

Check Point 1 Write the first four terms of the sequence whose nth term, or general term, is given:
a. $a_{n}=2 n+5$
b. $a_{n}=\frac{(-1)^{n}}{2^{n}+1}$.

Although sequences are usually named with the letter a, any lowercase letter can be used. For example, the first four terms of the sequence $\left\{b_{n}\right\}=\left\{\left(\frac{1}{2}\right)^{n}\right\}$ are $b_{1}=\frac{1}{2}, b_{2}=\frac{1}{4}, b_{3}=\frac{1}{8}$, and $b_{4}=\frac{1}{16}$.

Because a sequence is a function whose domain is the set of positive integers, the graph of a sequence is a set of discrete points. For example, consider the sequence whose general term is $a_{n}=\frac{1}{n}$. How does the graph of this sequence differ from the

TECHNOLOGY

Graphing utilities can write the terms of a sequence and graph them. For example, to find the first six terms of $\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}$, enter

The first few terms of the sequence are shown in the viewing rectangle. By pressing the right arrow key to scroll right, you can see the remaining terms.

```
sea(1/%,%,1,6,1)
{1 .5 .35333333...
AnspFr:c
<1 1/2 1/3 1/4
```

Use recursion formulas.
graph of the function $f(x)=\frac{1}{x}$? The graph of $f(x)=\frac{1}{x}$ is shown in Figure 10.1(a) for positive values of x. To obtain the graph of the sequence $\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}$, remove all the points from the graph of f except those whose x-coordinates are positive integers. Thus, we remove all points except $(1,1),\left(2, \frac{1}{2}\right),\left(3, \frac{1}{3}\right),\left(4, \frac{1}{4}\right)$, and so on. The remaining points are the graph of the sequence $\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}$, shown in Figure 10.1(b). Notice that the horizontal axis is labeled n and the vertical axis is labeled a_{n}.

FIGURE 10.1(a) The graph of $f(x)=\frac{1}{x}, x>0$

FIGURE 10.1(b) The graph of

$$
\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}
$$

Comparing a continuous graph to the graph of a sequence

Recursion Formulas

In Example 1, the formulas used for the nth term of a sequence expressed the term as a function of n, the number of the term. Sequences can also be defined using recursion formulas. A recursion formula defines the nth term of a sequence as a function of the previous term. Our next example illustrates that if the first term of a sequence is known, then the recursion formula can be used to determine the remaining terms.

EXAMPLE 2 Using a Recursion Formula

Find the first four terms of the sequence in which $a_{1}=5$ and $a_{n}=3 a_{n-1}+2$ for $n \geq 2$.

SOLUTION

Let's be sure we understand what is given.

Now let's write the first four terms of this sequence.

$$
\begin{aligned}
a_{1} & =5 & & \text { This is the given first term. } \\
a_{2} & =3 a_{1}+2 & & \text { Use } a_{n}=3 a_{n-1}+2, \text { with } n=2 . \\
& =3(5)+2=17 & & \text { Thus, } a_{2}=3 a_{2-1}+2=3 a_{1}+2 . \\
a_{3} & =3 a_{2}+2 & & \text { Substitute } 5 \text { for } a_{1} . \\
& =3(17)+2=53 & & \text { Again use } a_{n}=3 a_{n-1}+2, \text { with } n=3 . \\
a_{4} & =3 a_{3}+2 & & \begin{array}{l}
\text { Substitute } 17 \text { for } a_{2} .
\end{array} \\
& =3(53)+2=161 & \begin{array}{l}
\text { Notice that } a_{4} \text { is defined in terms of } a_{3} .
\end{array} & \begin{array}{l}
\text { We used } a_{n}=3 a_{n-1}+2, \text { with } n=4 . \\
\text { Use the value of } a_{3}, \text { the third term, } \\
\text { obtained above. }
\end{array}
\end{aligned}
$$

The first four terms are 5,17,53, and 161.

Use factorial notation.

```
Blitzer Banus
    Factorials from
        O through 20
                                1
                            1
                            2
                            6
                            24
                            1 2 0
                            7 2 0
                    5040
                    40,320
                    362,880
                    3,628,800
                    39,916,800
                            479,001,600
                            6,227,020,800
                87,178,291,200
            1,307,674,368,000
            20,922,789,888,000
            355,687,428,096,000
            6,402,373,705,728,000
            121,645,100,408,832,000
                        2,432,902,008,176,640,000
```

0 !

As n increases, n ! grows very rapidly. Factorial growth is more explosive than exponential growth discussed in Chapter 4.

TECHNOLOGY

Most calculators have factorial keys. To find 5!, most calculators use one of the following:
Many Scientific Calculators
$5 x!$

Many Graphing Calculators

$$
5!\text { ENTER. }
$$

Because n ! becomes quite large as n increases, your calculator will display these larger values in scientific notation.

Factorial Notation

Products of consecutive positive integers occur quite often in sequences. These products can be expressed in a special notation, called factorial notation.

Factorial Notation

If n is a positive integer, the notation n ! (read " n factorial") is the product of all positive integers from n down through 1 .

$$
n!=n(n-1)(n-2) \cdots(3)(2)(1)
$$

0 ! (zero factorial), by definition, is 1 .

$$
0!=1
$$

The values of n ! for the first six positive integers are

$$
\begin{aligned}
& 1!=1 \\
& 2!=2 \cdot 1=2 \\
& 3!=3 \cdot 2 \cdot 1=6 \\
& 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
& 6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 .
\end{aligned}
$$

Factorials affect only the number or variable that they follow unless grouping symbols appear. For example,

$$
2 \cdot 3!=2(3 \cdot 2 \cdot 1)=2 \cdot 6=12
$$

whereas

$$
(2 \cdot 3)!=6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720
$$

In this sense, factorials are similar to exponents.

EXAMPLE 3 Finding Terms of a Sequence Involving Factorials

Write the first four terms of the sequence whose nth term is

$$
a_{n}=\frac{2^{n}}{(n-1)!}
$$

SOLUTION
We need to find the first four terms of the sequence. To do so, we replace each n in $\frac{2^{n}}{(n-1)!}$ with $1,2,3$, and 4 .

$$
\begin{array}{ll}
\substack{\begin{subarray}{c}{a_{1}, \text { lst } \\
\text { term }} }} & \frac{2^{1}}{(1-1)!}=\frac{2}{0!}=\frac{2}{1}=2 \\
\begin{array}{c}
a_{2,}, \text { 2nd } \\
\text { term }
\end{array} & \frac{2^{2}}{(2-1)!}=\frac{4}{1!}=\frac{4}{1}=4 \\
\begin{array}{c}
a_{3}, \text { 3rd } \\
\text { term }
\end{array} & \frac{2^{3}}{(3-1)!}=\frac{8}{2!}=\frac{8}{2 \cdot 1}=4 \\
\begin{array}{c}
a_{4,}, 4 \text { th } \\
\text { term }
\end{array} & \frac{2^{4}}{(4-1)!}=\frac{16}{3!}=\frac{16}{3 \cdot 2 \cdot 1}=\frac{16}{6}=\frac{8}{3}
\end{array}
$$

The first four terms are $2,4,4$, and $\frac{8}{3}$.
$\$$ Check Point 3 Write the first four terms of the sequence whose nth term is

$$
a_{n}=\frac{20}{(n+1)!}
$$

When evaluating fractions with factorials in the numerator and the denominator, try to reduce the fraction before performing the multiplications. For example, consider $\frac{26!}{21!}$. Rather than write out $26!$ as the product of all integers from 26 down to 1 , we can express 26 ! as

$$
26!=26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 21!.
$$

In this way, we can divide both the numerator and the denominator by the common factor, 21!.

$$
\frac{26!}{21!}=\frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 24!}{24!}=26 \cdot 25 \cdot 24 \cdot 23 \cdot 22=7,893,600
$$

EXAMPLE 4 Evaluating Fractions with Factorials

Evaluate each factorial expression:
a. $\frac{10!}{2!8!}$
b. $\frac{(n+1)!}{n!}$.

SOLUTION
a. $\frac{10!}{2!8!}=\frac{10 \cdot 9 \cdot 8!}{2 \cdot 1 \cdot 8!}=\frac{90}{2}=45$
b. $\frac{(n+1)!}{n!}=\frac{(n+1) \cdot n!}{n!}=n+1$
\oint Check Point 4 Evaluate each factorial expression:
a. $\frac{14!}{2!12!}$
b. $\frac{n!}{(n-1)!}$.
(4) Use summation notation.

Summation Notation

It is sometimes useful to find the sum of the first n terms of a sequence. For example, consider the cost of raising a child born in the United States in 2006 to a middleincome ($\$ 43,200-\$ 72,600$ per year) family, shown in Table 10.1.

We can let a_{n} represent the cost of raising a child in year n, where $n=1$ corresponds to 2006, $n=2$ to 2007, $n=3$ to 2008 , and so on. The terms of the finite sequence in Table $\mathbf{1 0 . 1}$ are given as follows:

Why might we want to add the terms of this sequence? We do this to find the total cost of raising a child born in 2006 from birth through age 17. Thus,

$$
\begin{aligned}
a_{1}+ & a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}+a_{11}+a_{12}+a_{13}+a_{14}+a_{15}+a_{16}+a_{17}+a_{18} \\
& =10,600+10,930+11,270+11,960+12,330+12,710+12,950+13,350+13,760 \\
& \quad+13,970+14,400+14,840+16,360+16,860+17,390+18,430+19,000+19,590 \\
& =260,700 .
\end{aligned}
$$

We see that the total cost of raising a child born in 2006 from birth through age 17 is $\$ 260,700$.

There is a compact notation for expressing the sum of the first n terms of a sequence. For example, rather than write
$a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}+a_{11}+a_{12}+a_{13}+a_{14}+a_{15}+a_{16}+a_{17}+a_{18}$,
we can use summation notation to express the sum as

$$
\sum_{i=1}^{18} a_{i}
$$

We read this expression as "the sum as i goes from 1 to 18 of a_{i}." The letter i is called the index of summation and is not related to the use of i to represent $\sqrt{-1}$.

You can think of the symbol Σ (the uppercase Greek letter sigma) as an instruction to add up the terms of a sequence.

Summation Notation

The sum of the first n terms of a sequence is represented by the summation notation

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

where i is the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.

Any letter can be used for the index of summation. The letters i, j, and k are used commonly. Furthermore, the lower limit of summation can be an integer other than 1.

When we write out a sum that is given in summation notation, we are expanding the summation notation. Example 5 shows how to do this.

EXAMPLE 5 Using Summation Notation

Expand and evaluate the sum:
a. $\sum_{i=1}^{6}\left(i^{2}+1\right)$
b. $\sum_{k=4}^{7}\left[(-2)^{k}-5\right]$
c. $\sum_{i=1}^{5} 3$.

TECHNOLOGY

Graphing utilities can calculate the sum of a sequence. For example, to find the sum of the sequence in Example 5(a), enter

$$
\text { SUM SEQ }\left(x^{2}+1, x, 1,6,1\right) \text {. }
$$

Then press ENTER; 97 should be displayed. Use this capability to verify Example 5(b).

SOLUTION

a. To find $\sum_{i=1}^{6}\left(i^{2}+1\right)$, we must replace i in the expression $i^{2}+1$ with all consecutive integers from 1 to 6 , inclusive. Then we add.

$$
\begin{aligned}
\sum_{i=1}^{6}\left(i^{2}+1\right)= & \left(1^{2}+1\right)+\left(2^{2}+1\right)+\left(3^{2}+1\right)+\left(4^{2}+1\right) \\
& +\left(5^{2}+1\right)+\left(6^{2}+1\right) \\
= & 2+5+10+17+26+37 \\
= & 97
\end{aligned}
$$

b. The index of summation in $\sum_{k=4}^{7}\left[(-2)^{k}-5\right]$ is k. First we evaluate $(-2)^{k}-5$ for all consecutive integers from 4 through 7, inclusive. Then we add.

$$
\begin{aligned}
\sum_{k=4}^{7}\left[(-2)^{k}-5\right]= & {\left[(-2)^{4}-5\right]+\left[(-2)^{5}-5\right] } \\
& +\left[(-2)^{6}-5\right]+\left[(-2)^{7}-5\right] \\
= & (16-5)+(-32-5)+(64-5)+(-128-5) \\
= & 11+(-37)+59+(-133) \\
= & -100
\end{aligned}
$$

c. To find $\sum_{i=1}^{5} 3$, we observe that every term of the sum is 3 . The notation $i=1$ through 5 indicates that we must add the first five terms of a sequence in which every term is 3 .

$$
\sum_{i=1}^{5} 3=3+3+3+3+3=15
$$

Check Point 5 Expand and evaluate the sum:
a. $\sum_{i=1}^{6} 2 i^{2}$
b. $\sum_{k=3}^{5}\left(2^{k}-3\right)$
c. $\sum_{i=1}^{5} 4$.

Although the domain of a sequence is the set of positive integers, any integers can be used for the limits of summation. For a given sum, we can vary the upper and lower limits of summation, as well as the letter used for the index of summation. By doing so, we can produce different-looking summation notations for the same sum. For example, the sum of the squares of the first four positive integers, $1^{2}+2^{2}+3^{2}+4^{2}$, can be expressed in a number of equivalent ways:

$$
\begin{aligned}
\sum_{i=1}^{4} i^{2} & =1^{2}+2^{2}+3^{2}+4^{2}=30 \\
\sum_{i=0}^{3}(i+1)^{2} & =(0+1)^{2}+(1+1)^{2}+(2+1)^{2}+(3+1)^{2} \\
& =1^{2}+2^{2}+3^{2}+4^{2}=30 \\
\sum_{k=2}^{5}(k-1)^{2} & =(2-1)^{2}+(3-1)^{2}+(4-1)^{2}+(5-1)^{2} \\
& =1^{2}+2^{2}+3^{2}+4^{2}=30
\end{aligned}
$$

EXAMPLE 6 Writing Sums in Summation Notation

Express each sum using summation notation:
a. $1^{3}+2^{3}+3^{3}+\cdots+7^{3}$
b. $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^{n-1}}$.

SOLUTION

In each case, we will use 1 as the lower limit of summation and i for the index of summation.
a. The sum $1^{3}+2^{3}+3^{3}+\cdots+7^{3}$ has seven terms, each of the form i^{3}, starting at $i=1$ and ending at $i=7$. Thus,

$$
1^{3}+2^{3}+3^{3}+\cdots+7^{3}=\sum_{i=1}^{7} i^{3} .
$$

b. The sum

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^{n-1}}
$$

has n terms, each of the form $\frac{1}{3^{i-1}}$, starting at $i=1$ and ending at $i=n$. Thus,

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^{n-1}}=\sum_{i=1}^{n} \frac{1}{3^{i-1}} .
$$

\int Check Point 6 Express each sum using summation notation:
a. $1^{2}+2^{2}+3^{2}+\cdots+9^{2}$
b. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}$.

Table 10.2 contains some important properties of sums expressed in summation notation.

Table 10.2 Properties of Sums

$$
\begin{aligned}
& \text { Property } \\
& \text { 1. } \sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}, c \text { any real number } \\
& \text { 2. } \sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} \\
& \text { 3. } \sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i} \\
& \sum_{i=1}^{4} 3 i^{2}=3 \cdot 1^{2}+3 \cdot 2^{2}+3 \cdot 3^{2}+3 \cdot 4^{2} \\
& 3 \sum_{i=1}^{4} i^{2}=3\left(1^{2}+2^{2}+3^{2}+4^{2}\right)=3 \cdot 1^{2}+3 \cdot 2^{2}+3 \cdot 3^{2}+3 \cdot 4^{2} \\
& \text { Conclusion: } \sum_{i=1}^{4} 3 i^{2}=3 \sum_{i=1}^{4} i^{2} \\
& \begin{aligned}
& \sum_{i=1}^{4}\left(i+i^{2}\right)=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right)+\left(4+4^{2}\right) \\
& \sum_{i=1}^{4} i+\sum_{i=1}^{4} i^{2}=(1+2+3+4)+\left(1^{2}+2^{2}+3^{2}+4^{2}\right) \\
&=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right)+\left(4+4^{2}\right) \\
& \text { Conclusion: } \sum_{i=1}^{4}\left(i+i^{2}\right)=\sum_{i=1}^{4} i+\sum_{i=1}^{4} i^{2}
\end{aligned} \\
& \sum_{i=3}^{5}\left(i^{2}-i^{3}\right)=\left(3^{2}-3^{3}\right)+\left(4^{2}-4^{3}\right)+\left(5^{2}-5^{3}\right) \\
& \sum_{i=3}^{5} i^{2}-\sum_{i=3}^{5} i^{3}=\left(3^{2}+4^{2}+5^{2}\right)-\left(3^{3}+4^{3}+5^{3}\right) \\
& =\left(3^{2}-3^{3}\right)+\left(4^{2}-4^{3}\right)+\left(5^{2}-5^{3}\right) \\
& \text { Conclusion: } \sum_{i=3}^{5}\left(i^{2}-i^{3}\right)=\sum_{i=3}^{5} i^{2}-\sum_{i=3}^{5} i^{3}
\end{aligned}
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots$ represents an infinite \qquad , a function whose domain is the set of positive \qquad The function values $a_{1}, a_{2}, a_{3}, \ldots$ are called the \qquad -.
2. The nth term of a sequence, represented by a_{n}, is called the \qquad term.

Write the second term of each sequence.
3. $a_{n}=5 n-6$ \qquad
4. $a_{n}=\frac{(-1)^{n}}{4^{n}-1}$ \qquad
5. $a_{n}=2 a_{n-1}-4, a_{1}=3$ \qquad
6. 5!, called 5 \qquad , is the product of all positive integers from \qquad down through \qquad By definition, $0!=$ \qquad -.
7. $\frac{(n+3)!}{(n+2)!}=$ \qquad
8. $\sum_{i=1}^{n} a_{i}=$ \qquad $+$ \qquad $+$ \qquad $+\cdots+$ \qquad In this summation notation, i is called the \qquad of summation, n is the \qquad of summation, and 1 is the \qquad of summation.

EXERCISE SET 10.1

Practice Exercises

In Exercises 1-12, write the first four terms of each sequence whose general term is given.

1. $a_{n}=3 n+2$
2. $a_{n}=4 n-1$
3. $a_{n}=3^{n}$
4. $a_{n}=\left(\frac{1}{3}\right)^{n}$
5. $a_{n}=(-3)^{n}$
6. $a_{n}=\left(-\frac{1}{3}\right)^{n}$
7. $a_{n}=(-1)^{n}(n+3)$
8. $a_{n}=(-1)^{n+1}(n+4)$
9. $a_{n}=\frac{2 n}{n+4}$
10. $a_{n}=\frac{3 n}{n+5}$
11. $a_{n}=\frac{(-1)^{n+1}}{2^{n}-1}$
12. $a_{n}=\frac{(-1)^{n+1}}{2^{n}+1}$

The sequences in Exercises 13-18 are defined using recursion formulas. Write the first four terms of each sequence.
13. $a_{1}=7$ and $a_{n}=a_{n-1}+5$ for $n \geq 2$
14. $a_{1}=12$ and $a_{n}=a_{n-1}+4$ for $n \geq 2$
15. $a_{1}=3$ and $a_{n}=4 a_{n-1}$ for $n \geq 2$
16. $a_{1}=2$ and $a_{n}=5 a_{n-1}$ for $n \geq 2$
17. $a_{1}=4$ and $a_{n}=2 a_{n-1}+3$ for $n \geq 2$
18. $a_{1}=5$ and $a_{n}=3 a_{n-1}-1$ for $n \geq 2$

In Exercises 19-22, the general term of a sequence is given and involves a factorial. Write the first four terms of each sequence.
19. $a_{n}=\frac{n^{2}}{n!}$
20. $a_{n}=\frac{(n+1)!}{n^{2}}$
21. $a_{n}=2(n+1)$!
22. $a_{n}=-2(n-1)$!

In Exercises 23-28, evaluate each factorial expression.
23. $\frac{17!}{15!}$
24. $\frac{18!}{16!}$
25. $\frac{16!}{2!14!}$
26. $\frac{20!}{2!18!}$
27. $\frac{(n+2)!}{n!}$
28. $\frac{(2 n+1)!}{(2 n)!}$

In Exercises 29-42, find each indicated sum.
29. $\sum_{i=1}^{6} 5 i$
30. $\sum_{i=1}^{6} 7 i$
31. $\sum_{i=1}^{4} 2 i^{2}$
32. $\sum_{i=1}^{5} i^{3}$
33. $\sum_{k=1}^{5} k(k+4)$
34. $\sum_{k=1}^{4}(k-3)(k+2)$
35. $\sum_{i=1}^{4}\left(-\frac{1}{2}\right)^{i}$
36. $\sum_{i=2}^{4}\left(-\frac{1}{3}\right)^{i}$
37. $\sum_{i=5}^{9} 11$
38. $\sum_{i=3}^{7} 12$
39. $\sum_{i=0}^{4} \frac{(-1)^{i}}{i!}$
40. $\sum_{i=0}^{4} \frac{(-1)^{i+1}}{(i+1)!}$
41. $\sum_{i=1}^{5} \frac{i!}{(i-1)!}$
42. $\sum_{i=1}^{5} \frac{(i+2)!}{i!}$

In Exercises 43-54, express each sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
43. $1^{2}+2^{2}+3^{2}+\cdots+15^{2}$
44. $1^{4}+2^{4}+3^{4}+\cdots+12^{4}$
45. $2+2^{2}+2^{3}+\cdots+2^{11}$
46. $5+5^{2}+5^{3}+\cdots+5^{12}$
47. $1+2+3+\cdots+30$
48. $1+2+3+\cdots+40$
49. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{14}{14+1}$
50. $\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\cdots+\frac{16}{16+2}$
51. $4+\frac{4^{2}}{2}+\frac{4^{3}}{3}+\cdots+\frac{4^{n}}{n}$
52. $\frac{1}{9}+\frac{2}{9^{2}}+\frac{3}{9^{3}}+\cdots+\frac{n}{9^{n}}$
53. $1+3+5+\cdots+(2 n-1)$
54. $a+a r+a r^{2}+\cdots+a r^{n-1}$

In Exercises 55-60, express each sum using summation notation. Use a lower limit of summation of your choice and k for the index of summation.
55. $5+7+9+11+\cdots+31$
56. $6+8+10+12+\cdots+32$
57. $a+a r+a r^{2}+\cdots+a r^{12}$
58. $a+a r+a r^{2}+\cdots+a r^{14}$
59. $a+(a+d)+(a+2 d)+\cdots+(a+n d)$
60. $(a+d)+\left(a+d^{2}\right)+\cdots+\left(a+d^{n}\right)$

Practice Plus

In Exercises 61-68, use the graphs of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ to find each indicated sum.

61. $\sum_{i=1}^{5}\left(a_{i}^{2}+1\right)$
63. $\sum_{i=1}^{5}\left(2 a_{i}+b_{i}\right)$
65. $\sum_{i=4}^{5}\left(\frac{a_{i}}{b_{i}}\right)^{2}$
67. $\sum_{i=1}^{5} a_{i}^{2}+\sum_{i=1}^{5} b_{i}^{2}$

62. $\sum_{i=1}^{5}\left(b_{i}^{2}-1\right)$
64. $\sum_{i=1}^{5}\left(a_{i}+3 b_{i}\right)$
66. $\sum_{i=4}^{5}\left(\frac{a_{i}}{b_{i}}\right)^{3}$
68. $\sum_{i=1}^{5} a_{i}^{2}-\sum_{i=3}^{5} b_{i}^{2}$

Application Exercises

69. One in one hundred is the ratio of individuals in the U.S. population with autistic disorder, better known as autism. The disorder involves severe deficits in language, social bonding, and imagination, and is often accompanied by mental retardation. The bar graph at the top of the next column shows the number of autism cases diagnosed in the United States from 2001 through 2008.

Autism Cases Diagnosed in the United States

Source: Lilienfeld et al., Psychology, Second Edition, Pearson, 2011.
Let a_{n} represent the number of autism cases diagnosed in the United States, in thousands, n years after 2000.
a. Use the numbers given in the graph to find and interpret $\sum_{i=1}^{8} a_{i}$.
b. The finite sequence whose general term is

$$
a_{n}=28 n+63
$$

where $n=1,2,3, \ldots, 8$, models the number of autism cases diagnosed in the United States, in thousands, n years after 2000. Use this model to find $\sum_{i=1}^{8} a_{i}$. Does this underestimate or overestimate the actual sum in part (a)? By how much?
70. The bar graph shows the average state cigarette tax per pack from 2005 through 2010.

Average State Cigarette Tax per Pack

Source:"Trends in Average State Cigarette Tax Rates."
Campaign for Tobacco-Free Kids
Let a_{n} represent the average state cigarette tax per pack, in cents, n years after 2004 .
a. Use the numbers given in the graph to find and interpret $\frac{1}{6} \sum_{i=1}^{6} a_{i}$.
b. The finite sequence whose general term is

$$
a_{n}=11 n+78,
$$

where $n=1,2,3,4,5,6$, models the average state cigarette tax per pack, in cents, n years after 2004. Use this model to find $\frac{1}{6} \sum_{i=1}^{6} a_{i}$. How does this compare with the actual value you obtained in part (a)?
71. A deposit of $\$ 6000$ is made in an account that earns 6% interest compounded quarterly. The balance in the account after n quarters is given by the sequence

$$
a_{n}=6000\left(1+\frac{0.06}{4}\right)^{n}, \quad n=1,2,3, \ldots
$$

Find the balance in the account after five years. Round to the nearest cent.
72. A deposit of $\$ 10,000$ is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence

$$
a_{n}=10,000\left(1+\frac{0.08}{4}\right)^{n}, \quad n=1,2,3, \ldots
$$

Find the balance in the account after six years. Round to the nearest cent.

Writing in Mathematics

73. What is a sequence? Give an example with your description.
74. Explain how to write terms of a sequence if the formula for the general term is given.
75. What does the graph of a sequence look like? How is it obtained?
76. What is a recursion formula?
77. Explain how to find n ! if n is a positive integer.
78. Explain the best way to evaluate $\frac{900!}{899!}$ without a calculator.
79. What is the meaning of the symbol \sum ? Give an example with your description.
80. You buy a new car for $\$ 24,000$. At the end of n years, the value of your car is given by the sequence

$$
a_{n}=24,000\left(\frac{3}{4}\right)^{n}, \quad n=1,2,3, \ldots
$$

Find a_{5} and write a sentence explaining what this value represents. Describe the nth term of the sequence in terms of the value of your car at the end of each year.

Technology Exercises

In Exercises 81-85, use a calculator's factorial key to evaluate each expression.
81. $\frac{200!}{198!}$
82. $\left(\frac{300}{20}\right)$!
83. $\frac{20!}{300}$
84. $\frac{20!}{(20-3)!}$
85. $\frac{54!}{(54-3)!3!}$
86. Use the SEQ (sequence) capability of a graphing utility to verify the terms of the sequences you obtained for any five sequences from Exercises 1-12 or 19-22.
87. Use the SUM SEQ (sum of the sequence) capability of a graphing utility to verify any five of the sums you obtained in Exercises 29-42.
88. As n increases, the terms of the sequence

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

get closer and closer to the number e (where $e \approx 2.7183$). Use a calculator to find $a_{10}, a_{100}, a_{1000}, a_{10,000}$, and $a_{100,000}$, comparing these terms to your calculator's decimal approximation for e.

Many graphing utilities have a sequence-graphing mode that plots the terms of a sequence as points on a rectangular coordinate system. Consult your manual; if your graphing utility has this capability, use it to graph each of the sequences in Exercises 89-92. What appears to be happening to the terms of each sequence as n gets larger?
89. $a_{n}=\frac{n}{n+1} \quad n:[0,10,1]$ by $a_{n}:[0,1,0.1]$
90. $a_{n}=\frac{100}{n} \quad n:[0,1000,100]$ by $a_{n}:[0,1,0.1]$
91. $a_{n}=\frac{2 n^{2}+5 n-7}{n^{3}} n:[0,10,1]$ by $a_{n}:[0,2,0.2]$
92. $a_{n}=\frac{3 n^{4}+n-1}{5 n^{4}+2 n^{2}+1} \quad n:[0,10,1]$ by $a_{n}:[0,1,0.1]$

Critical Thinking Exercises

Make Sense? In Exercises 93-96, determine whether each statement makes sense or does not make sense, and explain your reasoning.
93. Now that I've studied sequences, I realize that the joke in this cartoon is based on the fact that you can't have a negative number of sheep.

WHEN MATHEMATICIANS CAN'T SLEEY
94. By writing $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots, \mathrm{I}$ can see that the range of a sequence is the set of positive integers.
95. It makes a difference whether or not I use parentheses around the expression following the summation symbol, because the value of $\sum_{i=1}^{8}(i+7)$ is 92 , but the value of $\sum_{i=1}^{8} i+7$
is 43 .
96. Without writing out the terms, I can see that $(-1)^{2 n}$ in $a_{n}=\frac{(-1)^{2 n}}{3 n}$ causes the terms to alternate in sign.

In Exercises 97-100, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
97. $\frac{n!}{(n-1)!}=\frac{1}{n-1}$
98. The Fibonacci sequence $1,1,2,3,5,8,13,21,34,55,89$, $144, \ldots$ can be defined recursively using $a_{0}=1, a_{1}=1$; $a_{n}=a_{n-2}+a_{n-1}$, where $n \geq 2$.
99. $\sum_{i=1}^{2}(-1)^{i} 2^{i}=0$
100. $\sum_{i=1}^{2} a_{i} b_{i}=\sum_{i=1}^{2} a_{i} \sum_{i=1}^{2} b_{i}$
101. Write the first five terms of the sequence whose first term is 9 and whose general term is

$$
a_{n}= \begin{cases}\frac{a_{n-1}}{2} & \text { if } a_{n-1} \text { is even } \\ 3 a_{n-1}+5 & \text { if } a_{n-1} \text { is odd }\end{cases}
$$

for $n \geq 2$.

Group Exercise

102. Enough curiosities involving the Fibonacci sequence exist to warrant a flourishing Fibonacci Association, which publishes a quarterly journal. Do some research on the Fibonacci sequence by consulting the Internet or the research department of your library, and find one property that interests you. After doing this research, get together with your group to share these intriguing properties.

Preview Exercises

Exercises 103-105 will help you prepare for the material covered in the next section.
103. Consider the sequence $8,3,-2,-7,-12, \ldots$. Find $a_{2}-a_{1}$, $a_{3}-a_{2}, a_{4}-a_{3}$, and $a_{5}-a_{4}$. What do you observe?
104. Consider the sequence whose nth term is $a_{n}=4 n-3$. Find $a_{2}-a_{1}, a_{3}-a_{2}, a_{4}-a_{3}$, and $a_{5}-a_{4}$. What do you observe?
105. Use the formula $a_{n}=4+(n-1)(-7)$ to find the eighth term of the sequence $4,-3,-10, \ldots$.

SECTION 10.2 Arithmetic Sequences

Objectives

(1) Find the common difference for an arithmetic sequence.
(2) Write terms of an arithmetic sequence.
(3) Use the formula for the general term of an arithmetic sequence.
4) Use the formula for the sum of the first n terms of an arithmetic sequence.
(1) Find the common difference for an arithmetic sequence.

Your grandmother and her financial counselor are looking at options in case an adult residential facility is needed in the future. The good news is that your grandmother's total assets are $\$ 500,000$. The bad news is that adult residential community costs average $\$ 64,130$ annually, increasing by $\$ 1800$ each year. In this section, we will see how sequences can be used to model your grandmother's situation and help her to identify realistic options.

Arithmetic Sequences

The bar graph in Figure 10.2 shows how much Americans spent on their pets, rounded to the nearest billion dollars, each year from 2001 through 2007.

The graph illustrates that each year spending increased by $\$ 2$ billion. The sequence of annual spending

$$
29,31,33,35,37,39,41, \ldots
$$

shows that each term after the first, 29, differs from the Soure. American Pen Prodats Mandacuress Association preceding term by a constant amount, namely, 2 . This sequence is an example of an arithmetic sequence.

Definition of an Arithmetic Sequence

An arithmetic sequence is a sequence in which each term after the first differs from the preceding term by a constant amount. The difference between consecutive terms is called the common difference of the sequence.

The common difference, d, is found by subtracting any term from the term that directly follows it. In the following examples, the common difference is found by subtracting the first term from the second term, $a_{2}-a_{1}$.

Arithmetic Sequence

$$
\begin{aligned}
& 142,146,150,154,158, \ldots \\
& -5,-2,1,4,7, \ldots \\
& 8,3,-2,-7,-12, \ldots
\end{aligned}
$$

Common Difference

$$
d=146-142=4
$$

$$
d=-2-(-5)=-2+5=3
$$

$$
d=3-8=-5
$$

Figure 10.3 shows the graphs of the last two arithmetic sequences in our list. The common difference for the increasing sequence in Figure 10.3(a) is 3. The common difference for the decreasing sequence in Figure 10.3(b) is -5 .

FIGURE 10.3(a) The graph of $\left\{a_{n}\right\}=-5,-2,1,4,7, \ldots$

FIGURE 10.3(b) The graph of $\left\{b_{n}\right\}=8,3,-2,-7,-12, \ldots$

The graph of each arithmetic sequence in Figure $\mathbf{1 0 . 3}$ forms a set of discrete points lying on a straight line. This illustrates that an arithmetic sequence is a linear function whose domain is the set of positive integers.

If the first term of an arithmetic sequence is a_{1}, each term after the first is obtained by adding d, the common difference, to the previous term. This can be expressed recursively as follows:

$$
a_{n}=a_{n-1}+d
$$

$$
\text { Add } d \text { to the term in any }
$$

position to get the next term.

To use this recursion formula, we must be given the first term.
2. Write terms of an arithmetic sequence.

3 Use the formula for the general term of an arithmetic sequence.

EXAMPLE 1 Writing the Terms of an Arithmetic Sequence

Write the first six terms of the arithmetic sequence in which $a_{1}=6$ and $a_{n}=a_{n-1}-2$.

SOLUTION

The recursion formula $a_{1}=6$ and $a_{n}=a_{n-1}-2$ indicates that each term after the first, 6 , is obtained by adding -2 to the previous term.

$$
\begin{array}{ll}
a_{1}=6 & \text { This is given. } \\
a_{2}=a_{1}-2=6-2=4 & \text { Use } a_{n}=a_{n-1}-2 \text { with } n=2 . \\
a_{3}=a_{2}-2=4-2=2 & \text { Use } a_{n}=a_{n-1}-2 \text { with } n=3 . \\
a_{4}=a_{3}-2=2-2=0 & \text { Use } a_{n}=a_{n-1}-2 \text { with } n=4 . \\
a_{5}=a_{4}-2=0-2=-2 & \text { Use } a_{n}=a_{n-1}-2 \text { with } n=5 . \\
a_{6}=a_{5}-2=-2-2=-4 & \text { Use } a_{n}=a_{n-1}-2 \text { with } n=6 .
\end{array}
$$

The first six terms are

$$
6,4,2,0,-2, \text { and }-4
$$

$\$$ Check Point 1 Write the first six terms of the arithmetic sequence in which $a_{1}=100$ and $a_{n}=a_{n-1}-30$.

The General Term of an Arithmetic Sequence

Consider an arithmetic sequence whose first term is a_{1} and whose common difference is d. We are looking for a formula for the general term, a_{n}. Let's begin by writing the first six terms. The first term is a_{1}. The second term is $a_{1}+d$. The third term is $a_{1}+d+d$, or $a_{1}+2 d$. Thus, we start with a_{1} and add d to each successive term. The first six terms are

a_{1},	$a_{1}+d$,	$a_{1}+2 d$,	$a_{1}+3 d$,	$a_{1}+4 d$,	$a_{1}+5 d$.
a_{1}, first term	a_{2}, second term	a_{33}, third term	a_{4}, fourth term	$a_{5,}$, fifth term	$a_{6,}$, sixth term

Compare the coefficient of d and the subscript of a denoting the term number. Can you see that the coefficient of d is 1 less than the subscript of a denoting the term number?

Thus, the formula for the nth term is

$$
a_{n}: n \text {th term }=a_{1}+(n-1) d
$$

One less than n, or $n-1$, is the coefficient of d.

General Term of an Arithmetic Sequence

The nth term (the general term) of an arithmetic sequence with first term a_{1} and common difference d is

$$
a_{n}=a_{1}+(n-1) d .
$$

EXAMPLE 2 Using the Formula for the General Term of an Arithmetic Sequence

Find the eighth term of the arithmetic sequence whose first term is 4 and whose common difference is -7 .

SOLUTION

To find the eighth term, a_{8}, we replace n in the formula with $8, a_{1}$ with 4 , and d with -7 .

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{8}=4+(8-1)(-7)=4+7(-7)=4+(-49)=-45
\end{aligned}
$$

The eighth term is -45 . We can check this result by writing the first eight terms of the sequence:

$$
4,-3,-10,-17,-24,-31,-38,-45 .
$$

Check Point 2 Find the ninth term of the arithmetic sequence whose first term is 6 and whose common difference is -5 .

EXAMPLE 3 Using an Arithmetic Sequence to Model Changes in the U.S. Population

The graph in Figure $\mathbf{1 0 . 4}$ shows the percentage of the U.S. population by race/ ethnicity for 2010, with projections by the U.S. Census Bureau for 2050.

FIGURE 10.4
Source: U.S. Census Bureau

The data show that in $2010,64 \%$ of the U.S. population was white. On average, this is projected to decrease by approximately 0.45% per year.
a. Write a formula for the nth term of the arithmetic sequence that describes the percentage of the U.S. population that will be white n years after 2009.
b. What percentage of the U.S. population is projected to be white in 2030 ?

SOLUTION

a. With a yearly decrease of 0.45%, we can express the percentage of the white population by the following arithmetic sequence:

$$
64, \quad 64-0.45=63.55, \quad 63.55-0.45=63.10, \ldots
$$

a_{3} : percentage of whites in the population in 2012, 3 years after 2009

In the sequence $64,63.55,63.10, \ldots$, the first term, a_{1}, represents the percentage of the population that was white in 2010. Each subsequent year this amount decreases by 0.45%, so $d=-0.45$. We use the formula for the general term of an arithmetic sequence to write the nth term of the sequence that describes the percentage of whites in the population n years after 2009 .

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \begin{array}{l}
\text { This is the formula for the general } \\
\text { term of an arithmetic sequence. }
\end{array} \\
a_{n}=64+(n-1)(-0.45) & \begin{array}{l}
a_{1}=64 \text { and } d=-0.45 \\
a_{n}=64-0.45 n+0.45
\end{array} \\
\begin{array}{l}
\text { Distribute }-0.45 \text { to each term } \\
\text { in parentheses. }
\end{array} \\
a_{n}=-0.45 n+64.45 & \text { Simplify. }
\end{array}
$$

Thus, the percentage of the U.S. population that will be white n years after 2009 can be described by

$$
a_{n}=-0.45 n+64.45 .
$$

b. Now we need to project the percentage of the population that will be white in 2030. The year 2030 is 21 years after 2009. Thus, $n=21$. We substitute 21 for n in $a_{n}=-0.45 n+64.45$.

$$
a_{21}=-0.45(21)+64.45=55
$$

The 21 st term of the sequence is 55 . Thus, 55% of the U.S. population is projected to be white in 2030 .

Use the formula for the sum of the first n terms of an arithmetic sequence.

The Sum of the First \boldsymbol{n} Terms of an Arithmetic Sequence

The sum of the first n terms of an arithmetic sequence, denoted by S_{n}, and called the \boldsymbol{n} th partial sum, can be found without having to add up all the terms. Let

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

be the sum of the first n terms of an arithmetic sequence. Because d is the common difference between terms, S_{n} can be written forward and backward as follows:

Forward: Start with the first term, a_{1}.
 Keep adding d.

$$
\begin{array}{ll}
\text { Backward: Start with } \\
\text { the last term, } a_{n} \text {. } \\
\text { Keep subtracting } d \text {. }
\end{array} \frac{S_{n}=a_{n}}{2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\cdots+\left(a_{1}+a_{n}\right) .} \quad \text { Add the two equations. }
$$

Consider the last equation

$$
2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\cdots+\left(a_{1}+a_{n}\right) .
$$

Because there are n sums of $\left(a_{1}+a_{n}\right)$ on the right side, we can express this side as $n\left(a_{1}+a_{n}\right)$. Thus, the last equation can be written as follows:

$$
\begin{aligned}
2 S_{n} & =n\left(a_{1}+a_{n}\right) \\
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) . \quad \text { Solve for } S_{n}, \text { dividing both sides by } 2 .
\end{aligned}
$$

We have proved the following result:

The Sum of the First n Terms of an Arithmetic Sequence

The sum, S_{n}, of the first n terms of an arithmetic sequence is given by

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right),
$$

in which a_{1} is the first term and a_{n} is the nth term.
To find the sum of the terms of an arithmetic sequence using $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$, we need to know the first term, a_{1}, the last term, a_{n}, and the number of terms, n. The following examples illustrate how to use this formula.

EXAMPLE 4 Finding the Sum of n Terms of an Arithmetic Sequence

Find the sum of the first 100 terms of the arithmetic sequence: $1,3,5,7, \ldots$.

SOLUTION

By finding the sum of the first 100 terms of $1,3,5,7, \ldots$, we are finding the sum of the first 100 odd numbers. To find the sum of the first 100 terms, S_{100}, we replace n in the formula with 100 .

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{100} & =\frac{100}{2}\left(a_{1}+a_{100}\right) \\
& \begin{array}{c}
\text { The first term, } \\
a_{1}, \text { is } 1 .
\end{array} \begin{array}{c}
\text { We must find } a_{100} \\
\text { the } 100+\text { th term. }
\end{array}
\end{aligned}
$$

We use the formula for the general term of a sequence to find a_{100}. The common difference, d, of $1,3,5,7, \ldots$, is 2 .

$$
\begin{array}{rlrl}
a_{n} & =a_{1}+(n-1) d & & \begin{array}{l}
\text { This is the formula for the } n \text {th term of an arithmetic } \\
a_{100}
\end{array} \\
=1+(100-1) \cdot 2 & & \begin{array}{l}
\text { sequence. Use it to find the } 100 \text { th term. } \\
\text { Substitute } 100 \text { for } n, 2 \text { for } d \text {, and }
\end{array} \\
& =1+99 \cdot 2 & & \text { (the first term) for } a_{1} .
\end{array}
$$

Now we are ready to find the sum of the 100 terms $1,3,5,7, \ldots, 199$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \begin{array}{l}
\text { Use the formula for the sum of the first } n \text { terms of an } \\
\text { arithmetic sequence. Let } n=100, a_{1}=1, \text { and } a_{100}=1
\end{array} \\
S_{100} & =\frac{100}{2}(1+199)=50(200)=10,000
\end{aligned}
$$

The sum of the first 100 odd numbers is 10,000 . Equivalently, the 100th partial sum of the sequence $1,3,5,7, \ldots$ is 10,000 .
Check Point 4 Find the sum of the first 15 terms of the arithmetic sequence: 3, 6, 9, 12,

EXAMPLE 5 Using S_{n} to Evaluate a Summation
Find the following sum: $\sum_{i=1}^{25}(5 i-9)$.

TECHNOLOGY

To find

$$
\sum_{i=1}^{25}(5 i-9)
$$

on a graphing utility, enter
SUM SEQ ($5 x-9, x, 1,25,1$).
Then press ENTER.

SOLUTION

$$
\begin{aligned}
\sum_{i=1}^{25}(5 i-9) & =(5 \cdot 1-9)+(5 \cdot 2-9)+(5 \cdot 3-9)+\cdots+(5 \cdot 25-9) \\
& =-4+1+1+6+116
\end{aligned}
$$

By evaluating the first three terms and the last term, we see that $a_{1}=-4$; d, the common difference, is $1-(-4)$, or 5 ; and a_{25}, the last term, is 116 .

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \begin{array}{l}
\text { Use the formula for the sum of the first } n \text { terms of an } \\
\text { arithmetic sequence. Let } n=25, a_{1}=-4, \text { and } a_{25}=116 .
\end{array} \\
& S_{25}=\frac{25}{2}(-4+116)=\frac{25}{2}(112)=1400
\end{aligned}
$$

Thus,

$$
\sum_{i=1}^{25}(5 i-9)=1400 .
$$

\int Check Point 5 Find the following sum: $\sum_{i=1}^{30}(6 i-11)$.

EXAMPLE 6 Modeling Total Residential Community Costs over a Six-Year Period

Your grandmother has assets of $\$ 500,000$. One option that she is considering involves an adult residential community for a six-year period beginning in 2014. The model

$$
a_{n}=1800 n+64,130
$$

describes yearly adult residential community costs n years after 2013. Does your grandmother have enough to pay for the facility?

SOLUTION

We must find the sum of an arithmetic sequence whose general term is $a_{n}=1800 n+64,130$. The first term of the sequence corresponds to the facility's costs in the year 2014. The last term corresponds to costs in the year 2019. Because the model describes costs n years after 2013, $n=1$ describes the year 2014 and $n=6$ describes the year 2019.

$$
\begin{array}{ll}
a_{n}=1800 n+64,130 & \begin{array}{l}
\text { This is the given formula for the } \\
\text { general term of the sequence. }
\end{array} \\
a_{1}=1800 \cdot 1+64,130=65,930 & \text { Find } a_{1} \text { by replacing } n \text { with } 1 . \\
a_{6}=1800 \cdot 6+64,130=74,930 & \text { Find } a_{6} \text { by replacing } n \text { with } 6 .
\end{array}
$$

The first year the facility will cost $\$ 65,930$. By year 6 , the facility will cost $\$ 74,930$. Now we must find the sum of the costs for all six years. We focus on the sum of the first six terms of the arithmetic sequence

We find the sum of the first six terms of

$$
65,930,67,730, \ldots, 74,930
$$

using the formula for the sum of the first n terms of an arithmetic sequence. We are adding six terms: $n=6$. The first term is $65,930: a_{1}=65,930$. The last term-that is, the sixth term-is 74,930: $a_{6}=74,930$.

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{6}=\frac{6}{2}(65,930+74,930)=3(140,860)=422,580
\end{aligned}
$$

Total adult residential community costs for your grandmother are predicted to be $\$ 422,580$. Because your grandmother's assets are $\$ 500,000$, she has enough to pay for the facility for the six-year period.

Check Point 6 In Example 6, how much would it cost for the adult residential community for a ten-year period beginning in 2014?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A sequence in which each term after the first differs from the preceding term by a constant amount is called a/an \qquad sequence. The difference between consecutive terms is called the of the sequence.
2. The nth term of the sequence described in Exercise 1 is given by the formula $a_{n}=$ \qquad where a_{1} is the \qquad of the sequence.
3. The sum, S_{n}, of the first n terms of the sequence described in Exercise 1 is given by the formula $S_{n}=$ \qquad where a_{1} is the \qquad and a_{n} is the \qquad —.
4. The first term of $\sum_{i=1}^{20}(6 i-4)$ is \qquad and the last term
\qquad
5. The first three terms of $\sum_{i=1}^{17}(5 i+3)$ are \qquad and \qquad The common difference is \qquad

EXERCISE SET 10.2

Practice Exercises

In Exercises 1-14, write the first six terms of each arithmetic sequence.

1. $a_{1}=200, d=20$
2. $a_{1}=300, d=50$
3. $a_{1}=-7, d=4$
4. $a_{1}=-8, d=5$
5. $a_{1}=300, d=-90$
6. $a_{1}=200, d=-60$
7. $a_{1}=\frac{5}{2}, d=-\frac{1}{2}$
8. $a_{1}=\frac{3}{4}, d=-\frac{1}{4}$
9. $a_{n}=a_{n-1}+6, a_{1}=-9$
10. $a_{n}=a_{n-1}+4, a_{1}=-7$
11. $a_{n}=a_{n-1}-10, a_{1}=30$
12. $a_{n}=a_{n-1}-20, a_{1}=50$
13. $a_{n}=a_{n-1}-0.4, a_{1}=1.6$
14. $a_{n}=a_{n-1}-0.3, a_{1}=-1.7$

In Exercises 15-22, find the indicated term of the arithmetic sequence with first term, a_{1}, and common difference, d.
15. Find a_{6} when $a_{1}=13, d=4$.
16. Find a_{16} when $a_{1}=9, d=2$.
17. Find a_{50} when $a_{1}=7, d=5$.
18. Find a_{60} when $a_{1}=8, d=6$.
19. Find a_{200} when $a_{1}=-40, d=5$.
20. Find a_{150} when $a_{1}=-60, d=5$.
21. Find a_{60} when $a_{1}=35, d=-3$.
22. Find a_{70} when $a_{1}=-32, d=4$.

In Exercises 23-34, write a formula for the general term (the nth term) of each arithmetic sequence. Do not use a recursion formula. Then use the formula for a_{n} to find a_{20}, the 20th term of the sequence.
23. $1,5,9,13, \ldots$
24. $2,7,12,17, \ldots$
25. $7,3,-1,-5, \ldots$
26. $6,1,-4,-9, \ldots$
27. $a_{1}=9, d=2$
28. $a_{1}=6, d=3$
29. $a_{1}=-20, d=-4$
30. $a_{1}=-70, d=-5$
31. $a_{n}=a_{n-1}+3, a_{1}=4$
32. $a_{n}=a_{n-1}+5, a_{1}=6$
33. $a_{n}=a_{n-1}-10, a_{1}=30$
34. $a_{n}=a_{n-1}-12, a_{1}=24$
35. Find the sum of the first 20 terms of the arithmetic sequence: $4,10,16,22, \ldots$
36. Find the sum of the first 25 terms of the arithmetic sequence: $7,19,31,43, \ldots$
37. Find the sum of the first 50 terms of the arithmetic sequence: $-10,-6,-2,2, \ldots$
38. Find the sum of the first 50 terms of the arithmetic sequence: $-15,-9,-3,3, \ldots$
39. Find $1+2+3+4+\cdots+100$, the sum of the first 100 natural numbers.
40. Find $2+4+6+8+\cdots+200$, the sum of the first 100 positive even integers.
41. Find the sum of the first 60 positive even integers.
42. Find the sum of the first 80 positive even integers.
43. Find the sum of the even integers between 21 and 45 .
44. Find the sum of the odd integers between 30 and 54 .

For Exercises 45-50, write out the first three terms and the last term. Then use the formula for the sum of the first n terms of an arithmetic sequence to find the indicated sum.
45. $\sum_{i=1}^{17}(5 i+3)$
46. $\sum_{i=1}^{20}(6 i-4)$
47. $\sum_{i=1}^{30}(-3 i+5)$
48. $\sum_{i=1}^{40}(-2 i+6)$
49. $\sum_{i=1}^{100} 4 i$
50. $\sum_{i=1}^{50}(-4 i)$

Practice Plus

Use the graphs of the arithmetic sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ to solve Exercises 51-58.

51. Find $a_{14}+b_{12}$.
52. Find $a_{16}+b_{18}$.
53. If $\left\{a_{n}\right\}$ is a finite sequence whose last term is -83 , how many terms does $\left\{a_{n}\right\}$ contain?
54. If $\left\{b_{n}\right\}$ is a finite sequence whose last term is 93 , how many terms does $\left\{b_{n}\right\}$ contain?
55. Find the difference between the sum of the first 14 terms of $\left\{b_{n}\right\}$ and the sum of the first 14 terms of $\left\{a_{n}\right\}$.
56. Find the difference between the sum of the first 15 terms of $\left\{b_{n}\right\}$ and the sum of the first 15 terms of $\left\{a_{n}\right\}$.
57. Write a linear function $f(x)=m x+b$, whose domain is the set of positive integers, that represents $\left\{a_{n}\right\}$.
58. Write a linear function $g(x)=m x+b$, whose domain is the set of positive integers, that represents $\left\{b_{n}\right\}$.

Use a system of two equations in two variables, a_{1} and d, to solve Exercises 59-60.
59. Write a formula for the general term (the nth term) of the arithmetic sequence whose second term, a_{2}, is 4 and whose sixth term, a_{6}, is 16 .
60. Write a formula for the general term (the nth term) of the arithmetic sequence whose third term, a_{3}, is 7 and whose eighth term, a_{8}, is 17 .

Application Exercises

The bar graphs show changes in educational attainment for Americans ages 25 and older from 1970 to 2007. Exercises 61-62 involve developing arithmetic sequences that model the data.

Educational Attainment for Americans Ages 25 and Older

Source: U.S. Census Bureau
61. In $1970,11.0 \%$ of Americans ages 25 and older had completed four years of college or more. On average, this percentage has increased by approximately 0.5 each year.
a. Write a formula for the nth term of the arithmetic sequence that models the percentage of Americans ages 25 and older who had or will have completed four years of college or more n years after 1969.
b. Use the model from part (a) to project the percentage of Americans ages 25 and older who will have completed four years of college or more by 2019.
62. In $1970,55.2 \%$ of Americans ages 25 and older had completed four years of high school or more. On average, this percentage has increased by approximately 0.86 each year.
a. Write a formula for the nth term of the arithmetic sequence that models the percentage of Americans ages 25 and older who had or will have completed four years of high school or more n years after 1969 .
b. Use the model from part (a) to project the percentage of Americans ages 25 and older who will have completed four years of high school or more by 2019.
63. Company A pays $\$ 24,000$ yearly with raises of $\$ 1600$ per year. Company B pays $\$ 28,000$ yearly with raises of $\$ 1000$ per year. Which company will pay more in year 10? How much more?
64. Company A pays $\$ 23,000$ yearly with raises of $\$ 1200$ per year. Company B pays $\$ 26,000$ yearly with raises of $\$ 800$ per year. Which company will pay more in year 10 ? How much more?

In Exercises 65-66, we revisit the data from Chapter P showing the average cost of tuition and fees at public and private four-year U.S. colleges.

Source:The College Board
65. a. Use the numbers shown in the bar graph to find the total cost of tuition and fees at public colleges for a four-year period from the school year ending in 2007 through the school year ending in 2010.
b. The model

$$
a_{n}=395 n+5419
$$

describes the cost of tuition and fees at public colleges in academic year n, where $n=1$ corresponds to the school year ending in 2007, $n=2$ to the school year ending in 2008, and so on. Use this model and the formula for S_{n} to find the total cost of tuition and fees at public colleges for a four-year period from the school year ending in 2007 through the school year ending in 2010. How does this compare with the actual sum you obtained in part (a)?
66. a. Use the numbers shown in the bar graph to find the total cost of tuition and fees at private colleges for a four-year period from the school year ending in 2007 through the school year ending in 2010.
b. The model

$$
a_{n}=1360 n+20,938
$$

describes the cost of tuition and fees at private colleges in academic year n, where $n=1$ corresponds to the school year ending in 2007, $n=2$ to the school year ending in 2008 , and so on. Use this model and the formula for S_{n} to find the total cost of tuition and fees at private colleges for a four-year period from the school year ending in 2007 through the school year ending in 2010. Does the model underestimate or overestimate the actual sum that you obtained in part (a)? By how much?
67. Use one of the models in Exercises 65-66 and the formula for S_{n} to find the total cost of tuition and fees for your undergraduate education. How well does the model describe your anticipated costs?
68. A company offers a starting yearly salary of $\$ 33,000$ with raises of $\$ 2500$ per year. Find the total salary over a ten-year period.
69. You are considering two job offers. Company A will start you at $\$ 19,000$ a year and guarantee a raise of $\$ 2600$ per year. Company B will start you at a higher salary, $\$ 27,000$ a year but will only guarantee a raise of $\$ 1200$ per year. Find the total salary that each company will pay over a ten-year period. Which company pays the greater total amount?
70. A theater has 30 seats in the first row, 32 seats in the second row, increasing by 2 seats per row for a total of 26 rows. How many seats are there in the theater?
71. A section in a stadium has 20 seats in the first row, 23 seats in the second row, increasing by 3 seats each row for a total of 38 rows. How many seats are in this section of the stadium?

Writing in Mathematics

72. What is an arithmetic sequence? Give an example with your explanation.
73. What is the common difference in an arithmetic sequence?
74. Explain how to find the general term of an arithmetic sequence.
75. Explain how to find the sum of the first n terms of an arithmetic sequence without having to add up all the terms.

Technology Exercises

76. Use the SEQ (sequence) capability of a graphing utility and the formula you obtained for a_{n} to verify the value you found for a_{20} in any five exercises from Exercises 23-34.
77. Use the capability of a graphing utility to calculate the sum of a sequence to verify any five of your answers to Exercises 45-50.

Critical Thinking Exercises

Make Sense? In Exercises 78-81, determine whether each statement makes sense or does not make sense, and explain your reasoning.
78. Rather than performing the addition, I used the formula $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$ to find the sum of the first 30 terms of the sequence $2,4,8,16,32, \ldots$.
79. I was able to find the sum of the first 50 terms of an arithmetic sequence even though I did not identify every term.
80. The sequence for the number of seats per row in our movie theater as the rows move toward the back is arithmetic with $d=1$ so people don't block the view of those in the row behind them.
81. Beginning at $6: 45$ A.m., a bus stops on my block every 23 minutes, so I used the formula for the nth term of an arithmetic sequence to describe the stopping time for the nth bus of the day.
82. In the sequence $21,700,23,172,24,644,26,116, \ldots$, which term is 314,628 ?
83. A degree-day is a unit used to measure the fuel requirements of buildings. By definition, each degree that the average daily temperature is below $65^{\circ} \mathrm{F}$ is 1 degree-day. For example, an average daily temperature of $42^{\circ} \mathrm{F}$ constitutes 23 degree-days. If the average temperature on January 1 was $42^{\circ} \mathrm{F}$ and fell $2^{\circ} \mathrm{F}$ for each subsequent day up to and including January 10, how many degree-days are included from January 1 to January 10 ?
84. Show that the sum of the first n positive odd integers,

$$
1+3+5+\cdots+(2 n-1)
$$

is n^{2}.

Preview Exercises

Exercises 85-87 will help you prepare for the material covered in the next section.
85. Consider the sequence $1,-2,4,-8,16, \ldots$ Find $\frac{a_{2}}{a_{1}}, \frac{a_{3}}{a_{2}}, \frac{a_{4}}{a_{3}}$, and $\frac{a_{5}}{a_{4}}$. What do you observe?
86. Consider the sequence whose nth term is $a_{n}=3 \cdot 5^{n}$. Find $\frac{a_{2}}{a_{1}}, \frac{a_{3}}{a_{2}}, \frac{a_{4}}{a_{3}}$, and $\frac{a_{5}}{a_{4}}$. What do you observe?
87. Use the formula $a_{n}=a_{1} 3^{n-1}$ to find the seventh term of the sequence $11,33,99,297, \ldots$.

SECTION 10.3 Geometric Sequences and Series

Objectives

(1) Find the common ratio of a geometric sequence.
2 Write terms of a geometric sequence.
(3) Use the formula for the general term of a geometric sequence.
(4) Use the formula for the sum of the first n terms of a geometric sequence.
(5) Find the value of an annuity.
6 Use the formula for the sum of an infinite geometric series.

1. Find the common ratio of a geometric sequence.

Here we are at the closing moments of a job interview. You're shaking hands with the manager. You managed to answer all the tough questions without losing your poise, and now you've been offered a job. As a matter of fact, your qualifications are so terrific that you've been offered two jobs - one just the day before, with a rival company in the same field! One company offers $\$ 30,000$ the first year, with increases of 6% per year for four years after that. The other offers $\$ 32,000$ the first year, with annual increases of 3% per year after that. Over a five-year period, which is the better offer?

If salary raises amount to a certain percent each year, the yearly salaries over time form a geometric sequence. In this section, we investigate geometric sequences and their properties. After studying the section, you will be in a position to decide which job offer to accept: You will know which company will pay you more over five years.

Geometric Sequences

Figure $\mathbf{1 0 . 5}$ shows a sequence in which the number of squares is increasing. From left to right, the number of squares is $1,5,25,125$, and 625 . In this sequence, each term after the first, 1 , is obtained by multiplying the preceding term by a constant amount, namely, 5 . This sequence of increasing numbers of squares is an example of a geometric sequence.

FIGURE 10.5 A geometric sequence of squares

GREAT QUESTION!

What happens to the terms of a geometric sequence when the common ratio is negative?

When the common ratio is negative, the signs of the terms alternate.

FIGURE 10.6 The graph of $\left\{a_{n}\right\}=1,5,25,125, \ldots$
(2) Write terms of a geometric sequence.

Definition of a Geometric Sequence

A geometric sequence is a sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant. The amount by which we multiply each time is called the common ratio of the sequence.

The common ratio, r, is found by dividing any term after the first term by the term that directly precedes it. In the following examples, the common ratio is found by dividing the second term by the first term, $\frac{a_{2}}{a_{1}}$.

Geometric sequence

$$
\begin{aligned}
& 1,5,25,125,625, \ldots \\
& 4,8,16,32,64, \ldots \\
& 6,-12,24,-48,96, \ldots \\
& 9,-3,1,-\frac{1}{3}, \frac{1}{9}, \ldots \\
& r=\frac{5}{1}=5 \\
& r=\frac{8}{4}=2 \\
& r=\frac{-12}{6}=-2 \\
& r=\frac{-3}{9}=-\frac{1}{3}
\end{aligned}
$$

Common ratio

Figure $\mathbf{1 0 . 6}$ shows a partial graph of the first geometric sequence in our list. The graph forms a set of discrete points lying on the exponential function $f(x)=5^{x-1}$. This illustrates that a geometric sequence with a positive common ratio other than 1 is an exponential function whose domain is the set of positive integers.

How do we write out the terms of a geometric sequence when the first term and the common ratio are known? We multiply the first term by the common ratio to get the second term, multiply the second term by the common ratio to get the third term, and so on.

EXAMPLE 1 Writing the Terms of a Geometric Sequence

Write the first six terms of the geometric sequence with first term 6 and common ratio $\frac{1}{3}$.

SOLUTION

The first term is 6 . The second term is $6 \cdot \frac{1}{3}$, or 2 . The third term is $2 \cdot \frac{1}{3}$, or $\frac{2}{3}$. The fourth term is $\frac{2}{3} \cdot \frac{1}{3}$, or $\frac{2}{9}$, and so on. The first six terms are

$$
6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27} \text {, and } \frac{2}{81} \text {. }
$$

$\$$ Check Point 1 Write the first six terms of the geometric sequence with first term 12 and common ratio $\frac{1}{2}$.

The General Term of a Geometric Sequence

Consider a geometric sequence whose first term is a_{1} and whose common ratio is r. We are looking for a formula for the general term, a_{n}. Let's begin by writing the first six terms. The first term is a_{1}. The second term is $a_{1} r$. The third term is $a_{1} r \cdot r$, or $a_{1} r^{2}$. The fourth term is $a_{1} r^{2} \cdot r$, or $a_{1} r^{3}$, and so on. Starting with a_{1} and multiplying each successive term by r, the first six terms are

Can you see that the exponent on r is 1 less than the subscript of a denoting the term number?

Thus, the formula for the nth term is

$$
\begin{gathered}
a_{n}=a_{1} r^{n-1} \\
\text { One less than } n \text {, or } n-1 \text {, } \\
\text { is the exponent on } r \text {. }
\end{gathered}
$$

General Term of a Geometric Sequence

The nth term (the general term) of a geometric sequence with first term a_{1} and common ratio r is

$$
a_{n}=a_{1} r^{n-1} .
$$

EXAMPLE 2 Using the Formula for the General Term of a Geometric Sequence

Find the eighth term of the geometric sequence whose first term is -4 and whose common ratio is -2 .

SOLUTION

To find the eighth term, a_{8}, we replace n in the formula with 8 , a_{1} with -4 , and r with -2 .

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
& a_{8}=-4(-2)^{8-1}=-4(-2)^{7}=-4(-128)=512
\end{aligned}
$$

The eighth term is 512 . We can check this result by writing the first eight terms of the sequence:

$$
-4,8,-16,32,-64,128,-256,512 .
$$

(1766-1834) predicted that population would increase as a geometric sequence and food production would increase as an arithmetic sequence. He concluded that eventually population would exceed food production. If two sequences, one geometric and one arithmetic, are increasing, the geometric sequence will eventually overtake the arithmetic sequence, regardless of any head start that the arithmetic sequence might initially have.

EXAMPLE 3 Geometric Population Growth

The table shows the population of the United States in 2000 and 2010, with estimates given by the Census Bureau for 2001 through 2009.

Year	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$
Population (millions)	281.4	284.0	286.6	289.3	292.0	294.7	297.4	300.2	303.0	305.8	308.7

a. Show that the population is increasing geometrically.
b. Write the general term for the geometric sequence modeling the population of the United States, in millions, n years after 1999.
c. Project the U.S. population, in millions, for the year 2020.

SOLUTION

a. First, we use the sequence of population growth, 281.4, 284.0, 286.6, 289.3, and so on, to divide the population for each year by the population in the preceding year.

$$
\frac{284.0}{281.4} \approx 1.009, \frac{286.6}{284.0} \approx 1.009, \quad \frac{289.3}{286.6} \approx 1.009
$$

Continuing in this manner, we will keep getting approximately 1.009 . This means that the population is increasing geometrically with $r \approx 1.009$. The population of the United States in any year shown in the sequence is approximately 1.009 times the population the year before.
b. The sequence of the U.S. population growth is
281.4, 284.0, 286.6, 289.3, 292.0, 294.7,

Because the population is increasing geometrically, we can find the general term of this sequence using

$$
a_{n}=a_{1} r^{n-1}
$$

In this sequence, $a_{1}=281.4$ and [from part (a)] $r \approx 1.009$. We substitute these values into the formula for the general term. This gives the general term for the geometric sequence modeling the U.S. population, in millions, n years after 1999 .

$$
a_{n}=281.4(1.009)^{n-1}
$$

c. We can use the formula for the general term, a_{n}, in part (b) to project the U.S. population for the year 2020. The year 2020 is 21 years after $1999-$ that is, $2020-1999=21$. Thus, $n=21$. We substitute 21 for n in $a_{n}=281.4(1.009)^{n-1}$.

$$
a_{21}=281.4(1.009)^{21-1}=281.4(1.009)^{20} \approx 336.6
$$

The model projects that the United States will have a population of approximately 336.6 million in the year 2020 .
$\$$ Check Point 3 Write the general term for the geometric sequence

$$
3,6,12,24,48, \ldots
$$

Then use the formula for the general term to find the eighth term.

Blitzer Bonus || Ponzi Schemes and Geometric Sequences

A ponzi scheme is an investment fraud that pays returns to existing investors from funds contributed by new investors rather than from legitimate investment activity. Here's a simplified example:

The number of investors needed to continue this Ponzi scheme,

$$
2,4,8,16, \ldots,
$$

and the money collected in each round,

$$
\$ 200, \$ 400, \$ 800, \$ 1600, \ldots,
$$

form rapidly growing geometric sequences. With no legitimate earnings, the scheme requires a consistent geometric flow of money from new investors to continue. Ponzi schemes tend to collapse when it becomes difficult to recruit new investors or when a large number of investors ask to cash out.

Use the formula for the sum of the first n terms of a geometric sequence.

GREAT QUESTION!

What is the sum of the first n terms of a geometric sequence if the common ratio is $1 ?$
If the common ratio is 1 , the geometric sequence is

$$
a_{1}, a_{1}, a_{1}, a_{1}, \ldots
$$

The sum of the first n terms of this sequence is $n a_{1}$:

$$
\begin{aligned}
S_{n} & =\underbrace{a_{1}+a_{1}+a_{1}+\cdots+a_{1}}_{\text {There are } n \text { terms }} . \\
& =n a_{1} .
\end{aligned}
$$

The Sum of the First \boldsymbol{n} Terms of a Geometric Sequence

The sum of the first n terms of a geometric sequence, denoted by S_{n} and called the $\boldsymbol{n t h}$ partial sum, can be found without having to add up all the terms. Recall that the first n terms of a geometric sequence are

$$
a_{1}, a_{1} r, a_{1} r^{2}, \ldots, a_{1} r^{n-2}, a_{1} r^{n-1}
$$

We proceed as follows:

$$
\begin{aligned}
S_{n} & =a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n} & =a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}+a_{1} r^{n} \\
S_{n}-r S_{n} & =a_{1}-a_{1} r^{n}
\end{aligned}
$$

S_{n} is the sum of the first n terms of the sequence.
Multiply both sides of the equation by r.

Subtract the second equation from the first equation.

$$
S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
$$

Factor out S_{n} on the left and a_{1} on the right.

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Solve for S_{n} by dividing both
sides by $1-r$ (assuming that $r \neq 1$).

We have proved the following result:

The Sum of the First n Terms of a Geometric Sequence

The sum, S_{n}, of the first n terms of a geometric sequence is given by

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r},
$$

in which a_{1} is the first term and r is the common ratio $(r \neq 1)$.

To find the sum of the terms of a geometric sequence using $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$, we need to know the first term, a_{1}, the common ratio, r, and the number of terms, n. The following examples illustrate how to use this formula.

EXAMPLE 4 Finding the Sum of the First n Terms of a Geometric Sequence

Find the sum of the first 18 terms of the geometric sequence: $\quad 2,-8,32,-128, \ldots$.

SOLUTION

To find the sum of the first 18 terms, S_{18}, we replace n in the formula with 18 .

$$
\begin{aligned}
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{18}=\frac{a_{1}\left(1-r^{18}\right)}{1-r} \\
& \text { The first term, We must find } r \text {, } \\
& a_{1} \text {, is } 2 \text {. the common ratio. }
\end{aligned}
$$

We can find the common ratio by dividing the second term of $2,-8,32,-128, \ldots$ by the first term.

$$
r=\frac{a_{2}}{a_{1}}=\frac{-8}{2}=-4
$$

Now we are ready to find the sum of the first 18 terms of $2,-8,32,-128, \ldots$.

$$
\begin{array}{rlrl}
S_{n} & =\frac{a_{1}\left(1-r^{n}\right)}{1-r} & & \begin{array}{l}
\text { Use the formula for the sum of the first } \\
n \text { terms of a geometric sequence. }
\end{array} \\
S_{18} & =\frac{2\left[1-(-4)^{18}\right]}{1-(-4)} & \begin{array}{ll}
a_{1}(\text { the first term })=2, r=-4, \text { and } n=18 \\
\text { because we want the sum of the first } 18 \text { terms. }
\end{array} \\
& =-27,487,790,694 & \text { Use a calculator. }
\end{array}
$$

The sum of the first 18 terms is $-27,487,790,694$. Equivalently, this number is the 18 th partial sum of the sequence $2,-8,32,-128, \ldots$.
$\$$ Check Point 4 Find the sum of the first nine terms of the geometric sequence: $2,-6,18,-54, \ldots$.

EXAMPLE 5 Using S_{n} to Evaluate a Summation

Find the following sum: $\sum_{i=1}^{10} 6 \cdot 2^{i}$.

SOLUTION

Let's write out a few terms in the sum.

$$
\sum_{i=1}^{10} 6 \cdot 2^{i}=6 \cdot 2+6 \cdot 2^{2}+6 \cdot 2^{3}+\cdots+6 \cdot 2^{10}
$$

TECHNOLOGY

To find

$$
\sum_{i=1}^{10} 6 \cdot 2^{i}
$$

on a graphing utility, enter
SUM SEQ $\left(6 \times 2^{x}, x, 1,10,1\right)$.
Then press ENTER.
Sum(ses(6*2*), \%, $1,10,1)$

Do you see that each term after the first is obtained by multiplying the preceding term by 2 ? To find the sum of the 10 terms $(n=10)$, we need to know the first term, a_{1}, and the common ratio, r. The first term is $6 \cdot 2$ or 12: $a_{1}=12$. The common ratio is 2 .

$$
\begin{aligned}
S_{n} & =\frac{a_{1}\left(1-r^{n}\right)}{1-r} & & \begin{array}{l}
\text { Use the formula for the sum of the first } \\
n \text { terms of a geometric sequence. }
\end{array} \\
S_{10} & =\frac{12\left(1-2^{10}\right)}{1-2} & & \begin{array}{l}
a_{1}(\text { the first term })=12, r=2, \text { and } n=10 \\
\text { because we are adding } 10 \text { terms. }
\end{array} \\
& =12,276 & & \text { Use a calculator. }
\end{aligned}
$$

Thus,

$$
\sum_{i=1}^{10} 6 \cdot 2^{i}=12,276 .
$$

\oint Check Point 5 Find the following sum: $\sum_{i=1}^{8} 2 \cdot 3^{i}$.
Some of the exercises in the previous Exercise Set involved situations in which salaries increased by a fixed amount each year. A more realistic situation is one in which salary raises increase by a certain percent each year. Example 6 shows how such a situation can be modeled using a geometric sequence.

EXAMPLE 6 Computing a Lifetime Salary

A union contract specifies that each worker will receive a 5\% pay increase each year for the next 30 years. One worker is paid $\$ 20,000$ the first year. What is this person's total lifetime salary over a 30 -year period?

SOLUTION

The salary for the first year is $\$ 20,000$. With a 5% raise, the second-year salary is computed as follows:
Salary for year $2=20,000+20,000(0.05)=20,000(1+0.05)=20,000(1.05)$.
Each year, the salary is 1.05 times what it was in the previous year. Thus, the salary for year 3 is 1.05 times $20,000(1.05)$, or $20,000(1.05)^{2}$. The salaries for the first five years are given in the table.

Yearly Salaries

Year 1	Year 2	Year 3	Year 4	Year 5	\ldots
20,000	$20,000(1.05)$	$20,000(1.05)^{2}$	$20,000(1.05)^{3}$	$20,000(1.05)^{4}$	\ldots

The numbers in the bottom row form a geometric sequence with $a_{1}=20,000$ and $r=1.05$. To find the total salary over 30 years, we use the formula for the sum of the first n terms of a geometric sequence, with $n=30$.

$$
\begin{aligned}
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{30}=\frac{20,000\left[1-(1.05)^{30}\right]}{1-1.05} \\
& \begin{array}{c}
\text { Total salary } \\
\text { over 30 years }
\end{array} \\
&=\frac{20,000\left[1-(1.05)^{30}\right]}{-0.05} \\
& \approx 1,328,777 \quad \text { Use a calculator. }
\end{aligned}
$$

The total salary over the 30 -year period is approximately $\$ 1,328,777$.

0 Check Point 6 A job pays a salary of $\$ 30,000$ the first year. During the next 29 years, the salary increases by 6% each year. What is the total lifetime salary over the 30 -year period?

Annuities

The compound interest formula

$$
A=P(1+r)^{t}
$$

gives the future value, A, after t years, when a fixed amount of money, P, the principal, is deposited in an account that pays an annual interest rate r (in decimal form) compounded once a year. However, money is often invested in small amounts at periodic intervals. For example, to save for retirement, you might decide to place $\$ 1000$ into an Individual Retirement Account (IRA) at the end of each year until you retire. An annuity is a sequence of equal payments made at equal time periods. An IRA is an example of an annuity.

Suppose P dollars is deposited into an account at the end of each year. The account pays an annual interest rate, r, compounded annually. At the end of the first year, the account contains P dollars. At the end of the second year, P dollars is deposited again. At the time of this deposit, the first deposit has received interest earned during the second year. The value of the annuity is the sum of all deposits made plus all interest paid. Thus, the value of the annuity after two years is

The value of the annuity after three years is

The value of the annuity after t years is

$$
\begin{aligned}
& \quad P+P(1+r)+P(1+r)^{2}+P(1+r)^{3}+\cdots+P(1+r)^{t-1} . \\
& \begin{array}{c}
\text { Deposits of } P \\
\text { dol lass at end of } \\
\text { year } t
\end{array}
\end{aligned}
$$

This is the sum of the terms of a geometric sequence with first term P and common ratio $1+r$. We use the formula

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

to find the sum of the terms:

$$
S_{t}=\frac{P\left[1-(1+r)^{t}\right]}{1-(1+r)}=\frac{P\left[1-(1+r)^{t}\right]}{-r}=\frac{P\left[(1+r)^{t}-1\right]}{r} .
$$

This formula gives the value of an annuity after t years if interest is compounded once a year. We can adjust the formula to find the value of an annuity if equal payments are made at the end of each of n yearly compounding periods.

Value of an Annuity: Interest Compounded n Times per Year

If P is the deposit made at the end of each compounding period for an annuity at r percent annual interest compounded n times per year, the value, A, of the annuity after t years is

$$
A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}} .
$$

EXAMPLE 7 Determining the Value of an Annuity

At age 25, to save for retirement, you decide to deposit $\$ 200$ at the end of each month into an IRA that pays 7.5% compounded monthly.
a. How much will you have from the IRA when you retire at age 65 ?
b. Find the interest.

SOLUTION

a. Because you are 25, the amount that you will have from the IRA when you retire at 65 is its value after 40 years.

$$
\begin{aligned}
& A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}} \\
& A=\frac{200\left[\left(1+\frac{0.075}{12}\right)^{12 \cdot 40}-1\right]}{\frac{0.075}{12}} \\
& =\frac{200\left[(1+0.00625)^{480}-1\right]}{0.00625} \\
& \text { Using parentheses keys, this can be performed } \\
& =\frac{200\left[(1.00625)^{480}-1\right]}{0.00625} \\
& \approx \frac{200(19.8989-1)}{0.00625} \\
& \text { Use a calculator to find }(1.00625)^{480} \text { : } \\
& 1.00625 \mathrm{y}^{\mathrm{x}} 480=\text {. } \\
& \approx 604,765
\end{aligned}
$$

After 40 years, you will have approximately $\$ 604,765$ when retiring at age 65 .
b. Interest $=$ Value of the IRA - Total deposits

$$
\begin{aligned}
& \approx \$ 604,765-\$ 200 \cdot 12 \cdot 40 \\
& \begin{array}{c}
\$ 200 \text { per month } \times 12 \text { months } \\
\text { per year } \times 40 \text { years }
\end{array} \\
& =\$ 604,765-\$ 96,000=\$ 508,765
\end{aligned}
$$

The interest is approximately $\$ 508,765$, more than five times the amount of your contributions to the IRA.

6 Use the formula for the sum of an infinite geometric series.

Geometric Series

An infinite sum of the form

$$
a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}+\cdots
$$

with first term a_{1} and common ratio r is called an infinite geometric series. How can we determine which infinite geometric series have sums and which do not? We look at what happens to r^{n} as n gets larger in the formula for the sum of the first n terms of this series, namely,

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

If r is any number between -1 and 1 , that is, $-1<r<1$, the term r^{n} approaches 0 as n gets larger. For example, consider what happens to r^{n} for $r=\frac{1}{2}$:

$$
\left(\frac{1}{2}\right)^{1}=\frac{1}{2} \quad\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \quad\left(\frac{1}{2}\right)^{3}=\frac{1}{8} \quad\left(\frac{1}{2}\right)^{4}=\frac{1}{16} \quad\left(\frac{1}{2}\right)^{5}=\frac{1}{32} \quad\left(\frac{1}{2}\right)^{6}=\frac{1}{64} .
$$

These numbers are approaching 0 as n gets larger.

Take another look at the formula for the sum of the first n terms of a geometric sequence.

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \underbrace{}_{\begin{array}{c}
\text { If }-1<r<1, \\
r^{n} \text { approaches } 0 \text { as } \\
n \text { gets larger. }
\end{array}}
$$

Let us replace r^{n} with 0 in the formula for S_{n}. This change gives us a formula for the sum of an infinite geometric series with a common ratio between -1 and 1 .

The Sum of an Infinite Geometric Series

If $-1<r<1$ (equivalently, $|r|<1$), then the sum of the infinite geometric series

$$
a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots,
$$

in which a_{1} is the first term and r is the common ratio, is given by

$$
S=\frac{a_{1}}{1-r} .
$$

If $|r| \geq 1$, the infinite series does not have a sum.

To use the formula for the sum of an infinite geometric series, we need to know the first term and the common ratio. For example, consider

First term, a_{1}, is $\frac{1}{2} . \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots$.

$$
\text { Common ratio, } r \text {, is } \frac{a_{2}}{a_{1}} \text {. }
$$

$$
r=\frac{1}{4} \div \frac{1}{2}=\frac{1}{4} \cdot 2=\frac{1}{2}
$$

FIGURE 10.7 The sum

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots$ is approaching 1 .
sum given by $S=\frac{a_{1}}{1-r}$. The sum of the series is found as follows:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots=\frac{a_{1}}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1
$$

Thus, the sum of the infinite geometric series is 1 . Notice how this is illustrated in Figure 10.7. As more terms are included, the sum is approaching the area of one complete circle.

EXAMPLE 8 Finding the Sum of an Infinite Geometric Series

Find the sum of the infinite geometric series: $\frac{3}{8}-\frac{3}{16}+\frac{3}{32}-\frac{3}{64}+\cdots$.

SOLUTION

Before finding the sum, we must find the common ratio.

$$
r=\frac{a_{2}}{a_{1}}=\frac{-\frac{3}{16}}{\frac{3}{8}}=-\frac{3}{16} \cdot \frac{8}{3}=-\frac{1}{2}
$$

Because $r=-\frac{1}{2}$, the condition that $|r|<1$ is met. Thus, the infinite geometric series has a sum.

$$
\begin{aligned}
S & =\frac{a_{1}}{1-r} \\
& =\frac{\frac{3}{8}}{1-\left(-\frac{1}{2}\right)}=\frac{\frac{3}{8}}{\frac{3}{2}}=\frac{3}{8} \cdot \frac{2}{3}=\frac{1}{4}
\end{aligned} \quad \begin{aligned}
& \text { This is the formula for the sum of an infinite } \\
& \text { geometric series, Let } a_{1}=\frac{3}{8} \text { and } r=-\frac{1}{2} .
\end{aligned}
$$

Thus, the sum of $\frac{3}{8}-\frac{3}{16}+\frac{3}{32}-\frac{3}{64}+\cdots$ is $\frac{1}{4}$. Put in an informal way, as we continue to add more and more terms, the sum is approximately $\frac{1}{4}$.
$\$$ Check Point 8 Find the sum of the infinite geometric series: $3+2+\frac{4}{3}+\frac{8}{9}+\cdots$.

We can use the formula for the sum of an infinite geometric series to express a repeating decimal as a fraction in lowest terms.

EXAMPLE 9 Writing a Repeating Decimal as a Fraction

Express $0 . \overline{7}$ as a fraction in lowest terms.

SOLUTION

$$
0 . \overline{7}=0.7777 \ldots=\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\frac{7}{10,000}+\cdots
$$

Observe that $0 . \overline{7}$ is an infinite geometric series with first term $\frac{7}{10}$ and common ratio $\frac{1}{10}$. Because $r=\frac{1}{10}$, the condition that $|r|<1$ is met. Thus, we can use our formula to find the sum. Therefore,

$$
0 . \overline{7}=\frac{a_{1}}{1-r}=\frac{\frac{7}{10}}{1-\frac{1}{10}}=\frac{\frac{7}{10}}{\frac{9}{10}}=\frac{7}{10} \cdot \frac{10}{9}=\frac{7}{9}
$$

An equivalent fraction for $0 . \overline{7}$ is $\frac{7}{9}$.
\bigcirc Check Point 9 Express $0 . \overline{9}$ as a fraction in lowest terms.

Infinite geometric series have many applications, as illustrated in Example 10.

EXAMPLE 10 Tax Rebates and the Multiplier Effect

A tax rebate that returns a certain amount of money to taxpayers can have a total effect on the economy that is many times this amount.In economics, this phenomenon is called the multiplier effect. Suppose, for example, that the government reduces taxes so that each consumer has $\$ 2000$ more income. The government assumes that each person will spend 70% of this $(=\$ 1400)$. The individuals and businesses receiving this $\$ 1400$ in turn spend 70% of it (=\$980), creating extra income for other people to spend, and so on. Determine the total amount spent on consumer goods from the initial \$2000 tax rebate.

SOLUTION

The total amount spent is given by the infinite geometric series

The first term is 1400: $a_{1}=1400$. The common ratio is 70%, or $0.7: r=0.7$. Because $r=0.7$, the condition that $|r|<1$ is met. Thus, we can use our formula to find the sum. Therefore,

$$
1400+980+686+\cdots=\frac{a_{1}}{1-r}=\frac{1400}{1-0.7} \approx 4667 .
$$

This means that the total amount spent on consumer goods from the initial $\$ 2000$ rebate is approximately $\$ 4667$.

W Check Point 10 Rework Example 10 and determine the total amount spent on consumer goods with a $\$ 1000$ tax rebate and 80% spending down the line.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant is called a/an \qquad sequence. The amount by which we multiply each time is called the \qquad of the sequence.
2. The nth term of the sequence described in Exercise 1 is given by the formula $a_{n}=$ \qquad , where a_{1} is the \qquad and r is the \qquad of the sequence.
3. The sum, S_{n}, of the first n terms of the sequence described in Exercise 1 is given by the formula $S_{n}=$ \qquad where a_{1} is the \qquad and r is the \qquad ,$r \neq 1$.
4. A sequence of equal payments made at equal time periods is called a/an \qquad Its value, A, after t years is given by the formula

$$
A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}},
$$

where \qquad is the deposit made at the end of each compounding period at \qquad percent annual interest compounded \qquad times per year.
5. An infinite sum of the form

$$
a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots
$$

is called a/an
If $-1<r<$ \qquad , its sum, S, is given by the formula $S=$ \qquad The series does not have a sum if \qquad —.
6. The first four terms of $\sum_{i=1}^{6} 2^{i}$ are \qquad
\qquad , and \qquad .The common ratio is
\qquad .

Determine whether each sequence is arithmetic or geometric.
7. $4,8,12,16,20, \ldots$
8. $4,8,16,32,64, .$.
9. $1,-3,9,-27,81, \ldots$
10. $-1,1,3,5,7, \ldots$ \qquad

EXERCISE SET 10.3

Practice Exercises

In Exercises 1-8, write the first five terms of each geometric sequence.

1. $a_{1}=5, \quad r=3$
2. $a_{1}=4, \quad r=3$
3. $a_{1}=20, \quad r=\frac{1}{2}$
4. $a_{1}=24, \quad r=\frac{1}{3}$
5. $a_{n}=-4 a_{n-1}, \quad a_{1}=10$
6. $a_{n}=-3 a_{n-1}, \quad a_{1}=10$
7. $a_{n}=-5 a_{n-1}, \quad a_{1}=-6$
8. $a_{n}=-6 a_{n-1}, \quad a_{1}=-2$

In Exercises 9-16, use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of each sequence with the given first term, a_{1}, and common ratio, r.
9. Find a_{8} when $a_{1}=6, r=2$.
10. Find a_{8} when $a_{1}=5, r=3$.
11. Find a_{12} when $a_{1}=5, r=-2$.
12. Find a_{12} when $a_{1}=4, r=-2$.
13. Find a_{40} when $a_{1}=1000, r=-\frac{1}{2}$.
14. Find a_{30} when $a_{1}=8000, r=-\frac{1}{2}$.
15. Find a_{8} when $a_{1}=1,000,000, r=0.1$.
16. Find a_{8} when $a_{1}=40,000, r=0.1$.

In Exercises 17-24, write a formula for the general term (the nth term) of each geometric sequence. Then use the formula for a_{n} to find a_{7}, the seventh term of the sequence.
17. $3,12,48,192, \ldots$
18. $3,15,75,375, \ldots$
19. $18,6,2, \frac{2}{3}, \ldots$.
20. $12,6,3, \frac{3}{2}, \ldots$.
21. $1.5,-3,6,-12, \ldots$
22. $5,-1, \frac{1}{5},-\frac{1}{25}, \ldots$.
23. $0.0004,-0.004,0.04,-0.4, \ldots$
24. $0.0007,-0.007,0.07,-0.7, \ldots$
Use the formula for the sum of the first n terms of a geometric sequence to solve Exercises 25-30.
25. Find the sum of the first 12 terms of the geometric sequence: $2,6,18,54, \ldots$
26. Find the sum of the first 12 terms of the geometric sequence: $3,6,12,24, \ldots$
27. Find the sum of the first 11 terms of the geometric sequence: $3,-6,12,-24, \ldots$
28. Find the sum of the first 11 terms of the geometric sequence: $4,-12,36,-108, \ldots$
29. Find the sum of the first 14 terms of the geometric sequence: $-\frac{3}{2}, 3,-6,12, \ldots$
30. Find the sum of the first 14 terms of the geometric sequence: $-\frac{1}{24}, \frac{1}{12},-\frac{1}{6}, \frac{1}{3}, \ldots$

In Exercises 31-36, find the indicated sum. Use the formula for the sum of the first n terms of a geometric sequence.
31. $\sum_{i=1}^{8} 3^{i}$
32. $\sum_{i=1}^{6} 4^{i}$
33. $\sum_{i=1}^{10} 5 \cdot 2^{i}$
34. $\sum_{i=1}^{7} 4(-3)^{i}$
35. $\sum_{i=1}^{6}\left(\frac{1}{2}\right)^{i+1}$
36. $\sum_{i=1}^{6}\left(\frac{1}{3}\right)^{i+1}$

In Exercises 37-44, find the sum of each infinite geometric series.
37. $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots$
38. $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots$
39. $3+\frac{3}{4}+\frac{3}{4^{2}}+\frac{3}{4^{3}}+\cdots$.
40. $5+\frac{5}{6}+\frac{5}{6^{2}}+\frac{5}{6^{3}}+\cdots$
41. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$
42. $3-1+\frac{1}{3}-\frac{1}{9}+\cdots$
43. $\sum_{i=1}^{\infty} 8(-0.3)^{i-1}$
44. $\sum_{i=1}^{\infty} 12(-0.7)^{i-1}$

In Exercises 45-50, express each repeating decimal as a fraction in lowest terms.
45. $0 . \overline{5}=\frac{5}{10}+\frac{5}{100}+\frac{5}{1000}+\frac{5}{10,000}+\cdots$
46. $0 . \overline{1}=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10,000}+\cdots$
47. $0 . \overline{47}=\frac{47}{100}+\frac{47}{10,000}+\frac{47}{1,000,000}+\cdots$
48. $0 . \overline{83}=\frac{83}{100}+\frac{83}{10,000}+\frac{83}{1,000,000}+\cdots$
49. $0 . \overline{257}$
50. $0 . \overline{529}$

In Exercises 51-56, the general term of a sequence is given.
Determine whether the sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference; if it is geometric, find the common ratio.
51. $a_{n}=n+5$
52. $a_{n}=n-3$
53. $a_{n}=2^{n}$
54. $a_{n}=\left(\frac{1}{2}\right)^{n}$
55. $a_{n}=n^{2}+5$
56. $a_{n}=n^{2}-3$

Practice Plus

In Exercises 57-62, let

$$
\begin{aligned}
& \left\{a_{n}\right\}=-5,10,-20,40, \ldots \\
& \left\{b_{n}\right\}=10,-5,-20,-35, \ldots
\end{aligned}
$$

and

$$
\left\{c_{n}\right\}=-2,1,-\frac{1}{2}, \frac{1}{4}, \ldots
$$

57. Find $a_{10}+b_{10}$.
58. Find $a_{11}+b_{11}$.
59. Find the difference between the sum of the first 10 terms of $\left\{a_{n}\right\}$ and the sum of the first 10 terms of $\left\{b_{n}\right\}$.
60. Find the difference between the sum of the first 11 terms of $\left\{a_{n}\right\}$ and the sum of the first 11 terms of $\left\{b_{n}\right\}$.
61. Find the product of the sum of the first 6 terms of $\left\{a_{n}\right\}$ and the sum of the infinite series containing all the terms of $\left\{c_{n}\right\}$.
62. Find the product of the sum of the first 9 terms of $\left\{a_{n}\right\}$ and the sum of the infinite series containing all the terms of $\left\{c_{n}\right\}$.

In Exercises 63-64, find a_{2} and a_{3} for each geometric sequence.
63. $8, a_{2}, a_{3}, 27$
64. $2, a_{2}, a_{3},-54$

Application Exercises

Use the formula for the general term (the nth term) of a geometric sequence to solve Exercises 65-68.
In Exercises 65-66, suppose you save \$1 the first day of a month, $\$ 2$ the second day, $\$ 4$ the third day, and so on. That is, each day you save twice as much as you did the day before.
65. What will you put aside for savings on the fifteenth day of the month?
66. What will you put aside for savings on the thirtieth day of the month?
67. A professional baseball player signs a contract with a beginning salary of $\$ 3,000,000$ for the first year and an annual increase of 4% per year beginning in the second year. That is, beginning in year 2 , the athlete's salary will be 1.04 times what it was in the previous year. What is the athlete's salary for year 7 of the contract? Round to the nearest dollar.
68. You are offered a job that pays $\$ 30,000$ for the first year with an annual increase of 5% per year beginning in the second year. That is, beginning in year 2 , your salary will be 1.05 times what it was in the previous year. What can you expect to earn in your sixth year on the job?
In Exercises 69-70, you will develop geometric sequences that model the population growth for California and Texas, the two most-populated U.S. states.
69. The table shows the population of California for 2000 and 2010, with estimates given by the U.S. Census Bureau for 2001 through 2009.

Year	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
Population in millions	33.87	34.21	34.55	34.90	35.25	35.60

Year	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$
Population in millions	36.00	36.36	36.72	37.09	37.25

a. Divide the population for each year by the population in the preceding year. Round to two decimal places and show that California has a population increase that is approximately geometric.
b. Write the general term of the geometric sequence modeling California's population, in millions, n years after 1999.
c. Use your model from part (b) to project California's population, in millions, for the year 2020. Round to two decimal places.
70. The table shows the population of Texas for 2000 and 2010, with estimates given by the U.S. Census Bureau for 2001 through 2009.

Year	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
Population in millions	20.85	21.27	21.70	22.13	22.57	23.02

Year	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$
Population in millions	23.48	23.95	24.43	24.92	25.15

a. Divide the population for each year by the population in the preceding year. Round to two decimal places and show that Texas has a population increase that is approximately geometric.
b. Write the general term of the geometric sequence modeling Texas's population, in millions, n years after 1999.
c. Use your model from part (b) to project Texas's population, in millions, for the year 2020. Round to two decimal places.

Use the formula for the sum of the first n terms of a geometric sequence to solve Exercises 71-76.
In Exercises 71-72, you save $\$ 1$ the first day of a month, $\$ 2$ the second day, $\$ 4$ the third day, continuing to double your savings each day.
71. What will your total savings be for the first 15 days?
72. What will your total savings be for the first 30 days?
73. A job pays a salary of $\$ 24,000$ the first year. During the next 19 years, the salary increases by 5% each year. What is the total lifetime salary over the 20 -year period? Round to the nearest dollar.
74. You are investigating two employment opportunities. Company A offers $\$ 30,000$ the first year. During the next four years, the salary is guaranteed to increase by 6% per year. Company B offers $\$ 32,000$ the first year, with guaranteed annual increases of 3% per year after that. Which company offers the better total salary for a five-year contract? By how much? Round to the nearest dollar.
75. A pendulum swings through an arc of 20 inches. On each successive swing, the length of the arc is 90% of the previous length.

After 10 swings, what is the total length of the distance the pendulum has swung?
76. A pendulum swings through an arc of 16 inches. On each successive swing, the length of the arc is 96% of the previous length.

After 10 swings, what is the total length of the distance the pendulum has swung?
Use the formula for the value of an annuity to solve Exercises
77-84. Round answers to the nearest dollar.
77. To save money for a sabbatical to earn a master's degree, you deposit $\$ 2000$ at the end of each year in an annuity that pays 7.5% compounded annually.
a. How much will you have saved at the end of five years?
b. Find the interest.
78. To save money for a sabbatical to earn a master's degree, you deposit $\$ 2500$ at the end of each year in an annuity that pays 6.25% compounded annually.
a. How much will you have saved at the end of five years?
b. Find the interest.
79. At age 25, to save for retirement, you decide to deposit $\$ 50$ at the end of each month in an IRA that pays 5.5% compounded monthly.
a. How much will you have from the IRA when you retire at age 65?
b. Find the interest.
80. At age 25, to save for retirement, you decide to deposit $\$ 75$ at the end of each month in an IRA that pays 6.5% compounded monthly.
a. How much will you have from the IRA when you retire at age 65 ?
b. Find the interest.
81. To offer scholarship funds to children of employees, a company invests $\$ 10,000$ at the end of every three months in an annuity that pays 10.5% compounded quarterly.
a. How much will the company have in scholarship funds at the end of ten years?
b. Find the interest.
82. To offer scholarship funds to children of employees, a company invests $\$ 15,000$ at the end of every three months in an annuity that pays 9% compounded quarterly.
a. How much will the company have in scholarship funds at the end of ten years?
b. Find the interest.
83. Here are two ways of investing $\$ 30,000$ for 20 years.

Lump-Sum Deposit	Rate	Time
$\$ 30,000$	5\% compounded annually	20 years

Periodic Deposits	Rate	Time
\$1500 at the end of each year	5% compounded annually	20 years

After 20 years, how much more will you have from the lump-sum investment than from the annuity?
84. Here are two ways of investing $\$ 40,000$ for 25 years.

Lump-Sum Deposit	Rate	Time
$\$ 40,000$	6.5\% compounded annually	25 years

Periodic Deposits	Rate	Time
\$1600 at the end of each year	6.5\% compounded annually	25 years

After 25 years, how much more will you have from the lump-sum investment than from the annuity?

Use the formula for the sum of an infinite geometric series to solve Exercises 85-87.
85. A new factory in a small town has an annual payroll of $\$ 6$ million. It is expected that 60% of this money will be spent in the town by factory personnel. The people in the town who receive this money are expected to spend 60% of what they receive in the town, and so on. What is the total of all this spending, called the total economic impact of the factory, on the town each year?
86. How much additional spending will be generated by a $\$ 10$ billion tax rebate if 60% of all income is spent?
87. If the shading process shown in the figure is continued indefinitely, what fractional part of the largest square will eventually be shaded?

Writing in Mathematics

88. What is a geometric sequence? Give an example with your explanation.
89. What is the common ratio in a geometric sequence?
90. Explain how to find the general term of a geometric sequence.
91. Explain how to find the sum of the first n terms of a geometric sequence without having to add up all the terms.
92. What is an annuity?
93. What is the difference between a geometric sequence and an infinite geometric series?
94. How do you determine if an infinite geometric series has a sum? Explain how to find the sum of such an infinite geometric series.
95. Would you rather have $\$ 10,000,000$ and a brand new BMW, or $1 \not \subset$ today, $2 \not \subset$ tomorrow, $4 \not \subset$ on day $3,8 \not \subset$ on day 4 , $16 \not \subset$ on day 5, and so on, for 30 days? Explain.
96. For the first 30 days of a flu outbreak, the number of students on your campus who become ill is increasing. Which is worse: The number of students with the flu is increasing arithmetically or is increasing geometrically? Explain your answer.

Technology Exercises

97. Use the SEQ (sequence) capability of a graphing utility and the formula you obtained for a_{n} to verify the value you found for a_{7} in any three exercises from Exercises 17-24.
98. Use the capability of a graphing utility to calculate the sum of a sequence to verify any three of your answers to Exercises 31-36.

In Exercises 99-100, use a graphing utility to graph the function. Determine the horizontal asymptote for the graph of f and discuss its relationship to the sum of the given series.
99. Function
$f(x)=\frac{2\left[1-\left(\frac{1}{3}\right)^{x}\right]}{1-\frac{1}{3}} 2+2\left(\frac{1}{3}\right)+2\left(\frac{1}{3}\right)^{2}+2\left(\frac{1}{3}\right)^{3}+\cdots$
100. Function
$f(x)=\frac{4\left[1-(0.6)^{x}\right]}{1-0.6}$

Series

Critical Thinking Exercises

Make Sense? In Exercises 101-104, determine whether each statement makes sense or does not make sense, and explain your reasoning.
101. There's no end to the number of geometric sequences that I can generate whose first term is 5 if I pick nonzero numbers r and multiply 5 by each value of r repeatedly.
102. I've noticed that the big difference between arithmetic and geometric sequences is that arithmetic sequences are based on addition and geometric sequences are based on multiplication.
103. I modeled California's population growth with a geometric sequence, so my model is an exponential function whose domain is the set of natural numbers.
104. I used a formula to find the sum of the infinite geometric series $3+1+\frac{1}{3}+\frac{1}{9}+\cdots$ and then checked my answer by actually adding all the terms.

In Exercises 105-108, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
105. The sequence $2,6,24,120, \ldots$ is an example of a geometric sequence.
106. The sum of the geometric series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{512}$ can only be estimated without knowing precisely what terms occur between $\frac{1}{8}$ and $\frac{1}{512}$.
107. $10-5+\frac{5}{2}-\frac{5}{4}+\cdots=\frac{10}{1-\frac{1}{2}}$
108. If the nth term of a geometric sequence is $a_{n}=3(0.5)^{n-1}$, the common ratio is $\frac{1}{2}$.
109. In a pest-eradication program, sterilized male flies are released into the general population each day. Ninety percent of those flies will survive a given day. How many flies should be released each day if the long-range goal of the program is to keep 20,000 sterilized flies in the population?
110. You are now 25 years old and would like to retire at age 55 with a retirement fund of $\$ 1,000,000$. How much should you deposit at the end of each month for the next 30 years in an IRA paying 10% annual interest compounded monthly to achieve your goal? Round to the nearest dollar.

Group Exercise

111. Group members serve as a financial team analyzing the three options given to the professional baseball player described in the chapter opener on page 705. As a group, determine which option provides the most amount of money over the six-year contract and which provides the least. Describe one advantage and one disadvantage to each option.

Preview Exercises

Exercises 112-114 will help you prepare for the material covered in the next section.

In Exercises 112-113, show that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

is true for the given value of n.
112. $n=3$: Show that $1+2+3=\frac{3(3+1)}{2}$.
113. $n=5$: Show that $1+2+3+4+5=\frac{5(5+1)}{2}$.
114. Simplify: $\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}$.

CHAPTER 10 Mid-Chapter Check Point

WHAT YOU KNOW: We learned that a sequence is a function whose domain is the set of positive integers. In an arithmetic sequence, each term after the first differs from the preceding term by a constant, the common difference, d. In a geometric sequence, each term after the first is obtained by multiplying the preceding term by a nonzero constant, the common ratio, r. We found the general term of arithmetic sequences $\left[a_{n}=a_{1}+(n-1) d\right]$ and geometric sequences $\left[a_{n}=a_{1} r^{n-1}\right]$ and used these formulas to find particular terms. We determined the sum of the first n terms of arithmetic sequences $\left[S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)\right]$ and geometric sequences $\left[S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}\right]$. Finally, we determined the sum of an infinite geometric series,
$a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots$, if $-1<r<1\left(S=\frac{a_{1}}{1-r}\right)$.
In Exercises 1-4, write the first five terms of each sequence. Assume that d represents the common difference of an arithmetic sequence and r represents the common ratio of a geometric sequence.

1. $a_{n}=(-1)^{n+1} \frac{n}{(n-1)!}$
2. $a_{1}=5, d=-3$
3. $a_{1}=5, r=-3$
4. $a_{1}=3, a_{n}=-a_{n-1}+4$

In Exercises 5-7, write a formula for the general term (the nth term) of each sequence. Then use the formula to find the indicated term.
5. $2,6,10,14, \ldots ; a_{20}$
6. $3,6,12,24, \ldots ; a_{10}$
7. $\frac{3}{2}, 1, \frac{1}{2}, 0, \ldots ; a_{30}$
8. Find the sum of the first ten terms of the sequence:

$$
5,10,20,40, \ldots
$$

9. Find the sum of the first 50 terms of the sequence:

$$
-2,0,2,4, \ldots
$$

10. Find the sum of the first ten terms of the sequence:

$$
-20,40,-80,160, \ldots
$$

11. Find the sum of the first 100 terms of the sequence:

$$
4,-2,-8,-14, \ldots
$$

In Exercises 12-15, find each indicated sum.
12. $\sum_{i=1}^{4}(i+4)(i-1)$
13. $\sum_{i=1}^{50}(3 i-2)$
14. $\sum_{i=1}^{6}\left(\frac{3}{2}\right)^{i}$
15. $\sum_{i=1}^{\infty}\left(-\frac{2}{5}\right)^{i-1}$
16. Express $0 . \overline{45}$ as a fraction in lowest terms.
17. Express the sum using summation notation. Use i for the index of summation.

$$
\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\cdots+\frac{18}{20}
$$

18. A skydiver falls 16 feet during the first second of a dive, 48 feet during the second second, 80 feet during the third second, 112 feet during the fourth second, and so on. Find the distance that the skydiver falls during the 15 th second and the total distance the skydiver falls in 15 seconds.
19. If the average value of a house increases 10% per year, how much will a house costing $\$ 120,000$ be worth in 10 years? Round to the nearest dollar.

SECTION 10.4 Mathematical Induction

Obyectives

(1) Understand the principle of mathematical induction.
2. Prove statements using mathematical induction.

1 Understand the principle of mathematical induction.

After ten years of work, Princeton University's Andrew Wiles proved Fermat's Last Theorem.

Pierre de Fermat (1601-1665) was a lawyer who enjoyed studying mathematics. In a margin of one of his books, he claimed that no positive integers satisfy

$$
x^{n}+y^{n}=z^{n}
$$

if n is an integer greater than or equal to 3 .
If $n=2$, we can find positive integers satisfying $x^{n}+y^{n}=z^{n}$, or $x^{2}+y^{2}=z^{2}$:

$$
3^{2}+4^{2}=5^{2} .
$$

However, Fermat claimed that no positive integers satisfy

$$
x^{3}+y^{3}=z^{3}, \quad x^{4}+y^{4}=z^{4}, \quad x^{5}+y^{5}=z^{5},
$$

and so on. Fermat claimed to have a proof of his conjecture but added, "The margin of my book is too narrow to write it down." Some believe that he never had a proof and intended to frustrate his colleagues.

In 1994, 40-year-old Princeton math professor Andrew Wiles proved Fermat's Last Theorem using a principle called mathematical induction. In this section, you will learn how to use this powerful method to prove statements about the positive integers.

The Principle of Mathematical Induction

How do we prove statements using mathematical induction? Let's consider an example. We will prove a statement that appears to give a correct formula for the sum of the first n positive integers:

$$
S_{n}: 1+2+3+\cdots+n=\frac{n(n+1)}{2} .
$$

We can verify S_{n} for, say, the first four positive integers. If $n=1$, the statement S_{1} is

$$
\begin{aligned}
\begin{array}{c}
\text { Take the first } \\
\text { term on the left. }
\end{array} & 1 \stackrel{?}{=} \frac{1(1+1)}{2} \quad \begin{array}{l}
\begin{array}{l}
\text { Substitute } 1 \text { for } \\
n \text { on the right. }
\end{array} \\
\\
\\
\\
\\
\\
1
\end{array} \stackrel{?}{=} \frac{1 \cdot 2}{2} \\
& =1 \checkmark . \begin{array}{l}
\text { This true statement shows } \\
\text { that } S_{1} \text { is true. }
\end{array}
\end{aligned}
$$

If $n=2$, the statement S_{2} is

$$
\begin{aligned}
& \begin{array}{l}
\text { Add the first two } \\
\text { terms on the left. }
\end{array} \\
& 3 \stackrel{?}{=} \frac{2 \cdot 3}{2} \\
& 3=3 \sqrt{=} \frac{2(2+1)}{2} \begin{array}{l}
\text { Substitute } 2 \text { for } \\
n \text { on the right. }
\end{array} \\
& \begin{array}{l}
\text { This true statement shows } \\
\text { that } S_{2} \text { is true. }
\end{array}
\end{aligned}
$$

If $n=3$, the statement S_{3} is

$$
\begin{aligned}
\begin{array}{l}
\text { Add the first three } \\
\text { terms on the left. }
\end{array} 1+2+3 & \stackrel{?}{=} \frac{3(3+1)}{2} \quad \begin{array}{l}
\text { Substitute } 3 \text { for } \\
n \text { on the right. }
\end{array} \\
6 & \stackrel{?}{=} \frac{3 \cdot 4}{2} \\
6 & =6 \checkmark . \begin{array}{l}
\text { This true statement shows } \\
\text { that } S_{3} \text { is true. }
\end{array}
\end{aligned}
$$

Finally, if $n=4$, the statement S_{4} is

$$
\begin{aligned}
\begin{array}{l}
\text { Add the first four } \\
\text { terms on the left. }
\end{array} 1+2+3+4 & \stackrel{?}{=} \frac{4(4+1)}{2} \\
10 & \stackrel{?}{=} \frac{4 \cdot 5}{2} \\
10 & =10 \checkmark .
\end{aligned} \begin{aligned}
\begin{array}{l}
\text { Substitute } 4 \text { for } \\
n \text { on the right. }
\end{array} \\
\text { This true statement shows } \\
\text { that } S_{4} \text { is true. }
\end{aligned}
$$

This approach does not prove that the given statement S_{n} is true for every positive integer n. The fact that the formula produces true statements for $n=1,2,3$, and 4 does not guarantee that it is valid for all positive integers n. Thus, we need to be able to verify the truth of S_{n} without verifying the statement for each and every one of the positive integers.

A legitimate proof of the given statement S_{n} involves a technique called mathematical induction.

The Principle of Mathematical Induction

Let S_{n} be a statement involving the positive integer n. If

1. S_{1} is true, and
2. the truth of the statement S_{k} implies the truth of the statement S_{k+1}, for every positive integer k,
then the statement S_{n} is true for all positive integers n.

The principle of mathematical induction can be illustrated using an unending line of dominoes, as shown in Figure 10.8. If the first domino is pushed over, it knocks down the next, which knocks down the next, and so on, in a chain reaction. To topple all the dominoes in the infinite sequence, two conditions must be satisfied:

1. The first domino must be knocked down.
2. If the domino in position k is knocked down, then the domino in position $k+1$ must be knocked down.
If the second condition is not satisfied, it does not follow that all the dominoes will topple. For example, suppose the dominoes are spaced far enough apart so that a falling domino does not push over the next domino in the line.

The domino analogy provides the two steps that are required in a proof by mathematical induction.

The Steps in a Proof by Mathematical Induction

Let S_{n} be a statement involving the positive integer n. To prove that S_{n} is true for all positive integers n requires two steps.

Step 1 Show that S_{1} is true.
Step 2 Show that if S_{k} is assumed to be true, then S_{k+1} is also true, for every positive integer k.

Notice that to prove S_{n}, we work only with the statements S_{1}, S_{k}, and S_{k+1}. Our first example provides practice in writing these statements.

EXAMPLE 1 Writing S_{1}, S_{k} and S_{k+1}

For the given statement S_{n}, write the three statements S_{1}, S_{k}, and S_{k+1}.
a. $S_{n}: 1+2+3+\cdots+n=\frac{n(n+1)}{2}$
b. $S_{n}: 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

SOLUTION

a. We begin with

$$
S_{n}: 1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Write S_{1} by taking the first term on the left and replacing n with 1 on the right.

$$
S_{1}: 1=\frac{1(1+1)}{2}
$$

Write S_{k} by taking the sum of the first k terms on the left and replacing n with k on the right.

$$
S_{k}: 1+2+3+\cdots+k=\frac{k(k+1)}{2}
$$

Write S_{k+1} by taking the sum of the first $k+1$ terms on the left and replacing n with $k+1$ on the right.

$$
\begin{array}{ll}
S_{k+1}: 1+2+3+\cdots+(k+1)=\frac{(k+1)[(k+1)+1]}{2} & \\
S_{k+1}: 1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2} & \begin{array}{l}
\text { Simplify on } \\
\text { the right. }
\end{array}
\end{array}
$$

b. We begin with

$$
S_{n}: 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Write S_{1} by taking the first term on the left and replacing n with 1 on the right.

$$
S_{1}: 1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

Using $S_{n}: 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$, we write S_{k} by taking the sum of the first k terms on the left and replacing n with k on the right.

$$
S_{k}: 1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Write S_{k+1} by taking the sum of the first $k+1$ terms on the left and replacing n with $k+1$ on the right.
$S_{k+1}: 1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$
$S_{k+1}: 1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6} \quad \begin{aligned} & \text { Simplify on the } \\ & \text { right. }\end{aligned}$

Check Point 1 For the given statement S_{n}, write the three statements S_{1}, S_{k}, and S_{k+1}.
a. $2+4+6+\cdots+2 n=n(n+1)$
b. $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Always simplify S_{k+1} before trying to use mathematical induction to prove that S_{n} is true. For example, consider

$$
S_{n}: 1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3} .
$$

Begin by writing S_{k+1} as follows:

$$
\begin{aligned}
& S_{k+1}: 1^{2}+3^{2}+5^{2}+\cdots+[2(k+1)-1]^{2} \\
& \begin{array}{c}
\begin{array}{c}
\text { The sum of the } \\
\text { first } k+1 \text { terms }
\end{array}
\end{array}=\frac{(k+1)[2(k+1)-1][2(k+1)+1]}{3} \\
& \begin{array}{c}
\text { Replace } n \text { with } k+1 \text { on } \\
\text { the right side of } S_{n} .
\end{array}
\end{aligned}
$$

Now simplify both sides of the equation.

$$
\begin{aligned}
S_{k+1}: 1^{2}+3^{2}+5^{2}+\cdots+(2 k+2-1)^{2} & =\frac{(k+1)(2 k+2-1)(2 k+2+1)}{3} \\
S_{k+1}: 1^{2}+3^{2}+5^{2}+\cdots+(2 k+1)^{2} & =\frac{(k+1)(2 k+1)(2 k+3)}{3}
\end{aligned}
$$

Proving Statements about Positive Integers Using Mathematical Induction

Now that we know how to find S_{1}, S_{k}, and S_{k+1}, let's see how we can use these statements to carry out the two steps in a proof by mathematical induction. In Examples 2 and 3, we will use the statements S_{1}, S_{k}, and S_{k+1} to prove each of the statements S_{n} that we worked with in Example 1.

EXAMPLE 2 Proving a Formula by Mathematical Induction

Use mathematical induction to prove that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

for all positive integers n.

SOLUTION

Step 1 Show that $\boldsymbol{S}_{\mathbf{1}}$ is true. Statement S_{1} is

$$
1=\frac{1(1+1)}{2} .
$$

Simplifying on the right, we obtain $1=1$. This true statement shows that S_{1} is true.
Step 2 Show that if $\boldsymbol{S}_{\boldsymbol{k}}$ is true, then $\boldsymbol{S}_{\boldsymbol{k}+\boldsymbol{1}}$ is true. Using S_{k} and S_{k+1} from Example 1(a), show that the truth of S_{k},

$$
1+2+3+\cdots+k=\frac{k(k+1)}{2}
$$

implies the truth of S_{k+1},

$$
1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2} .
$$

S_{k} :

$$
1+2+3+\cdots+k=\frac{k(k+1)}{2}
$$

S_{k+1} :
$1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$
The statements S_{k} and S_{k+1} (repeated)

We will work with S_{k}. Because we assume that S_{k} is true, we add the next consecutive integer after k-namely, $k+1$-to both sides.

$$
\begin{aligned}
& 1+2+3+\cdots+k=\frac{k(k+1)}{2} \\
& 1+2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1) \begin{array}{l}
\text { This is } S_{k} \text {, which we } \\
\text { assume is true. }
\end{array} \\
& \begin{array}{l}
\text { Add } k+1 \text { to both } \\
\text { sides of the equation. }
\end{array}
\end{aligned}
$$

We do not have to write this k because k is understood to be the integer that precedes $k+1$.

$$
\begin{array}{ll}
1+2+3+\cdots+(k+1)=\frac{k(k+1)}{2}+\frac{2(k+1)}{2} & \begin{array}{l}
\text { Write the right side } \\
\text { with a common } \\
\text { denominator of } 2 .
\end{array} \\
1+2+3+\cdots+(k+1)=\frac{(k+1)}{2}(k+2) & \begin{array}{l}
\text { Factor out the } \\
\text { common factor } \frac{k+1}{2} \\
\text { on the right. }
\end{array} \\
1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2} & \begin{array}{l}
\text { This final result is the } \\
\text { statement } S_{k+1} .
\end{array}
\end{array}
$$

We have shown that if we assume that S_{k} is true and we add $k+1$ to both sides of S_{k}, then S_{k+1} is also true. By the principle of mathematical induction, the statement S_{n}, namely,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

is true for every positive integer n.
$\$$ Check Point 2 Use mathematical induction to prove that

$$
2+4+6+\cdots+2 n=n(n+1)
$$

for all positive integers n.

EXAMPLE 3 Proving a Formula by Mathematical Induction

Use mathematical induction to prove that

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all positive integers n.

SOLUTION

Step 1 Show that $\boldsymbol{S}_{\mathbf{1}}$ is true. Statement S_{1} is

$$
1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6} .
$$

Simplifying, we obtain $1=\frac{1 \cdot 2 \cdot 3}{6}$. Further simplification on the right gives the statement $1=1$. This true statement shows that S_{1} is true.
Step 2 Show that if $\boldsymbol{S}_{\boldsymbol{k}}$ is true, then $\boldsymbol{S}_{\boldsymbol{k}+\boldsymbol{1}}$ is true. Using S_{k} and S_{k+1} from Example 1(b), show that the truth of

$$
S_{k}: 1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

implies the truth of

$$
S_{k+1}: 1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

We will work with S_{k}. Because we assume that S_{k} is true, we add the square of the next consecutive integer after k, namely, $(k+1)^{2}$, to both sides of the equation.

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\cdots+k^{2} & =\frac{k(k+1)(2 k+1)}{6} & \begin{array}{l}
\text { This is } S_{k} \text {, assumed to be true. We must } \\
\text { work with this and show } S_{k+1} \text { is true. }
\end{array} \\
1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \quad & \text { Add }(k+1)^{2} \text { to both sides. } \\
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)^{2}}{6} \quad & \begin{array}{l}
\text { It is not necessary to write } k^{2} \text { on the } \\
\text { left. Express the right side with the least } \\
\text { common denominator, } 6 . ~
\end{array} \\
& =\frac{(k+1)}{6}[k(2 k+1)+6(k+1)] & \begin{array}{l}
\text { Factor out the common factor } \frac{k}{}+1 \\
6
\end{array} \\
& =\frac{(k+1)}{6}\left(2 k^{2}+7 k+6\right) & \text { Multiply and combine like terms. } \\
& =\frac{(k+1)}{6}(k+2)(2 k+3) & \text { Factor } 2 k^{2}+7 k+6 .
\end{aligned}
$$

We have shown that if we assume that S_{k} is true, and we add $(k+1)^{2}$ to both sides of S_{k}, then S_{k+1} is also true. By the principle of mathematical induction, the statement S_{n}, namely,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

is true for every positive integer n.

$\$$ Check Point 3 Use mathematical induction to prove that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for all positive integers n.

Example 4 illustrates how mathematical induction can be used to prove statements about positive integers that do not involve sums.

EXAMPLE 4 Using the Principle of Mathematical Induction

Prove that 2 is a factor of $n^{2}+5 n$ for all positive integers n.

SOLUTION

Step 1 Show that $\boldsymbol{S}_{\mathbf{1}}$ is true. Statement S_{1} reads
2 is a factor of $1^{2}+5 \cdot 1$.
Simplifying the arithmetic, the statement reads
2 is a factor of 6.
This statement is true: That is, $6=2 \cdot 3$. This shows that S_{1} is true.

Step 2 Show that if $\boldsymbol{S}_{\boldsymbol{k}}$ is true, then $\boldsymbol{S}_{\boldsymbol{k}+\boldsymbol{1}}$ is true. Let's use $S_{n}: 2$ is a factor of $n^{2}+S_{n}$ to write S_{k} and S_{k+1} :

$$
\begin{array}{ll}
S_{k}: & 2 \text { is a factor of } k^{2}+5 k \\
S_{k+1}: & 2 \text { is a factor of }(k+1)^{2}+5(k+1)
\end{array}
$$

We can rewrite statement S_{k+1} by simplifying the algebraic expression in the statement as follows:

$$
\begin{aligned}
& (k+1)^{2}+5(k+1)=k^{2}+2 k+1+5 k+5=k^{2}+7 k+6 . \\
& \text { Use the formula }(A+B)^{2}=A^{2}+2 A B+B^{2} .
\end{aligned}
$$

Statement S_{k+1} now reads

$$
2 \text { is a factor of } k^{2}+7 k+6 .
$$

We need to use statement $S_{k}-$ that is, 2 is a factor of $k^{2}+5 k-$ to prove statement S_{k+1}. We do this as follows:

$$
k^{2}+7 k+6=\left(k^{2}+5 k\right)+(2 k+6)=\left(k^{2}+5 k\right)+2(k+3) .
$$

We assume that 2 is
a factor of $k^{2}+5 k$ because
we assume S_{k} is true.

Factoring the last two terms shows that 2 is a factor of $2 k+6$.

The voice balloons show that 2 is a factor of $k^{2}+5 k$ and of $2(k+3)$. Thus, if S_{k} is true, 2 is a factor of the sum $\left(k^{2}+5 k\right)+2(k+3)$, or of $k^{2}+7 k+6$. This is precisely the statement S_{k+1}. We have shown that if we assume that S_{k} is true, then S_{k+1} is also true. By the principle of mathematical induction, the statement S_{n}, namely 2 is a factor of $n^{2}+5 n$, is true for every positive integer n.
\oint Check Point 4 Prove that 2 is a factor of $n^{2}+n$ for all positive integers n.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The principle of mathematical \qquad states that a statement involving positive integers is true for all positive integers when two conditions have been satisfied:

The first condition states that the statement is true for the positive integer \qquad
The second condition states that if the statement is true for some positive integer k, it is also true for the next positive integer \qquad —.
2. Consider the statement

$$
2+4+6+\cdots+2 n=n(n+1) .
$$

If $n=1$, the statement is $2=1(1+1)$.
If $n=2$, the statement is $2+4=2(2+1)$.
If $n=3$, the statement is
If $n=k+1$, the statement is
3. Consider the statement

$$
3+7+11+\cdots+(4 n-1)=n(2 n+1) .
$$

If $n=1$, the statement is $3=1(2+1)$.
If $n=2$, the statement is $3+7=2(4+1)$.
If $n=3$, the statement is \qquad
If $n=k+1$, the statement before the algebra is simplified is

If $n=k+1$, the statement after the algebra is simplified is
4. Consider the statement

2 is a factor of $n^{2}+3 n$.
If $n=1$, the statement is 2 is a factor of \qquad If $n=2$, the statement is 2 is a factor of \qquad If $n=3$, the statement is 2 is a factor of \qquad
If $n=k+1$, the statement before the algebra is simplified is 2 is a factor of \qquad
If $n=k+1$, the statement after the algebra is simplified is 2 is a factor of \qquad
5. $k^{2}+3 k+2=\left(k^{2}+k\right)+2($ \qquad

EXERCISE SET 10.4

Practice Exercises

In Exercises 1-4, a statement S_{n} about the positive integers is given. Write statements S_{1}, S_{2}, and S_{3}, and show that each of these statements is true.

1. $S_{n}: 1+3+5+\cdots+(2 n-1)=n^{2}$
2. $S_{n}: 3+4+5+\cdots+(n+2)=\frac{n(n+5)}{2}$
3. $S_{n}: 2$ is a factor of $n^{2}-n$.
4. $S_{n}: 3$ is a factor of $n^{3}-n$.

In Exercises 5-10, a statement S_{n} about the positive integers is given. Write statements S_{k} and S_{k+1}, simplifying statement S_{k+1} completely.
5. $S_{n}: 4+8+12+\cdots+4 n=2 n(n+1)$
6. $S_{n}: 3+4+5+\cdots+(n+2)=\frac{n(n+5)}{2}$
7. $S_{n}: 3+7+11+\cdots+(4 n-1)=n(2 n+1)$
8. $S_{n}: 2+7+12+\cdots+(5 n-3)=\frac{n(5 n-1)}{2}$
9. $S_{n}: 2$ is a factor of $n^{2}-n+2$.
10. $S_{n}: 2$ is a factor of $n^{2}-n$.

In Exercises 11-24, use mathematical induction to prove that each statement is true for every positive integer n.
11. $4+8+12+\cdots+4 n=2 n(n+1)$
12. $3+4+5+\cdots+(n+2)=\frac{n(n+5)}{2}$
13. $1+3+5+\cdots+(2 n-1)=n^{2}$
14. $3+6+9+\cdots+3 n=\frac{3 n(n+1)}{2}$
15. $3+7+11+\cdots+(4 n-1)=n(2 n+1)$
16. $2+7+12+\cdots+(5 n-3)=\frac{n(5 n-1)}{2}$
17. $1+2+2^{2}+\cdots+2^{n-1}=2^{n}-1$
18. $1+3+3^{2}+\cdots+3^{n-1}=\frac{3^{n}-1}{2}$
19. $2+4+8+\cdots+2^{n}=2^{n+1}-2$
20. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
21. $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$
22. $1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}$
23. $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
24. $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(n+1)(n+2)}=\frac{n}{2 n+4}$

Practice Plus

In Exercises 25-34, use mathematical induction to prove that each statement is true for every positive integer n.
25. 2 is a factor of $n^{2}-n$.
26. 2 is a factor of $n^{2}+3 n$.
27. 6 is a factor of $n(n+1)(n+2)$.
28. 3 is a factor of $n(n+1)(n-1)$.
29. $\sum_{i=1}^{n} 5 \cdot 6^{i}=6\left(6^{n}-1\right)$
30. $\sum_{i=1}^{n} 7 \cdot 8^{i}=8\left(8^{n}-1\right)$
31. $n+2>n$
32. If $0<x<1$, then $0<x^{n}<1$.
33. $(a b)^{n}=a^{n} b^{n}$
34. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Writing in Mathematics

35. Explain how to use mathematical induction to prove that a statement is true for every positive integer n.
36. Consider the statement S_{n} given by

$$
n^{2}-n+41 \text { is prime. }
$$

Although $S_{1}, S_{2}, \ldots, S_{40}$ are true, S_{41} is false. Verify that S_{41} is false. Then describe how this is illustrated by the dominoes in the figure. What does this tell you about a pattern, or formula, that seems to work for several values of n ?

Critical Thinking Exercises

Make Sense? In Exercises 37-40, determine whether each statement makes sense or does not make sense, and explain your reasoning.
37. I use mathematical induction to prove that statements are true for all real numbers n.
38. I begin proofs by mathematical induction by writing S_{k} and S_{k+1}, both of which I assume to be true.
39. When a line of falling dominoes is used to illustrate the principle of mathematical induction, it is not necessary for all the dominoes to topple.
40. This triangular arrangement of 36 circles illustrates that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

is true for $n=8$.

Some statements are false for the first few positive integers, but true for some positive integer m on. In these instances, you can prove S_{n} for $n \geq m$ by showing that S_{m} is true and that S_{k} implies S_{k+1} when $k \geq m$. Use this extended principle of mathematical induction to prove that each statement in Exercises 41-42 is true.
41. Prove that $n^{2}>2 n+1$ for $n \geq 3$. Show that the formula is true for $n=3$ and then use step 2 of mathematical induction.
42. Prove that $2^{n}>n^{2}$ for $n \geq 5$. Show that the formula is true for $n=5$ and then use step 2 of mathematical induction.

In Exercises 43-44, find S_{1} through S_{5} and then use the pattern to make a conjecture about S_{n}. Prove the conjectured formula for S_{n} by mathematical induction.
43. $S_{n}: \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\cdots+\frac{1}{2 n(n+1)}=$?
44. $S_{n}:\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \cdots\left(1-\frac{1}{n+1}\right)=$?

Group Exercise

45. Fermat's most notorious theorem, described in the section opener on page 744 , baffled the greatest minds for more than three centuries. In 1994, after ten years of work, Princeton University's Andrew Wiles proved Fermat's Last Theorem. People magazine put him on its list of "the 25 most intriguing people of the year," the Gap asked him to model jeans, and Barbara Walters chased him for an interview. "Who's Barbara Walters?" asked the bookish Wiles, who had somehow gone through life without a television.

Using the 1993 PBS documentary "Solving Fermat: Andrew Wiles" or information about Andrew Wiles on the Internet, research and present a group seminar on what Wiles did to prove Fermat's Last Theorem, problems along the way, and the role of mathematical induction in the proof.

Preview Exercises

Exercises 46-48 will help you prepare for the material covered in the next section. Each exercise involves observing a pattern in the expanded form of the binomial expression $(a+b)^{n}$.

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

46. Describe the pattern for the exponents on a.
47. Describe the pattern for the exponents on b.
48. Describe the pattern for the sum of the exponents on the variables in each term.

SECTION 10.5 The Binomial Theorem

Objectives

(1) Evaluate a binomial coefficient.
(2) Expand a binomial raised to a power.
(3) Find a particular term in a binomial expansion.

Galaxies are groupings of billions of stars bound together by gravity. Some galaxies, such as the Centaurus galaxy shown here, are elliptical in shape.

Is mathematics discovered or invented? For example, planets revolve in elliptical orbits. Does that mean that the ellipse is out there, waiting for the mind to discover it? Or do people create the definition of an ellipse just as they compose a song? And is it possible for the same mathematics to be discovered/ invented by independent researchers separated by time, place, and culture? This is precisely what occurred when mathematicians attempted to find efficient methods for raising binomials to higher and higher powers, such as

$$
(x+2)^{3},(x+2)^{4},(x+2)^{5},(x+2)^{6}
$$

and so on. In this section, we study higher powers of binomials and a method first discovered/invented by great minds in Eastern and Western cultures working independently.

TECHNOLOGY

Graphing utilities can compute binomial coefficients. For example, to find $\binom{6}{2}$, many utilities require the sequence

$$
6 \boxed{{ }_{n} \mathrm{C}_{r}} 2 \boxed{\mathrm{ENTER}}
$$

The graphing utility will display 15 . Consult your manual and verify the other evaluations in Example 1.

Binomial Coefficients

Before turning to powers of binomials, we introduce a special notation that uses factorials.

Definition of a Binomial Coefficient $\binom{n}{r}$

For nonnegative integers n and r, with $n \geq r$, the expression $\binom{n}{r}$ (read " n
above r ") is called a binomial coefficient and is defined by above $r "$) is called a binomial coefficient and is defined by

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

The symbol ${ }_{n} C_{r}$ is often used in place of $\binom{n}{r}$ to denote binomial coefficients.

EXAMPLE 1 Evaluating Binomial Coefficients

Evaluate:
a. $\binom{6}{2}$
b. $\binom{3}{0}$
c. $\binom{9}{3}$
d. $\binom{4}{4}$.

SOLUTION

In each case, we apply the definition of the binomial coefficient.
a. $\binom{6}{2}=\frac{6!}{2!(6-2)!}=\frac{6!}{2!4!}=\frac{6 \cdot 5 \cdot 4!}{2 \cdot 1 \cdot 4!}=15$
b. $\binom{3}{0}=\frac{3!}{0!(3-0)!}=\frac{3!}{0!3!}=\frac{1}{1}=1$

Remember that $0!=1$.
c. $\binom{9}{3}=\frac{9!}{3!(9-3)!}=\frac{9!}{3!6!}=\frac{9 \cdot 8 \cdot 7 \cdot 6!}{3 \cdot 2 \cdot 1 \cdot 6!}=84$
d. $\binom{4}{4}=\frac{4!}{4!(4-4)!}=\frac{4!}{4!0!}=\frac{1}{1}=1$

\oint Check Point 1 Evaluate:

a. $\binom{6}{3}$
b. $\binom{6}{0}$
c. $\binom{8}{2}$
d. $\binom{3}{3}$.

The Binomial Theorem

When we write out the binomial expression $(a+b)^{n}$, where n is a positive integer, a number of patterns begin to appear.

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
$(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$
Observing patterns in the expansion of $(a+b)^{n}$ (repeated)

Each expanded form of the binomial expression is a polynomial. Observe the following patterns:

1. The first term in the expansion of $(a+b)^{n}$ is a^{n}. The exponents on a decrease by 1 in each successive term.
2. The exponents on b in the expansion of $(a+b)^{n}$ increase by 1 in each successive term. In the first term, the exponent on b is 0 . (Because $b^{0}=1, b$ is not shown in the first term.) The last term is b^{n}.
3. The sum of the exponents on the variables in any term in the expansion of $(a+b)^{n}$ is equal to n.
4. The number of terms in the polynomial expansion is one greater than the power of the binomial, n. There are $n+1$ terms in the expanded form of $(a+b)^{n}$.
Using these observations, the variable parts of the expansion of $(a+b)^{6}$ are

$$
a^{6}, a^{5} b, a^{4} b^{2}, a^{3} b^{3}, a^{2} b^{4}, a b^{5}, b^{6} .
$$

The first term is a^{6}, with the exponents on a decreasing by 1 in each successive term. The exponents on b increase from 0 to 6 , with the last term being b^{6}. The sum of the exponents in each term is equal to 6 .

We can generalize from these observations to obtain the variable parts of the expansion of $(a+b)^{n}$. They are

If we use binomial coefficients and the pattern for the variable part of each term, a formula called the Binomial Theorem can be used to expand any positive integral power of a binomial.

A Formula for Expanding Binomials: The Binomial Theorem

For any positive integer n,

$$
\begin{aligned}
(a+b)^{n} & =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} b^{n} \\
& =\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r} .
\end{aligned}
$$

EXAMPLE 2 Using the Binomial Theorem

Expand: $(x+2)^{4}$.

SOLUTION

We use the Binomial Theorem

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} b^{n}
$$

to expand $(x+2)^{4} \cdot \operatorname{In}(x+2)^{4}, a=x, b=2$, and $n=4$. In the expansion, powers of x are in descending order, starting with x^{4}. Powers of 2 are in ascending order, starting with 2^{0}. (Because $2^{0}=1$, a 2 is not shown in the first term.) The sum of the exponents on x and 2 in each term is equal to 4 , the exponent in the expression $(x+2)^{4}$.

TECHNOLOGY

You can use a graphing utility's table feature to find the five binomial coefficients in Example 2.

$$
(x+2)^{4}=\binom{4}{0} x^{4}+\binom{4}{1} x^{3} \cdot 2+\binom{4}{2} x^{2} \cdot 2^{2}+\binom{4}{3} x \cdot 2^{3}+\binom{4}{4} 2^{4}
$$

These binomial coefficients are evaluated using $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.

$$
\begin{gathered}
=\frac{4!}{0!4!} x^{4}+\frac{4!}{1!3!} x^{3} \cdot 2+\frac{4!}{2!2!} x^{2} \cdot 4+\frac{4!}{3!1!} x \cdot 8+\frac{4!}{4!0!} \cdot 16 \\
\text { Take a few minutes to verify the other factorial evaluations. }
\end{gathered}
$$

$=1 \cdot x^{4}+4 x^{3} \cdot 2+6 x^{2} \cdot 4+4 x \cdot 8+1 \cdot 16$
$=x^{4}+8 x^{3}+24 x^{2}+32 x+16$

W Check Point 2 Expand: $(x+1)^{4}$.

EXAMPLE 3 Using the Binomial Theorem

Expand: $(2 x-y)^{5}$.

SOLUTION

Because the Binomial Theorem involves the addition of two terms raised to a power, we rewrite $(2 x-y)^{5}$ as $[2 x+(-y)]^{5}$. We use the Binomial Theorem

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} b^{n}
$$

to expand $[2 x+(-y)]^{5}$. In $[2 x+(-y)]^{5}, a=2 x, b=-y$, and $n=5$. In the expansion, powers of $2 x$ are in descending order, starting with $(2 x)^{5}$. Powers of $-y$ are in ascending order, starting with $(-y)^{0}$. [Because $(-y)^{0}=1$, a $-y$ is not shown in the first term.] The sum of the exponents on $2 x$ and $-y$ in each term is equal to 5 , the exponent in the expression $(2 x-y)^{5}$.

$$
\begin{aligned}
&(2 x-y)^{5}= {[2 x+(-y)]^{5} } \\
&=\binom{5}{0}(2 x)^{5}+\binom{5}{1}(2 x)^{4}(-y)+\binom{5}{2}(2 x)^{3}(-y)^{2}+\binom{5}{3}(2 x)^{2}(-y)^{3}+\binom{5}{4}(2 x)(-y)^{4}+\binom{5}{5}(-y)^{5} \\
& \quad \text { Evaluate binomial coefficients using }\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
&= \frac{5!}{0!5!}(2 x)^{5}+\frac{5!}{1!4!}(2 x)^{4}(-y)+\frac{5!}{2!3!}(2 x)^{3}(-y)^{2}+\frac{5!}{3!2!}(2 x)^{2}(-y)^{3}+\frac{5!}{4!1!}(2 x)(-y)^{4}+\frac{5!}{5!0!}(-y)^{5} \\
& \frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 3!}=10
\end{aligned}
$$

Take a few minutes to verify the other factorial evaluations.

$$
=1(2 x)^{5}+5(2 x)^{4}(-y)+10(2 x)^{3}(-y)^{2}+10(2 x)^{2}(-y)^{3}+5(2 x)(-y)^{4}+1(-y)^{5}
$$

Raise both factors in these parentheses to the indicated powers.

$$
=1\left(32 x^{5}\right)+5\left(16 x^{4}\right)(-y)+10\left(8 x^{3}\right)(-y)^{2}+10\left(4 x^{2}\right)(-y)^{3}+5(2 x)(-y)^{4}+1(-y)^{5}
$$

Now raise $-y$ to the indicated powers.

$$
=1\left(32 x^{5}\right)+5\left(16 x^{4}\right)(-y)+10\left(8 x^{3}\right) y^{2}+10\left(4 x^{2}\right)\left(-y^{3}\right)+5(2 x) y^{4}+1\left(-y^{5}\right)
$$

Multiplying factors in each of the six terms gives us the desired expansion:

$$
(2 x-y)^{5}=32 x^{5}-80 x^{4} y+80 x^{3} y^{2}-40 x^{2} y^{3}+10 x y^{4}-y^{5}
$$

\oint Check Point 3 Expand: $(x-2 y)^{5}$.

Finding a Particular Term in a Binomial Expansion

By observing the terms in the formula for expanding binomials, we can find a formula for finding a particular term without writing the entire expansion.

Based on the observation in the bottom voice balloon, the $(r+1)$ st term of the expansion of $(a+b)^{n}$ is the term that contains b^{r}.

Finding a Particular Term in a Binomial Expansion

The $(r+1)$ st term of the expansion of $(a+b)^{n}$ is

$$
\binom{n}{r} a^{n-r} b^{r} .
$$

EXAMPLE 4 Finding a Single Term of a Binomial Expansion

Find the fourth term in the expansion of $(3 x+2 y)^{7}$.

SOLUTION

The fourth term in the expansion of $(3 x+2 y)^{7}$ contains $(2 y)^{3}$. To find the fourth term, first note that $4=3+1$. Equivalently, the fourth term of $(3 x+2 y)^{7}$ is the $(3+1)$ st term. Thus, $r=3, a=3 x, b=2 y$, and $n=7$. The fourth term is

$$
\begin{aligned}
& \binom{7}{3}(3 x)^{7-3}(2 y)^{3}=\binom{7}{3}(3 x)^{4}(2 y)^{3}=\frac{7!}{3!(7-3)!}(3 x)^{4}(2 y)^{3} . \\
& \begin{array}{c}
\text { Use the formula for } \\
\text { the }(r+1) \text { st term of } \\
(a+b)^{n}: \\
\binom{n}{r} a^{n-r} b^{r} .
\end{array} \quad \text { We use }\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
& \text { to evaluate }\binom{7}{3} .
\end{aligned}
$$

Now we need to evaluate the factorial expression and raise $3 x$ and $2 y$ to the indicated powers. We obtain

$$
\frac{7!}{3!4!}\left(81 x^{4}\right)\left(8 y^{3}\right)=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!}\left(81 x^{4}\right)\left(8 y^{3}\right)=35\left(81 x^{4}\right)\left(8 y^{3}\right)=22,680 x^{4} y^{3} .
$$

The fourth term of $(3 x+2 y)^{7}$ is $22,680 x^{4} y^{3}$.
σ Check Point 4 Find the fifth term in the expansion of $(2 x+y)^{9}$.

Blitzer Bonus || The Universality of Mathematics

Pascal's triangle is an array of numbers showing coefficients of the terms in the expansions of $(a+b)^{n}$. Although credited to French mathematician Blaise Pascal (1623-1662), the triangular array of numbers appeared in a Chinese document printed in 1303. The Binomial Theorem was known in Eastern cultures prior to its discovery in Europe. The same mathematics is often discovered/invented by independent researchers separated by time, place, and culture.

Binomial Expansions

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

Pascal's Triangle
Coefficients in the Expansions

$$
\begin{aligned}
& 1 \\
& 11 \\
& 1 \quad 21 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}
\end{aligned}
$$

Chinese Document: 1303

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\binom{n}{r}$ is called a/an ___ coefficient.
2. $\binom{8}{2}=\frac{-!}{-!-!}$
3. $\binom{n}{r}=$ \qquad
4. $(x+2)^{5}=\binom{5}{0} x^{5}+$ \qquad $x^{4} \cdot 2+$ \qquad $x^{3} \cdot 2^{2}+$
\qquad $x^{2} \cdot 2^{3}+$ \qquad $x \cdot 2^{4}+$ \qquad $\cdot 2^{5}$
5. $(a+b)^{n}=\binom{n}{0} a^{n}+\ldots \quad a^{n-1} b+$

$$
a^{n-2} b^{2}+
$$

\qquad $a^{n-3} b^{3}+\cdots+$ \qquad b^{n}
The sum of the exponents on a and b in each term is \qquad -.
6. The formula in Exercise 5 is called the
\qquad Theorem.
7. The $(r+1)$ st term of the expansion of $(a+b)^{n}$ is $\binom{n}{r} \longrightarrow$.

EXERCISE SET 10.5

Practice Exercises

In Exercises 1-8, evaluate the given binomial coefficient.

1. $\binom{8}{3}$
2. $\binom{7}{2}$
3. $\binom{12}{1}$
4. $\binom{11}{1}$
5. $\binom{6}{6}$
6. $\binom{15}{2}$
7. $\binom{100}{2}$
8. $\binom{100}{98}$

In Exercises 9-30, use the Binomial Theorem to expand each binomial and express the result in simplified form.
9. $(x+2)^{3}$
10. $(x+4)^{3}$
11. $(3 x+y)^{3}$
12. $(x+3 y)^{3}$
13. $(5 x-1)^{3}$
14. $(4 x-1)^{3}$
15. $(2 x+1)^{4}$
16. $(3 x+1)^{4}$
17. $\left(x^{2}+2 y\right)^{4}$
18. $\left(x^{2}+y\right)^{4}$
19. $(y-3)^{4}$
20. $(y-4)^{4}$
21. $\left(2 x^{3}-1\right)^{4}$
22. $\left(2 x^{5}-1\right)^{4}$
23. $(c+2)^{5}$
24. $(c+3)^{5}$
25. $(x-1)^{5}$
26. $(x-2)^{5}$
27. $(3 x-y)^{5}$
28. $(x-3 y)^{5}$
29. $(2 a+b)^{6}$
30. $(a+2 b)^{6}$

In Exercises 31-38, write the first three terms in each binomial expansion, expressing the result in simplified form.
31. $(x+2)^{8}$
32. $(x+3)^{8}$
33. $(x-2 y)^{10}$
34. $(x-2 y)^{9}$
35. $\left(x^{2}+1\right)^{16}$
36. $\left(x^{2}+1\right)^{17}$
37. $\left(y^{3}-1\right)^{20}$
38. $\left(y^{3}-1\right)^{21}$

In Exercises 39-48, find the term indicated in each expansion.
39. $(2 x+y)^{6}$; third term
40. $(x+2 y)^{6}$; third term
41. $(x-1)^{9}$; fifth term
42. $(x-1)^{10}$; fifth term
43. $\left(x^{2}+y^{3}\right)^{8}$; sixth term
44. $\left(x^{3}+y^{2}\right)^{8}$; sixth term
45. $\left(x-\frac{1}{2}\right)^{9}$; fourth term
46. $\left(x+\frac{1}{2}\right)^{8}$; fourth term
47. $\left(x^{2}+y\right)^{22}$; the term containing y^{14}
48. $(x+2 y)^{10}$; the term containing y^{6}

Practice Plus

In Exercises 49-52, use the Binomial Theorem to expand each expression and write the result in simplified form.
49. $\left(x^{3}+x^{-2}\right)^{4}$
50. $\left(x^{2}+x^{-3}\right)^{4}$
51. $\left(x^{\frac{1}{3}}-x^{-\frac{1}{3}}\right)^{3}$
52. $\left(x^{\frac{2}{3}}-\frac{1}{\sqrt[3]{x}}\right)^{3}$

In Exercises 53-54, find $\frac{f(x+h)-f(x)}{h}$ and simplify.
53. $f(x)=x^{4}+7$
54. $f(x)=x^{5}+8$
55. Find the middle term in the expansion of $\left(\frac{3}{x}+\frac{x}{3}\right)^{10}$.
56. Find the middle term in the expansion of $\left(\frac{1}{x}-x^{2}\right)^{12}$.

Application Exercises

The graph shows that U.S. smokers have a greater probability of suffering from some ailments than the general adult population. Exercises 57-58 are based on some of the probabilities, expressed as decimals, shown to the right of the bars. In each exercise, use a calculator to determine the probability, correct to four decimal places.

Source: MARS 2005 OTC/DTC Pharmaceutical Study

If the probability an event will occur is p and the probability it will not occur is q, then each term in the expansion of $(p+q)^{n}$ represents a probability.
57. The probability that a smoker suffers from depression is 0.28 . If five smokers are randomly selected, the probability that three of them will suffer from depression is the third term of the binomial expansion of

What is this probability?
58. The probability that a person in the general population suffers from depression is 0.12 . If five people from the general population are randomly selected, the probability that three of them will suffer from depression is the third term of the binomial expansion of

$$
(0.12+0.88)^{5} \quad \begin{aligned}
& 5 \text { people from the general } \\
& \text { population are selected. }
\end{aligned}
$$

Probability a person in the general population suffers from depression

Probability a person in the general population does not suffer from depression

What is this probability?

Writing in Mathematics

59. Explain how to evaluate $\binom{n}{r}$. Provide an example with your
explanation.
60. Describe the pattern in the exponents on a in the expansion of $(a+b)^{n}$.
61. Describe the pattern in the exponents on b in the expansion of $(a+b)^{n}$.
62. What is true about the sum of the exponents on a and b in any term in the expansion of $(a+b)^{n}$?
63. How do you determine how many terms there are in a binomial expansion?
64. Explain how to use the Binomial Theorem to expand a binomial. Provide an example with your explanation.
65. Explain how to find a particular term in a binomial expansion without having to write out the entire expansion.
66. Describe how you would use mathematical induction to prove

$$
\begin{aligned}
& (a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2} \\
& +\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} .
\end{aligned}
$$

What happens when $n=1$? Write the statement that we assume to be true. Write the statement that we must prove. What must be done to the left side of the assumed statement to make it look like the left side of the statement that must be proved? (More detail on the actual proof is found in Exercise 85.)

Technology Exercises

67. Use the ${ }_{n} C_{r}$ key on a graphing utility to verify your answers in Exercises 1-8.

In Exercises 68-69, graph each of the functions in the same viewing rectangle. Describe how the graphs illustrate the Binomial Theorem.
68. $f_{1}(x)=(x+2)^{3}$

$$
f_{2}(x)=x^{3}
$$

$f_{3}(x)=x^{3}+6 x^{2}$
$f_{4}(x)=x^{3}+6 x^{2}+12 x$
$f_{5}(x)=x^{3}+6 x^{2}+12 x+8$
Use a $[-10,10,1]$ by $[-30,30,10]$ viewing rectangle.
69. $f_{1}(x)=(x+1)^{4}$

$$
f_{2}(x)=x^{4}
$$

$f_{3}(x)=x^{4}+4 x^{3}$
$f_{4}(x)=x^{4}+4 x^{3}+6 x^{2}$
$f_{5}(x)=x^{4}+4 x^{3}+6 x^{2}+4 x$
$f_{6}(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+1$
Use a $[-5,5,1]$ by $[-30,30,10]$ viewing rectangle.

In Exercises 70-72, use the Binomial Theorem to find a polynomial expansion for each function. Then use a graphing utility and an approach similar to the one in Exercises 68 and 69 to verify the expansion.
70. $f_{1}(x)=(x-1)^{3}$
71. $f_{1}(x)=(x-2)^{4}$
72. $f_{1}(x)=(x+2)^{6}$

Critical Thinking Exercises

Make Sense? In Exercises 73-76, determine whether each statement makes sense or does not make sense, and explain your reasoning.
73. In order to expand $\left(x^{3}-y^{4}\right)^{5}$, I find it helpful to rewrite the expression inside the parentheses as $x^{3}+\left(-y^{4}\right)$.
74. Without writing the expansion of $(x-1)^{6}$, I can see that the terms have alternating positive and negative signs.
75. I use binomial coefficients to expand $(a+b)^{n}$, where $\binom{n}{1}$ is the coefficient of the first term, $\binom{n}{2}$ is the coefficient of the second term, and so on.
76. One of the terms in my binomial expansion is $\binom{7}{5} x^{2} y^{4}$.

In Exercises 77-80, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement.
77. The binomial expansion for $(a+b)^{n}$ contains n terms.
78. The Binomial Theorem can be written in condensed form as

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}
$$

79. The sum of the binomial coefficients in $(a+b)^{n}$ cannot be 2^{n}.
80. There are no values of a and b such that

$$
(a+b)^{4}=a^{4}+b^{4}
$$

81. Use the Binomial Theorem to expand and then simplify the result: $\left(x^{2}+x+1\right)^{3}$.
Hint: Write $x^{2}+x+1$ as $x^{2}+(x+1)$.
82. Find the term in the expansion of $\left(x^{2}+y^{2}\right)^{5}$ containing x^{4} as a factor.
83. Prove that

$$
\binom{n}{r}=\binom{n}{n-r}
$$

84. Show that

$$
\binom{n}{r}+\binom{n}{r+1}=\binom{n+1}{r+1}
$$

Hints:

$$
\begin{aligned}
& (n-r)!=(n-r)(n-r-1)! \\
& (r+1)!=(r+1) r!
\end{aligned}
$$

85. Follow the outline below and use mathematical induction to prove the Binomial Theorem:

$$
\begin{aligned}
(a+b)^{n} & =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2} \\
& +\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} .
\end{aligned}
$$

a. Verify the formula for $n=1$.
b. Replace n with k and write the statement that is assumed true. Replace n with $k+1$ and write the statement that must be proved.
c. Multiply both sides of the statement assumed to be true by $a+b$. Add exponents on the left. On the right, distribute a and b, respectively.
d. Collect like terms on the right. At this point, you should have

$$
\begin{aligned}
& (a+b)^{k+1}=\binom{k}{0} a^{k+1}+\left[\binom{k}{0}+\binom{k}{1}\right] a^{k} b \\
& +\left[\binom{k}{1}+\binom{k}{2}\right] a^{k-1} b^{2}+\left[\binom{k}{2}+\binom{k}{3}\right] a^{k-2} b^{3} \\
& +\cdots+\left[\binom{k}{k-1}+\binom{k}{k}\right] a b^{k}+\binom{k}{k} b^{k+1}
\end{aligned}
$$

e. Use the result of Exercise 84 to add the binomial sums in brackets. For example, because $\binom{n}{r}+\binom{n}{r+1}$

$$
\begin{aligned}
= & \binom{n+1}{r+1}, \text { then }\binom{k}{0}+\binom{k}{1}=\binom{k+1}{1} \text { and } \\
& \binom{k}{1}+\binom{k}{2}=\binom{k+1}{2} .
\end{aligned}
$$

f. Because $\binom{k}{0}=\binom{k+1}{0}$ (why?) and $\binom{k}{k}=\binom{k+1}{k+1}$ (why?), substitute these results and the results from part (e) into the equation in part (d). This should give the statement that we were required to prove in the second step of the mathematical induction process.

Preview Exercises

Exercises 86-88 will help you prepare for the material covered in the next section.
86. Evaluate $\frac{n!}{(n-r)!}$ for $n=20$ and $r=3$.
87. Evaluate $\frac{n!}{(n-r)!r!}$ for $n=8$ and $r=3$.
88. You can choose from two pairs of jeans (one blue, one black) and three T-shirts (one beige, one yellow, and one blue), as shown in the diagram.

True or false: The diagram shows that you can form 2×3, or 6 , different outfits.

SECTION 10.6

 Counting Principles, Permutations, and Combinations
Objectives

(1) Use the Fundamental Counting Principle.
(2) Use the permutations formula.
(3) Distinguish between permutation problems and combination problems.
(4) Use the combinations formula.

1 Use the Fundamental Counting Principle.

Have you ever imagined what your life would be like if you won the lottery? What changes would you make? Before you fantasize about becoming a person of leisure with a staff of obedient elves, think about this: The probability of winning top prize in the lottery is about the same as the probability of being struck by lightning. There are millions of possible number combinations in lottery games and only one way of winning the grand prize. Determining the probability of winning involves calculating the chance of getting the winning combination from all possible outcomes. In this section, we begin preparing for the surprising world of probability by looking at methods for counting possible outcomes.

The Fundamental Counting Principle

It's early morning, you're groggy, and you have to select something to wear for your 8 A.m. class. (What were you thinking of when you signed up for a class at that hour?!) Fortunately, your "lecture wardrobe" is rather limited-just two pairs of jeans to choose from (one blue, one black), three T-shirts to choose from (one beige, one yellow, and one blue), and two pairs of sneakers to select from (one black pair, one red pair). Your possible outfits are shown in Figure 10.9.

FIGURE 10.9 Selecting a wardrobe

The tree diagram, so named because of its branches, shows that you can form 12 outfits from your two pairs of jeans, three T-shirts, and two pairs of sneakers. Notice that the number of outfits can be obtained by multiplying the number of choices for jeans, 2 , the number of choices for the T-shirts, 3 , and the number of choices for the sneakers, 2 :

$$
2 \cdot 3 \cdot 2=12
$$

We can generalize this idea to any two or more groups of items - not just jeans, T-shirts, and sneakers - with the Fundamental Counting Principle:

The Fundamental Counting Principle

The number of ways in which a series of successive things can occur is found by multiplying the number of ways in which each thing can occur.

For example, if you own 30 pairs of jeans, 20 T-shirts, and 12 pairs of sneakers, you have

$$
30 \cdot 20 \cdot 12=7200
$$

choices for your wardrobe!

EXAMPLE 1 Options in Planning a Course Schedule

The number of possible ways of playing the first four moves on each side in a game of chess is $318,979,564,000$.

Next semester you are planning to take three courses-math, English, and humanities. Based on time blocks and highly recommended professors, there are 8 sections of math, 5 of English, and 4 of humanities that you find suitable. Assuming no scheduling conflicts, how many different three-course schedules are possible?

SOLUTION

This situation involves making choices with three groups of items.

We use the Fundamental Counting Principle to find the number of three-course schedules. Multiply the number of choices for each of the three groups:

$$
8 \cdot 5 \cdot 4=160
$$

Thus, there are 160 different three-course schedules.
$\$$ Check Point 1 A pizza can be ordered with three choices of size (small, medium, or large), four choices of crust (thin, thick, crispy, or regular), and six choices of toppings (ground beef, sausage, pepperoni, bacon, mushrooms, or onions). How many different one-topping pizzas can be ordered?

EXAMPLE 2 A Multiple-Choice Test

You are taking a multiple-choice test that has ten questions. Each of the questions has four answer choices, with one correct answer per question. If you select one of these four choices for each question and leave nothing blank, in how many ways can you answer the questions?

SOLUTION

This situation involves making choices with ten questions.
$\underbrace{\boxed{\text { Question } 1}}_{4 \text { choices }} \underbrace{\text { Question } 2^{\text {Question } 3} \cdots \underbrace{\boxed{\text { Question } 9}}_{4 \text { choices }} \underbrace{\text { Question } 10}_{4 \text { choices }}}_{4 \text { choices }}$

Blitzer Banus
 Running Out of Telephone Numbers

By the year 2020, portable telephones used for business and pleasure will all be videophones. At that time, U.S. population is expected to be 323 million. Faxes, beepers, cellphones, computer phone lines, and business lines may result in certain areas running out of phone numbers. Solution: Add more digits!

With or without extra digits, we expect that the 2020 videophone greeting will still be "hello," a word created by Thomas Edison in 1877. Phone inventor Alexander Graham Bell preferred "ahoy," but "hello" won out, appearing in the Oxford English Dictionary in 1883.
(Source: New York Times)

[^11]We use the Fundamental Counting Principle to determine the number of ways that you can answer the questions on the test. Multiply the number of choices, 4 , for each of the ten questions.

$$
4 \cdot 4=4^{10}=1,048,576
$$

Thus, you can answer the questions in 1,048,576 different ways.
Are you surprised that there are over one million ways of answering a ten-question multiple-choice test? Of course, there is only one way to answer the test and receive a perfect score. The probability of guessing your way into a perfect score involves calculating the chance of getting a perfect score, just one way from all $1,048,576$ possible outcomes. In short, prepare for the test and do not rely on guessing!
$\$$ Check Point 2 You are taking a multiple-choice test that has six questions. Each of the questions has three answer choices, with one correct answer per question. If you select one of these three choices for each question and leave nothing blank, in how many ways can you answer the questions?

EXAMPLE 3 Telephone Numbers in the United States

Telephone numbers in the United States begin with three-digit area codes followed by seven-digit local telephone numbers. Area codes and local telephone numbers cannot begin with 0 or 1 . How many different telephone numbers are possible?

SOLUTION

This situation involves making choices with ten groups of items.

Here are the numbers of choices for each of the ten groups of items:

Area Code
 81010

Local Telephone Number
$\begin{array}{llllllll}8 & 10 & 10 & 10 & 10 & 10 & 10\end{array}$
We use the Fundamental Counting Principle to determine the number of different telephone numbers that are possible. The total number of telephone numbers possible is

$$
8 \cdot 10 \cdot 10 \cdot 8 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=6,400,000,000
$$

There are six billion four hundred million different telephone numbers that are possible.

- - -

Check Point 3 License plates in a particular state display two letters followed by three numbers, such as AT-887 or BB-013. How many different license plates can be manufactured?

Permutations

You are the coach of a little league baseball team. There are 13 players on the team (and lots of parents hovering in the background, dreaming of stardom for their little "Albert Pujols"). You need to choose a batting order having 9 players. The order
makes a difference, because, for instance, if bases are loaded and "Little Albert" is fourth or fifth at bat, his possible home run will drive in three additional runs. How many batting orders can you form?

You can choose any of 13 players for the first person at bat. Then you will have 12 players from which to choose the second batter, then 11 from which to choose the third batter, and so on. The situation can be shown as follows:

We use the Fundamental Counting Principle to find the number of batting orders. The total number of batting orders is

$$
13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=259,459,200
$$

Nearly 260 million batting orders are possible for your 13-player little league team. Each batting order is called a permutation of 13 players taken 9 at a time. The number of permutations of 13 players taken 9 at a time is $259,459,200$.

A permutation is an ordered arrangement of items that occurs when

- No item is used more than once. (Each of the 9 players in the batting order bats exactly once.)
- The order of arrangement makes a difference.

We can obtain a formula for finding the number of permutations of 13 players taken 9 at a time by rewriting our computation:

$$
\begin{aligned}
& 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \\
& \quad=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{13!}{4!}=\frac{13!}{(13-9)!} .
\end{aligned}
$$

Thus, the number of permutations of 13 things taken 9 at a time is $\frac{13!}{(13-9)!}$. The special notation ${ }_{13} P_{9}$ is used to replace the phrase "the number of permutations of 13 things taken 9 at a time." Using this new notation, we can write

$$
{ }_{13} P_{9}=\frac{13!}{(13-9)!} .
$$

The numerator of this expression is the number of items, 13 team members, expressed as a factorial: 13!. The denominator is also a factorial. It is the factorial of the difference between the number of items, 13 , and the number of items in each permutation, 9 batters: $(13-9)$!.

The notation ${ }_{n} \boldsymbol{P}_{\boldsymbol{r}}$ means the number of permutations of \boldsymbol{n} things taken \boldsymbol{r} at a time. We can generalize from the situation in which 9 batters were taken from 13 players. By generalizing, we obtain the following formula for the number of permutations if r items are taken from n items.

Permutations of n Things Taken r at a Time

The number of possible permutations if r items are taken from n items is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} .
$$

GREAT QUESTION!

Do I have to use the formula for ${ }_{n} P_{r}$ to solve permutation problems?
No. Because all permutation problems are also fundamental counting problems, they can be solved using the formula for ${ }_{n} P_{r}$ or using the Fundamental Counting Principle.

TECHNOLOGY

Graphing utilities have a menu item for calculating permutations, usually labeled ${ }_{n}{ }_{P_{r}}$. For example, to find ${ }_{20} P_{3}$, the keystrokes are
$2 0 \longdiv { { } _ { n } P _ { r } } 3$ ENTER.

If you are using a scientific calculator, check your manual for the location of the menu item for calculating permutations and the required keystrokes.

Blitzer Bonus

How to Pass the Time for $2 \frac{1}{2}$ Million Years

If you were to arrange 15 different books on a shelf and it took you one minute for each permutation, the entire task would take 2,487,965 years.
Source: Isaac Asimov's Book of Facts.

3 Distinguish between permutation problems and combination problems.

EXAMPLE 4 Using the Formula for Permutations

You and 19 of your friends have decided to form an Internet marketing consulting firm. The group needs to choose three officers - a CEO, an operating manager, and a treasurer. In how many ways can those offices be filled?

SOLUTION

Your group is choosing $r=3$ officers from a group of $n=20$ people (you and 19 friends). The order in which the officers are chosen matters because the CEO, the operating manager, and the treasurer each have different responsibilities. Thus, we are looking for the number of permutations of 20 things taken 3 at a time. We use the formula

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

with $n=20$ and $r=3$.
${ }_{20} P_{3}=\frac{20!}{(20-3)!}=\frac{20!}{17!}=\frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!}=\frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!}=20 \cdot 19 \cdot 18=6840$
Thus, there are 6840 different ways of filling the three offices. ie

Check Point 4 A corporation has seven members on its board of directors. In how many different ways can it elect a president, vice-president, secretary, and treasurer?

EXAMPLE 5 Using the Formula for Permutations

You need to arrange seven of your favorite books along a small shelf. How many different ways can you arrange the books, assuming that the order of the books makes a difference to you?

SOLUTION

Because you are using all seven of your books in every possible arrangement, you are arranging $r=7$ books from a group of $n=7$ books. Thus, we are looking for the number of permutations of 7 things taken 7 at a time. We use the formula

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

with $n=7$ and $r=7$.

$$
{ }_{7} P_{7}=\frac{7!}{(7-7)!}=\frac{7!}{0!}=\frac{7!}{1}=5040
$$

Thus, you can arrange the books in 5040 ways. There are 5040 different possible permutations.

W Check Point 5 In how many ways can six books be lined up along a shelf?

Combinations

Throughout the history of entertainment, performers have featured choreography in their acts. Singers who are known for their serious moves include Beyoncé, Lady Gaga, Shakira, Justin Timberlake, and Usher.

Imagine that you ask your friends the following question: "Of these five entertainers, which three would you select to be included in a documentary on singers and choreography?" You are not asking your friends to rank their three favorite
artists in any kind of order-they should merely select the three to be included in the documentary.

One friend answers, "Beyoncé, Lady Gaga, and Usher." Another responds, "Usher, Lady Gaga, and Beyoncé." These two people have the same artists in their group of selections, even if they are named in a different order. We are interested in which artists are named, not the order in which they are named, for the documentary. Because the items are taken without regard to order, this is not a permutation problem. No ranking of any sort is involved.

Later on, you ask your roommate
 which three artists she would select for the documentary. She names Justin Timberlake, Beyoncé, and Usher. Her selection is different from those of your two other friends because different entertainers are cited.

Mathematicians describe the group of artists given by your roommate as a combination. A combination of items occurs when

- The items are selected from the same group (the five entertainers who are known for their choreography).
- No item is used more than once. (You may view Beyoncé as a phenomenal performer, but your three selections cannot be Beyoncé,Beyoncé, and Beyoncé.)
- The order of the items makes no difference. (Beyoncé, Lady Gaga, Usher is the same group in the documentary as Usher, Lady Gaga, Beyoncé.)
Do you see the difference between a permutation and a combination? A permutation is an ordered arrangement of a given group of items. A combination is a group of items taken without regard to their order. Permutation problems involve situations in which order matters. Combination problems involve situations in which the order of the items makes no difference.

EXAMPLE 6 Distinguishing between Permutations and Combinations

For each of the following problems, determine whether the problem is one involving permutations or combinations. (It is not necessary to solve the problem.)
a. Six students are running for student government president, vice president, and treasurer. The student with the greatest number of votes becomes the president, the second highest vote-getter becomes vice president, and the student who gets the third largest number of votes will be treasurer. How many different outcomes are possible for these three positions?
b. Six people are on the board of supervisors for your neighborhood park. A three-person committee is needed to study the possibility of expanding the park. How many different committees could be formed from the six people?
c. Baskin-Robbins offers 31 different flavors of ice cream. One of its items is a bowl consisting of three scoops of ice cream, each a different flavor. How many such bowls are possible?

SOLUTION

a. Students are choosing three student government officers from six candidates. The order in which the officers are chosen makes a difference because each of the offices (president, vice president, treasurer) is different. Order matters. This is a problem involving permutations.
b. A three-person committee is to be formed from the six-person board of supervisors. The order in which the three people are selected does not matter because they are not filling different roles on the committee. Because order makes no difference, this is a problem involving combinations.
c. A three-scoop bowl of three different flavors is to be formed from BaskinRobbins's 31 flavors. The order in which the three scoops of ice cream are put into the bowl is irrelevant. A bowl with chocolate, vanilla, and strawberry is exactly the same as a bowl with vanilla, strawberry, and chocolate. Different orderings do not change things, and so this is a problem involving combinations.

6 Check Point 6 For each of the following problems, explain if the problem is one involving permutations or combinations. (It is not necessary to solve the problem.)
a. How many ways can you select 6 free DVDs from a list of 200 DVDs?
b. In a race in which there are 50 runners and no ties, in how many ways can the first three finishers come in?
(4) Use the combinations formula.

A Formula for Combinations

We have seen that the notation ${ }_{n} P_{r}$ means the number of permutations of n things taken r at a time. Similarly, the notation ${ }_{n} \boldsymbol{C}_{\boldsymbol{r}}$ means the number of combinations of \boldsymbol{n} things taken r at a time.

We can develop a formula for ${ }_{n} C_{r}$ by comparing permutations and combinations. Consider the letters A, B, C, and D. The number of permutations of these four letters taken three at a time is

$$
{ }_{4} P_{3}=\frac{4!}{(4-3)!}=\frac{4!}{1!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{1}=24 .
$$

Here are the 24 permutations:

ABC,	ABD,	ACD,	BCD,
ACB,	ADB,	ADC,	BDC,
BAC,	BAD,	CAD,	CBD,
BCA,	BDA,	CDA,	CDB,
CAB,	DAB,	DAC,	DBC,
CBA,	DBA,	DCA,	DCB.
This olumn contains only one combination, ABC.	This column contains only one combination, ABD.	This column contains only one combination, ACD.	This column ontains only one combination, BCD.

Because the order of items makes no difference in determining combinations, each column of six permutations represents one combination. There is a total of four combinations:
$\mathrm{ABC}, \mathrm{ABD}, \mathrm{ACD}, \mathrm{BCD}$.
Thus, ${ }_{4} C_{3}=4$: The number of combinations of 4 things taken 3 at a time is 4 . With 24 permutations and only four combinations, there are 6 , or 3 !, times as many permutations as there are combinations.

In general, there are $r!$ times as many permutations of n things taken r at a time as there are combinations of n things taken r at a time. Thus, we find the number of combinations of n things taken r at a time by dividing the number of permutations of n things taken r at a time by r !.

$$
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{\frac{n!}{(n-r)!}}{r!}=\frac{n!}{(n-r)!r!}
$$

GREAT QUESTION!

Do I have to use the formula

for ${ }_{n} C_{r}$ to solve combination problems?
Yes. The number of combinations if r items are taken from n items cannot be found using the Fundamental Counting Principle and requires the use of the formula shown on the right.

TECHNOLOGY

Graphing utilities have a menu item for calculating combinations, usually labeled ${ }_{n} C_{r}$. For example, to find ${ }_{8} C_{3}$, the keystrokes on most graphing utilities are

$$
8{ }_{{ }_{n} C_{r}} 3 \text { ENTER. }
$$

If you are using a scientific calculator, check your manual to see whether there is a menu item for calculating combinations.

If you use your calculator's factorial key to find $\frac{8!}{5!3!}$, be sure to enclose the factorials in the denominator with parentheses $8!\square(5!\times 3!)$ pressing $=$ or ENTER to obtain the answer.

Combinations of n Things Taken r at a Time

The number of possible combinations if r items are taken from n items is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Notice that the formula for ${ }_{n} C_{r}$ is the same as the formula for the binomial coefficient $\binom{n}{r}$.

EXAMPLE 7 Using the Formula for Combinations

A three-person committee is needed to study ways of improving public transportation. How many committees could be formed from the eight people on the board of supervisors?

SOLUTION

The order in which the three people are selected does not matter. This is a problem of selecting $r=3$ people from a group of $n=8$ people. We are looking for the number of combinations of eight things taken three at a time. We use the formula

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

with $n=8$ and $r=3$.

$$
{ }_{8} C_{3}=\frac{8!}{(8-3)!3!}=\frac{8!}{5!3!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1}=56
$$

Thus, 56 committees of three people each can be formed from the eight people on the board of supervisors.

W Check Point 7 From a group of 10 physicians, in how many ways can four people be selected to attend a conference on acupuncture?

EXAMPLE 8 Using the Formula for Combinations

In poker, a person is dealt 5 cards from a standard 52-card deck. The order in which you are dealt the 5 cards does not matter. How many different 5-card poker hands are possible?

SOLUTION

Because the order in which the 5 cards are dealt does not matter, this is a problem involving combinations. We are looking for the number of combinations of $n=52$ cards dealt $r=5$ at a time. We use the formula

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

with $n=52$ and $r=5$.

$$
{ }_{52} C_{5}=\frac{52!}{(52-5)!5!}=\frac{52!}{47!5!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47!}{47!\cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2,598,960
$$

Thus, there are 2,598,960 different 5 -card poker hands possible. It surprises many people that more than 2.5 million 5 -card hands can be dealt from a mere 52 cards.

FIGURE 10.10 A royal flush

If you are a card player, it does not get any better than to be dealt the 5-card poker hand shown in Figure 10.10. This hand is called a royal flush. It consists of an ace, king, queen, jack, and 10, all of the same suit: all hearts, all diamonds, all clubs, or all spades. The probability of being dealt a royal flush involves calculating the number of ways of being dealt such a hand: just 4 of all 2,598,960 possible hands. In the next section, we move from counting possibilities to computing probabilities.

0 Check Point 8 How many different 4-card hands can be dealt from a deck that has 16 different cards?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. If you can choose one item from a group of M items and a second item from a group of N items, then the total number of two-item choices is \qquad _.
2. The number of ways in which a series of successive things can occur is found by \qquad the number of ways in which each thing can occur. This is called the \qquad Principle.
3. The number of possible permutations if r objects are taken from n items is ${ }_{n} P_{r}=$ \qquad

EXERCISE SET 10.6

Practice Exercises

In Exercises 1-8, use the formula for ${ }_{n} P_{r}$ to evaluate each expression.

1. ${ }_{9} P_{4}$
2. ${ }_{7} P_{3}$
3. ${ }_{8} P_{5}$
4. ${ }_{10} P_{4}$
5. ${ }_{5} P_{6}$
6. ${ }_{9} P_{9}$
7. ${ }_{8} P_{0}$
8. ${ }_{6} P_{0}$

In Exercises 9-16, use the formula for ${ }_{n} C_{r}$ to evaluate each expression.
9. ${ }_{9} C_{5}$
10. ${ }_{10} C_{6}$
11. ${ }_{11} C_{4}$
12. ${ }_{12} C_{5}$
13. ${ }_{7} C_{7}$
14. ${ }_{4} C_{4}$
15. ${ }_{5} C_{0}$
16. ${ }_{6} C_{0}$

In Exercises 17-20, does the problem involve permutations or combinations? Explain your answer. (It is not necessary to solve the problem.)
17. A medical researcher needs 6 people to test the effectiveness of an experimental drug. If 13 people have volunteered for the test, in how many ways can 6 people be selected?
18. Fifty people purchase raffle tickets. Three winning tickets are selected at random. If first prize is $\$ 1000$, second prize is $\$ 500$, and third prize is $\$ 100$, in how many different ways can the prizes be awarded?
19. How many different four-letter passwords can be formed from the letters A, B, C, D, E, F, and G if no repetition of letters is allowed?
20. Fifty people purchase raffle tickets. Three winning tickets are selected at random. If each prize is $\$ 500$, in how many different ways can the prizes be awarded?

Practice Plus

In Exercises 21-28, evaluate each expression.
21. $\frac{{ }_{7} P_{3}}{3!}-{ }_{7} C_{3}$
22. $\frac{{ }_{20} P_{2}}{2!}-{ }_{20} C_{2}$
23. $1-\frac{{ }_{3} P_{2}}{{ }_{4} P_{3}}$
24. $1-\frac{{ }_{5} P_{3}}{{ }_{10} P_{4}}$
25. $\frac{{ }_{5} C_{3}}{{ }_{5} C_{4}}-\frac{98!}{96!}$
26. $\frac{{ }_{10} C_{3}}{{ }_{6} C_{4}}-\frac{46!}{44!}$
27. $\frac{{ }_{4} C_{2} \cdot{ }_{6} C_{1}}{{ }_{18} C_{3}}$
28. $\frac{{ }_{5} C_{1} \cdot{ }_{7} C_{2}}{{ }_{12} C_{3}}$

Application Exercises

Use the Fundamental Counting Principle to solve Exercises 29-40.
29. The model of the car you are thinking of buying is available in nine different colors and three different styles (hatchback, sedan, or station wagon). In how many ways can you order the car?
30. A popular brand of pen is available in three colors (red, green, or blue) and four writing tips (bold, medium, fine, or micro). How many different choices of pens do you have with this brand?
31. An ice cream store sells two drinks (sodas or milk shakes), in four sizes (small, medium, large, or jumbo), and five flavors (vanilla, strawberry, chocolate, coffee, or pistachio). In how many ways can a customer order a drink?
32. A restaurant offers the following lunch menu.

Main Course	Vegetables	Beverages	Desserts
Ham	Potatoes	Coffee	Cake
Chicken	Peas	Tea	Pie
Fish	Green beans	Milk	Ice cream
Beef		Soda	

If one item is selected from each of the four groups, in how many ways can a meal be ordered? Describe two such orders.
33. You are taking a multiple-choice test that has five questions. Each of the questions has three answer choices, with one correct answer per question. If you select one of these three choices for each question and leave nothing blank, in how many ways can you answer the questions?
34. You are taking a multiple-choice test that has eight questions. Each of the questions has three answer choices, with one correct answer per question. If you select one of these three choices for each question and leave nothing blank, in how many ways can you answer the questions?
35. In the original plan for area codes in 1945, the first digit could be any number from 2 through 9 , the second digit was either 0 or 1 , and the third digit could be any number except 0 . With this plan, how many different area codes were possible?
36. How many different four-letter radio station call letters can be formed if the first letter must be W or K?
37. Six performers are to present their comedy acts on a weekend evening at a comedy club. One of the performers insists on being the last stand-up comic of the evening. If this performer's request is granted, how many different ways are there to schedule the appearances?
38. Five singers are to perform at a night club. One of the singers insists on being the last performer of the evening. If this singer's request is granted, how many different ways are there to schedule the appearances?
39. In the Cambridge Encyclopedia of Language (Cambridge University Press, 1987), author David Crystal presents five sentences that make a reasonable paragraph regardless of their order. The sentences are as follows:

- Mark had told him about the foxes.
- John looked out the window.
- Could it be a fox?
- However, nobody had seen one for months.
- He thought he saw a shape in the bushes.

How many different five-sentence paragraphs can be formed if the paragraph begins with "He thought he saw a shape in the bushes" and ends with "John looked out of the window"?
40. A television programmer is arranging the order that five movies will be seen between the hours of 6 р.м. and 4 А.м. Two of the movies have a G rating and they are to be shown in the first two time blocks. One of the movies is rated NC-17 and it is to be shown in the last of the time blocks, from 2 A.m. until 4 A.m. Given these restrictions, in how many ways can the five movies be arranged during the indicated time blocks?

Use the formula for ${ }_{n} P_{r}$ to solve Exercises 41-48.
41. A club with ten members is to choose three officerspresident, vice president, and secretary-treasurer. If each office is to be held by one person and no person can hold more than one office, in how many ways can those offices be filled?
42. A corporation has ten members on its board of directors. In how many different ways can it elect a president, vice president, secretary, and treasurer?
43. For a segment of a radio show, a disc jockey can play 7 songs. If there are 13 songs to select from, in how many ways can the program for this segment be arranged?
44. Suppose you are asked to list, in order of preference, the three best movies you have seen this year. If you saw 20 movies during the year, in how many ways can the three best be chosen and ranked?
45. In a race in which six automobiles are entered and there are no ties, in how many ways can the first three finishers come in?
46. In a production of West Side Story, eight actors are considered for the male roles of Tony, Riff, and Bernardo. In how many ways can the director cast the male roles?
47. Nine bands have volunteered to perform at a benefit concert, but there is only enough time for five of the bands to play. How many lineups are possible?
48. How many arrangements can be made using four of the letters of the word COMBINE if no letter is to be used more than once?

Use the formula for ${ }_{n} C_{r}$ to solve Exercises 49-56.
49. An election ballot asks voters to select three city commissioners from a group of six candidates. In how many ways can this be done?
50. A four-person committee is to be elected from an organization's membership of 11 people. How many different committees are possible?
51. Of 12 possible books, you plan to take 4 with you on vacation. How many different collections of 4 books can you take?
52. There are 14 standbys who hope to get seats on a flight, but only 6 seats are available on the plane. How many different ways can the 6 people be selected?
53. You volunteer to help drive children at a charity event to the zoo, but you can fit only 8 of the 17 children present in your van. How many different groups of 8 children can you drive?
54. Of the 100 people in the U.S. Senate, 18 serve on the Foreign Relations Committee. How many ways are there to select Senate members for this committee (assuming party affiliation is not a factor in selection)?
55. To win at LOTTO in the state of Florida, one must correctly select 6 numbers from a collection of 53 numbers (1 through $53)$. The order in which the selection is made does not matter. How many different selections are possible?
56. To win in the New York State lottery, one must correctly select 6 numbers from 59 numbers. The order in which the selection is made does not matter. How many different selections are possible?

In Exercises 57-66, solve by the method of your choice.
57. In a race in which six automobiles are entered and there are no ties, in how many ways can the first four finishers come in?
58. A book club offers a choice of 8 books from a list of 40 . In how many ways can a member make a selection?
59. A medical researcher needs 6 people to test the effectiveness of an experimental drug. If 13 people have volunteered for the test, in how many ways can 6 people be selected?
60. Fifty people purchase raffle tickets. Three winning tickets are selected at random. If first prize is $\$ 1000$, second prize is $\$ 500$, and third prize is $\$ 100$, in how many different ways can the prizes be awarded?
61. From a club of 20 people, in how many ways can a group of three members be selected to attend a conference?
62. Fifty people purchase raffle tickets. Three winning tickets are selected at random. If each prize is $\$ 500$, in how many different ways can the prizes be awarded?
63. How many different four-letter passwords can be formed from the letters A, B, C, D, E, F, and G if no repetition of letters is allowed?
64. Nine comedy acts will perform over two evenings. Five of the acts will perform on the first evening and the order in which the acts perform is important. How many ways can the schedule for the first evening be made?
65. Using 15 flavors of ice cream, how many cones with three different flavors can you create if it is important to you which flavor goes on the top, middle, and bottom?
66. Baskin-Robbins offers 31 different flavors of ice cream. One of its items is a bowl consisting of three scoops of ice cream, each a different flavor. How many such bowls are possible?

Exercises 67-72 are based on the following jokes about books:

- "Outside of a dog, a book is man's best friend. Inside of a dog, it's too dark to read." - Groucho Marx
- "I recently bought a book of free verse. For \$12."
- George Carlin
- "If a word in the dictionary was misspelled, how would we know?"-Steven Wright
- "Encyclopedia is a Latin term. It means 'to paraphrase a term paper.' " - Greg Ray
- "A bookstore is one of the only pieces of evidence we have that people are still thinking."-Jerry Seinfeld
- "I honestly believe there is absolutely nothing like going to bed with a good book. Or a friend who's read one." - Phyllis Diller

67. In how many ways can these six jokes be ranked from best to worst?
68. If Phyllis Diller's joke about books is excluded, in how many ways can the remaining five jokes be ranked from best to worst?
69. In how many ways can people select their three favorite jokes from these comments about books?
70. In how many ways can people select their two favorite jokes from these comments about books?
71. If the order in which these jokes are told makes a difference in terms of how they are received, how many ways can they be delivered if George Carlin's joke is delivered first and Jerry Seinfeld's joke is told last?
72. If the order in which these jokes are told makes a difference in terms of how they are received, how many ways can they be delivered if a joke by a man is told first?

Writing in Mathematics

73. Explain the Fundamental Counting Principle.
74. Write an original problem that can be solved using the Fundamental Counting Principle. Then solve the problem.
75. What is a permutation?
76. Describe what ${ }_{n} P_{r}$ represents.
77. Write a word problem that can be solved by evaluating ${ }_{7} P_{3}$.
78. What is a combination?
79. Explain how to distinguish between permutation and combination problems.
80. Write a word problem that can be solved by evaluating ${ }_{7} C_{3}$.

Technology Exercises

81. Use a graphing utility with an ${ }_{n}{ }_{r}$ menu item to verify your answers in Exercises 1-8.
82. Use a graphing utility with an ${ }_{n} C_{r}$ menu item to verify your answers in Exercises 9-16.

Critical Thinking Exercises

Make Sense? In Exercises 83-86, determine whether each statement makes sense or does not make sense, and explain your reasoning.
83. I used the Fundamental Counting Principle to determine the number of five-digit ZIP codes that are available to the U.S. Postal Service.
84. I used the permutations formula to determine the number of ways the manager of a baseball team can form a 9 -player batting order from a team of 25 players.
85. I used the combinations formula to determine how many different four-note sound sequences can be created from the notes C, D, E, F, G, A, and B.
86. I used the permutations formula to determine the number of ways people can select their 9 favorite baseball players from a team of 25 players.

In Exercises 87-90, determine whether each statement is true or
false. If the statement is false, make the necessary change(s) to produce a true statement.
87. The number of ways to choose four questions out of ten questions on an essay test is ${ }_{10} P_{4}$.
88. If $r>1,{ }_{n} P_{r}$ is less than ${ }_{n} C_{r}$.
89. ${ }_{7} P_{3}=3!{ }_{7} C_{3}$
90. The number of ways to pick a winner and first runner-up in a talent contest with 20 contestants is ${ }_{20} C_{2}$.
91. Five men and five women line up at a checkout counter in a store. In how many ways can they line up if the first person in line is a woman and the people in line alternate woman, man, woman, man, and so on?
92. How many four-digit odd numbers less than 6000 can be formed using the digits $2,4,6,7,8$, and 9 ?
93. A mathematics exam consists of 10 multiple-choice questions and 5 open-ended problems in which all work must be shown. If an examinee must answer 8 of the multiple-choice questions and 3 of the open-ended problems, in how many ways can the questions and problems be chosen?

Group Exercise

94. The group should select real-world situations where the Fundamental Counting Principle can be applied. These could involve the number of possible student ID numbers on your campus, the number of possible phone numbers in your community, the number of meal options at a local restaurant, the number of ways a person in the group can select outfits for class, the number of ways a condominium can be purchased in a nearby community, and so on. Once situations have been selected, group members should determine in how many ways each part of the task can be done. Group members will need to obtain menus, find out about telephone-digit requirements in the community, count shirts, pants, shoes in closets, visit condominium sales offices, and so on. Once the group reassembles, apply the Fundamental Counting Principle to determine the number of available options in each situation. Because these numbers may be quite large, use a calculator.

Preview Exercises

Exercises 95-97 will help you prepare for the material covered in the next section.

The figure shows that when a die is rolled, there are six equally likely outcomes: 1, 2, 3, 4, 5, or 6 . Use this information to solve each exercise.

95. What fraction of the outcomes is less than 5 ?
96. What fraction of the outcomes is not less than 5 ?
97. What fraction of the outcomes is even or greater than 3 ?

SECTION 10.7 Probability

Objectives

(1) Compute empirical probability.
(2) Compute theoretical probability.
(3) Find the probability that an event will not occur.
4. Find the probability of one event or a second event occurring.
(5) Find the probability of one event and a second event occurring.

How many hours of sleep do you typically get each night? Table $\mathbf{1 0 . 3}$ indicates that 75 million out of 300 million Americans are getting six hours of sleep on a typical night. The probability of an American getting six hours of sleep on a typical night is $\frac{75}{300}$. This fraction can be reduced to $\frac{1}{4}$, or expressed as 0.25 , or 25%. Thus, 25% of Americans get six hours of sleep each night.

We find a probability by dividing one number by another. Probabilities are assigned to an event, such as getting six hours of sleep on a typical night. Events that are certain to occur are assigned probabilities of 1 , or 100%. For example, the probability that a given individual will eventually die is 1 . Although Woody Allen whined, "I don't want to achieve immortality through my work. I want to achieve it through not dying," death (and taxes) are always certain. By contrast, if an event cannot occur, its probability is 0 . Regrettably, the probability that Elvis will return and serenade us with one final reprise of "Don't Be Cruel" (and we hope we're not) is 0 .

Possible Values for Probabilities

Compute empirical probability.

Probabilities of events are expressed as numbers ranging from 0 to 1 , or 0% to 100%. The closer the probability of a given event is to 1 , the more likely it is that the event will occur. The closer the probability of a given event is to 0 , the less likely it is that the event will occur.

Empirical Probability

Empirical probability applies to situations in which we observe how frequently an event occurs. We use the following formula to compute the empirical probability of an event:

Computing Empirical Probability

The empirical probability of event E, denoted by $P(E)$, is

$$
P(E)=\frac{\text { observed number of times } E \text { occurs }}{\text { total number of observed occurrences }} \text {. }
$$

EXAMPLE 1 Empirical Probabilities with Real-World Data

When women turn 40 , their gynecologists typically remind them that it is time to undergo mammography screening for breast cancer. The data in Table $\mathbf{1 0 . 4}$ are based on 100,000 U.S. women, ages 40 to 50 , who participated in mammography screening.

Table 10.4 Mammography Screening on 100,000
U.S. Women, Ages 40 to 50

Source: Gerd Gigerenzer, Calculated Risks, Simon and Schuster, 2002
a. Use Table 10.4 to find the probability that a woman aged 40 to 50 has breast cancer.
b. Among women without breast cancer, find the probability of a positive mammogram.
c. Among women with positive mammograms, find the probability of not having breast cancer.

SOLUTION

a. We begin with the probability that a woman aged 40 to 50 has breast cancer. The probability of having breast cancer is the number of women with breast cancer divided by the total number of women.

$$
\begin{aligned}
P(\text { breast cancer }) & =\frac{\text { number of women with breast cancer }}{\text { total number of women }} \\
& =\frac{800}{100,000}=\frac{1}{125}=0.008
\end{aligned}
$$

The empirical probability that a woman aged 40 to 50 has breast cancer is $\frac{1}{125}$, or 0.008 .
b. Now, we find the probability of a positive mammogram among women without breast cancer. Thus, we restrict the data to women without breast cancer:

	No Breast Cancer
Positive Mammogram	6944
Negative Mammogram	92,256

Within the restricted data, the probability of a positive mammogram is the number of women with positive mammograms divided by the total number of women.
$P($ positive mammogram $)=\frac{\text { number of women with positive mammograms }}{\text { total number of women in the restricted data }}$

$$
=\frac{6944}{6944+92,256}=\frac{6944}{99,200}=0.07
$$

This is the total number of women without breast cancer.

Among women without breast cancer, the empirical probability of a positive mammogram is $\frac{6944}{99,200}$, or 0.07 .
c. Now, we find the probability of not having breast cancer among women with positive mammograms. Thus, we restrict the data to women with positive mammograms:

	Breast Cancer	No Breast Cancer
Positive Mammogram	720	6944

Within the restricted data, the probability of not having breast cancer is the number of women with no breast cancer divided by the total number of women.

$$
\begin{aligned}
& P(\text { no breast cancer })=\frac{\text { number of women with no breast cancer }}{\text { total number of women in the restricted data }} \\
&=\frac{6944}{720+6944}=\frac{6944}{7664} \approx 0.906 \\
& \begin{array}{c}
\text { This is the total number of } \\
\text { women with positive mammograms. }
\end{array}
\end{aligned}
$$

Among women with positive mammograms, the probability of not having breast cancer is $\frac{6944}{7664}$, or approximately 0.906 .
W Check Point 1 Use the data in Table $\mathbf{1 0 . 4}$ to solve this exercise. Express probabilities as fractions and as decimals rounded to three decimal places.
a. Find the probability that a woman aged 40 to 50 has a positive mammogram.
b. Among women with breast cancer, find the probability of a positive mammogram.
c. Among women with positive mammograms, find the probability of having breast cancer.

(2)
 Compute theoretical probability.

FIGURE 10.11 Outcomes when a die is rolled

Theoretical Probability

You toss a coin. Although it is equally likely to land either heads up, denoted by H, or tails up, denoted by T, the actual outcome is uncertain. Any occurrence for which the outcome is uncertain is called an experiment. Thus, tossing a coin is an example of an experiment. The set of all possible outcomes of an experiment is the sample space of the experiment, denoted by S. The sample space for the coin-tossing experiment is

$$
S=\{H, T\}
$$

Lands heads up Lands tails up
We can define an event more formally using these concepts. An event, denoted by E, is any subcollection, or subset, of a sample space. For example, the subset $E=\{T\}$ is the event of landing tails up when a coin is tossed.

Theoretical probability applies to situations like this, in which the sample space only contains equally likely outcomes, all of which are known. To calculate the theoretical probability of an event, we divide the number of outcomes resulting in the event by the number of outcomes in the sample space.

Computing Theoretical Probability

If an event E has $n(E)$ equally likely outcomes and its sample space S has $n(S)$ equally likely outcomes, the theoretical probability of event E, denoted by $P(E)$, is

$$
P(E)=\frac{\text { number of outcomes in event } E}{\text { number of outcomes in sample space } S}=\frac{n(E)}{n(S)}
$$

The sum of the theoretical probabilities of all possible outcomes in the sample space is 1 .

How can we use this formula to compute the probability of a coin landing tails up? We use the following sets:

$$
E=\{T\} \quad S=\{H, T\}
$$

This is the event of landing tails up.

This is the sample space with all equally likely outcomes.

The probability of a coin landing tails up is

$$
P(E)=\frac{\text { number of outcomes that result in tails up }}{\text { total number of possible outcomes }}=\frac{n(E)}{n(S)}=\frac{1}{2}
$$

Theoretical probability applies to many games of chance, including rolling dice, lotteries, card games, and roulette. The next example deals with the experiment of rolling a die. Figure $\mathbf{1 0 . 1 1}$ illustrates that when a die is rolled, there are six equally likely outcomes. The sample space can be shown as

$$
S=\{1,2,3,4,5,6\}
$$

EXAMPLE 2 Computing Theoretical Probability

A die is rolled. Find the probability of getting a number less than 5.

SOLUTION

The sample space of equally likely outcomes is $S=\{1,2,3,4,5,6\}$. There are six outcomes in the sample space, so $n(S)=6$.

We are interested in the probability of getting a number less than 5 . The event of getting a number less than 5 can be represented by

$$
E=\{1,2,3,4\} .
$$

There are four outcomes in this event, so $n(E)=4$.
The probability of rolling a number less than 5 is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{4}{6}=\frac{2}{3} .
$$

Check Point 2 A die is rolled. Find the probability of getting a number greater than 4.

EXAMPLE 3 Computing Theoretical Probability

Two ordinary six-sided dice are rolled. What is the probability of getting a sum of 8 ?

SOLUTION

Each die has six equally likely outcomes. By the Fundamental Counting Principle, there are $6 \cdot 6$, or 36 , equally likely outcomes in the sample space. That is, $n(S)=36$. The 36 outcomes are shown below as ordered pairs. The five ways of rolling a sum of 8 appear in the green highlighted diagonal.

$$
\begin{aligned}
S=\{ & (1,1),(1,2),(1,3),(1,4), \\
& (1,5),(1,6),(2,1),(2,2), \\
& (2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4), \\
& (3,5),(3,6),(4,1),(4,2), \\
& (4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4), \\
& (5,5),(5,6),(6,1),(6,2), \\
& (6,3),(6,4),(6,5),(6,6)\}
\end{aligned}
$$

The phrase "getting a sum of 8 " describes the event

$$
E=\{(6,2),(5,3),(4,4),(3,5),(2,6)\} .
$$

This event has 5 outcomes, so $n(E)=5$. Thus, the probability of getting a sum of 8 is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{5}{36} .
$$

$\$$ Check Point 3 What is the probability of getting a sum of 5 when two six-sided dice are rolled?

Computing Theoretical Probability without Listing an Event and the Sample Space

In some situations, we can compute theoretical probability without having to write out each event and each sample space. For example, suppose you are dealt one card from a standard 52 -card deck, illustrated in Figure 10.12. The deck has four suits: Hearts and diamonds are red, and clubs and spades are black. Each suit has 13 different face values - A(ace), 2, 3, 4, 5, 6, 7, 8, 9, 10 , J(jack), Q(queen), and K (king). Jacks, queens, and kings are called picture cards or face cards.

FIGURE 10.12 A standard 52-card bridge deck (repeated)

EXAMPLE 4 Probability and a Deck of 52 Cards

You are dealt one card from a standard 52-card deck. Find the probability of being dealt a heart.

SOLUTION

Let E be the event of being dealt a heart. Because there are 13 hearts in the deck, the event of being dealt a heart can occur in 13 ways. The number of outcomes in event E is $13: n(E)=13$. With 52 cards in the deck, the total number of possible ways of being dealt a single card is 52 . The number of outcomes in the sample space is $52: n(S)=52$. The probability of being dealt a heart is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{13}{52}=\frac{1}{4} .
$$

Check Point 4 If you are dealt one card from a standard 52-card deck, find the probability of being dealt a king.

If your state has a lottery drawing each week, the probability that someone will win the top prize is relatively high. If there is no winner this week, it is virtually certain that eventually someone will be graced with millions of dollars. So, why are you so unlucky compared to this undisclosed someone? In Example 5, we provide an answer to this question, using the counting principles discussed in Section 8.6.

EXAMPLE 5 Probability and Combinations: Winning the Lottery

Florida's lottery game, LOTTO, is set up so that each player chooses six different numbers from 1 to 53 . If the six numbers chosen match the six numbers drawn randomly, the player wins (or shares) the top cash prize. (As of this writing, the top cash prize has ranged from $\$ 7$ million to $\$ 106.5$ million.) With one LOTTO ticket, what is the probability of winning this prize?

SOLUTION

Because the order of the six numbers does not matter, this is a situation involving combinations. Let E be the event of winning the lottery with one ticket. With one LOTTO ticket, there is only one way of winning. Thus, $n(E)=1$. The sample space is the set of all possible six-number combinations. We can use the combinations formula

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

to find the total number of possible combinations. We are selecting $r=6$ numbers from a collection of $n=53$ numbers.

$$
{ }_{53} C_{6}=\frac{53!}{(53-6)!6!}=\frac{53!}{47!6!}=\frac{53 \cdot 52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47!}{47!\cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=22,957,480
$$

Blitzer Bonus

Comparing the
Probability of Dying
to the Probability of Winning Florida's LOTTO

As a healthy nonsmoking 30-yearold, your probability of dying this year is approximately 0.001 . Divide this probability by the probability of winning LOTTO with one ticket:

$$
\frac{0.001}{0.0000000436} \approx 22,936
$$

A healthy 30 -year-old is nearly 23,000 times more likely to die this year than to win Florida's lottery.

Find the probability that an event will not occur.

There are nearly 23 million number combinations possible in LOTTO. If a person buys one LOTTO ticket, the probability of winning is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{1}{22,957,480} \approx 0.0000000436
$$

The probability of winning the top prize with one LOTTO ticket is $\frac{1}{22,957,480}$, or about 1 in 23 million.

Suppose that a person buys 5000 different tickets in Florida's LOTTO. Because that person has selected 5000 different combinations of the six numbers, the probability of winning is

$$
\frac{5000}{22,957,480} \approx 0.000218
$$

The chances of winning top prize are about 218 in a million. At $\$ 1$ per LOTTO ticket, it is highly probable that our LOTTO player will be $\$ 5000$ poorer. Knowing a little probability helps a lotto.
$\$$ Check Point 5 People lose interest when they do not win at games of chance, including Florida's LOTTO. With drawings twice weekly instead of once, the game described in Example 5 was brought in to bring back lost players and increase ticket sales. The original LOTTO was set up so that each player chose six different numbers from 1 to 49 , rather than from 1 to 53 , with a lottery drawing only once a week. With one LOTTO ticket, what was the probability of winning the top cash prize in Florida's original LOTTO? Express the answer as a fraction and as a decimal correct to ten places.

Probability of an Event Not Occurring

If we know $P(E)$, the probability of an event E, we can determine the probability that the event will not occur, denoted by $P($ not $E)$. Because the sum of the probabilities of all possible outcomes in any situation is 1 ,

$$
P(E)+P(\operatorname{not} E)=1 \text {. }
$$

We now solve this equation for $P(\operatorname{not} E)$, the probability that event E will not occur, by subtracting $P(E)$ from both sides. The resulting formula is given in the following box.

The Probability of an Event Not Occurring

The probability that an event E will not occur is equal to 1 minus the probability that it will occur.

$$
P(\operatorname{not} E)=1-P(E)
$$

World Population, by Continent/Region

FIGURE 10.13
Source: U.S. Census Bureau

EXAMPLE 6 The Probability of an Event Not Occurring

The circle graph in Figure $\mathbf{1 0 . 1 3}$ shows the distribution, by continent, of the world's 7 billion, or 7000 million, people. If one person is randomly selected, find the probability that the person does not live in Asia. Express the probability as a simplified fraction and as a decimal rounded to the nearest thousandth.

SOLUTION

We use the probability that the selected person does live in Asia to find the probability that the selected person does not live in this region.
P (does not live in Asia)

$$
\begin{aligned}
& =1-P(\text { lives in Asia }) \\
& =1-\frac{4230}{7000} \quad \begin{array}{c}
\text { The graph shows } 4230 \text { million } \\
\text { people living in Asia. }
\end{array} \\
& =\frac{7000}{7000}-\frac{4230}{\text { World population, } 7000 \text { million, }} \begin{array}{l}
\text { was given, but can be obtained by } \\
\text { adding the numbers in the six sectors. }
\end{array} \\
& \hline \frac{2770}{7000}=\frac{277}{700} \approx 0.396
\end{aligned}
$$

The probability that a randomly selected person does not live in Asia is $\frac{277}{700}$, or approximately 0.396 .
$\$$ Check Point 6 If one person is randomly selected from the world population represented in Figure 10.13, find the probability that the person does not live in North America. Express the probability as a simplified fraction and as a decimal rounded to the nearest thousandth.
(4) Find the probability of one event or a second event occurring.

Or Probabilities with Mutually Exclusive Events

Suppose that you randomly select one card from a deck of 52 cards. Let A be the event of selecting a king and let B be the event of selecting a queen. Only one card is selected, so it is impossible to get both a king and a queen. The events of selecting a king and a queen cannot occur simultaneously. They are called mutually exclusive events. If it is impossible for any two events, A and B, to occur simultaneously, they are said to be mutually exclusive. If A and B are mutually exclusive events, the probability that either A or B will occur is determined by adding their individual probabilities.

Or Probabilities with Mutually Exclusive Events

If A and B are mutually exclusive events, then

$$
P(A \text { or } B)=P(A)+P(B) .
$$

Using set notation, $P(A \cup B)=P(A)+P(B)$.

EXAMPLE 7 The Probability of Either of Two Mutually Exclusive Events Occurring

If one card is randomly selected from a deck of cards, what is the probability of selecting a king or a queen?

SOLUTION

We find the probability that either of these mutually exclusive events will occur by adding their individual probabilities.

$$
P(\text { king or queen })=P(\text { king })+P(\text { queen })=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}
$$

The probability of selecting a king or a queen is $\frac{2}{13}$.

FIGURE 10.14 A deck of 52 cards

FIGURE 10.16

Check Point 7 If you roll a single, six-sided die, what is the probability of getting either a 4 or a 5 ?

Or Probabilities with Events That Are Not Mutually Exclusive

Consider the deck of 52 cards shown in Figure 10.14. Suppose that these cards are shuffled and you randomly select one card from the deck. What is the probability of selecting a diamond or a picture card (jack, queen, king)? Begin by adding their individual probabilities.

$$
P(\text { diamond })+\begin{gathered}
\begin{array}{c}
\text { There are } 13 \text { diamonds } \\
\text { in the deck of } 52 \text { cards. }
\end{array} \\
P(\text { picture card })
\end{gathered}=\frac{13}{52}+\frac{12}{52} \quad \begin{aligned}
& \text { There are } 12 \text { picture cards } \\
& \text { in the deck of } 52 \text { cards. }
\end{aligned}
$$

However, this sum is not the probability of selecting a diamond or a picture card. The problem is that there are three cards that are simultaneously diamonds and picture cards, shown in Figure 10.15. The events of selecting a diamond and selecting a picture card are not mutually exclusive. It is possible to select a card that is both a diamond and a picture card.

The situation is illustrated in the diagram in Figure 10.16. Why can't we find the probability of selecting a diamond or a picture card by adding their individual probabilities? The diagram shows that three of the cards, the three diamonds that are picture cards, get counted twice when we add the individual probabilities.

FIGURE 10.15 Three diamonds are picture cards. First the three cards get counted as diamonds and then they get counted as picture cards. In order to avoid the error of counting the three cards twice, we need to subtract the probability of getting a diamond and a picture card, $\frac{3}{52}$, as follows:
$P($ diamond or picture card)

$$
\begin{aligned}
& =P(\text { diamond })+P(\text { picture card })-P(\text { diamond and picture card }) \\
& =\frac{13}{52}+\frac{12}{52}-\frac{3}{52}=\frac{13+12-3}{52}=\frac{22}{52}=\frac{11}{26} .
\end{aligned}
$$

Thus, the probability of selecting a diamond or a picture card is $\frac{11}{26}$.
In general, if A and B are events that are not mutually exclusive, the probability that A or B will occur is determined by adding their individual probabilities and then subtracting the probability that A and B occur simultaneously.

FIGURE 10.17 It is equally probable that the pointer will land on any one of the eight regions.

Or Probabilities with Events That Are Not Mutually Exclusive

If A and B are not mutually exclusive events, then

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) .
$$

Using set notation,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

EXAMPLE 8 An Or Probability with Events That Are Not Mutually Exclusive

Figure 10.17 illustrates a spinner. It is equally probable that the pointer will land on any one of the eight regions, numbered 1 through 8. If the pointer lands on a borderline, spin again. Find the probability that the pointer will stop on an even number or a number greater than 5 .

SOLUTION

It is possible for the pointer to land on a number that is both even and greater than 5 . Two of the numbers, 6 and 8, are even and greater than 5 . These events are not mutually exclusive. The probability of landing on a number that is even or greater than 5 is calculated as follows:

$$
\begin{aligned}
& P\binom{\text { even or }}{\text { greater than } 5}=P(\text { even })+P(\text { greater than } 5)-P\binom{\text { even and }}{\text { greater than } 5} \\
& =\frac{4}{8}+\frac{3}{8}-\frac{2}{8} \\
& \begin{array}{l}
\text { Four of the eight } \\
\text { numbers, 2, 4, 6, }
\end{array} \\
& \text { and } 8 \text {, are even. } \\
& \text { Three of the eight } \\
& \text { numbers, } 6,7 \text {, and } 8 \text {, } \\
& \text { are greater than } 5 \text {. } \\
& =\frac{4+3-2}{8}=\frac{5}{8} .
\end{aligned}
$$

The probability that the pointer will stop on an even number or a number greater than 5 is $\frac{5}{8}$.

Check Point 8 Use Figure $\mathbf{1 0 . 1 7}$ to find the probability that the pointer will stop on an odd number or a number less than 5 .

EXAMPLE 9 An Or Probability with Real-World Data

Table $\mathbf{1 0 . 5}$ shows the marital status of the U.S. population in 2010. Numbers in the table are expressed in millions.

Table 10.5 Marital Status of the U.S. Population, Ages 15 or Older, 2010, in Millions

	Married	Never Married	Divorced	Widowed	Total
Male	65	40	10	3	118
Female	65	34	14	11	124
Total	130	74	24	14	242

[^12]If one person is randomly selected from the population represented in Table 10.5, find the probability that
a. the person is divorced or male.
b. the person is married or divorced.

Express probabilities as simplified fractions and as decimals rounded to the nearest hundredth.

SOLUTION

a. It is possible to select a person who is both divorced and male. Thus, these events are not mutually exclusive.
P (divorced or male)

$$
\begin{array}{ccc}
=P(\text { divorced }) & +P(\text { male }) & -P(\text { divorced and male }) \\
=\frac{24}{242}+\frac{118}{242} & -\frac{10}{242} \\
\begin{array}{c}
\text { Of the } 242 \text { million } \\
\text { Americans, } 24 \\
\text { million are divorced. }
\end{array} & \begin{array}{c}
\text { Of the } 242 \text { million } \\
\text { Americans, } 118 \\
\text { million are male. }
\end{array} & \begin{array}{c}
\text { Of the } 242 \text { million } \\
\text { Americans, } 10 \\
\text { million are divorced and male. }
\end{array} \\
=\frac{24+118-10}{242}=\frac{132}{242}=\frac{22 \cdot 6}{22 \cdot 11}=\frac{6}{11} \approx 0.55
\end{array}
$$

The probability of selecting a person who is divorced or male is $\frac{6}{11}$, or approximately 0.55 .
b. It is impossible to select a person who is both married and divorced. These events are mutually exclusive.
$P($ married or divorced)

$$
\begin{aligned}
& =P\left(\begin{array}{c}
P(\text { married }) \\
=
\end{array}+P \frac{130}{242}\right. \\
& \begin{array}{c}
\text { Of the } 242 \text { million } \\
\text { Americans, } 130 \\
\text { million are married. }
\end{array} \\
& =\frac{130+24}{242}=\frac{154}{242}=\frac{22 \cdot 7}{22 \cdot 11}=\frac{7}{11} \approx 0.64
\end{aligned}
$$

The probability of selecting a person who is married or divorced is $\frac{7}{11}$, or approximately 0.64 .
$\$$ Check Point 9 If one person is randomly selected from the population represented in Table 10.5, find the probability that
a. the person is married or female.
b. the person is divorced or widowed.

Express probabilities as simplified fractions and as decimals rounded to the nearest hundredth.
(5) Find the probability of one event and a second event occurring.

And Probabilities with Independent Events

Suppose that you toss a fair coin two times in succession. The outcome of the first toss, heads or tails, does not affect what happens when you toss the coin a second time. For example, the occurrence of tails on the first toss does not make tails more likely or less likely to occur on the second toss. The repeated toss of a coin produces

FIGURE 10.18 A U.S. roulette wheel
independent events because the outcome of one toss does not influence the outcome of others. Two events are independent events if the occurrence of either of them has no effect on the probability of the other.

If two events are independent, we can calculate the probability of the first occurring and the second occurring by multiplying their probabilities.

And Probabilities with Independent Events

If A and B are independent events, then

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

EXAMPLE 10 Independent Events on a Roulette Wheel

Figure 10.18 shows a U.S. roulette wheel that has 38 numbered slots (1 through 36, 0 , and 00). Of the 38 compartments, 18 are black, 18 are red, and 2 are green. A play has the dealer spin the wheel and a small ball in opposite directions. As the ball slows to a stop, it can land with equal probability on any one of the 38 numbered slots. Find the probability of red occurring on two consecutive plays.

SOLUTION

The wheel has 38 equally likely outcomes and 18 are red. Thus, the probability of red occurring on a play is $\frac{18}{38}$, or $\frac{9}{19}$. The result that occurs on each play is independent of all previous results. Thus,

$$
P(\text { red and red })=P(\text { red }) \cdot P(\text { red })=\frac{9}{19} \cdot \frac{9}{19}=\frac{81}{361} \approx 0.224
$$

The probability of red occurring on two consecutive plays is $\frac{81}{361}$.
Some roulette players incorrectly believe that if red occurs on two consecutive plays, then another color is "due." Because the events are independent, the outcomes of previous spins have no effect on any other spins.

Check Point 10 Find the probability of green occurring on two consecutive plays on a roulette wheel.

The and rule for independent events can be extended to cover three or more events. Thus, if A, B, and C are independent events, then

$$
P(A \text { and } B \text { and } C)=P(A) \cdot P(B) \cdot P(C)
$$

EXAMPLE 11 Independent Events in a Family

The picture in the margin shows a family that has had nine girls in a row. Find the probability of this occurrence.

SOLUTION

If two or more events are independent, we can find the probability of them all occurring by multiplying their probabilities. The probability of a baby girl is $\frac{1}{2}$, so the probability of nine girls in a row is $\frac{1}{2}$ used as a factor nine times.

$$
\begin{aligned}
P(\text { nine girls in a row }) & =\frac{1}{2} \cdot \frac{1}{2} \\
& =\left(\frac{1}{2}\right)^{9}=\frac{1}{512}
\end{aligned}
$$

The probability of a run of nine girls in a row is $\frac{1}{512}$. (If another child is born into the family, this event is independent of the other nine, and the probability of a girl is still $\frac{1}{2}$.)

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. Probability that is based on situations in which we observe how frequently an event occurs is called \qquad probability.
2. The set of all possible outcomes of an experiment is called the \qquad of the experiment.
3. The theoretical probability of event E, denoted by \qquad is the \qquad divided by the \qquad -
4. A standard bridge deck has \qquad cards with four suits: \qquad and \qquad are red, and \qquad and \qquad are black.
5. The probability of winning a lottery with one lottery ticket is the number of ways of winning, which is precisely \qquad , divided by the total number of possible \qquad _.
6. Because $P(E)+P($ not $E)=1$, then $P(\operatorname{not} E)=$ \qquad and $P(E)=$ \qquad .
7. If it is impossible for events A and B to occur simultaneously, the events are said to be $\overline{P(A \text { or } B)=}$. For such events, $P(A$ or $B)=\square$.
8. If it is possible for events A and B to occur simultaneously, then
$P(A$ or $B)=$ \qquad
9. If the occurrence of one event has no effect on the probability of another event, the events are said to be \qquad For such events $P(A$ and $B)=$ \qquad

EXERCISE SET 10.7

Practice and Application Exercises

Shown again is the table indicating the marital status of the U.S. population in 2010. Numbers in the table are expressed in millions. Use the data in the table to solve Exercises 1-10. Express probabilities as simplified fractions and as decimals rounded to the nearest hundredth.

Marital Status of the U.S. Population, Ages 15 or Older, 2010, in Millions

| | Married | Never
 Married | Divorced | Widowed | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 65 | 40 | 10 | 3 | 118 |
| Female | 65 | 34 | 14 | 11 | 124 |
| Total | 130 | 74 | 24 | 14 | 242 |

If one person is randomly selected from the population described in the table, find the probability that the person

1. is divorced.
2. has never been married.
3. is female.
4. is male.
5. is a widowed male.
6. is a widowed female.
7. Among those who are divorced, find the probability of selecting a woman.
8. Among those who are divorced, find the probability of selecting a man.
9. Among men, find the probability of selecting a married person.
10. Among women, find the probability of selecting a married person.
In Exercises 11-16, a die is rolled. Find the probability of getting
11. a 4.
12. a 5.
13. an odd number.
14. a number greater than 3 .
15. a number greater than 4 .
16. a number greater than 7 .

In Exercises 17-20, you are dealt one card from a standard
52 -card deck. Find the probability of being dealt
17. a queen.
18. a diamond.
19. a picture card.
20. a card greater than 3 and less than 7 .

In Exercises 21-22, a fair coin is tossed two times in succession.
The sample space of equally likely outcomes is
$\{H H, H T, T H, T T\}$. Find the probability of getting
21. two heads.
22. the same outcome on each toss.

In Exercises 23-24, you select a family with three children. If M represents a male child and F a female child, the sample space of equally likely outcomes is $\{M M M, M M F, M F M, M F F, F M M$, $F M F, F F M, F F F\}$. Find the probability of selecting a family with
23. at least one male child.
24. at least two female children.

In Exercises 25-26, a single die is rolled twice. The 36 equally likely outcomes are shown as follows:

Find the probability of getting

25. two numbers whose sum is 4 .
26. two numbers whose sum is 6 .
27. To play the California lottery, a person has to select 6 out of 51 numbers, paying $\$ 1$ for each six-number selection. If you pick six numbers that are the same as the ones drawn by the lottery, you win mountains of money. What is the probability that a person with one combination of six numbers will win? What is the probability of winning if 100 different lottery tickets are purchased?
28. A state lottery is designed so that a player chooses six numbers from 1 to 30 on one lottery ticket. What is the probability that a player with one lottery ticket will win? What is the probability of winning if 100 different lottery tickets are purchased?

Exercises 29-30 involve a deck of 52 cards. If necessary, refer to the picture of a deck of cards, Figure 10.12 on page 000.
29. A poker hand consists of five cards.
a. Find the total number of possible five-card poker hands.
b. A diamond flush is a five-card hand consisting of all diamonds. Find the number of possible diamond flushes.
c. Find the probability of being dealt a diamond flush.
30. If you are dealt 3 cards from a shuffled deck of 52 cards, find the probability that all 3 cards are picture cards.

The table shows the educational attainment of the U.S. population, ages 25 and over. Use the data in the table, expressed in millions, to solve Exercises 31-36.

Educational Attainment, in Millions, of the United States Population, Ages 25 and Over

	Less Than 4Years High School	4 Years High School Only	Some College [Less Than 4 Years]	4 Years College [or More]	Total
Male	14	25	20	23	82
Female	15	31	24	22	92
Total	29	56	44	45	174

Source: U.S. Census Bureau
Find the probability, expressed as a simplified fraction, that a randomly selected American, age 25 or over,
31. has not completed four years (or more) of college.
32. has not completed four years of high school.
33. has completed four years of high school only or less than four years of college.
34. has completed less than four years of high school or four years of high school only.
35. has completed four years of high school only or is a man.
36. has completed four years of high school only or is a woman.

In Exercises 37-42, you are dealt one card from a 52-card deck. Find the probability that
37. you are not dealt a king.
38. you are not dealt a picture card.
39. you are dealt a 2 or a 3 .
40. you are dealt a red 7 or a black 8 .
41. you are dealt a 7 or a red card.
42. you are dealt a 5 or a black card.

In Exercises 43-44, it is equally probable that the pointer on the spinner shown will land on any one of the eight regions, numbered 1 through 8. If the pointer lands on a borderline, spin again.

Find the probability that the pointer will stop on

43. an odd number or a number less than 6 .
44. an odd number or a number greater than 3 .

Use this information to solve Exercises 45-46. The mathematics department of a college has 8 male professors, 11 female professors, 14 male teaching assistants, and 7 female teaching assistants. If a person is selected at random from the group, find the probability that the selected person is
45. a professor or a male.
46. a professor or a female.

In Exercises 47-50, a single die is rolled twice. Find the probability of rolling
47. a 2 the first time and a 3 the second time.
48. a 5 the first time and a 1 the second time.
49. an even number the first time and a number greater than 2 the second time.
50. an odd number the first time and a number less than 3 the second time.
51. If you toss a fair coin six times, what is the probability of getting all heads?
52. If you toss a fair coin seven times, what is the probability of getting all tails?
53. The probability that South Florida will be hit by a major hurricane (category 4 or 5) in any single year is $\frac{1}{16}$.
(Source: National Hurricane Center)
a. What is the probability that South Florida will be hit by a major hurricane two years in a row?
b. What is the probability that South Florida will be hit by a major hurricane in three consecutive years?
c. What is the probability that South Florida will not be hit by a major hurricane in the next ten years?
d. What is the probability that South Florida will be hit by a major hurricane at least once in the next ten years?

Writing in Mathematics

54. Describe the difference between theoretical probability and empirical probability.
55. Give an example of an event whose probability must be determined empirically rather than theoretically.
56. Write a probability word problem whose answer is one of the following fractions: $\frac{1}{6}$ or $\frac{1}{4}$ or $\frac{1}{3}$.
57. Explain how to find the probability of an event not occurring. Give an example.
58. What are mutually exclusive events? Give an example of two events that are mutually exclusive.
59. Explain how to find or probabilities with mutually exclusive events. Give an example.
60. Give an example of two events that are not mutually exclusive.
61. Explain how to find or probabilities with events that are not mutually exclusive. Give an example.
62. Explain how to find and probabilities with independent events. Give an example.
63. The president of a large company with 10,000 employees is considering mandatory cocaine testing for every employee. The test that would be used is 90% accurate, meaning that it will detect 90% of the cocaine users who are tested, and that 90% of the nonusers will test negative. This also means that the test gives 10% false positive. Suppose that 1% of the employees actually use cocaine. Find the probability that someone who tests positive for cocaine use is, indeed, a user. Hint: Find the following probability fraction:
the number of employees who test positive
and are cocaine users
the number of employees who test positive
This fraction is given by

$$
\begin{aligned}
& 90 \% \text { of } 1 \% \text { of } 10,000 \\
& \text { the number who test positive who actually use } \\
& \text { cocaine plus the number who test positive } \\
& \text { who do not use cocaine }
\end{aligned}
$$

What does this probability indicate in terms of the percentage of employees who test positive who are not actually users? Discuss these numbers in terms of the issue of mandatory drug testing. Write a paper either in favor of or against mandatory drug testing, incorporating the actual percentage accuracy for such tests.

Critical Thinking Exercises

Make Sense? In Exercises 64-67, determine whether each statement makes sense or does not make sense, and explain your reasoning.
64. The probability that Jill will win the election is 0.7 and the probability that she will not win is 0.4 .
65. Assuming the next U.S. president will be a Democrat or a Republican, the probability of a Republican president is 0.5 .
66. The probability that I will go to graduate school is 1.5 .
67. When I toss a coin, the probability of getting heads or tails is 1 , but the probability of getting heads and tails is 0 .
68. The target in the figure shown contains four squares. If a dart thrown at random hits the target, find the probability that it will land in a yellow region.
69. Suppose that it is a week in which the cash prize in Florida's LOTTO is promised to exceed $\$ 50$ million. If a person purchases 22,957,480 tickets
 in LOTTO at $\$ 1$ per ticket (all possible combinations), isn't this a guarantee of winning the lottery? Because the probability in this situation is 1 , what's wrong with doing this?
70. Some three-digit numbers, such as 101 and 313 , read the same forward and backward. If you select a number from all threedigit numbers, find the probability that it will read the same forward and backward.
71. In a class of 50 students, 29 are Democrats, 11 are business majors, and 5 of the business majors are Democrats. If one student is randomly selected from the class, find the probability of choosing
a. a Democrat who is not a business major.
b. a student who is neither a Democrat nor a business major.
72. On New Year's Eve, the probability of a person driving while intoxicated or having a driving accident is 0.35 . If the probability of driving while intoxicated is 0.32 and the probability of having a driving accident is 0.09 , find the probability of a person having a driving accident while intoxicated.
73. a. If two people are selected at random, the probability that they do not have the same birthday (day and month) is $\frac{365}{365} \cdot \frac{364}{365}$. Explain why this is so. (Ignore leap years and assume 365 days in a year.)
b. If three people are selected at random, find the probability that they all have different birthdays.
c. If three people are selected at random, find the probability that at least two of them have the same birthday.
d. If 20 people are selected at random, find the probability that at least 2 of them have the same birthday.
e. How large a group is needed to give a 0.5 chance of at least two people having the same birthday?

Group Exercise

74. Research and present a group report on state lotteries. Include answers to some or all of the following questions: Which states do not have lotteries? Why not? How much is spent per capita on lotteries? What are some of the lottery games? What is the probability of winning top prize in these games? What income groups spend the greatest amount of money on lotteries? If your state has a lottery, what does it do with the money it makes? Is the way the money is spent what was promised when the lottery first began?

Preview Exercises

Exercises 75-77 will help you prepare for the material covered in the first section of the next chapter.
75. Use the table to complete each statement.

\boldsymbol{x} approaches $\mathbf{4}$ from the left.								\boldsymbol{x} approaches $\mathbf{4}$ from the right.			
\boldsymbol{x}	3.9	3.99	3.999	4	4.001	4.01	4.1				
$\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}^{2}-\mathbf{6} \boldsymbol{x}+\mathbf{8}}{\boldsymbol{x}-\mathbf{4}}$	1.9	1.99	1.999	Undefined	2.001	2.01	2.1				

a. $f(4)$ is undefined because
b. If x is less than 4 and approaches 4 from the left, the values of $f(x)$ are getting closer to the integer \qquad .
c. If x is greater than 4 and approaches 4 from the right, the values of $f(x)$ are getting closer to the integer
76. Graph $f(x)=\frac{x^{2}-6 x+8}{x-4}$, the function in Exercise 75. Begin by simplifying the function's equation. How does your graph illustrate the statement in Exercise 75(b) and the statement in Exercise 75(c)?
77. Graph the compound function:

$$
f(x)=\left\{\begin{array}{lll}
2 x-4 & \text { if } & x \neq 3 \\
-5 & \text { if } & x=3 .
\end{array}\right.
$$

CHAPTER 10 Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

10.1 Sequences and Summation Notation

a. An infinite sequence $\left\{a_{n}\right\}$ is a function whose domain is the set of positive integers. The function values, or terms, are represented by

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

b. Sequences can be defined using recursion formulas that define the nth term as a function of the previous term.
c. Factorial Notation:

$$
n!=n(n-1)(n-2) \cdots(3)(2)(1) \quad \text { and } \quad 0!=1
$$

d. Summation Notation:

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

Ex. 1, p. 1003

Ex. 2, p. 1004

Ex. 3, p. 1005;
Ex. 4, p. 1006
Ex. 5, p. 1007;
Ex. 6, p. 1009

10.2 Arithmetic Sequences

a. In an arithmetic sequence, each term after the first differs from the preceding term by a constant, the common difference. Subtract any term from the term that directly follows to find the common difference.
b. General term or nth term: $a_{n}=a_{1}+(n-1) d$. The first term is a_{1} and the common difference is d.
c. Sum of the first n terms: $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

List of arithmetic sequences and common differences, p. 1014;

Ex. 1, p. 1015
Ex. 2, p. 1016;
Ex. 3, p. 1016
Ex. 4, p. 1018;
Ex. 5, p. 1019;
Ex. 6, p. 1019

DEFINITIONS AND CONCEPTS

10.3 Geometric Sequences and Series

a. In a geometric sequence, each term after the first is obtained by multiplying the preceding term by a nonzero constant, the common ratio. Divide any term after the first by the term that directly precedes it to find the common ratio.
b. General term or nth term: $a_{n}=a_{1} r^{n-1}$. The first term is a_{1} and the common ratio is r.
c. Sum of the first n terms: $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
d. An annuity is a sequence of equal payments made at equal time periods. The value of an annuity, A, is the sum of all deposits made plus all interest paid, given by

$$
A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\frac{r}{n}}
$$

The deposit made at the end of each period is P, the annual interest rate is r, compounded n times per year, and t is the number of years deposits have been made.
e. The sum of the infinite geometric series $a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots$ is $S=\frac{a_{1}}{1-r} ;|r|<1$. If $|r| \geq 1$, the infinite series does not have a sum.

10.4 Mathematical Induction

To prove that S_{n} is true for all positive integers n,

1. Show that S_{1} is true.
2. Show that if S_{k} is assumed true, then S_{k+1} is also true, for every positive integer k.

10.5 The Binomial Theorem

a. Binomial coefficient: $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
b. Binomial Theorem:

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n} b^{n}
$$

c. The $(r+1)$ st term in the expansion of $(a+b)^{n}$ is

$$
\binom{n}{r} a^{n-r} b^{r}
$$

10.6 Counting Principles, Permutations, and Combinations

a. The Fundamental Counting Principle: The number of ways in which a series of successive things can occur is found by multiplying the number of ways in which each thing can occur.
b. A permutation from a group of items occurs when no item is used more than once and the order of arrangement makes a difference.
c. Permutations Formula: The number of possible permutations if r items are taken from n items is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} .
$$

d. A combination from a group of items occurs when no item is used more than once and the order of items makes no difference.
e. Combinations Formula: The number of possible combinations if r items are taken from n items is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!} .
$$

List of geometric sequences and common ratios, p. 1024;

Ex. 1, p. 1024
Ex. 2, p. 1025;
Ex. 3, p. 1026
Ex. 4, p. 1028;
Ex. 5, p. 1028;
Ex. 6, p. 1029
Ex. 7, p. 1031

Ex. 8, p. 1033;
Ex. 9, p. 1034;
Ex. 10, p. 1034

Ex. 2, p. 1043;
Ex. 3, p. 1044;
Ex. 4, p. 1045

Ex. 1, p. 1049
Ex. 2, p. 1050;
Ex. 3, p. 1051

Ex. 4, p. 1052

Ex. 1, p. 1057;
Ex. 2, p. 1057;
Ex. 3, p. 1058

Ex. 4, p. 1060;
Ex. 5, p. 1060

Ex. 6, p. 1061

Ex. 7, p. 1063;
Ex. 8, p. 1063

DEFINITIONS AND CONCEPTS

10.7 Probability

a. Empirical probability applies to situations in which we observe the frequency of the occurrence of an event.

Ex. 1, p. 1068 The empirical probability of event E is

$$
P(E)=\frac{\text { observed number of times } E \text { occurs }}{\text { total number of observed occurrences }} .
$$

b. Theoretical probability applies to situations in which the sample space of all equally likely outcomes is known. The theoretical probability of event E is

$$
P(E)=\frac{\text { number of outcomes in event } E}{\text { number of outcomes in sample space } S}=\frac{n(E)}{n(S)} .
$$

Ex. 2, p. 1070;
Ex. 3, p. 1071;
Ex. 4, p. 1072;
Ex. 5, p. 1072
c. Probability of an event not occurring: $P($ not $E)=1-P(E)$.

Ex. 6, p. 1074
d. If it is impossible for events A and B to occur simultaneously, the events are mutually exclusive.
e. If A and B are mutually exclusive events, then $P(A$ or $B)=P(A)+P(B)$.

Ex. 7, p. 1075
f. If A and B are not mutually exclusive events, then

Ex. 8, p. 1076;

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) .
$$

$$
\text { Ex. 9, p. } 1076
$$

g. Two events are independent if the occurrence of either of them has no effect on the probability of the other.
h. If A and B are independent events, then

Ex. 10, p. 1078

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

i. The probability of a succession of independent events is the product of each of their probabilities.

Ex. 11, p. 1078

REVIEW EXERCISES

10.1

In Exercises 1-6, write the first four terms of each sequence whose general term is given.

1. $a_{n}=7 n-4$
2. $a_{n}=(-1)^{n} \frac{n+2}{n+1}$
3. $a_{n}=\frac{1}{(n-1)!}$
4. $a_{n}=\frac{(-1)^{n+1}}{2^{n}}$
5. $a_{1}=9$ and $a_{n}=\frac{2}{3 a_{n-1}}$ for $n \geq 2$
6. $a_{1}=4$ and $a_{n}=2 a_{n-1}+3$ for $n \geq 2$
7. Evaluate: $\frac{40!}{4!38!}$.

In Exercises 8-9, find each indicated sum.
8. $\sum_{i=1}^{5}\left(2 i^{2}-3\right)$
9. $\sum_{i=0}^{4}(-1)^{i+1} i$!

In Exercises 10-11, express each sum using summation notation. Use i for the index of summation.
10. $\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\cdots+\frac{15}{17}$
11. $4^{3}+5^{3}+6^{3}+\cdots+13^{3}$

10.2

In Exercises 12-15, write the first six terms of each arithmetic sequence.
12. $a_{1}=7, d=4$
13. $a_{1}=-4, d=-5$
14. $a_{1}=\frac{3}{2}, d=-\frac{1}{2}$
15. $a_{n+1}=a_{n}+5, a_{1}=-2$

In Exercises 16-18, find the indicated term of the arithmetic sequence with first term, a_{1}, and common difference, d.
16. Find a_{6} when $a_{1}=5, d=3$.
17. Find a_{12} when $a_{1}=-8, d=-2$.
18. Find a_{14} when $a_{1}=14, d=-4$.

In Exercises 19-21, write a formula for the general term (the nth term) of each arithmetic sequence. Do not use a recursion formula. Then use the formula for a_{n} to find a_{20}, the 20th term of the sequence.
19. $-7,-3,1,5, \ldots$
20. $a_{1}=200, d=-20$
21. $a_{n}=a_{n-1}-5, a_{1}=3$
22. Find the sum of the first 22 terms of the arithmetic sequence: $5,12,19,26, \ldots$
23. Find the sum of the first 15 terms of the arithmetic sequence: $-6,-3,0,3, \ldots$
24. Find $3+6+9+\cdots+300$, the sum of the first 100 positive multiples of 3 .

In Exercises 25-27, use the formula for the sum of the first n terms of an arithmetic sequence to find the indicated sum.
25. $\sum_{i=1}^{16}(3 i+2)$
26. $\sum_{i=1}^{25}(-2 i+6)$
27. $\sum_{i=1}^{30}(-5 i)$
28. The bar graph shows the number of hours per week devoted to housework by wives and husbands in 1965 and 2010.

Source: James Henslin, Sociology, Eleventh Edition, Pearson, 2012.

In 1965, wives averaged 34.5 hours per week doing housework. On average, this has decreased by approximately 0.3 hour per year since then.
a. Write a formula for the nth term of the arithmetic sequence that describes the number of hours per week devoted to housework by wives n years after 1964 .
b. Use the model to project the number of hours per week wives will devote to housework in 2020.
29. A company offers a starting salary of $\$ 31,500$ with raises of $\$ 2300$ per year. Find the total salary over a ten-year period.
30. A theater has 25 seats in the first row and 35 rows in all. Each successive row contains one additional seat. How many seats are in the theater?

10.3

In Exercises 31-34, write the first five terms of each geometric sequence.
31. $a_{1}=3, r=2$
32. $a_{1}=\frac{1}{2}, r=\frac{1}{2}$
33. $a_{1}=16, r=-\frac{1}{2}$
34. $a_{n}=-5 a_{n-1}, a_{1}=-1$

In Exercises 35-37, use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of each sequence.
35. Find a_{7} when $a_{1}=2, r=3$.
36. Find a_{6} when $a_{1}=16, r=\frac{1}{2}$.
37. Find a_{5} when $a_{1}=-3, r=2$.

In Exercises 38-40, write a formula for the general term (the nth term) of each geometric sequence. Then use the formula for a_{n} to find a_{8}, the eighth term of the sequence.
38. $1,2,4,8, \ldots$
39. $100,10,1, \frac{1}{10}, \ldots$
40. $12,-4, \frac{4}{3},-\frac{4}{9}, \ldots$
41. Find the sum of the first 15 terms of the geometric sequence: $5,-15,45,-135, \ldots$
42. Find the sum of the first 7 terms of the geometric sequence: $8,4,2,1, \ldots$

In Exercises 43-45, use the formula for the sum of the first n terms of a geometric sequence to find the indicated sum.
43. $\sum_{i=1}^{6} 5^{i}$
44. $\sum_{i=1}^{7} 3(-2)^{i}$
45. $\sum_{i=1}^{5} 2\left(\frac{1}{4}\right)^{i-1}$

In Exercises 46-49, find the sum of each infinite geometric series.
46. $9+3+1+\frac{1}{3}+\cdots$.
47. $2-1+\frac{1}{2}-\frac{1}{4}+\cdots$
48. $-6+4-\frac{8}{3}+\frac{16}{9}-\cdots$
49. $\sum_{i=1}^{\infty} 5(0.8)^{i}$

In Exercises 50-51, express each repeating decimal as a fraction in lowest terms.
50. $0 . \overline{6}$
51. $0 . \overline{47}$
52. The table shows the population of Florida for 2000 and 2010, with estimates given by the U.S. Census Bureau for 2001 through 2009.

Year	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
Population in millions	15.98	16.24	16.50	16.76	17.03	17.30
Year	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	
Population in millions	17.58	17.86	18.15	18.44	18.80	

a. Divide the population, for each year by the population in the preceding year. Round to two decimal places and show that Florida has a population increase that is approximately geometric.
b. Write the general term of the geometric sequence modeling Florida's population, in millions, n years after 1999.
c. Use your model from part (b) to project Florida's population, in millions, for the year 2030. Round to two decimal places.
53. A job pays $\$ 32,000$ for the first year with an annual increase of 6% per year beginning in the second year. What is the salary in the sixth year? What is the total salary paid over this six-year period? Round answers to the nearest dollar.

In Exercises 54-55, use the formula for the value of an annuity and round to the nearest dollar.
54. You spend $\$ 10$ per week on lottery tickets, averaging $\$ 520$ per year. Instead of buying tickets, if you deposited the $\$ 520$ at the end of each year in an annuity paying 6% compounded annually,
a. How much would you have after 20 years?
b. Find the interest.
55. To save for retirement, you decide to deposit $\$ 100$ at the end of each month in an IRA that pays 5.5% compounded monthly.
a. How much will you have from the IRA after 30 years?
b. Find the interest.
56. A factory in an isolated town has an annual payroll of $\$ 4$ million. It is estimated that 70% of this money is spent within the town, that people in the town receiving this money will again spend 70% of what they receive in the town, and so on. What is the total of all this spending in the town each year?

10.4

In Exercises 57-61, use mathematical induction to prove that each statement is true for every positive integer n.
57. $5+10+15+\cdots+5 n=\frac{5 n(n+1)}{2}$
58. $1+4+4^{2}+\cdots+4^{n-1}=\frac{4^{n}-1}{3}$
59. $2+6+10+\cdots+(4 n-2)=2 n^{2}$
60. $1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}$
61. 2 is a factor of $n^{2}+5 n$.

10.5

In Exercises 62-63, evaluate the given binomial coefficient.
62. $\binom{11}{8}$
63. $\binom{90}{2}$

In Exercises 64-67, use the Binomial Theorem to expand each binomial and express the result in simplified form.
64. $(2 x+1)^{3}$
65. $\left(x^{2}-1\right)^{4}$
66. $(x+2 y)^{5}$
67. $(x-2)^{6}$

In Exercises 68-69, write the first three terms in each binomial expansion, expressing the result in simplified form.
68. $\left(x^{2}+3\right)^{8}$
69. $(x-3)^{9}$

In Exercises 70-71, find the term indicated in each expansion.
70. $(x+2)^{5}$; fourth term
71. $(2 x-3)^{6}$; fifth term

10.6

In Exercises 72-75, evaluate each expression.
72. ${ }_{8} P_{3}$
73. ${ }_{9} P_{5}$
74. ${ }_{8} C_{3}$
75. ${ }_{13} C_{11}$

In Exercises 76-82, solve by the method of your choice.

76. A popular brand of pen comes in red, green, blue, or black ink. The writing tip can be chosen from extra bold, bold, regular, fine, or micro. How many different choices of pens do you have with this brand?
77. A stock can go up, go down, or stay unchanged. How many possibilities are there if you own five stocks?
78. A club with 15 members is to choose four officers-president, vice president, secretary, and treasurer. In how many ways can these offices be filled?
79. How many different ways can a director select 4 actors from a group of 20 actors to attend a workshop on performing in rock musicals?
80. From the 20 CDs that you've bought during the past year, you plan to take 3 with you on vacation. How many different sets of three CDs can you take?
81. How many different ways can a director select from 20 male actors and cast the roles of Mark, Roger, Angel, and Collins in the musical Rent?
82. In how many ways can five airplanes line up for departure on a runway?

10.7

Suppose that a survey of 350 college students is taken. Each student is asked the type of college attended (public or private) and the family's income level (low, middle, high). Use the data in the table to solve Exercises 83-88. Express probabilities as simplified fractions.

	Public	Private	Total
Low	120	20	140
Middle	110	50	160
High	22	28	50
Total	252	98	350

Find the probability that a randomly selected student in the survey
83. attends a public college.
84. is not from a high-income family.
85. is from a middle-income or a high-income family.
86. attends a private college or is from a high-income family.
87. Among people who attend a public college, find the probability that a randomly selected student is from a lowincome family.
88. Among people from a middle-income family, find the probability that a randomly selected student attends a private college.

In Exercises 89-90, a die is rolled. Find the probability of
89. getting a number less than 5 .
90. getting a number less than 3 or greater than 4 .

In Exercises 91-92, you are dealt one card from a 52-card deck. Find the probability of
91. getting an ace or a king.
92. getting a queen or a red card.

In Exercises 93-95, it is equally probable that the pointer on the spinner shown will land on any one of the six regions, numbered 1 through 6, and colored as shown. If the pointer lands on a borderline, spin again. Find the probability of
93. not stopping on yellow.
94. stopping on red or a number greater than 3 .
95. stopping on green on the first spin and stopping on a number less than 4 on the second spin.

96. A lottery game is set up so that each player chooses five different numbers from 1 to 20. If the five numbers match the five numbers drawn in the lottery, the player wins (or shares) the top cash prize. What is the probability of winning the prize
a. with one lottery ticket?
b. with 100 different lottery tickets?
97. What is the probability of a family having five boys born in a row?
98. The probability of a flood in any given year in a region prone to floods is 0.2.
a. What is the probability of a flood two years in a row?
b. What is the probability of a flood for three consecutive years?
c. What is the probability of no flooding for four consecutive years?

CHAPTER 10 TEST

1. Write the first five terms of the sequence whose general term is $a_{n}=\frac{(-1)^{n+1}}{n^{2}}$.

In Exercises 2-4, find each indicated sum.
2. $\sum_{i=1}^{5}\left(i^{2}+10\right)$
3. $\sum_{i=1}^{20}(3 i-4)$
4. $\sum_{i=1}^{15}(-2)^{i}$

In Exercises 5-7, evaluate each expression.
5. $\binom{9}{2}$
6. ${ }_{10} P_{3}$
7. ${ }_{10} C_{3}$
8. Express the sum using summation notation. Use i for the index of summation.

$$
\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\cdots+\frac{21}{22}
$$

In Exercises 9-10, write a formula for the general term (the nth term) of each sequence. Do not use a recursion formula. Then use the formula to find the twelfth term of the sequence.
9. $4,9,14,19, \ldots$
10. $16,4,1, \frac{1}{4}, \ldots$

In Exercises 11-12, use a formula to find the sum of the first ten terms of each sequence.
11. $7,-14,28,-56, \ldots$
12. $-7,-14,-21,-28, \ldots$
13. Find the sum of the infinite geometric series:

$$
4+\frac{4}{2}+\frac{4}{2^{2}}+\frac{4}{2^{3}}+\cdots
$$

14. Express $0 . \overline{73}$ in fractional notation.
15. A job pays $\$ 30,000$ for the first year with an annual increase of 4% per year beginning in the second year. What is the total salary paid over an eight-year period? Round to the nearest dollar.
16. Use mathematical induction to prove that for every positive integer n,

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

17. Use the Binomial Theorem to expand and simplify: $\left(x^{2}-1\right)^{5}$.
18. Use the Binomial Theorem to write the first three terms in the expansion and simplify: $\left(x+y^{2}\right)^{8}$.
19. A human resource manager has 11 applicants to fill three different positions. Assuming that all applicants are equally qualified for any of the three positions, in how many ways can this be done?
20. From the ten books that you've recently bought but not read, you plan to take four with you on vacation. How many different sets of four books can you take?
21. How many seven-digit local telephone numbers can be formed if the first three digits are 279 ?

A class is collecting data on eye color and gender. They organize the data they collected into the table shown. Numbers in the table represent the number of students from the class that belong to each of the categories. Use the data to solve Exercises 22-25. Express probabilities as simplified fractions.

	Brown	Blue	Green
Male	22	18	10
Female	18	20	12

Find the probability that a randomly selected student from this class
22. does not have brown eyes.
23. has brown eyes or blue eyes.
24. is female or has green eyes.
25. Among the students with blue eyes, find the probability of selecting a male.
26. A lottery game is set up so that each player chooses six different numbers from 1 to 15 . If the six numbers match the six numbers drawn in the lottery, the player wins (or shares) the top cash prize. What is the probability of winning the prize with 50 different lottery tickets?
27. One card is randomly selected from a deck of 52 cards. Find the probability of selecting a black card or a picture card.
28. A group of students consists of 10 male freshmen, 15 female freshmen, 20 male sophomores, and 5 female sophomores. If one person is randomly selected from the group, find the probability of selecting a freshman or a female.
29. A quiz consisting of four multiple-choice questions has four available options (a, b, c, or d) for each question. If a person guesses at every question, what is the probability of answering all questions correctly?
30. If the spinner shown is spun twice, find the probability that the pointer lands on red on the first spin and blue on the second spin.

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-10)

The figure shows the graph of $y=f(x)$ and its vertical asymptote. Use the graph to solve Exercises 1-9.

1. Find the domain and the range of f.
2. Does f have a relative maximum or a relative minimum? What is this relative maximum or minimum and where does it occur?
3. Find the interval on which f is decreasing.
4. Is f even, odd, or neither?
5. For what value(s) of x is $f(x)=1$?
6. Find $(f \circ f)(-4)$.
7. Use arrow notation to complete this statement:

$$
f(x) \rightarrow-\infty \quad \text { as }
$$

\qquad
8. Graph $g(x)=f(x-2)+1$.
9. Graph $h(x)=-f(2 x)$.

In Exercises 10-22, solve each equation, inequality, or system of equations.
10. $-2(x-5)+10=3(x+2)$
11. $3 x^{2}-6 x+2=0$
12. $\log _{2} x+\log _{2}(2 x-3)=1$
13. $x^{\frac{1}{2}}-6 x^{\frac{1}{4}}+8=0$
14. $e^{2 x}-6 e^{x}+8=0$
15. $|2 x+1| \leq 1$
16. $6 x^{2}-6<5 x$
17. $\frac{x-1}{x+3} \leq 0$
18. $30 e^{0.7 x}=240$
19. $2 x^{3}+3 x^{2}-8 x+3=0$
20. $\left\{\begin{array}{l}4 x^{2}+3 y^{2}=48 \\ 3 x^{2}+2 y^{2}=35\end{array}\right.$
21. (Use matrices.)
$\left\{\begin{aligned} x-2 y+z & =16 \\ 2 x-y-z & =14 \\ 3 x+5 y-4 z & =-10\end{aligned}\right.$
22. $\left\{\begin{array}{l}x-y=1 \\ x^{2}-x-y=1\end{array}\right.$

In Exercises 23-29, graph each equation, function, or system in a rectangular coordinate system. If two functions are indicated, graph both in the same system.
23. $100 x^{2}+y^{2}=25$
24. $4 x^{2}-9 y^{2}-16 x+54 y-29=0$
25. $f(x)=\frac{x^{2}-1}{x-2}$
26. $\left\{\begin{aligned} 2 x-y & \geq 4 \\ x & \leq 2\end{aligned}\right.$
27. $f(x)=x^{2}-4 x-5$
28. $f(x)=\sqrt[3]{x+4}$ and f^{-1}
29. $f(x)=\log _{2} x$ and $g(x)=-\log _{2}(x+1)$

In Exercises 30-31, let $f(x)=-x^{2}-2 x+1$ and $g(x)=x-1$.
30. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
31. Find $\frac{f(x+h)-f(x)}{h}$ and simplify.
32. If $A=\left[\begin{array}{rr}4 & 2 \\ 1 & -1 \\ 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]$, find $A B-4 A$.
33. Find the partial fraction decomposition for

$$
\frac{2 x^{2}-10 x+2}{(x-2)\left(x^{2}+2 x+2\right)}
$$

34. Expand and simplify: $\left(x^{3}+2 y\right)^{5}$.
35. Use the formula for the sum of the first n terms of an arithmetic sequence to find $\sum_{i=1}^{50}(4 i-25)$.

In Exercises 36-37, write the linear function in slope-intercept form satisfying the given conditions.
36. Graph of f passes through $(6,3)$ and $(-2,1)$.
37. Graph of g passes through $(0,-2)$ and is perpendicular to the line whose equation is $x-5 y-20=0$.
38. For a summer sales job, you are choosing between two pay arrangements: a weekly salary of $\$ 200$ plus 5% commission on sales, or a straight 15% commission. For how many dollars of sales will the earnings be the same regardless of the pay arrangement?
39. The perimeter of a soccer field is 300 yards. If the length is 50 yards longer than the width, what are the field's dimensions?
40. If 10 pens and 12 pads cost $\$ 42$, and 5 of the same pens and 10 of the same pads cost $\$ 29$, find the cost of a pen and a pad.
41. A ball is thrown vertically upward from the top of a 96 -foottall building with an initial velocity of 80 feet per second. The height of the ball above ground, $s(t)$, in feet, after t seconds is modeled by the position function

$$
s(t)=-16 t^{2}+80 t+96
$$

a. After how many seconds will the ball strike the ground?
b. When does the ball reach its maximum height? What is the maximum height?
42. The current, I, in amperes, flowing in an electrical circuit varies inversely as the resistance, R, in ohms, in the circuit. When the resistance of an electric percolator is 22 ohms, it draws 5 amperes of current. How much current is needed when the resistance is 10 ohms?
43. The bar graph shows online ad spending worldwide, in billions of dollars, for 2010 and 2011, with projections from 2012 through 2015. Develop a linear function that models the data. Then use the function to make a projection about what might occur after 2015.

Worldwide Online Ad Spending

Source: eMarketer
44. An object moves in simple harmonic motion described by $d=10 \sin \frac{3 \pi}{4} t$, where t is measured in seconds and d in inches. Find \mathbf{a}. the maximum displacement; \mathbf{b}. the frequency; and \mathbf{c}. the time required for one oscillation.

Verify each identity in Exercises 45-46.

45. $\tan x+\frac{1}{\tan x}=\frac{1}{\sin x \cos x}$
46. $\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\cos 2 x$
47. Graph one period: $y=-2 \cos (3 x-\pi)$.

In Exercises 48-49, solve each equation on the interval $[0,2 \pi)$.
48. $4 \cos ^{2} x=3$
49. $2 \sin ^{2} x+3 \cos x-3=0$
50. Find the exat value of $\cot \left[\cos ^{-1}\left(-\frac{5}{6}\right)\right]$.
51. Graph the polar equation: $r=1+2 \cos \theta$.
52. In oblique triangle $A B C, A=34^{\circ}, a=22$, and $b=32$. Solve the triangle(s). Round lengths to the nearest tenth and angle measures to the nearest degree.
53. Use the parametric equations

$$
x=\sin t, \quad y=1+\cos ^{2} t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

and eliminate the parameter. Graph the plane curve represented by the parametric equations. Use arrows to show the orientation of the curve.

This page intentionally left blank

INTRODUCTION TO CALCULUS

CHAPTER

 11We revisit an idea introduced in a Blitzer Bonus in Chapter 1. Take a rapid sequence of still photographs of a moving scene and project them onto a screen at thirty shots a second or faster. Our eyes see the result as continuous motion. The small difference between one frame and the next cannot be detected by the human visual system. The idea of calculus likewise regards continuous motion as made up of a sequence of still configurations. In this chapter, you will see how calculus uses a revolutionary concept called limits to master the mystery of movement by "freezing the frame" instant by instant.

HERE'S WHERE YOU'LL FIND THESE APPLICATIONS:

Using limits to describe instantaneous rates of change is introduced in the Section 11.4 opener and developed throughout the section.

SECTION 11.1 Finding Limits Using Tables and Graphs

Objectives

(1) Understand limit notation.
(2) Find limits using tables.
(3) Find limits using graphs.
(4) Find one-sided limits and use them to determine if a limit exists.
(1) Understand limit notation.

FIGURE 11.1 Walking along the graph of f, very close to 2

Motion and change are the very essence of life. Moving air brushes against our faces, rain falls on our heads, birds fly past us, plants spring from the earth, grow, and then die, and rocks thrown upward reach a maximum height before falling to the ground.

The tools of algebra and trigonometry are essentially static; numbers, points, lines, equations, functions, and graphs do not incorporate motion. The development of calculus in the middle of the seventeenth century provided a way to use these static tools to analyze motion and change. It took nearly two thousand years of effort for humankind to achieve this
 feat, made possible by a revolutionary concept called limits. The invention of limits marked a turning point in human history, having as dramatic an impact on our lives as the invention of the wheel and the printing press. In this section, we introduce this bold and dramatic style of thinking about mathematics.

An Introduction to Limits

Suppose that you and a friend are walking along the graph of the function

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

Figure 11.1 illustrates that you are walking uphill and your friend is walking downhill. Because 2 is not in the domain of the function, there is a hole in the graph at $x=2$. Warning signs along the graph might be appropriate: Caution: $f(2)$ is undefined! If you or your friend reach 2, you will fall through the hole and splatter onto the x-axis.

Obviously, there is a problem at $x=2$. But what happens along the graph of $f(x)=\frac{x^{2}-4}{x-2}$ as you and your friend walk very, very close to $x=2$? What function value, $f(x)$, will each of you approach? One way to answer this question is to construct a table of function values to analyze numerically the behavior of f as x gets closer and closer to 2 . Remember that you are walking uphill, approaching 2 from the left side of 2 . Your friend is walking downhill, approaching 2 from the right side of 2 . Thus, we must include values of x that are less than 2 and values of x that are greater than 2.

In Table 11.1 at the top of the next page, we choose values of x close to 2 . As x approaches 2 from the left, we arbitrarily start with $x=1.99$. Then we select two additional values of x that are closer to 2 , but still less than 2 . We choose 1.999 and 1.9999. As x approaches 2 from the right, we arbitrarily start with $x=2.01$. Then we select two additional values of x that are closer to 2 , but still greater than 2 . We choose 2.001 and 2.0001. Finally, evaluate f at each chosen value of x to obtain
Table 11.1.

TECHNOLOGY

A graphing utility with a TABLE feature can be used to generate the entries in Table 11.1. In TBLSET, change Auto to Ask for Indpnt, the independent variable. Here is a typical screen that verifies Table 11.1.

\times	Y1	
1.99	3.99	
1.999	3.999	
1.9999	3.9999	
z.oul	4.0011	
2.01	$\begin{aligned} & 4.001 \\ & 4.01 \end{aligned}$	

x approaches 2 from the left.
Table 11.1

\boldsymbol{x}	1.99	1.999	1.9999	2	2.0001	2.001	2.01
$\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}^{2}-\mathbf{4}}{\boldsymbol{x}-\mathbf{2}}$	3.99	3.999	3.9999	Undefined	4.0001	4.001	4.01

$f(x)$ gets closer to 4.
$f(x)$ gets closer to 4.

From Table 11.1, it appears that as x gets closer to 2 , the values of $f(x)=\frac{x^{2}-4}{x-2}$ get closer to 4 . We say that
"The limit of $\frac{x^{2}-4}{x-2}$ as x approaches 2 equals the number 4."
We can express this sentence in a mathematical notation called limit notation. We use an arrow for the word approaches. Likewise, we use lim as shorthand for the word limit. Thus, the limit notation for the English sentence in quotations is

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4 . \text { The limit of } \frac{x^{2}-4}{x-2} \text { as } \times \text { approaches } 2 \text { equals the number } 4 .
$$

Calculus is the study of limits and their applications. Limits are the foundation of the concepts that you will encounter in calculus.

Limit Notation and Its Description

Suppose that f is a function defined on some open interval containing the number a. The function f may or may not be defined at a. The limit notation

$$
\lim _{x \rightarrow a} f(x)=L
$$

is read "the limit of $f(x)$ as x approaches a equals the number L." This means that as x gets closer to a, but remains unequal to a, the corresponding values of $f(x)$ get closer to L.

Finding Limits Using Tables

To find $\lim _{x \rightarrow a} f(x)$, use a graphing utility with a TABLE feature or create a table by hand. A $\stackrel{\substack{x \rightarrow a \\ \text { pproach } \\ a}}{ }$ from the left, choosing values of x that are close to a but still less than a. Then approach a from the right, choosing values of x that are close to a but still greater than a. Evaluate f at each chosen value of x to obtain the desired table.

Choose values of x so that the table makes it obvious what the corresponding values of $f(x)$ are getting close to. If the values of $f(x)$ are getting close to the number L, we infer that

$$
\lim _{x \rightarrow a} f(x)=L
$$

EXAMPLE 1 Finding a Limit Using a Table

Find: $\lim _{x \rightarrow 4} 3 x^{2}$.

SOLUTION

As x gets closer to 4 , but remains unequal to 4 , we must find the number that the corresponding values of $3 x^{2}$ get closer to. The voice balloons shown below indicate that in this limit problem, $f(x)=3 x^{2}$ and $a=4$.

In making a table, we choose values of x close to 4 . As x approaches 4 from the left, we arbitrarily start with $x=3.99$. Then we select two additional values of x that are closer to 4, but still less than 4 . We choose 3.999 and 3.9999 . As x approaches 4 from the right, we arbitrarily start with $x=4.01$. Then we select two additional numbers that are closer to 4 but still greater than 4 . We choose 4.001 and 4.0001. Finally, we evaluate f at each chosen value of x to obtain Table 11.2. The values of $f(x)$ in the table are rounded to four decimal places.

$f(x)$ gets closer to $48 . \quad f(x)$ gets closer to 48.

From Table 11.2, it appears that as x gets closer to 4, the values of $3 x^{2}$ get closer to 48. We infer that

$$
\lim _{x \rightarrow 4} 3 x^{2}=48
$$

\oint Check Point 1 Find: $\lim _{x \rightarrow 3} 4 x^{2}$.

EXAMPLE 2 Finding a Limit Using a Table

Find: $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

SOLUTION

As x gets closer to 0 , but remains unequal to 0 , we must find the number that the corresponding values of $\frac{\sin x}{x}$ get closer to. The voice balloons shown below indicate that in this limit problem $f(x)=\frac{\sin x}{x}$ and $a=0$.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

This is a in This is $f(x)$
$\lim _{x \rightarrow a} f(x)$. in $\lim _{x \rightarrow a} f(x)$.

TECHNOLOGY

Graphic Connections

The graph of $f(x)=\frac{\sin x}{x}$
illustrates that as x gets closer to 0 , the values of $f(x)$ are approaching 1. This supports our inference that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$[-10,10,1]$ by $[-2,2,1]$
(3) Find limits using graphs.

FIGURE 11.2 In each graph, as x gets closer to a, the values of f get closer to $L: \lim _{x \rightarrow a} f(x)=L$.

Because division by 0 is undefined, the domain of $f(x)=\frac{\sin x}{x}$ is $\{x \mid x \neq 0\}$. Thus, f is not defined at 0 . However, in this limit problem, we do not care what is happening at $x=0$. We are interested in the behavior of the function as x gets close to 0 . Table $\mathbf{1 1 . 3}$ shows the values of $f(x)$, rounded to five decimal places, as x approaches 0 from the left and from the right. Values of x in the table are measured in radians.

$f(x)$ gets closer to 1 .
$f(x)$ gets closer to 1 .

From Table 11.3, it appears that as x gets closer to 0 , the values of $\frac{\sin x}{x}$ get closer to 1. We infer that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

WCheck Point 2 Find: $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$.

Finding Limits Using Graphs

The limit statement

$$
\lim _{x \rightarrow a} f(x)=L
$$

is illustrated in Figure 11.2. In the three graphs, the number that x is approaching, a, is shown on the x-axis. The limit, L, is shown on the y-axis. Take a few minutes to examine the graphs. Can you see that as x approaches a along the x-axis, $f(x)$ approaches L along the y-axis? In each graph, as x gets closer to a, the values of $f(x)$ get closer to L.

In Figure 11.2(a), as x approaches $a, f(x)$ approaches L. At a, the value of the function is $L: f(a)=L$. In Figure 11.2(b), as x approaches $a, f(x)$ approaches L. This is true although f is not defined at a, shown by the hole in the graph. In Figure 11.2(c), we again see that as x approaches $a, f(x)$ approaches L. Notice, however, that the value of the function at $a, f(a)$, shown by the blue dot, is not equal to the limit: $f(a) \neq L$. What you get as you approach a is not the same as what you get at a.

Example 3 illustrates that the graph of a function can sometimes be helpful in finding limits.

FIGURE 11.3

FIGURE 11.4 As x gets closer to 3 , what number are the function values getting closer to?

EXAMPLE 3 Finding a Limit Using a Graph

Use the graph in Figure 11.3 to find each of the following:
a. $\lim _{x \rightarrow 4} f(x)$
b. $f(4)$.

SOLUTION
a. To find $\lim _{x \rightarrow 4} f(x)$, examine the graph of f near $x=4$. As x gets closer to 4 , the values of $f(x)$ get closer to the y-coordinate of the point shown by the open dot on the right. The y-coordinate of this point is 7 . Thus, as x gets closer to 4 , the values of $f(x)$ get closer to 7 . We conclude from the graph that

$$
\lim _{x \rightarrow 4} f(x)=7
$$

b. To find $f(4)$, examine the graph of f at $x=4$. At $x=4$, the open dot is not included in the graph of f. The graph of f at 4 is shown by the closed dot with coordinates $(4,2)$. Thus, $f(4)=2$.

In Example 3, notice that the value of f at 4 has nothing to do with the conclusion that $\lim _{x \rightarrow 4} f(x)=7$. Regardless of how f is defined at 4 , it is still true that $\lim _{x \rightarrow 4} f(x)=7$. Furthermore, if f were undefined at 4 , the limit of $f(x)$ as $x \rightarrow 4$ would still equal 7.

\int Check Point 3 Use the graph in Figure 11.3 to find each of the following:

a. $\lim _{x \rightarrow-2} f(x)$
b. $f(-2)$.

EXAMPLE 4 Finding a Limit by Graphing a Function

Graph the function

$$
f(x)=\left\{\begin{array}{cl}
2 x-4 & \text { if } x \neq 3 \\
-5 & \text { if } x=3
\end{array}\right.
$$

Use the graph to find $\lim _{x \rightarrow 3} f(x)$.

SOLUTION

This piecewise function is defined by two equations. Graph the piece defined by the linear function, $f(x)=2 x-4$, using the y-intercept, -4 , and the slope, 2 . Because $x=3$ is not included, show an open dot on the line corresponding to $x=3$. This open dot, with coordinates $(3,2)$, is shown in Figure 11.4.

Now we complete the graph using $f(x)=-5$ if $x=3$. This part of the function is graphed as the point $(3,-5)$, shown as a closed blue dot in Figure 11.4.

To find $\lim _{x \rightarrow 3} f(x)$, examine the graph of f near $x=3$. As x gets closer to 3 , the values of $f(x)$ get closer to the y-coordinate of the point shown by the open dot. The y-coordinate of this point is 2 . We conclude from the graph that

$$
\lim _{x \rightarrow 3} f(x)=2
$$

$\$$ Check Point 4 Graph the function

$$
f(x)=\left\{\begin{array}{cl}
3 x-2 & \text { if } x \neq 2 \\
1 & \text { if } x=2
\end{array}\right.
$$

Use the graph to find $\lim _{x \rightarrow 2} f(x)$.

Find one-sided limits and use them to determine if a limit exists.

FIGURE 11.5 As x approaches 2 from the left (red arrow) or from the right (blue arrow), values of $f(x)$ get closer to 4.

One-Sided Limits

The graph in Figure 11.5 shows a portion of the graph of the function $f(x)=x^{2}$. The graph illustrates that

$$
\lim _{x \rightarrow 2} x^{2}=4
$$

As x gets closer to 2, but remains unequal to 2 , the corresponding values of $f(x)$ get closer to 4. The values of x near 2 fall into two categories: those that lie to the left of 2 , shown by the red arrow on the x-axis, and those that lie to the right of 2 , shown by the blue arrow on the x-axis.

The values of x can get closer to 2 in two ways. The values of x can approach 2 from the left, through numbers that are less than 2 . Table $\mathbf{1 1 . 4}$ shows some values of x and the corresponding values of $f(x)$ rounded to four decimal places. The red portion of the graph in Figure 11.5 shows that as x approaches 2 from the left of 2, $f(x)$ approaches 4.

Table 11.4

\boldsymbol{x}	1.99	1.999	$1.9999 \rightarrow$
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$	3.9601	3.9960	$3.9996 \rightarrow$

We say that "the limit of x^{2} as x approaches 2 from the left equals 4." The mathematical notation for this English sentence is

$$
\lim _{x \rightarrow 2^{-}} x^{2}=4
$$

The notation $x \rightarrow 2^{-}$indicates that x is less than 2 and is approaching 2 from the left.
The values of x can also approach 2 from the right, through numbers that are greater than 2. Table $\mathbf{1 1 . 5}$ shows some values of x and the corresponding values of $f(x)$ rounded to four decimal places. The blue portion of the graph in Figure 11.5 shows that as x approaches 2 from the right of $2, f(x)$ approaches 4 .

Table 11.5

\boldsymbol{x}	$\leftarrow 2.0001$	2.001	2.01
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$	$\leftarrow 4.0004$	4.0040	4.0401

We say that "the limit of x^{2} as x approaches 2 from the right equals 4." The mathematical notation for this English sentence is

$$
\lim _{x \rightarrow 2^{+}} x^{2}=4
$$

The notation $x \rightarrow 2^{+}$indicates that x is greater than 2 and is approaching 2 from the right.

In general, if x approaches a from one side, we have a one-sided limit.

One-Sided Limits

Left-Hand Limit The limit notation

$$
\lim _{x \rightarrow a} f(x)=L
$$

is read "the limit of $f(x)$ as x approaches a from the left equals L " and is called the left-hand limit. This means that as x gets closer to a, but remains less than a, the corresponding values of $f(x)$ get closer to L.
Right-Hand Limit The limit notation

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

is read "the limit of $f(x)$ as x approaches a from the right equals L " and is called the right-hand limit. This means that as x gets closer to a, but remains greater than a, the corresponding values of $f(x)$ get closer to L.

FIGURE 11.6 As x approaches 1 from the left (red arrow) and from the right (blue arrow), values of $f(x)$ do not get closer to a single number.

A function's graph can be helpful in finding one-sided limits. For example, Figure $\mathbf{1 1 . 6}$ shows the graph of the piecewise function

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ x+3 & \text { if } x \geq 1 .\end{cases}
$$

The red portion of the graph, part of a parabola, illustrates that as x approaches 1 from the left, the corresponding values of $f(x)$ get closer to 2 . The left-hand limit is 2 :

$$
\lim _{x \rightarrow 1^{-}} f(x)=2 .
$$

The blue portion of the graph, part of a line, illustrates that as x approaches 1 from the right, the corresponding values of $f(x)$ get closer to 4 . The right-hand limit is 4:

$$
\lim _{x \rightarrow 1^{+}} f(x)=4 .
$$

Because $\lim _{x \rightarrow 1^{-}} f(x)=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=4$, there is no single number that the values of $f(x)$ are close to when x is close to 1 . In this case, we say that \boldsymbol{f} has no limit as x approaches 1 or that $\lim _{x \rightarrow 1} f(x)$ does not exist.

In general, a function f has a limit as x approaches a if and only if the left-hand limit equals the right-hand limit.

Equal and Unequal One-Sided Limits

- One-sided limits can be used to show that a function has a limit as x approaches a.

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \text { if and only if both } \\
& \lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L .
\end{aligned}
$$

- One-sided limits can be used to show that a function has no limit as x approaches a.

$$
\text { If } \begin{aligned}
\lim _{x \rightarrow a^{-}} f(x)= & L \text { and } \lim _{x \rightarrow a^{+}} f(x)=M, \text { where } L \neq M, \\
& \lim _{x \rightarrow a} f(x) \text { does not exist. }
\end{aligned}
$$

GREAT QUESTION!

Can you clarify the use of the word from when describing one-sided limits?
The word from is helpful in distinguishing left- and right-hand limits. A left-hand limit means you approach the given x-value from the left. It does not mean that you approach toward the left on the graph. A right-hand limit means you approach the given x-value from the right. It does not mean you approach toward the right on the graph.

EXAMPLE 5 Finding One-Sided Limits Using a Graph

Use the graph of the piecewise function f in Figure 11.7 to find each of the following, or state that the limit or function value does not exist:
a. $\lim _{x \rightarrow-2^{-}} f(x)$
b. $\lim _{x \rightarrow-2^{+}} f(x)$
c. $\lim _{x \rightarrow-2} f(x)$
d. $f(-2)$.

SOLUTION

a. To find $\lim _{i \rightarrow-0^{-2}} f(x)$, examine the portion of the graph shown in red that is near, but to the left of $x=-2$. As x approaches -2 from the left, the values of $f(x)$ get close to the y-coordinate of the point shown by the red open dot. This point, $(-2,0)$, has a y-coordinate of 0 . Thus,

$$
\lim _{x \rightarrow-2^{-}} f(x)=0 .
$$

b. To find $\lim _{x \rightarrow-2^{+}} f(x)$, examine the portion of the graph shown in blue that is near but to the right of $x=-2$. As x approaches -2 from the right, the
values of $f(x)$ get close to the y-coordinate of the point shown by the blue open dot. This point, $(-2,-2)$, has a y-coordinate of -2 . Thus,

$$
\lim _{x \rightarrow-2^{+}} f(x)=-2 .
$$

c. We found that

$$
\lim _{x \rightarrow-2^{-}} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow-2^{+}} f(x)=-2
$$

The limit as x approaches -2 from the left equals 0 .

The limit as x approaches -2 from the right equals $\mathbf{- 2}$.

Because the left- and right-hand limits are unequal, $\lim _{x \rightarrow-2} f(x)$ does not exist.
d. To find $f(-2)$, examine the graph of f at $x=-2$. The graph of f at -2 is shown by the blue closed dot with coordinates $(-2,-1)$. Thus, $f(-2)=-1$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The notation $\lim _{x \rightarrow a} f(x)=L$ is read "the \qquad of \qquad as \qquad approaches \qquad equals the number \qquad ."
2. The notation $\lim _{x \rightarrow a} f(x)=L$ means that as \qquad gets closer to \qquad but remains unequal to
\qquad the corresponding values of \qquad get closer to \qquad
3. True or false: If $\lim _{x \rightarrow a} f(x)=L$, then the value of f at a is equal to L.
4. The notation $\lim _{x \rightarrow a^{-}} f(x)=L$ is called the \qquad limit. The notation means that as \qquad gets closer to \qquad , but remains less than \qquad the corresponding values of \qquad get closer to \qquad —.
5. The notation $\lim _{x \rightarrow a^{+}} f(x)=L$ is called the \qquad limit. The notation means that as \qquad gets closer to \qquad , but remains greater than $\xrightarrow[\text { get closer to }]{ }$ the corresponding values of \qquad get closer to \qquad -.
6. If $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a} f(x)$
7. $\begin{aligned} & x \rightarrow a \\ & \text { If } \lim _{x \rightarrow a^{-}} \\ & \text {(}\end{aligned}(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=M$, where $L \neq M$, then $\lim _{x \rightarrow a} f(x)$ \qquad -

EXERCISE SET 11.1

Practice Exercises

In Exercises 1-4, use each table to find the indicated limit.

1. $\lim _{x \rightarrow 2} 2 x^{2}$

\boldsymbol{x}	1.99	1.999	$1.9999 \rightarrow \leftarrow 2.0001$	2.001	2.01
$\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{\mathbf{2}}$	7.9202	7.9920	$7.9992 \rightarrow \leftarrow 8.0008$	8.0080	8.0802

2. $\lim _{x \rightarrow 3} 5 x^{2}$

\boldsymbol{x}	2.99	2.999	$2.9999 \rightarrow \leftarrow 3.0001$	3.001	3.01
$\boldsymbol{f}(\boldsymbol{x})=\mathbf{5 \boldsymbol { x } ^ { 2 }}$	44.701	44.970	44.997	$\rightarrow \leftarrow 45.003$	45.030

3. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$

\boldsymbol{x}	-0.03	-0.02	$-0.01 \rightarrow \leftarrow 0.01$	0.02	0.03
$\boldsymbol{f}(\boldsymbol{x})=\frac{\sin 3 \boldsymbol{x}}{\boldsymbol{x}}$	2.9960	2.9982	$2.9996 \rightarrow 2.9996$	2.9982	2.9960

4. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$

\boldsymbol{x}	-0.03	-0.02	$-0.01 \rightarrow \leftarrow 0.01$	0.02	0.03
$\boldsymbol{f}(\boldsymbol{x})=\frac{\sin 4 \boldsymbol{x}}{\boldsymbol{\operatorname { s i n }} \mathbf{2 x}}$	1.9964	1.9984	$1.9996 \rightarrow \leftarrow 1.9996$	1.9984	1.9964

In Exercises 5-18, construct a table to find the indicated limit.
5. $\lim _{x \rightarrow 2} 5 x^{2}$
6. $\lim _{x \rightarrow 2}\left(x^{2}-1\right)$
7. $\lim _{x \rightarrow 3} \frac{1}{x-2}$
8. $\lim _{x \rightarrow 4} \frac{1}{x-3}$
9. $\lim _{x \rightarrow 0} \frac{x}{x^{2}+1}$
10. $\lim _{x \rightarrow 0} \frac{x+1}{x^{2}+1}$
11. $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}$
12. $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}$
13. $\lim _{x \rightarrow 0} \frac{2 x^{2}+x}{\sin x}$
14. $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}$
15. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
16. $\lim _{x \rightarrow 0} \frac{x^{2}}{\sec x-1}$
17. $\lim _{x \rightarrow 0} f(x)$, where $f(x)=\left\{\begin{aligned} x+1 & \text { if } x<0 \\ 2 x+1 & \text { if } x \geq 0\end{aligned}\right.$
18. $\lim _{x \rightarrow 0} f(x)$, where $f(x)=\left\{\begin{aligned} x+2 & \text { if } x<0 \\ 3 x+2 & \text { if } x \geq 0\end{aligned}\right.$

In Exercises 19-22, use the graph of f to find the indicated limit and function value.
19.

a. $\lim _{x \rightarrow 3} f(x)$
b. $f(3)$
20.

a. $\lim _{x \rightarrow 2} f(x)$
b. $f(2)$
21.

a. $\lim _{x \rightarrow 2} f(x)$
b. $f(2)$
22.

a. $\lim _{x \rightarrow 1} f(x)$
b. $f(1)$

In Exercises 23-26, use the graph and the viewing rectangle shown below the graph to find the indicated limit.
23. $\lim _{x \rightarrow 2}\left(1-x^{2}\right)$

$[-4,4,1]$ by $[-4,4,1]$
24. $\lim _{x \rightarrow-2}|2 x|$

$[-4,4,1]$ by $[-1,7,1]$
25. $\lim _{x \rightarrow-\frac{\pi}{2}} \sin x$

26. $\lim _{x \rightarrow-\frac{\pi}{2}} \cos x$

In Exercises 27-32, the graph of a function is given. Use the graph to find the indicated limits and function values, or state that the limit or function value does not exist.
27.

a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$
d. $f(2)$
28.

a. $\lim _{x \rightarrow-2^{-}} f(x)$
b. $\lim _{x \rightarrow-2^{+}} f(x)$
c. $\lim _{x \rightarrow-2} f(x)$
d. $f(-2)$
29.

a. $\lim _{x \rightarrow-3^{-}} f(x)$
b. $\lim _{x \rightarrow-3^{+}} f(x)$
c. $\lim _{x \rightarrow-3} f(x)$
d. $f(-3)$
e. $\lim _{x \rightarrow-1^{-}} f(x)$
f. $\lim _{x \rightarrow-1^{+}} f(x)$
g. $\lim _{x \rightarrow-1} f(x)$
h. $f(-1)$
i. $\lim _{x \rightarrow 3^{-}} f(x)$
j. $\quad \lim _{x \rightarrow 3^{+}} f(x)$
k. $\lim _{x \rightarrow 3} f(x)$

1. $f(3)$
2.

a. $\lim _{x \rightarrow-3^{-}} f(x)$
b. $\lim _{x \rightarrow-3^{+}} f(x)$
c. $\lim _{x \rightarrow-3} f(x)$
d. $f(-3)$
e. $\lim _{x \rightarrow 0^{-}} f(x)$
f. $\lim _{x \rightarrow 0^{+}} f(x)$
g. $\lim _{x \rightarrow 0} f(x)$
h. $f(0)$
i. $\lim _{x \rightarrow 2^{-}} f(x)$
j. $\lim _{x \rightarrow 2^{+}} f(x)$
k. $\lim _{x \rightarrow 2} f(x)$
I. $f(2)$
31.

a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$
d. $f(2)$
e. $\lim _{x \rightarrow 2.5^{-}} f(x)$
f. $\lim _{x \rightarrow 2.5^{+}} f(x)$
g. $\lim _{x \rightarrow 2.5} f(x)$
h. $f(2.5)$
32.

a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
c. $\lim _{x \rightarrow 3} f(x)$
d. $f(3)$
e. $\lim _{x \rightarrow 3.5^{-}} f(x)$
f. $\lim _{x \rightarrow 3.5^{+}} f(x)$
g. $\lim _{x \rightarrow 3.5} f(x)$
h. $f(3.5)$

In Exercises 33-54, graph each function. Then use your graph to find the indicated limit, or state that the limit does not exist.
33. $f(x)=2 x+1, \lim _{x \rightarrow 3} f(x)$
34. $f(x)=2 x-1, \lim _{x \rightarrow 3} f(x)$
35. $f(x)=4-x^{2}, \lim _{x \rightarrow-3} f(x)$
36. $f(x)=9-x^{2}, \lim _{x \rightarrow-2} f(x)$
37. $f(x)=|x+1|, \lim _{x \rightarrow-1} f(x)$
38. $f(x)=|x+2|, \lim _{x \rightarrow-2} f(x)$
39. $f(x)=\frac{1}{x}, \lim _{x \rightarrow-1} f(x)$
40. $f(x)=\frac{1}{x^{2}}, \lim _{x \rightarrow-1} f(x)$
41. $f(x)=\frac{x^{2}-1}{x-1}, \lim _{x \rightarrow 1} f(x)$
42. $f(x)=\frac{x^{2}-100}{x-10}, \lim _{x \rightarrow 10} f(x)$
43. $f(x)=e^{x}, \lim _{x \rightarrow 0} f(x)$
44. $f(x)=\ln x, \lim _{x \rightarrow 1} f(x)$
45. $f(x)=\sin x, \lim _{x \rightarrow \pi} f(x)$
46. $f(x)=\cos x, \lim _{x \rightarrow \pi} f(x)$
47. $f(x)=\left\{\begin{aligned} x+1 & \text { if } x \neq 2 \\ 5 & \text { if } x=2, \lim _{x \rightarrow 2} f(x)\end{aligned}\right.$
48. $f(x)=\left\{\begin{aligned} x-1 & \text { if } x \neq 3 \\ 4 & \text { if } x=3, \lim _{x \rightarrow 3} f(x)\end{aligned}\right.$
49. $f(x)=\left\{\begin{aligned} x+3 & \text { if } x<0 \\ 4 & \text { if } x \geq 0, \lim _{x \rightarrow 0} f(x)\end{aligned}\right.$
50. $f(x)=\left\{\begin{aligned} x+4 & \text { if } x<0 \\ 5 & \text { if } x \geq 0, \lim _{x \rightarrow 0} f(x)\end{aligned}\right.$
51. $f(x)= \begin{cases}2 x & \text { if } x<1 \\ x+1 & \text { if } x \geq 1, \lim _{x \rightarrow 1} f(x)\end{cases}$
52. $f(x)= \begin{cases}3 x & \text { if } x<1 \\ x+2 & \text { if } x \geq 1, \lim _{x \rightarrow 1} f(x)\end{cases}$
53. $f(x)= \begin{cases}x+1 & \text { if } x<0 \\ \sin x & \text { if } x \geq 0, \lim _{x \rightarrow 0} f(x)\end{cases}$
54. $f(x)= \begin{cases}x & \text { if } x<0 \\ \cos x & \text { if } x \geq 0, \lim _{x \rightarrow 0} f(x)\end{cases}$

Practice Plus

In Exercises 55-56, use the equations for the functions f and g to graph the function $y=(f \circ g)(x)$. Then use the graph of $f \circ g$ to find the indicated limit.
55. $f(x)=x^{2}-5, g(x)=\sqrt{x} ; \lim _{x \rightarrow 2}(f \circ g)(x)$
56. $f(x)=x^{2}+3, g(x)=\sqrt{x} ; \lim _{x \rightarrow 1}^{x \rightarrow 2}(f \circ g)(x)$

In Exercises 57-58, use the equation for the function f to find and graph the function $y=f^{-1}(x)$. Then use the graph of f^{-1} to find the indicated limit.
57. $f(x)=x^{3}-2 ; \lim _{x \rightarrow 6} f^{-1}(x)$
58. $f(x)=x^{3}-4 ; \lim _{x \rightarrow 4} f^{-1}(x)$

In Exercises 59-66, use the graph of $y=f(x)$ to graph each function g. Then use the graph of g to find the indicated limit.

59. $g(x)=f(x)+2 ; \lim _{x \rightarrow 3} g(x)$
60. $g(x)=f(x)-2 ; \lim _{x \rightarrow 3} g(x)$
61. $g(x)=f(x+3) ; \lim _{x \rightarrow 1^{-}} g(x)$
62. $g(x)=f(x+2) ; \lim _{x \rightarrow 2^{-}} g(x)$
63. $g(x)=-f(x) ; \lim _{x \rightarrow-3^{+}} g(x)$
64. $g(x)=-2 f(x) ; \lim _{x \rightarrow-3^{+}} g(x)$
65. $g(x)=f(2 x) ; \lim _{x \rightarrow 1} g(x)$
66. $g(x)=f\left(\frac{1}{2} x\right) ; \lim _{x \rightarrow 1} g(x)$

Application Exercises

67. You are approaching a fan located at 3 on the x-axis.

The function f describes the breeze that you feel, $f(x)$, in miles per hour, when your nose is at position x on the x-axis. Use the values in the table to solve this exercise.

\boldsymbol{x}	2.9	2.99	$2.999 \rightarrow \leftarrow 3.001$	3.01	3.1
$\boldsymbol{f}(\boldsymbol{x})$	7.7	7.92	$7.991 \rightarrow \leftarrow 7.991$	7.92	7.7

a. Find $\lim _{x \rightarrow 3} f(x)$. Describe what this means in terms of the location of your nose and the breeze that you feel.
b. Would it be a good idea to move closer so that you actually reach $x=3$? Describe the difference between what you feel for $\lim _{x \rightarrow 3} f(x)$ and $f(3)$.
68. You are riding along an expressway traveling x miles per hour. The function $f(x)=0.015 x^{2}+x+10$ describes the recommended safe distance, $f(x)$, in feet, between your car and other cars on the expressway. Use the values in the table below to find $\lim _{x \rightarrow 60} f(x)$. Describe what this means in terms of your car's speed and the recommended safe distance.

\boldsymbol{x}	59.9	59.99	$59.999 \rightarrow \leftarrow 60.001$	60.01	60.1
$\boldsymbol{f}(\boldsymbol{x})=\mathbf{0 . 0 1 5} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}+\mathbf{1 0}$	123.72	123.972	$123.997 \rightarrow \leftarrow 124.003$	124.028	124.28

Functions can be used to model changes in intellectual abilities over one's life span. The graphs of f and g show mean scores on standardized tests measuring spatial orientation and verbal ability, respectively, as a function of age. Use the graphs of f and g to solve Exercises 69-70.

Source: Wade and Tavris, Psychology Sixth Edition, Prentice Hall, 2000

70. What mean score in verbal ability is associated with a person whose age is close to 60 ? Use limit notation to express the answer.
71. You rent a car from a company that charges $\$ 20$ per day plus $\$ 0.10$ per mile. The car is driven 200 miles in the first day. The figure shows the graph of the cost, $f(x)$, in dollars, as a function of the miles, x, that you drive the car.

a. Find $\lim _{x \rightarrow 100} f(x)$. Interpret the limit, referring to miles driven and cost.
b. For the first day only, what is the rental cost approaching as the mileage gets closer to 200 ?
c. What is the cost to rent the car at the start of the second day?
72. You are building a greenhouse next to your house, as shown in the figure. Because the house will be used for one side of the enclosure, only three sides will need to be enclosed. You have 60 feet of fiberglass to enclose the three walls.

The function $f(x)=x(60-2 x)$ describes the area of the greenhouse that you can enclose, $f(x)$, in square feet, if the width of the greenhouse is x feet.
a. Use the table shown to find $\lim _{x \rightarrow 15} f(x)$.

X	1	
14.7	449.98.	
14.9	449.9	
15.1	449.98	
15.3	4499.88	

b. Use the graph shown to find $\lim _{x \rightarrow 15} f(x)$. Do you get the same limit as you did in part (a)? What information about the limit is shown by the graph that might not be obvious from the table?

Writing in Mathematics

73. Explain how to read $\lim _{x \rightarrow a} f(x)=L$.
74. What does the limit notation $\lim _{x \rightarrow a} f(x)=L$ mean?
75. Without showing the details, explain how to use a table to find $\lim _{x \rightarrow 4} x^{2}$.
76. Explain how a graph can be used to find a limit.
77. When we find $\lim _{x \rightarrow a} f(x)$, we do not care about the value of the function at $\stackrel{x \rightarrow a}{=} a$. Explain why this is so.
78. Explain how to read $\lim _{x \rightarrow a^{-}} f(x)=L$.
79. What does the limit notation $\lim _{x \rightarrow a^{-}} f(x)=L$ mean?
80. Explain how to read $\lim _{x \rightarrow a^{+}} f(x)=L$.
81. What does the limit notation $\lim _{x \rightarrow a^{+}} f(x)=L$ mean?
82. What does it mean if the limits in Exercises 79 and 81 are not both equal to the same number L ?

Technology Exercises

83. Use the TABLE feature of your graphing utility to verify any five of the limits that you found in Exercises 5-16.
84. Use the ZOOM IN feature of your graphing utility to verify any five of the limits that you found in Exercises 33-46. Zoom in on the graph of the given function, f, near $x=a$ to verify each limit.

In Exercises 85-88, estimate $\lim _{x \rightarrow a} f(x)$ by using the TABLE feature of your graphing utility to create a table of values. Then use the ZOOM IN feature to zoom in on the graph of f near $x=a$ to justify or improve your estimate.
85. $\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}$
86. $\lim _{x \rightarrow 4} \frac{\ln x-\ln 4}{x-4}$
87. $\lim _{x \rightarrow 1} \frac{x^{3 / 2}-1}{x-1}$
88. $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos 2 x}$

Critical Thinking Exercises

Make Sense? In Exercises 89-92, determine whether each statement makes sense or does not make sense, and explain your reasoning.
89. Limits indicate that a graph can get really close to values without actually reaching them.
90. I'm working with a function that is undefined at 5 , so $\lim _{x \rightarrow 5} f(x)$ does not exist.
91. I'm working with a function that is undefined at 3 , but defined at $2.99,2.999,2.9999$, as well as at 3.01, 3.001, and 3.0001 .
92. I'm working with a function for which $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, so I cannot draw the graph of the function near a without lifting my pencil off the paper.
93. Give an example of a function that is not defined at 2 for which $\lim _{x \rightarrow 2} f(x)=5$.
94. Consider the function $f(x)=3 x+2$. As x approaches 1 , $f(x)$ approaches 5: $\lim _{x \rightarrow 1} f(x)=5$. Find the values of x such that $f(x)$ is within 0.1 of 5 by solving

$$
|f(x)-5|<0.1
$$

Then find the values of x such that $f(x)$ is within 0.01 of 5 .
95. Find an estimate of $3^{\pi}(\pi \approx 3.14159265)$ by taking a sequence of rational numbers, $x_{1}, x_{2}, x_{3}, \ldots$ that approaches π. Obtain your estimate by evaluating $3^{x_{1}}, 3^{x_{2}}, 3^{x_{3}}, \ldots$.

Preview Exercises

Exercises 96-98 will help you prepare for the material covered in the next section.
96. a. Graph the piecewise function:

$$
f(x)= \begin{cases}x^{2}+5 & \text { if } x<2 \\ 3 x+1 & \text { if } x \geq 2\end{cases}
$$

b. Use your graph from part (a) to find each of the following limits, or indicate that the limit does not exist: $\lim _{x \rightarrow 2^{-}} f(x) ; \lim _{x \rightarrow 2^{+}} f(x) ; \lim _{x \rightarrow 2} f(x)$.
97. Simplify: $\frac{x^{2}-x-6}{x-3}$.
98. Rationalize the numerator: $\frac{\sqrt{4+x}-2}{x}$.

SECTION 11.2

Objectives

(1) Find limits of constant functions and the identity function.
2. Find limits using properties of limits.
(3) Find one-sided limits using properties of limits.
4. Find limits of fractional expressions in which the limit of the denominator is zero.

FIGURE 11.8 The graph of the constant function $f(x)=c$. No matter how close x is to a, the corresponding value of $f(x)$ is c.

Finding Limits Using Properties of Limits

Isaac Newton

Gottfried Leibniz

Calculus was invented independently by British mathematician Isaac Newton (1642-1727) and German mathematician Gottfried Leibniz (1646-1716). Although Newton stated that limits were the basic concept in calculus, neither he nor Leibniz was able to express the idea of a limit in a precise mathematical fashion. In essence, Newton and Leibniz developed calculus into a powerful tool even though they could not fully understand why the tool worked.

A great triumph of calculus came with the work of German mathematician Karl Weierstrass (1815-1897). Weierstrass provided a precise definition of $\lim _{x \rightarrow a} f(x)=L$, placing calculus on a sound footing almost two hundred years after its invention. The properties of limits presented in this section are theorems that you will prove in calculus using this definition. In this section, you will learn to apply these properties to find limits.

Limits Involving Constant Functions and the Identity Function

We frequently encounter the constant function, $f(x)=c$, and the identity function, $f(x)=x$. Figure $\mathbf{1 1 . 8}$ shows the graph of the constant function. The graph is a horizontal line. What does this mean about the limit as x approaches a ? Regardless of how close x is to a, the corresponding value of $f(x)$ is c. Thus, if $f(x)=c$, then $\lim _{x \rightarrow a} f(x)=c$.

1 Find limits of constant functions and the identity function.

FIGURE 11.9 The graph of the identity function $f(x)=x$. No matter how close x is to a, the corresponding value of $f(x)$ is just as close to a.

2 Find limits using properties of limits.

Limit of a Constant Function

For the constant function $f(x)=c$,

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} c=c,
$$

where a is any number. In words, regardless of what number x is approaching, the limit of any constant is that constant.

EXAMPLE 1 Finding Limits of Constant Functions

Find the following limits:
a. $\lim _{x \rightarrow 4} 7$
b. $\lim _{x \rightarrow 0}(-5)$.

SOLUTION

Regardless of what number x is approaching, the limit of any constant is that constant: $\lim _{x \rightarrow a} c=c$. Using this formula, we find the given limits.
a. $\lim _{x \rightarrow 4} 7=7$
b. $\lim _{x \rightarrow 0}(-5)=-5$

Check Point 1 Find the following limits:
a. $\lim _{x \rightarrow 8} 11$
b. $\lim _{x \rightarrow 0}(-9)$.

The graph of the identity function, $f(x)=x$, is shown in Figure 11.9. Each input for this function is associated with an identical output. What does this mean about the limit as x approaches a ? For any value of a, as x gets closer to a, the corresponding value of $f(x)$ is just as close to a. Thus, if $f(x)=x$, then $\lim _{x \rightarrow a} f(x)=a$.

Limit of the Identity Function

For the identity function $f(x)=x$,

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a,
$$

where a is any number. In words, the limit of x as x approaches any number is that number.

EXAMPLE 2 Finding Limits of the Identity Function

Find the following limits:
a. $\lim _{x \rightarrow 7} x$
b. $\lim _{x \rightarrow-\pi} x$.

SOLUTION

We use the formula $\lim _{x \rightarrow a} x=a$. The number that x is approaching is also the limit.
a. $\lim _{x \rightarrow 7} x=7$
b. $\lim _{x \rightarrow-\pi} x=-\pi$
$\$$ Check Point 2 Find the following limits:
a. $\lim _{x \rightarrow 19} x$
b. $\lim _{x \rightarrow-\sqrt{2}} x$.

Properties of Limits

How do we find the limit of a sum, such as

$$
\lim _{x \rightarrow 5}(x+7) ?
$$

We find the limit of each function in the sum:

Blitzer Bonus

The Feud Over Who Invented Calculus

"How dare Leibniz publish a book on calculus!" fumed Isaac Newton. "He stole my ideas when he was in England. This will not pass easily."

Although Newton and Leibniz invented calculus independently, Newton's overwhelming fear of criticism kept him from publishing. Leibniz published his work on calculus in 1684; Newton waited over 20 years after he invented calculus and did not publish until 1687. Newton was dismayed that he did not publish his version first. Leibniz was accused of plagiarism in a report written by members of the Royal Society in England. The author of the report was not a matter of public record, for Newton himself had written most of it. Newton's accusations against Leibniz set off a bitter dispute between British mathematicians and mathematicians on Continental Europe that lasted over 100 years.

Then we add each of these limits. Thus,

$$
\lim _{x \rightarrow 5}(x+7)=\lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 7=5+7=12 .
$$

This is an application of a limit property involving the limit of a sum.
The Limit of a Sum

$$
\text { If } \begin{aligned}
\lim _{x \rightarrow a} f(x)= & L \text { and } \lim _{x \rightarrow a} g(x)=M \text {, then } \\
& \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M .
\end{aligned}
$$

In words, the limit of the sum of two functions equals the sum of their limits.

EXAMPLE 3 Finding the Limit of a Sum

Find: $\lim _{x \rightarrow-4}(x+9)$.

SOLUTION

The two functions in this limit problem are $f(x)=x$ and $g(x)=9$. We seek the limit of the sum of these functions.

$$
\begin{aligned}
\lim _{x \rightarrow-4}(x+9) & =\lim _{x \rightarrow-4} x+\lim _{x \rightarrow-4} 9 & & \text { The limit of a sum is the sum of the limits. } \\
& =-4+9 & & \lim _{x \rightarrow a} x=a \text { and } \lim _{x \rightarrow a} c=c .
\end{aligned}
$$

$$
=5
$$

$\$$ Check Point 3 Find: $\lim _{x \rightarrow-3}(x+16)$.

In calculus, you will prove the following property involving the limit of the difference of two functions:

The Limit of a Difference

$$
\text { If } \lim _{x \rightarrow a} f(x)=L \text { and } \lim _{x \rightarrow a} g(x)=M \text {, then }
$$

$$
\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M .
$$

In words, the limit of the difference of two functions equals the difference of their limits.

EXAMPLE 4 Finding the Limit of a Difference

Find: $\lim _{x \rightarrow 5}(12-x)$.

SOLUTION

The two functions in this limit problem are $f(x)=12$ and $g(x)=x$. We seek the limit of the difference of these functions.

$$
\begin{aligned}
\lim _{x \rightarrow 5}(12-x) & =\lim _{x \rightarrow 5} 12-\lim _{x \rightarrow 5} x & & \begin{array}{l}
\text { The limit of a difference is the difference of } \\
\text { the limits. }
\end{array} \\
& =12-5 & & \lim _{x \rightarrow a} c=c \text { and } \lim _{x \rightarrow a} x=a . \\
& =7 & &
\end{aligned}
$$

Check Point 4 Find: $\lim _{x \rightarrow 14}(19-x)$.

Now we consider a property that will enable you to find the limit of the product of two functions.

The Limit of a Product
If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then

$$
\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L M .
$$

In words, the limit of the product of two functions equals the product of their limits.

EXAMPLE 5 Finding the Limit of a Product

Find: $\lim _{x \rightarrow 5}(-6 x)$.

SOLUTION

The two functions in this limit problem are $f(x)=-6$ and $g(x)=x$. We seek the limit of the product of these functions.

$$
\begin{aligned}
\lim _{x \rightarrow 5}(-6 x) & =\lim _{x \rightarrow 5}(-6) \cdot \lim _{x \rightarrow 5} x & & \text { The limit of a product is the product of the limits. } \\
& =-6 \cdot 5 & & \\
& =-30 & & \lim _{x \rightarrow a} c=c \text { and } \lim _{x \rightarrow a} x=a .
\end{aligned}
$$

\oint Check Point 5 Find: $\lim _{x \rightarrow 7}(-10 x)$.

EXAMPLE 6 Finding Limits Using Properties of Limits

Find the following limits:
a. $\lim _{x \rightarrow-3}(7 x-4)$
b. $\lim _{x \rightarrow 5} 6 x^{2}$.

SOLUTION
a. $\lim _{x \rightarrow-3}(7 x-4)=\lim _{x \rightarrow-3}(7 x)-\lim _{x \rightarrow-3} 4$

$$
\begin{array}{ll}
=\lim _{x \rightarrow-3} 7 \cdot \lim _{x \rightarrow-3} x-\lim _{x \rightarrow-3} 4 & \\
=7(-3)-4 & \text { The limit of a product is the product } \\
=7(\text { of the lits. }
\end{array}
$$

The limit of a difference is the difference of the limits.

$$
=-21-4
$$

$$
=-25
$$

b. $\lim _{x \rightarrow 5} 6 x^{2}=\lim _{x \rightarrow 5} 6 \cdot \lim _{x \rightarrow 5} x^{2}$

$$
\begin{aligned}
& =6 \cdot \lim _{x \rightarrow 5}(x \cdot x) \\
& =6 \cdot \lim _{x \rightarrow 5} x \cdot \lim _{x \rightarrow 5} x \\
& =6 \cdot 5 \cdot 5 \\
& =150
\end{aligned}
$$

The limit of a product is the product of the limits.

$$
\lim _{x \rightarrow a} c=c
$$

The limit of a product is the product of the limits.
$\lim _{x \rightarrow a} x=a$
$\$$ Check Point 6 Find the following limits:
a. $\lim _{x \rightarrow-5}(3 x-7)$
b. $\lim _{x \rightarrow 3} 8 x^{2}$.

The procedure used to find $\lim _{x \rightarrow 5} 6 x^{2}$ in Example 6(b) can be used to determine the limit of any monomial function in the form $f(x)=b_{n} x^{n}$, where n is a positive integer and b_{n} is a constant.
$\lim _{x \rightarrow a} b_{n} x^{n}=\lim _{x \rightarrow a} b_{n} \cdot \lim _{x \rightarrow a} x^{n} \quad \begin{aligned} & \text { The limit of a product is the product of } \\ & \text { the limits. }\end{aligned}$
$=b_{n} \cdot \lim _{x \rightarrow a} \underbrace{(x \cdot x \cdot x \cdot \cdots \cdot x)}$
$\lim _{x \rightarrow a} c=c$
By definition, x^{n} contains n factors of x.

There are n factors of $\lim _{x \rightarrow a} x$.

$$
=b_{n} \cdot \underbrace{a \cdot a \cdot a \cdot a}_{\text {There are } n \text { factors of } a .}
$$

$$
\lim _{x \rightarrow a} x=a
$$

$$
=b_{n} a^{n}
$$

This is the monomial function $f(x)=b_{n} x^{n}$ evaluated at a.
The Limit of a Monomial
If n is a positive integer and b_{n} is a constant, then

$$
\lim _{x \rightarrow a} b_{n} x^{n}=b_{n} a^{n}
$$

for any number a. In words, the limit of a monomial as x approaches a is the monomial evaluated at a.

EXAMPLE 7 Finding the Limit of a Monomial

Find: $\lim _{x \rightarrow 2}\left(-6 x^{4}\right)$.

SOLUTION

The limit of the monomial $-6 x^{4}$ as x approaches 2 is the monomial evaluated at 2 . Thus, we find the limit by substituting 2 for x.

$$
\lim _{x \rightarrow 2}\left(-6 x^{4}\right)=-6 \cdot 2^{4}=-6 \cdot 16=-96
$$

$\$$ Check Point 7 Find: $\lim _{x \rightarrow 2}\left(-7 x^{3}\right)$.
How do we find the limit of a polynomial function

$$
f(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

as x approaches a ? A polynomial is a sum of monomials. Thus, the limit of a polynomial is the sum of the limits of its monomials.

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}\right) & f \text { is a polynomial function. } \\
& =\lim _{x \rightarrow a} b_{n} x^{n}+\lim _{x \rightarrow a} b_{n-1} x^{n-1}+\cdots+\lim _{x \rightarrow a} b_{1} x+\lim _{x \rightarrow a} b_{0} & \text { The limit of a sum is the sum of the limits. } \\
& =b_{n} a^{n}+b_{n-1} a^{n-1}+\cdots+b_{1} a+b_{0} & \text { Find limits by evaluating monomials at a. Find the last limit in } \\
& \text { This is the polynomial function } & \text { the susing } \lim _{x \rightarrow a} c=c \text { with } c=b_{0} .
\end{aligned}
$$

$$
f(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

$$
\text { evaluated at } a \text {. }
$$

$$
=f(a)
$$

The Limit of a Polynomial

If f is a polynomial function, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

for any number a. In words, the limit of a polynomial as x approaches a is the polynomial evaluated at a.

EXAMPLE 8 Finding the Limit of a Polynomial

Find: $\lim _{x \rightarrow 3}\left(4 x^{3}+2 x^{2}-6 x+5\right)$.

SOLUTION

The limit of the polynomial $4 x^{3}+2 x^{2}-6 x+5$ as x approaches 3 is the polynomial evaluated at 3 . Thus, we find the limit by substituting 3 for x.

$$
\begin{aligned}
\lim _{x \rightarrow 3} & \left(4 x^{3}+2 x^{2}-6 x+5\right) \\
& =4 \cdot 3^{3}+2 \cdot 3^{2}-6 \cdot 3+5 \\
& =4 \cdot 27+2 \cdot 9-6 \cdot 3+5 \\
& =108+18-18+5 \\
& =113
\end{aligned}
$$

\oint Check Point 8 Find: $\lim _{x \rightarrow 2}\left(7 x^{3}+3 x^{2}-5 x+3\right)$.

A linear function, $f(x)=m x+b$, is a polynomial function of degree one. This means that the limit of a linear function as x approaches a is the linear function evaluated at a :

$$
\lim _{x \rightarrow a}(m x+b)=m a+b .
$$

For example,

$$
\lim _{x \rightarrow 4}(3 x-7)=3 \cdot 4-7=12-7=5 .
$$

The next limit property involves the limit of a function to a power, such as

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-3\right)^{4}
$$

To find such a limit, first find $\lim _{x \rightarrow 2}\left(x^{2}+2 x-3\right)$:

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-3\right)=2^{2}+2 \cdot 2-3=4+4-3=5 .
$$

The limit that we seek is found by taking this limit, 5 , and raising it to the fourth power. Thus,

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-3\right)^{4}=\left[\lim _{x \rightarrow 2}\left(x^{2}+2 x-3\right)\right]^{4}=5^{4}=625
$$

The Limit of a Power
If $\lim _{x \rightarrow a} f(x)=L$ and n is a positive integer, then

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}=L^{n} .
$$

In words, the limit of a function to a power is found by taking the limit of the function and then raising this limit to the power.

EXAMPLE 9 Finding the Limit of a Power

Find: $\lim _{x \rightarrow 5}(2 x-7)^{3}$.

SOLUTION

The limit of the linear function $f(x)=2 x-7$ as x approaches 5 is the linear function evaluated at 5 . Because this function is raised to the third power, the limit that we seek is the limit of the linear function raised to the third power.

$$
\lim _{x \rightarrow 5}(2 x-7)^{3}=\left[\lim _{x \rightarrow 5}(2 x-7)\right]^{3}=(2 \cdot 5-7)^{3}=3^{3}=27
$$

\oint Check Point 9 Find: $\lim _{x \rightarrow 4}(3 x-5)^{3}$.

How do we find the limit of a root? Recall that if $\sqrt[n]{L}$ represents a real number and $n \geq 2$, then

$$
\sqrt[n]{L}=L^{1 / n}
$$

Because a root is a power, we find the limit of a root using a similar procedure for finding the limit of a power.

The Limit of a Root

If $\lim _{x \rightarrow a} f(x)=L$ and n is a positive integer greater than or equal to 2 , then

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}
$$

provided that all roots represent real numbers. In words, the limit of the nth root of a function is found by taking the limit of the function and then taking the nth root of this limit.

EXAMPLE 10 Finding the Limit of a Root

Find: $\lim _{x \rightarrow-2} \sqrt{4 x^{2}+5}$.

SOLUTION

The limit of the quadratic (polynomial) function $f(x)=4 x^{2}+5$ as x approaches -2 is the function evaluated at -2 . Because we have the square root of this function, the limit that we seek is the square root of the limit of the quadratic function.
$\lim _{x \rightarrow-2} \sqrt{4 x^{2}+5}=\sqrt{\lim _{x \rightarrow-2}\left(4 x^{2}+5\right)}=\sqrt{4(-2)^{2}+5}=\sqrt{16+5}=\sqrt{21} \quad \ldots$
\oint Check Point 10 Find: $\lim _{x \rightarrow-1} \sqrt{6 x^{2}-4}$.

We have considered limits of sums, differences, products, and roots. We conclude with a property that deals with the limit of a quotient.

The Limit of a Quotient
If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M, M \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}, M \neq 0 .
$$

In words, the limit of the quotient of two functions equals the quotient of their limits, provided that the limit of the denominator is not zero.

Before possibly applying the quotient property, begin by finding the limit of the denominator. If this limit is not zero, you can apply the quotient property. If this limit is zero, the quotient property cannot be used.

EXAMPLE 11 Finding the Limit of a Quotient

Find: $\lim _{x \rightarrow 1} \frac{x^{3}-3 x^{2}+7}{2 x-5}$.

SOLUTION

The two functions in this limit problem are $f(x)=x^{3}-3 x^{2}+7$ and $g(x)=2 x-5$. We seek the limit of the quotient of these functions. Can we use the quotient property for limits? We answer the question by finding the limit of the denominator, $g(x)$.

$$
\lim _{x \rightarrow 1}(2 x-5)=2 \cdot 1-5=-3
$$

Because the limit of the denominator is not zero, we can apply the quotient property for limits. The limit of the quotient is the quotient of the limits.

$$
\lim _{x \rightarrow 1} \frac{x^{3}-3 x^{2}+7}{2 x-5}=\frac{\lim _{x \rightarrow 1}\left(x^{3}-3 x^{2}+7\right)}{\lim _{x \rightarrow 1}(2 x-5)}=\frac{1^{3}-3 \cdot 1^{2}+7}{2 \cdot 1-5}=\frac{5}{-3}=-\frac{5}{3} \ldots
$$

Check Point 11 Find: $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+1}{3 x-5}$.

We've considered a number of limit properties. Let's take a moment to summarize these properties.

Properties of Limits

Formulas for Finding Limits

1. $\lim _{x \rightarrow a} c=c$
2. $\lim _{x \rightarrow a} x=a$
3. If f is a polynomial (linear, quadratic, cubic, etc.) function, $\lim _{x \rightarrow a} f(x)=f(a)$.

Limits of Sums, Differences, Products, Powers, Roots, and Quotients

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then
4. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M$.
5. $\lim _{x \rightarrow a}[f(x)-(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M$.
6. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L M$.
7. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}=L^{n}$, where $n \geq 2$ is an integer.
8. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}$, where $n \geq 2$ is an integer and all roots represent real numbers.
9. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}, M \neq 0$.

3 Find one-sided limits using properties of limits.

FIGURE 11.10

Properties of Limits and Piecewise Functions

In Section 11.1, we used graphs of piecewise functions to find one-sided limits. We can now find such limits by applying properties of limits to the appropriate part of a piecewise function's equation.

EXAMPLE 12 Using Limit Properties to Find One-Sided Limits

Consider the piecewise function defined by

$$
f(x)=\left\{\begin{array}{lll}
x^{2}+5 & \text { if } & x<2 \\
3 x+1 & \text { if } & x \geq 2
\end{array}\right.
$$

Find each of the following limits, or state that the limit does not exist:
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$.

SOLUTION

a. To find $\lim _{x \rightarrow 2^{-}} f(x)$, we look at values of $f(x)$ when x is close to 2 but less than 2 . Because x is less than 2, we use the first line of the piecewise function's equation, $f(x)=x^{2}+5$.

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}+5\right)=2^{2}+5=9
$$

b. To find $\lim _{x \rightarrow 2^{+}} f(x)$, we look at values of $f(x)$ when x is close to 2 but greater than 2. Because x is greater than 2, we use the second line of the piecewise function's equation, $f(x)=3 x+1$.

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(3 x+1)=3 \cdot 2+1=7
$$

c. We found that

$$
\lim _{x \rightarrow 2^{-}} f(x)=9 \quad \text { and } \quad \lim _{x \rightarrow 2^{+}} f(x)=7
$$

The limit as x approaches
2 from the left equals 9 .

The limit as x approaches
2 from the right equals 7 .

These one-sided limits are illustrated in Figure 11.10. Because the left- and right-hand limits are unequal, $\lim _{x \rightarrow 2} f(x)$ does not exist.
$\$$ Check Point 12 Consider the piecewise function defined by

$$
f(x)=\left\{\begin{array}{cll}
-1 & \text { if } & x<1 \\
\sqrt[3]{2 x-1} & \text { if } & x \geq 1
\end{array}\right.
$$

Find each of the following limits, or state that the limit does not exist:
a. $\lim _{x \rightarrow 1^{-}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$.

Strategies for Finding Limits When the Limit of the Denominator Is Zero

When taking the limit of a fractional expression in which the limit of the denominator is zero, the quotient property for limits cannot be used. In such cases, it is necessary to rewrite the expression before the limit can be found. Factoring is one technique that can be used to rewrite an expression.

EXAMPLE 13 Using Factoring to Find a Limit

Find: $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}$.

SOLUTION

The limit of the denominator is zero:

$$
\lim _{x \rightarrow 3}(x-3)=3-3=0
$$

GREAT QUESTION!

Can I apply the quotient property for limits when the limit of the denominator is zero?
No. Avoid this common error:

Do not use the quotient property if the limit of the denominator is zero. Furthermore, division by zero is not permitted: $\frac{0}{0}$ is not equal to 1 .

FIGURE 11.11 As x approaches 3, values of f get closer to 5:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=5 .
$$

Thus, the quotient property for limits cannot be used. Instead, try simplifying the expression using factoring:

$$
\frac{x^{2}-x-6}{x-3}=\frac{(x-3)(x+2)}{x-3}
$$

We seek the limit of this expression as x approaches 3 . Because x is close to 3 but not equal to 3 , the common factor in the numerator and denominator, $x-3$, is not equal to zero. With $x-3 \neq 0$, we can divide the numerator and denominator by $x-3$. Cancel the common factor, $x-3$, and then take the limit.

$$
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x-3}=\lim _{x \rightarrow 3}(x+2)=3+2=5
$$

The graph of $f(x)=\frac{x^{2}-x-6}{x-3}$ is shown in Figure 11.11. The hole in the graph at $x=3$ shows that $f(3)$ is undefined. However, as x approaches 3 , the graph shows that the values of f get closer to 5 . This verifies the limit that we found in Example 13:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=5
$$

0 Check Point 13 Find: $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}$.

Rationalizing the numerator or denominator of a fractional expression is another technique that can be used to find a limit when the limit of the denominator is zero.

EXAMPLE 14 Rationalizing a Numerator to Find a Limit

Find: $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$.

SOLUTION

As x approaches 0 , the denominator of the expression approaches zero. Thus, the quotient property for limits cannot be used. Instead, try rewriting the expression by rationalizing the numerator. If we multiply the numerator and denominator by $\sqrt{4+x}+2$, the numerator will not contain radicals.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2} \text { Rationalize the numerator. } \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{4+x})^{2}-2^{2}}{x(\sqrt{4+x}+2)} \\
& =\lim _{x \rightarrow 0} \frac{4+x-4}{x(\sqrt{4+x}+2)} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{4+x}+2)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{4+x}+2} \\
& =\frac{\lim _{x \rightarrow 0} 1}{\sqrt{\lim _{x \rightarrow 0}(4+x)}+\lim _{x \rightarrow 0} 2} \\
& =\frac{1}{\sqrt{4+0}+2} \\
& =\frac{1}{2+2}=\frac{1}{4} \quad \text { Simplify. } \\
& \text { This is permitted because } x \text { approaches } O \text { but is } \\
& \text { not equal to } 0 \text {. } \\
& \text { Use limit properties. } \\
& \text { Take the limits. }
\end{aligned}
$$

\oint Check Point 14 Find: $\lim _{x \rightarrow 0} \frac{\sqrt{9+x}-3}{x}$.

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. $\lim _{x \rightarrow a} c=$ \qquad
2. $\lim _{x \rightarrow a} x=$ \qquad
3. If f is a polynomial function, then $\lim _{x \rightarrow a} f(x)=$ \qquad
If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, use L, M, or both to complete the statements in Exercises 4-9.
4. $\lim _{x \rightarrow a}[f(x)+g(x)]=$ \qquad
5. $\lim _{x \rightarrow a}[f(x)-g(x)]=$
6. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=$ \qquad
7. $\lim _{x \rightarrow a}[f(x)]^{n}=$ \qquad where $n \geq 2$ is an integer
8. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=$ \qquad , where $n \geq 2$ is an integer and all roots represent real numbers
9. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$ \qquad
10. For the piecewise function defined by

$$
f(x)= \begin{cases}x^{2}+5 & \text { if } x<2 \\ x^{3}+1 & \text { if } x \geq 2\end{cases}
$$

we find $\lim _{x \rightarrow 2^{-}} f(x)$ using $f(x)=$ \qquad and we find $\lim _{x \rightarrow 2^{+}} f(x)$ using $f(x)=$ \qquad -
11. True or false: $\lim _{x \rightarrow 6} \frac{x^{2}-25}{x-5}=\frac{\lim _{x \rightarrow 6}\left(x^{2}-25\right)}{\lim _{x \rightarrow 6}(x-5)}$
12. True or false: $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\frac{\lim _{x \rightarrow 5}\left(x^{2}-25\right)}{\lim _{x \rightarrow 5}(x-5)}$
28. $\lim _{x \rightarrow-1} \frac{x^{3}+2 x^{2}+x}{x^{4}+x^{3}+2 x+2}$
29. $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
30. $\lim _{x \rightarrow 0} \frac{\sqrt{16+x}-4}{x}$
31. $\lim _{x \rightarrow 2}\left[(x+1)^{2}(3 x-1)^{3}\right]$
32. $\lim _{x \rightarrow-1}\left[(x+2)^{3}(3 x+2)\right]$
33. $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
34. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
35. $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}$
36. $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
37. $\lim _{x \rightarrow 4} \frac{\sqrt{x}+5}{x-5}$
38. $\lim _{x \rightarrow 9} \frac{\sqrt{x}+10}{x-10}$
39. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+3}-\frac{1}{3}}{x}$
40. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}$
41. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$
42. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

In Exercises 43-50, a piecewise function is given. Use properties of limits to find the indicated limit, or state that the limit does not exist.
43. $f(x)= \begin{cases}x+5 & \text { if } x<1 \\ x+7 & \text { if } x \geq 1\end{cases}$
a. $\lim _{x \rightarrow 1^{-}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$
44. $f(x)= \begin{cases}x+6 & \text { if } x<1 \\ x+9 & \text { if } x \geq 1\end{cases}$
a. $\lim _{x \rightarrow 1^{-}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$
45. $f(x)= \begin{cases}x^{2}+5 & \text { if } x<2 \\ x^{3}+1 & \text { if } x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$
46. $f(x)= \begin{cases}x^{2}+6 & \text { if } x<2 \\ x^{3}+2 & \text { if } x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$
47. $f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 5 & \text { if } x=3\end{cases}$
a. $\lim _{x \rightarrow 3} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
c. $\lim _{x \rightarrow 3} f(x)$
48. $f(x)= \begin{cases}\frac{x^{2}-16}{x-4} & \text { if } x \neq 4 \\ 7 & \text { if } x=4\end{cases}$
a. $\lim _{x \rightarrow 4} f(x)$
b. $\lim _{x \rightarrow 4^{+}} f(x)$
c. $\lim _{x \rightarrow 4} f(x)$
49. $f(x)= \begin{cases}1-x & \text { if } x<1 \\ 2 & \text { if } x=1 \\ x^{2}-1 & \text { if } x>1\end{cases}$
a. $\lim _{x \rightarrow 1^{-1}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$
50. $f(x)= \begin{cases}4-x & \text { if } x<1 \\ 2 & \text { if } x=1 \\ x^{2}+2 & \text { if } x>1\end{cases}$
a. $\lim _{x \rightarrow 1^{-1}} f(x)$
b. $\lim _{x \rightarrow \rightarrow^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$

Practice Plus

51. Let $f(x)=x^{3}-x^{2}+5 x-1$ and $g(x)=2$. Find $\lim _{x \rightarrow 3}(f \circ g)(x)$ and $\lim _{x \rightarrow 3}(g \circ f)(x)$.
52. Let $f(x)=x^{3}+x^{2}-6 x-1$ and $g(x)=3$. Find $\lim _{x \rightarrow 4}(f \circ g)(x)$ and $\lim _{x \rightarrow 4}(g \circ f)(x)$.
53. Let $f(x)=\frac{2}{x}$ and $g(x)=\frac{3}{x-1}$.

Find $\lim _{x \rightarrow 1}(f \circ g)(x)$ and $\lim _{x \rightarrow 1}(g \circ f)(x)$.
54. Let $f(x)=\frac{4}{x-1}$ and $g(x)=\frac{1}{x+2}$.

Find $\lim _{x \rightarrow 1}(f \circ g)(x)$ and $\lim _{x \rightarrow 1}(g \circ f)(x)$.
55. Let $f(x)=x^{2}+4, x \geq 0$. Find $\lim _{x \rightarrow 8} f^{-1}(x)$.
56. Let $f(x)=x^{2}+9, x \geq 0$. Find $\lim _{x \rightarrow 25} f^{-1}(x)$.
57. Let $f(x)=\frac{2 x+1}{x-1}$. Find $\lim _{x \rightarrow 4} f^{-1}(x)$.
58. Let $f(x)=\frac{2 x+3}{x+4}$. Find $\lim _{x \rightarrow 5} f^{-1}(x)$.

Application Exercises

In Albert Einstein's special theory of relativity, time slows down and length in the direction of motion decreases from the point of view of an observer watching an object moving at velocities approaching the speed of light. (The speed of light is approximately 186,000 miles per second. At this speed, a beam of light can travel around the world about seven times in a single second.) Einstein's theory, verified with experiments in atomic physics, forms the basis of Exercises 59-60.

59. The formula

$$
L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

expresses the length, L, of a starship moving at velocity v with respect to an observer on Earth, where L_{0} is the length of the starship at rest and c is the speed of light.
a. Find $\lim _{v \rightarrow c^{-}} L$.
b. If a starship is traveling at velocities approaching the speed of light, what does the limit in part (a) indicate about its length from the perspective of a stationary viewer on Earth?
c. Explain why a left-hand limit is used in part (a).
60. The formula

$$
R_{a}=R_{f} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

expresses the aging rate of an astronaut, R_{a}, relative to the aging rate of a friend on Earth, R_{f}, where v is the astronaut's velocity and c is the speed of light.
a. Find $\lim _{v \rightarrow c^{-}} R_{a}$.
b. If you are traveling in a starship at velocities approaching the speed of light, what does the limit in part (a) indicate about your aging rate relative to a friend on Earth?
c. Explain why a left-hand limit is used in part (a).

Writing in Mathematics

61. Explain how to find the limit of a constant. Then express your written explanation using limit notation.
62. Explain how to find the limit of the identity function $f(x)=x$. Then express your written explanation using limit notation.
63. Explain how to find the limit of a sum. Then express your written explanation using limit notation.
64. Explain how to find the limit of a difference. Then express your written explanation using limit notation.
65. Explain how to find the limit of a product. Then express your written explanation using limit notation.
66. Describe how to find the limit of a polynomial function. Provide an example with your description.
67. Explain how to find the following limit: $\lim _{x \rightarrow 2}\left(3 x^{2}-10\right)^{3}$. Then use limit notation to write the limit property that supports your explanation.
68. Explain how to find the following limit: $\lim _{x \rightarrow 2} \sqrt{5 x-6}$. Then use limit notation to write the limit property that supports your explanation.
69. Explain how to find the limit of a quotient if the limit of the denominator is not zero. Then express your written explanation using limit notation.
70. Write an example involving the limit of a quotient in which the quotient property for limits cannot be applied. Explain why the property cannot be applied to your limit problem.
71. Explain why

$$
\lim _{x \rightarrow 4} \frac{(x+4)(x-4)}{x-4}
$$

can be found by first dividing the numerator and the denominator of the expression by $x-4$. Division by zero is undefined. How can we be sure that we are not dividing the numerator and the denominator by zero?

Technology Exercises

72. Use the TABLE feature of your graphing utility to verify any five of the limits that you found in Exercises 1-42.
73. Use the ZOOM IN feature of your graphing utility to verify any five of the limits that you found in Exercises 1-42. Zoom in on the graph of the given function, f, near $x=a$ to verify each limit.

Critical Thinking Exercises

Make Sense? In Exercises 74-77, determine whether each statement makes sense or does not make sense, and explain your reasoning.
74. I evaluated a polynomial function f at 3 and obtained 7 , so 7 must be $\lim _{x \rightarrow 3} f(x)$.
75. I'm working with functions f and g for which $\lim _{x \rightarrow 4} f(x)=0$, $\lim _{x \rightarrow 4} g(x)=-5$, and $\lim _{x \rightarrow 4}[f(x)-g(x)]=5$.
76. I'm working with functions f and g for which $\lim _{x \rightarrow 4} f(x)=0$, $\lim _{x \rightarrow 4} g(x)=-5$, and $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=0$.
77. I'm working with functions f and g for which $\lim _{x \rightarrow 4} f(x)=0$, $\lim _{x \rightarrow 4} g(x)=-5$, and $\lim _{x \rightarrow 4} \frac{g(x)}{f(x)} \neq 0$.

In Exercises 78-79, find the indicated limit.
78. $\lim _{x \rightarrow 0} x\left(1-\frac{1}{x}\right)$
79. $\lim _{x \rightarrow 4}\left(\frac{1}{x}-\frac{1}{4}\right)\left(\frac{1}{x-4}\right)$

In Exercises 80-81, find $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
80. $f(x)=x^{2}+2 x-3, a=1$
81. $f(x)=\sqrt{x}, a=1$

In Exercises 82-83, use properties of limits and the following limits

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{x} & =1, & \lim _{x \rightarrow 0} \frac{\cos x-1}{x} & =0 \\
\lim _{x \rightarrow 0} \sin x & =0, & \lim _{x \rightarrow 0} \cos x & =1
\end{aligned}
$$

to find the indicated limit.
82. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
83. $\lim _{x \rightarrow 0} \frac{2 \sin x+\cos x-1}{3 x}$

Group Exercises

84. Below is a list of ten common errors involving algebra, trigonometry, and limits that students frequently make in calculus. Group members should examine each error and describe the mistake. Where possible, correct each error. Finally, group members should offer suggestions for avoiding each error.
a. $(x+h)^{3}-x^{3}=x^{3}+h^{3}-x^{3}=h^{3}$
b. $\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}$
c. $\frac{1}{a+b}=\frac{1}{a}+b$
d. $\sqrt{x+h}-\sqrt{x}=\sqrt{x}+\sqrt{h}-\sqrt{\not x}=\sqrt{h}$
e. $\frac{\sin 2 x}{x}=\sin 2$
f. $\frac{a+b x}{a}=1+b x$
g. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\frac{1^{3}-1}{1-1}=\frac{0}{0}=1$
h. $\sin (x+h)-\sin x=\sin x+\sin h-\sin x=\sin h$
i. $a x=b x$, so $a=b$
j. Tø find $\lim _{x \rightarrow 4} \frac{x^{2}-9}{x-3}$, it is necessary to rewrite $\frac{x^{2}-9}{x-3}$ by factoring $x^{2}-9$.
85. Research and present a group report about the history of the feud between Newton and Leibniz over who invented calculus. What other interests did these men have in addition to mathematics? What practical problems led them to the invention of calculus? What were their personalities like? Whose version established the notation and rules of calculus that we use today?

Preview Exercises

Exercises 86-88 will help you prepare for the material covered in the next section. In each exercise, use what occurs near 3 and at 3 to graph the function in an open interval about 3. (Graphs will vary.) Is it necessary to lift your pencil off the paper to obtain each graph? Explain your answer.
86. $\lim _{x \rightarrow 3} f(x)=5 ; f(3)=5$
87. $\lim _{x \rightarrow 3} f(x)=5 ; f(3)=6$
88. $\lim _{x \rightarrow 3^{-}} f(x)=5 ; \lim _{x \rightarrow 3^{+}} f(x)=6 ; f(3)=5$

SECTION 11.3 Limits and Continuity

Objectives

(1) Determine whether a function is continuous at a number.
(2) Determine for what numbers a function is discontinuous.

1. Determine whether a function is continuous at a number.

Limits and Continuity

Figure $\mathbf{1 1 . 1 2}$ shows three graphs that cannot be drawn without lifting a pencil from the paper. In each case, there appears to be an interruption of the graph of f at $x=a$.

FIGURE 11.12 Each graph has an interruption at $x=a$.

Examine Figure 11.12(a). The interruption occurs because the open dot indicates there is no point on the graph corresponding to $x=a$. This shows that $f(a)$ is not defined.

Now, examine Figure 11.12(b). The closed blue dot at $x=a$ shows that $f(a)$ is defined. However, there is a jump at a. As x approaches a from the left, the values of f get closer to the y-coordinate of the point shown by the open dot. By contrast, as x approaches a from the right, the values of f get closer to the y-coordinate of the point shown by the closed dot. There is no single limit as x approaches a. The jump in the graph reflects the fact that $\lim _{x \rightarrow a} f(x)$ does not exist.

Finally, examine Figure 11.12(c). The closed blue dot at $x=a$ shows that $f(a)$ is defined. Furthermore, as x approaches a from the left or from the right, the values of f get closer to the y-coordinate of the point shown by the open dot. Thus, $\lim _{x \rightarrow a} f(x)$ exists. However, there is still an interruption at a. Do you see why? The limit as x approaches $a, \lim _{x \rightarrow a} f(x)$, is the y-coordinate of the open dot. By contrast, the value of the function at $a, f(a)$, is the y-coordinate of the closed dot. The interruption in the graph reflects the fact that $\lim _{x \rightarrow a} f(x)$ and $f(a)$ are not equal.

We now provide a precise definition of what it means for a function to be continuous at a number. Notice how each part of this definition avoids the interruptions that occurred in Figure 11.12.

Definition of a Function Continuous at a Number
A function \boldsymbol{f} is continuous at \boldsymbol{a} when three conditions are satisfied.

1. f is defined at a; that is, a is in the domain of f, so that $f(a)$ is a real number.
2. $\lim _{x \rightarrow a} f(x)$ exists.
3. $\lim _{x \rightarrow a} f(x)=f(a)$

If f is not continuous at a, we say that f is discontinuous at \boldsymbol{a}. Each of the functions whose graph is shown in Figure 11.12 on the previous page is discontinuous at a.

EXAMPLE 1 Determining Whether a Function Is Continuous at a Number

Determine whether the function

$$
f(x)=\frac{2 x+1}{2 x^{2}-x-1}
$$

is continuous: a. at $2 ; \mathbf{b}$. at 1 .

SOLUTION

According to the definition, three conditions must be satisfied to have continuity at a.
a. To determine whether $f(x)=\frac{2 x+1}{2 x^{2}-x-1}$ is continuous at 2 , we check the conditions for continuity with $a=2$.
Condition $1 \boldsymbol{f}$ is defined at \boldsymbol{a}. Is $f(2)$ defined?

$$
f(2)=\frac{2 \cdot 2+1}{2 \cdot 2^{2}-2-1}=\frac{4+1}{8-2-1}=\frac{5}{5}=1
$$

Because $f(2)$ is a real number, $1, f(2)$ is defined.
Condition $2 \lim _{x \rightarrow a} f(x)$ exists. Does $\lim _{x \rightarrow 2} f(x)$ exist?

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2} \frac{2 x+1}{2 x^{2}-x-1}=\frac{\lim _{x \rightarrow 2}(2 x+1)}{\lim _{x \rightarrow 2}\left(2 x^{2}-x-1\right)} \\
& =\frac{2 \cdot 2+1}{2 \cdot 2^{2}-2-1}=\frac{4+1}{8-2-1}=\frac{5}{5}=1
\end{aligned}
$$

Using properties of limits, we see that $\lim _{x \rightarrow 2} f(x)$ exists.
Condition $3 \lim _{x \rightarrow a} f(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{a})$ Does $\lim _{x \rightarrow 2} f(x)=f(2)$? We found that $\lim _{x \rightarrow 2} f(x)=1$ and $f(2)=1$. Thus, as x gets closer to 2, the corresponding values of $f(x)$ get closer to the function value at 2: $\lim _{x \rightarrow 2} f(x)=f(2)$.

Because the three conditions are satisfied, we conclude that f is continuous at 2.
b. To determine whether $f(x)=\frac{2 x+1}{2 x^{2}-x-1}$ is continuous at 1 , we check the conditions for continuity with $a=1$.
Condition $1 \boldsymbol{f}$ is defined at \boldsymbol{a}. Is $f(1)$ defined? Factor the denominator of the function's equation:

$$
\begin{aligned}
& f(x)=\frac{2 x+1}{(x-1)(2 x+1)} \\
& \quad \begin{array}{l}
\text { Denominator is } \quad \begin{array}{l}
\text { Denominator is } \\
\text { zero at } x=1 .
\end{array} \quad \text { zero at } x=-\frac{1}{2} .
\end{array}
\end{aligned}
$$

Because division by zero is undefined, the domain of f is $\left\{x \mid x \neq 1, x \neq-\frac{1}{2}\right\}$. Thus, f is not defined at 1 .

FIGURE $11.13 f$ is continuous at 2 . It is not continuous at 1 or at $-\frac{1}{2}$.
(2) Determine for what numbers a function is discontinuous.

Because one of the three conditions is not satisfied, we conclude that f is not continuous at 1 . Equivalently, we can say that f is discontinuous at 1 .

The graph of $f(x)=\frac{2 x+1}{2 x^{2}-x-1}$ is shown in Figure 11.13. The graph verifies our work in Example 1. Can you see that f is continuous at 2? By contrast, it is not continuous at 1, where the graph has a vertical asymptote.

The graph in Figure 11.13 also reveals a discontinuity at $-\frac{1}{2}$. The open dot indicates that there is no point on the graph corresponding to $x=-\frac{1}{2}$. Can you see what is happening as x approaches $-\frac{1}{2}$?

$$
\lim _{x \rightarrow-\frac{1}{2}} \frac{2 x+1}{2 x^{2}-x-1}=\lim _{x \rightarrow-\frac{1}{2}} \frac{2 x+1}{(x-1)(2 x+1)}=\lim _{x \rightarrow-\frac{1}{2}} \frac{1}{x-1}=\frac{1}{-\frac{1}{2}-1}=-\frac{2}{3}
$$

As x gets closer to $-\frac{1}{2}$, the graph of f gets closer to $-\frac{2}{3}$. Because f is not defined at $-\frac{1}{2}$, the graph has a hole at $\left(-\frac{1}{2},-\frac{2}{3}\right)$. This is shown by the open dot in Figure 11.13.
\int Check Point 1 Determine whether the function

$$
f(x)=\frac{x-2}{x^{2}-4}
$$

is continuous: a. at $1 ; \mathbf{b}$. at 2 .

Determining Where Functions Are Discontinuous

We have seen that the limit of a polynomial function as x approaches a is the polynomial function evaluated at a. Thus, if f is a polynomial function, then $\lim _{x \rightarrow a} f(x)=f(a)$ for any number a. This means that a polynomial function is continuous at every number.

Many of the functions discussed throughout this book are continuous at every number in their domain. For example, rational functions are continuous at every number, except any at which they are not defined. At numbers that are not in the domain of a rational function, a hole in the graph or an asymptote appears. Exponential, logarithmic, sine, and cosine functions are continuous at every number in their domain. Like rational functions, the tangent, cotangent, secant, and cosecant functions are continuous at every number, except any at which they are not defined. At numbers that are not in the domain of these trigonometric functions, an asymptote occurs.

GREAT QUESTION!

What's the bottom line on when functions are continuous and when they're not?
Most functions are always continuous at every number in their domain, including polynomial, rational, radical, exponential, logarithmic, and trigonometric functions. Most of the discontinuities you will encounter in calculus will be due to jumps in piecewise functions.

Example 2 illustrates how to determine where a piecewise function is discontinuous.

EXAMPLE 2 Determining Where a Piecewise

 Function Is DiscontinuousDetermine for what numbers x, if any, the following function is discontinuous:

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 0 \\ 2 & \text { if } 0<x \leq 1 \\ x^{2}+2 & \text { if } x>1\end{cases}
$$

$f(x)= \begin{cases}x+2 & \text { if } x \leq 0 \\ 2 & \text { if } 0<x \leq 1 \\ x^{2}+2 & \text { if } x>1\end{cases}$
The given piecewise function (repeated)

SOLUTION

First, let's determine whether each of the three pieces of f is continuous. The first piece, $f(x)=x+2$, is a linear function; it is continuous at every number x. The second piece, $f(x)=2$, a constant function, is continuous at every number x. And the third piece, $f(x)=x^{2}+2$, a polynomial function, is also continuous at every number x. Thus, these three functions, a linear function, a constant function, and a polynomial function, can be graphed without lifting a pencil from the paper. However, the pieces change at $x=0$ and at $x=1$. Is it necessary to lift a pencil from the paper when graphing f at these values? It appears that we must investigate continuity at 0 and at 1 .

To determine whether the function is continuous at 0 , we check the conditions for continuity with $a=0$.

Condition $1 \boldsymbol{f}$ is defined at \boldsymbol{a}. Is $f(0)$ defined? Because $a=0$, we use the first line of the piecewise function, where $x \leq 0$.

$$
\begin{aligned}
f(x) & =x+2 \quad \begin{array}{ll}
\text { This is the function's equation for } \mathrm{x} \leq 0, \text { which includes } \mathrm{x}=0 . \\
f(0) & =0+2 \\
& =2
\end{array} \quad \text { Replace } \mathrm{x} \text { with } 0 .
\end{aligned}
$$

Because $f(0)$ is a real number, $2, f(0)$ is defined.
Condition $2 \lim _{x \rightarrow a} f(x)$ exists. Does $\lim _{x \rightarrow 0} f(x)$ exist? To answer this question, we look at the values of $f(x)$ when x is close to 0 . Let us investigate the left- and right-hand limits. If these limits are equal, then $\lim _{x \rightarrow 0} f(x)$ exists. To find $\lim _{x \rightarrow 0^{-}} f(x)$, the left-hand limit, we look at the values of $f(x)$ when x is close to 0 but less than 0 . Because x is less than 0 , we use the first line of the piecewise function, $f(x)=x+2$ if $x \leq 0$. Thus,

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+2)=0+2=2 .
$$

To find $\lim _{x \rightarrow 0^{+}} f(x)$, the right-hand limit, we look at the values of $f(x)$ when x is close to 0 but greater than 0 . Because x is greater than 0 , we use the second line of the piecewise function, $f(x)=2$ if $0<x \leq 1$. Thus,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2=2 .
$$

Because the left- and right-hand limits are both equal to $2, \lim _{x \rightarrow 0} f(x)=2$. Thus, we see that $\lim _{x \rightarrow 0} f(x)$ exists.
Condition $3 \lim _{x \rightarrow a} f(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{a}) \quad$ Does $\lim _{x \rightarrow 0} f(x)=f(0)$? We found that $\lim _{x \rightarrow 0} f(x)=2$ and $f(0)=2$. This means that as x gets closer to 0 , the corresponding values of $f(x)$ get closer to the function value at $0: \lim _{x \rightarrow 0} f(x)=f(0)$.

Because the three conditions are satisfied, we conclude that f is continuous at 0 .
Now we must determine whether the function is continuous at 1 , the other value of x where the pieces change. We check the conditions for continuity with $a=1$.
Condition $1 \boldsymbol{f}$ is defined at \boldsymbol{a}. Is $f(1)$ defined? Because $a=1$, we use the second line of the piecewise function, where $0<x \leq 1$.

$$
\begin{array}{ll}
f(x)=2 & \text { This is the function's equation for } 0<x \leq 1, \text { which includes } x=1 \\
f(1)=2 & \text { Replace } x \text { with } 1 .
\end{array}
$$

Because $f(1)$ is a real number, $2, f(1)$ is defined.
Condition $2 \lim _{x \rightarrow a} f(x)$ exists. Does $\lim _{x \rightarrow 1} f(x)$ exist? We investigate left- and righthand limits as x approaches 1 . To find $\lim _{x \rightarrow 1^{-1}} f(x)$, the left-hand limit, we look at values of $f(x)$ when x is close to 1 but less than 1 . Thus, we use the second line of the piecewise function, $f(x)=2$ if $0<x \leq 1$. The left-hand limit is

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2=2
$$

FIGURE 11.14 This piecewise function is continuous at 0 , where pieces change, and discontinuous at 1 , where pieces change.

To find $\lim _{x \rightarrow 1^{+}} f(x)$, the right-hand limit, we look at values of $f(x)$ when x is close to 1 but greater than 1 . Thus, we use the third line of the piecewise function, $f(x)=x^{2}+2$ if $x>1$. The right-hand limit is

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+2\right)=1^{2}+2=3 .
$$

The left- and right-hand limits are not equal: $\lim _{x \rightarrow 1^{-}} f(x)=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=3$. This means that $\lim _{x \rightarrow 1} f(x)$ does not exist.

Because one of the three conditions is not satisfied, we conclude that f is not continuous at 1 .

In summary, the given function is discontinuous at 1 only. The graph of f, shown in Figure 11.14, illustrates this conclusion.

8 Check Point 2 Determine for what numbers x, if any, the following function is discontinuous:

$$
f(x)= \begin{cases}2 x & \text { if } x \leq 0 \\ x^{2}+1 & \text { if } 0<x \leq 2 \\ 7-x & \text { if } x>2\end{cases}
$$

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. A function f is continuous at a when three conditions are satisfied.

- f is defined at \qquad so that \qquad is a real number.
- lim \qquad exists.
- \lim \qquad $=$ \qquad

2. True or false: For the function $f(x)=\frac{1}{x-3}, f$ is not defined at 3 , so f is discontinuous at 3 .
3. True or false: For the piecewise function defined by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}-25}{x-5} & \text { if } x \neq 5 \\
12 & \text { if } x=5
\end{array}\right.
$$

$\lim _{x \rightarrow 5} f(x)$ exists and is equal to 10 , so f is continuous at 5 .
4. Consider the piecewise function defined by

$$
f(x)= \begin{cases}1-x & \text { if } x<1 \\ 0 & \text { if } x=1 . \\ x^{2}-1 & \text { if } x>1\end{cases}
$$

We find $\lim _{x \rightarrow-1} f(x)$ using $f(x)=$ \qquad .We find $\lim _{x \rightarrow 1^{+}} f(x)$ using $f(x)=$ \qquad .The function's definition indicates that $f(1)=$ \qquad If we
determine that $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$, we can conclude that \qquad
5. True or false: A polynomial function is continuous at every number.
6. True or false: A piecewise function is always discontinuous at each of its jumps.

EXERCISE SET 11.3

Practice Exercises

In Exercises 1-18, use the definition of continuity to determine whether f is continuous at a.

1. $f(x)=2 x+5$
$a=1$
2. $f(x)=3 x+4$
$a=1$
3. $f(x)=x^{2}-3 x+7$
$a=4$
4. $f(x)=x^{2}-5 x+6$
$a=4$
5. $f(x)=\frac{x^{2}+4}{x-2}$
6. $f(x)=\frac{x^{2}+6}{x-5}$
$a=3$
$a=6$
7. $f(x)=\frac{x+5}{x-5}$
$a=5$
8. $f(x)=\frac{x+7}{x-7}$
$a=7$
9. $f(x)=\frac{x-5}{x+5}$
$a=5$
10. $f(x)=\frac{x^{2}+5 x}{x^{2}-5 x}$
$a=0$
11. $f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 5 & \text { if } x=2\end{cases}$
$a=2$
12. $f(x)= \begin{cases}\frac{x^{2}-36}{x-6} & \text { if } x \neq 6 \\ 13 & \text { if } x=6\end{cases}$
$a=6$
13. $f(x)=\frac{x-7}{x+7}$
$a=7$
14. $f(x)=\frac{x^{2}+8 x}{x^{2}-8 x}$ $a=0$
15. $f(x)= \begin{cases}x-5 & \text { if } x \leq 0 \\ x^{2}+x-5 & \text { if } x>0\end{cases}$
$a=0$
16. $f(x)= \begin{cases}x-4 & \text { if } x \leq 0 \\ x^{2}+x-4 & \text { if } x>0\end{cases}$
$a=0$
17. $f(x)= \begin{cases}1-x & \text { if } x<1 \\ 0 & \text { if } x=1 \\ x^{2}-1 & \text { if } x>1\end{cases}$
$a=1$
18. $f(x)= \begin{cases}2-x & \text { if } x<1 \\ 1 & \text { if } x=1 \\ x^{2} & \text { if } x>1\end{cases}$
$a=1$
In Exercises 19-34, determine for what numbers, if any, the given function is discontinuous.
19. $f(x)=x^{2}+4 x-6$
20. $f(x)=\frac{x+1}{(x+1)(x-4)}$
21. $f(x)=\frac{\sin x}{x}$
22. $f(x)=\pi$
23. $f(x)= \begin{cases}x-1 & \text { if } x \leq 1 \\ x^{2} & \text { if } x>1\end{cases}$
24. $f(x)=x^{2}+8 x-10$
25. $f(x)=\frac{x+2}{(x+2)(x-5)}$
26. $f(x)=\frac{1-\cos x}{x}$
27. $f(x)=c$
28. $f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1\end{cases}$
29. $f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{cases}$
30. $f(x)= \begin{cases}x+6 & \text { if } x \leq 0 \\ 6 & \text { if } 0<x \leq 2 \\ x^{2}+1 & \text { if } x>2\end{cases}$
31. $f(x)= \begin{cases}x+7 & \text { if } x \leq 0 \\ 7 & \text { if } 0<x \leq 3 \\ x^{2}-1 & \text { if } x>3\end{cases}$
32. $f(x)= \begin{cases}5 x & \text { if } x<4 \\ 21 & \text { if } x=4 \\ x^{2}+4 & \text { if } x>4\end{cases}$
33. $f(x)= \begin{cases}7 x & \text { if } x<6 \\ 41 & \text { if } x=6 \\ x^{2}+6 & \text { if } x>6\end{cases}$

Practice Plus

In Exercises 35-38, graph each function. Then determine for what numbers, if any, the function is discontinuous.
35. $f(x)=\left\{\begin{aligned} \sin x & \text { if }-\pi \leq x<0 \\ -\sin x & \text { if } 0 \leq x<\pi \\ \cos x & \text { if } \pi \leq x \leq 2 \pi\end{aligned}\right.$
36. $f(x)=\left\{\begin{aligned}-\cos x & \text { if }-\pi \leq x<0 \\ -\sin x & \text { if } 0 \leq x<\pi \\ \sin x & \text { if } \pi \leq x \leq 2 \pi\end{aligned}\right.$
37. $f(x)=\left\{\begin{aligned}-1 & \text { if } x \text { is an integer. } \\ 1 & \text { if } x \text { is not an integer. }\end{aligned}\right.$
38. $f(x)=\left\{\begin{aligned} 2 & \text { if } x \text { is an odd integer. } \\ -2 & \text { if } x \text { is not an odd integer. }\end{aligned}\right.$

In Exercises 39-42, determine for what numbers, if any, the function is discontinuous. Construct a table to find any required limits.
39. $f(x)=\left\{\begin{array}{ll}\frac{\sin 2 x}{x} & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{array}\right.$ 40. $f(x)= \begin{cases}\frac{\sin 3 x}{x} & \text { if } x \neq 0 \\ 3 & \text { if } x=0\end{cases}$
41. $f(x)= \begin{cases}\frac{\cos x}{x-\frac{\pi}{2}} & \text { if } x \neq \frac{\pi}{2} \\ 1 & \text { if } x=\frac{\pi}{2}\end{cases}$
42. $f(x)= \begin{cases}\frac{\sin x}{x-\pi} & \text { if } x \neq \pi \\ 1 & \text { if } x=\pi\end{cases}$

Application Exercises

43. The graph represents the percentage of required topics in a precalculus course, $p(t)$, that a student learned at various times, t, throughout the course. At time t_{2}, the student panicked for an instant during an exam. At time t_{3}, after working on a set of cumulative review exercises, a big jump in understanding suddenly took place.

a. Find $\lim _{t \rightarrow t_{1}} p(t)$ and $p\left(t_{1}\right)$.
b. Is p continuous at t_{1} ? Use the definition of continuity to explain your answer.
c. Find $\lim _{t \rightarrow t_{2}} p(t)$ and $p\left(t_{2}\right)$.
d. Is p continuous at t_{2} ? Use the definition of continuity to explain your answer.
e. Find $\lim _{t \rightarrow t_{3}} p(t)$ and $p\left(t_{3}\right)$.
f. Is p continuous at t_{3} ? Use the definition of continuity to explain your answer.
g. Find $\lim _{t \rightarrow t_{4}} p(t)$ and $p\left(t_{4}\right)$.
h. Explain the meaning of both the limit and the function value in part (g) in terms of the time in the course and the percentage of topics learned.
44. The figure shows the cost of mailing a first-class letter, $f(x)$, as a function of its weight, x, in ounces.

Source: Lynn E. Baring, Postmaster, Inverness, CA
a. Find $\lim _{x \rightarrow 3^{-}} f(x)$.
b. Find $\lim _{x \rightarrow 3^{+}} f(x)$.
c. What can you conclude about $\lim _{x \rightarrow 3} f(x)$? How is this shown by the graph?
d. What aspect of costs for mailing a letter causes the graph to jump vertically by the same amount at its discontinuities?
45. The following piecewise function gives the tax owed, $T(x)$, by a single taxpayer in 2011 on a taxable income of x dollars.
$T(x)=\left\{\begin{array}{clc}0.10 x & \text { if } & 0<x \leq 8500 \\ 850.00+0.15(x-8500) & \text { if } & 8500<x \leq 34,500 \\ 4750.00+0.25(x-34,500) & \text { if } & 34,500<x \leq 83,600 \\ 17,025.00+0.28(x-83,600) & \text { if } & 83,600<x \leq 174,400 \\ 42,449.00+0.33(x-174,400) & \text { if } & 174,400<x \leq 379,150 \\ 110,016.50+0.35(x-379,150) & \text { if } & x>379,150 .\end{array}\right.$
a. Determine whether T is continuous at 8500 .
b. Determine whether T is continuous at 34,500 .
c. If T had discontinuities, use one of these discontinuities to describe a situation where it might be advantageous to earn less money in taxable income.

Writing in Mathematics

46. Explain how to determine whether a function is continuous at a number.
47. If a function is not defined at a, how is this shown on the function's graph?
48. If a function is defined at a, but $\lim _{x \rightarrow a} f(x)$ does not exist, how is this shown on the function's graph?
49. If a function is defined at $a, \lim _{x \rightarrow a} f(x)$ exists, but $\lim _{x \rightarrow a} f(x) \neq f(a)$, how is this shown on the function's graph?
50. In Exercises 43-44, functions that modeled learning in a precalculus course and the cost of mailing a letter had jumps in their graphs. Describe another situation that can be modeled by a function with discontinuities. What aspect of this situation causes the discontinuities?
51. Give two examples of the use of the word continuous in everyday English. Compare its use in your examples to its meaning in mathematics.

Technology Exercises

52. Use your graphing utility to graph any five of the functions in Exercises 1-18 and verify whether f is continuous at a.
53. Estimate $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$ by using the TABLE feature of your graphing utility to create a table of values. Then use the ZOOM IN feature to zoom in on the graph of f near and to the right of $x=0$ to justify or improve your estimate.

Critical Thinking Exercises

Make Sense? In Exercises 54-57, determine whether each statement makes sense or does not make sense, and explain your reasoning.
54. If $\lim _{x \rightarrow a} f(x) \neq f(a)$ and $\lim _{x \rightarrow a} f(x)$ exists, I can redefine $f(a)$ to make f continuous at a.
55. If $\lim _{x \rightarrow a^{a}} f(x) \neq f(a)$ and $\lim _{x \rightarrow a^{a}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, I can redefine $f(a)$ to make f continuous at a.
56. f and g are both continuous at a, although $f+g$ is not.
57. f and g are both continuous at a, although $\frac{f}{g}$ is not.
58. Define $f(x)=\frac{x^{2}-81}{x-9}$ at $x=9$ so that the function becomes continuous at 9 .
59. Is it possible to define $f(x)=\frac{1}{x-9}$ at $x=9$ so that the function becomes continuous at 9? How does this discontinuity differ from the discontinuity in Exercise 58?
60. For the function

$$
f(x)= \begin{cases}x^{2} & \text { if } x<1 \\ A x-3 & \text { if } x \geq 1\end{cases}
$$

find A so that the function is continuous at 1 .

Group Exercise

61. In this exercise, the group will define three piecewise functions. Each function should have three pieces and two values of x at which the pieces change.
a. Define and graph a piecewise function that is continuous at both values of x where the pieces change.
b. Define and graph a piecewise function that is continuous at one value of x where the pieces change and discontinuous at the other value of x where the pieces change.
c. Define and graph a piecewise function that is discontinuous at both values of x where the pieces change.
At the end of the activity, group members should turn in the functions and their graphs. Do not use any of the piecewise functions or graphs that appear anywhere in this book.

Preview Exercises

Exercises 62-64 will help you prepare for the material covered in the next section. In each exercise, find the indicated difference quotient and simplify.
62. If $f(x)=x^{2}+x$, find $\frac{f(2+h)-f(2)}{h}$.
63. If $f(x)=x^{3}$, find $\frac{f(x+h)-f(x)}{h}$.
64. If $s(t)=-16 t^{2}+48 t+160$, find $\frac{s(a+h)-s(a)}{h}$.

CHAPTER 11 Mid-Chapter Check Point

WHAT YOU KNOW: We learned that $\lim _{x \rightarrow a} f(x)=L$ means that as x gets closer to a, but remains unequal to a, the corresponding values of $f(x)$ get closer to L. We found limits using tables, graphs, and properties of limits. The quotient property for limits did not apply to fractional expressions in which the limit of the denominator is zero. In these cases, rewriting the expression using factoring or rationalizing the numerator or denominator was helpful
before finding the limit. We saw that if the left-hand limit, $\lim _{x \rightarrow a^{-}} f(x),(x$ approaches a from the left) is not equal to the right-hand limit, $\lim _{x \rightarrow a^{+}} f(x),(x$ approaches a from the right $)$, then $\lim _{x \rightarrow a} f(x)$ does not exist. Finally, we defined continuity in terms of limits. A function f is continuous at a when f is defined at $a, \lim _{x \rightarrow a} f(x)$ exists, and $\lim _{x \rightarrow a} f(x)=f(a)$. If f is not continuous at a, we say that f is discontinuous at a.

In Exercises 1-7, use the graphs of f and g to find the indicated limit or function value, or state that the limit or function value does not exist.

1. $\lim _{x \rightarrow-1^{-}} f(x)$
2. $\lim _{x \rightarrow-1^{+}} f(x)$
3. $\lim _{x \rightarrow-1} f(x)$
4. $\lim _{x \rightarrow 1}[f(x)+g(x)]$
5. $\lim _{x \rightarrow 0}[f(x)-g(x)]$
6. $(f-g)(0)$

In Exercises 9-11, use the table to find the indicated limit.

\boldsymbol{x}	-0.03	-0.02	-0.01	-0.007	0.007	0.01	0.02	0.03
$\boldsymbol{f}(\boldsymbol{x})=\frac{\sin \boldsymbol{x}}{\boldsymbol{2 x}^{2}-\boldsymbol{x}}$	-0.9433	-0.9615	-0.9804	-0.9862	-1.014	-1.02	-1.042	-1.064
$\boldsymbol{g}(\boldsymbol{x})=\frac{\boldsymbol{e}^{\boldsymbol{x}}-\boldsymbol{\operatorname { t a n } \boldsymbol { x }}}{\cos ^{2} \boldsymbol{x}}$	1.0014	1.0006	1.0002	1.0001	1.0001	1.0001	1.0006	1.0013

9. $\lim _{x \rightarrow 0} f(x)$
10. $\lim _{x \rightarrow 0} g(x)$
11. $\lim _{x \rightarrow 0} \frac{4 g(x)}{[f(x)]^{2}}$

In Exercises 12-17, find the limits.
12. $\lim _{x \rightarrow-2}\left(x^{3}-x+5\right)$
13. $\lim _{x \rightarrow 3} \sqrt{x^{2}-3 x+4}$
14. $\lim _{x \rightarrow 5} \frac{2 x^{2}-x+4}{x-1}$
15. $\lim _{x \rightarrow 5} \frac{2 x^{2}-7 x-15}{x-5}$
16. $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}$
17. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+10}-\frac{1}{x}}{x}$

In Exercises 18-19, a piecewise function is given. Use the function to find the indicated limit, or state that the limit does not exist.
18. $f(x)= \begin{cases}9-2 x & \text { if } x<4 \\ \sqrt{x-4} & \text { if } x \geq 4\end{cases}$
a. $\lim _{x \rightarrow 4^{-}} f(x)$
b. $\lim _{x \rightarrow 4^{+}} f(x)$
c. $\lim _{x \rightarrow 4} f(x)$

7. $\lim _{x \rightarrow 1} \sqrt{10+f(x)}$
8. Use the graph of f shown above to determine for what numbers the function is discontinuous. Then use the definition of continuity to verify each discontinuity.
19. $f(x)= \begin{cases}\frac{x^{4}-16}{x-2} & \text { if } x \neq 2 \\ 32 & \text { if } x=2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$

In Exercises 20-21, use the definition of continuity to determine whether f is continuous at a.
20. $f(x)= \begin{cases}\sqrt{3-x} & \text { if } x \leq 3 \\ x^{2}-3 x & \text { if } x>3\end{cases}$ $a=3$
21. $\begin{aligned} f(x) & = \begin{cases}\frac{(x+3)^{2}-9}{x} & \text { if } x \neq 0 \\ 6 & \text { if } x=0\end{cases} \\ a & =0\end{aligned}$
22. Determine for what numbers, if any, the following function is discontinuous:

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x+1} & \text { if } x<-1 \\ 2 x & \text { if }-1 \leq x \leq 5 \\ 3 x-4 & \text { if } x>5\end{cases}
$$

SECTION 11.4 Introduction to Derivatives

Objectives

(1) Find slopes and equations of tangent lines.
2. Find the derivative of a function.
(3) Find average and instantaneous rates of change.
(4) Find instantaneous velocity.

Things change over time and most changes occur at uneven rates. This is illustrated in the chapter opener (page 1091) with a sequence of photos of a young boy transforming into an adult. What does calculus have to say about this radical transformation?

In this section, we will see how calculus allows motion and change to be analyzed by "freezing the frame" of a continuously changing process,
 instant by instant. For example, Figure $\mathbf{1 1 . 1 5}$ shows a male's changing height over intervals of time. Over the period of time from P to D, his average rate of growth is his change in height-that is, his height at time D minus his height at time P-divided by the change in time from P to D.

The lines $P D, P C, P B$, and $P A$ shown in Figure $\mathbf{1 1 . 1 5}$ have slopes that show the man's average growth rates for successively shorter periods of time. Calculus makes these time frames so small that their limit approaches a single point - that is, a single instant in time. This point is shown as point P in Figure 11.15. The slope of the line that touches the graph at P gives the man's growth rate at one instant in time, P.

Keep this informal discussion of this man and his growth rate in mind as you read this section. We begin with the calculus that describes the slope of the line that touches the graph in Figure 11.15 at P.

Slopes and Equations of Tangent Lines

FIGURE 11.15
(1) Find slopes and equations of tangent lines.

FIGURE 11.16 Height as a function of age

In Chapter 1, we saw that if the graph of a function is not a straight line, the average rate of change between any two points is the slope of the line containing the two points. We called this line a secant line.

Figure 11.16 shows the graph of a male's height, in inches, as a function of his age, in years. Two points on the graph are labeled: $(13,57)$ and $(18,76)$. At age 13 , this person was 57 inches tall, and at age 18, he was 76 inches tall. The slope of the secant line containing these two points is

$$
\frac{76-57}{18-13}=\frac{19}{5}=3 \frac{4}{5}
$$

Slope is the change in the y-coordinates divided by the change in the x-coordinates.

The man's average rate of change, or average growth rate, from 13 to 18 was $3 \frac{4}{5}$ inches per year.

How can we find this person's growth rate at the instant when he was 13 ? We can find this instantaneous rate of change by repeating the computation of slope from 13 to 17 , then from 13 to 16 , then from 13 to 15 , again from 13 to 14 , again from 13 to $13 \frac{1}{2}$, and once again from 13 to 13.01 . What limit is approached by these computations as the shrinking interval of time gets closer and closer to the instant when the man was 13 ?

We answer these questions by considering the graph of any function f, shown in Figure 11.17. We need to find the slope, or steepness, of this curve at the point $P=(a, f(a))$. This slope will reveal the function's instantaneous rate of change at a. We begin by choosing a second point, Q, whose x-coordinate is $a+h$, where $h \neq 0$. The point $Q=(a+h, f(a+h))$ is shown in Figure 11.17.

How do we find the average rate of change of f between points P and Q ? We find the slope of the secant line, the line containing P and Q.

FIGURE 11.17 Finding the average rate of change, or the slope of the secant line

Slope of secant line

$$
\begin{aligned}
& =\frac{f(a+h)-f(a)}{a+h-a} \quad \begin{array}{l}
\text { Slope is the change in } y \text {-coordinates, } f(a+h)-f(a), \\
\text { divided by the change in } x \text {-coordinates, }(a+h)-a .
\end{array} \\
& =\frac{f(a+h)-f(a)}{h} \text { Simplify. }
\end{aligned}
$$

Do you recognize this expression as the difference quotient presented in Chapter 1? We will make use of this expression and our understanding of limits to find the slope of a graph at a specific point.

What happens if the distance labeled h in Figure $\mathbf{1 1 . 1 7}$ approaches 0? The value of the x-coordinate of point $Q, a+h$, will get closer and closer to a. Can you see that a is the x-coordinate of point P ? Thus, as h approaches 0 , point Q approaches point P. Examine Figure 11.18 to see how we visualize the changing position of point Q.

Figure 11.18 also shows how the secant line between points P and Q changes as h approaches 0 . Note how the position of the secant line changes as the position of Q changes. The secant line between point P and point Q approaches the red line that touches the graph of f at point P. This limiting position of the secant line is called the tangent line to the graph of f at the point $P=(a, f(a))$.

According to our earlier derivation, the slope of each secant line in Figure 11.18 is

$$
\frac{f(a+h)-f(a)}{h} . \quad \begin{aligned}
& \text { This difference quotient is also the average rate of } \\
& \text { change of } f \text { from } x_{1}=a \text { to } x_{2}=a+h .
\end{aligned}
$$

As h approaches 0 , this slope approaches the slope of the tangent line to the curve at $(a, f(a))$. Thus, the slope of the tangent line to the curve at $(a, f(a))$ is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This limit also represents the instantaneous rate of change of f with respect to \boldsymbol{x} at \boldsymbol{a}.

Slope of the Tangent Line to a Curve at a Point

The slope of the tangent line to the graph of a function $y=f(x)$ at $(a, f(a))$ is given by

$$
m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that this limit exists. This limit also describes

- the slope of the graph of f at $(a, f(a))$.
- the instantaneous rate of change of f with respect to x at a.

EXAMPLE 1 Finding the Slope of a Tangent Line

Find the slope of the tangent line to the graph of $f(x)=x^{2}+x$ at $(2,6)$.

SOLUTION

The slope of the tangent line at $(a, f(a))$ is

$$
m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

We use this formula to find the slope of the tangent line at the given point. Because we are finding the slope of the tangent line at $(2,6)$, we know that $a=2$.

$$
\begin{aligned}
& m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(2+h)^{2}+(2+h)\right]-\left[2^{2}+2\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4+4 h+h^{2}+2+h\right]-6}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+5 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(h+5)}{h} \quad \text { Factor the numerator. } \\
& =\lim _{h \rightarrow 0}(h+5) \quad \text { Divide both the numerator and } \\
& \text { denominator by } h \text {. This is permitted } \\
& \text { because } h \text { approaches } 0 \text {, but } h \neq 0 \text {. } \\
& =0+5 \\
& \text { Use limit properties. } \\
& =5 \\
& \text { Because } a=2 \text {, substitute } 2 \text { into the } \\
& \text { formula for each occurrence of } a \text {. } \\
& \text { To find } f(2+h) \text {, replace } x \text { in } \\
& f(x)=x^{2}+x \text { with } 2+h \text {. To find } \\
& f(2) \text { replace } x \text { with } 2 \text {. } \\
& \text { Square } 2+h \text { using } \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} . \\
& \text { Combine like terms in the numerator. } \\
& \text { Factor the numerator. } \\
& \text { Divide both the numerator and } \\
& \begin{array}{l}
\text { denominator by } h \text {. This is permitted } \\
\text { because } h \text { approaches } 0 \text {, but } h \neq 0 \text {. }
\end{array} \\
& \text { Use limit properties. }
\end{aligned}
$$

FIGURE 11.19

TECHNOLOGY

Graphing utilities with a DRAW TANGENT feature will draw tangent lines to curves and display their slope-intercept equations. Figure $\mathbf{1 1 . 2 0}$ shows the tangent line to the graph of $y=x^{2}+x$ at the point whose x-coordinate is 2 . Also displayed is the slope-intercept equation of the tangent line, $y=5 x-4$.

FIGURE 11.20

Thus, the slope of the tangent line to the graph of $f(x)=x^{2}+x$ at $(2,6)$ is 5 . This is shown in Figure 11.19. We also say that the slope of the graph of $f(x)=x^{2}+x$ at $(2,6)$ is 5 .
\int Check Point 1 Find the slope of the tangent line to the graph of $f(x)=x^{2}-x$ at $(4,12)$.

In Example 1, we found the slope of the tangent line shown in Figure 11.19. We can find an equation of this line using the point-slope form of the equation of a line

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

The tangent line passes through $(2,6): x_{1}=2$ and $y_{1}=6$. The slope of the tangent line is $5: m=5$. The point-slope equation of the tangent line is

$$
y-6=5(x-2)
$$

We can solve for y and express the equation of the tangent line in slope-intercept form: $y=m x+b$. The slope-intercept equation of the tangent line is

$$
\begin{aligned}
y-6 & =5 x-10 \quad \text { Apply the distributive property. } \\
y & =5 x-4 . \\
& \text { Add } 6 \text { to both sides and write in slope-intercept form. }
\end{aligned}
$$

EXAMPLE 2 Finding the Slope-Intercept Equation of a Tangent Line

Find the slope-intercept equation of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(4,2)$.

SOLUTION

We begin by finding the slope of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(4,2)$.

$$
\begin{array}{rlrl}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} & \begin{array}{l}
\text { The slope of the tangent line at }(a, f(f) \\
\text { is } \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} & \begin{array}{l}
\text { To find } f(4+h), \text { replace } x \text { in } f(x)= \\
\text { with } 4+h \cdot f(4)=\sqrt{4}=2
\end{array} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}\right] & \begin{array}{l}
\text { Rationalize the numerator. } \\
\end{array} & \begin{array}{l}
\text { Multiply the numerators. }
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)} & \begin{array}{l}
\text { Simplify the numerator. }
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{1}{h(\sqrt{4+h}+2)} & \begin{array}{l}
\text { Divide both the numerator and the } \\
\text { denominator by } h . ~ T h i s ~ i s ~ p e r m i t t e d ~
\end{array} \\
\text { because } h \text { approaches } 0, \text { but } h \neq 0 .
\end{array}
$$

Now that we have the slope of the tangent line, we can write the slope-intercept equation. Begin with the point-slope form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

The tangent line is given to pass through $(4,2): x_{1}=4$ and $y_{1}=2$. We found the slope of the tangent line to be $\frac{1}{4}: m=\frac{1}{4}$. The point-slope equation of the tangent line is

$$
y-2=\frac{1}{4}(x-4) .
$$

Solving for y, we obtain the slope-intercept equation of the tangent line.

$$
\begin{aligned}
y-2=\frac{1}{4} x-1 & \text { Apply the distributive property. } \\
y=\frac{1}{4} x+1 & \begin{array}{l}
\text { Add } 2 \text { to both sides. This is the slope-intercept form, } \mathrm{y}=m \mathrm{~m}+b, \\
\\
\\
\text { of the equation. }
\end{array}
\end{aligned}
$$

The slope-intercept equation of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(4,2)$ is $y=\frac{1}{4} x+1$. Figure $\mathbf{1 1 . 2 1}$ shows the graph of f and the tangent line.

FIGURE 11.21
$\$$ Check Point 2 Find the slope-intercept equation of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(1,1)$.
(2) Find the derivative of a function.

The Derivative of a Function

In Examples 1 and 2, we found the slope of a tangent line to the graph of f at $(a, f(a))$, where a was a specific number. We can also find the slope of a tangent line at $(x, f(x))$, where x can represent any number in the domain of f for which the slope of the tangent line is defined. The resulting function is called the derivative of f at x.

Definition of the Derivative of a Function

Let $y=f(x)$ denote a function f. The derivative of \boldsymbol{f} at \boldsymbol{x}, denoted by $f^{\prime}(x)$, read " f prime of x," is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that this limit exists. The derivative of a function f gives the slope of f for any value of x in the domain of f^{\prime}.

By evaluating the derivative, you can compute the slopes of various tangent lines to the graph of a function. Thus, the derivative gives you a way to analyze your moving world by revealing a function's instantaneous rate of change at any moment.

Blitzer Bonus || The Seeds of Change

Every shape that's born bears in its womb the seeds of change.

-Ovid (Roman poet)

Figure 11.22 shows a graph involving change, namely, a male's height as a function of his age. The derivative of this function provides a formula for the slope of the tangent line to the function's graph at any point. The figure shows four tangent lines. The derivative of this function would reveal that the tangent line with the greatest slope touches the curve somewhere between $x=3$ and $x=4$. Thus, the instantaneous rate of change in the boy's growth is greatest at some moment in time between the ages of 3 and 4 .

FIGURE 11.22 Analyzing continuous change at an instant

EXAMPLE 3 Finding the Derivative of a Function

a. Find the derivative of $f(x)=x^{2}+3 x$ at x. That is, find $f^{\prime}(x)$.
b. Find the slope of the tangent line to the graph of $f(x)=x^{2}+3 x$ at $x=-2$ and at $x=-\frac{3}{2}$.

SOLUTION

a. We use the definition of the derivative of f at x to find the derivative of the given function.

$$
\begin{array}{rlrl}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & & \text { Use the definition of the derivative. } \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+3(x+h)\right]-\left(x^{2}+3 x\right)}{h} & & \text { To find } f(x+h) \text {, replace } x \text { in } \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+3 x+3 h-x^{2}-3 x}{h} & & \begin{array}{l}
\text { Perform the indicated operations } \\
\text { in the numerator. }
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+3 h}{h} & & \text { Simplify the numerator: } \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+3)}{h} & & \text { Factor the numerator. } \\
& =\lim _{h \rightarrow 0}(2 x+h+3) & & \text { Divide the numerator and the } \\
& =2 x+0+3 & & \begin{array}{l}
\text { denominator by } h . \\
\text { Use limit properties. As } h \\
\text { approaches } 0, \text { only the term }
\end{array} \\
\text { containing } h \text { is affected. }
\end{array}
$$

FIGURE 11.23 Two tangent lines to the graph of $f(x)=x^{2}+3 x$ and their slopes

The derivative of $f(x)=x^{2}+3 x$ is

$$
f^{\prime}(x)=2 x+3
$$

b. The derivative gives the slope of the tangent line at any point. Thus, to find the slope of the tangent line to the graph of $f(x)=x^{2}+3 x$ at $x=-2$, evaluate the derivative at -2 . Similarly, to find the slope of the tangent line at $x=-\frac{3}{2}$, evaluate the derivative at $-\frac{3}{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =2 x+3 \\
f^{\prime}(-2) & =2(-2)+3=-4+3=-1 \\
f^{\prime}\left(-\frac{3}{2}\right) & =2\left(-\frac{3}{2}\right)+3=-3+3=0
\end{aligned}
$$

Figure 11.23 shows the graph of $f(x)=x^{2}+3 x$ and tangent lines at $x=-2$ and $x=-\frac{3}{2}$. The slope of the decreasing green tangent line at $x=-2$ is -1 . The slope of the horizontal red tangent line at $x=-\frac{3}{2}$ is 0 .

\int Check Point 3

a. Find the derivative of $f(x)=x^{2}-5 x$ at x. That is, find $f^{\prime}(x)$.
b. Find the slope of the tangent line to the graph of $f(x)=x^{2}-5 x$ at $x=-1$ and at $x=3$.

Applications of the Derivative

Many applications of the derivative involve analyzing change by determining a function's instantaneous rate of change at any moment. How do we use the derivative of a function to reveal such changes? We know that the derivative of f at x is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Thus, the derivative of f at a is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Do you recognize this limit? It describes the instantaneous rate of change of f with respect to x at a.

Average and Instantaneous Rates of Change

Average Rate of Change The average rate of change of f from $x=a$ to $\boldsymbol{x}=\boldsymbol{a}+\boldsymbol{h}$ is given by the difference quotient

$$
\frac{f(a+h)-f(a)}{h}
$$

Instantaneous Rate of Change The instantaneous rate of change of \boldsymbol{f} with respect to \boldsymbol{x} at \boldsymbol{a} is the derivative of f at a :

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

EXAMPLE 4 Finding Average and Instantaneous Rates of Change

The function $f(x)=x^{3}$ describes the volume of a cube, $f(x)$, in cubic inches, whose length, width, and height each measure x inches. If x is changing,
a. Find the average rate of change of the volume with respect to x as x changes from 5 inches to 5.1 inches and from 5 inches to 5.01 inches.
b. Find the instantaneous rate of change of the volume with respect to x at the moment when $x=5$ inches.

SOLUTION

a. As x changes from 5 to $5.1, a=5$ and $h=0.1$. The average rate of change of the volume with respect to x as x changes from 5 to 5.1 is determined as follows.

$$
\begin{array}{ll}
\frac{f(a+h)-f(a)}{h} & \begin{array}{l}
\text { The difference quotient gives the average rate of change } \\
\text { from a to a }+h .
\end{array} \\
=\frac{f(5+0.1)-f(5)}{0.1} & \text { This is the average rate of change from } 5 \text { to 5.1. } \\
=\frac{f(5.1)-f(5)}{0.1} & \text { Simplify. } \\
=\frac{5.1^{3}-5^{3}}{0.1} & \text { Use } f(x)=x^{3} \text { and substitute } 5.1 \text { and } 5 \text {, respectively, for } x . \\
=76.51 &
\end{array}
$$

The average rate of change in the volume is 76.51 cubic inches per inch as x changes from 5 to 5.1 inches.

As x changes from 5 to $5.01, a=5$ and $h=0.01$. The average rate of change of the volume with respect to x as x changes from 5 to 5.01 is determined as follows.

$$
\begin{array}{ll}
\frac{f(a+h)-f(a)}{h} & \begin{array}{l}
\text { The difference quotient gives the average rate of change } \\
\text { from a to } a+h .
\end{array} \\
=\frac{f(5+0.01)-f(5)}{0.01} & \text { This is the average rate of change from } 5 \text { to } 5.01 . \\
=\frac{f(5.01)-f(5)}{0.01} & \text { Simplify. } \\
=\frac{5.011^{3}-5^{3}}{0.01} & \begin{array}{l}
\text { Use } f(x)=x^{3} \text { and substitute } 5.01 \text { and } 5 \text {, respectively, } \\
=75.1501
\end{array}
\end{array}
$$

The average rate of change in the volume is 75.1501 cubic inches per inch as x changes from 5 to 5.01 inches.
b. Instantaneous rates of change are given by the derivative. The derivative of f at $a, f^{\prime}(a)$, is the instantaneous rate of change of f with respect to x at a. We must find the instantaneous rate of change of the volume with respect to x at the moment when $x=5$ inches. This means that we must find $f^{\prime}(5)$. We find $f^{\prime}(5)$ by first finding $f^{\prime}(x)$, the derivative, and then evaluating f^{\prime} at 5 .

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { Use the definition of the derivative. } \\
& =\operatorname{li}(x+h)^{3}-x^{3} \quad \text { To find } f(x+h) \text {, replace } \mathrm{x} \text { in } \\
& f(x)=x^{3} \text { with } x+h . \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h} \quad \begin{array}{l}
\text { Use the Binomial Theorem to cube } \\
x+h .
\end{array} \\
& =\lim \frac{3 x^{2} h+3 x h^{2}+h^{3}}{} \quad \text { Simplify the numerator: } \\
& x^{3}-x^{3}=0 \text {. } \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \quad \text { Factor the numerator. } \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \quad \text { Divide the numerator and the } \\
& \text { denominator by } h \text {. } \\
& =3 x^{2}+3 x \cdot 0+0^{2} \quad \text { Use limit properties. As happroaches } 0 \text {, } \\
& \text { only terms containing } h \text { are affected. }
\end{aligned}
$$

The derivative of $f(x)=x^{3}$ is $f^{\prime}(x)=3 x^{2}$. To find the instantaneous change of f at 5 , evaluate the derivative at 5 .

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(5)=3 \cdot 5^{2}=75
\end{aligned}
$$

The instantaneous rate of change of the volume with respect to x at the moment when $x=5$ inches is 75 cubic inches per inch. Notice how the average rates of change that we computed in part (a), 76.51 and 75.1501, are approaching the instantaneous rate of change, 75 .
$\$$ Check Point 4 Use the function in Example 4, $f(x)=x^{3}$, to find each of the following:
a. the average rate of change of the volume with respect to x as x changes from 4 inches to 4.1 inches and from 4 inches to 4.01 inches.
b. the instantaneous rate of change of the volume with respect to x at the moment when $x=4$ inches.

Find instantaneous velocity.
The ideas of calculus are frequently applied to position functions that express an object's position, $s(t)$, in terms of time, t. In the time interval from $t=a$ to $t=a+h$, the change in the object's position is

$$
s(a+h)-s(a) .
$$

The average velocity over this time interval is

$$
\begin{gathered}
s(a+h)-s(a) \\
h \\
\begin{array}{l}
\text { The numerator is the } \\
\text { change in position. } \\
\text { The denominator is the change } \\
\text { in time from } t=a \text { to } t=a+h .
\end{array}
\end{gathered}
$$

Now suppose that we compute the average velocities over shorter and shorter time intervals $[a, a+h]$. This means that we let h approach 0 . As in our previous discussion, we define the instantaneous velocity at time $t=a$ to be the limit of these average velocities. This limit is the derivative of s at a.

Instantaneous Velocity

Suppose that a function expresses an object's position, $s(t)$, in terms of time, t. The instantaneous velocity of the object at time $t=a$ is

$$
s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Instantaneous velocity at time a is also called velocity at time a.

EXAMPLE 5 Finding Instantaneous Velocity

A ball is thrown straight up from a rooftop 160 feet high with an initial velocity of 48 feet per second. The function

$$
s(t)=-16 t^{2}+48 t+160
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown. The ball misses the rooftop on its way down and eventually strikes the ground.
a. What is the instantaneous velocity of the ball 2 seconds after it is thrown?
b. What is the instantaneous velocity of the ball when it hits the ground?

Blitzer Banus

Roller Coasters and Derivatives

Roller coaster rides give you the opportunity to spend a few hair-raising minutes plunging hundreds of feet, accelerating to 80 miles an hour in seven seconds, and enduring vertical loops that turn you upside-down. By finding a function that models your distance above the ground at every moment of the ride and taking its derivative, you can determine when the instantaneous velocity is the greatest. As you experience the glorious agony of the roller coaster, this is your moment of peak terror.

SOLUTION

Instantaneous velocity is given by the derivative of a function that expresses an object's position, $s(t)$, in terms of time, t. The instantaneous velocity of the ball at a seconds is $s^{\prime}(a)$.
$s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h} \quad$ This derivative describes instantaneous velocity at time a.
To find $s(a+h)$, replace t in $s(t)=-16 t^{2}+48 t+160$ with $a+h$. To find $s(a)$, replace t with a. Thus,

$$
s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{-16(a+h)^{2}+48(a+h)+160-\left(-16 a^{2}+48 a+160\right)}{h}
$$

Take a few minutes to simplify the numerator of the difference quotient and factor out h. You should obtain

$$
s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{k(-32 a-16 h+48)}{k}=-32 a-16 \cdot 0+48=-32 a+48
$$

The instantaneous velocity of the ball at a seconds is

$$
s^{\prime}(a)=-32 a+48
$$

a. The instantaneous velocity of the ball at 2 seconds is found by replacing a with 2.

$$
s^{\prime}(2)=-32 \cdot 2+48=-64+48=-16
$$

Two seconds after the ball is thrown, its instantaneous velocity is -16 feet per second. The negative sign indicates that the ball is moving downward when $t=2$ seconds.
b. To find the instantaneous velocity of the ball when it hits the ground, we need to know how many seconds elapse between the time the ball is thrown from the rooftop and the time it hits the ground. The ball hits the ground when $s(t)$, its height above the ground, is 0 . Thus, we set $s(t)$ equal to 0 .

$$
\begin{array}{rlrl}
-16 t^{2}+48 t+160 & =0 & & \text { Set } s(t)=0 \\
-16\left(t^{2}-3 t-10\right) & =0 & & \text { Factor out-16. } \\
-16(t-5)(t+2) & =0 & & \text { Factor completely. } \\
t-5=0 & t+2 & =0 & \\
\text { Set each variable factor equal to } 0 . \\
t=5 & t & =-2 & \\
\text { Solve for } t .
\end{array}
$$

Because we are describing the ball's position for $t \geq 0$, we discard the solution $t=-2$. The ball hits the ground at 5 seconds. Its instantaneous velocity at 5 seconds is found by replacing a with 5 in $s^{\prime}(a)$.

$$
\begin{aligned}
& s^{\prime}(a)=-32 a+48 \quad \text { This is the ball's instantaneous velocity after a seconds. } \\
& s^{\prime}(5)=-32 \cdot 5+48=-160+48=-112
\end{aligned}
$$

The instantaneous velocity of the ball when it hits the ground is -112 feet per second. The negative sign indicates that the ball is moving downward at the instant that it strikes the ground.

Check Point 5 A ball is thrown straight up from ground level with an initial velocity of 96 feet per second. The function

$$
s(t)=-16 t^{2}+96 t
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown.
a. What is the instantaneous velocity of the ball after 4 seconds?
b. What is the instantaneous velocity of the ball when it hits the ground?

CONCEPT AND VOCABULARY CHECK

Fill in each blank so that the resulting statement is true.

1. The slope of the tangent line to the graph of a function $y=f(x)$ at $(a, f(a))$ is given by
$\lim _{h \rightarrow 0}$ \qquad
provided that this limit exists. This limit also describes the \qquad rate of change of \qquad with respect to \qquad at a.
2. Using $f(x)=3 x^{2}+x$, we can determine that

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=7
$$

This means that the point-slope equation of the tangent line to the graph of $f(x)=3 x^{2}+x$ at $(1,4)$ is $y-$ $=\quad$ _ $(x$ $(x-\quad)$.
3. The derivative of f at x, denoted by \qquad is defined by

$$
\lim _{h \rightarrow 0}
$$

\qquad
provided that this limit exists.
4. True or false: The derivative of a function f gives the slope of f for any value of x in the domain of f^{\prime}.
5. Using $f(x)=x^{2}-3 x+5$, we can determine that $f^{\prime}(x)=2 x-3$. This means that the point-slope equation of the tangent line to the graph of $f(x)=$ $x^{2}-3 x+5$ at $(6,23)$ is $y-$ \qquad $=\quad$ _ $(x-$ \qquad).
6. A foul tip of a baseball is hit straight upward from a height of 4 feet with an initial velocity of 64 feet per second. The function $s(t)=-16 t^{2}+64 t+4$ describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is hit. Using this function, we can determine that $s^{\prime}(a)=-32 a+64$. This tells us that one second after the ball is hit, its instantaneous velocity is \qquad feet per second. The positive sign indicates that the ball is moving \qquad when $t=1$ second.

EXERCISE SET 11.4

Practice Exercises

In Exercises 1-14,
a. Find the slope of the tangent line to the graph of f at the given point.
b. Find the slope-intercept equation of the tangent line to the graph of f at the given point.

1. $f(x)=2 x+3$ at $(1,5)$
2. $f(x)=4 x+2$ at $(1,6)$
3. $f(x)=x^{2}+4$ at $(-1,5)$
4. $f(x)=x^{2}+7$ at $(-1,8)$
5. $f(x)=5 x^{2}$ at $(-2,20)$
6. $f(x)=4 x^{2}$ at $(-2,16)$
7. $f(x)=2 x^{2}-x$ at $(2,6)$
8. $f(x)=3 x^{2}+x$ at $(1,4)$
9. $f(x)=2 x^{2}+x-3$ at $(0,-3)$
10. $f(x)=2 x^{2}-x+5$ at $(0,5)$
11. $f(x)=\sqrt{x}$ at $(9,3)$
12. $f(x)=\sqrt{x}$ at $(16,4)$
13. $f(x)=\frac{1}{x}$ at $(1,1)$
14. $f(x)=\frac{2}{x}$ at $(1,2)$

In Exercises 15-28,
a. Find the derivative of f at x. That is, find $f^{\prime}(x)$.
b. Find the slope of the tangent line to the graph of f at each of the two values of x given to the right of the function.
15. $f(x)=-3 x+7 ; x=1, x=4$
16. $f(x)=-5 x+3 ; x=1, x=4$
17. $f(x)=x^{2}-6 ; x=-1, x=3$
18. $f(x)=x^{2}-8 ; x=-1, x=3$
19. $f(x)=x^{2}-3 x+5 ; x=\frac{3}{2}, x=2$
20. $f(x)=x^{2}-4 x+7 ; x=\frac{3}{2}, x=2$
21. $f(x)=x^{3}+2 ; x=-1, x=1$
22. $f(x)=x^{3}-2 ; x=-1, x=1$
23. $f(x)=\sqrt{x} ; x=1, x=4$
24. $f(x)=\sqrt{x} ; x=25, x=100$
25. $f(x)=\frac{4}{x} ; x=-2, x=1$
26. $f(x)=\frac{8}{x} ; x=-2, x=1$
27. $f(x)=3.2 x^{2}+2.1 x ; x=0, x=4$
28. $f(x)=1.3 x^{2}-1.4 x ; x=0, x=4$

Practice Plus
In Exercises 29-36,
a. Use transformations of a common graph to obtain the graph of f.
b. Find the slope-intercept equation of the tangent line to the graph of f at the point whose x-coordinate is given.
c. Use the y-intercept and the slope to graph the tangent line in the same rectangular coordinate system as the graph of f.
29. $f(x)=(x-2)^{2}$; tangent line at 3
30. $f(x)=(x+2)^{2}$; tangent line at -1
31. $f(x)=\sqrt{x+1}-2$; tangent line at 0
32. $f(x)=\sqrt{x-1}+2$; tangent line at 2
33. $f(x)=x^{3}+2$; tangent line at -1
34. $f(x)=x^{3}-2$; tangent line at 1
35. $f(x)=-\frac{1}{x+3}$; tangent line at -2
36. $f(x)=-\frac{1}{x-2}$; tangent line at 3

Application Exercises

37. The function $f(x)=x^{2}$ describes the area of a square, $f(x)$, in square inches, whose sides each measure x inches. If x is changing,
a. Find the average rate of change of the area with respect to x as x changes from 6 inches to 6.1 inches and from 6 inches to 6.01 inches.
b. Find the instantaneous rate of change of the area with respect to x at the moment when $x=6$ inches.
38. The function $f(x)=x^{2}$ describes the area of a square, $f(x)$, in square inches, whose sides each measure x inches. If x is changing,
a. Find the average rate of change of the area with respect to x as x changes from 10 inches to 10.1 inches and from 10 inches to 10.01 inches.
b. Find the instantaneous rate of change of the area with respect to x at the moment when $x=10$ inches.
In Exercises 39-42, express all answers in terms of π.
39. The function $f(x)=\pi x^{2}$ describes the area of a circle, $f(x)$, in square inches, whose radius measures x inches. If the radius is changing,
a. Find the average rate of change of the area with respect to the radius as the radius changes from 2 inches to 2.1 inches and from 2 inches to 2.01 inches.
b. Find the instantaneous rate of change of the area with respect to the radius when the radius is 2 inches.
40. The function $f(x)=\pi x^{2}$ describes the area of a circle, $f(x)$, in square inches, whose radius measures x inches. If the radius is changing,
a. Find the average rate of change of the area with respect to the radius as the radius changes from 4 inches to 4.1 inches and from 4 inches to 4.01 inches.
b. Find the instantaneous rate of change of the area with respect to the radius when the radius is 4 inches.
41. The function $f(x)=4 \pi x^{2}$ describes the surface area, $f(x)$, of a sphere of radius x inches. If the radius is changing, find the instantaneous rate of change of the surface area with respect to the radius when the radius is 6 inches.
42. The function $f(x)=5 \pi x^{2}$ describes the volume, $f(x)$, of a right circular cylinder of height 5 feet and radius x feet. If the radius is changing, find the instantaneous rate of change of the volume with respect to the radius when the radius is 8 feet.
43. An explosion causes debris to rise vertically with an initial velocity of 64 feet per second. The function

$$
s(t)=-16 t^{2}+64 t
$$

describes the height of the debris above the ground, $s(t)$, in feet, t seconds after the explosion.
a. What is the instantaneous velocity of the debris 1 second after the explosion? 3 seconds after the explosion?
b. What is the instantaneous velocity of the debris when it hits the ground?
44. An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The function

$$
s(t)=-16 t^{2}+72 t
$$

describes the height of the debris above the ground, $s(t)$, in feet, t seconds after the explosion.
a. What is the instantaneous velocity of the debris $\frac{1}{2}$ second after the explosion? 4 seconds after the explosion?
b. What is the instantaneous velocity of the debris when it hits the ground?
45. A foul tip of a baseball is hit straight upward from a height of 4 feet with an initial velocity of 96 feet per second. The function

$$
s(t)=-16 t^{2}+96 t+4
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is hit.
a. What is the instantaneous velocity of the ball 2 seconds after it is hit? 4 seconds after it is hit?
b. The ball reaches its maximum height above the ground when the instantaneous velocity is zero. After how many seconds does the ball reach its maximum height? What is its maximum height?
46. A foul tip of a baseball is hit straight upward from a height of 4 feet with an initial velocity of 64 feet per second. The function

$$
s(t)=-16 t^{2}+64 t+4
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is hit.
a. What is the instantaneous velocity of the ball 1 second after it is hit? 3 seconds after it is hit?
b. The ball reaches its maximum height above the ground when the instantaneous velocity is zero. After how many seconds does the ball reach its maximum height? What is its maximum height?

Writing in Mathematics

47. Explain how the tangent line to the graph of a function at point P is related to the secant lines between points P and Q on the function's graph.
48. Explain what we mean by the slope of the graph of a function at a point.
49. Explain how to find the slope of $f(x)=x^{2}$ at $(2,4)$.
50. Explain how to write an equation of the tangent line to the graph of $f(x)=x^{2}$ at $(2,4)$.
51. If you are given $y=f(x)$, the equation of function f, describe how to find $f^{\prime}(x)$.
52. Explain how to use the derivative to compute the slopes of various tangent lines to the graph of a function.
53. Explain how the instantaneous rate of change of a function at a point is related to its average rates of change.
54. If a function expresses an object's position in terms of time, how do you find the instantaneous velocity of the object at any time during its motion?
55. Use the concept of an interval of time to describe how calculus views a particular instant of time.
56. You are about to take a great picture of fog rolling into San Francisco from the middle of the Golden Gate Bridge, 400 feet above the water. Whoops! You accidently lean too far over the safety rail and drop your camera. Your friend quips, "Well at least you know calculus; you can figure out the velocity with which the camera is going to hit the water." If the camera's height, $s(t)$, in feet, over the water after t seconds is $s(t)=400-16 t^{2}$, describe how to determine the camera's velocity at the instant of its demise.
57. A calculus professor introduced the derivative by saying that it could be summed up in one word: slope. Explain what this means.
58. For an unusual introduction to calculus using graphics and humor, read the first 100 pages (up through and including Chapter 2) of The Cartoon Guide to Calculus (Harpercollins, 2012) by cartoonist and Harvard-educated mathematician Larry Gonick. Write a report describing five new things you learned from the book that you did not know about calculus after completing this chapter. Did you find Gonick's attempt to teach calculus, using cartoon characters talking, commenting, and joking, helpful or distracting? (If you enjoy the use of comic art to humanize the world of functions, limits, and derivatives, and you're planning to take a calculus course in the future, read The Cartoon Guide to Calculus in its entirety, where you'll be taught the essentials of first-semester calculus.)

Technology Exercises

59. Use the DRAW TANGENT feature of a graphing utility to graph the functions and tangent lines for any five exercises from Exercises 1-14. Use the equation that is displayed on the screen to verify the slope-intercept equation of the tangent line that you found in each exercise.
60. Without using the DRAW TANGENT feature of a graphing utility, graph the function and the tangent line whose equation you found for any five exercises from Exercises 1-14. Does the line appear to be tangent to the graph of f at the point on f that is given in the exercise?
61. Use the feature on a graphing utility that gives the derivative of a function evaluated at any number to verify part (b) for any five of your answers in Exercises 15-28.

In Exercises 62-65, find, or approximate to two decimal places, the derivative of each function at the given number using a graphing utility.
62. $f(x)=x^{4}-x^{3}+x^{2}-x+1$ at 1
63. $f(x)=\frac{x}{x-3}$ at 6
64. $f(x)=x^{2} \cos x$ at $\frac{\pi}{4}$
65. $f(x)=e^{x} \sin x$ at 2

Critical Thinking Exercises

Make Sense? In Exercises 66-69, determine whether each statement makes sense or does not make sense, and explain your reasoning.
66. Because I have two points to work with, I use the formula for slope, $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, to find the slope of the tangent line to the graph of a function $y=f(x)$ at $(a, f(a))$.
67. I can find the slope of the tangent line to the graph of $f(x)$ at $(3, f(3))$ using $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$ or finding $f^{\prime}(x)$ and then replacing x with 3 .
68. I obtained $f^{\prime}(x)$ by finding $\lim _{h \rightarrow 0}[f(x+h)-f(x)]$ and $\lim _{h \rightarrow 0} h$, and then using the quotient rule for limits.
69. If $f(x)=\pi x^{2}$ describes the area of a circle, $f(x)$, with radius x, $f^{\prime}(5)>f^{\prime}(2)$ because the area increases more rapidly as the radius increases.

In Exercises 70-75, graphs of functions are shown in $[-5,5,1]$ by $[-5,5,1]$ viewing rectangles. Match each function with the graph of its derivative. Graphs of derivatives are labeled $(a)-(f)$ and are shown in $[-5,5,1]$ by $[-5,5,1]$ viewing rectangles.
70.

71.

72.

73.

74.

75.

a.

b.

c.

d.

e.

f.

76. A ball is thrown straight up from a rooftop 96 feet high with an initial velocity of 80 feet per second. The function

$$
s(t)=-16 t^{2}+80 t+96
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown. The ball misses the rooftop on its way down and eventually strikes the ground. What is its instantaneous velocity as it passes the rooftop on the way down?
77. Show that the rate of change of the area of a circle with respect to its radius is equal to the circumference of the circle.
78. Show that the x-coordinate of the vertex of the parabola whose equation is $y=a x^{2}+b x+c$ occurs when the derivative of the function is zero.
79. For any positive integer n, prove that if $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.

CHAPTER 11

Summary, Review, and Test

SUMMARY

DEFINITIONS AND CONCEPTS

11.1 Finding Limits Using Tables and Graphs

a. Limit Notation and Its Description $\lim _{x \rightarrow a} f(x)=L$ is read "the limit of $f(x)$ as x approaches a equals the number L." This means that as x gets closer to a, but remains unequal to a, the corresponding values of $f(x)$ get closer to L.
b. Limits can be found using tables.
c. Limits can be found using graphs.
d. Left-Hand Limit
$\lim _{x \rightarrow a^{-}} f(x)=L$ is read "the limit of $f(x)$ as x approaches a from the left equals L." This means that as x gets closer to a, but remains less than a, the corresponding values of $f(x)$ get closer to L.
e. Right-Hand Limit
$\lim _{x \rightarrow a^{+}} f(x)=L$ is read "the limit of $f(x)$ as x approaches a from the right equals L." This means that as x gets closer to a, but remains greater than a, the corresponding values of $f(x)$ get closer to L.
f. If $\lim _{x \rightarrow a^{a}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ does not exist.

Ex. 1, p. 1094;
Ex. 2, p. 1094
Ex. 3, p. 1096;
Ex. 4, p. 1096

Ex. 5, p. 1098

11.2 Finding Limits Using Properties of Limits

a. Properties of limits are given in the box on page 1111.
b. Properties of limits can be used to find one-sided limits.
c. When taking the limit of a fractional expression in which the limit of the denominator is zero, the quotient property for limits cannot be used. Rewriting the expression using factoring or rationalizing the numerator or denominator may be helpful before the limit is found.

11.3 Limits and Continuity

a. A function f is continuous at a when f is defined at $a, \lim _{x \rightarrow a} f(x)$ exists, and $\lim _{x \rightarrow a} f(x)=f(a)$. If f is not continuous at a, we say that f is discontinuous at a.

11.4 Introduction to Derivatives

a. The slope of the tangent line to the graph of a function $y=f(x)$ at $(a, f(a))$ is given by

$$
m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that this limit exists. The limit also describes the slope of the graph of f at $(a, f(a))$.
b. The Derivative of a Function

The derivative of f at x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that this limit exists. The derivative gives the slope of f for any value at x in the domain of f^{\prime}.
c. The derivative of f at $a, f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, gives the instantaneous rate of change of f with respect to x at a. Expressions for average and instantaneous rates of change are given in the box on page 1131.
d. If a function expresses an object's position, $s(t)$, in terms of time, t, the instantaneous velocity of the object at time $t=a$ is

$$
s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Ex. 1-Ex. 11, pp. 1105-1111
Ex. 12, p. 1112
Ex. 13, p. 1112;
Ex. 14, p. 1113

Ex. 1, p. 1118;
Ex. 2, p. 1119

Ex, 1, p. 1127;
Ex. 2, p. 1128

Ex. 3, p. 1130

Ex. 4, p. 1131

Ex. 5, p. 1133

REVIEW EXERCISES

11.1

In Exercises 1-3, construct a table to find the indicated limit.

1. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
2. $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$
3. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$

In Exercises 4-8, use the graph of f to find the indicated limit or function value.

4. $\lim _{x \rightarrow-4} f(x)$
5. $\lim _{x \rightarrow-1} f(x)$
6. $\lim _{x \rightarrow 3} f(x)$
7. $f(-4)$
8. $f(3)$

In Exercises 9-23, use the graph of function f to find the indicated limit or function value, or state that the limit or function value does not exist.

9. $\lim _{x \rightarrow-6^{+}} f(x)$
10. $\lim _{x \rightarrow-4^{-}} f(x)$
11. $\lim _{x \rightarrow-4^{+}} f(x)$
12. $\lim _{x \rightarrow-4} f(x)$
13. $f(-4)$
14. $\lim _{x \rightarrow-1^{+}} f(x)$
15. $\lim _{x \rightarrow-1^{-}} f(x)$
16. $\lim _{x \rightarrow-1} f(x)$
17. $f(-1)$
18. $f(2)$
19. $\lim _{x \rightarrow 2^{-}} f(x)$
20. $\lim _{x \rightarrow 2^{+}} f(x)$
21. $\lim _{x \rightarrow 2} f(x)$
22. $\lim _{x \rightarrow 5} f(x)$
23. $f(5)$

In Exercises 24-26, graph each function. Then use your graph to find the indicated limit.
24. $f(x)=\frac{x^{2}-9}{x-3}, \quad \lim _{x \rightarrow 3} f(x)$
25. $f(x)=\sin x, \quad \lim _{x \rightarrow \frac{3 \pi}{2}} f(x)$
26. $f(x)= \begin{cases}1-x & \text { if } x<0 \\ \cos x & \text { if } x \geq 0, \quad \lim _{x \rightarrow 0} f(x)\end{cases}$

11.2

In Exercises 27-37, find the limit.
27. $\lim _{x \rightarrow 4}\left(2 x^{2}-5 x+3\right)$
28. $\lim _{x \rightarrow-1}\left(-2 x^{3}-x+5\right)$
29. $\lim _{x \rightarrow-3}\left(x^{2}+1\right)^{3}$
30. $\lim _{x \rightarrow 4} \sqrt{x^{2}+9}$
31. $\lim _{x \rightarrow 5} \frac{11 x-3}{x^{2}+1}$
32. $\lim _{x \rightarrow-4} \frac{x^{2}-16}{x+4}$
33. $\lim _{x \rightarrow 7} \frac{5 x-35}{x-7}$
34. $\lim _{x \rightarrow 0} \frac{\sqrt{x+100}-10}{x}$
35. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{2}+x}$
36. $\lim _{x \rightarrow 100} \frac{\sqrt{x}-10}{x-100}$
37. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+5}-\frac{1}{5}}{x}$

In Exercises 38-40, a piecewise function is given. Use properties of limits to find the indicated limit, or state that the limit does not exist.
38. $f(x)= \begin{cases}x^{2}+1 & \text { if } x<2 \\ 3 x+1 & \text { if } x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$
39. $f(x)= \begin{cases}\sqrt[3]{x^{2}+7} & \text { if } x<1 \\ 4 x & \text { if } x \geq 1\end{cases}$
a. $\lim _{x \rightarrow 1^{-}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$
40. $f(x)= \begin{cases}\frac{x^{2}-25}{x+5} & \text { if } x \neq-5 \\ 13 & \text { if } x=-5\end{cases}$
a. $\lim _{x \rightarrow-5^{-}} f(x)$
b. $\lim _{x \rightarrow-5^{+}} f(x)$
c. $\lim _{x \rightarrow-5} f(x)$

11.3

In Exercises 41-45, use the definition of continuity to determine whether f is continuous at a.
41. $f(x)=3 x^{2}-2 x+1$
$a=4$
42. $f(x)=\frac{x^{2}-9}{x+3}$
$a=-3$
43. $f(x)= \begin{cases}\frac{x^{2}+5 x}{x^{2}-5 x} & \text { if } x \neq 0 \\ -2 & \text { if } x=0\end{cases}$
$a=0$
44. $f(x)= \begin{cases}\frac{x^{2}+x}{x^{2}-3 x-4} & \text { if } x \neq-1 \\ \frac{1}{5} & \text { if } x=-1\end{cases}$
$a=-1$
45. $f(x)= \begin{cases}3 x & \text { if } x<2 \\ 5 & \text { if } x=2 \\ x+4 & \text { if } x>2\end{cases}$
$a=2$
In Exercises 46-51, determine for what numbers, if any, the given function is discontinuous.
46. $f(x)=x^{3}+5 x^{2}-1$
47. $f(x)=\frac{x-1}{(x-1)(x+3)}$
48. $f(x)=\left\{\begin{aligned}-1 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{aligned}\right.$
49. $f(x)= \begin{cases}4 x & \text { if } x<5 \\ x^{2}-5 & \text { if } x \geq 5\end{cases}$
50. $f(x)= \begin{cases}\frac{x^{2}-4}{x+2} & \text { if } x \neq-2 \\ 4 & \text { if } x=-2\end{cases}$
51. $f(x)= \begin{cases}\frac{x^{2}-121}{x-11} & \text { if } x \neq 11 \\ 20 & \text { if } x=11\end{cases}$

11.4

In Exercises 52-53,
a. Find the slope of the tangent line to the graph of f at the given point.
b. Find the slope-intercept equation of the tangent line to the graph of f at the given point.
52. $f(x)=2 x^{2}+5 x$ at $(1,7)$
53. $f(x)=x^{2}-7 x-4$ at $(-1,4)$

In Exercises 54-57,
a. Find $f^{\prime}(x)$.
b. Find the slope of the tangent line to the graph of f at each of the two values of x given to the right of the function.
54. $f(x)=3 x^{2}+12 x-1 ; x=-2, x=1$
55. $f(x)=2 x^{3}-x ; x=-1, x=1$
56. $f(x)=\frac{1}{x} ; x=-2, x=2$
57. $f(x)=\sqrt{x} ; x=36, x=81$
58. The function $f(x)=5 x^{2}$ describes the volume of a rectangular box, $f(x)$, in cubic inches, whose square base has sides that each measure x inches and whose height is 5 inches. If x is changing,
a. Find the average rate of change of the volume with respect to x as x changes from 2 inches to 2.1 inches and from 2 inches to 2.01 inches.
b. Find the instantaneous rate of change of the volume with respect to x at the moment when $x=2$ inches.
59. The function $f(x)=\frac{4}{3} \pi x^{3}$ describes the volume, $f(x)$, of a sphere of radius x inches. If the radius is changing, find the instantaneous rate of change of the volume with respect to the radius when the radius is 5 inches. Express the answer in terms of π.
60. A baseball is thrown straight upward from a height of 5 feet with an initial velocity of 80 feet per second. The function

$$
s(t)=-16 t^{2}+80 t+5
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown.
a. What is the instantaneous velocity of the ball 2 seconds after it is thrown? 4 seconds after it is thrown?
b. The ball reaches its maximum height above the ground when the instantaneous velocity is zero. After how many seconds does the ball reach its maximum height? What is the maximum height?

CHAPTER 11 TEST

1. Construct a table to find $\lim _{x \rightarrow 9} \frac{9-x}{3-\sqrt{x}}$.

In Exercises 2-7, use the graph of function f to find the indicated limit or function value, or state that the limit or function value does not exist.

2. $\lim _{x \rightarrow-2} f(x)$
3. $f(-2)$
4. $\lim _{x \rightarrow 2^{-}} f(x)$
5. $\lim _{x \rightarrow 2^{+}} f(x)$
6. $\lim _{x \rightarrow 2} f(x)$
7. $\lim _{x \rightarrow 4} f(x)$

In Exercises 8-10, find the limit.
8. $\lim _{x \rightarrow-2}\left(x^{2}+x+1\right)^{4}$
9. $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}$
10. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

In Exercises 11-12, determine whether f is continuous at a.
11. $f(x)= \begin{cases}\frac{x^{2}-1}{x+1} & \text { if } x \neq-1 \\ 6 & \text { if } x=-1\end{cases}$ $a=-1$
12. $f(x)= \begin{cases}2-x & \text { if } x \leq 2 \\ x^{2}-2 x & \text { if } x>2\end{cases}$
$a=2$
In Exercises 13-14, find $f^{\prime}(x)$.
13. $f(x)=x^{2}-5 x+1$
14. $f(x)=\frac{10}{x}$
15. Find the slope-intercept equation of the tangent line to the graph of $f(x)=x^{2}$ at $(-3,9)$.
16. A ball is thrown straight upward. The function

$$
s(t)=-16 t^{2}+72 t
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown. What is the instantaneous velocity of the ball 3 seconds after it is thrown?

CUMULATIVE REVIEW EXERCISES (CHAPTERS P-11)

Solve each equation or inequality in Exercises 1-5.

1. $\frac{1}{x+2}>\frac{3}{x+1}$
2. $2 x^{3}+11 x^{2}-7 x-6=0$
3. $|2 x+4|>3$
4. $\cos ^{2} x+\sin x+1=0,0 \leq x<2 \pi$
5. $\log _{4}\left(x^{2}-9\right)-\log _{4}(x+3)=3$

In Exercises 6-15, graph each equation, function, or system in a rectangular coordinate system.
6. $f(x)=x^{3}+x^{2}-12 x$
7. $f(x)=\frac{2 x^{2}-5 x+2}{x^{2}-4}$
8. $f(x)= \begin{cases}-x+1 & \text { if }-1 \leq x<1 \\ 2 & \text { if } x=1 \\ x^{2} & \text { if } x>1\end{cases}$
9. $y=2 \sin \left(2 x+\frac{\pi}{2}\right)$ (Graph one period.)
10. $y=\frac{1}{2} \sec 2 \pi x, \quad 0 \leq x \leq 2$
11. $\left\{\begin{aligned} x-2 y & \leq 4 \\ x & \geq 2\end{aligned}\right.$
12. $x^{2}-4 y^{2}-4 x-24 y-48=0$
13. $f(x)=\sqrt{x}, g(x)=\sqrt{x-2}+1$ (Graph f and g in the same rectangular coordinate system.)
14. $x=3 \sin t, y=4 \cos t+2 ; 0 \leq t \leq 2 \pi$
15. $2 x^{2}+5 x y+2 y^{2}-\frac{9}{2}=0$
16. Find $f^{\prime}(x)$ if $f(x)=-2 x^{2}+7 x-1$.
17. Find $f^{-1}(x)$ if $f(x)=7 x-1$.
18. Find the limit: $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}+2 x-3}$.
19. Expand and simplify: $\left(x^{2}-3 y\right)^{4}$.
20. Write the slope-intercept form of the equation of the line passing through the point $(2,-3)$ and parallel to the line whose equation is $2 x+y-6=0$.
21. Find the dot product $\mathbf{v} \cdot \mathbf{w}$ and the angle between \mathbf{v} and \mathbf{w} :

$$
\mathbf{v}=-2 \mathbf{i}+\mathbf{j}, \quad \mathbf{w}=4 \mathbf{i}-3 \mathbf{j} .
$$

22. Find the partial fraction decomposition for

$$
\frac{1}{x\left(x^{2}+x+1\right)} .
$$

Verify each identity in Exercises 23-24.
23. $\tan \theta+\cot \theta=\sec \theta \csc \theta$
24. $\tan (\theta+\pi)=\tan \theta$
25. If $A=\left[\begin{array}{rrr}2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 3 & 2 \\ 2 & 1\end{array}\right]$, find $B A$.
26. Graph the polar equation: $r=4 \sin \theta$.
27. Express $h(x)=\left(x^{2}-3 x+7\right)^{9}$ as a composition of two functions f and g such that $h(x)=(f \circ g)(x)$.
28. Solve using matrices:

$$
\left\{\begin{aligned}
2 x-y-2 z= & -1 \\
x-2 y-z= & 1 \\
x+y+z= & 1
\end{aligned}\right.
$$

29. Use the formula for the sum of the first n terms of a geometric sequence to find $\sum_{i=1}^{6} 4(-2)^{i}$.
30. Use DeMoivre's Theorem to find

$$
\left[\sqrt{2}\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)\right]^{4}
$$

Write the answer in rectangular form.
31. A bank loaned out $\$ 120,000$, part of it at 8% per year and the rest at 18% per year.
a. Express the interest, I, on the two loans as a function of the amount loaned at $8 \%, x$.
b. If the interest received totaled $\$ 10,000$, how much was loaned at each rate?
32. A machine produces open boxes using square sheets of metal. The machine cuts equal-sized squares measuring 9 centimeters on a side from each corner. Then the machine shapes the metal into an open box by turning up the sides. If each box must have a volume of 225 cubic centimeters, what should be the dimensions of the piece of sheet metal?
33. You have 200 feet of fencing to enclose a small rectangular garden with one side against a barn. If you do not fence the side along the barn, find the length and width of the garden that will maximize its area. What is the largest area that can be enclosed?
34. Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve this exercise. You remove a pie that has a temperature of $375^{\circ} \mathrm{F}$ from the oven. You leave the pie in a room whose temperature is $72^{\circ} \mathrm{F}$. After 60 minutes, the temperature of the pie is $75^{\circ} \mathrm{F}$.
a. Write a model for the temperature of the pie, T, after t minutes.
b. When will the temperature of the pie be $250^{\circ} \mathrm{F}$?
35. You just purchased a rectangular waterfront lot along a river's edge. The area of the lot is 60,000 square feet. To create a sense of privacy, you decide to fence along three sides, excluding the side that fronts the river. An expensive fencing along the lot's front length costs $\$ 25$ per foot. An inexpensive fencing along the two side widths costs only $\$ 5$ per foot. Express the total cost, C, of fencing along the three sides as a function of the lot's length, x.

36. Two ships leave a harbor at the same time. One ship travels at a bearing of $\mathrm{N} 42^{\circ} \mathrm{E}$ for 23 miles. The other ship travels at a bearing of $\mathrm{N} 38^{\circ} \mathrm{W}$ for 72 miles. After both ships are anchored, how far apart are they? Round to the nearest tenth of a mile.
37. At a fixed temperature, the volume of a given mass of gas varies inversely as the pressure applied to the gas. A certain mass of gas has a volume of 40 cubic inches when the pressure is 22 pounds. What is the volume of the gas when the pressure is 30 pounds?
38. A ball is thrown straight upward. The function

$$
s(t)=-16 t^{2}+40 t
$$

describes the ball's height above the ground, $s(t)$, in feet, t seconds after it is thrown. What is the instantaneous velocity of the ball 2 seconds after it is thrown?
39. The figure shows an open box with a square base. The box is to have a volume of 4 cubic feet. Express the surface area of the box, A, as a function of the length of a side of its square base, x.

40. The function $f(x)=-2.32 x^{2}+76.58 x-559.87$ models the percentage of U.S. students, $f(x)$, who are x years old who say their school is not drug free, where $12 \leq x \leq 17$. At what age do 70% of U.S. students say that their school is not drug free? Round to the nearest tenth of a year.

APPENDIX A

Where Did That Come From? Selected Proofs

SECTION 3.3 Properties of Logarithms

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N
$$

Proof
We begin by letting $\log _{b} M=R$ and $\log _{b} N=S$.
Now we write each logarithm in exponential form.

$$
\begin{array}{ccc}
\log _{b} M=R & \text { means } & b^{R}=M . \\
\log _{b} N=S & \text { means } & b^{S}=N .
\end{array}
$$

By substituting and using a property of exponents, we see that

$$
M N=b^{R} b^{S}=b^{R+S}
$$

Now we change $M N=b^{R+S}$ to logarithmic form.

$$
M N=b^{R+S} \text { means } \log _{b}(M N)=R+S
$$

Finally, substituting $\log _{b} M$ for R and $\log _{b} N$ for S gives us

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N,
$$

the property that we wanted to prove.
The quotient and power rules for logarithms are proved using similar procedures.

The Change-of-Base Property

For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

Proof
To prove the change-of-base property, we let x equal the logarithm on the left side:

$$
\log _{b} M=x .
$$

Now we rewrite this logarithm in exponential form.

$$
\log _{b} M=x \quad \text { means } \quad b^{x}=M
$$

Because b^{x} and M are equal, the logarithms with base a for each of these expressions must be equal. This means that

$$
\begin{aligned}
\log _{a} b^{x} & =\log _{a} M \\
x \log _{a} b & =\log _{a} M \quad \text { Apply the power rule for logarithms on the left side. } \\
x & =\frac{\log _{a} M}{\log _{a} b} \quad \text { Solve for } x \text { by dividing both sides by } \log _{a} b .
\end{aligned}
$$

In our first step we let x equal $\log _{b} M$. Replacing x on the left side by $\log _{b} M$ gives us

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b},
$$

which is the change-of-base property.

SECTION 6.2 The Law of Cosines

Heron's Formula for the Area of a Triangle

The area of a triangle with sides a, b, and c is

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where s is one-half its perimeter: $s=\frac{1}{2}(a+b+c)$.
Proof
The proof of Heron's formula begins with a half-angle formula and the Law of Cosines.

$$
\begin{aligned}
& \cos \frac{C}{2}
\end{aligned}=\sqrt{\frac{1+\cos C}{2}}=\sqrt{\frac{1+\frac{a^{2}+b^{2}-c^{2}}{2 a b}}{2}} \begin{aligned}
& \begin{array}{c}
\text { This is the Law of Cosines } \\
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
\text { solved for } \cos C .
\end{array} \\
& \\
& =\sqrt{\frac{a^{2}+2 a b+b^{2}-c^{2}}{4 a b}}=\sqrt{\frac{(a+b)^{2}-c^{2}}{4 a b}}=\sqrt{\frac{(a+b+c)(a+b-c)}{4 a b}} \\
& \begin{array}{l}
\text { Multiply the numerator } \\
\text { and denominator of the } \\
\text { radicand by } 2 a b .
\end{array} \quad \text { Factor } a^{2}+2 a b+b^{2} .
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Factor the numerator } \\
\text { as the difference of } \\
\text { two squares. }
\end{array}
\end{aligned}
$$

We now introduce the expression for one-half the perimeter: $s=\frac{1}{2}(a+b+c)$. We replace $a+b+c$ in the numerator by $2 s$. We also find an expression for $a+b-c$ as follows:

$$
a+b-c=a+b+c-2 c=2 s-2 c=2(s-c) .
$$

Thus,

$$
\cos \frac{C}{2}=\sqrt{\frac{(a+b+c)(a+b-c)}{4 a b}}=\sqrt{\frac{2 s \cdot 2(s-c)}{4 a b}}=\sqrt{\frac{s(s-c)}{a b}} .
$$

In a similar manner, we obtain

$$
\sin \frac{C}{2}=\sqrt{\frac{1-\cos C}{2}}=\sqrt{\frac{(s-a)(s-b)}{a b}} .
$$

From our work in Section 6.1, we know that the area of a triangle is one-half the product of the length of two sides times the sine of their included angle.

$$
\begin{array}{rlrl}
\text { Area } & =\frac{1}{2} a b \sin C & & \\
& =\frac{1}{2} a b \cdot 2 \sin \frac{C}{2} \cos \frac{C}{2} & & \sin C=\sin 2 \frac{C}{2}=2 \sin \frac{C}{2} \cos \frac{C}{2} \\
& =a b \sqrt{\frac{(s-a)(s-b)}{a b}} \sqrt{\frac{s(s-c)}{a b}} & \begin{array}{l}
\text { Use the expressions for } \sin \frac{C}{2} \text { and } \\
\cos \frac{C}{2} \text { on page } 00 .
\end{array} \\
& =a b \frac{\sqrt{s(s-a)(s-b)(s-c)}}{\sqrt{a^{2} b^{2}}} & & \text { Multiply the radicands. } \\
& =\sqrt{s(s-a)(s-b)(s-c)} & & \text { Simplify: } \frac{a b}{\sqrt{a^{2} b^{2}}}=\frac{a b}{a b}=1 .
\end{array}
$$

SECTION 6.5 Complex Numbers in Polar Form; DeMoivre's Theorem

The Quotient of Two Complex Numbers in Polar Form

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form. Their quotient, $\frac{z_{1}}{z_{2}}$, is

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] .
$$

Proof
We begin by multiplying the numerator and denominator of the quotient, $\frac{z_{1}}{z_{2}}$, by the conjugate of the expression in parentheses in the denominator. Then we simplify the quotient using the difference formulas for sine and cosine.

$$
\begin{aligned}
& \frac{z_{1}}{z_{2}}=\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)} \\
& =\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)} \\
& =\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{r_{2}\left(\cos ^{2} \theta_{2}+\sin ^{2} \theta_{2}\right)} \\
& =\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{r_{2}} \\
& =\frac{r_{1}}{r_{2}}\left(\cos \theta_{1} \cos \theta_{2}-i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}-i^{2} \sin \theta_{1} \sin \theta_{2}\right) \\
& =\frac{r_{1}}{r_{2}}\left[\cos \theta_{1} \cos \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}\right)-i^{2} \sin \theta_{1} \sin \theta_{2}\right] \quad \text { Factor i from the second and third terms. } \\
& =\frac{r_{1}}{r_{2}}\left[\cos \theta_{1} \cos \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}\right)-(-1) \sin \theta_{1} \sin \theta_{2}\right] \quad i^{2}=-1 \\
& =\frac{r_{1}}{r_{2}}\left[\left(\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}\right)\right] \quad \text { Rearrange terms. } \\
& \text { This is } \cos \left(\theta_{1}-\theta_{2}\right) \text {. } \\
& \text { This is } \sin \left(\theta_{1}-\theta_{2}\right) \text {. } \\
& =\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

SECTION 6.7 The Dot Product

Properties of the Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors, and c is a scalar, then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $\mathbf{0} \cdot \mathbf{v}=0$
4. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
5. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$

Proof
To prove the second property, let

$$
\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}, \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}, \quad \text { and } \quad \mathbf{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j} .
$$

Then

$$
\begin{array}{rlrl}
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}\right) \cdot\left[\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}\right)+\left(w_{1} \mathbf{i}+w_{2} \mathbf{j}\right)\right] \\
& =\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}\right) \cdot\left[\left(v_{1}+w_{1}\right) \mathbf{i}+\left(v_{2}+w_{2}\right) \mathbf{j}\right] & & \begin{array}{l}
\text { These are the given vectors. } \\
\text { Add horizontal components } \\
\text { and ard vertical } \\
\text { components. }
\end{array} \\
& =u_{1}\left(v_{1}+w_{1}\right)+u_{2}\left(v_{2}+w_{2}\right) & & \begin{array}{l}
\text { Multiply horizontal } \\
\text { components and multiply } \\
\text { vertical components. }
\end{array} \\
& =u_{1} v_{1}+u_{1} w_{1}+u_{2} v_{2}+u_{2} w_{2} & & \begin{array}{l}
\text { Use the distributive } \\
\text { property. }
\end{array} \\
& =u_{1} v_{1}+u_{2} v_{2}+u_{1} w_{1}+u_{2} w_{2} & & \text { Rearrange terms. } \\
& & & \\
\begin{array}{cl}
\text { This is the dot } \\
\text { product of u and } \mathbf{v} .
\end{array} \quad \begin{array}{c}
\text { This is the dot } \\
\text { product of u and } \mathbf{w} .
\end{array} \\
& =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} .
\end{array}
$$

To prove the third property, let

$$
\mathbf{0}=0 \mathbf{i}+0 \mathbf{j} \quad \text { and } \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j} .
$$

Then

$$
\begin{aligned}
\mathbf{0} \cdot \mathbf{v} & =(0 \mathbf{i}+0 \mathbf{j}) \cdot\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}\right) & & \text { These are the given vectors. } \\
& =0 \cdot v_{1}+0 \cdot v_{2} & & \text { Multiply horizontal components } \\
& =0+0 & & \text { and multiply vertical components. } \\
& =0 . & &
\end{aligned}
$$

To prove the first part of the fifth property, let

$$
\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j} \quad \text { and } \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j} .
$$

Then

$$
\begin{aligned}
(c \mathbf{u}) \cdot \mathbf{v} & =\left[c\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}\right)\right] \cdot\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}\right) & & \text { These are the given vectors. } \\
& =\left(c u_{1} \mathbf{i}+c u_{2} \mathbf{j}\right) \cdot\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}\right) & & \text { Multiply each component of } u_{1} i+u_{2} j \text { by } c . \\
& =c u_{1} v_{1}+c u_{2} v_{2} & & \text { Multiply horizontal components and } \\
& =c\left(u_{1} v_{1}+u_{2} v_{2}\right) & & \text { multiply vertical components. } \\
& & & \text { Thactor out c from both terms. } \\
& \begin{array}{c}
\text { This she dot } \\
\text { product of } \mathbf{u} \text { and } \mathbf{v} .
\end{array} & & \\
& =c(\mathbf{u} \cdot \mathbf{v}) & &
\end{aligned}
$$

SECTION 9.1 The Ellipse

The Standard Form of the Equation of an Ellipse with a Horizontal Major Axis Centered at the Origin

Proof
Refer to Figure A.1.

Refer to the discussion on page 00 and let $b^{2}=a^{2}-c^{2}$ in the preceding equation.

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { Divide both sides by } a^{2} b^{2}
$$

SECTION 9.2 The Hyperbola

The Asymptotes of a Hyperbola Centered at the Origin

The hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

with a horizontal transverse axis has the two asymptotes

$$
y=\frac{b}{a} x \quad \text { and } \quad y=-\frac{b}{a} x .
$$

Proof

Begin by solving the hyperbola's equation for y.

$$
\begin{array}{rlrl}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 & & \text { This is the standard form of the equation of a hyperbola. } \\
\frac{y^{2}}{b^{2}} & =\frac{x^{2}}{a^{2}}-1 & & \text { We isolate the term involving } y^{2} \text { to solve for } y . \\
y^{2} & =\frac{b^{2} x^{2}}{a^{2}}-b^{2} & & \begin{array}{l}
\text { Multiply both sides by } b^{2} . \\
y^{2}
\end{array} \\
=\frac{b^{2} x^{2}}{a^{2}}\left(1-\frac{a^{2}}{x^{2}}\right) & \begin{array}{l}
\text { Factor out } \frac{b^{2} x^{2}}{a^{2}} \text { on the right. Verify that this result is } \\
\text { correct by multiplying using the distributive property } \\
\text { and obtaining the previous step. }
\end{array} \\
y & = \pm \sqrt{\frac{b^{2} x^{2}\left(1-\frac{a^{2}}{a^{2}}\right)}{x^{2}}} \begin{array}{l}
\text { Solve for } y \text { using the square root property: If } u^{2}=d, \\
\text { then } u= \pm \sqrt{d} .
\end{array} \\
y & = \pm \frac{b}{a} \sqrt{1-\frac{a^{2}}{x^{2}}} \quad & \begin{array}{l}
\text { Simplify. }
\end{array}
\end{array}
$$

As $|x| \rightarrow \infty$, the value of $\frac{a^{2}}{x^{2}}$ approaches 0 . Consequently, the value of y can be
approximated by approximated by

$$
y= \pm \frac{b}{a} x
$$

This means that the lines whose equations are $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x$ are asymptotes for the graph of the hyperbola.

The Transition from Precalculus to Calculus

Calculus is the study of limits and their applications. (Limits are introduced in Sections 11.1 and 11.2.)

Calculus uses limits to extend ideas and topics from precalculus to more general situations.

Precalculus Topic	Calculus Generalization
Slope of a line	Slope of a curve
Average rate of change; average velocity	Instantaneous rate of change; instantaneous velocity
Location of a quadratic function's $\left[f(x)=a x^{2}+b x+c\right]$ maximum or minimum value	Location of any function's relative maxima and/or minima
Area of a rectangle	Area of a plane region bounded by curves
Length of a line segment	Length of a curve
Center of a circle	Center of gravity (the balance point) of a plane region
Work done by a constant force moving an object along a linear path	Work done by a variable force moving an object along a curved path

The vast array of generalizations made possible by the invention of limits marked a turning point in human history, having as dramatic an impact on our lives as the invention of the wheel and the printing press.

This page intentionally left blank

ANSWERS TO SELECTED EXERCISES

CHAPTER P

Exercise Set P. 1

19. 60 ft 20. 40 ft
20. $\{r, e, a, l\}$
21. $\{1,2,3,7,8\}$
22. $\{1,2,3,4,5,6,7,8,10\}$
23. $\{0,1,2,3,4,5,6\}$
24. $\{e, m, p, t, y\}$
25. a. $\sqrt{100}$
b. $0, \sqrt{100}$
c. $-9,0, \sqrt{100}$
d. $-9,-\frac{4}{5}, 0,0.25,9.2, \sqrt{100}$
e. $\sqrt{3}$
f. $-9,-\frac{4}{5}, 0,0.25, \sqrt{3}, 9.2, \sqrt{100}$
26. a. $\sqrt{49}$
b. $0, \sqrt{49}$
c. $-7,0, \sqrt{49}$
d. $-7,-0 . \overline{6}, 0, \sqrt{49}$
e. $\sqrt{50}$
f. $-7,-0 . \overline{6}, 0, \sqrt{49}, \sqrt{50}$
27. a. $\sqrt{64}$
b. $0, \sqrt{64}$
c. $-11,0, \sqrt{64}$
d. $-11,-\frac{5}{6}, 0,0.75, \sqrt{64}$
e. $\sqrt{5}, \pi \quad$ f. $-11,-\frac{5}{6}, 0,0.75, \sqrt{5}, \pi, \sqrt{64}$
28. a. $\sqrt{4}$
b. $0, \sqrt{4}$
c. $-5,0, \sqrt{4}$
d. $-5,-0 . \overline{3}, 0, \sqrt{4}$
$\begin{array}{ll}\text { e. } \sqrt{2} & \text { f. }-5,-0 . \overline{3}, 0, \sqrt{2}, \sqrt{4}\end{array}$
29. Answers may vary; an example is $\frac{1}{2}$.
30. $|-3-(-26)| ; 23$
31. $|-1.2-(-5.4)| ; 4.2$
32. commutative property of addition
33. $24 x-2$
34. $10 y-54$
35. $-5 x+13 y+1$
36. $x-(x+4) ;-4$
37. $6(-5 x) ;-30 x$
38. $10(-4 x) ;-40 x$
39. a. 140 beats per minute
b. 160 beats per minute
40. a. 95 beats per minute
b. 114 beats per minute
41. does not make sense

Exercise Set P. 2

48. $30 x^{11} y^{12}$
49. $-60,000,100,000$
50. $-70,000,100,000$
51. 6.38×10^{17}
52. 5.79×10^{17}
53. 6.3×10^{7}
54. 8.2×10^{7}
55. 6.4×10^{4}
56. 4.2×10^{4}
57. 1.22×10^{-11}
58. 1.53×10^{-11}
59. 2.67×10^{13}
60. 3.77×10^{13}
61. $\$ 1.0586 \times 10^{10}$
62. $\$ 8.832 \times 10^{9}$
63. 3.1536×10^{7}
64. does not make sense
65. does not make sense
66. about 2.94×10^{9} times

Exercise Set P. 3

116. b. 15.8 ; underestimates by 2.7 million \quad 117. $\frac{\sqrt{5}+1}{2} ; 1.62$ to 1

Exercise Set P. 4

4. yes; $x^{4}-x^{3}+x^{2}-5$
5. $11 x^{3}+7 x^{2}-12 x-4 ; 3$
6. $12 x^{3}-5 x^{2}-4 x-4 ; 3$
7. $12 x^{3}+4 x^{2}+12 x-14 ; 3$
8. $9 x^{4}+4 x^{3}-2 x+1 ; 4$
9. $6 x^{2}-6 x+2 ; 2$
10. $6 x^{3}+10 x^{2}+11 x-8 ; 3$
11. $x^{3}+125$
12. $2 x^{3}-9 x^{2}+19 x-15$
13. $2 x^{3}-9 x^{2}+10 x-3$
14. $x^{2}+10 x+21$
15. $x^{2}+13 x+40$
16. $x^{2}-2 x-15$
17. $x^{2}+x-2$ 23. $6 x^{2}+13 x+5$
18. $21 x^{2}+19 x+4 \quad$ 25. $10 x^{2}-9 x-9$
19. $14 x^{2}-31 x-10$
20. $15 x^{4}-47 x^{2}+28$
21. $21 x^{4}-41 x^{2}+10$
22. $8 x^{5}-40 x^{3}+3 x^{2}-15$
23. $7 x^{5}-14 x^{3}+5 x^{2}-10$
24. $16 x^{4}-25 x^{2}$
25. $9 x^{4}-16 x^{2}$
26. $x^{3}+6 x^{2}+12 x+8$
27. $8 x^{3}+36 x^{2}+54 x+27$
28. $27 x^{3}+108 x^{2}+144 x+64$
29. $27 x^{3}-108 x^{2}+144 x-64$
30. $8 x^{3}-36 x^{2}+54 x-27$
31. $7 x^{2}+38 x y+15 y^{2}$
32. $6 x^{2}+61 x y+63 y^{2}$
33. $2 x^{2}+x y-21 y^{2}$
34. $6 x^{2}+13 x y-5 y^{2}$
35. $15 x^{2} y^{2}+x y-2$
36. $14 x^{4} y^{2}-19 x^{2} y-3$
37. $x^{3}-y^{3}$
38. $x^{3}+y^{3}$
39. $9 x^{2}-25 y^{2}$
40. $49 x^{2}-9 y^{2}$
41. a. $\$ 54,647$; overestimates by $\$ 556$
b. $M-W=1.8 x^{3}-82 x^{2}+2644 x-11,449$
42. b. $M-W=1.8 x^{3}-82 x^{2}+2644 x-11,449$
43. makes sense, although answers may vary

Exercise Set P. 5

5. $9 x^{2}\left(x^{2}-2 x+3\right)$
6. $6 x^{2}\left(x^{2}-3 x+2\right)$
7. $(x+5)(x+3)$
8. $(2 x+1)(x+4)$
9. $(x-3)\left(x^{2}+12\right)$
10. $(2 x+5)\left(x^{2}+17\right)$
11. $(x-2)\left(x^{2}+5\right)$
12. $(x-3)\left(x^{2}+4\right)$
13. $(x-1)\left(x^{2}+2\right)$
14. $(x+6)\left(x^{2}-2\right)$
15. $(3 x-2)\left(x^{2}-2\right)$
16. $(x-1)\left(x^{2}-5\right)$
17. $(3 x-28)(x+1)$
18. $(2 x-1)(3 x-4)$
19. $(2 x-3)(3 x-4)$
20. $(2 x+3)(2 x+5)$
21. $(8 x+1)(x+4)$
22. $(5 x+8)(4 x-1)$
23. $(5 x-3)(3 x-2)$
24. $(2 x+y)(x+y)$
25. $(3 x+y)(x+y)$
26. $(3 x+2 y)(2 x-3 y) \quad$ 38. $(3 x-5 y)(2 x+y)$
27. $(3 x+5 y)(3 x-5 y)$
28. $(6 x+7 y)(6 x-7 y)$
29. $\left(x^{2}+4\right)(x+2)(x-2)$
30. $\left(x^{2}+1\right)(x+1)(x-1)$
31. $\left(4 x^{2}+9\right)(2 x+3)(2 x-3)$
32. $\left(9 x^{2}+1\right)(3 x+1)(3 x-1)$
33. $(x+3)\left(x^{2}-3 x+9\right)$
34. $(x+4)\left(x^{2}-4 x+16\right)$
35. $(x-4)\left(x^{2}+4 x+16\right)$
36. $(x-3)\left(x^{2}+3 x+9\right)$
37. $(2 x-1)\left(4 x^{2}+2 x+1\right)$
38. $(3 x-1)\left(9 x^{2}+3 x+1\right)$
39. $(4 x+3)\left(16 x^{2}-12 x+9\right)$
40. $(2 x+5)\left(4 x^{2}-10 x+25\right)$
41. $4(x+2)(x-3)$
42. $6(x+2)(x-5)$
43. $2\left(x^{2}+9\right)(x+3)(x-3)$
44. $7\left(x^{2}+1\right)(x+1)(x-1)$
45. $(x-3)(x+3)(x+2)$
46. $(x-5)(x+5)(x+3)$
47. $2(x-8)(x+7)$
48. $6(x-2)(x+1)$
49. $(x-2)(x+2)^{2}$
50. $(x-1)(x+1)(x+2)$
51. $y\left(y^{2}+9\right)(y+3)(y-3)$
52. $y\left(y^{2}+4\right)(y+2)(y-2)$
53. $5 y^{2}(2 y+3)(2 y-3)$
54. $3 y^{2}(4 y+1)(4 y-1)$
55. $(x-6+7 y)(x-6-7 y)$
56. $(x-5+6 y)(x-5-6 y)$
57. $(y-2)(x+4)(x-4)$
58. $(3 y-1)(2 x+3)(2 x-3)$
59. $\frac{4(1+2 x)}{x^{2 / 3}}$
60. $\frac{6(2+x)}{x^{3 / 4}}$
61. $-(x+3)^{1 / 2}(x+2)$
62. $\left(x^{2}+4\right)^{3 / 2}\left(x^{4}+8 x^{2}+17\right)$
63. $\frac{2\left(100 x^{2}+95 x+11\right)}{(4 x+3)^{2}}$
64. $(x+1)(5 x-6)(2 x+1)$
65. $(x-1)(6 x-5)(2 x+1)$
66. $\left(x^{2}+6\right)\left(6 x^{2}-1\right)$ 106. $\left(x^{2}+5\right)\left(7 x^{2}-1\right)$
67. $y\left(y^{2}+1\right)\left(y^{4}-y^{2}+1\right) \quad$ 108. $(y+2)\left(y^{2}+y+1\right) \quad$ 109. $(x+2 y)(x-2 y)(x+y)(x-y) \quad$ 110. $(x+3 y)(x-3 y)(x+y)(x-y)$
68. $(x-y)^{2}(x-y+2)(x-y-2) \quad$ 112. $(x+y)^{2}(x+y+10)(x+y-10) \quad$ 113. $\left(2 x-y^{2}\right)\left(x-3 y^{2}\right) \quad$ 114. $\left(3 x+2 y^{2}\right)\left(x+y^{2}\right)$
69. a. $9 x^{2}-16$
b. $(3 x+4)(3 x-4)$
70. a. $49 x^{2}-36$
b. $(7 x+6)(7 x-6)$
71. a. $x(x+y)-y(x+y)$
b. $(x+y)(x-y)$
72. makes sense 138. $\left(x^{n}+4\right)\left(x^{n}+2\right) \quad$ 139. $-(x+5)(x-1) \quad$ 141. $-\frac{10}{(x-5)^{3 / 2}(x+5)^{1 / 2}}$
73. $b=0,3,4,-c(c+4)$, where $c>0$ is an integer
74. $\frac{(x+5)(x+1)}{(x+5)(x-5)}=\frac{x+1}{x-5}$

Mid-Chapter P Check Point

1. $12 x^{2}-x-35$
2. $x+45$
3. $2 x^{3}-11 x^{2}+17 x-5$
4. $18 a^{2}-11 a b-10 b^{2}$
5. $\{a, c, d, e, f, h\}$
6. $5 x^{2} y^{3}+2 x y-y^{2}$
7. $(7 x-1)(x-3) \quad$ 30. $\left(x^{2}+3\right)(x+5) \quad$ 31. $(3 x-7 y)(x+y) \quad$ 32. $y(4-y)\left(16+4 y+y^{2}\right) \quad$ 33. $2 x(5 x+1)^{2}$
8. $\frac{(1-x)^{2}}{x^{3 / 2}} \quad$ 36. $\frac{(x-3)(x+3)}{\left(x^{2}+1\right)^{1 / 2}}$

Exercise Set P. 6

$\begin{array}{llll}\text { 8. } \frac{4}{x-2}, x \neq 2 & \text { 10. } \frac{x-4}{3}, x \neq 4 & \text { 12. } \frac{y-5}{y+4}, y \neq-4,-1 & \text { 14. } \frac{x-7}{x+7}, x \neq 7,-7\end{array} \quad$ 16. $\frac{1}{2}, x \neq 5,-\frac{3}{2} \quad$ 17. $\frac{(x-3)(x+3)}{x(x+4)}, x \neq 0,-4,3$
18. $2, x \neq 2,-2$
21. $\frac{x^{2}+2 x+4}{3 x}, x \neq-2,0,2$
22. $\frac{1}{x^{2}-3 x+9}, x \neq-3$
24. $\frac{9}{28}, x \neq-5$
25. $\frac{(x-2)^{2}}{x}, x \neq 0,-2,2$
26. $4(x-2), x \neq 2,-2$
31. $\frac{(x+2)(x+4)}{x-5}, x \neq-6,-3,-1,3,5$
32. $\frac{7(x+1)^{2}}{2 x^{2}}, x \neq-5,-1,0,1,5$
34. $2, x \neq-\frac{4}{3}$
38. $\frac{x}{x-2}, x \neq 2$
41. $\frac{9 x+39}{(x+4)(x+5)}, x \neq-4,-5 \quad$ 42. $\frac{10 x-28}{(x-2)(x-3)}, x \neq 2,3 \quad$ 44. $\frac{x+12}{x(x+3)}, x \neq-3,0 \quad$ 45. $\frac{3 x^{2}+4}{(x+2)(x-2)}, x \neq-2,2$
46. $\frac{2 x^{2}+5 x+12}{(x-3)(x+2)}, x \neq 3,-2$
47. $\frac{2 x^{2}+50}{(x-5)(x+5)}, x \neq-5,5$
48. $\frac{2 x^{2}+18}{(x-3)(x+3)}, x \neq-3,3 \quad$ 49. $\frac{13}{6(x+2)}, x \neq-2$
50. $\frac{29}{6(x+4)}, x \neq-4$
51. $\frac{4 x+16}{(x+3)^{2}}, x \neq-3$
52. $\frac{20 x-6}{(5 x-2)(5 x+2)}, x \neq-\frac{2}{5}, \frac{2}{5}$
53. $\frac{x^{2}-x}{(x+5)(x-2)(x+3)}, x \neq-5,2,-3$
54. $-\frac{5 x}{(x-6)(x-1)(x+4)}, x \neq 6,1,-4$
55. $\frac{-x^{2}-2 x+1}{(x+1)(x-1)}, x \neq-1,1$
56. $\frac{-x^{2}-2 x+3}{(x+2)(x-2)}, x \neq-2,2$
58. $\frac{x^{2}+40 x-25}{(x+5)(x-4)}, x \neq-5,4$
66. $\frac{x-2}{x+1}, x \neq 2,3,-1$
68. $\frac{2(x+2)}{x+1}, x \neq-1,2,-2,1$
71. $-\frac{2 x+h}{x^{2}(x+h)^{2}}, x \neq 0, h \neq 0, x \neq-h$
72. $\frac{1}{(x+1)(x+h+1)}, x \neq-1, h \neq 0, x \neq-h-1 \quad$ 75. $-\frac{2}{x^{2} \sqrt{x^{2}+2}} \quad$ 76. $\frac{5}{\sqrt{\left(5-x^{2}\right)^{3}}} \quad$ 77. $\frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x} \sqrt{x+h}} \quad$ 78. $\frac{\sqrt{x}-\sqrt{x+3}}{3 \sqrt{x} \sqrt{x+3}}$
89. $\frac{2 d}{a^{2}+a b+b^{2}} \quad$ 90. $\frac{a^{2}+b^{2}}{a^{2}+a b+b^{2}} \quad$ 91. a. $86.67,520,1170$; It costs $\$ 86,670,000$ to inoculate 40% of the population against this strain of flu, $\$ 520,000,000$ to inoculate 80% of the population, and $\$ 1,170,000,000$ to inoculate 90% of the population. c. The cost increases rapidly; it is impossible to inoculate 100% of the population.
92. $\frac{2 r_{1} r_{2}}{r_{1}+r_{2}} ; 34 \frac{2}{7} \mathrm{mph} \quad$ 93. c. $\frac{-33 x^{2}+263 x+515}{-60 x^{2}+499 x+295} \quad$ 109. does not make sense \quad 112. makes sense \quad 119. $\frac{x-y+1}{(x-y)(x-y)}$

Exercise Set P. 7

4. $\left\{\frac{25}{3}\right\}$
5. $\{-19\}$
6. $\left\{\frac{25}{7}\right\}$
7. a. 1 b. $\{3\}$
8. a. $-4 \quad$ b. $\{-3\}$
9. a. -1 b. \varnothing
10. a. 2 b. \varnothing
11. $p=\frac{T-D}{m}$
12. $M=\frac{P-C}{C}$ 31. $a=\frac{2 A}{h}-b$
13. $b=\frac{2 A}{h}-a$
14. $r=\frac{S-P}{P t}$
15. $t=\frac{S-P}{P r}$
16. $S=\frac{F}{B}+V$
17. $I=\frac{E}{R+r}$
18. $h=\frac{A-2 l w}{2 l+2 w}$
19. $f=\frac{p q}{p+q}$
20. $R_{1}=\frac{R R_{2}}{R_{2}-R}$
21. $f_{1}=-\frac{f f_{2}}{f-f_{2}}$ or $f_{1}=\frac{f f_{2}}{f_{2}-f}$
22. $f_{2}=-\frac{f f_{1}}{f-f_{1}}$ or $f_{2}=\frac{f f_{1}}{f_{1}-f}$
23. $\left\{-\frac{4}{5}, 4\right\} \quad$ 50. $\left\{\frac{1}{3}, \frac{7}{3}\right\}$
24. $\{3+2 \sqrt{5}, 3-2 \sqrt{5}\}$
25. $\{-2+\sqrt{3},-2-\sqrt{3}\} \quad$ 75. $\{-5,-3\}$
26. $\left\{\frac{-5+\sqrt{13}}{2}, \frac{-5-\sqrt{13}}{2}\right\}$
27. $\left\{\frac{-5+\sqrt{17}}{2}, \frac{-5-\sqrt{17}}{2}\right\}$
28. $\left\{\frac{3+\sqrt{57}}{6}, \frac{3-\sqrt{57}}{6}\right\}$
29. $\left\{\frac{-1+\sqrt{41}}{10}, \frac{-1-\sqrt{41}}{10}\right\}$
30. $\left\{\frac{1+\sqrt{29}}{4}, \frac{1-\sqrt{29}}{4}\right\}$
31. $\left\{\frac{3+\sqrt{6}}{3}, \frac{3-\sqrt{6}}{3}\right\}$
32. $36 ; 2$ unequal real solutions
33. -44 ; no real solutions
34. 97; 2 unequal real solutions
35. $169 ; 2$ unequal real solutions
36. $0 ; 1$ real solution
37. -8 ; no real solutions
38. $37 ; 2$ unequal real solutions
39. 40; 2 unequal real solutions
40. $\left\{\frac{-3+\sqrt{17}}{4}, \frac{-3-\sqrt{17}}{4}\right\}$
41. $\left\{\frac{-11+\sqrt{33}}{4}, \frac{-11-\sqrt{33}}{4}\right\}$
42. $\left\{\frac{3+\sqrt{65}}{4}, \frac{3-\sqrt{65}}{4}\right\}$
43. $\frac{-2-\sqrt{22}}{2}$ and $\frac{-2+\sqrt{22}}{2}$
44. $\frac{4-\sqrt{6}}{2}$ and $\frac{4+\sqrt{6}}{2}$
45. a. $C(x)=\frac{x+0.35(200)}{x+200}$
46. false

Exercise Set P. 8

27. $5 \mathrm{~m} \quad 31.132$
28. $\$ 4000$ miles per hour 43. 11 hr
29. 17 hr
30. does not make sense
31. 3 miles, 4 miles, 5 miles
32. $\$ 4000$ for the mother; $\$ 8000$ for the boy; $\$ 2000$ for the girl

Section P. 9

Check Point Exercises

1. a. $\{x \mid-2 \leq x<5\}$

2. $[-1, \infty)$ or $\{x \mid x \geq-1\}$

3. $\xrightarrow[-1]{[-1,4) \text { or }\{x \mid-1 \leq x<4\}}$
b. $\{x \mid 1 \leq x \leq 3.5\}$

c. $\{x \mid x<-1\}$

4. $\{x \mid x<4\}$ or $(-\infty, 4)$

5. $\{x \mid x \geq 13\}$ or $[13, \infty)$

6. $(-3,7)$ or $\{x \mid-3<x<7\}$

7. $\left\{x \left\lvert\,-\frac{11}{5} \leq x \leq 3\right.\right\}$ or $\left[-\frac{11}{5}, 3\right]$

8. $\{x \mid x<-4$ or $x>8\}$ or $(-\infty,-4) \cup(8, \infty)$

Exercise Set P. 9

1. $\underset{1}{\{x \mid 1<x \leq 6\}}$
2. $\underset{-3}{\substack{\text {-3 }}}$
3. $\{x \mid x \geq-3\}$

4. $\{x \mid x<5.5\}$

5. $\left[\frac{20}{3}, \infty\right)$

6. $\left(-\infty,-\frac{2}{5}\right]$

7. $(-\infty, 1)$

8. $[13, \infty)$

9. $\{x \mid-2<x \leq 4\}$

10. $\{x \mid-2 \leq x \leq 5\}$

11. $\{x \mid x \geq-5\}$

12. $\{x \mid x \leq 3.5\}$

13. $[2, \infty)$

14. $\left(-\infty,-\frac{53}{6}\right]$

15. $(-\infty,-4)$

16. $[-2, \infty)$

17. $\left[-\frac{19}{6}, \infty\right)$
$\xrightarrow[-\frac{19}{6}]{ } \longrightarrow$
18. $\{x \mid-5 \leq x<2\}$

19. $\{x \mid x>2\}$

20. $\{x \mid x<3\}$

21. $(-\infty, 3)$

22. $(-\infty,-4]$

23. $[0, \infty)$

24. $[6, \infty)$

25. $(-\infty,-6)$

26. $(-\infty,-2)$

27. $\{x \mid-4 \leq x<3\}$

28. $\{x \mid x>3\}$

29. $\{x \mid x<2\}$

30. $(-\infty, 6)$

31. $[-6, \infty)$

32. $(5, \infty)$

33. $[2, \infty)$

34. $(8, \infty)$
35. $\left(-\frac{3}{4}, \infty\right)$
36. $(-5,-2] \quad$ 54. $\left[\frac{3}{2}, \frac{11}{2}\right) \quad$ 56. $[-4,2) \quad$ 64. $\left[-\frac{19}{3}, 7\right] \quad$ 69. $(-\infty,-1] \cup[3, \infty) \quad$ 70. $(-\infty,-7] \cup[1, \infty) \quad$ 71. $\left(-\infty, \frac{1}{3}\right) \cup(5, \infty)$
37. $\left(-\infty,-\frac{11}{5}\right) \cup(3, \infty) \quad$ 73. $(-\infty,-5] \cup[3, \infty)$
38. $(-\infty,-2] \cup[4, \infty) \quad$ 75. $(-\infty,-3) \cup(12, \infty)$
39. $(-\infty,-8) \cup(16, \infty)$
40. $(-\infty,-1] \cup[3, \infty)$
41. $\left(-\infty,-\frac{17}{10}\right] \cup\left[\frac{7}{10}, \infty\right)$
42. $(-\infty,-3) \cup(5, \infty)$
43. $(-\infty, 2) \cup(8, \infty)$
44. $(-\infty,-1] \cup[2, \infty)$
45. $(-\infty,-4] \cup\left[\frac{1}{2}, \infty\right)$
46. $\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)$
47. $(-\infty,-2) \cup(6, \infty)$
48. $\left(-\infty,-\frac{75}{14}\right) \cup\left(\frac{87}{14}, \infty\right)$
49. $(-\infty, \infty)$
50. $(-\infty,-6] \cup[24, \infty)$
51. $\left(-\infty,-\frac{1}{3}\right] \cup[3, \infty)$
52. $\left[-2, \frac{9}{2}\right]$
53. intimacy \geq passion or passion \leq intimacy
54. commitment \geq intimacy or intimacy \leq commitment
55. commitment $>$ passion or passion $<$ commitment \quad 104. commitment $>$ passion or passion $<$ commitment
56. between 80 and 110 minutes, inclusive \quad 112. $50+0.20 x<20+0.50 x$; more than $100 \mathrm{mi} \quad 113.15+0.08 x<3+0.12 x$; more than 300 texts 114. $1800+0.03 x<200+0.08 x$; greater than $\$ 32,000 \quad$ 115. $2+0.08 x<8+0.05 x ; 199$ checks or fewer \quad 116. $2 x>10,000+0.40 x$; more than 6250 tapes 117. $5.50 x>3000+3 x$; more than 1200 packages $118.265+65 x \leq 2800$; at most 39 bags $119.245+95 x \leq 3000$; at most 29 bags \quad 120. $\frac{86+88+92+84+x+x}{6} \geq 90$; at least $95 \% \quad$ 121. a. $\frac{86+88+x}{3} \geq 90$; at least a $96 \quad$ b. $\frac{86+88+x}{3}<80$;
a grade less than $66 \quad$ 122. 1.5 to 3.5 hours, inclusive \quad 140. Because $x>y, y-x$ represents a negative number, so when both sides are multiplied by $(y-x)$, the inequality must be reversed. 144. $-5 ; 0 ; 3 ; 4 ; 3 ; 0 ;-5$

Chapter P Review Exercises

3. 124 ft
4. a. $\sqrt{81}$
b. $0, \sqrt{81}$
c. $-17,0, \sqrt{81}$
d. $-17,-\frac{9}{13}, 0,0.75, \sqrt{81}$
e. $\sqrt{2}, \pi$
f. $-17,-\frac{9}{13}, 0,0.75, \sqrt{2}, \pi, \sqrt{81}$
5. $\sqrt{17}-3 \quad$ 12. $|4-(-17)| ; 21 \quad$ 13. commutative property of addition \quad 14. associative property of multiplication \quad 17. commutative property of multiplication \quad 18. commutative property of addition $\begin{array}{llll}\text { 36. } 390,000 & \text { 46. } 4 x \sqrt{3} & 73.8 x^{3}+10 x^{2}-20 x-4 \text {; degree } 3\end{array}$
6. $8 x^{4}-5 x^{3}+6$; degree $4 \quad$ 75. $12 x^{3}+x^{2}-21 x+10 \quad$ 76. $6 x^{2}-7 x-5 \quad$ 80. $8 x^{3}+12 x^{2}+6 x+1 \quad$ 82. $-x^{2}-17 x y-3 y^{2}$; degree 2
7. $24 x^{3} y^{2}+x^{2} y-12 x^{2}+4$; degree $5 \quad$ 84. $3 x^{2}+16 x y-35 y^{2} \quad$ 85. $9 x^{2}-30 x y+25 y^{2} \quad$ 86. $9 x^{4}+12 x^{2} y+4 y^{2} \quad$ 87. $49 x^{2}-16 y^{2}$
8. $(x-4)(x-7) \quad$ 91. $(3 x+1)(5 x-2) \quad$ 94. $3 x^{2}(x-5)(x+2) \quad$ 96. $(x+3)(x-3)^{2} \quad$ 98. $\left(x^{2}+4\right)(x+2)(x-2)$
9. $3 x^{2}(x-2)(x+2) \quad$ 102. $(3 x-5)\left(9 x^{2}+15 x+25\right) \quad$ 103. $x(x-1)(x+1)\left(x^{2}+1\right) \quad$ 104. $\left(x^{2}-2\right)(x+5)$
10. $(x+2)(x-2)\left(x^{2}+3\right)^{1 / 2}\left(-x^{4}+x^{2}+13\right) \quad$ 109. $x^{2}, x \neq-2 \quad$ 110. $\frac{x-3}{x-6}, x \neq-6,6 \quad$ 111. $\frac{x}{x+2}, x \neq-2$
11. $\frac{(x+3)^{3}}{(x-2)^{2}(x+2)}, x \neq 2,-2$
12. $\frac{2}{x(x+1)}, x \neq 0,1,-1,-\frac{1}{3}$
13. $\frac{x+3}{x-4}, x \neq-3,4,2,8 \quad$ 115. $\frac{1}{x-3}, x \neq 3,-3$
14. $\frac{4 x(x-1)}{(x+2)(x-2)}, x \neq 2,-2 \quad$ 117. $\frac{2 x^{2}-3}{(x-3)(x+3)(x-2)}, x \neq 3,-3,2 \quad$ 118. $\frac{11 x^{2}-x-11}{(2 x-1)(x+3)(3 x+2)}, x \neq \frac{1}{2},-3,-\frac{2}{3} \quad$ 119. $\frac{3}{x}, x \neq 0,2$
$\begin{array}{llll}\text { 120. } \frac{3 x}{x-4}, x \neq 0,4,-4 & \text { 121. } \frac{3 x+8}{3 x+10}, x \neq-3,-\frac{10}{3} & \text { 128. }\{-2,1\} & \text { 129. }\left\{\frac{1}{2}, 5\right\}\end{array} \quad$ 130. $\left\{-2, \frac{10}{3}\right\} \quad$ 131. $\left\{\frac{7+\sqrt{37}}{6}, \frac{7-\sqrt{37}}{6}\right\}$
15. $\{3 \pm 2 \sqrt{6}\} \quad$ 137. $g=\frac{s-v t}{t^{2}} \quad$ 138. $P=\frac{A}{1+r T} \quad$ 139. no real solutions \quad 140. one repeated real solution
16. $\$ 10,000$ in sales
17. $\{x \mid-3 \leq x<5\}$

18. $\left[\frac{3}{5}, \infty\right)$

19. $(2,3]$

20. $[-9,6]$

21. $(-3, \infty)$

22. $[-2, \infty)$

23. $(-\infty,-2]$

24. $(-\infty,-5] \cup[1, \infty)$

25. no more than 80 miles per day

Chapter P Test

10. $\frac{x+3}{x-2}, x \neq 2,1 \quad$ 11. $2.5 \times 10^{1} \quad$ 12. $2 x^{3}-13 x^{2}+26 x-15 \quad$ 13. $25 x^{2}+30 x y+9 y^{2} \quad$ 14. $\frac{2(x+3)}{x+1}, x \neq 3,-1,-4,-3$
11. $\frac{x^{2}+2 x+15}{(x+3)(x-3)}, x \neq 3,-3$
12. $\frac{11}{(x-3)(x-4)}, x \neq 3,4 \quad$ 20. $\left(x^{2}+3\right)(x+2)$
13. $(x+5+3 y)(x+5-3 y)$
14. $-7,-\frac{4}{5}, 0,0.25, \sqrt{4}, \frac{22}{7}$
15. 1.32×10^{10}
16. $\left\{\frac{1-5 \sqrt{3}}{3}, \frac{1+5 \sqrt{3}}{3}\right\}$
17. $(-\infty, 12]$

CHAPTER 1

Section 1.1

Check Point Exercises

1.

2.
3.

4. minimum x-value: -100 ; maximum x-value: 100 ; distance between tick marks on x-axis: 50 ; minimum y-value: -100 maximum y-value: 100; distance between tick marks on y-axis: 10

Exercise Set 1.1

1.

7.

13.

2.

8.

3.

9.

4.

10.

5.

11.

6.

12.
$\left(-\frac{5}{2}, \frac{3}{2}\right)$

16.

17.

18.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.

48. $y=4-2 x$

52.

53.

54.

68. does not make sense
88.

55. b. 19.5%; underestimates by $0.5 \quad$ d. 46.5%; It's less than the estimate, although answers may vary. e. 1990; 14\% 56. b. 51%; overestimates by $1 \quad$ d. 21%; It's less than the estimate, although answers may vary. e. 1980; 72% 67. makes sense

Section 1.2

Check Point Exercises

Exercise Set 1.2

1. function; $\{1,3,5\} ;\{2,4,5\} \quad$ 2. function; $\{4,6,8\} ;\{5,7,8\} \quad$ 7. function; $\{-3,-2,-1,0\} ;\{-3,-2,-1,0\}$
2. function; $\{-7,-5,-3,0\} ;\{-7,-5,-3,0\} \quad$ 27. c. $-4 x+5$
3. c. $-3 x+7$
4. b. $x^{2}+12 x+38$
c. $x^{2}-2 x+3$
5. b. $x^{2}-6 x-19$
c. $x^{2}+10 x-3$
6. c. $\sqrt{x}+3$
7. c. $\sqrt{2 x}-6$
8. c. $\frac{-4 x^{3}+1}{-x^{3}}$ or $\frac{4 x^{3}-1}{x^{3}}$
9. c. $\left\{\begin{array}{r}1, \text { if } x<-6 \\ -1, \text { if } x>-6\end{array}\right.$
10.

The graph of g is the graph of f shifted up by 3 units.
43.

The graph of g is the graph of f shifted up by 1 unit.
47. $f(x)=x^{3}$

The graph of g is the graph of f shifted up by 2 units.
40.

The graph of g is the graph of f shifted down by 4 units.
41.

The graph of g is the graph of f shifted down by 1 unit.
45.

The graph of g is the graph of f shifted down by 2 units.
42. $f(x)=-2 x$

The graph of g is the graph of f shifted up by 3 units.
46. $f(x)=|x|$

The graph of g is the graph of f shifted up by 1 unit.
48.

The graph of g is the graph of f shifted down by 1 unit.

The graph of g is the graph of f shifted up by 2 units.
50.

The graph of g is the graph of f shifted up by 5 units.
51.

The graph of g is the graph of f shifted down by 1 unit.

The graph of g is the graph of f shifted up by 2 units.
53.

The graph of g is the graph of f shifted to the right by 1 unit.
54.

The graph of g is the graph of f shifted to the left by 2 units.
77. a. $(-\infty, \infty) \quad$ b. $[-4, \infty) \quad$ c. -3 and $1 \quad$ d. $-3 \quad$ e. $f(-2)=-3$ and $f(2)=5 \quad$ 78. a. $(-\infty, \infty) \quad$ b. $(-\infty, 4] \quad$ c. -3 and 1 d. 3 e. $f(-2)=3$ and $f(2)=-5 \quad$ 79. a. $(-\infty, \infty) \quad$ b. $[1, \infty) \quad$ c. none \quad d. 1
e. $f(-1)=2$ and $f(3)=4$
b. $[0, \infty) \quad$ c. $-1 \quad$ d. $1 \quad$ e. $f(-4)=3$ and $f(3)=4$
81. a. $[0,5) \quad$ b. $[-1,5)$
80. a. $(-\infty, \infty)$
b. $[1, \infty)$
c. none
$\begin{array}{ll}\text { c. } 2 & \text { d. }-1\end{array}$
e. $f(3)=1$
82. a. $(-6,0]$
$\begin{array}{lllll}\text { b. }[-3,4) & \text { c. }-4 & \text { d. }-3 & \text { e. } f(-5)=2 & \text { 83. a. }[0, \infty)\end{array}$
c. 4 d. 4
e. $f(-1)=5$
86. a. $[-3,2]$
b. $[-5,5] \quad$ c. $-\frac{1}{2}$
d. 1
e. $f(-2)=-3$
87. a. $(-\infty, \infty)$
b. $(-\infty,-2]$
d. -2
e. $f(-4)=-5$ and $f(4)=-2$
88. a. $(-\infty, \infty)$
b. $[0, \infty)$
c. none
c. $\{x \mid x \leq 0\}$
d. $0 \quad$ e. $f(-2)=0$ and $f(2)=4$
b. $\{2\}$
c. none d. 2
e. $f(-5)+f(3)=4$
92. a. $\{-5,-2,0,1,4\}$
b. $\{-2\}$
c. none
d. $-2 \quad$ e. $f(-5)+f(4)=-4$
93. $-2 ; 10$
94. $-8 ; 76$
99. a. $\{($ Philippines, 12), (Spain, 13), (Italy, 14), (Germany, 14), (Russia, 16) \} c. $\{(12$, Philippines), (13, Spain), (14, Italy), (14, Germany), (16, Russia) $\}$ d. no; 14 in the domain corresponds to two members of the range, Italy and Germany. 100. a. \{(Philippines, 18), (Spain, 18), (Italy, 16), (Germany, 16), (Russia, 16) \} c. $\{(18$, Philippines), (18, Spain), (16, Italy), (16, Germany), (16, Russia) $\} \quad$ d. no; 18 in the domain corresponds to two members of the range, Philippines and Spain, and 16 in the domain corresponds to three members of the range, Italy, Germany, and Russia.
101. a. 83 ; The chance that a 60 -year-old will survive to age 70 is 83%.
b. 76 ; The chance that a 60 -year-old will survive to age 70 is 76%.
102. a. 25 ; The chance that a 60 -year-old will survive to age 90 is 25%.
b. 10 ; The chance that a 60 -year-old will survive to age 90 is 10%.
103. a. 81 ; In 2010 , the wage gap was 81%.; $(30,81) \quad$ 104. a. 69 ; In 1990 , the wage gap was $69 \% . ;(10,69) \quad$ 105. $C=100,000+100 x$, where x is the number of bicycles produced; $C(90)=109,000$; It costs $\$ 109,000$ to produce 90 bicycles. $106 . V=22,500-3200 x$; $V(3)=12,900$; The value of the car after 3 years is $\$ 12,900$. 107. $T=\frac{40}{x}+\frac{40}{x+30}$, where x is the rate on the outgoing trip; $T(30)=2$; It takes 2 hours, traveling 30 mph outgoing and 60 mph returning. 108. $S=0.1 x+0.6(50-x)$, where x is the number of milliliters of the 10% solution; $S(30)=15$; There are 15 milliliters of sodium iodine in the mixture when 30 milliliters of the 10% solution are used. 118. makes sense 120. does not make sense 121. does not make sense 127. Answers will vary; an example is $\{(1,1),(2,1)\}$. \quad 128. $f(2)=6 ; f(3)=9 ; f(4)=12$; no
129. 36; For 100 calling minutes, the monthly cost is $\$ 36$.
130. $f(x)=x+2, x \leq 1$
131. $4 x h+2 h^{2}+3 h$

Section 1.3

Check Point Exercises

4.

$f(x)= \begin{cases}3 & \text { if } x \leq-1 \\ x-2 & \text { if } x>-1\end{cases}$

Exercise Set 1.3

1. a. $(-1, \infty)$ b. $(-\infty,-1) \quad$ c. none \quad 2. a. $(-\infty,-1) \quad$ b. $(-1, \infty) \quad$ c. none \quad 3. a. $(0, \infty) \quad$ b. none \quad c. none
2. a. $(-1, \infty) \quad$ b. none \quad c. none $\quad 5$. a. none \quad b. $(-2,6) \quad$ c. none \quad 6. a. $(-3,2) \quad$ b. none \quad c. none
3. a. $(-\infty,-1) \quad$ b. none \quad c. $(-1, \infty) \quad$ 8. a. $(0, \infty) \quad$ b. none \quad c. $(-\infty, 0) \quad$ 9. a. $(-\infty, 0)$ or $(1.5,3) \quad$ b. $(0,1.5)$ or $(3, \infty)$
 12. a. none b. $(-4,2)$ c. $(-\infty,-4)$ or $(2, \infty)$
4. a.

5. a.

6. a.

7. a.

8. a.

9. a.

$f(x)=\left\{\begin{array}{lr}\frac{1}{2} x^{2} & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{array}\right.$
10. a.

11. a.

$f(x)=\left\{\begin{array}{l}-\frac{1}{2} x^{2} \text { if } x<1 \\ 2 x+1 \text { if } x \geq 1\end{array}\right.$
12. a.

13. a.

14. a.

15. a.

16. $2 x+h-4, h \neq 0$
17. $2 x+h-5, h \neq 0 \quad$ 63. $4 x+2 h+1, h \neq 0$
18. $6 x+3 h+1, h \neq$
19. $-6 x-3 h+2, h \neq 0$
20. $-4 x-2 h-1, h \neq 0$
21. $-6 x-3 h+1, h \neq 0$
22. $-2 x-h-3, h \neq 0$
23. $-4 x-2 h+5, h \neq 0$
24. $\frac{1}{\sqrt{x+h}+\sqrt{x}}, h \neq 0$
25. $\frac{1}{\sqrt{x+h-1}+\sqrt{x-1}}, h \neq 0$
26.

80. $C(t)$ 81. $C(t)= \begin{cases}50 & \text { if } 0 \leq t \leq 400 \\ 50+0.30(t-400) & \text { if } t>400\end{cases}$

if $\quad 0 \leq t \leq 450$
82. $C(t)=\left\{\begin{array}{l}60 \\ 60+0.35(t-450)\end{array}\right.$
83. increasing: $(25,55)$; decreasing: $(55,75) \quad 84$. increasing: $(25,65)$; decreasing: $(65,75)$
85. 55 years old; $38 \% \quad$ 86. 65 years old; $26 \% \quad$ 87. domain: $[25,75]$; range: $[34,38]$
88. domain: $[25,75]$; range: $[23,26] \quad$ 89. men \quad 91. 2575 ; A single taxpayer with taxable income of $\$ 20,000$ owes $\$ 2575$. 92. 8625; A single taxpayer with taxable income of $\$ 50,000$ owes $\$ 8625$.
93. $42,449+0.33(x-174,400) \quad$ 94. $110,016.50+0.35(x-379,150) \quad 95.0 .85$; It costs $\$ 0.85$ to mail a 3-ounce first-class letter. $\quad 96.1 .05$; It costs $\$ 1.05$ to mail a 3.5 -ounce first-class letter.

97. \$0.65 98. $\$ 0.65$

99.

106.

The number of doctor visits decreases during childhood and then increases as you get older. The minimum is $(20.29,3.99)$, which means that the minimum number of annual doctor visits, about 4 , occurs at around age 20 .
107.

increasing: $(-\infty, 1)$ or $(3, \infty)$ decreasing: $(1,3)$
108.

increasing: $(-2,0)$ or $(2, \infty)$ decreasing: $(-\infty,-2)$ or $(0,2)$
111.

increasing: $(0, \infty)$
decreasing: $(-\infty, 0)$
109.

increasing: $(2, \infty)$
decreasing: $(-\infty,-2)$
constant: $(-2,2)$
112.

increasing: $(-\infty, 0)$ decreasing: $(0, \infty)$
110.

increasing: $(1, \infty)$
decreasing: $(-\infty, 1)$
113. a.

c. increasing: $(0, \infty)$; decreasing: $(-\infty, 0)$
d. $f(x)=x^{n}$ is increasing for $(-\infty, \infty)$ when n is positive and odd.
e.

As n increases the steepness increases.
120. a. h is even if both f and g are even or if both f and g are odd.

Section 1.4

Check Point Exercises
4.

$f(x)=\frac{3}{5} x+1$
5. $y=3 \quad y_{A}$

6.

7.

8.

Exercise Set 1.4

5. 0 ; horizontal 6. 0 ; horizontal \quad 9. undefined; vertical \quad 10. undefined; vertical \quad 11. $y-5=2(x-3)$; $y=2 x-1$
6. $y-3=4(x-1) ; y=4 x-1$

13
13. y
15. $y+3=-3(x+2) ; y=-3 x-9$
16. $y+2=-5(x+4) ; y=-5 x-22$
17. $y-0=-4(x+4) ; y=-4 x-16$
18. $y+3=-2(x-0) ; y=-2 x-3$
19. $y+2=-1\left(x+\frac{1}{2}\right) ; y=-x-\frac{5}{2}$
20. $y+\frac{1}{4}=-1(x+4) ; y=-x-\frac{17}{4}$
21. $y-0=\frac{1}{2}(x-0) ; y=\frac{1}{2} x$
22. $y-0=\frac{1}{3}(x-0) ; y=\frac{1}{3} x$
23. $y+2=-\frac{2}{3}(x-6) ; y=-\frac{2}{3} x+2$
24. $y+4=-\frac{3}{5}(x-10) ; y=-\frac{3}{5} x+2$
25. using $(1,2), y-2=2(x-1) ; y=2 x$
26. using $(3,5), y-5=2(x-3) ; y=2 x-1$
27. using $(-3,0), y-0=1(x+3) ; y=x+3 \quad$ 28. using $(-2,0), y-0=1(x+2) ; y=x+2 \quad$ 29. using $(-3,-1), y+1=1(x+3) ; y=x+2$
30. using $(-2,-4), y+4=1(x+2) ; y=x-2$ 31. using $(-3,-2), y+2=\frac{4}{3}(x+3) ; y=\frac{4}{3} x+2$
32. using $(-3,6), y-6=-\frac{4}{3}(x+3) ; y=-\frac{4}{3} x+2 \quad$ 33. using $(-3,-1), y+1=0(x+3) ; y=-1$
34. using $(-2,-5), y+5=0(x+2) ; y=-5 \quad$ 35. using $(2,4), y-4=1(x-2) ; y=x+2$
36. using $(1,-3), y+3=-\frac{3}{2}(x-1) ; y=-\frac{3}{2} x-\frac{3}{2} \quad$ 37. using $(0,4), y-4=8(x-0) ; y=8 x+4$
38. using $(4,0), y-0=\frac{1}{2}(x-4) ; y=\frac{1}{2} x-2$
39. $m=2$; $b=1$
40. $m=3 ; b=2$

43. $m=\frac{3}{4} ; b=-2$

44. $m=\frac{3}{4} ; b=-3$

41. $m=-2 ; b=1$

45. $m=-\frac{3}{5} ; b=7$

42. $m=-3 ; b=2$

46. $m=-\frac{2}{5} ; b=6$

47. $m=-\frac{1}{2} ; b=0$

$g(x)=-\frac{1}{2} x$
52.

57.

58.

54.

59. a. $y=-3 x+5$
b. $m=-3 ; b=5$
c.

64. a. $y=\frac{6}{5} x-4$
b. $m=\frac{6}{5} ; b=-4$
c.

69.

62. a. $y=-\frac{2}{3} x-2$
b. $m=-\frac{2}{3} ; b=-2$
c.

67.

$6 x-2 y-12=0$
68.

50.

51.

55.

60. a. $y=-4 x+6$
b. $m=-4 ; b=6$
c.

65. a. $y=3$
b. $m=0 ; b=3$
c.

56.

61. a. $y=-\frac{2}{3} x+6$
b. $m=-\frac{2}{3} ; b=6$
c.

70.

66. a. $y=-7$
b. $m=0 ; b=-7$
c.

71.

72.

74. $m=-\frac{b}{a}$; falls
75. undefined slope; vertical
76. $m=\frac{a}{b}$; rises
77. $m=-\frac{A}{B} ; b=\frac{C}{B}$
78. $m=\frac{A}{B} ; b=\frac{C}{B}$
81.

82.

87. a. $y-31.1=0.78(x-10)$ or $y-38.9=0.78(x-20)$
c. 54.5%
88. a. $y-45.2=0.65(x-10)$ or $y-51.7=0.65(x-20)$
90. Answers will vary due to rounding.
a \& b. Life Expectancy for United States; $E(x)=0.17 x+72.9$ or $E(x)=0.17 x+73$ Females, by Year of Birth

c. 83.1 yr or 83.2 yr
91. Answers will vary; an example is $y=-2.3 x+255$, where x is the percentage of adult females who are literate and y is under-five mortality per thousand.; Predictions will vary.
100.

101.

102.

103.

104. a.

x	y
2.5	211
3.9	167
\vdots	\vdots
2.7	172

b. 310

$$
\text { c. } \begin{aligned}
a & =-22.96876741 \\
b & =260.5633751 \\
r & =-0.8428126855
\end{aligned}
$$

d.

106. does not make sense
113. coefficient of x : -6 ; coefficient of y : 3 114. coefficient of x : 1 ; coefficient of $y:-2$

Exercise Set 1.5

9. $y-2=\frac{2}{3}(x+2) ; 2 x-3 y+10=0$
10. $y-3=\frac{3}{2}(x+1) ; 3 x-2 y+9=0$
11. $y+7=-2(x-4) ; 2 x+y-1=0$
12. $y+9=7(x-5) ; 7 x-y-44=0$
13. a. $70 \mathrm{ft} / \mathrm{sec}$
b. $65 \mathrm{ft} / \mathrm{sec}$
c. $60.1 \mathrm{ft} / \mathrm{sec}$
d. $60.01 \mathrm{ft} / \mathrm{sec}$
14. a. $84 \mathrm{ft} / \mathrm{sec}$
b. $78 \mathrm{ft} / \mathrm{sec}$ $\begin{array}{lll}\text { c. } 72.12 \mathrm{ft} / \mathrm{sec} & \text { d. } 72.012 \mathrm{ft} / \mathrm{sec} & \text { 29. } 137 \text {; There was an average increase of approximately } 137 \text { discharges per year. } 30 .-130 \text {; There was an }\end{array}$ average decrease of approximately 130 discharges per year. 31. b. overestimates by 5 discharges per year 32. b. underestimates by 34 discharges per year
15. b.

; no
c.

; The lines now appear to be perpendicular.
16. $\frac{B}{A}$
17. a.

b.

18. a.

b.

b.

c. The graph in part (b) is the graph in part (a) shifted down 4 units.
c. The graph in part (b) is the graph in part (a) shifted to the right 2 units.
c. The graph in part (b) is the graph in part (a) reflected across the y-axis.

Mid-Chapter 1 Check Point

1. not a function; domain: $\{1,2\}$; range: $\{-6,4,6\} \quad$ 2. function; domain: $\{0,2,3\}$; range: $\{1,4\} \quad$ 3. function; domain: $\{x \mid-2 \leq x<2\}$ or $[-2,2)$; range: $\{y \mid 0 \leq y \leq 3\}$ or $[0,3]$ 4. not a function; domain: $\{x \mid-3<x \leq 4\}$ or (-3, 4]; range: $\{y \mid-1 \leq y \leq 2\}$ or $[-1$, 2] 5. not a function; domain: $\{-2,-1,0,1,2\}$; range: $\{-2,-1,1,3\} \quad$ 6. function; domain: $\{x \mid x \leq 1\}$ or $(-\infty, 1]$; range: $\{y \mid y \geq-1\}$ or $[-1, \infty) \quad$. No vertical line intersects the graph in more than one point.
2. y

3. $y=-2 y$

4. $x+y=-2 y_{4}$

5. $y=\frac{1}{3} x-2 y_{4}$

6. $x=$

7.

35.

31.

36.

32.

33.

34.

37. a. $f(-x)=-2 x^{2}-x-5$; neither
3.

4.

5.

b.

8.

9.

Exercise Set 1.6

1.

6.

$g(x)=f(x+1)+2$
11.

$g(x)=\frac{1}{2} f(x)$
2.

7.

$g(x)=f(-x)$
12.

$g(x)=2 f(x)$
17.

3.

8.

$g(x)=-f(x)$
13.

14. $g(x)=f(2 x) y_{4}$

18.

4.

5.

10.

$g(x)=f(-x)+3$
15.

$$
g(x)=-f\left(\frac{1}{2} x\right)+1
$$

20.

21.

$g(x)=f(x-1)+2$
26.

31.

36.

41.

46.

51.

56.

61.

22

27.

$g(x)=2 f(x)$
32.

37.

42.

47.

52.

57.

62.

23.

28.

33.

38.

43.

48.

53.

58.

63.

24.

29.

34.

39.

44.

49.

54.

59.

64.

25.

30.

35.

40.

$g(x)=-\frac{1}{2} f(x-2)$
45.

50.

55.

60.

65.

66.

71.

76.

81.

86.

91.

96.

101.

106.

67.

72.

77.

82.

87.

92.

97.

102.

107.

68.

73.

78.

83.

88.

93.

98.

103.

108.

69.

74.

79.

84.

89.

94.

99.

104

109.

70.

75.

80.

85.

90.

95.

100.

105.

110.

111.

112.

121.

$h(x)=\operatorname{int}(-x)+1$
122.
$h(x)=\operatorname{int}(-x)-1$

116.

117.

115.

120.

$g(x)=3$ int $(x-1)$
113.

118.

114.

119.

$g(x)=2$ int $(x+1)$
123. $y=\sqrt{x-2} \quad$ 124. $y=-x^{3}+2 \quad$ 125. $y=(x+1)^{2}-4$
126. $y=\sqrt{x-2}+1 \quad$ 127. a. First, vertically stretch the graph of $f(x)=\sqrt{x}$ by the factor 2.9 ; then, shift the result up 20.1 units. d. 0.2 in. per month; This is a much smaller rate of change; The graph is not as steep between 50 and 60 as it is between 0 and 10 . 128. a. First, vertically stretch the graph of $f(x)=\sqrt{x}$ by the factor 3.1 ; then, shift the result up 19 units. d. 0.2 in. per month; This is a much smaller rate of change; The graph is not as steep between 50 and 60 as it is between 0 and 10 .
135. a.

b.

136. a.

b.

137. makes sense
138. makes sense

Exercise Set 1.7

$(-\infty, \infty)$
6. $(-\infty, \infty)$
7. $(-\infty,-3) \cup(-3,5) \cup(5, \infty)$
8. $(-\infty,-4) \cup(-4,3) \cup(3, \infty)$
9. $(-\infty,-7) \cup(-7,9) \cup(9, \infty)$
10. $(-\infty,-8) \cup(-8,10) \cup(10, \infty)$
13. $(-\infty, 0) \cup(0,3) \cup(3, \infty)$
14. $(-\infty, 0) \cup(0,4) \cup(4, \infty)$
15. $(-\infty, 1) \cup(1,3) \cup(3, \infty)$
16. $(-\infty, 2) \cup\left(2, \frac{10}{3}\right) \cup\left(\frac{10}{3}, \infty\right)$
27. $[2,5) \cup(5, \infty)$
28. $[3,6) \cup(6, \infty)$
31. $(f+g)(x)=3 x+2 ;$ domain: $(-\infty, \infty) ;(f-g)(x)=x+4 ;$ domain: $(-\infty, \infty) ;(f g)(x)=2 x^{2}+x-3 ;$ domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{2 x+3}{x-1}$; domain: $(-\infty, 1) \cup(1, \infty) \quad$ 32. $(f+g)(x)=4 x-2 ;$ domain: $(-\infty, \infty) ;(f-g)(x)=2 x-6 ;$ domain: $(-\infty, \infty) ;(f g)(x)=3 x^{2}+2 x-8 ;$
 domain: $(-\infty, \infty) ;(f g)(x)=3 x^{3}-15 x^{2} ;$ domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{x-5}{3 x^{2}} ;$ domain: $(-\infty, 0) \cup(0, \infty) \quad 34 .(f+g)(x)=5 x^{2}+x-6 ;$
 35. $(f+g)(x)=2 x^{2}-2 ;$ domain: $(-\infty, \infty) ;(f-g)(x)=2 x^{2}-2 x-4 ;$ domain: $(-\infty, \infty) ;(f g)(x)=2 x^{3}+x^{2}-4 x-3 ;$ domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=2 x-3 ;$ domain: $(-\infty,-1) \cup(-1, \infty) \quad$ 36. $(f+g)(x)=6 x^{2}-2 ;$ domain: $(-\infty, \infty) ;(f-g)(x)=6 x^{2}-2 x ;$ domain: $(-\infty, \infty) ;(f g)(x)=6 x^{3}-7 x^{2}+1 ;$ domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{6 x^{2}-x-1}{x-1} ;$ domain: $(-\infty, 1) \cup(1, \infty) \quad 37 .(f+g)(x)=2 x-12$;
 domain: $(-\infty,-5) \cup(-5,3) \cup(3, \infty) \quad$ 38. $(f+g)(x)=4 x-7$; domain: $(-\infty, \infty) ;(f-g)(x)=-2 x^{2}-4 x+17$; domain: $(-\infty, \infty) ;(f g)(x)=-x^{4}-4 x^{3}+17 x^{2}+20 x-60$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{5-x^{2}}{x^{2}+4 x-12}$; domain: $(-\infty,-6) \cup(-6,2) \cup(2, \infty)$ 39. $(f+g)(x)=\sqrt{x}+x-4$; domain: $[0, \infty) ;(f-g)(x)=\sqrt{x}-x+4$; domain: $[0, \infty) ;(f g)(x)=\sqrt{x}(x-4)$; domain: $[0, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{x-4}$; domain: $[0,4) \cup(4, \infty) \quad$ 40. $(f+g)(x)=\sqrt{x}+x-5$; domain: $[0, \infty) ;(f-g)(x)=\sqrt{x}-x+5$; domain: $[0, \infty) ;(f g)(x)=\sqrt{x}(x-5)$;
domain: $[0, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{x-5} ;$ domain: $[0,5) \cup(5, \infty)$
41. $(f+g)(x)=\frac{2 x+2}{x}$; domain: $(-\infty, 0) \cup(0, \infty) ;(f-g)(x)=2$; domain: $(-\infty, 0) \cup(0, \infty) ;(f g)(x)=\frac{2 x+1}{x^{2}}$; domain: $(-\infty, 0) \cup(0, \infty) ;\left(\frac{f}{g}\right)(x)=2 x+1$; domain: $(-\infty, 0) \cup(0, \infty) \quad$ 42. $(f+g)(x)=6$; domain: $(-\infty, 0) \cup(0, \infty) ;(f-g)(x)=\frac{6 x-2}{x}$; domain: $(-\infty, 0) \cup(0, \infty) ;(f g)(x)=\frac{6 x-1}{x^{2}}$; domain: $(-\infty, 0) \cup(0, \infty) ;\left(\frac{f}{g}\right)(x)=6 x-1$; domain: $(-\infty, 0) \cup(0, \infty) \quad$ 43. $(f+g)(x)=\frac{9 x-1}{x^{2}-9}$; domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;(f-g)(x)=\frac{x+3}{x^{2}-9}=\frac{1}{x-3}$; domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;(f g)(x)=\frac{20 x^{2}-6 x-2}{\left(x^{2}-9\right)^{2}}$; domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{5 x+1}{4 x-2}$; domain: $(-\infty,-3) \cup\left(-3, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 3\right) \cup(3, \infty) \quad$ 44. $(f+g)(x)=\frac{5 x-3}{x^{2}-25}$; domain: $(-\infty,-5) \cup(-5,5) \cup(5, \infty) ;(f-g)(x)=\frac{x+5}{x^{2}-25}=\frac{1}{x-5}$; domain: $(-\infty,-5) \cup(-5,5) \cup(5, \infty) ;(f g)(x)=\frac{6 x^{2}-10 x-4}{\left(x^{2}-25\right)^{2}} ;$ domain: $(-\infty,-5) \cup(-5,5) \cup(5, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{3 x+1}{2 x-4}$; domain: $(-\infty,-5) \cup(-5,2) \cup(2,5) \cup(5, \infty) \quad$ 45. $(f+g)(x)=\frac{8 x^{2}+30 x-12}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;(f-g)(x)=\frac{8 x^{2}+18 x+12}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;(f g)(x)=\frac{48 x}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{4 x(x+3)}{3(x-2)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) \quad$ 46. $(f+g)(x)=\frac{9 x^{2}+79 x-28}{(x-4)(x+8)}$; domain: $(-\infty,-8) \cup(-8,4) \cup(4, \infty) ;(f-g)(x)=\frac{9 x^{2}+65 x+28}{(x-4)(x+8)}$; domain: $(-\infty,-8) \cup(-8,4) \cup(4, \infty) ;(f g)(x)=\frac{63 x}{(x-4)(x+8)}$; domain: $(-\infty,-8) \cup(-8,4) \cup(4, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{9 x(x+8)}{7(x-4)}$; domain: $(-\infty,-8) \cup(-8,4) \cup(4, \infty) \quad$ 47. $(f+g)(x)=\sqrt{x+4}+\sqrt{x-1}$; domain: $[1, \infty) ;(f-g)(x)=\sqrt{x+4}-\sqrt{x-1}$; domain: $[1, \infty) ;(f g)(x)=\sqrt{x^{2}+3 x-4}$; domain: $[1, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+4}}{\sqrt{x-1}}$; domain: $(1, \infty) \quad$ 48. $(f+g)(x)=\sqrt{x+6}+\sqrt{x-3}$; domain: $[3, \infty) ;(f-g)(x)=\sqrt{x+6}-\sqrt{x-3}$; domain: $[3, \infty) ;(f g)(x)=\sqrt{x^{2}+3 x-18}$; domain: $[3, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+6}}{\sqrt{x-3}}$; domain: $(3, \infty)$ 49. $(f+g)(x)=\sqrt{x-2}+\sqrt{2-x}$; domain: $\{2\} ;(f-g)(x)=\sqrt{x-2}-\sqrt{2-x} ;$ domain: $\{2\} ;(f g)(x)=\sqrt{x-2} \cdot \sqrt{2-x}$; domain: $\{2\} ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x-2}}{\sqrt{2-x}}$; domain: $\varnothing \quad$ 50. $(f+g)(x)=\sqrt{x-5}+\sqrt{5-x}$; domain: $\{5\} ;(f-g)(x)=\sqrt{x-5}-\sqrt{5-x}$; domain: $\{5\} ;(f g)(x)=\sqrt{x-5} \cdot \sqrt{5-x} ;\{5\} ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x-5}}{\sqrt{5-x}}$; domain: $\varnothing \quad$ 55. a. $(f \circ g)(x)=20 x^{2}-11 \quad$ b. $(g \circ f)(x)=80 x^{2}-120 x+43$
56. a. $(f \circ g)(x)=14 x^{2}-62 \quad$ b. $(g \circ f)(x)=98 x^{2}+28 x-7 \quad$ 57. a. $(f \circ g)(x)=x^{4}-4 x^{2}+6 \quad$ b. $(g \circ f)(x)=x^{4}+4 x^{2}+2$
58. a. $(f \circ g)(x)=x^{4}-6 x^{2}+10$
b. $(g \circ f)(x)=x^{4}+2 x^{2}-2$
59. a. $(f \circ g)(x)=-2 x^{2}-x-1$
b. $(g \circ f)(x)=2 x^{2}-17 x+41$
60. a. $(f \circ g)(x)=-5 x^{2}+20 x-7$
b. $(g \circ f)(x)=-25 x^{2}+40 x-13$
61. a. $(f \circ g)(x)=\sqrt{x-1}$
b. $(g \circ f)(x)=\sqrt{x}-1$
62. a. $(f \circ g)(x)=\sqrt{x+2} \quad$ b. $(g \circ f)(x)=\sqrt{x}+2 \quad$ 67. b. $\left(-\infty,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, 0\right) \cup(0, \infty)$
68. b. $\left(-\infty,-\frac{1}{4}\right) \cup\left(-\frac{1}{4}, 0\right) \cup(0, \infty)$
69. b. $(-\infty,-4) \cup(-4,0) \cup(0, \infty)$
70. b. $\left(-\infty,-\frac{6}{5}\right) \cup\left(-\frac{6}{5}, 0\right) \cup(0, \infty) \quad$ 73. b. $(-\infty, 1]$
74. b. $(-\infty, 2]$
75. $f(x)=x^{4}, g(x)=3 x-1$
76. $f(x)=x^{3}, g(x)=2 x-5$
77. $f(x)=\sqrt[3]{x}, g(x)=x^{2}-9$
78. $f(x)=\sqrt{x}, g(x)=5 x^{2}+3$
79. $f(x)=|x|, g(x)=2 x-5$
80. $f(x)=|x|, g(x)=3 x-4$
81. $f(x)=\frac{1}{x}, g(x)=2 x-3$
82. $f(x)=\frac{1}{x}, g(x)=4 x+5$
87. $[-4,3]$ 88. $(-4,3)$
89.

90.

95. 1 and 2
96. $-\frac{4}{3}$ and 1
99. $(R-C)(20,000)=-200,000$; The company loses $\$ 200,000$ when 20,000 radios are sold.; $(R-C)(30,000)=0$; The company breaks even when 30,000 radios are sold.; $(R-C)(40,000)=200,000$; The company makes a profit of $\$ 200,000$ when 40,000 radios are sold.
100. a. $m=-0.44$; Profit is decreasing. b. $m=0.51$; Profit is increasing. c. $0.07 x+24.76 ; m=0.07$; Profit is increasing.
101. a. f gives the price of the computer after a $\$ 400$ discount. g gives the price of the computer after a 25% discount. b. $(f \circ g)(x)=0.75 x-400$; This models the price of a computer after first a 25% discount and then a $\$ 400$ discount. \quad c. $(g \circ f)(x)=0.75(x-400)$; This models the price of a computer after first a $\$ 400$ discount and then a 25% discount. d. $f \circ g$ because $0.75 x-400<0.75(x-400) \quad$ 102. a. f gives the cost of a pair of jeans after a $\$ 5$ discount. g gives the cost of a pair of jeans that has been discounted 40%. b. $(f \circ g)(x)=0.6 x-5$; The cost of a pair of jeans is 60% of the regular price minus $\$ 5$ rebate. c. $(g \circ f)(x)=0.6(x-5)=0.6 x-3$; The cost of a pair of jeans is 60% of the price that has been reduced by $\$ 5$. d. $f \circ g$ because $0.6 x-5<0.6 x-3$

At $x=0$, there is no y-value since the function is not defined there.
109.

Domain: [0, 4]
117. true 118. Assume f and g are even; then $f(-x)=f(x)$ and $g(-x)=g(x) .(f g)(-x)=f(-x) g(-x)=f(x) g(x)=(f g)(x)$, so $f g$ is even. 119. Answers will vary; One possible answer is $f(x)=x+1$ and $g(x)=x-1$. 120. $\{(4,-2),(1,-1),(1,1),(4,2)\}$; no

Section 1.8

Check Point Exercises

6.

7. $f^{-1}(x)=\sqrt{x-1}$

Exercise Set 1.8

3. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
4. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
5. $f(g(x))=\frac{5 x-56}{9} ; g(f(x))=\frac{5 x-4}{9} ; f$ and g are not inverses
6. $f(g(x))=\frac{3 x-40}{7} ; g(f(x))=\frac{3 x-4}{7} ; f$ and g are not inverses.
7. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
8. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
9. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
10. $f^{-1}(x)=\frac{3 x+1}{x-2} ; x \neq 2$
11. $f^{-1}(x)=\frac{-x-3}{x-2} ; x \neq 2$
12. The function is not one-to-one, so it does not have an inverse function.
13. The function is one-to-one, so it does have an inverse function.
14. The function is not one-to-one, so it does not have an inverse function. 32. The function is not one-to-one, so it does not have an inverse function.
15. The function is one-to-one, so it does have an inverse function. 34. The function is one-to-one, so it does have an inverse function.
16.

36.

37.

38.

39. a. $f^{-1}(x)=\frac{x+1}{2}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$;
range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
42. a. $f^{-1}(x)=-\sqrt{x+1}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, 0]$;
range of $f=$ domain of $f^{-1}=[-1, \infty)$
40. a. $f^{-1}(x)=\frac{x+3}{2}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
43. a. $f^{-1}(x)=-\sqrt{x}+1$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, 1]$; range of $f=$ domain of $f^{-1}=[0, \infty)$
41. a. $f^{-1}(x)=\sqrt{x+4}$
b.

c. domain of $f=$ range of $f^{-1}=[0, \infty)$; range of $f=$ domain of $f^{-1}=[-4, \infty)$
44. a. $f^{-1}(x)=\sqrt{x}+1$
b.

c. domain of $f=$ range of $f^{-1}=[1, \infty)$; range of $f=$ domain of $f^{-1}=[0, \infty)$
45. a. $f^{-1}(x)=\sqrt[3]{x+1}$

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
48. a. $f^{-1}(x)=\sqrt[3]{x}+2$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
51. a. $f^{-1}(x)=(x-1)^{3}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
46. a. $f^{-1}(x)=\sqrt[3]{x-1}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
49. a. $f^{-1}(x)=x^{2}+1, x \geq 0$
b.

c. domain of $f=$ range of $f^{-1}=[1, \infty)$; range of $f=$ domain of $f^{-1}=[0, \infty)$
52. a. $f^{-1}(x)=x^{3}+1$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
47. a. $f^{-1}(x)=\sqrt[3]{x}-2$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
50. a. $f^{-1}(x)=(x-2)^{2}, x \geq 2$
b.

c. domain of $f=$ range of $f^{-1}=[0, \infty)$; range of $f=$ domain of $f^{-1}=[2, \infty)$
65. a. $\{($ Zambia, 4.2), (Colombia, 4.5), (Poland, 3.3), (Italy, 3.3), (United States, 2.5)\}
b. $\{(4.2$, Zambia), (4.5, Colombia), (3.3, Poland), (3.3, Italy), (2.5, United States) \}; no; The inverse of f is not a function.
66. a. $\{($ Zambia, -7.3), (Colombia, -4.5), (Poland, -2.8), (Italy, -2.8), (United States, -1.9)\}
b. $\{(-7.3$, Zambia) , (-4.5, Colombia), (-2.8 , Poland) , (-2.8 , Italy $),(-1.9$, United States $)\} ;$ no; The inverse of g is not a function.
67. a. f is a one-to-one function. \quad b. $f^{-1}(0.25)$ is the number of people in a room for a 25% probability of two people sharing a birthday. $f^{-1}(0.5)$ is the number of people in a room for a 50% probability of two people sharing a birthday. $f^{-1}(0.7)$ is the number of people in a room for a 70% probability of two people sharing a birthday. 68. a. No; the horizontal line $y=3$ intersects the graph in more than one point.
c. No, the graph does not represent a one-to-one function; the points $(12,3)$ and $(19,3)$ have the same second coordinate but different first coordinates.
69. $f(g(x))=\frac{9}{5}\left[\frac{5}{9}(x-32)\right]+32=x$ and $g(f(x))=\frac{5}{9}\left[\left(\frac{9}{5} x+32\right)-32\right]=x$
76.

not one-to-one
80.

not one-to-one
84.

f and g are inverses.
77.

one-to-one
81.

not one-to-one
85.

f and g are inverses.
78.

one-to-one
82.

one-to-one
86.

f and g are inverses.
79.

not one-to-one
83.

not one-to-one
95. $(f \circ g)^{-1}(x)=\frac{x-15}{3} ;\left(g^{-1} \circ f^{-1}\right)(x)=\frac{x}{3}-5=\frac{x-15}{3}$
97. No; The spacecraft was at the same height, $s(t)$, for two different values of t-once during the ascent and once again during the descent. 101.

Section 1.9

Check Point Exercises

5. b.

6.

Exercise Set 1.9

3. $2 \sqrt{29} \approx 10.77$
4. $\sqrt{73} \approx 8.54$
5. $\sqrt{29} \approx 5.39$
6. $2 \sqrt{10} \approx 6.32$
7. $\sqrt{41} \approx 6.40$
8. $2 \sqrt{5} \approx 4.47$
9. $5 \sqrt{2} \approx 7.07$
10. $\sqrt{2} \approx 1.41$
11. $(-4,-5)$
12. $\left(-\frac{5}{2},-5\right)$
13. $x^{2}+y^{2}=49$
14. $x^{2}+y^{2}=64$
15. $(x-3)^{2}+(y-2)^{2}=25$
16. $(x-2)^{2}+(y+1)^{2}=16$
17. $(x+1)^{2}+(y-4)^{2}=4$
18. $(x+3)^{2}+(y-5)^{2}=9$
19. $(x+3)^{2}+(y+1)^{2}=3$
20. $(x+5)^{2}+(y+3)^{2}=5$
21. $(x+4)^{2}+y^{2}=100$
22. $(x+2)^{2}+y^{2}=36$
23. center: $(0,0)$ radius: 4 domain: $[-4,4]$ range: $[-4,4]$

24. center: $(-1,4)$ radius: 5 domain: $[-6,4]$ range: $[-1,9]$

25. center: $(-1,0)$ radius: 5 domain: $[-6,4]$ range: $[-5,5]$

26. center: $(0,0)$ radius: 7
domain: $[-7,7]$
range: $[-7,7]$

27. center: $(-2,-2)$
radius: 2
domain: $[-4,0]$
range: $[-4,0]$

28. center: $(-2,0)$ radius: 4 domain: $[-6,2]$ range: $[-4,4]$

29. center: $(3,1)$
radius: 6
domain: $[-3,9]$
range: $[-5,7]$

30. center: $(-4,-5)$
radius: 6
domain: $[-10,2]$
range: $[-11,1]$

31. center: $(2,3)$
radius: 4
domain: $[-2,6]$
range: $[-1,7]$

32. center: $(0,1)$
radius: 1
domain: $[-1,1]$
range: $[0,2]$

33. center: $(-3,2)$
radius: 2
domain: $[-5,-1]$
range: $[0,4]$

34. center: $(0,2)$
radius: 2
domain: $[-2,2]$
range: $[0,4]$

35. $(x+3)^{2}+(y+1)^{2}=4$ center: $(-3,-1)$ radius: 2

36. $(x+4)^{2}+(y+2)^{2}=4$ center: $(-4,-2)$ radius: 2

37. $(x-5)^{2}+(y-3)^{2}=64$ center: $(5,3)$ radius: 8

38. $(x-1)^{2}+y^{2}=16$
center: $(1,0)$
radius: 4

39. $(x-2)^{2}+(y-6)^{2}=49$ center: $(2,6)$ radius: 7

40. $x^{2}+(y-3)^{2}=16$ center: $(0,3)$
radius: 4

41. $(x+4)^{2}+(y-1)^{2}=25$ center: $(-4,1)$ radius: 5

42. $(x+6)^{2}+(y-3)^{2}=49$ center: $(-6,3)$ radius: 7

43. $\left(x-\frac{1}{2}\right)^{2}+(y+1)^{2}=\frac{1}{4}$ center: $\left(\frac{1}{2},-1\right)$ radius: $\frac{1}{2}$

44. $\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=1$ center: $\left(-\frac{1}{2},-\frac{1}{2}\right)$
radius: 1

$$
x^{2}+y^{2}+x+y-\frac{1}{2}=0
$$

63. $\left(x+\frac{3}{2}\right)^{2}+(y-1)^{2}=\frac{17}{4}$
center: $\left(-\frac{3}{2}, 1\right)$
radius: $\frac{\sqrt{17}}{2}$
64. $\left(x+\frac{3}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{25}{4}$
center: $\left(-\frac{3}{2},-\frac{5}{2}\right)$
radius: $\frac{5}{2}$
65. a. $(5,10)$
b. $\sqrt{5}$
c. $(x-5)^{2}+(y-10)^{2}=5$
66. $x^{2}+y^{2}=16$

67. $x^{2}+y^{2}=9$

68.

70.

83.

84.

85.

89. makes sense
95. a Distance between $\left(x_{1}, y_{1}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\sqrt{\left(\frac{x_{1}+x_{2}}{2}-x_{1}\right)^{2}+\left(\frac{y_{1}+y_{2}}{2}-y_{1}\right)^{2}}$
$=\sqrt{\left(\frac{x_{1}+x_{2}-2 x_{1}}{2}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{1}}{2}\right)^{2}}$
$=\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}$
$=\sqrt{\frac{x_{2}^{2}-2 x_{1} x_{2}+x_{1}^{2}}{4}+\frac{y_{2}^{2}-2 y_{1} y_{2}+y_{1}^{2}}{4}}$
$=\sqrt{\frac{x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}}{4}+\frac{y_{1}^{2}-2 y_{1} y_{2}+y_{2}^{2}}{4}}$
$=\sqrt{\left(\frac{x_{1}-x_{2}}{2}\right)^{2}+\left(\frac{y_{1}-y_{2}}{2}\right)^{2}}$
$=\sqrt{\left(\frac{x_{1}+x_{2}-2 x_{2}}{2}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{2}}{2}\right)^{2}}$
$=\sqrt{\left(\frac{x_{1}+x_{2}}{2}-x_{2}\right)^{2}+\left(\frac{y_{1}+y_{2}}{2}-y_{2}\right)^{2}}$
$=$ Distance between $\left(x_{2}, y_{2}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
b. $\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}+\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}$
$=2 \sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}$
$=2 \sqrt{\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{4}}$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=$ Distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$
99. a. perimeter: 140 yd ; area: $1200 \mathrm{yd}^{2}$
b. perimeter: 140 yd ; area: $1000 \mathrm{yd}^{2}$

Exercise Set 1.10

3. a. $M(x)=239.4-0.3 x \quad$ 13. b. $T(x)=-4 x^{2}+520 x \quad$ 15. b. $V(2)=800$; If a 2 -in. square is cut from each corner, the volume is 800 cubic in.; $V(3)=972$; if a 3 -in. square is cut from each corner, the volume is 972 cubic in.; $V(4)=1024$; if a 4 -in. square is cut from each corner, the volume is 1024 cubic in.; $V(5)=980$; if a 5 -in. square is cut from each corner, the volume is 980 cubic in.; $V(6)=864$; if a 6 -in. square is cut from each corner, the volume is 864 cubic in. Initially, as x increases, V increases. When $x=4, V$ is a maximum. As x increases beyond $4, V$ decreases. 16. b. $V(3)=1728$; if a 3 -in. square is cut from each corner, the volume is 1728 cubic in.; $V(4)=1936$; if a 4 -in. square is cut from each corner, the volume is 1936 cubic in.; $V(5)=2000$; if a 5 -in. square is cut from each corner, the volume is 2000 cubic in.; $V(6)=1944$; if a 6 -in. square is cut from each corner, the volume is 1944 cubic in.; $V(7)=1792$; if a 7 -in. square is cut from each corner, the volume is 1792 cubic in. Initially, as x increases, V increases. When $x=5$, V is a maximum. As x increases beyond $5, V$ decreases. 19. $P(x)=x(66-x) \quad$ 20. $P(x)=x(50-x) \quad$ 23. Let x be the length of the side perpendicular to the canal. $A(x)=x(800-2 x)$ 24. Let x be the length of the side perpendicular to the canal. $A(x)=x(600-2 x) \quad$ 29. Let x be the length of the interior wall. $C(x)=475 x+\frac{1,400,000}{x} \quad$ 30. Let x be the length of the fence. $C(x)=29 x+\frac{5000}{x} \quad$ 32. $A(x)=\frac{2000}{x}+x^{2}$
4. a. $I(x)=0.15 x+0.07(50,000-x)$
b. $\$ 31,250$ at $15 \%, \$ 18,750$ at 7%
5. a. $I(x)=0.10 x+0.12(18,750-x)$
b. $\$ 6650$ at $10 \%, \$ 12,100$ at 12%
6. $I(x)=0.12 x-0.05(8000-x)$
7. $I(x)=0.14 x-0.06(12,000-x)$
8. does not make sense
9. does not make sense

Chapter 1 Review Exercises

1.

2.

3.

9. a. $(20,8) ; 8 \%$ of college students anticipated a starting salary of $\$ 20$ thousand. 15. function; domain: $\{2,3,5\}$; range: $\{7\}$
16. function; domain: $\{1,2,13\}$; range: $\{10,500, \pi\} \quad$ 34. b. $-2,3 ; f(-2)=-3, f(3)=-5 \quad$ 36. odd; symmetric with respect to the origin
37. even; symmetric with respect to the y-axis 38. odd; symmetric with respect to the origin
39.

40.

42. $-4 x-2 h+1$

43. a. yes; The graph passes the vertical line test. b. $(3,12)$; The eagle descended.
c. $(0,3)$ and $(12,17)$; The eagle's height held steady during the first 3 seconds and the eagle was on the ground for 5 seconds. d. $(17,30)$; The eagle was ascending.
44.

46. 1 ; rises
47. 0 ; horizontal
48. undefined; vertical
49. $y-2=-6(x+3) ; y=-6 x-16$
50. using $(1,6), y-6=2(x-1) ; y=2 x+4$
54. Slope: $\frac{2}{5} ; y$-intercept: -1

55. Slope: $-4 ; y$-intercept: 5

56. Slope: $-\frac{2}{3} ; y$-intercept: -2

57. Slope: 0; y-intercept: 4

58.

59.

60. a. $y-2.3=0.116(x-15)$ or $y-11=0.116(x-90) \quad$ d. 4.3 deaths per 100,000 persons; underestimates by 0.7 death per 100,000 persons; The line passes below the point for France. moving down on $(2,4)$.
64.

65.

70.

75.

80.

66.

71.

76.

81.

67.

72.

77.

82.

68.

73.

78.

83.

84.

86. $(-\infty, 7) \cup(7, \infty)$
88. $(-\infty,-7) \cup(-7,3) \cup(3, \infty)$
91. $(f+g)(x)=4 x-6$; domain: $(-\infty, \infty)$; $(f-g)(x)=2 x+4$; domain: $(-\infty, \infty) ;(f g)(x)=3 x^{2}-16 x+5 ;$ domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{3 x-1}{x-5} ;$
domain: $(-\infty, 5) \cup(5, \infty) \quad$ 92. $(f+g)(x)=2 x^{2}+x$; domain: $(-\infty, \infty) ;(f-g)(x)=x+2$; domain: $(-\infty, \infty) ;(f g)(x)=x^{4}+x^{3}-x-1$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{x^{2}+x+1}{x^{2}-1}$;
domain: $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
93. $(f+g)(x)=\sqrt{x+7}+\sqrt{x-2}$; domain: $[2, \infty) ;(f-g)(x)=\sqrt{x+7}-\sqrt{x-2} ;$ domain: $[2, \infty) ;(f g)(x)=\sqrt{x^{2}+5 x-14}$; domain: $[2, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+7}}{\sqrt{x-2}}$; domain: $(2, \infty) \quad$ 94. a. $(f \circ g)(x)=16 x^{2}-8 x+4 \quad$ b. $(g \circ f)(x)=4 x^{2}+11$
95. a. $(f \circ g)(x)=\sqrt{x+1}$
b. $(g \circ f)(x)=\sqrt{x}+1$
96. b. $(-\infty, 0) \cup\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$
97. b. $[-2, \infty)$
98. $f(x)=x^{4}, g(x)=x^{2}+2 x-1 \quad$ 99. $f(x)=\sqrt[3]{x}, g(x)=7 x+4 \quad$ 100. $f(g(x))=x-\frac{7}{10} ; g(f(x))=x-\frac{7}{6}$; f and g are not inverses of each other.
101. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses of each other.
109.

110. $f^{-1}(x)=\sqrt{1-x}$
119. center: $(-2,3)$; radius: 3 domain: $[-5,1]$; range: $[0,6]$

116. $x^{2}+y^{2}=9$
117. $(x+2)^{2}+(y-4)^{2}=36$
120. center: $(2,-1)$; radius: 3 domain: $[-1,5]$; range: $[-4,2]$

125. $A(x)=x\left(\frac{400-3 x}{2}\right)$

Chapter 1 Test

2. e. $(-5,-1)$ or $(2,6)$
3. g .

4. $f^{-1}(x)=(x-1)^{2}, x \geq 1$

5. center: $(0,0)$; radius: 1 domain: $[-1,1]$; range: $[-1,1]$

6.

domain: $(-\infty, \infty)$;
range: $(-\infty, \infty)$
5.

domain: [-2, 2];
range: [-2,2]
6. $f(x)=4 y$

domain: $(-\infty, \infty)$; range: $\{4\}$

9.

domain: $(-\infty, \infty)$
range: $\{-1,2\}$
12.

domain of $f=$ domain of $g=(-\infty, \infty)$; range of $f=[0, \infty)$; range of $g=(-\infty, 4]$
15.

10.

domain: $[-6,2]$;
range: $[-1,7]$
13.

domain of $f=$ range of $f^{-1}=(-\infty, \infty)$;
range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
16. $f(x-1)=x^{2}-3 x-2$
17. $2 x+h-1$
21. $(g \circ f)(x)=2 x^{2}-2 x-14$
20. $(f \circ g)(x)=4 x^{2}-26 x+38$
23. $f(-x)=x^{2}+x-4$; neither
25. $y-6=4(x+4) ; y=4 x+22$
domain of $f=$ range of $f^{-1}=[0, \infty)$;
range of $f=$ domain of $f^{-1}=[-1, \infty)$

CHAPTER 2
Exercise Set 2.1
4. $2+16 i \quad$ 63. $(5+i \sqrt{15})+(5-i \sqrt{15})=10 ;(5+i \sqrt{15})(5-i \sqrt{15})=25-15 i^{2}=25+15=40$

Section 2.2

Check Point Exercises

1.

2.

3.

5. c.

(feet)

Exercise Set 2.2

10. $(2,12)$ 11. $(-1,5)$
11. domain: $(-\infty, \infty)$
range: $[-1, \infty)$
axis of symmetry: $x=4$

$$
f(x)=(x-4)^{2}-1
$$

21. domain: $(-\infty, \infty)$
range: $[1, \infty)$
axis of symmetry: $x=3$

22. domain: $(-\infty, \infty)$
range: $(-\infty, 4]$
axis of symmetry: $x=1$

$f(x)=4-(x-1)^{2}$
23. domain: $(-\infty, \infty)$ range: $\left[-\frac{49}{4}, \infty\right)$
axis of symmetry: $x=-\frac{3}{2}$

24. $(-4,-8)$
25. $(2,-11)$
26. domain: $(-\infty, \infty)$ range: $[-2, \infty)$ axis of symmetry: $x=1$

27. domain: $(-\infty, \infty)$
range: $[3, \infty)$
axis of symmetry: $x=1$

28. domain: $(-\infty, \infty)$
range: $(-\infty, 1]$
axis of symmetry: $x=3$

$f(x)=1-(x-3)^{2}$
29. domain: $(-\infty, \infty)$ range: $\left[-\frac{81}{8}, \infty\right)$ axis of symmetry: $x=\frac{7}{4}$

30. domain: $(-\infty, \infty)$
range: $[2, \infty)$ axis of symmetry: $x=1$

$f(x)=(x-1)^{2}+2$
31. domain: $(-\infty, \infty)$
range: $[-1, \infty)$
axis of symmetry: $x=-2$

32. domain: $(-\infty, \infty)$
range: $[-4, \infty)$
axis of symmetry: $x=1$

$f(x)=x^{2}-2 x-3$
33. domain: $(-\infty, \infty)$
range: $(-\infty, 4]$
axis of symmetry: $x=1$

$f(x)=2 x-x^{2}+3$
34. domain: $(-\infty, \infty)$
range: $[2, \infty)$
axis of symmetry: $x=3$

35. domain: $(-\infty, \infty)$
range: $\left(-\infty, \frac{5}{4}\right]$
axis of symmetry: $x=\frac{1}{2}$

$f(x)=\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2}$
36. domain: $(-\infty, \infty)$
range: $[-16, \infty)$
axis of symmetry: $x=1$
37. domain: $(-\infty, \infty)$
range: $(-\infty, 9]$
axis of symmetry: $x=-2$

38. domain: $(-\infty, \infty)$
range: $[-6, \infty)$
axis of symmetry: $x=-3$

39. domain: $(-\infty, \infty)$
range: $(-\infty,-1]$
axis of symmetry: $x=1$

$f(x)=2 x-x^{2}-2$
40. domain: $(-\infty, \infty)$
range: $[-5, \infty)$
axis of symmetry: $x=-2$

41. domain: $(-\infty, \infty)$
range: $[2, \infty)$
axis of symmetry: $x=2$

$f(x)=6-4 x+x^{2}$
42. domain: $(-\infty, \infty)$
range: $[-5, \infty)$
axis of symmetry: $x=-1$

43. domain: $(-\infty, \infty)$
range: $\left[-\frac{13}{3}, \infty\right)$
axis of symmetry: $x=\frac{1}{3}$

$f(x)=3 x^{2}-2 x-4$
44. a. minimum b. Minimum is -13 at $x=2$.
c. domain: $(-\infty, \infty)$; range: $[-13, \infty)$
45. a. minimum \quad b. Minimum is -11 at $x=2$.
c. domain: $(-\infty, \infty)$; range: $[-11, \infty)$
46. a. maximum \quad b. Maximum is 1 at $x=1$.
c. domain: $(-\infty, \infty)$; range: $(-\infty, 1]$
47. a. maximum \quad b. Maximum is 21 at $x=-3$.
c. domain: $(-\infty, \infty)$; range: $(-\infty, 21]$
48. a. minimum
b. Minimum is $-\frac{5}{4}$ at $x=\frac{1}{2}$.
c. domain: $(-\infty, \infty)$, range: $\left[-\frac{5}{4}, \infty\right)$
49. a. minimum
b. Minimum is $-\frac{3}{2}$ at $x=\frac{1}{2}$.
c. domain: $(-\infty, \infty)$; range: $\left[-\frac{3}{2}, \infty\right)$
50. domain: $(-\infty, \infty)$; range: $[-2, \infty)$ 46. domain: $(-\infty, \infty)$; range: $(-\infty,-4]$
51. $f(x)=2(x+10)^{2}-5$
52. $f(x)=-3(x+2)^{2}+4$
53. $f(x)=-3(x-5)^{2}-7$
54. $f(x)=3(x-11)^{2}$
55. $f(x)=3(x-9)^{2}$
56. c.

57. c.

58. a.

You can only see a little of the parabola.
86. $(2.5,185)$

89. a \& e.

d. You can choose Xmin and Xmax so the x-value of the vertex is in the center of the graph. Choose Ymin to include the y-value of the vertex.
85. $(80,1600)$

88. $(-30,91)$

62. 10 and $10 ; 100$
72. 3 in.; 18 sq in.
68. 20 yd by 20 yd ; 400 sq yd
67. 12.5 yd by $12.5 \mathrm{yd} ; 156.25 \mathrm{sq} \mathrm{yd}$
74. \$35; \$6125
87. $(-4,520)$

d. The greatest number of viewers actually occurred in Season 5, not Season 6, and the model underestimates the greatest number by 0.5 million.
100. $f(x)=\frac{1}{2}(x+3)^{2}-4$
102. $\left(\frac{4}{5}, \frac{2}{5}\right)$
103. $\$ 95 ; \$ 21,675$
107. $f(2)=-1 ; f(3)=16$; The graph passes through $(2,-1)$, which is below the x-axis, and $(3,16)$, which is above the x-axis. Since the graph of f is continuous, it must cross the x-axis somewhere between 2 and 3 to get from one of these points to the other.

Section 2.3

Check Point Exercises

9.

$f(x)=x^{3}-3 x^{2}$
10.

Exercise Set 2.3

3. polynomial function; degree: 5 4. polynomial function; degree: 7
4. $x=5$ has multiplicity 1 ; The graph crosses the x-axis; $x=-4$ has multiplicity 2 ; The graph touches the x-axis and turns around.
5. $x=-5$ has multiplicity 1 ; The graph crosses the x-axis; $x=-2$ has multiplicity 2 ; The graph touches the x-axis and turns around.
6. $x=3$ has multiplicity 1 ; The graph crosses the x-axis; $x=-6$ has multiplicity 3 ; The graph crosses the x-axis.
7. $x=-\frac{1}{2}$ has multiplicity 1 ; The graph crosses the x-axis; $x=4$ has multiplicity 3 ; The graph crosses the x-axis.
8. $x=0$ has multiplicity 1 ; The graph crosses the x-axis; $x=1$ has multiplicity 2 ; The graph touches the x-axis and turns around.
9. $x=0$ has multiplicity 1 ; The graph crosses the x-axis; $x=-2$ has multiplicity 2 ; The graph touches the x-axis and turns around.
10. $x=2, x=-2$ and $x=-7$ have multiplicity 1 ; The graph crosses the x-axis.
11. $x=3, x=-3$, and $x=-5$ have multiplicity 1 ; The graph crosses the x-axis.
12. $f(-3)=-11 ; f(-2)=1 \quad$ 39. $f(-3)=-42 ; f(-2)=5$
13. a. $f(x)$ rises to the right and falls to the left. 42. a. $f(x)$ rises to the right and falls to the left.
b. $x=-2, x=1, x=-1$;
$f(x)$ crosses the x-axis at each.
c. The y-intercept is -2 .
d. neither
e.

$f(x)=x^{3}+2 x^{2}-x-2$
14. a. $f(x)$ rises to the left and the right.
b. $x=0, x=3, x=-3$;
$f(x)$ crosses the x-axis at -3 and 3;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

15. a. $f(x)$ falls to the left and the right.
b. $x=0, x=4, x=-4$;
$f(x)$ crosses the x-axis at -4 and 4;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

b. $x=-1, x=2, x=-2$;
$f(x)$ crosses the x-axis at each.
c. The y-intercept is -4 .
d. neither
e.

$$
f(x)=x^{3}+x^{2}-4 x-4
$$

44. a. $f(x)$ rises to the left and the right.
b. $x=0, x=1, x=-1$;
$f(x)$ touches but does not cross the x-axis at 0 ;
$f(x)$ crosses the x-axis at -1 and 1 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

$f(x)=x^{4}-x^{2}$
45. a. $f(x)$ falls to the left and the right.
b. $x=0, x=2, x=-2$;
$f(x)$ touches but does not cross the x-axis at 0 ;
$f(x)$ crosses the x-axis at -2 and 2.
c. The y-intercept is 0 .
d. y-axis symmetry
e.

46. a. $f(x)$ rises to the left and the right.
b. $x=0, x=1$;
$f(x)$ touches the x-axis at 0 and 1 .
c. The y-intercept is 0 .
d. neither
e.

$f(x)=x^{4}-2 x^{3}+x^{2}$
47. a. $f(x)$ falls to the left and the right.
b. $x=0, x=2$;
$f(x)$ crosses the x-axis at 0 and 2 .
c. The y-intercept is 0 .
d. neither
e.

$$
f(x)=-2 x^{4}+4 x^{3}
$$

51. a. $f(x)$ rises to the left and falls to the right. b. $x=0, x= \pm \sqrt{3}$;
$f(x)$ crosses the x-axis at 0 ;
$f(x)$ touches the x-axis at $\sqrt{3}$ and $-\sqrt{3}$.
c. The y-intercept is 0 .
d. origin symmetry
e.

$$
f(x)=6 x^{3}-9 x-x^{5}
$$

53. a. $f(x)$ rises to the left and falls to the right.
b. $x=0, x=3$;
$f(x)$ crosses the x-axis at 3 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

54. a. $f(x)$ falls to the left and the right.
b. $x=1, x=-2, x=2$;
$f(x)$ crosses the x-axis at -2 and 2 ;
$f(x)$ touches the x-axis at 1 .
c. The y-intercept is 12 .
d. neither
e.

55. a. $f(x)$ rises to the left and the right.
b. $x=0, x=3$;
$f(x)$ touches the x-axis at 3 and 0 .
c. The y-intercept is 0 .
d. neither
e.

$f(x)=x^{4}-6 x^{3}+9 x^{2}$
56. a. $f(x)$ falls to the left and the right. b. $x=0, x=1$;
$f(x)$ crosses the x-axis at 0 and 1 .
c. The y-intercept is 0 .
d. neither
e.

57. a. $f(x)$ rises to the left and falls to the right. b. $x=0, x= \pm \sqrt{2}$;
$f(x)$ crosses the x-axis at $-\sqrt{2}, 0$, and $\sqrt{2}$.
c. The y-intercept is 0 .
d. origin symmetry
e.

58. a. $f(x)$ falls to the left and the right.
b. $x= \pm 1$;
$f(x)$ crosses the x-axis at -1 and 1.
c. The y-intercept is $\frac{1}{2}$.
d. y-axis symmetry
e.

59. a. $f(x)$ falls to the left and the right.
b. $x=4, x=-5, x=5$;
$f(x)$ crosses the x-axis at -5 and 5 ;
$f(x)$ touches the x-axis at 4 .
c. The y-intercept is 800 .
d. neither
e.

60. a. $f(x)$ rises to the left and the right.
b. $x=-2, x=0, x=1$;
$f(x)$ crosses the x-axis at -2 and 1 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

61. a. $f(x)$ falls to the left and the right.
b. $x=-3, x=0, x=1$;
$f(x)$ crosses the x-axis at -3 and 1 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

62. a. $f(x)$ falls to the left and the right.
b. $x=-5, x=0, x=1$;
$f(x)$ crosses the x-axis at -5 and 0 ;
$f(x)$ touches the x-axis at 1 .
c. The y-intercept is 0 .
d. neither
e.

63. a. $f(x)$ rises to the left and the right.
b. $x=-4, x=1, x=2$;
$f(x)$ crosses the x-axis at -4 and 1 ;
$f(x)$ touches the x-axis at 2.
c. The y-intercept is -16 .
d. neither
e.

64. a. $f(x)$ rises to the left and the right.
b. $x=-2, x=-1, x=0$;
$f(x)$ crosses the x-axis at -1 and 0 ;
$f(x)$ touches the x-axis at -2 .
c. The y-intercept is 0 .
d. neither
e.

65. a. $f(x)$ falls to the left and the right.
b. $x=-2, x=0, x=2$;
$f(x)$ crosses the x-axis at -2 and 2 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

66. a. $f(x)$ falls to the left and the right.
b. $x=-3, x=0, x=1$;
$f(x)$ crosses the x-axis at -3 and 0 ;
$f(x)$ touches the x-axis at 1 .
c. The y-intercept is 0 .
d. neither
e.

67. a. $f(x)$ rises to the right and falls to the left.
b. $x=-4, x=-3, x=-1$;
$f(x)$ crosses the x-axis at each.
c. The y-intercept is 12 .
d. neither
e.

68. a. -2 , odd; 1 , odd; 4 , odd \quad b. $f(x)=(x+2)(x-1)(x-4) \quad$ c. $8 \quad$ 66. a. -3 , odd; 2 , odd; 5 , odd \quad b. $f(x)=(x+3)(x-2)(x-5)$
c. 30
69. a. -1 , odd; 3 , even
b. $f(x)=(x+1)(x-3)^{2}$
c. 9
70. a. -2 , odd; 1 , even
b. $f(x)=(x+2)(x-1)^{2}$
c. 2
71. a. -3 , even; 2 , even
b. $f(x)=-(x+3)^{2}(x-2)^{2} \quad$ c. -36
72. a. -1 , even; 4 , even
b. $f(x)=-(x+1)^{2}(x-4)^{2}$
c. -16
73. a. -2 , even; -1 , odd; 1 , odd
b. $f(x)=(x+2)^{2}(x+1)(x-1)^{3} \quad$ c. $-4 \quad$ 72. a. -2 , odd; -1 , even; 1 , odd
b. $f(x)=(x+2)(x+1)^{2}(x-1)^{3} \quad$ c. $-2 \quad$ 73. a. 3167 ; The world tiger population in 2010 was approximately 3167 ; (40,3167)
b. underestimates by 33 c. rises to the right; no; The model indicates an increasing world tiger population that will actually decrease without conservation efforts. 74. a. 26,747 ; The world tiger population in 1980 was approximately $26,747 . ;(10,26,747) \quad$ b. underestimates by 1253 c. rises to the right; yes; The model indicates an increasing world tiger population that might actually increase with conservation efforts.
74. a. from 1 through 4 min and from 8 through $10 \mathrm{~min} \quad$ b. from 4 through 8 min and from 10 through 12 min e. negative; The graph falls to the left and falls to the right. f. 116 ± 1 beats per min; $10 \mathrm{~min} \quad$ g. 64 ± 1 beats per min; $8 \mathrm{~min} \quad$ 76. e. positive; The graph falls to the left and rises to the right. f. $\$ 3.15 \pm \$ 0.05 ; 2011 \quad$ g. $\$ 1.85 \pm \$ 0.05 ; 2009$
75.

97.

95.

98.

96.

99.

111. $6 x^{3}-x^{2}-5 x+4$

Exercise Set 2.4

$\begin{array}{ll}\text { 9. } 2 x^{2}+x+6-\frac{38}{x+3} & \text { 10. } 3 x+7+\frac{26}{x-3}\end{array}$ 11. $4 x^{3}+16 x^{2}+60 x+246+\frac{984}{x-4}$
13. $2 x+5$
14. $x^{2}+x-3-\frac{12}{x^{2}+x-2}$
15. $6 x^{2}+3 x-1-\frac{3 x-1}{3 x^{2}+1}$
16. $x^{2}-4 x+1+\frac{4 x-1}{2 x^{3}+1}$
17. $2 x+5$
18. $x+2$
23. $6 x^{4}+12 x^{3}+22 x^{2}+48 x+93+\frac{187}{x-2}$
24. $x^{4}+7 x^{3}+21 x^{2}+60 x+182+\frac{549}{x-3}$
27. $x^{4}+x^{3}+2 x^{2}+2 x+2$
28. $x^{6}-2 x^{5}+5 x^{4}-10 x^{3}+10 x^{2}-20 x+40-\frac{68}{x+2}$
29. $x^{3}+4 x^{2}+16 x+64$
30. $x^{6}+2 x^{5}+4 x^{4}+8 x^{3}+16 x^{2}+32 x+64$
31. $2 x^{4}-7 x^{3}+15 x^{2}-31 x+64-\frac{129}{x+2}$
55. a. 70 ; When the tax rate is 30%, tax revenue is $\$ 700$ billion.; $(30,70)$
b. $80+\frac{800}{x-110} ; f(30)=70$; yes
c. No, f is a rational function because it is a quotient of two polynomials.
56. a. $68 \frac{4}{7}$; When the tax rate is 40%, tax revenue is $68 \frac{4}{7}$ tens of billions of dollars, or approximately $\$ 685.7$ billion.; $\left(40,68 \frac{4}{7}\right)$
b. $80+\frac{800}{x-110} ; f(40) \approx 68.57$; yes \quad c. $\mathrm{No} ; f$ is a rational function because it is a quotient of two polynomials.

Exercise Set 2.5

4. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2} \quad$ 5. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2}, \pm \frac{3}{4} \quad$ 6. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$
5. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
6. b. $-2,-1$, or 2
7. a. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \quad$ b. $-3,1$, or 4
8. a. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$
b. $-2, \frac{1}{2}$, or 3
9. b. $-\frac{1}{2}, 1$, or 2
10. c. $-1, \frac{-3-\sqrt{33}}{2}$, and $\frac{-3+\sqrt{33}}{2}$
11. c. $\frac{1}{2}, \frac{-1-\sqrt{5}}{2}$, and $\frac{-1+\sqrt{5}}{2}$
12. c. $-2, \frac{-1+i}{2}$, and $\frac{-1-i}{2}$
13. c. $1, \frac{3+i \sqrt{11}}{2}$, and $\frac{3-i \sqrt{11}}{2}$
14. a. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
b. $-3,1$, or 4
15. b. -1 or 4
16. a. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
17. a. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{1}{6}, \pm \frac{5}{6}$
b. $-5, \frac{1}{3}$, or $\frac{1}{2}$
18. a. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2} \quad$ 23. a. $\pm 1, \pm 2, \pm 4$
b. -2 or 2
19. a. $\pm 1, \pm 3, \pm 5, \pm 15$
b. -1 or 3
20. $f(x)=2 x^{3}-2 x^{2}+50 x-50$
21. $f(x)=2 x^{3}-8 x^{2}+8 x-32$
22. $f(x)=x^{3}-3 x^{2}-15 x+125$
23. $f(x)=3 x^{3}+12 x^{2}-93 x-522$
24. $f(x)=2 x^{4}+5 x^{3}+4 x^{2}+5 x+2$
25. $f(x)=x^{4}-9 x^{3}+21 x^{2}+21 x-130$
26. $f(x)=3 x^{4}-x^{3}-9 x^{2}+159 x-52$
27. b.

28. b.

29. b.

$f(x)=2 x^{4}-3 x^{3}-7 x^{2}-8 x+6$
30. b.

31. b.

32. b.

33. b.

34. b.

35. $\left\{-\frac{1}{2}, 3,5\right\} \quad$ 77. 5,3 , or 1 positive real zeros; no negative real zeros
36.

1 real zero, 2 nonreal complex zeros
82.

2 real zeros, 4 nonreal complex zeros
80.

3 real zeros, 2 nonreal complex zeros
83. makes sense
85. makes sense
90. false
81.

2 real zeros, 2 nonreal complex zeros

Mid-Chapter 2 Check Point
7. $\frac{3}{4} \pm i \frac{\sqrt{23}}{4}$
8.

domain: $(-\infty, \infty)$
range: $[-4, \infty)$
12.

16.

9.

domain: $(-\infty, \infty)$
range: $(-\infty, 5]$
13.

17.

10.

domain: $(-\infty, \infty)$
range: $(-\infty, 9]$
14.

18.

11.

domain: $(-\infty, \infty)$
range: $[-2, \infty)$
15.

19.

20.
30. $2 x^{2}-x-3+\frac{x+1}{3 x^{2}-1}$
31. $2 x^{3}-5 x^{2}-3 x+6$
32. $f(x)=-2 x^{3}+2 x^{2}-2 x+2$
33. $f(x)=x^{4}-4 x^{3}+13 x^{2}-36 x+36$
34. yes

Section 2.6

Check Point Exercises

4.

5.

6.

7.

Exercise Set 2.6

3. $\{x \mid x \neq 5, x \neq-4\} \quad$ 4. $\{x \mid x \neq 2, x \neq-6\} \quad$ 5. $\{x \mid x \neq 7, x \neq-7\} \quad$ 6. $\{x \mid x \neq 8, x \neq-8\} \quad$ 7. all real numbers
4. all real numbers 21. vertical asymptote: $x=-4$; no holes \quad 22. vertical asymptote: $x=3$; no holes \quad 23. vertical asymptotes: $x=-4, x=0$; no holes 24. vertical asymptotes: $x=3, x=0$; no holes \quad 25. vertical asymptote: $x=-4$; hole at $x=0 \quad$ 26. vertical asymptote: $x=3$; hole at $x=0$
5. no vertical asymptotes; no holes 28. no vertical asymptotes; no holes 29. no vertical asymptotes: hole at $x=3 \quad$ 30. no vertical asymptotes: hole at $x=5 \quad$ 31. vertical asymptote: $x=-3$; hole at $x=3 \quad$ 32. vertical asymptote: $x=-5$; hole at $x=5$ hole at $x=-7 \quad$ 34. vertical asymptote: $x=4$; hole at $x=-6 \quad$ 35. no vertical asymptotes; hole at $x=-7$ 33. vertical asymptote: $x=3$; $x=-6$
6.

$g(x)=\frac{1}{x-1}$
49.

53.

57.

61.

$$
f(x)=\frac{2 x^{2}}{x^{2}-1}
$$

65.

69.

$f(x)=\frac{2 x^{2}}{x^{2}+4}$
46.

50.

54.

58.

62.

66.

$$
f(x)=-\frac{2}{x^{2}-1}
$$

70.

47.

$h(x)=\frac{1}{x}+2$
51.

55.

59.

$f(x)=\frac{2 x}{x^{2}-4}$
63.

67.

$$
f(x)=\frac{2}{x^{2}+x-2}
$$

71.

$f(x)=\frac{x+2}{x^{2}+x-6}$
48.

$$
h(x)=\frac{1}{x}+1
$$

52.

$$
g(x)=\frac{1}{(x+1)^{2}}
$$

56.

60.

$$
f(x)=\frac{4 x}{x^{2}-1}
$$

64.

68.

$$
f(x)=\frac{-2}{x^{2}-x-2}
$$

72.

73.

$f(x)=\frac{x-2}{x^{2}-4}$
77.

$f(x)=\frac{x^{2}+x-12}{x^{2}-4}$
81. b.

85. a. Slant asymptote: $y=x+4$
b.

89.

$f(x)=\frac{x+2}{2 x(x-2)}$
93.

97. $g(x)=\frac{-1}{x-2}+3$

74.

$f(x)=\frac{x-3}{x^{2}-9}$
78.

$f(x)=\frac{x^{2}}{x^{2}+x-6}$
82. b

86. a. Slant asymptote: $y=x$
b.

90.

94.

98. $g(x)=\frac{-1}{x-4}+2$

75.

$f(x)=\frac{x^{4}}{x^{2}+2}$
79.

83. b.

84. b.

87. b.

91.

92.

95. $g(x)=\frac{1}{x+3}+2$

96. $g(x)=\frac{1}{x+2}+3$

99. b. $\bar{C}(x)=\frac{100 x+100,000}{x}$
c. $\bar{C}(500)=300$, when 500 bicycles are produced, it costs $\$ 300$ to produce each bicycle; $\bar{C}(1000)=200$, when 1000 bicycles are produced, it costs $\$ 200$ to produce each bicycle; $\bar{C}(2000)=150$, when 2000 bicycles are produced, it costs $\$ 150$ to produce each bicycle; $\bar{C}(4000)=125$, when 4000 bicycles are produced, it costs $\$ 125$ to produce each bicycle. d. $y=100$; The cost per bicycle approaches $\$ 100$ as more bicycles are produced.
100. b. $\bar{C}(x)=\frac{30 x+300,000}{x}$
c. $\bar{C}(1000)=330$, when 1000 pairs of shoes are produced, it costs $\$ 330$ to produce each pair; $\bar{C}(10,000)=60$, when 10,000 pairs of shoes are produced, its costs $\$ 60$ to produce each pair; $\bar{C}(100,000)=33$, when 100,000 pairs of shoes are produced, it costs $\$ 33$ to produce each pair. d. $y=30$; The cost per pair of shoes approaches $\$ 30$ as more shoes are produced.
101. d. $y=6.5$; Over time, the pH level rises back to normal. e. It quickly drops below normal and then slowly begins to approach the normal level. 102. c. $y=0$; Over time, the drug's concentration will approach 0 mg per liter. 103. 90 ; An incidence ratio of 10 means 90% of the deaths are smoking related. 104. 89; An incidence ratio of 9 means about 89% of the deaths are smoking related. 105. $y=100$; The percentage of deaths cannot exceed 100% as the incidence ratios increase. 106. No; according to the model and its graph, there is no incidence ratio that will produce 100 percentage of deaths.
107. a. $f(x)=\frac{1.75 x^{2}-15.9 x+160}{2.1 x^{2}-3.5 x+296}$
c. 66%; underestimates by 1%
122.

The graph approaches the horizontal asymptote faster and the vertical asymptote more slowly as n increases.
123.

The graph approaches the horizontal asymptote faster and the vertical asymptote more slowly as n increases.
124.

$g(x)$ is the graph of a line whereas $f(x)$ is the graph of a rational function with a slant asymptote; In $g(x), x-2$ is a factor of $x^{2}-5 x+6$.
125. a. 400

b. The graph increases and reaches a maximum of about
356 arrests per 100,000 drivers at age 25 .
126. does not make sense

Section 2.7

Check Point Exercises

2.

3.

4.

Exercise Set 2.7

1. $(-\infty,-2) \cup(4, \infty)$

2. $(-\infty, 1) \cup(4, \infty)$

3. \varnothing

4. $\left(-3, \frac{5}{2}\right)$

5. $\left(-\infty,-\frac{3}{2}\right) \cup(0, \infty)$

6. $(-\infty,-3) \cup(5, \infty)$

7. $(1,3)$

8. $(-\infty, 1) \cup(1, \infty)$

9. $\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{3}, \infty\right)$

10. $(-\infty, \infty)$

11. $\left[0, \frac{5}{3}\right]$

12. $[-3,7]$

13. $\underset{-4}{(-\infty,-4) \cup(-1, \infty)}$

14. $\left(-1,-\frac{3}{4}\right)$

15. $(-\infty, 0] \cup[4, \infty)$

16. $[0,1]$

17. $[-1,7]$

18. $(-\infty,-3) \cup(2, \infty)$

19. $\underset{-\frac{2}{3}}{\left(-\infty,-\frac{2}{3}\right] \cup\left[\frac{1}{3}, \infty\right)} \underset{\frac{1}{3}}{[}$
20. $\left(-5,-\frac{1}{3}\right)$

21. (-2, 0)

22. $[0,2]$

23. $[2-\sqrt{2}, 2+\sqrt{2}]$

24. $[1,2] \cup[3, \infty)$

25. $(-\infty, 2) \cup\left(2, \frac{7}{2}\right)$

26. $(-\infty,-3)$

27. $\{0\} \cup[9, \infty)$

28. $(-4,-3)$

29. $\left(-\infty,-\frac{4}{3}\right) \cup[2, \infty)$

30. $\left(-\infty, \frac{1}{2}\right) \cup\left[\frac{7}{5}, \infty\right)$

31. \varnothing
32. $[0,3] \cup[5, \infty)$

33. $[-2,-1] \cup[1, \infty)$

34. $(-1, \infty)$

35. $(-\infty,-3) \cup(4, \infty)$

36. $[2,4)$

37. $(-\infty, 0) \cup(3, \infty)$

38. $(-\infty,-6] \cup(-2, \infty)$

39. $(-\infty, \infty)$
40. $[0,4] \cup[6, \infty)$

41. $\{-2\} \cup[2, \infty)$

42. $(1, \infty)$

43. $(-\infty,-5) \cup(2, \infty)$

44. $(-\infty,-3] \cup(-2, \infty)$

45. $(-\infty,-4) \cup(0, \infty)$

46. (1, 2)

47. $[-4,-2)$

48. $\left(-\infty, \frac{1}{2}\right] \cup[2, \infty) \quad$ 62. $\left(-\infty, \frac{1}{4}\right) \cup(2, \infty)$
49. $(-\infty,-1) \cup[1, \infty)$
50. $\left(\frac{1}{2}, 1\right]$
51. $(-\infty,-8) \cup(-6,4) \cup(6, \infty)$

52. $(-\infty,-7) \cup(1, \infty)$

53. $(-\infty,-1) \cup(1,2) \cup(3, \infty)$

54. $(-\infty,-1) \cup(1,2) \cup(3, \infty)$

55. $(-3,2)$

56. $(-\infty,-3) \cup(-1,1)$

57. $\left[-6,-\frac{1}{2}\right] \cup[1, \infty) \quad$ 72. $(-\infty,-6) \cup\left(-\frac{1}{2}, 1\right)$
58. $(-\infty,-2) \cup[-1,2)$
59. $(-2,-1) \cup(2, \infty)$
60. between 0 and $\frac{1}{2}$ second \quad 76. between 0 and 3 seconds \quad 77. c. extremely well; Function values and data are identical. d. speeds exceeding 76 miles per hour; points on (b) to the right of $(76,540) \quad$ 78. c. extremely well d. speeds exceeding 68 miles per hour; points on (a) to the right of $(68,540) \quad$ 86. $(-\infty,-5) \cup(2, \infty)$ 87. $\left[-3, \frac{1}{2}\right]$
61. $(-2,-1) \cup(2, \infty)$
62. $(-4,-1) \cup[2, \infty)$
63. b. speeds exceeding 60 miles per hour
64. b. speeds exceeding 52 miles per hour
65. does not make sense
66. makes sense
67. does not make sense
68. $(-\infty, 2) \cup(2, \infty)$
69. $(-\infty, 2) \cup(2, \infty)$
70. $27-3 x^{2} \geq 0$

$$
\begin{aligned}
3 x^{2} & \leq 27 \\
x^{2} & \leq 9 \\
-3 \leq x & \leq 3
\end{aligned}
$$

$\begin{array}{llll}\text { 110. a. } 16 & \text { c. } 400 & \text { 111. a. } 96 & \text { c. } 32\end{array}$

Exercise Set 2.8

13. $x=\frac{k z^{3}}{y} ; y=\frac{k z^{3}}{x}$
14. $x=\frac{k \sqrt[3]{z}}{y} ; y=\frac{k \sqrt[3]{z}}{x}$
15. $x=\frac{k y z}{\sqrt{w}} ; y=\frac{x \sqrt{w}}{k z}$
16. $x=\frac{k y z}{w^{2}} ; y=\frac{x w^{2}}{k z}$
17. $x=k z(y+w) ; y=\frac{x-k z w}{k z}$
18. $x=k z(y-w) ; y=\frac{x+k z w}{k z}$
19. $x=\frac{k z}{y-w} ; y=\frac{x w+k z}{x}$
20. $x=\frac{k z}{y+w} ; y=\frac{k z-x w}{x}$
21. $\frac{1}{3}$ as long as it seems now
22. a. $C=\frac{k P_{1} P_{2}}{d^{2}}$
23. Yes, the wind will exert a force of 360 pounds.
24. a.

25. makes sense
26. Reduce the resistance by a factor of $\frac{1}{3}$.
27.

59.

60.

Chapter 2 Review Exercises

12. $\left\{\frac{3}{2} \pm \frac{1}{2} i\right\}$
13.

axis of symmetry; $x=-1$
domain: $(-\infty, \infty)$; range: $(-\infty, 4]$
14.

axis of symmetry: $x=-4$ domain: $(-\infty, \infty)$; range: $[-2, \infty)$
15.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $(-\infty, 4]$
16.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $[-8, \infty)$
17. a. maximum is -57 at $x=7$ b. domain: $(-\infty, \infty)$; range: $(-\infty,-57]$
18. a. minimum is 685 at $x=-3$
b. domain: $(-\infty, \infty)$, range: $[685, \infty)$
19. b. 6 ft

28. b. no; The model indicates increasing deforestation despite a declining rate in which the forest is being cut down. d. no; The model indicates the amount of forest cleared, in square kilometers, will eventually be negative, which is not possible. 29. No; the graph falls to the right, so eventually there would be a negative number of thefts, which is not possible. $\quad 30 . x=1$, multiplicity 1 , crosses; $x=-2$, multiplicity 2 , touches; $x=-5$, multiplicity 3 , crosses \quad 31. $x=-5$, multiplicity 1 , crosses; $x=5$, multiplicity 2 , touches $\quad 32 . f(1)$ is negative and $f(2)$ is positive, so by the Intermediate Value Theorem, f has a real zero between 1 and 2.
33. a. The graph falls to the
left and rises to the right.
b. no symmetry
c. $(-1,16)$
36. a. The graph falls to the left and to the right.
b. y-axis symmetry
c.

34. a. The graph rises to the left and falls to the right.
b. origin symmetry
c.

37. a. The graph falls to the left and to the right.
b. no symmetry
c.

35. a. The graph falls to the left and rises to the right.
b. no symmetry
c.

38. a. The graph rises to the left and to the right.
b. no symmetry
c.

42. $2 x^{2}-4 x+1-\frac{10}{5 x-3} \quad$ 48. $\{4,-2 \pm \sqrt{5}\}$
50. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{8}{3}, \pm \frac{4}{3}, \pm \frac{2}{3}, \pm \frac{1}{3}$
52. 3 or 1 positive real zeros; 2 or 0 negative real zeros
53. No sign variations exist for either $f(x)$ or $f(-x)$, so no real roots exist.
54. b. 1 positive real zero; 2 or no negative real zeros c. -2 or 1
55. b. 2 or 0 positive real zeros; 1 negative real zero \quad c. $-1, \frac{1}{3}$, or $\frac{1}{2}$
56. a. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{8}, \pm \frac{5}{2}, \pm \frac{5}{4}, \pm \frac{5}{8}, \pm \frac{15}{2}, \pm \frac{15}{4}, \pm \frac{15}{8} \quad$ b. 3 or 1 positive real solutions; no negative real solutions
c. $\frac{1}{2}, \frac{3}{2}$, or $\frac{5}{2}$
57. b. 2 or 0 positive real solutions; 1 negative solution
d. $\left\{\frac{1}{2}, \frac{-5-\sqrt{29}}{2}, \frac{-5+\sqrt{29}}{2}\right\}$
58. b. 2 or zero positive real solutions; 2 or zero negative real solutions
c. $-2,-1,1$, or 3
59. b. 1 positive real root; 1 negative real root \quad c. $-\frac{1}{2}$ or $\frac{1}{2} \quad$ 60. b. 2 or no positive zeros; 2 or no negative zeros c. $-2,-1, \frac{1}{2}$, or 2
61. $f(x)=x^{3}-6 x^{2}+21 x-26 \quad$ 62. $f(x)=2 x^{4}+12 x^{3}+20 x^{2}+12 x+18 \quad$ 63. $f(x)=(x-i)(x+i)(x+2)(2 x-1)$
64. $g(x)=(x+1)^{2}(x-4)^{2} \quad$ 65. 4 real zeros, one with multiplicity two 66. 3 real zeros; 2 nonreal complex zeros
67. 2 real zeros, one with multiplicity two; 2 nonreal complex zeros 68.1 real zero; 4 nonreal complex zeros
69.

71. Vertical asymptotes: $x=3$ and $x=-3$ horizontal asymptote: $y=0$

74. Vertical asymptote: $x=-2$ horizontal asymptote: $y=1$

77. No vertical asymptote no horizontal asymptote slant asymptote: $y=-2 x$

70.

72. Vertical asymptote: $x=-3$ horizontal asymptote: $y=2$

75. Vertical asymptote: $x=-1$ no horizontal asymptote slant asymptote: $y=x-1$

78. Vertical asymptote: $x=\frac{3}{2}$ no horizontal asymptote slant asymptote: $y=2 x-5$

73. Vertical asymptotes: $x=3$ and $x=-2$ horizontal asymptote: $y=1$

76. Vertical asymptote: $x=3$ no horizontal asymptote slant asymptote: $y=x+5$

79. b. $\bar{C}(x)=\frac{25 x+50,000}{x}$
c. $\bar{C}(50)=1025$, when 50 calculators are manufactured, it costs $\$ 1025$ to manufacture each; $\bar{C}(100)=525$, when 100 calculators are manufactured, it costs $\$ 525$ to manufacture each; $\bar{C}(1000)=75$, when 1000 calculators are manufactured, it costs $\$ 75$ to manufacture each; $\bar{C}(100,000)=25.5$, when 100,000 calculators are manufactured, it costs $\$ 25.50$ to manufacture each.
d. $y=25$; costs will approach $\$ 25$.
80. $y=3000$; The number of fish in the pond approaches 3000 .
81. $y=0$; As the number of years of education increases the percentage rate of unemployment approaches zero.
82. b. $R(x)=\frac{1.53 x+114.8}{2.99 x+235.5} \quad$ c. $y=0.51$; Over time the percentage of men in the U.S. population will approach 51%.
85. $\left(-3, \frac{1}{2}\right)$

86. $(-\infty,-4] \cup\left[-\frac{1}{2}, \infty\right)$

87. $(-3,0) \cup(1, \infty)$

88. $(-\infty,-2) \cup(6, \infty)$

89. $[-1,1) \cup[2, \infty)$

90. $(-\infty, 4) \cup\left[\frac{23}{4}, \infty\right)$

91. a. 261 ft ; overestimates by 1 ft
b. speeds exceeding 40 miles per hour

Chapter 2 Test

4. $\{2 \pm i\}$
5.

$f(x)=(x+1)^{2}+4$
axis of symmetry: $x=-1$
domain: $(-\infty, \infty)$; range: $[4, \infty)$
6.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $[-4, \infty)$
10. b.

19.

23. domain: $\{x \mid x \neq 2\}$

$$
f(x)=\frac{x^{2}-9}{x-2}
$$ The x-intercepts should be $-1,0$, and 1 .

14. 3 or 1 positive real zeros; no negative real zeros
15. a. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$
16. domain: $\{x \mid x \neq-3, x \neq 1\}$

$f(x)=\frac{x+1}{x^{2}+2 x-3}$
17. $(-\infty, 3) \cup[10, \infty)$

18. domain: $\{x \mid x \neq-3\}$

domain: $\{x \mid x \neq-3, x \neq 1\}$

$\xrightarrow[3]{\rightleftarrows} \stackrel{+}{\rightleftarrows}$
19. domain: $\{x \mid x \neq 1\}$

20. domain: all real numbers

$f(x)=\frac{4 x^{2}}{x^{2}+3}$
21. a. maximum of 2 at $x=3$;
b. domain: $(-\infty, \infty)$; range: $(-\infty, 2]$
22. Since the degree of the polynomial is odd and the leading coefficient is positive, the graph of f should fall to the left and rise to the right.

Cumulative Review Exercises (Chapters P-2)

1. domain: $(-2,2)$; range: $[0, \infty)$
2. -1 and 1 , both of multiplicity 2
3.

8. $\left\{\frac{5+\sqrt{13}}{6}, \frac{5-\sqrt{13}}{6}\right\}$
10. $\{-3,-1,2\}$
11. $(-\infty, 1) \cup(4, \infty)$
12. $(-\infty,-1) \cup\left(\frac{5}{3}, \infty\right)$
13.

14.

15.

16.

17.

18.

19. $(f \circ g)(x)=32 x^{2}-20 x+$
20. $4 x+2 h-1$

CHAPTER 3

Section 3.1

Check Point Exercises

$f(x)=3^{x}$
3.
$f(x)=\left(\frac{1}{3}\right)^{x}$

4.

$f(x)=3^{x}$
$g(x)=3^{x-1}$

$f(x)=2^{x}$
$g(x)=2^{x}+1$

Exercise Set 3.1

$\begin{array}{ll}\text { 1. } 10.556 & \text { 2. } 13.967\end{array}$
11.

$f(x)=4^{x}$
3. 11.665
4. 16.242
5. 0.125
6. 0.116
7. 9.974
13.

$g(x)=\left(\frac{3}{2}\right)^{x}$
17.

$f(x)=(0.6)^{x}$
18.

$f(x)=(0.8)^{x}$
26.

$f(x)=5^{x}$
16.

$h(x)=\left(\frac{1}{3}\right)^{x}$
25.

$f(x)=2^{x}$
$g(x)=2^{x+1}$
asymptote: $y=0$ domain: $(-\infty, \infty)$ range: $(0, \infty)$

$f(x)=2^{x}$ $g(x)=2^{x+2}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
27.

$f(x)=2^{x}$
$g(x)=2^{x}-1$
asymptote: $y=-1$ domain: $(-\infty, \infty)$ range: $(-1, \infty)$
8. 29.964
9. 0.387
10. 0.472
14.

$g(x)=\left(\frac{4}{3}\right)^{x}$
15.

$h(x)=\left(\frac{1}{2}\right)^{x}$
19. $H(x)=-3^{-x}$
20. $g(x)=3^{x-1}$
21. $F(x)=-3^{x}$
22. $f(x)=3^{x}$
23. $h(x)=3^{x}-1$
24. $G(x)=3^{-x}$
28.

$f(x)=2^{x}$

$$
g(x)=2^{x}+2
$$

asymptote: $y=2$ domain: $(-\infty, \infty)$ range: $(2, \infty)$
29.

$$
f(x)=2^{x}
$$

$$
h(x)=2^{x+1}-1
$$

asymptote: $y=-1$ domain: $(-\infty, \infty)$ range: $(-1, \infty)$
30.

$f(x)=2^{x}$
$h(x)=2^{x+2}-1$
asymptote: $y=-1$
domain: $(-\infty, \infty)$
range: $(-1, \infty)$
35.

$g(x)=e^{x-1}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
40.

$h(x)=e^{x+1}-1$
asymptote: $y=-1$
domain: $(-\infty, \infty)$
range: $(-1, \infty)$
31.

$f(x)=2^{x}$
$g(x)=-2^{x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(-\infty, 0)$
36.

$g(x)=e^{x+1}$
asymptote: $y=0$ domain: $(-\infty, \infty)$ range: $(0, \infty)$
32.

$f(x)=2^{x}$
$g(x)=2^{-x}$
$g(x)=2^{-x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
37.

$g(x)=e^{x}+2$
asymptote: $y=2$
domain: $(-\infty, \infty)$
range: $(2, \infty)$
41.

asymptote: $y=0$ domain: $(-\infty, \infty)$ range: $(0, \infty)$
42.

$h(x)=-e^{x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(-\infty, 0)$
47.

$f(x)=3^{x}$
$g(x)=3^{-x}$
asymptote of $f: y=0$
asymptote of $g: y=0$
33.

$f(x)=2^{x}$
$g(x)=2 \cdot 2^{x}$
asymptote: $y=0$ domain: $(-\infty, \infty)$ range: $(0, \infty)$
38.

$$
g(x)=e^{x}-1
$$

asymptote: $y=-1$ domain: $(-\infty, \infty)$
range: $(-1, \infty)$
43.

$g(x)=2 e^{x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
48.

$$
f(x)=3^{x}
$$

$$
g(x)=-3^{x}
$$

asymptote of $f: y=0$ asymptote of $g: y=0$
34.

$f(x)=2^{x}$ $g(x)=\frac{1}{2} \cdot 2^{x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
39.

$h(x)=e^{x-1}+2$
asymptote: $y=2$
domain: $(-\infty, \infty)$
range: $(2, \infty)$
44.

$$
g(x)=\frac{1}{2} \mathrm{e}^{x}
$$

asymptote: $y=0$ domain: $(-\infty, \infty)$
range: $(0, \infty)$
49.

$f(x)=3^{x}$
$g(x)=\frac{1}{3} \cdot 3^{x}$
asymptote of $f: y=0$ asymptote of $g: y=0$
50.

$f(x)=3^{x}$
$g(x)=3 \cdot 3^{x}$
asymptote of $f: y=0$ asymptote of $g: y=0$
57.

$h(x)=e^{x / 2}+2$
asymptote: $y=2$
domain: $(-\infty, \infty)$
range: $(2, \infty)$
51.

$f(x)=\left(\frac{1}{2}\right)^{x}$
$g(x)=\left(\frac{1}{2}\right)^{x-1}+1$
asymptote of $f: y=0$
asymptote of $g: y=1$
58.

52.

$f(x)=\left(\frac{1}{2}\right)^{x}$
$g(x)=\left(\frac{1}{2}\right)^{x-1}+2$
asymptote of $f: y=0$
asymptote of $g: y=2$
59.

53. a. $\$ 13,116.51$
b. $\$ 13,140.67$
c. $\$ 13,157.04$
d. $\$ 13,165.31$
54. a. $\$ 9479.19$
b. $\$ 9527.79$
c. $\$ 9560.92$
d. $\$ 9577.70$
60.

69. $3.249009585 ; 3.317278183 ; 3.321880096 ; 3.321995226 ; 3.321997068 ; 2^{\sqrt{3}} \approx 3.321997085$; The closer the exponent is to $\sqrt{3}$, the closer the value is to $2^{\sqrt{3}}$. 70. $8 ; 8.5741877 ; 8.815240927 ; 8.821353305 ; 8.824411082 ; 8.824961595 ; 8.824979946 ; 2^{\pi} \approx 8.824977827$; The closer the exponent gets to π, the closer the value is to 2^{π}. 74. a. approximately $\$ 5,027,378,919 \quad$ b. approximately $\$ 5,231,970,592$
81. a. $A=10,000\left(1+\frac{0.05}{4}\right)^{4 t} ; A=10,000\left(1+\frac{0.045}{12}\right)^{12 t}$
b. 24,000

5% interest compounded quarterly
82. a.

b.

c.

92.

93. a. $\cosh (-x)=\frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^{-x}+e^{x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh x$
b. $\sinh (-x)=\frac{e^{-x}-e^{-(-x)}}{2}=\frac{e^{-x}-e^{x}}{2}=-\frac{e^{x}-e^{-x}}{2}=-\sinh x$
c. $\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \stackrel{?}{=} 1$
$\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4} \stackrel{?}{=} 1$ $\frac{e^{2 x}+2+e^{-2 x}-e^{2 x}+2-e^{-2 x}}{4} \stackrel{?}{=} 1$
$\frac{4}{4} \stackrel{?}{=} 1$
94. We don't know how to solve $x=2^{y}$ for y.
84. makes sense

Section 3.2

Check Point Exercises

6.

Exercise Set 3.2

9. $\log _{2} 8=3 \quad$ 10. $\log _{5} 625=4$
10. $\log _{2} \frac{1}{16}=-4$
11. $\log _{5} \frac{1}{125}=-3$
12. $\log _{8} 2=\frac{1}{3}$
13. $\log _{64} 4=\frac{1}{3}$
14. $\log _{13} x=2$
15. $\log _{15} x=2$
16. $\log _{b} 1000=3$
17. $\log _{b} 343=3$
18. $\log _{7} 200=y$
19. $\log _{8} 300=y$
20.

44.

$f(x)=5^{x}$
$g(x)=\log _{5} x$
45.

$$
\begin{aligned}
& f(x)=\left(\frac{1}{2}\right)^{x} \\
& g(x)=\log _{1 / 2} x
\end{aligned}
$$

46.

$$
\begin{aligned}
& f(x)=\left(\frac{1}{4}\right)^{x} \\
& g(x)=\log _{1 / 4} x
\end{aligned}
$$

47. $H(x)=1-\log _{3} x$

53

$$
f(x)=\log _{2} x
$$

$$
g(x)=\log _{2}(x+1)
$$

vertical asymptote: $x=-1$ domain: $(-1, \infty)$
range: $(-\infty, \infty)$
48. $G(x)=\log _{3}(-x)$
54.

$f(x)=\log _{2} x$
$g(x)=\log _{2}(x+2)$
vertical asymptote: $x=-2$
domain: $(-2, \infty)$
range: $(-\infty, \infty)$
50. $F(x)=-\log _{3} x$
55.

vertical asymptote: $x=0$ domain: $(0, \infty)$ range: $(-\infty, \infty)$
56.
 vertical asymptote: $x=0$ domain: $(0, \infty)$ range: $(-\infty, \infty)$
57.

$g(x)=\frac{1}{2} \log _{2} x$
vertical asymptote: $x=0$ domain: $(0, \infty)$
range: $(-\infty, \infty)$
61.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
65.

$g(x)=\ln (x+2)$
asymptote: $x=-2$
domain: $(-2, \infty)$
range: $(-\infty, \infty)$
69.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
73.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
119. b. 71.5; 63.9; 58.8; 55; 52; 49.5

Material retention decreases as time passes.
58.

$f(x)=\log _{2} x$
$g(x)=-2 \log _{2} x$
vertical asymptote: $x=0$ domain: $(0, \infty)$
range: $(-\infty, \infty)$
62.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
66.

asymptote: $x=-1$
domain: $(-1, \infty)$
range: $(-\infty, \infty)$
70.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
74.
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
128.

$g(x)$ is $f(x)$ shifted left 3 units.
59.

asymptote: $x=1$
domain: $(1, \infty)$
range: $(-\infty, \infty)$
63.

$g(x)=1-\log x$
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
67.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
71.

$h(x)=-\ln x$
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
60.

asymptote: $x=2$
domain: $(2, \infty)$
range: $(-\infty, \infty)$
64.

$g(x)=2-\log x$
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
68.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
72.

asymptote: $x=0$
domain: $(-\infty, 0)$
range: $(-\infty, \infty)$
75. $(-4, \infty)$
79. $(-\infty, 2) \cup(2, \infty)$
80. $(-\infty, 7) \cup(7, \infty)$
101. $3^{2}=x-1 ;\{10\}$
102. $5^{2}=x+4 ;\{21\}$
109. $(-\infty,-1) \cup(2, \infty)$
110. $(-\infty,-2) \cup(6, \infty)$
111. $(-\infty,-1) \cup(5, \infty)$
112. $(-\infty,-5) \cup(2, \infty)$
117. $\approx 188 \mathrm{db}$; yes
129.

$g(x)$ is $f(x)$ shifted upward 3 units.
130.

$g(x)$ is $f(x)$ reflected about the x-axis.
131.

$g(x)$ is $f(x)$ shifted right 2 units and upward 1 unit.
132.

The score falls below 65 after 9 months.
134. $y=\ln x, y=\sqrt{x}, y=x, y=x^{2}, y=e^{x}, y=x^{x}$

135. makes sense 138. does not make sense 142. true \quad 147. c. $\log _{2}(8 \cdot 4)=\log _{2} 8+\log _{2} 4$

Exercise Set 3.3

$\begin{array}{lllllll}\text { 1. } \log _{5} 7+\log _{5} 3 & \text { 2. } \log _{8} 13+\log _{8} 7 & \text { 3. } 1+\log _{7} x & \text { 4. } 1+\log _{9} x & \text { 5. } 3+\log x & \text { 6. } 4+\log x & \text { 7. } 1-\log _{7} x\end{array}$ 8. $1-\log _{9} x$
$\begin{array}{llllll}\text { 9. } \log x-2 & \text { 10. } \log x-3 & \text { 11. } 3-\log _{4} y & \text { 12. } 3-\log _{5} y & \text { 13. } 2-\ln 5 & \text { 14. } 4-\ln 8\end{array} \quad$ 21. $2 \log _{b} x+\log _{b} y \quad$ 22. $\log _{b} x+3 \log _{b} y$
$\begin{array}{llll}\text { 23. } \frac{1}{2} \log _{4} x-3 & \text { 24. } \frac{1}{2} \log _{5} x-2 & \text { 25. } 2-\frac{1}{2} \log _{6}(x+1) & \text { 26. } 2-\frac{1}{2} \log _{8}(x+1)\end{array} \quad$ 27. $2 \log _{b} x+\log _{b} y-2 \log _{b} z$
28. $3 \log _{b} x+\log _{b} y-2 \log _{b} z$
$\begin{array}{ll}\text { 29. } 1+\frac{1}{2} \log x & \text { 30. } \frac{1}{2}+\frac{1}{2} \ln x\end{array}$
31. $\frac{1}{3} \log x-\frac{1}{3} \log y \quad$ 32. $\frac{1}{5} \log x-\frac{1}{5} \log y$
33. $\frac{1}{2} \log _{b} x+3 \log _{b} y-3 \log _{b} z$
34. $\frac{1}{3} \log _{b} x+4 \log _{b} y-5 \log _{b} z$
35. $\frac{2}{3} \log _{5} x+\frac{1}{3} \log _{5} y-\frac{2}{3} \quad$ 36. $\frac{1}{5} \log _{2} x+\frac{4}{5} \log _{2} y-\frac{4}{5}$
37. $3 \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-4 \ln (x+1) \quad$ 38. $4 \ln x+\frac{1}{2} \ln \left(x^{2}+3\right)-5 \ln (x+3) \quad$ 39. $1+2 \log x+\frac{1}{3} \log (1-x)-\log 7-2 \log (x+1)$
40. $2+3 \log x+\frac{1}{3} \log (5-x)-\log 3-2 \log (x+7) \quad$ 47. $\log \left(\frac{2 x+5}{x}\right) \quad$ 48. $\log \left(\frac{3 x+7}{x}\right) \quad$ 51. $\ln \left(x^{1 / 2} y\right)$ or $\ln (y \sqrt{x})$
52. $\ln \left(x^{1 / 3} y\right)$ or $\ln (y \sqrt[3]{x})$
55. $\ln \left(\frac{x^{5}}{y^{2}}\right)$
56. $\ln \left(\frac{x^{7}}{y^{3}}\right)$
57. $\ln \left(\frac{x^{3}}{y^{1 / 3}}\right)$ or $\ln \left(\frac{x^{3}}{\sqrt[3]{y}}\right)$
58. $\ln \left(\frac{x^{2}}{y^{1 / 2}}\right)$ or $\ln \left(\frac{x^{2}}{\sqrt{y}}\right)$
59. $\ln \frac{(x+6)^{4}}{x^{3}}$
60. $\ln \frac{(x+9)^{8}}{x^{4}}$
61. $\ln \left(\frac{x^{3} y^{5}}{z^{6}}\right)$
62. $\ln \left(\frac{x^{4} y^{7}}{z^{3}}\right)$
65. $\log _{5}\left(\frac{\sqrt{x y}}{(x+1)^{2}}\right)$
66. $\log _{4}\left((x+1)^{2} \sqrt[3]{\frac{x}{y}}\right)$
67. $\ln \sqrt[3]{\frac{(x+5)^{2}}{x\left(x^{2}-4\right)}}$
68. $\ln \sqrt[3]{\frac{(x+6)^{5}}{x\left(x^{2}-25\right)}}$
69. $\log \frac{x\left(x^{2}-1\right)}{7(x+1)}=\log \frac{x(x-1)}{7}$
70. $\log \frac{x\left(x^{2}-4\right)}{15(x+2)}=\log \frac{x(x-2)}{15}$
79.

80.

81.

82.

87. $\frac{1}{2} A-\frac{3}{2} C$
88. $\frac{1}{2} C-2 A$
90. false; $\ln 0$ is undefined.
91. false; $\log _{4}(2 x)^{3}=3 \log _{4}(2 x)$
94. false; $\ln (x \cdot 1)=\ln x+\ln 1$
95. true
96. false; $\ln x+\ln (2 x)=\ln \left(2 x^{2}\right)$ 97. false; $\log (x+3)-\log (2 x)=\log \left(\frac{x+3}{2 x}\right)$
98. false; $\log \left(\frac{x+2}{x-1}\right)=\log (x+2)-\log (x-1)$
102. false; $e^{x}=\ln e^{e^{x}}$
113. a.

b.

[^13]114.

$y=\log (10 x)=1+\log x$ shifts $y=\log x$ one unit upward; $y=\log (0.1 x)=-1+\log x$ shifts $y=\log x$ one unit downward; the product rule
\[

132. $$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\log _{b}(x+h)-\log _{b} x}{h} \\
& =\frac{\log _{b}\left(\frac{x+h}{x}\right)}{h} \\
& =\frac{1}{h} \log _{b}\left(1+\frac{h}{x}\right) \\
& =\log _{b}\left(1+\frac{h}{x}\right)^{\frac{1}{h}}
\end{aligned}
$$
\]

115.

c. The graph of the equation with the largest b will be on the top in the interval $(0,1)$ and on the bottom in the interval $(1, \infty)$.
$\begin{array}{lll}\text { 121. } & \text { makes sense } & \text { 123. makes sense } \\ \text { 129. } \log e=\log _{10} e=\frac{\ln e}{\ln 10}=\frac{1}{\ln 10} \quad \text { 130. } \frac{2 A}{B}\end{array}$
133. Let $\log _{b} M=R$ and $\log _{b} N=S$.

Then $\log _{b} M=R$ means $b^{R}=M$ and $\log _{b} N=S$ means $b^{S}=N$.

$$
\begin{aligned}
\frac{M}{N} & =\frac{b^{R}}{b^{S}}=b^{R-S} \\
\log _{b} \frac{M}{N} & =\log _{b} b^{R-S}=R-S=\log _{b} M-\log _{b} N
\end{aligned}
$$

asymptote of $f: y=0$
asymptote of $g: y=-3$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=(0, \infty)$; range of $g=(-3, \infty)$
4.

$$
f(x)=\log _{2} x
$$

$g(x)=\log _{2}(x-1)+1$
asymptote of $f: x=0$
asymptote of $g: x=1$
domain of $f=(0, \infty)$; domain of $g=(1, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$
2.

$$
\begin{aligned}
& f(x)=\left(\frac{1}{2}\right)^{x} \\
& g(x)=\left(\frac{1}{2}\right)^{x-1}
\end{aligned}
$$

asymptote of $f: y=0$ asymptote of $g: y=0$ domain of $f=$ domain of $g=(-\infty, \infty)$ range of $f=$ range of $g=(0, \infty)$
5.

$$
\begin{aligned}
& f(x)=\log _{1 / 2} x \\
& g(x)=-2 \log _{1 / 2} x
\end{aligned}
$$

asymptote of $f: x=0$
asymptote of $g: x=0$
domain of $f=$ domain of $g=(0, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$

$f(x)=\mathrm{e}^{x}$
$g(x)=\ln x$
asymptote of $f: y=0$
asymptote of $g: x=0$
domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
8. $(-\infty,-6) \cup(-6, \infty)$
14. 2
15. Evaluation not possible; $\log _{2} \frac{1}{8}=-3$ and
$\log _{3}(-3)$ is undefined.

Exercise Set 3.4

23. $\left\{\frac{\ln 3.91}{\ln 10}\right\} ; \approx 0.59 \quad$ 24. $\left\{\frac{\ln 8.07}{\ln 10}\right\} ; \approx 0.91 \quad$ 27. $\left\{\frac{\ln 17}{\ln 5}\right\} ; \approx 1.76 \quad$ 28. $\left\{\frac{\ln 143}{\ln 19}\right\} ; \approx 1.69 \quad$ 31. $\left\{\frac{\ln 659}{5}\right\} ; \approx 1.30$
24. $\left\{\frac{\ln 2568.25}{7}\right\} ; \approx 1.12$
25. $\left\{\frac{\ln 793-1}{-5}\right\} ; \approx-1.14$
26. $\left\{\frac{\ln 7957-1}{-8}\right\} ; \approx-1.00$
27. $\left\{\frac{\ln 10,478+3}{5}\right\} ; \approx 2.45$
28. $\left\{\frac{\ln 11,250+5}{4}\right\} ; \approx 3.58$
29. $\left\{\frac{\ln 410}{\ln 7}-2\right\} ; \approx 1.09$
30. $\left\{\frac{\ln 137}{\ln 5}+3\right\} ; \approx 6.06$
31. $\left\{\frac{\ln 813}{0.3 \ln 7}\right\} ; \approx 11.48$
32. $\left\{\frac{7 \ln 0.2}{\ln 3}\right\} ; \approx-10.25$
33. $\left\{\frac{3 \ln 5+\ln 3}{\ln 3-2 \ln 5}\right\} ; \approx-2.80$
34. $\left\{\frac{2 \ln 3-\ln 7}{2 \ln 7-\ln 3}\right\} ; \approx 0.09$
35. $\{0, \ln 2\} ; \ln 2 \approx 0.69$
36. $\{\ln 3\} ; \approx 1.10$
37. $\left\{\frac{\ln 3}{2}\right\} ; \approx 0.55$
38. $\left\{\frac{\ln 6}{2}\right\} ; \approx 0.90$
39. $\left\{\frac{\ln 3}{\ln 2}\right\} ; \approx 1.58$
40. $\left\{\frac{e^{4}}{2}\right\} ; \approx 27.30$
41. $\left\{\frac{e^{5}}{2}\right\} ; \approx 74.21$
42. $\left\{e^{-1 / 2}\right\} ; \approx 0.61$
43. $\left\{e^{-1 / 3}\right\} ; \approx 0.72$
44. $\left\{e^{2}-3\right\} ; \approx 4.39$
45. $\left\{e^{2}-4\right\} ; \approx 3.39$
46. $\left\{ \pm \sqrt{\frac{\ln 45}{\ln 3}}\right\}$
47. $\left\{ \pm \sqrt{\frac{\ln 50}{\ln 5}}\right\}$
$\begin{array}{lll}\text { 103. a. } 37.3 \text { million } & \text { 104. b. } 2016 & \text { 119. b. } 10^{-2.4} \text { mole per liter } \quad \text { 130. }\{20\}\end{array}$
48. $\{-1.391606,1.6855579\}$
49. $\{-1.291641,1.2793139\}$

As distance from eye increases, barometric air pressure increases.
152.

135. 150

about 7.9 min
136. 3000

about 20 years old

Section 3.5

Check Point Exercises

5.

6.

Exercise Set 3.5

15. approximately 8 grams 17. 8 grams after 10 seconds; 4 grams after 20 seconds; 2 grams after 30 seconds; 1 gram after 40 seconds; 0.5 gram after 50 seconds $\quad 18.8$ grams after 25,000 years; 4 grams after 50,000 years; 2 grams after 75,000 years; 1 gram after 100,000 years; 0.5 gram after 125,000 years
16. a. $\frac{1}{2}=e^{1.31 k}$ yields $k=\frac{\ln \left(\frac{1}{2}\right)}{1.31} \approx-0.52912$. 32 . about 39 years after the year when the population was 1400
17. $2 A_{0}=A_{0} e^{k t} ; 2=e^{k t} ; \ln 2=\ln e^{k t} ; \ln 2=k t ; \frac{\ln 2}{k}=t \quad$ 34. $3 A_{0}=A_{0} e^{k t} ; 3=e^{k t} ; \ln 3=\ln e^{k t} ; \ln 3=k t ; \frac{\ln 3}{k}=t$
18. b. about 58 yr
19. quite well
20. quite well
21. a. $T=45+25 e^{-0.0916 t}$ b. $51^{\circ} \mathrm{F}$
22. a. $T=70+380 e^{-0.1004 t}$ b. $121^{\circ} \mathrm{F}$
23. a.

24. a.

b. exponential function
25. a.

b. logarithmic function
26. a.

b. logarithmic function
27. $y=100 e^{(\ln 4.6) x} ; y=100 e^{1.526 x}$
28. $y=1000 e^{(\ln 7.3) x} ; y=1000 e^{1.988 x}$
29. $y=2.5 e^{(\ln 0.7) x} ; y=2.5 e^{-0.357 x}$
30. $y=4.5 e^{(\ln 0.6) x} ; y=4.5 e^{-0.511 x}$
31. a. $r \approx 0.999$; Since r is close to 1 , the model fits the data well. 71. $r \approx 0.870$; Fit is ok, but not great.
32. $y=201.2(1.011)^{x}$; $y=2.657 x+197.923$; using exponential; by 2016; using linear: by 2021 ; Answers will vary.
33. b. $y=3.46 e^{(\ln 1.02) x} ; y=3.46 e^{0.02 x}$; by approximately $2 \% \quad$ 76. Models will vary. Examples are given. Predictions will vary. For Exercise 47: $y=1.402(1.078)^{x}$; For Exercise 48: $y=2896.7(1.056)^{x}$; For Exercise 49: $y=120+4.343 \ln x$; For Exercise $50: y=-11.629+13.424 \ln x$; For Exercise 51: $y=0.063 x-124.16$; For Exercise 52: $y=0.742 x-1449.669$
34. does not make sense 79. makes sense

Chapter 3 Review Exercises

1. $g(x)=4^{-x}$
2. $h(x)=-4^{-x}$
3. $r(x)=-4^{-x}+3$
4. $f(x)=4^{x}$

$$
\begin{gathered}
f(x)=2^{x} \\
g(x)=2^{x-1}
\end{gathered}
$$

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=$ range of $g=(0, \infty)$
8.

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=$ range of $g=(0, \infty)$
30.

domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
36.

$$
f(x)=\log _{2} x
$$

$g(x)=\log _{2}(x-2)$
x-intercept: $(3,0)$
vertical asymptote: $x=2$
domain: $(2, \infty)$; range: $(-\infty, \infty)$

6.

asymptote of $f: y=0$ asymptote of $g: y=-1$ domain of $f=$ domain of $g=(-\infty, \infty)$ range of $f=(0, \infty)$; range of $g=(-1, \infty)$
9.

asymptote of $f: y=0$ asymptote of $g: y=0$ domain of $f=$ domain of $g=(-\infty, \infty)$ range of $f=$ range of $g=(0, \infty)$
31.

domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
37.

$$
f(x)=\log _{2} x
$$

$h(x)=-1+\log _{2} x$
x-intercept: $(2,0)$
vertical asymptote: $x=0$
domain: $(0, \infty)$; range: $(-\infty, \infty)$
7.

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=(0, \infty)$; range of $g=(-\infty, 0)$
13. $49^{1 / 2}=7$
14. $4^{3}=x$
15. $3^{y}=81$
16. $\log _{6} 216=3$
17. $\log _{b} 625=4$
18. $\log _{13} 874=y$
21. undefined; $\log _{b} x$ is defined only for $x>0$.
32. $g(x)=\log (-x)$
33. $r(x)=1+\log (2-x)$
34. $h(x)=\log (2-x)$
35. $f(x)=\log x$
38.

x-intercept: $(-1,0)$
vertical asymptote: $x=0$
domain: $(-\infty, 0)$; range: $(-\infty, \infty)$
39.

$f(x)=\log x$

$$
g(x)=-\log (x+3)
$$

asymptote of $f: x=0$
asymptote of $g: x=-3$
domain of $f=(0, \infty)$; domain of $g=(-3, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$
48. b. $\approx 67, \approx 63, \approx 61, \approx 59, \approx 56$
c.

40.

$g(x)=-\ln (2 x)$
asymptote of $f: x=0$
asymptote of $g: x=0$
domain of $f=$ domain of $g=(0, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$
61. false; $\log (x+9)-\log (x+1)=\log \left(\frac{x+9}{x+1}\right) \quad$ 62. false; $4 \log _{2} x=\log _{2} x^{4}$
68. $\left\{\frac{\ln 12,143}{\ln 8}\right\} ; \approx 4.52$
69. $\left\{\frac{1}{5} \ln 141\right\} ; \approx 0.99$
70. $\left\{\frac{12-\ln 130}{5}\right\} ; \approx 1.43$
71. $\left\{\frac{\ln 37,500-2 \ln 5}{4 \ln 5}\right\} ; \approx 1.14$
72. $\left\{\frac{\ln 7+4 \ln 3}{2 \ln 7-\ln 3}\right\} ; \approx 2.27$
73. $\{\ln 3\} ; \approx 1.10$
88. b. about 45,411 people
90. a.

91. a.

92. a.

Chapter 3 Test

1.

2.

24. 13.9 years
29. a. 14 elk

Cumulative Review Exercises (Chapters P-3)

9.

10.

$f(x)=(x-2)^{2}-1$
11.

12.

13.

14.

$f(x)=\ln x$
$g(x)=\ln (x-2)+1$

CHAPTER 4

Section 4.1

Check Point Exercises

4. a.

b.

c.

d.

Exercise Set 4.1

41.

42.

43.

44.

50.

56.

45.

46.

47.

53.

48.

54.

49.

55.

51.

52.

121. smaller than a right angle
123.

Exercise Set 4.2

25. $\tan t=\frac{8}{15} ; \csc t=\frac{17}{8} ; \sec t=\frac{17}{15} ; \cot t=\frac{15}{8}$
26. $\tan t=\frac{3}{4} ; \csc t=\frac{5}{3} ; \sec t=\frac{5}{4} ; \cot t=\frac{4}{3}$
27. $\tan t=\frac{\sqrt{2}}{4} ; \csc t=3 ; \sec t=\frac{3 \sqrt{2}}{4} ; \cot t=2 \sqrt{2}$
28. $\tan t=\frac{2 \sqrt{5}}{5} ; \csc t=\frac{3}{2} ; \sec t=\frac{3 \sqrt{5}}{5} ; \cot t=\frac{\sqrt{5}}{2}$
29. a. $1 ; 0 ;-1 ; 0 ; 1$
b. 28 days
30. a. $10 \mathrm{ft} ; 14 \mathrm{ft} ; 10 \mathrm{ft} ; 10 \mathrm{ft} ; 10 \mathrm{ft} ; 6 \mathrm{ft}$
b. low tide: 3 А.м., 3 р.м., high tide: 9 А.м., 9 P.м. c. 12 hr; Low tides occur every 12 hours and high tides occur every 12 hours.
31. does not make sense
32. does not make sense

Exercise Set 4.3

1. $15 ; \sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=\frac{5}{4} ; \cot \theta=\frac{4}{3} \quad$ 2. $10 ; \sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=\frac{5}{4} ; \cot \theta=\frac{4}{3}$
2. $20 ; \sin \theta=\frac{20}{29} ; \cos \theta=\frac{21}{29} ; \tan \theta=\frac{20}{21} ; \csc \theta=\frac{29}{20} ; \sec \theta=\frac{29}{21} ; \cot \theta=\frac{21}{20} \quad$ 4. $8 ; \sin \theta=\frac{8}{17} ; \cos \theta=\frac{15}{17} ; \tan \theta=\frac{8}{15} ; \csc \theta=\frac{17}{8}$; $\sec \theta=\frac{17}{15} ; \cot \theta=\frac{15}{8}$
3. $0.3894 ; 0.9736 ; 0.2955,0.9851 ; 0.1987,0.9933 ; 0.0998,0.9983 ; 0.0099998,0.99998 ; 9.999998 \times 10^{-4}, 0.9999998 ;$ $9.99999998 \times 10^{-5}, 0.999999998 ; 1 \times 10^{-5}, 0.99999999998 ; \frac{\sin \theta}{\theta}$ approaches 1 as θ approaches 0 . 69. $0.92106,-0.19735 ; 0.95534,-0.148878$; $0.98007,-0.099667 ; 0.99500,-0.04996 ; 0.99995,-0.005 ; 0.9999995,-0.0005 ; 0.999999995,-0.00005 ; 0.99999999995,-0.000005 ; \frac{\cos \theta-1}{\theta}$ approaches 0 as θ approaches 0 .
4. true
5. false
6. In a right triangle, the hypotenuse is greater than either other side. Therefore, both $\frac{\text { opposite }}{\text { hypotenuse }}$ and $\frac{\text { adjacent }}{\text { hypotenuse }}$ must be less than 1 for an acute angle in a right triangle. 79. As θ approaches 90°, tan θ increases without bound. At $90^{\circ}, \tan \theta$ is undefined.

Exercise Set 4.4

1. $\sin \theta=\frac{3}{5} ; \cos \theta=-\frac{4}{5} ; \tan \theta=-\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=-\frac{5}{4} ; \cot \theta=-\frac{4}{3} \quad$ 2. $\sin \theta=\frac{5}{13} ; \cos \theta=-\frac{12}{13} ; \tan \theta=-\frac{5}{12} ; \csc \theta=\frac{13}{5}$; $\sec \theta=-\frac{13}{12} ; \cot \theta=-\frac{12}{5} \quad$ 3. $\sin \theta=\frac{3 \sqrt{13}}{13} ; \cos \theta=\frac{2 \sqrt{13}}{13} ; \tan \theta=\frac{3}{2} ; \csc \theta=\frac{\sqrt{13}}{3} ; \sec \theta=\frac{\sqrt{13}}{2} ; \cot \theta=\frac{2}{3} \quad$ 4. $\sin \theta=\frac{7 \sqrt{58}}{58} ;$
$\cos \theta=\frac{3 \sqrt{58}}{58} ; \tan \theta=\frac{7}{3} ; \csc \theta=\frac{\sqrt{58}}{7} ; \sec \theta=\frac{\sqrt{58}}{3} ; \cot \theta=\frac{3}{7} \quad$ 5. $\sin \theta=-\frac{\sqrt{2}}{2} ; \cos \theta=\frac{\sqrt{2}}{2} ; \tan \theta=-1 ; \csc \theta=-\sqrt{2} ;$
$\sec \theta=\sqrt{2} ; \cot \theta=-1 \quad$ 6. $\sin \theta=-\frac{\sqrt{2}}{2} ; \cos \theta=\frac{\sqrt{2}}{2} ; \tan \theta=-1 ; \csc \theta=-\sqrt{2} ; \sec \theta=\sqrt{2} ; \cot \theta=-1$
2. $\sin \theta=-\frac{5 \sqrt{29}}{29} ; \cos \theta=-\frac{2 \sqrt{29}}{29} ; \tan \theta=\frac{5}{2} ; \csc \theta=-\frac{\sqrt{29}}{5} ; \sec \theta=-\frac{\sqrt{29}}{2} ; \cot \theta=\frac{2}{5} \quad$ 8. $\sin \theta=-\frac{3 \sqrt{10}}{10} ; \cos \theta=-\frac{\sqrt{10}}{10}$;
$\tan \theta=3 ; \csc \theta=-\frac{\sqrt{10}}{3} ; \sec \theta=-\sqrt{10} ; \cot \theta=\frac{1}{3} \quad$ 23. $\sin \theta=-\frac{4}{5} ; \tan \theta=\frac{4}{3} ; \csc \theta=-\frac{5}{4} ; \sec \theta=-\frac{5}{3} ; \cot \theta=\frac{3}{4}$
3. $\cos \theta=-\frac{5}{13} ; \tan \theta=\frac{12}{5} ; \csc \theta=-\frac{13}{12} ; \sec \theta=-\frac{13}{5} ; \cot \theta=\frac{5}{12} \quad$ 25. $\cos \theta=-\frac{12}{13} ; \tan \theta=-\frac{5}{12} ; \csc \theta=\frac{13}{5} ; \sec \theta=-\frac{13}{12} ; \cot \theta=-\frac{12}{5}$
4. $\sin \theta=-\frac{3}{5} ; \tan \theta=-\frac{3}{4} ; \csc \theta=-\frac{5}{3} ; \sec \theta=\frac{5}{4} ; \cot \theta=-\frac{4}{3} \quad$ 27. $\sin \theta=-\frac{15}{17} ; \tan \theta=-\frac{15}{8} ; \csc \theta=-\frac{17}{15} ; \sec \theta=\frac{17}{8} ; \cot \theta=-\frac{8}{15}$
5. $\sin \theta=-\frac{2 \sqrt{2}}{3} ; \tan \theta=-2 \sqrt{2} ; \csc \theta=-\frac{3 \sqrt{2}}{4} ; \sec \theta=3 ; \cot \theta=-\frac{\sqrt{2}}{4} \quad$ 29. $\sin \theta=\frac{2 \sqrt{13}}{13} ; \cos \theta=-\frac{3 \sqrt{13}}{13} ; \csc \theta=\frac{\sqrt{13}}{2} ; \sec \theta=-\frac{\sqrt{13}}{3} ; \cot \theta=-\frac{3}{2}$
6. $\sin \theta=\frac{\sqrt{10}}{10} ; \cos \theta=-\frac{3 \sqrt{10}}{10} ; \csc \theta=\sqrt{10} ; \sec \theta=-\frac{\sqrt{10}}{3} ; \cot \theta=-3 \quad$ 31. $\sin \theta=-\frac{4}{5} ; \cos \theta=-\frac{3}{5} ; \csc \theta=-\frac{5}{4} ; \sec \theta=-\frac{5}{3} ; \cot \theta=\frac{3}{4}$
7. $\sin \theta=-\frac{5}{13} ; \cos \theta=-\frac{12}{13} ; \csc \theta=-\frac{13}{5} ; \sec \theta=-\frac{13}{12} ; \cot \theta=\frac{12}{5} \quad$ 33. $\sin \theta=-\frac{2 \sqrt{2}}{3} ; \cos \theta=-\frac{1}{3} ; \tan \theta=2 \sqrt{2} ; \csc \theta=-\frac{3 \sqrt{2}}{4} ; \cot \theta=\frac{\sqrt{2}}{4}$
8. $\sin \theta=-\frac{1}{4} ; \cos \theta=-\frac{\sqrt{15}}{4} ; \tan \theta=\frac{\sqrt{15}}{15} ; \sec \theta=-\frac{4 \sqrt{15}}{15} ; \cot \theta=\sqrt{15} \quad$ 97. $\frac{2 \sqrt{2}-4}{\pi} \quad$ 98. $\frac{2 \sqrt{2}-4}{\pi}$
9.

Mid-Chapter 4 Check Point

5. a. $\frac{5 \pi}{3}$
6. a. $\frac{5 \pi}{4}$
7. a. 150°
b.

b.

c. $\frac{\pi}{3}$
c. $\frac{\pi}{4}$
b.

c. 30°
8. $\sin \theta=\frac{3}{5} ; \cos \theta=-\frac{4}{5} ; \csc \theta=\frac{5}{3} ; \sec \theta=-\frac{5}{4} ; \cot \theta=-\frac{4}{3} \quad$ 12. $\sin \theta=-\frac{2 \sqrt{10}}{7} ; \tan \theta=-\frac{2 \sqrt{10}}{3} ; \csc \theta=-\frac{7 \sqrt{10}}{20} ; \sec \theta=\frac{7}{3} ; \cot \theta=-\frac{3 \sqrt{10}}{20}$
9. $8 \pi \mathrm{~cm} \approx 25.13 \mathrm{~cm}$

Section 4.5

Check Point Exercises

1.

$\left(\frac{3 \pi}{2},-3\right)$
2.

3.

4.

5.

6.

7.

Exercise Set 4.5

1.

5.

9.

$$
\begin{aligned}
& y=3 \sin \frac{1}{2} x
\end{aligned}
$$

13.

2.

6.

10.

14.

17. $1 ; 2 \pi ; \pi$

21. $3 ; \pi ; \frac{\pi}{2}$

3.

7.

11.

15.

19. $1 ; \pi ; \frac{\pi}{2}$

23. $\frac{1}{2} ; 2 \pi ;-\frac{\pi}{2}$

12.

8.
16.

20. $1 ; \pi ; \frac{\pi}{4}$

24. $\frac{1}{2} ; 2 \pi ;-\pi$

25. $2 ; \pi ;-\frac{\pi}{4}$

29. $2 ; 1 ;-2$

33.

37.

41.

45. $3 ; \pi ; \frac{\pi}{2}$

49. $3 ; \pi ; \frac{\pi}{4}$

26. $3 ; \pi ;-\frac{\pi}{4}$

30. $3 ; 1 ;-2$

34.

38.

42.

46. $4 ; \pi ; \frac{\pi}{2}$

50. $4 ; \pi ; \frac{\pi}{4}$

27. $3 ; 2 ;-\frac{2}{\pi}$

31.

35.

39.

43. $1 ; 2 \pi, \frac{\pi}{2}$

47. $\frac{1}{2} ; \frac{2 \pi}{3} ;-\frac{\pi}{6}$

51. $2 ; 1 ;-4$

28. $3 ; 1 ;-\frac{2}{\pi}$

32.

36.

40.

44. $1 ; 2 \pi,-\frac{\pi}{2}$

48. $\frac{1}{2} ; \pi ;-\frac{\pi}{2}$

52. $3 ; 1 ;-2$

53.

57.

67.

71.

80. February 11
83.

84.

102.

106.

The graphs appear to be the same from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$
55.

59.

69.

73.

85. e

56.

60.

70.

74.

86.

103.

107.

The graph is similar to $y=\sin x$, except the amplitude is greater and the curve is less smooth.

108.

The graph is very similar to $y=\sin x$, except the curve is less smooth.
109. a. 85
C. 85

112. does not make sense
115. a. range: $[-5,1] ;\left[-\frac{\pi}{6}, \frac{23 \pi}{6}, \frac{\pi}{6}\right]$ by $[-5,1,1]$
b. range: $[-3,-1] ;\left[-\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{\pi}{6}\right]$ by $[-3,-1,1]$
122. a.

b. The reciprocal function is undefined.
117.
or $y=\frac{1}{2}-\frac{1}{2} \cos 2 x$
118.

Section 4.6

Check Point Exercises

2.

3.

4.

Exercise Set 4.6

5.

9.

17.

21.

6.

10.

18.

22.

7.

11.

19.

23.

8.

12.

20.

24.

25.

29.

33.

37.

41.

45.

49.

53.

26.

30.

34.

38.

42.

46.

50.

54.

27.

31.

35.

39.

43.

47.

51.

28.

32.

$$
y=\frac{3}{2} \csc \frac{x}{4}
$$

36.

40.

44.

48.

52.

$y=\left|\tan \frac{1}{2} x\right|$
59. a.

b. $0.25,0.75,1.25,1.75$; The beam of 60 . light is shining parallel to the wall at these times.

61. $x=-\frac{\pi}{2}$

62. Answers may vary.

63.

64. Answers may vary.

84.

88.

79.

83.

87

80.

85.

78.

82.
86.
81.

8
97. a. range: $(-\infty,-1] \cup[1, \infty) ;\left[-\frac{\pi}{6}, \pi, \frac{7 \pi}{6}\right]$ by $[-3,3,1]$
92. does not make sense
b. range: $(-\infty,-3] \cup[3, \infty) ;\left[-\frac{1}{2}, \frac{7}{2}, 1\right]$ by $[-6,6,1]$
98. 2^{-x} decreases the amplitude as x gets larger.
99. a

100. a.

101. a.

Exercise Set 4.7

71. $\frac{\sqrt{x^{2}+4}}{2} \quad$ 72. $\frac{3 \sqrt{x^{2}-9}}{x^{2}-9}$
72. a.

$y=\sec x$
b. No horizontal line intersects the graph of $y=\sec x$ more than once, so the function is one-to-one and has an inverse function.
c.

73. a.

b. No horizontal line intersects the graph of $y=\cot x$ more than once, so the function is one-to-one and has an inverse function.
c.

74.

domain: $[-1,1]$;
range: $[0, \pi]$
79.

domain: $(-\infty, \infty)$;
range: $(-\pi, \pi)$
83.

domain: [-2, 2];
range: $[0, \pi]$
76.

$f(x)=\cos ^{-1} x+\frac{\pi}{2}$
domain: $[-1,1]$;
range: $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
80.

$h(x)=-3 \tan ^{-1} x$
domain: $(-\infty, \infty)$;
range: $\left(-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right)$
84.

domain: $[-2,2]$;
range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
77.

$g(x)=\cos ^{-1}(x+1)$
domain: $[-2,0]$;
range: $[0, \pi]$
81.

$f(x)=\sin ^{-1}(x-2)-\frac{\pi}{2}$
domain: $[1,3]$;
range: $[-\pi, 0]$
78.

domain: $[-2,0]$;
range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
82.

$f(x)=\cos ^{-1}(x-2)-\frac{\pi}{2}$
domain: $[1,3]$;
range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
93. 0.408 radian; 0.602 radian; 0.654 radian; 0.645 radian; 0.613 radian 94 . about $16 \mathrm{ft} ; 0.6542$ radian; 0.6553 radian
95. 1.3157 radians or 75.4° 96. 0.1440 radian or 8.2°
97. 1.1071 sq units
98. 1.8925 sq units
110.

111.

114.

Observations may vary.
112.

115.

It seems
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ for $-1 \leq x \leq 1$.

AA56 Answers to Selected Exercises

116. does not make sense 117. does not make sense 118. makes sense
117. $\tan \alpha=\frac{8}{x}$, so $\tan ^{-1} \frac{8}{x}=\alpha \cdot \tan (\alpha+\theta)=\frac{33}{x}$, so $\tan ^{-1} \frac{33}{x}=\alpha+\theta \cdot \theta=\alpha+\theta-\alpha=\tan ^{-1} \frac{33}{x}-\tan ^{-1} \frac{8}{x}$.

Exercise Set 4.8

1. $B=66.5^{\circ} ; a \approx 4.35 ; c \approx 10.90 \quad$ 2. $B=48.5^{\circ} ; a \approx 17.69 ; c \approx 26.70 \quad$ 3. $B=37.4^{\circ} ; a \approx 42.90 ; b \approx 32.80$
2. $B=35.2^{\circ} ; a \approx 65.37 ; b \approx 46.11$
3. $A=73.2^{\circ} ; a \approx 101.02 ; c \approx 105.52$
4. $A=66.2^{\circ} ; a \approx 91.83 ; c \approx 100.36$
5. $A \approx 9.8^{\circ} ; B \approx 80.2^{\circ} ; b \approx 64.84$
6. $c \approx 26.96 ; A \approx 23.6^{\circ} ; B \approx 66.4^{\circ}$
7. $a \approx 6.71 ; B \approx 16.6^{\circ} ; A \approx 73.4^{\circ}$
8. $A \approx 63.6^{\circ} ; B \approx 26.4^{\circ}, a \approx 8.06$
9. $b \approx 39.95 ; A \approx 37.3^{\circ} ; B \approx 52.7^{\circ}$
10. $A \approx 41.0^{\circ} ; B \approx 49.0^{\circ} ; c \approx 23.32$
11. $d=-6 \cos \frac{\pi}{2} t$
12. $d=-8 \cos \pi t$
$\begin{array}{ll}\text { 19. } d=-3 \sin \frac{4 \pi}{3} t & \text { 20. } d=-5 \sin \frac{4 \pi}{5} t\end{array}$
13. a. 5 in.
b. $\frac{1}{4}$ in. per sec
c. 4 sec
14. a. 10 in.
b. 1 in. per sec
c. 1 sec
15. a. 6 in.
b. 1 in. per sec
c. 1 sec
16. a. 8 in
b. $\frac{1}{4}$ in. per sec
c. 4 sec
17. a. $\frac{1}{2} \mathrm{in}$.
b. 0.32 in. per sec
c. 3.14 sec
18. a. $\frac{1}{3} \mathrm{in}$.
b. 0.32 in. per sec
c. 3.14 sec
19. a. 5 in.
b. $\frac{1}{3}$ in. per sec
c. 3 sec
20. a. 4 in.
b. $\frac{3}{4}$ in. per sec c. $\frac{4}{3} \mathrm{sec}$
21.

a. 4 in
b. $\frac{1}{2}$ in. per sec
c. 2 sec
d. $\frac{1}{2}$ 43. 695 ft
41. 2059 ft
70.

3 complete oscillations
38.

39.

$$
d=-2 \sin \left(\frac{\pi}{4} t+\frac{\pi}{2}\right)
$$

a. 2 in.
b. $\frac{1}{8}$ in. per sec
c. 8 sec
d. -2
52. 17.5 mi south and 36.0 mi east
56. $\mathrm{N} 56^{\circ} \mathrm{W}$
a. 3 in.
b. $\frac{1}{2}$ in. per \sec
c. 2 sec
d. $-\frac{1}{2}$

Chapter 4 Review Exercises

8.

9.

10.

11.

12.

20. $42,412 \mathrm{ft}$ per min
27. $\cos t=\frac{\sqrt{21}}{7} ; \tan t=\frac{2 \sqrt{3}}{3} ; \csc t=\frac{\sqrt{7}}{2} ; \sec t=\frac{\sqrt{21}}{3} ; \cot t=\frac{\sqrt{3}}{2}$
45. $\sin \theta=-\frac{5 \sqrt{26}}{26} ; \cos \theta=-\frac{\sqrt{26}}{26} ; \tan \theta=5 ; \csc \theta=-\frac{\sqrt{26}}{5} ; \sec \theta=-\sqrt{26} ; \cot \theta=\frac{1}{5}$
46. $\sin \theta=-1$; $\cos \theta=0 ; \tan \theta$ is undefined; $\csc \theta=-1 ; \sec \theta$ is undefined; $\cot \theta=0 \quad$ 47. quadrant I
49. $\sin \theta=-\frac{\sqrt{21}}{5} ; \tan \theta=-\frac{\sqrt{21}}{2} ; \csc \theta=-\frac{5 \sqrt{21}}{21} ; \sec \theta=\frac{5}{2} ; \cot \theta=-\frac{2 \sqrt{21}}{21}$
50. $\sin \theta=\frac{\sqrt{10}}{10} ; \cos \theta=-\frac{3 \sqrt{10}}{10} ; \csc \theta=\sqrt{10} ; \sec \theta=-\frac{\sqrt{10}}{3} ; \cot \theta=-3$
51. $\sin \theta=-\frac{\sqrt{10}}{10} ; \cos \theta=-\frac{3 \sqrt{10}}{10} ; \tan \theta=\frac{1}{3} ; \csc \theta=-\sqrt{10} ; \sec \theta=-\frac{\sqrt{10}}{3}$
68.

69.

70.

71.

$y=\frac{1}{2} \sin \frac{\pi}{3} x$
72.

76.

80.

73.

74.

75.

77.

78.

79.

83.

87.

91.

92.

85.

86.

88.

89.

90.

93.

115. $B \approx 67.7^{\circ} ; a \approx 3.79 ; b \approx 9.25$
118. $A \approx 21.3^{\circ} ; B \approx 68.7^{\circ} ; c \approx 3.86$
c. 1.57 sec
128. $d=-30 \cos \pi t$
116. $A \approx 52.6^{\circ} ; a \approx 7.85 ; c \approx 9.88$
$\begin{array}{ll}\text { 120. } 90 \mathrm{yd} & \text { 126. a. } 20 \mathrm{~cm}\end{array}$ 129. $d=\frac{1}{4} \sin \frac{2 \pi}{5} t$

Chapter 4 Test

2. $\frac{25 \pi}{3} \mathrm{ft} \approx 26.18 \mathrm{ft} \quad$ 4. $\sin \theta=\frac{5 \sqrt{29}}{29} ; \cos \theta=-\frac{2 \sqrt{29}}{29} ; \tan \theta=-\frac{5}{2} ; \csc \theta=\frac{\sqrt{29}}{5} ; \sec \theta=-\frac{\sqrt{29}}{2} ; \cot \theta=-\frac{2}{5}$
3. $\sin \theta=-\frac{2 \sqrt{2}}{3} ; \tan \theta=-2 \sqrt{2} ; \csc \theta=-\frac{3 \sqrt{2}}{4} ; \sec \theta=3 ; \cot \theta=-\frac{\sqrt{2}}{4}$
4. a. $-a+b$ or $b-a$
b. $\frac{a}{b}-\frac{1}{b}$ or $\frac{a-1}{b}$
5.

15.

16.

17.

Cumulative Review Exercises (Chapters P-4)

8. $4 x^{2}-\frac{14}{5} x-\frac{17}{25}+\frac{284}{125 x+50}$
9. $\log 1000=3$
10. 3 positive real roots; 1 negative real root
11.

13.

14.

15.

16.

18. a. $A=110 e^{0.1013 t}$ where t is the number of years after 2000
b. 13 years after 2000 , or 2013

CHAPTER 5

Section 5.1

Check Point Exercises

1. $\csc x \tan x=\frac{1}{\sin x} \cdot \frac{\sin x}{\cos x}=\frac{1}{\cos x}=\sec x$
2. $\cos x \cot x+\sin x=\cos x \cdot \frac{\cos x}{\sin x}+\sin x=\frac{\cos ^{2} x}{\sin x}+\sin x \cdot \frac{\sin x}{\sin x}=\frac{\cos ^{2} x+\sin ^{2} x}{\sin x}=\frac{1}{\sin x}=\csc x$
3. $\sin x-\sin x \cos ^{2} x=\sin x\left(1-\cos ^{2} x\right)=\sin x \cdot \sin ^{2} x=\sin ^{3} x \quad$ 4. $\frac{1+\cos \theta}{\sin \theta}=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=\csc \theta+\cot \theta$
4. $\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{\sin x(\sin x)}{(1+\cos x)(\sin x)}+\frac{(1+\cos x)(1+\cos x)}{(\sin x)(1+\cos x)}=\frac{\sin ^{2} x+1+2 \cos x+\cos ^{2} x}{(1+\cos x)(\sin x)}$
$=\frac{\sin ^{2} x+\cos ^{2} x+1+2 \cos x}{(1+\cos x)(\sin x)}=\frac{1+1+2 \cos x}{(1+\cos x)(\sin x)}=\frac{2+2 \cos x}{(1+\cos x)(\sin x)}=\frac{2(1+\cos x)}{(1+\cos x)(\sin x)}=\frac{2}{\sin x}=2 \csc x$
5. $\frac{\cos x}{1+\sin x}=\frac{\cos x(1-\sin x)}{(1+\sin x)(1-\sin x)}=\frac{\cos x(1-\sin x)}{1-\sin ^{2} x}=\frac{\cos x(1-\sin x)}{\cos ^{2} x}=\frac{1-\sin x}{\cos x}$
6. $\frac{\sec x+\csc (-x)}{\sec x \csc x}=\frac{\sec x-\csc x}{\sec x \csc x}=\frac{\frac{1}{\cos x}-\frac{1}{\sin x}}{\frac{1}{\cos x} \cdot \frac{1}{\sin x}}=\frac{\frac{\sin x}{\cos x \cdot \sin x}-\frac{\cos x}{\cos x \cdot \sin x}}{\frac{1}{\cos x \cdot \sin x}}=\frac{\frac{\sin x-\cos x}{\cos x \cdot \sin x}}{\frac{1}{\cos x \cdot \sin x}}=\frac{\sin x-\cos x}{\cos x \cdot \sin x} \cdot \frac{\cos x \cdot \sin x}{1}=\sin x-\cos x$
7. Left side: $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=\frac{1(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}+\frac{1(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}=\frac{2}{1-\sin ^{2} \theta}$;

Right side: $2+2 \tan ^{2} \theta=2+2\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)=\frac{2 \cos ^{2} \theta}{\cos ^{2} \theta}+\frac{2 \sin ^{2} \theta}{\cos ^{2} \theta}=\frac{2 \cos ^{2} \theta+2 \sin ^{2} \theta}{\cos ^{2} \theta}=\frac{2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\cos ^{2} \theta}=\frac{2}{\cos ^{2} \theta}=\frac{2}{1-\sin ^{2} \theta}$

Exercise Set 5.1

69. $\frac{1}{\cos x}$
70. $\frac{1}{\cot x}$
71.

Proofs may vary.
82.

Values for x may vary.
85.

Proofs may vary.
90. makes sense

Section 5.2

Check Point Exercises

3. $\frac{\cos (\alpha-\beta)}{\cos \alpha \cos \beta}=\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=\frac{\cos \alpha}{\cos \alpha} \cdot \frac{\cos \beta}{\cos \beta}+\frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}=1+\tan \alpha \tan \beta$
4. b. $\cos \left(x+\frac{3 \pi}{2}\right)=\cos x \cos \frac{3 \pi}{2}-\sin x \sin \frac{3 \pi}{2}=\cos x \cdot 0-\sin x \cdot(-1)=\sin x$
5. $\tan (x+\pi)=\frac{\tan x+\tan \pi}{1-\tan x \tan \pi}=\frac{\tan x+0}{1-\tan x \cdot 0}=\frac{\tan x}{1}=\tan x$

Exercise Set 5.2

28. $\tan 30^{\circ} ; \frac{\sqrt{3}}{3} \quad$ 59. a. $-\frac{4+6 \sqrt{2}}{15}$
b. $\frac{3-8 \sqrt{2}}{15}$
c. $\frac{54-25 \sqrt{2}}{28}$
29. a. $-\frac{6+4 \sqrt{5}}{15}$
b. $\frac{8-3 \sqrt{5}}{15}$
c. $\frac{54-25 \sqrt{5}}{22}$
30. a. $-\frac{8 \sqrt{3}+15}{34}$
b. $\frac{15 \sqrt{3}-8}{34}$
c. $\frac{480-289 \sqrt{3}}{33}$
31. a. $-\frac{2 \sqrt{2}+\sqrt{3}}{6}$
b. $\frac{2 \sqrt{6}-1}{6} \quad$ c. $\frac{8 \sqrt{2}-9 \sqrt{3}}{5}$
32. a. $-\frac{4+3 \sqrt{15}}{20}$
b. $\frac{-3+4 \sqrt{15}}{20}$
c. $\frac{3-4 \sqrt{15}}{4+3 \sqrt{15}}$
33. a. $-\frac{(15+7 \sqrt{11}) \sqrt{58}}{348}$
b. $\frac{(35-3 \sqrt{11}) \sqrt{58}}{348} \quad$ c. $\frac{3 \sqrt{11}-35}{15+7 \sqrt{11}}$
34. b. $\sin (\pi-x)=\sin \pi \cos x-\cos \pi \sin x=0 \cdot \cos x-(-1) \sin x=\sin x$
35. b. $\cos (x-2 \pi)=\cos x \cos 2 \pi+\sin x \sin 2 \pi=\cos x \cdot 1+\sin x \cdot 0=\cos x$
36. b. $\sin \left(x+\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}-x\right)=\sin x \cos \frac{\pi}{2}+\cos x \sin \frac{\pi}{2}+\sin \frac{\pi}{2} \cos x-\cos \frac{\pi}{2} \sin x=\sin x \cdot 0+\cos x \cdot 1+1 \cdot \cos x-0 \cdot \sin x$
$=\cos x+\cos x=2 \cos x$
37. a. $\cos \left(x-\frac{\pi}{2}\right)-\cos \left(x+\frac{\pi}{2}\right)=\cos x \cos \frac{\pi}{2}+\sin x \sin \frac{\pi}{2}-\left(\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2}\right)$
$=\cos x \cdot 0+\sin x \cdot 1-(\cos x \cdot 0-\sin x \cdot 1)=\sin x+\sin x=2 \sin x$
38. $\cos \frac{\pi}{3}=\frac{1}{2}$
39. $\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$
40. Proofs may vary.; amplitude is $\sqrt{13}$; period is 2π

Proofs may vary.
89.

Proofs may vary.
90.

Values for x may vary.
91.

Values for x may vary.

Proofs may vary.
93.

Proofs may vary.
107. $\sin 30^{\circ}=\frac{1}{2} ; \cos 30^{\circ}=\frac{\sqrt{3}}{2} ; \sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2}$

Section 5.3

Check Point Exercises

3. $\sin 3 \theta=\sin (2 \theta+\theta)=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta=2 \sin \theta \cos \theta \cos \theta+\left(2 \cos ^{2} \theta-1\right) \sin \theta=2 \sin \theta \cos ^{2} \theta+2 \sin \theta \cos ^{2} \theta-\sin \theta$
$=4 \sin \theta \cos ^{2} \theta-\sin \theta=4 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin \theta=4 \sin \theta-4 \sin ^{3} \theta-\sin \theta=3 \sin \theta-4 \sin ^{3} \theta$
4. $\sin ^{4} x=\left(\sin ^{2} x\right)^{2}=\left(\frac{1-\cos 2 x}{2}\right)^{2}=\frac{1-2 \cos 2 x+\cos ^{2} 2 x}{4}=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{4} \cos ^{2} 2 x=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{4}\left(\frac{1+\cos 2(2 x)}{2}\right)$
$=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{8}+\frac{1}{8} \cos 4 x=\frac{3}{8}-\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$
5. $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\frac{2 \sin \theta \cos \theta}{1+\left(1-2 \sin ^{2} \theta\right)}=\frac{2 \sin \theta \cos \theta}{2-2 \sin ^{2} \theta}=\frac{2 \sin \theta \cos \theta}{2\left(1-\sin ^{2} \theta\right)}=\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta$
6. $\frac{\sec \alpha}{\sec \alpha \csc \alpha+\csc \alpha}=\frac{\frac{1}{\cos \alpha}}{\frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha}+\frac{1}{\sin \alpha}}=\frac{\frac{1}{\cos \alpha}}{\frac{1}{\cos \alpha \sin \alpha}+\frac{\cos \alpha}{\cos \alpha \sin \alpha}}=\frac{\frac{1}{\cos \alpha}}{\frac{1+\cos \alpha}{\cos \alpha \sin \alpha}}=\frac{1}{\cos \alpha} \cdot \frac{\cos \alpha \sin \alpha}{1+\cos \alpha}=\frac{\sin \alpha}{1+\cos \alpha}=\tan \frac{\alpha}{2}$

Exercise Set 5.3

39. $\frac{\sqrt{2-\sqrt{3}}}{2} \quad$ 40. $\frac{\sqrt{2+\sqrt{2}}}{2} \quad$ 41. $-\frac{\sqrt{2+\sqrt{2}}}{2} \quad$ 42. $\frac{\sqrt{2+\sqrt{3}}}{2}$
40.

Proofs may vary.
98.

Values for x may vary
96.

Proofs may vary.
99.

a. $y=1+2 \sin x$
b. Proofs may vary.
97.

Values for x may vary.
100.

a. $y=\sin x$
b. Proofs may vary.
101.

112. $\frac{5}{16}-\frac{7}{16} \cos 2 x+\frac{3}{16} \cos 4 x-\frac{1}{16} \cos 2 x \cos 4 x$
113. Both sides equal $\frac{\sqrt{3}}{4}$.
114. Both sides equal 0 . 115. Both sides equal 0 .

Section 5.4

Check Point Exercises

3. $\frac{\cos 3 x-\cos x}{\sin 3 x+\sin x}=\frac{-2 \sin \left(\frac{3 x+x}{2}\right) \sin \left(\frac{3 x-x}{2}\right)}{2 \sin \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)}=\frac{-2 \sin \left(\frac{4 x}{2}\right) \sin \left(\frac{2 x}{2}\right)}{2 \sin \left(\frac{4 x}{2}\right) \cos \left(\frac{2 x}{2}\right)}=\frac{-2 \sin 2 x \sin x}{2 \sin 2 x \cos x}=-\frac{\sin x}{\cos x}=-\tan x$

Exercise Set 5.4

1. $\frac{1}{2}[\cos 4 x-\cos 8 x]$
2. $\frac{1}{2}[\cos 4 x-\cos 12 x]$
3. $\frac{1}{2}[\cos 4 x+\cos 10 x]$
4. $\frac{1}{2}[\cos 7 x+\cos 11 x]$
5. $\frac{1}{2}[\sin 3 x-\sin x]$
6. $\frac{1}{2}[\sin 5 x-\sin x]$
7. $\frac{1}{2}[\sin 2 x-\sin x]$
8. $\frac{1}{2}[\sin 3 x-\sin 2 x]$
9. $2 \sin \frac{3 x}{2} \cos \frac{x}{2}$
10. $-2 \sin \frac{x}{2} \cos \frac{3 x}{2}$
11.

Values for x may vary.
46.

Values for x may vary.
47.

Proofs may vary.
48.

49.

50.

Proofs may vary.
51. a.

b.

Exercise Set 5.5

11. $x=\frac{\pi}{3}+2 n \pi$ or $x=\frac{2 \pi}{3}+2 n \pi$, where n is any integer. \quad 12. $x=\frac{\pi}{6}+2 n \pi$ or $x=\frac{11 \pi}{6}+2 n \pi$, where n is any integer.
12. $x=\frac{\pi}{4}+n \pi$, where n is any integer. \quad 14. $x=\frac{\pi}{3}+n \pi$, where n is any integer. \quad 15. $x=\frac{2 \pi}{3}+2 n \pi$ or $x=\frac{4 \pi}{3}+2 n \pi$, where n is any integer.
13. $x=\frac{5 \pi}{4}+2 n \pi$ or $x=\frac{7 \pi}{4}+2 n \pi$, where n is any integer.
14. $x=n \pi$, where n is any integer.
15. $x=n \pi$, where n is any integer.
16. $x=\frac{5 \pi}{6}+2 n \pi$ or $x=\frac{7 \pi}{6}+2 n \pi$, where n is any integer.
17. $x=\frac{4 \pi}{3}+2 n \pi$ or $x=\frac{5 \pi}{3}+2 n \pi$, where n is any integer.
18. $\theta=\frac{\pi}{6}+2 n \pi$ or $\theta=\frac{5 \pi}{6}+2 n \pi$, where n is any integer.
19. $\theta=\frac{7 \pi}{6}+2 n \pi$ or $\theta=\frac{11 \pi}{6}+2 n \pi$, where n is any integer.
20. $\theta=\frac{3 \pi}{2}+2 n \pi$, where n is any integer.
21. $\theta=\pi+2 n \pi$, where n is any integer.
22. $\frac{\pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{15 \pi}{8}$
23. $\frac{5 \pi}{24}, \frac{7 \pi}{24}, \frac{17 \pi}{24}, \frac{19 \pi}{24}, \frac{29 \pi}{24}, \frac{31 \pi}{24}, \frac{41 \pi}{24}, \frac{43 \pi}{24}$
24. $\frac{5 \pi}{16}, \frac{7 \pi}{16}, \frac{13 \pi}{16}, \frac{15 \pi}{16}, \frac{21 \pi}{16}, \frac{23 \pi}{16}, \frac{29 \pi}{16}, \frac{31 \pi}{16}$
25. $\frac{\pi}{18}, \frac{7 \pi}{18}, \frac{13 \pi}{18}, \frac{19 \pi}{18}, \frac{25 \pi}{18}, \frac{31 \pi}{18}$
26. $\frac{\pi}{9}, \frac{4 \pi}{9}, \frac{7 \pi}{9}, \frac{10 \pi}{9}, \frac{13 \pi}{9}, \frac{16 \pi}{9}$
27. $\frac{5 \pi}{9}, \frac{11 \pi}{9}, \frac{17 \pi}{9}$
28. $0, \frac{\pi}{3}, \pi, \frac{4 \pi}{3}$
29. $\frac{\pi}{4}, \frac{\pi}{2}, \frac{5 \pi}{4}, \frac{3 \pi}{2}$
$\begin{array}{ll}\text { 41. } \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3} & \text { 47. } \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\end{array}$
30. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
31. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
32. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
33. no solution
34. $0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}$
35. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
36. $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
37. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
38. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
39. $\frac{2 \pi}{3}, \frac{4 \pi}{3}$
40. $\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{3 \pi}{2}$
41. $\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}$
42. $\frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}$
43. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
44. $\frac{4 \pi}{9}, \frac{5 \pi}{9}, \frac{10 \pi}{9}, \frac{11 \pi}{9}, \frac{16 \pi}{9}, \frac{17 \pi}{9}$
$\begin{array}{ll}\text { 99. } 0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3} & \text { 100. } \frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\end{array}$
45. $1.7798,4.9214$
46. $1.7303,4.8719$

$$
\text { 107. } \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}
$$

108. $0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
109. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
110. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
111. $\left(\frac{2 \pi}{3},-\frac{3}{2}\right),\left(\frac{4 \pi}{3},-\frac{3}{2}\right) \quad$ 118. $\left(\frac{7 \pi}{6},-\frac{3}{2}\right),\left(\frac{11 \pi}{6},-\frac{3}{2}\right)$
112. $(3.5163,0.7321),(5.9085,0.7321)$
113. $(0,1),\left(\frac{\pi}{6}, \frac{1}{2}\right),\left(\frac{5 \pi}{6}, \frac{1}{2}\right),(\pi, 1),(2 \pi, 1)$

$f(x)=3 \cos x$
$g(x)=\cos x-1$

$y=\sin x-1$

$f(x)=\cos 2 x$
$g(x)=-2 \sin x$

$f(x)=\cos 2 x$
$g(x)=1-\sin x$
114. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \quad$ 129. 0.4 sec and $2.1 \mathrm{sec} \quad$ 133. $t=2+6 n$ or $t=4+6 n$ where n is any nonnegative integer.
115. $t=1+6 n$ or $t=5+6 n$ where n is any nonnegative integer.
116.

$x=1.37, x=2.30, x=3.98$, or $x=4.91$
150.

$x=1.08$
148.
$x=0.74$
149.

$x=0.37$ or $x=2.77$
151.

$x=0, x=1.57, x=2.09, x=3.14, x=4.19$, or $x=4.71$

Chapter 5 Review Exercises

32. b. $\sin \left(x-\frac{3 \pi}{2}\right)=\sin x \cos \frac{3 \pi}{2}-\cos x \sin \frac{3 \pi}{2}=\sin x \cdot 0-\cos x \cdot-1=\cos x$
33. b. $\cos \left(x+\frac{\pi}{2}\right)=\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2}=\cos x \cdot 0-\sin x \cdot 1=-\sin x$
34. b. $y=\frac{\tan x-1}{1-\cot x}=\frac{\frac{\sin x}{\cos x}-1}{1-\frac{\cos x}{\sin x}}=\frac{\frac{\sin x-\cos x}{\cos x}}{\frac{\sin x-\cos x}{\sin x}}=\frac{\sin x-\cos x}{\cos x} \cdot \frac{\sin x}{\sin x-\cos x}=\frac{\sin x}{\cos x}=\tan x$
35. a. $\frac{33}{65}$
b. $\frac{16}{65}$
c. $-\frac{33}{56}$
d. $\frac{24}{25}$
36. a. $-\frac{63}{65}$
b. $-\frac{56}{65}$
c. $\frac{63}{16}$
d. $\frac{24}{25}$
e. $\frac{5 \sqrt{26}}{26}$
37. a. 1
b. $-\frac{3}{5}$
c. undefined
d. $-\frac{3}{5}$
e. $\frac{\sqrt{10+3 \sqrt{10}}}{2 \sqrt{5}}$
38. a. 1
b. $\frac{4 \sqrt{2}}{9}$
c. undefined
d. $\frac{4 \sqrt{2}}{9}$
e. $-\frac{\sqrt{3}}{3}$
39. $\frac{1}{2}[\cos 2 x-\cos 10 x] \quad$ 44. $\frac{1}{2}[\sin 10 x+\sin 4 x] \quad$ 50. $x=\frac{2 \pi}{3}+2 n \pi$ or $x=\frac{4 \pi}{3}+2 n \pi$, where n is any integer.
40. $x=\frac{\pi}{4}+2 n \pi$ or $x=\frac{3 \pi}{4}+2 n \pi$, where n is any integer.
41. $x=\frac{7 \pi}{6}+2 n \pi$ or $x=\frac{11 \pi}{6}+2 n \pi$, where n is any integer.
42. $x=\frac{\pi}{6}+n \pi$, where n is any integer.
43. $0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
44. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
45. $0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
46. $0, \frac{\pi}{6}, \pi, \frac{11 \pi}{6}$
47. $3.7890,5.6358$
48. $0.6847,2.4569,3.8263,5.5985$
49. $\frac{\pi}{4}, 1.2490, \frac{5 \pi}{4}, 4.3906$
50. $0.8959,2.2457$
51. $t=\frac{2}{3}+4 n$ or $t=\frac{10}{3}+4 n$, where n is any integer.

Chapter 5 Test

5. $\frac{\sqrt{6}+\sqrt{2}}{4}$
6. $\cos x \csc x=\cos x \cdot \frac{1}{\sin x}=\frac{\cos x}{\sin x}=\cot x$
7. $\frac{\sec x}{\cot x+\tan x}=\frac{\frac{1}{\cos x}}{\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}}=\frac{\frac{1}{\cos x}}{\frac{\cos ^{2} x+\sin ^{2} x}{\sin x \cos x}}=\frac{1}{\cos x} \cdot \frac{\sin x \cos x}{1}=\sin x$
8. $1-\frac{\cos ^{2} x}{1+\sin x}=1-\frac{\left(1-\sin ^{2} x\right)}{1+\sin x}=1-\frac{(1+\sin x)(1-\sin x)}{1+\sin x}=1-(1-\sin x)=\sin x$
9. $\cos \left(\theta+\frac{\pi}{2}\right)=\cos \theta \cos \frac{\pi}{2}-\sin \theta \sin \frac{\pi}{2}=\cos \theta \cdot 0-\sin \theta \cdot 1=-\sin \theta$
10. $\frac{\sin (\alpha-\beta)}{\sin \alpha \cos \beta}=\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \alpha \cos \beta}=\frac{\sin \alpha \cos \beta}{\sin \alpha \cos \beta}-\frac{\cos \alpha \sin \beta}{\sin \alpha \cos \beta}=1-\cot \alpha \tan \beta$
11. $\sin t \cos t(\tan t+\cot t)=\sin t \cos t\left(\frac{\sin t}{\cos t}+\frac{\cos t}{\sin t}\right)=\sin ^{2} t+\cos ^{2} t=1$

Cumulative Review Exercises (Chapters P-5)

6.

7.

8.

9.

14. Proofs may vary.
19. 106 mg
20. $h \approx 15.9 \mathrm{ft}$
11.

$f(x)=(x-1)^{2}(x-3)$

CHAPTER 6

Exercise Set 6.1

25. two triangles; $B_{1} \approx 77^{\circ}, C_{1} \approx 43^{\circ}, c_{1} \approx 12.6 ; B_{2} \approx 103^{\circ}, C_{2} \approx 17^{\circ}, c_{2} \approx 5.4$
26. two triangles; $B_{1} \approx 27^{\circ}, C_{1} \approx 133^{\circ}, c_{1} \approx 64.2 ; B_{2} \approx 153^{\circ}, C_{2} \approx 7^{\circ}, c_{2} \approx 10.7$
27. two triangles; $B_{1} \approx 54^{\circ}, C_{1} \approx 89^{\circ}, c_{1} \approx 19.9 ; B_{2} \approx 126^{\circ}, C_{2} \approx 17^{\circ}, c_{2} \approx 5.8$
28. two triangles; $B_{1} \approx 56^{\circ}, C_{1} \approx 112^{\circ}, c_{1} \approx 31.2 ; B_{2} \approx 124^{\circ}, C_{2} \approx 44^{\circ}, c_{2} \approx 23.4$
29. two triangles; $C_{1} \approx 68^{\circ}, B_{1} \approx 54^{\circ}, b_{1} \approx 21.0 ; C_{2} \approx 112^{\circ}$, $B_{2} \approx 10^{\circ}, b_{2} \approx 4.5$
30. two triangles; $C_{1} \approx 83^{\circ}, B_{1} \approx 48^{\circ}, b_{1} \approx 93.5 ; C_{2} \approx 97^{\circ}, B_{2} \approx 34^{\circ}, b_{2} \approx 70.4$
31. $\sqrt{7280}=4 \sqrt{455} \approx 85$

Exercise Set 6.2

33. $A \approx 51^{\circ}, B \approx 61^{\circ}, C \approx 68^{\circ}, A B=9, A C=8.5, B C=7.5$
34. $A \approx 38^{\circ}, B \approx 61^{\circ}, C \approx 81^{\circ}, A B=11.8, A C=10.5, B C=7.3 \quad$ 35. $A \approx 145^{\circ}, B \approx 13^{\circ}, C \approx 22^{\circ}, a=\sqrt{61} \approx 7.8, b=\sqrt{10} \approx 3.2, c=5$
35.
36.

70.

71.

Section 6.3

Check Point Exercises

1. a.

b.

c.

Exercise Set 6.3
11.

14.

17.

20.

12.

$\frac{3 \pi}{2}$
15.

18.

21.

$\frac{3 \pi}{2}$
a. $\left(5, \frac{13 \pi}{6}\right)$
b. $\left(-5, \frac{7 \pi}{6}\right)$
c. $\left(5,-\frac{11 \pi}{6}\right)$
13.

16.

19.

22.

$\frac{3 \pi}{2}$
a. $\left(8, \frac{13 \pi}{6}\right)$
b. $\left(-8, \frac{7 \pi}{6}\right)$
c. $\left(8,-\frac{11 \pi}{6}\right)$
23.

a. $\left(10, \frac{11 \pi}{4}\right)$
b. $\left(-10, \frac{7 \pi}{4}\right)$
c. $\left(10,-\frac{5 \pi}{4}\right)$
26.

24.

a. $\left(12, \frac{8 \pi}{3}\right)$
b. $\left(-12, \frac{5 \pi}{3}\right)$
c. $\left(12,-\frac{4 \pi}{3}\right)$
39. approximately $(-5.9,4.4)$
50. $r=\frac{8}{\cos \theta+5 \sin \theta}$
56. $r=-6 \sin \theta$
25.

$\frac{3 \pi}{2}$
a. $\left(4, \frac{5 \pi}{2}\right) \quad$ b. $\left(-4, \frac{3 \pi}{2}\right)$
c. $\left(4,-\frac{3 \pi}{2}\right)$
)
b. $\left(-6, \frac{3 \pi}{2}\right) \quad$ c. $\left(6,-\frac{3 \pi}{2}\right)$
a. $\left(6, \frac{5 \pi}{2}\right)$
59.

$x^{2}+y^{2}=64$
63.

67.

71. $x^{2}+y^{2}=6 x+4 y$

72. $x^{2}+y^{2}=8 x+2 y$

61.

65.

69.

62.

66.

70. $x^{2}+(y+2)^{2}=4$

73.
74.

75. $r=a \sec \theta ; r \cos \theta=a ; x=a ; x=a$ is a vertical line a units to the right of the y-axis when $a>0$ and $|a|$ to the left of the y-axis when $a<0$.
76. $r=a \csc \theta ; r \sin \theta=a ; y=a ; y=a$ is a horizontal line a units above the x-axis when $a>0$ and $|a|$ below the x-axis when $a<0$.
77. $r=a \sin \theta ; r^{2}=a r \sin \theta ; x^{2}+y^{2}=a y ; x^{2}+y^{2}-a y=0 ; x^{2}+\left(y-\frac{a}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}$
78. $r=a \cos \theta ; r^{2}=a r \cos \theta ; x^{2}+y^{2}=a x ; x^{2}-a x+y^{2}=0 ;\left(x-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}$
79. $y=x+2 \sqrt{2}$; slope: $1 ; y$-intercept: $2 \sqrt{2}$
80. $y=\sqrt{3} x-16$; slope: $\sqrt{3}$; y-intercept: -16
81. $(-1, \sqrt{3}),(2 \sqrt{3}, 2) ; 2 \sqrt{5}$
82. $(-6,0),\left(\frac{5 \sqrt{2}}{2},-\frac{5 \sqrt{2}}{2}\right) ; \sqrt{61+30 \sqrt{2}}$
85. 6.3 knots at an angle of 50° to the wind
86. 7.4 knots at an angle of 85° to the wind
109.

111.

Section 6.4

Check Point Exercises

Exercise Set 6.4

7. a. May or may not have symmetry with respect to polar axis. b. Has symmetry with respect to the line $\theta=\frac{\pi}{2}$. c. May or may not have symmetry about the pole. \quad 8. a. Has symmetry with respect to the polar axis. \quad b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$. c. May or may not have symmetry about the pole.
8. a. Has symmetry with respect to polar axis.
b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. May or may not have symmetry about pole.
9. a. Has symmetry with respect to the polar axis.
b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$. c. May or may not have symmetry about the pole. 11. a. Has symmetry with respect to $\begin{array}{llll}\text { polar axis. } & \text { b. Has symmetry with respect to the line } \theta=\frac{\pi}{2} \text {. } \quad \text { c. Has symmetry about the pole. } \quad \text { 12. a. May or may not have symmetry with }\end{array}$ respect to the polar axis. b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$. \quad c. Has symmetry with respect to the pole.
10.

14.

23.

22.

17.

20.

15.
18.

21.

24.

25.

28.

31.

34.

26.

27.

29.

30.

32.

33.

36.

37.

40.

38.

41.

44.

4
58.
43.

39.

42.

62.

66.

59.

63.

67.

60.

64.

68.

61.

65.

69.

70.

74.

81.

82.

87.

88.

72.

79.

73.

80.

83. If n is odd, there are n loops and $\theta \max =\pi$ traces the graph once; while if n is even, there are $2 n$ loops and $\theta \max =2 \pi$ traces the graph once. In each separate case, as n increases, $\sin n \theta$ increases its number of loops.
85. There are n small petals and n large petals for each value of n. For odd values of n, the small petals are inside the large petals. For even n, they are between the large petals.

93.

The graph of r_{2} is the
graph of r_{1} rotated $\frac{\pi}{4}$ or 45°.
94.

The graph of r_{2} is the
graph of r_{1} rotated $-\frac{\pi}{6}$ or -30°.

Mid-Chapter 6 Check Point

1. $C=107^{\circ}, b \approx 24.8, c \approx 36.1 \quad$ 2. $B \approx 37^{\circ}, C \approx 101^{\circ}, c \approx 92.4 \quad$ 3. no triangle \quad 4. $A \approx 26^{\circ}, C \approx 44^{\circ}, b \approx 21.6$
2. Two triangles: $A_{1} \approx 55^{\circ}, B_{1} \approx 83^{\circ}, b_{1} \approx 19.3 ; A_{2} \approx 125^{\circ}, B_{2} \approx 13^{\circ}, b_{2} \approx 4.4 \quad$ 6. $A \approx 28^{\circ}, B \approx 42^{\circ}, C \approx 110^{\circ}$

3.

a. $\left(4, \frac{11 \pi}{4}\right)$
b. $\left(-4, \frac{7 \pi}{4}\right)$
c. $\left(4,-\frac{5 \pi}{4}\right)$
21.

17.

a. $\left(\frac{5}{2}, \frac{5 \pi}{2}\right)$
b. $\left(-\frac{5}{2}, \frac{3 \pi}{2}\right)$
c. $\left(\frac{5}{2},-\frac{3 \pi}{2}\right)$
22.

23.

24.

26. a. Has symmetry with respect to the polar axis.
25.

symmetry with respect to the pole.
27. a. Has symmetry with respect to the polar axis. c. Has symmetry with respect to the pole.
28.

29.

30.

Section 6.5

Check Point Exercises

1. a.

b.

c.

d.

2.

Exercise Set 6.5

1.

6.

2.

7. Imaginary

3.

8.

4.

10.

11.

$2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
or $2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
12.

$2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$ or $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
13.

$\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$
or $\sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$
14.

$2 \sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$ or $2 \sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
15.

$4\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$ or $4\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
16. Imaginary

$3\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$ or $3\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
18.

$4\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ or $4\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$
20.

$4(\cos \pi+i \sin \pi)$ or $4\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$
22.
 $6\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$ or $6\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
24.

$\approx \sqrt{13}\left(\cos 123.7^{\circ}+i \sin 123.7^{\circ}\right)$
26.

27. $3 \sqrt{3}+3 i$
28. $6+6 i \sqrt{3}$
32. $-2 \sqrt{3}+2 i$
35. $-18.1-8.5 i$
29. $-2-2 i \sqrt{3}$
30. $-5 \sqrt{3}-5 i$
31. $4 \sqrt{2}-4 i \sqrt{2}$
36. $-20.0+22.4 i$
41. $\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}$
42. $\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}$
44. $4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
65. $3\left(\cos 15^{\circ}+i \sin 15^{\circ}\right) ; 3\left(\cos 195^{\circ}+i \sin 195^{\circ}\right)$
66. $5\left(\cos 105^{\circ}+i \sin 105^{\circ}\right) ; 5\left(\cos 285^{\circ}+i \sin 285^{\circ}\right)$
$\approx \sqrt{6}\left(\cos 294.1^{\circ}+i \sin 294.1^{\circ}\right)$
17. Imaginary

$4\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)$ or $4\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$
19.

$3(\cos \pi+i \sin \pi)$ or $3\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$
21.

23.

$\approx 5\left(\cos 126.9^{\circ}+i \sin 126.9^{\circ}\right)$
25.

$\approx \sqrt{7}\left(\cos 319.1^{\circ}+i \sin 319.1^{\circ}\right)$
68. $3\left(\cos 102^{\circ}+i \sin 102^{\circ}\right) ; 3\left(\cos 222^{\circ}+i \sin 222^{\circ}\right) ; 3\left(\cos 342^{\circ}+i \sin 342^{\circ}\right)$
69. $\frac{3}{2}+\frac{3 \sqrt{3}}{2} i ;-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i ;-\frac{3}{2}-\frac{3 \sqrt{3}}{2} i ; \frac{3 \sqrt{3}}{2}-\frac{3}{2} i$
70. $1+i \sqrt{3} ; \approx-1.3+1.5 i ; \approx-1.8-0.8 i ; \approx 0.2-2.0 i ; \approx 2.0-0.4 i \quad$ 71. $2 ; \approx 0.6+1.9 i ; \approx-1.6+1.2 i ; \approx-1.6-1.2 i ; \approx 0.6-1.9 i$
72. $2 ; 1+i \sqrt{3} ;-1+i \sqrt{3} ;-2 ;-1-i \sqrt{3} ; 1-i \sqrt{3}$
73. $1 ;-\frac{1}{2}+\frac{\sqrt{3}}{2} i ;-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
74. $\frac{\sqrt{3}}{2}+\frac{1}{2} i ;-\frac{\sqrt{3}}{2}+\frac{1}{2} i ;-i$
75. $\approx 1.1+0.2 i ; \approx-0.2+1.1 i ; \approx-1.1-0.2 i ; \approx 0.2-1.1 i \quad$ 76. $\approx 1.0+0.5 i ; \approx-0.2+1.1 i ; \approx-1.1+0.2 i ; \approx-0.5-1.0 i ; 0.8-0.8 i$
77. $\left[1\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right]\left[2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right]\left[2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)\right] ; 4 \sqrt{2}\left(\cos 285^{\circ}+i \sin 285^{\circ}\right) ; \approx 1.4641-5.4641 i$
78. $\left[\sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right]\left[2\left(\cos \left(300^{\circ}\right)+i \sin \left(300^{\circ}\right)\right)\right]\left[2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)\right] ; 4 \sqrt{2}\left(\cos 135^{\circ}+i \sin 135^{\circ}\right) ;-4+4 i$
79. $\frac{\left[2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[\sqrt{2}\left(\cos \left(315^{\circ}\right)+i \sin \left(315^{\circ}\right)\right)\right]}{4\left(\cos \left(330^{\circ}\right)+i \sin \left(330^{\circ}\right)\right)} ; \frac{\sqrt{2}}{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) ; \frac{1}{2}+\frac{1}{2} i$
80. $\frac{\left[2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]\left[4\left(\cos \left(300^{\circ}\right)+i \sin \left(300^{\circ}\right)\right)\right]}{8\left(\cos \left(330^{\circ}\right)+i \sin \left(330^{\circ}\right)\right)} ; \cos 90^{\circ}+i \sin 90^{\circ} ; i$

AA74 Answers to Selected Exercises

81. $\cos 0^{\circ}+i \sin 0^{\circ}, \cos 60^{\circ}+i \sin 60^{\circ}, \cos 120^{\circ}+i \sin 120^{\circ}, \cos 180^{\circ}+i \sin 180^{\circ}, \cos 240^{\circ}+i \sin 240^{\circ}, \cos 300^{\circ}+i \sin 300^{\circ}$; $1, \frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-1,-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \frac{1}{2}-\frac{\sqrt{3}}{2} i$
82. $\cos 30^{\circ}+i \sin 30^{\circ}, \cos 90^{\circ}+i \sin 90^{\circ}, \cos 150^{\circ}+i \sin 150^{\circ}, \cos 210^{\circ}+i \sin 210^{\circ}, \cos 270^{\circ}+i \sin 270^{\circ}, \cos 330^{\circ}+i \sin 330^{\circ} ;$ $\frac{\sqrt{3}}{2}+\frac{1}{2} i, i,-\frac{\sqrt{3}}{2}+\frac{1}{2} i,-\frac{\sqrt{3}}{2}-\frac{1}{2} i,-i, \frac{\sqrt{3}}{2}-\frac{1}{2} i$
83. $2\left(\cos 67.5^{\circ}+i \sin 67.5^{\circ}\right), 2\left(\cos 157.5^{\circ}+i \sin 157.5^{\circ}\right), 2\left(\cos 247.5^{\circ}+i \sin 247.5^{\circ}\right), 2\left(\cos 337.5^{\circ}+i \sin 337.5^{\circ}\right)$;
$0.7654+1.8478 i,-1.8478+0.7654 i,-0.7654-1.8478 i, 1.8478-0.7654 i$
84. $2\left(\cos 18^{\circ}+i \sin 18^{\circ}\right), 2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right), 2\left(\cos 162^{\circ}+i \sin 162^{\circ}\right), 2\left(\cos 234^{\circ}+i \sin 234^{\circ}\right), 2\left(\cos 306^{\circ}+i \sin 306^{\circ}\right) ;$
$1.9021+0.6180 i, 2 i,-1.9021+0.6180 i,-1.1756-1.6180 i, 1.1756-1.6180 i$
85. $\sqrt[3]{2}\left(\cos 20^{\circ}+i \sin 20^{\circ}\right), \sqrt[3]{2}\left(\cos 140^{\circ}+i \sin 140^{\circ}\right), \sqrt[3]{2}\left(\cos 260^{\circ}+i \sin 260^{\circ}\right) ; 1.1839+0.4309 i,-0.9652+0.8099 i,-0.2188-1.2408 i$
86. $\sqrt[3]{2}\left(\cos 100^{\circ}+i \sin 100^{\circ}\right), \sqrt[3]{2}\left(\cos 220^{\circ}+i \sin 220^{\circ}\right), \sqrt[3]{2}\left(\cos 340^{\circ}+i \sin 340^{\circ}\right) ;-0.2188+1.2408 i,-0.9652-0.8099 i, 1.1839-0.4309 i$

87.

b. Complex numbers may vary. 92. a. $-i ;-1-i ; i ;-1-i ; i ;-1-i$ 113. Yes, both have length $3 \sqrt{5}$. 111.

91. a. $i ;-1+i ;-i ;-1+i ;-i ;-1+$
114. Yes, both have slope 2 .
90.

Section 6.6

Check Point Exercises

2.

Exercise Set 6.6

5.

9.

6.

10.

7.

11.

8.

12.

47. $3 \sqrt{3} \mathbf{i}+3 \mathbf{j} \quad$ 48. $4 \sqrt{2} \mathbf{i}+4 \sqrt{2} \mathbf{j} \quad$ 49. $-6 \sqrt{2} \mathbf{i}-6 \sqrt{2} \mathbf{j} \quad 50.5 \sqrt{3} \mathbf{i}-5 \mathbf{j} \quad 51 . \approx-0.20 \mathbf{i}+0.46 \mathbf{j} \quad 52 . \approx-0.23 \mathbf{i}-0.09 \mathbf{j}$
80. a. $\mathbf{F}=4 \mathbf{i}-10 \mathbf{j} \quad$ b. $\mathbf{F}_{4}=-4 \mathbf{i}+10 \mathbf{j} \quad$ 83. a. $\mathbf{v}=180 \cos 40^{\circ} \mathbf{i}+180 \sin 40^{\circ} \mathbf{j} \approx 137.89 \mathbf{i}+115.70 \mathbf{j}, \mathbf{w}=40 \cos 0^{\circ} \mathbf{i}+40 \sin 0^{\circ} \mathbf{j}=40 \mathbf{i}$
105. does not make sense \quad 107. does not make sense \quad 118. b. $\|\mathbf{u}\|=\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}} ;\|\mathbf{u}\|^{2}=\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}$; $\|\mathbf{v}\|=\sqrt{a_{1}^{2}+b_{1}^{2}} ;\|\mathbf{v}\|^{2}=a_{1}^{2}+b_{1}^{2} ;\|\mathbf{w}\|=\sqrt{a_{2}^{2}+b_{2}^{2}} ;\|\mathbf{w}\|^{2}=a_{2}^{2}+b_{2}^{2}$

Exercise Set 6.7

$\begin{array}{ll}\text { 1. } 6 ; 10 & \text { 2. } 15 ; 18\end{array}$
33. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{5}{2} \mathbf{i}-\frac{5}{2} \mathbf{j} ; \mathbf{v}_{2}=\frac{1}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}$
34. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{8}{5} \mathbf{i}+\frac{4}{5} \mathbf{j} ; \mathbf{v}_{2}=\frac{7}{5} \mathbf{i}-\frac{14}{5} \mathbf{j}$
35. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\frac{26}{29} \mathbf{i}+\frac{65}{29} \mathbf{j} ; \mathbf{v}_{2}=\frac{55}{29} \mathbf{i}+\frac{22}{29} \mathbf{j} \quad$ 36. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\frac{6}{5} \mathbf{i}+\frac{12}{5} \mathbf{j} ; \mathbf{v}_{2}=\frac{16}{5} \mathbf{i}+\frac{8}{5} \mathbf{j}$
51. $1617 ; \mathbf{v} \cdot \mathbf{w}=1617$ means that $\$ 1617$ in revenue is generated when 240 gallons of regular gasoline are sold at $\$ 2.90$ per gallon and 300 gallons of premium gasoline are sold at $\$ 3.09$ per gallon. \quad 52. $1440 ; \mathbf{v} \cdot \mathbf{w}=1440$ is the total collected by the video store when it rented 180 one-day videos at $\$ 3$ each and 450 three-day videos at $\$ 2$ each.
53. 7600 foot-pounds
60. 113 meter-newtons
63. c. 350 ; A force of 350 pounds is required to keep the boat from rolling down the ramp. 64. c. 325 ; A force of 325 pounds is required to keep the boat from rolling down the ramp.

$$
\text { 79. } \begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right) \\
& =a_{1} a_{2}+b_{1} b_{2} \\
& =a_{2} a_{1}+b_{2} b_{1} \\
& =\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right) \cdot\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \\
& =\mathbf{v} \cdot \mathbf{u}
\end{aligned}
$$

81. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\left(a_{\mathbf{1}} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left[\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)+\left(a_{3} \mathbf{i}+b_{\mathbf{3}} \mathbf{j}\right)\right]$

$$
\begin{aligned}
& =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left[\left(a_{2}+a_{3}\right) \mathbf{i}+\left(b_{2}+b_{3}\right) \mathbf{j}\right] \\
& =a_{1}\left(a_{2}+a_{3}\right)+b_{1}\left(b_{2}+b_{3}\right) \\
& =a_{1} a_{2}+a_{1} a_{3}+b_{1} b_{2}+b_{1} b_{3} \\
& =a_{1} a_{2}+b_{1} b_{2}+a_{1} a_{3}+b_{1} b_{3} \\
& =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)+\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{3} \mathbf{i}+b_{3} \mathbf{j}\right) \\
& =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
\end{aligned}
$$

$$
\text { 80. } \begin{aligned}
(c \mathbf{u}) \cdot \mathbf{v} & =\left[c\left(a_{1} \mathbf{i}+b \mathbf{j}\right)\right] \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right) \\
& =\left(c a_{1} \mathbf{i}+c b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2 \mathbf{j}}\right) \\
& =c a_{1} a_{2}+c b_{1} b_{2} \\
& =c\left(a_{1} a_{2}+b_{1} b_{2}\right) \\
& =c\left[\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)\right] \\
& =c(\mathbf{u} \cdot \mathbf{v})
\end{aligned}
$$

82. Answers may vary. One possible vector is $\mathbf{u}=5 \mathbf{i}+2 \mathbf{j}$.
83. By definition, the projection of v onto \mathbf{i} is $\frac{\mathbf{v} \cdot \mathbf{i}}{\| \mathbf{i}} \mathbf{i}$. But $\|\mathbf{i}\|=1$,
so the projection simplifies to $(\mathbf{v} \cdot \mathbf{i}) \mathbf{i}$.
84. $(4,-1)$;

Chapter 6 Review Exercises

6. two triangles; $B_{1} \approx 55^{\circ}, C_{1} \approx 86^{\circ}$, and $c_{1} \approx 31.7 ; B_{2} \approx 125^{\circ}, C_{2} \approx 16^{\circ}$, and $c_{2} \approx 8.8$
7. two triangles; $A_{1} \approx 59^{\circ}, C_{1} \approx 84^{\circ}, c_{1} \approx 14.4 ; A_{2} \approx 121^{\circ}, C_{2} \approx 22^{\circ}, c_{2} \approx 5.4$
8.

23.

$$
\left(-\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)
$$

24.

$(2,2 \sqrt{3})$
25.

26.

27.

$(\sqrt{2}, \sqrt{2})$
$(0,4)$
$(-\sqrt{2}, \sqrt{2})$
28.

29.

30.

a. $\left(3, \frac{13 \pi}{6}\right)$
b. $\left(-3, \frac{7 \pi}{6}\right)$
c. $\left(3,-\frac{11 \pi}{6}\right)$
a. $\left(2, \frac{8 \pi}{3}\right)$
b. $\left(-2, \frac{5 \pi}{3}\right)$
a. $\left(3.5, \frac{5 \pi}{2}\right)$
b. $\left(-3.5, \frac{3 \pi}{2}\right)$
c. $\left(2,-\frac{4 \pi}{3}\right)$
c. $\left(3.5,-\frac{3 \pi}{2}\right)$
31. $\left(4 \sqrt{2}, \frac{3 \pi}{4}\right) \quad$ 32. $\left(3 \sqrt{2}, \frac{7 \pi}{4}\right)$
33. approximately $\left(13,67^{\circ}\right)$ 34. approximately $\left(5,127^{\circ}\right)$
40.

43.

41.

44. $\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$

42.

45. $y=-4 x+8$

47. a. has symmetry
b. may or may not have symmetry
48. a. may or may not have symmetry
b. has symmetry
c. may or may not have symmetry 49. a. has symmetry b. has symmetry c. has symmetry

46.
50.
53.

56.

51.

54.

57. Imaginary

$\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$ or
$\sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
52. $(0,0)$ or $\left(0, \frac{\pi}{2}\right)$ or $(0, \pi)$ or $\left(0, \frac{3 \pi}{2}\right)$ ($\left.1, \frac{7 \pi}{4}\right)^{\frac{5 \pi}{6}}$
55.

58.

$4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ or
$4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
59.

76. $7\left(\cos 25^{\circ}+i \sin 25^{\circ}\right) ; 7\left(\cos 205^{\circ}+i \sin 205^{\circ}\right)$
60.

$5\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$ or
$5\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
77. $5\left(\cos 55^{\circ}+i \sin 55^{\circ}\right) ; 5\left(\cos 175^{\circ}+i \sin 175^{\circ}\right) ; 5\left(\cos 295^{\circ}+i \sin 295^{\circ}\right)$
78. $\sqrt{3}+i ;-1+i \sqrt{3} ;-\sqrt{3}-i ; 1-i \sqrt{3}$
81. $\frac{\sqrt[10]{2}}{2}+\frac{\sqrt[10]{2}}{2} i ; \approx-0.49+0.95 i ; \approx-1.06-0.17 i ; \approx-0.17-1.06 i ; \approx 0.95-0.49 i$

AA78 Answers to Selected Exercises
82.

83.

84.

102. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{50}{41} \mathbf{i}+\frac{40}{41} \mathbf{j}_{;} \mathbf{v}_{2}=-\frac{132}{41} \mathbf{i}+\frac{165}{41} \mathbf{j}$
103. $\mathbf{v}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\frac{3}{2} \mathbf{i}+\frac{1}{2} \mathbf{j} ; \mathbf{v}_{2}=\frac{1}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}$

Chapter 6 Test

4.

7.

8.

9.

10. $2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ or $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
21. 323 pounds; 3.4°

Cumulative Review Exercises (Chapters P-6)

5. $\left(\frac{3 \pi}{4}, 3\right)$
y_{4}
$5 y=3 \sin (2 x-\pi)$
$\left(\frac{\pi}{2}, 0\right) \overbrace{\substack{\left.-\frac{\pi}{2} \\ \frac{-5}{-5} \right\rvert\, \sqrt{2 \pi x}}}\left(\frac{3 \pi}{2},-3\right)$
6.

7. $\sin \theta \csc \theta-\cos ^{2} \theta=\sin \theta\left(\frac{1}{\sin \theta}\right)-\cos ^{2} \theta$

$$
=1-\cos ^{2} \theta=\sin ^{2} \theta
$$

8. $\cos \left(\theta+\frac{3 \pi}{2}\right)=\cos \theta \cos \frac{3 \pi}{2}-\sin \theta \sin \frac{3 \pi}{2}$

$$
=\cos \theta(0)-\sin \theta(-1)=\sin \theta
$$

CHAPTER 7

Exercise Set 7.1

33. $\{(x, y) \mid y=3 x-5\}$

$$
\text { 34. }\{(x, y) \mid y=3 x-4\} \quad \text { 37. }\{(x, y) \mid x+3 y=2\}
$$

38. $\{(x, y) \mid 2 x-y=1\}$
39. $x+y=7 ; x-y=-1 ; 3$ and 4
40. $x+y=2 ; x-y=8 ; 5$ and -3
41. $3 x+2 y=8 ; 2 x-y=3 ; 2$ and 1
42. $y=x-4 ; y=-\frac{1}{3} x+4$
43. $y=\frac{1}{3} x+2, y=\frac{1}{3} x-2$
44. California: 100 gal; French: $100 \mathrm{gal} \quad$ 57. 18 -karat gold: 96 g ; 12 -karat gold: $204 \mathrm{~g} \quad 69 .-6000$; When the company produces and sells 200 radios, the loss is $\$ 6000$. 70. -4000 ; When the company produces and sells 300 radios, the loss is $\$ 4000 . \quad$ 73. a. $C(x)=18,000+20 x \quad$ b. $R(x)=80 x$
c. $(300,24,000)$; When 300 canoes are produced and sold, both revenue and cost are $\$ 24,000$.
45. a. $C(x)=100,000+100 x$
b. $R(x)=300 x$
c. $(500,150,000)$; When 500 bicycles are produced and sold, both cost and revenue are $\$ 150,000$.
46. a. $C(x)=30,000+2500 x$
b. $R(x)=3125 x$
c. $(48,150,000)$; For 48 sold-out performances, both cost and revenue are $\$ 150,000$.
47. a. $C(x)=30,000+0.02 x$
b. $R(x)=0.5 x$
c. $(62,500,31,250)$; For 62,500 cards, both cost and revenue are $\$ 31,250$.
48. a. 4 million workers; $\$ 4.50$ per hour
49. a. $y=0.45 x+0.8$
c. week 6 ; 3.5 symptoms; by the intersection point (6,3.5) 85. Mr. Goodbar: 264 cal; Mounds: 258 cal 87.3 Mr. Goodbars and 2 Mounds bars
50. does not make sense

$$
\text { 109. } y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} ; x=\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}
$$

Exercise Set 7.2

19. $y=2 x^{2}-x+3$
20. $y=2 x^{2}-x-3$
21. $y=2 x^{2}+x-5$
22. $y=x^{2}-6 x+8$
23. $\left\{\left(\frac{8}{a},-\frac{3}{b},-\frac{5}{c}\right)\right\}$
24. $\left\{\left(-\frac{9}{a}, \frac{5}{b}, \frac{5}{c}\right)\right\}$
25. b. $y=0$ when $x=5$; The ball hits the ground after 5 seconds.
26. b. 156 ; When a car is in motion for 6 seconds after the brakes are applied, it travels 156 feet. 49. does not make sense 51. makes sense

Exercise Set 7.3

1. $\frac{A}{x-2}+\frac{B}{x-1} \quad$ 2. $\frac{A}{x-1}+\frac{B}{x+3} \quad$ 3. $\frac{A}{x+2}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}} \quad$ 4. $\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \quad$ 5. $\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$
2. $\frac{A}{x-4}+\frac{B x+C}{x^{2}+5}$
3. $\frac{A x+B}{x^{2}+7}+\frac{C x+D}{\left(x^{2}+7\right)^{2}}$
4. $\frac{3}{x-3}-\frac{2}{x-2} \quad$ 11. $\frac{7}{x-9}-\frac{4}{x+2}$
5. $\frac{3}{x-2}+\frac{2}{x+1}$
6. $\frac{24}{7(x-4)}+\frac{25}{7(x+3)}$
7. $\frac{6}{x-3}+\frac{3}{x+5}$
8. $\frac{4}{7(x-3)}-\frac{8}{7(2 x+1)}$
9. $\frac{3}{4(x+3)}+\frac{1}{4(x-1)}$
10. $\frac{3}{x}+\frac{2}{x-1}-\frac{1}{x+3}$
11. $\frac{3}{x}-\frac{1}{x+1}+\frac{2}{x-5}$
$\begin{array}{ll}\text { 19. } \frac{3}{x}+\frac{4}{x+1}-\frac{3}{x-1} & \text { 20. } \frac{3}{x}-\frac{5}{x-2}+\frac{4}{x+2}\end{array}$
12. $\frac{1}{x-2}-\frac{2}{(x-2)^{2}}-\frac{5}{(x-2)^{3}} \quad$ 24. $\frac{2}{x+1}+\frac{4}{(x+1)^{2}}-\frac{3}{(x+1)^{3}}$
13. $\frac{7}{x}-\frac{6}{x-1}+\frac{10}{(x-1)^{2}}$
14. $\frac{1}{x}+\frac{2}{x+7}-\frac{28}{(x+7)^{2}}$

$$
\text { 27. } \frac{1}{4(x+1)}+\frac{3}{4(x-1)}+\frac{1}{2(x-1)^{2}}
$$

28. $-\frac{1}{4(x+1)}+\frac{1}{4(x-1)}+\frac{1}{4(x+1)^{2}}+\frac{1}{4(x-1)^{2}}$
29. $\frac{3}{x-1}+\frac{2 x-4}{x^{2}+1}$
30. $\frac{3}{x-4}+\frac{2 x-1}{x^{2}+5}$
31. $\frac{2}{x+1}+\frac{3 x-1}{x^{2}+2 x+2}$
32. $\frac{2}{x-2}-\frac{2 x-1}{x^{2}+2 x+2}$
33. $\frac{1}{4 x}+\frac{1}{x^{2}}-\frac{x+4}{4\left(x^{2}+4\right)}$
34. $\frac{14}{3(x-1)}+\frac{4}{(x-1)^{2}}-\frac{14 x-4}{3\left(x^{2}+2\right)}$
35. $\frac{4}{x+1}+\frac{2 x-3}{x^{2}+1}$
36. $\frac{3}{x+2}-\frac{2}{x^{2}+4}$
37. $\frac{x+1}{x^{2}+2}-\frac{2 x}{\left(x^{2}+2\right)^{2}} \quad$ 38. $\frac{1}{x^{2}+4}+\frac{2 x-1}{\left(x^{2}+4\right)^{2}}$
38. $\frac{x-2}{x^{2}-2 x+3}+\frac{2 x+1}{\left(x^{2}-2 x+3\right)^{2}}$
39. $\frac{3 x}{x^{2}-2 x+2}+\frac{x-2}{\left(x^{2}-2 x+2\right)^{2}}$
40. $\frac{3}{x-2}+\frac{x-1}{x^{2}+2 x+4} \quad$ 42. $-\frac{2}{3(x-1)}+\frac{2 x+13}{3\left(x^{2}+x+1\right)} \quad$ 43. $x^{3}+x-\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
41. $x^{3}+4 x^{2}+12 x+32+\frac{80}{x-2}+\frac{32}{(x-2)^{2}} \quad$ 45. $x+1-\frac{2}{x}-\frac{2}{x^{2}}+\frac{2}{x-1}$
42. $x^{2}+3 x+1+\frac{5}{x-2}+\frac{3}{x+1}$
43. $\frac{\frac{1}{2 c}}{x-c}-\frac{\frac{1}{2 c}}{x+c}$
44. $\frac{\frac{a c+b}{2 c}}{x-c}+\frac{\frac{a c-b}{2 c}}{x+c}$
45. does not make sense
46. does not make sense
47.

$$
;(0,-3) \text { and }(2,-1) ; 0-(-3)=3 \text { and }(0-2)^{2}+(-3+3)^{2}=4 \text { are true; }
$$

$2-(-1)=3$ and $(2-2)^{2}+(-1+3)^{2}=4$ are true.

Exercise Set 7.4

5. $\{(4,-10),(-3,11)\}$
6. $\{(3,1),(-3,-1),(1,3),(-1,-3)\}$
7. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
8. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
9. $\{(1,2),(1,-2),(-1,2),(-1,-2)\}$
10. $\{(2,1),(2,-1),(-2,1),(-2,-1)\}$
11. $\{(\sqrt{5}, \sqrt{2}),(-\sqrt{5}, \sqrt{2}),(-\sqrt{5},-\sqrt{2}),(\sqrt{5},-\sqrt{2})\}$
12. $\left\{\left(\frac{\sqrt{31}}{4}, \frac{7}{4}\right),\left(-\frac{\sqrt{31}}{4}, \frac{7}{4}\right)\right\}$
13. $\{(0,2),(0,-2),(-1, \sqrt{3}),(-1,-\sqrt{3})\}$
14. $\{(0,-4),(2 \sqrt{3}, 2),(-2 \sqrt{3}, 2)\}$
15. $\{(2,1),(2,-1),(-2,1),(-2,-1)\}$
16. $\{(4,0),(-3, \sqrt{7}),(-3,-\sqrt{7})\}$
17. $\{(-2 \sqrt{2},-\sqrt{2}),(-1,-4),(1,4),(2 \sqrt{2}, \sqrt{2})\}$
18. $\{(-2,-2),(2,2),(4,1),(-4,-1)\}$
19. $\left\{(1,1),\left(\frac{19}{29},-\frac{11}{29}\right)\right\}$
20. $\left\{(-4,1),\left(-\frac{5}{2}, \frac{1}{4}\right)\right\}$
21. $\left\{\left(\frac{12}{5},-\frac{29}{5}\right),(-2,3)\right\}$
22. $\{(-5,0),(4,3)\}$
23. 2 and 1,2 and $-1,-2$ and 1, or -2 and -1
24. 3 and 2,3 and $-2,-3$ and 2 , or -3 and -2
25. $\{(2,-1),(-2,1)\}$
26. $\{(-3,2),(3,-2)\}$
27. $\{(2,20),(-2,4),(-3,0)\}$
28. $\{(-5,0),(-3,18),(3,72)\}$
29. $\left\{\left(-1,-\frac{1}{2}\right),\left(-1, \frac{1}{2}\right),\left(1,-\frac{1}{2}\right),\left(1, \frac{1}{2}\right)\right\}$
30. $\left\{\left(-1,-\frac{1}{3}\right),\left(-1, \frac{1}{3}\right),\left(1,-\frac{1}{3}\right),\left(1, \frac{1}{3}\right)\right\}$
31.

54.

63. a. between the 1940s and the 1960s
d. 1919 ; white collar: 27.5%; farmers: 27.4%; fairly well, although answers may vary.
72. makes sense
81.

82.

83.

Mid-Chapter 7 Check Point
4. $\{(x, y) \mid y=4 x-5\}$ or $\{(x, y) \mid 8 x-2 y=10\} \quad$ 7. $\{(-1,2,-2)\} \quad$ 8. $\{(4,-2,3)\} \quad$ 9. $\left\{\left(-\frac{9}{5}, \frac{12}{5}\right),(3,0)\right\}$
10. $\{(-2,-1),(-2,1),(2,-1),(2,1)\}$
11. $\{(-\sqrt{7}, 1),(-2,-2),(2,-2),(\sqrt{7}, 1)\}$
13. $\frac{1}{x-2}-\frac{2}{(x-2)^{2}}-\frac{5}{(x-2)^{3}}$
14. $\frac{5}{x+2}+\frac{3}{x+1}+\frac{2}{x-1} \quad$ 15. $-\frac{2}{x+3}+\frac{3 x-5}{x^{2}+4} \quad$ 16. $\frac{x}{x^{2}+4}-\frac{4 x}{\left(x^{2}+4\right)^{2}} \quad$ 17. a. $C(x)=400,000+20 x \quad$ b. $R(x)=100 x$
d. $(5000,500,000)$; The company will break even when it produces and sells 5000 PDAs . At this level, both revenue and cost are $\$ 500,000$.
18. 6 roses and 14 carnations

Section 7.5

Check Point Exercises

1. $4 x-2 y \geq 8$

2.

3. a.

b.

4.

6. $\{x-3 y<6$

7.

8. $\left\{\begin{array}{r}x+y<2 \\ -2 \leq x<1 \\ y>-3 \quad y_{\text {A }} \\ \\ \\ \end{array}\right.$

Exercise Set 7.5

6.

2.

7.

3.

8.

4.

9.

5.

10.

11.

16.

21.

26.

31. $\{y>2 x-3$

36. $\{x \leq 3$

43.

48.

$\left\{\begin{array}{c}x^{2}+y^{2} \leq 4 \\ x+y>1\end{array}\right.$
53.

12.

17.

22.

27. $\left\{\begin{array}{r}3 x+6 y \leq 6 \\ 2 x+y \leq 8\end{array}\right.$

32. $\left\{\begin{array}{l}y<-2 x+4 \\ y<x-4\end{array}\right.$

37. $-2 \leq x<5 y_{1}$

44. $\{x+y>3$

49.

54.

13.

18.

23.

28. $\left\{\begin{array}{l}x-y \geq 4 \\ x+y \leq 6\end{array}\right.$

33. $\left\{\begin{array}{l}x+2 y \leq 4 \\ y \geq x-3\end{array}\right.$

38. $-2<y \leq 5$

45.

50.

55.

14.

19.

24.

29. $\{2 x-5 y \leq 10$ $\left\{3 x-2 y>6 y_{\uparrow}\right.$

34.

39. $\left\{\begin{array}{l}x-y \leq 1 \\ x \geq 2\end{array}\right.$

46.

51.

56.

15.

20.

25.

30. $\{2 x-y \leq 4$
$\{3 x+2 y>-6 y\}$

35. $\{x \leq 2$

40. $\left\{\begin{array}{l}4 x-5 y \geq-20 \\ x \geq-3\end{array}\right.$

47.

52.

57.
$\left\{\begin{array}{l}x-y \leq 2 \\ x>-2 \\ y \leq 3\end{array}\right.$

58. $\{3 x+y \leq 6$
$\left\{\begin{array}{l}x>-2 \\ y \leq 4\end{array}\right.$

59. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 2 x+5 y<10 \\ 3 x+4 y \leq 12 \quad y_{A}\end{array}\right.$
60. $x \geq 0$
$\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 2 x+y<4\end{array}\right.$
$\left\{\begin{array}{l}2 x+y<4 \\ 2 x-3 y \leq 6 \quad y\end{array}\right.$
61.
$\left\{\begin{array}{l}3 x+y \leq 6 \\ 2 x-y \leq-1 \\ x>-2 \\ y<4\end{array}\right.$
64. $y \geq-3 x+2 y_{\text {4 }} \quad$ 65. $\left\{\begin{array}{c}x+y \leq 4 \\ 3 x+y \leq 6\end{array}\right.$

66. $\left\{\begin{array}{r}x+y \leq 3 \\ 4 x+y \leq 6\end{array}\right.$

68.

69.

70.

71.

67.

72. $x-y \geq-1$ or $5 x-2 y \leq 10$

62.

77. Point $A=(66,160) ; 5.3(66)-160 \geq 180$, or $189.8 \geq 180$, is true; $4.1(66)-160 \leq 140$, or $110.6 \leq 140$, is true.
78. Point $B=(76,220) ; 5.3(76)-220 \geq 180$, or $182.8 \geq 180$, is true; $4.1(76)-220 \leq 140$, or $91.6 \leq 140$, is true.
81. a. $50 x+150 y>2000$
b.

c. Answers may vary. Example: $(20,20): 20$ children and 20 adults will cause the elevator to be overloaded.

84.

$$
\left\{\begin{array}{l}
x+y \leq 15,000 \\
x \geq 2000, y \geq 3 x \\
x \geq 0, y \geq 0
\end{array}\right.
$$

$$
x \geq 0, y \geq 0
$$

97.

100.

98.

101.
85. a. 27.1

83. b. $y \geq 0$

c. Answers may vary. Example: $(1,1)$: One egg and one ounce of meat are within the patient's dietary restrictions.
82. a. $165 x+110 y \leq 330$
b.

$165 x+110 y \leq 330$
99.

110. $\left\{\begin{array}{l}x \geq-2 \\ y>-1\end{array} \quad\right.$ 111. $\left\{\begin{array}{l}y>x-3 \\ y \leq x\end{array}\right.$
115. $y \geq n x+b$

112. $\left\{\begin{array}{l}x^{2}+y^{2} \leq 9 \\ y<x^{2}\end{array} \quad\right.$ 113. $x+2 y \leq 6$ or $2 x+y \leq 6$
116. a.

117. a.

Exercise Set 7.6

1. $(1,2)$: 17 ; $(2,10)$: $70 ;(7,5): 65 ;(8,3): 58$; maximum: $z=70$; minimum: $z=17$
2. $(3,2)$: 13 ; $(4,10): 32$; $(5,12): 39 ;(8,6): 36 ;(7,4): 29$; maximum: $z=39$; minimum: $z=13$
3. $(0,0): 0 ;(0,8): 400 ;(4,9): 610 ;(8,0): 320$; maximum: $z=610 ;$ minimum: $z=0$
4. $(0,0): 0 ;(0,9)$: 405; (4, 4): 300; (3, 0): 90; maximum: $z=405$; minimum: $z=0$
5. a.

6. a.

b. $(0,8): 16 ;(0,4): 8 ;(4,0): 12$
b. $(0,0): 0 ;(0,4): 12 ;(3,2): 12 ;(4,0): 8$
7. a.

8. a.

b. $(0,5): 30 ;(0,0): 0 ;(2,6): 38 ;(5,0): 5$
9. a.

b. $(0,4): 8 ;(0,2): 4 ;(2,0): 8 ;(4,0): 16 ;$ $\left(\frac{12}{5}, \frac{12}{5}\right): \frac{72}{5}$
10. a.

b. $(0,9): 36 ;(0,3): 12 ;(6,0): 12 ;(9,0): 18 ;$ $\left(\frac{3}{2}, \frac{3}{2}\right): 9$
11. a.

b. $(0,4): 4 ;(0,3): 3 ;(3,0): 12 ;(6,0): 24$ 10. a.

b. $(0,3):-6 ;(0,2):-4 ;(2,0): 10 ;(5,0)$: 25; (5, 3): 19
12. a.

b. $(0,6): 72 ;(0,0): 0 ;(5,0): 50 ;(3,4): 78$
13. a.

b. $(0,10): 60 ;(10,0): 50 ;\left(\frac{10}{3}, \frac{10}{3}\right): \frac{110}{3}$
14. a. $z=125 x+200 y$
b. $\left\{\begin{array}{l}x \leq 450 \\ y \leq 200 \\ 600 x+900 y \leq 360,000\end{array}\right.$

d. $(0,0): 0 ;(0,200): 40,000 ;$ (300, 200): 77,500; (450, 100): 76,250; (450, 0): 56,250
15. c.

d. $(3,0): 30 ;(8,0): 80 ;(3,17): 149 ;(8,12): 164$
16. $(0,0): 0 ;(0,3): 3 B ;(3,1): 3 B ;(2,0): \frac{4}{3} B$; maximum value: $3 B$ at $(0,3)$ and $(3,1)$
17. $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -11 & -11\end{array}\right]$

Chapter 7 Review Exercises

6. a. $C(x)=60,000+200 x$
b. $R(x)=450 x$
c. $(240,108,000)$; This means the company will break even if it produces and sells 240 desks.
$\begin{array}{ll}\text { 8. a. } y=219 x+142 & \text { 14. } y=3 x^{2}-4 x+5\end{array}$
7. $\frac{3}{5(x-3)}+\frac{2}{5(x+2)}$
8. $\frac{6}{x-4}+\frac{5}{x+3}$
9. $\frac{2}{x}+\frac{3}{x+2}-\frac{1}{x-1}$
10. $-\frac{4}{x-1}+\frac{4}{x-2}-\frac{2}{(x-2)^{2}}$
11. $\frac{6}{5(x-2)}+\frac{-6 x+3}{5\left(x^{2}+1\right)}$
12. $\frac{5}{x-3}+\frac{2 x-1}{x^{2}+4}$
13. $\frac{x}{x^{2}+4}-\frac{4 x}{\left(x^{2}+4\right)^{2}}$
14. $\{(0,1),(-3,4)\}$
15. $\{(3, \sqrt{6}),(3,-\sqrt{6}),(-3, \sqrt{6}),(-3,-\sqrt{6})\}$
16. $\left\{\left(\frac{5}{2},-\frac{7}{2}\right),(0,-1)\right\}$
17. $\{(2,-3),(-2,-3),(3,2),(-3,2)\}$
18.

44.

49.

55.

40.

45.

50.

41.

46.

52.

42.

47.

53.

43.

48.

54.

56. $(2,2): 10 ;(4,0): 8 ;\left(\frac{1}{2}, \frac{1}{2}\right): \frac{5}{2} ;(1,0): 2$; maximum value: $10 ;$ minimum value: 2
57.

Maximum is 24 at $x=0, y=8$.
58.

Maximum is 33 at $x=5, y=7$.
59.

Maximum is 44 at $x=y=4$.
60. b. $\left\{\begin{array}{l}x+y \leq 200 \\ x \geq 10 \\ y \geq 80\end{array}\right.$

d. $(10,80): 33,000 ;(10,190): 71,500 ;(120,80): 88,000$

Chapter 7 Test

6. $\frac{-1}{10(x+1)}+\frac{x+9}{10\left(x^{2}+9\right)}$
7.

8.

9.

10.

13. a. $C(x)=360,000+850 x$
c. $(1200,1,380,000)$; The company will break even if it produces and sells 1200 computers.

Cumulative Review Exercises (Chapters P-7)

1. domain: $(-2,2)$; range: $(-\infty, 3]$
2. maximum of 3 at $x=0$
3.

10.

11. $\{3,4\}$
12. $\left\{\frac{2+i \sqrt{3}}{2}, \frac{2-i \sqrt{3}}{2}\right\}$
15. $\left\{-3, \frac{1}{2}, 2\right\} \quad$ 16. $\{-2\}$
17. $\{2\}$
20. $\left\{\left(-\frac{1}{2}, \frac{1}{2}\right),(2,8)\right\}$
22.

23.

24.

26.

27.

28.

25.

29. $(f \circ g)(x)=2 x^{2}-3 x$; $(g \circ f)(x)=-2 x^{2}+x+2$
36. $\sec \theta-\cos \theta=\frac{1}{\cos \theta}-\cos \theta=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{\sin ^{2} \theta}{\cos \theta}=\frac{\sin \theta}{\cos \theta} \sin \theta=\tan \theta \sin \theta$
37. $\tan x+\tan y=\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}=\frac{\sin x \cos y+\sin y \cos x}{\cos x \cos y}=\frac{\sin (x+y)}{\cos x \cos y}$

CHAPTER 8

Section 8.1
Check Point Exercises

1. a. $\left[\begin{array}{rrr|r}1 & 6 & -3 & 7 \\ 4 & 12 & -20 & 8 \\ -3 & -2 & 1 & -9\end{array}\right]$
b. $\left[\begin{array}{rrr|r}1 & 3 & -5 & 2 \\ 1 & 6 & -3 & 7 \\ -3 & -2 & 1 & -9\end{array}\right]$
c. $\left[\begin{array}{rrr|r}4 & 12 & -20 & 8 \\ 1 & 6 & -3 & 7 \\ 0 & 16 & -8 & 12\end{array}\right]$

Exercise Set 8.1

1. $\left[\begin{array}{rrr|r}2 & 1 & 2 & 2 \\ 3 & -5 & -1 & 4 \\ 1 & -2 & -3 & -6\end{array}\right]$
2. $\left[\begin{array}{rrr|r}3 & -2 & 5 & 31 \\ 1 & 3 & -3 & -12 \\ -2 & -5 & 3 & 11\end{array}\right]$
3. $\left[\begin{array}{rrr|r}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0 & 0 & 1 & 1\end{array}\right]$
4. $\left[\begin{array}{rrr|r}1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2\end{array}\right]$
5. $\left[\begin{array}{rrr|r}5 & -2 & -3 & 0 \\ 1 & 1 & 0 & 5 \\ 2 & 0 & -3 & 4\end{array}\right]$
6. $\left[\begin{array}{rrr|r}1 & -2 & 1 & 10 \\ 3 & 1 & 0 & 5 \\ 7 & 0 & 2 & 2\end{array}\right]$ 7. $\left[\begin{array}{rrrr|r}2 & 5 & -3 & 1 & 2 \\ 0 & 3 & 1 & 0 & 4 \\ 1 & -1 & 5 & 0 & 9 \\ 5 & -5 & -2 & 0 & 1\end{array}\right]$
7. $\left[\begin{array}{rrrr|r}4 & 7 & -8 & 1 & 3 \\ 0 & 5 & 1 & 0 & 5 \\ 1 & -1 & -1 & 0 & 17 \\ 2 & -2 & 11 & 0 & 4\end{array}\right]$
8. $\left\{\begin{aligned} 5 x+3 z & =-11 \\ y-4 z & =12 \\ 7 x+2 y & =3\end{aligned}\right.$
9. $\left\{\begin{aligned} 7 x+4 z & =-13 \\ y-5 z & =11 \\ 2 x+7 y & =6\end{aligned}\right.$
10. $\left\{\begin{aligned} w+x+4 y+z & =3 \\ -w+x-y & =7 \\ 2 w+5 z & =11 \\ 12 y+4 z & =5\end{aligned}\right.$
11. $\left\{\begin{aligned} 4 w+x+5 y+z & =6 \\ w-x-z & =8 \\ 3 w+7 z & =4 \\ 11 y+5 z & =3\end{aligned}\right.$
12. $\left[\begin{array}{rrrr|r}1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -2 & -1 & 0 \\ 0 & 2 & 1 & 2 & 5 \\ 0 & 6 & -3 & -1 & -9\end{array}\right]$
13. $\left[\begin{array}{rrrr|r}1 & -5 & 2 & -2 & 4 \\ 0 & 1 & -3 & -1 & 0 \\ 0 & 15 & -4 & 5 & -6 \\ 0 & -19 & 12 & -6 & 13\end{array}\right]$
14. $R_{2}:-3,-18 ; R_{3}:-12,-15 ; R_{2}:-\frac{3}{5},-\frac{18}{5} ; R_{3}:-12,-15$
15. $R_{2}:-10,-5 ; R_{3}: 8,10 ; R_{2}:-2,-1 ; R_{3}: 8,10$
16. $\{(1,-1,2)\}$
17. $\{(1,-1,1)\}$
18. $\{(3,-1,-1)\}$
19. $\{(-3,0,1)\}$
20. $\{(2,-1,1)\}$
21. $\{(4,-3,2)\}$
22. $\{(0,2,2)\}$
23. $\{(1,1,2)\}$
24. $\{(-1,2,-2)\}$
25. $\{(-1,6,3)\}$
26. $\{(1,2,-1)\}$
27. $\{(2,0,-1)\}$
28. $f(x)=x^{3}-2 x^{2}+3$
29. $f(x)=-x^{3}+4 x^{2}-2$
30. b. 0 ; The ball hits the ground 3.5 seconds after it is thrown. 46. b. $s(7)=118$; The ball's height is 118 feet after 7 seconds. $\quad 62$ makes sense 68. For $z=0,(12 z+1,10 z-1, z)$ is $(1,-1,0) ; 3(1)-4(-1)+4(0)=7$ is true; $1-(-1)-2(0)=2$ is true; $2(1)-3(-1)+6(0)=5$ is true.
31. For $z=1,(12 z+1,10 z-1, z)$ is $(13,9,1) ; 3(13)-4(9)+4(1)=7$ is true; $13-9-2(1)=2$ is true; $2(13)-3(9)+6(1)=5$ is true.
32. a. Answers may vary. b. This system has more than one solution.

Exercise Set 8.2

3. $\left\{\left(-2 t+2,2 t+\frac{1}{2}, t\right)\right\} \quad$ 4. $\{(-2+t,-2+t, t)\} \quad$ 5. $\{(-3,4,-2)\} \quad$ 6. $\{(2,-3,7)\} \quad$ 7. $\{(5-2 t,-2+t, t)\} \quad$ 8. $\{(-5+7 t, 1+3 t, t)\}$
4. $\left\{\left(1+\frac{1}{3} t, \frac{1}{3} t, t\right)\right\} \quad$ 16. $\left\{\left(2, \frac{1}{2} t-\frac{1}{2}, t\right)\right\} \quad$ 17. $\{(-13 t+5,5 t, t)\} \quad$ 18. $\{(-2 t+3,-2 t+1, t)\} \quad$ 19. $\left\{\left(2 t-\frac{5}{4}, \frac{13}{4}, t\right)\right\} \quad 20 .\{(98,2 t-43, t)\}$
5. a. $4 w-2 x+2 y-3 z=0 ; 7 w-x-y-3 z=0 ; w+x+y-z=0$
6. a. $2 w+17 x-23 y+40 z=0 ; 2 w+5 x+y+3 z=0 ; x-2 y+3 z=0$
7. a. $w+2 x+5 y+5 z=-3 ; w+x+3 y+4 z=-1 ; w-x-y+2 z=3$
8. a. $w+y+z=0 ; w-x+2 y+3 z=0 ; 3 w-2 x+5 y+7 z=0$
9. a. $\left\{\begin{aligned} w+z & =380 \\ w+x & =600 \\ x-y & =170 \\ y-z & =50\end{aligned} \quad\right.$ b. $\{(380-t, 220+t, 50+t, t)\}$
10. a. There is no combination of the foods that can satisfy the given requirements.
b. There are many combinations of the foods that satisfy the new requirements.
11. a. The system has no solution, so there is no way to satisfy these dietary requirements with no Food 1 available.
b. 4 oz of Food $1,0 \mathrm{oz}$ of Food 2, 10 oz of Food $3 ; 2 \mathrm{oz}$ of Food $1,5 \mathrm{oz}$ of Food 2, 9 oz of Food 3 (other answers are possible).
12. 7 of product $A, 2$ of product B, 2 of product $C ; 7$ of product $A, 1$ of product $B, 4$ of product C (other answers are possible).
13. a. $\left\{\begin{aligned} x_{1}-x_{6} & =100 \\ x_{2}-x_{6}+x_{7} & =600 \\ x_{3}+x_{7} & =900 \\ x_{1}-x_{4} & =-200 \\ x_{2}-x_{4}+x_{5} & =100 \\ x_{3}+x_{5} & =700\end{aligned} \quad\right.$ b. $\{(t+100, t-s+600,-s+900, t+300, s-200, t, s)\}$

Section 8.3

Check Point Exercises

9. a. $\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 5 & 2\end{array}\right]+\left[\begin{array}{lll}-3 & -3 & -3 \\ -1 & -1 & -1\end{array}\right]=\left[\begin{array}{lll}-3 & 0 & 1 \\ -1 & 4 & 1\end{array}\right]$
b. $2\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 5 & 2\end{array}\right]=\left[\begin{array}{ccc}0 & 6 & 8 \\ 0 & 10 & 4\end{array}\right]$

Exercise Set 8.3

1. b. a_{32} does not exist; $a_{23}=-1 \quad$ 2. b. a_{32} does not exist; $a_{23}=\frac{1}{2}$
2. a. 3×4
b. $a_{32}=\frac{1}{2} ; a_{23}=-6$
3. a. 3×4
b. $a_{32}=0 ; a_{23}=\pi$
4. $x=4 ; y=6 ; z=3$
5. $x=12 ; y=2 ; z=3$
6. a. $\left[\begin{array}{rr}9 & 10 \\ 3 & 9\end{array}\right]$
b. $\left[\begin{array}{rr}-1 & -8 \\ 3 & -5\end{array}\right] \quad$ c. $\left[\begin{array}{ll}-16 & -4 \\ -12 & -8\end{array}\right] \quad$ d. $\left[\begin{array}{rr}22 & 21 \\ 9 & 20\end{array}\right]$
7. a. $\left[\begin{array}{ll}6 & 4 \\ 5 & 5\end{array}\right]$
b. $\left[\begin{array}{rr}-10 & 2 \\ -5 & -3\end{array}\right]$
c. $\left[\begin{array}{rr}8 & -12 \\ 0 & -4\end{array}\right]$
d. $\left[\begin{array}{ll}10 & 11 \\ 10 & 11\end{array}\right]$
8. a. $\left[\begin{array}{ll}3 & 2 \\ 6 & 2 \\ 5 & 7\end{array}\right] \quad$ b. $\left[\begin{array}{rr}-1 & 4 \\ 0 & 6 \\ 5 & 5\end{array}\right] \quad$ c. $\left[\begin{array}{rr}-4 & -12 \\ -12 & -16 \\ -20 & -24\end{array}\right]$
d. $\left[\begin{array}{rr}7 & 7 \\ 15 & 8 \\ 15 & 20\end{array}\right]$
9. a. $\left[\begin{array}{rrr}5 & -2 & 7 \\ -4 & 3 & 1\end{array}\right]$
b. $\left[\begin{array}{rrr}1 & 4 & -5 \\ 2 & 1 & 9\end{array}\right]$
c. $\left[\begin{array}{rrr}-12 & -4 & -4 \\ 4 & -8 & -20\end{array}\right]$
d. $\left[\begin{array}{rrr}13 & -3 & 15 \\ -9 & 8 & 7\end{array}\right]$
10. a. $\left[\begin{array}{r}-3 \\ -1 \\ 0\end{array}\right]$
b. $\left[\begin{array}{r}7 \\ -7 \\ 2\end{array}\right] \quad$ c. $\left[\begin{array}{r}-8 \\ 16 \\ -4\end{array}\right]$
d. $\left[\begin{array}{r}-4 \\ -6 \\ 1\end{array}\right]$
11. a. [10
$\left.\begin{array}{ll}0 & 0\end{array}\right]$
b. $\left[\begin{array}{lll}2 & 4 & -6\end{array}\right]$
c. $\left[\begin{array}{ll}-24 & -8\end{array}\right.$

12]
d. $\left[\begin{array}{lll}26 & 2 & -3\end{array}\right]$
15. a. $\left[\begin{array}{rrr}8 & 0 & -4 \\ 14 & 0 & 6 \\ -1 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{rrr}-4 & -20 & 0 \\ 14 & 24 & 14 \\ 9 & -4 & 4\end{array}\right]$
c. $\left[\begin{array}{rrr}-8 & 40 & 8 \\ -56 & -48 & -40 \\ -16 & 8 & -8\end{array}\right] \quad$ d. $\left[\begin{array}{rrr}18 & -10 & -10 \\ 42 & 12 & 22 \\ 2 & -2 & 2\end{array}\right] \quad$ 16. a. $\left[\begin{array}{rrr}3 & 2 & 6 \\ 5 & 2 & -8 \\ -2 & 2 & 3\end{array}\right]$
b. $\left[\begin{array}{rrr}9 & -8 & 4 \\ 7 & -2 & 4 \\ -6 & 2 & -5\end{array}\right]$
c. $\left[\begin{array}{rrr}-24 & 12 & -20 \\ -24 & 0 & 8 \\ 16 & -8 & 4\end{array}\right]$
d. $\left[\begin{array}{rrr}12 & 1 & 17 \\ 16 & 4 & -18 \\ -8 & 6 & 5\end{array}\right]$
22. $\left[\begin{array}{rc}5 & 17 \\ -5 & \frac{45}{2} \\ -11 & -2\end{array}\right]$
23. $\left[\begin{array}{rr}7 & 27 \\ -8 & 36 \\ -17 & -4\end{array}\right]$
24. $\left[\begin{array}{rr}17 & -3 \\ 2 & -9 \\ -7 & 16\end{array}\right]$ 25. $\left[\begin{array}{rr}\frac{27}{2} & \frac{31}{2} \\ -4 & 18 \\ -\frac{29}{2} & 6\end{array}\right]$ 26. $\left[\begin{array}{rr}\frac{29}{2} & \frac{25}{2} \\ -3 & \frac{27}{2} \\ 27 & \left.\text { 27. } \text { a. }\left[\begin{array}{rr}0 & 16 \\ 12 & 8\end{array}\right] \quad \text { b. }\left[\begin{array}{rr}-7 & 3 \\ 29 & 15\end{array}\right] \quad \text { 28. a. }\left[\begin{array}{rr}-10 & 12 \\ 25 & -30\end{array}\right] \quad \text { b. }\left[\begin{array}{rr}0 & 0 \\ 9 & -40\end{array}\right]\right) ~\end{array}\right.$ 29. a. [30]
b. $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16\end{array}\right]$
30. a. $\left[\begin{array}{lll}-1 & -2 & -3 \\ -2 & -4 & -6 \\ -3 & -6 & -9\end{array}\right]$
b. $[-14]$
31. a. $\left[\begin{array}{rrr}4 & -5 & 8 \\ 6 & -1 & 5 \\ 0 & 4 & -6\end{array}\right]$
b. $\left[\begin{array}{rrr}5 & -2 & 7 \\ 17 & -3 & 2 \\ 3 & 0 & -5\end{array}\right]$
32. $\mathbf{a}\left[\begin{array}{rrr}3 & 4 & -3 \\ -1 & 7 & -4 \\ 7 & 9 & -6\end{array}\right]$
b. $\left[\begin{array}{rrr}6 & -1 & -1 \\ -4 & -11 & 19 \\ 4 & -7 & 9\end{array}\right]$
33. a. $\left[\begin{array}{rrr}6 & 8 & 16 \\ 11 & 16 & 24 \\ 1 & -1 & 12\end{array}\right] \quad$ b. $\left[\begin{array}{rr}38 & 27 \\ -16 & -4\end{array}\right]$
34. $\mathbf{a}\left[\begin{array}{rrr}2 & -8 & 20 \\ 8 & 3 & 5 \\ 10 & 2 & 10\end{array}\right]$
b. $\left[\begin{array}{rr}12 & 14 \\ 9 & 3\end{array}\right]$
35. a. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
b. $\left[\begin{array}{rrrr}4 & -1 & -3 & 1 \\ -1 & 4 & -3 & 2 \\ 14 & -11 & -3 & -1 \\ 25 & -25 & 0 & -5\end{array}\right]$
36. a. $\left[\begin{array}{rr}18 & 1 \\ -1 & 15\end{array}\right]$
b. $\left[\begin{array}{rrrr}0 & 1 & -7 & 0 \\ 3 & -1 & 1 & 3 \\ 2 & -3 & 17 & 2 \\ 17 & -6 & 8 & 17\end{array}\right]$
37. $\left[\begin{array}{rr}17 & 7 \\ -5 & -11\end{array}\right]$
38. $\left[\begin{array}{rr}-5 & -7 \\ -1 & 9\end{array}\right]$
39. $\left[\begin{array}{rr}11 & -1 \\ -7 & -3\end{array}\right]$
40. $\left[\begin{array}{rr}24 & 0 \\ -33 & -5 \\ -3 & -1\end{array}\right]$
41. $A-C$ is not defined because A is 3×2 and C is 2×2.
42. $B-A$ is not defined because B is 2×2 and A is 3×2.
43. $\left[\begin{array}{rr}16 & -16 \\ -12 & 12 \\ 0 & 0\end{array}\right]$
44. $\left[\begin{array}{rr}28 & 12 \\ -56 & -24 \\ -7 & -3\end{array}\right]$
45. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
46. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
47. Answers will vary.; Example:

$$
\begin{aligned}
& A(B+C)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& A B+A C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

So, $A(B+C)=A B+A C$.
48. Answers will vary.; Example:

$$
\begin{aligned}
& A+(B+C)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& (A+B)+C=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\text { So, } A+(B+C)=(A+B)+C
$$

49. $\left[\begin{array}{c}x \\ -y\end{array}\right]$; It changes the sign of the y-coordinate. \quad 50. $\left[\begin{array}{c}-x \\ y\end{array}\right]$; It changes the sign of the x-coordinate.
50. a. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right]=\left[\begin{array}{lll}0 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 0\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & -2 & -2 \\ 1 & -2 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]$
51. a. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{rrr}2 & -1 & 2 \\ -1 & -1 & -1 \\ 2 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 3\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{rrr}-1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}0 & 3 & 0 \\ 3 & 3 & 3 \\ 0 & 3 & 0\end{array}\right]$
52. $\left[\begin{array}{cccccc}-2 & 1 & 1 & -1 & -1 & -2 \\ -3 & -3 & -2 & -2 & 2 & 2\end{array}\right]$
53. $\left[\begin{array}{cccccc}2 & 5 & 5 & 3 & 3 & 2 \\ -3 & -3 & -2 & -2 & 2 & 2\end{array}\right]$

54. $\left[\begin{array}{llllll}0 & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 1 & \frac{3}{2} & \frac{3}{2} & \frac{7}{2} & \frac{7}{2}\end{array}\right]$

55. $\left[\begin{array}{cccccc}0 & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 2 & \frac{5}{2} & \frac{5}{2} & \frac{9}{2} & \frac{9}{2}\end{array}\right]$

56. a. $\left[\begin{array}{rrrrrr}0 & 0 & -1 & -1 & -5 & -5 \\ 0 & 3 & 3 & 1 & 1 & 0\end{array}\right]$
b.

The effect is a 90° counterclockwise rotation about the origin.
57. a. $\left[\begin{array}{rrrrrr}0 & 3 & 3 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 & -5 & -5\end{array}\right]$
b. The effect is a reflection across the x-axis.

60. a. $\left[\begin{array}{llllll}0 & 6 & 6 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 5 & 5\end{array}\right]$
b.

The effect is a horizontal stretch by a factor of 2 .
58. a. $\left[\begin{array}{rrrrrr}0 & -3 & -3 & -1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 5 & 5\end{array}\right]$
b. The effect is a reflection across the y-axis.

61. b. $B=\left[\begin{array}{rr}9 & 29 \\ 65 & 77\end{array}\right]$
c. $B-A=\left[\begin{array}{rr}7 & 23 \\ 34 & 31\end{array}\right]$

The difference between the percentage of people completing the transition to adulthood in 1960 and 2000 by age and gender
62. a. $M=\left[\begin{array}{lll}2400 & 2700 & 3000 \\ 2200 & 2500 & 2900 \\ 2000 & 2300 & 2600\end{array}\right]$
b. $W=\left[\begin{array}{lll}2000 & 2100 & 2400 \\ 1800 & 2000 & 2200 \\ 1600 & 1800 & 2100\end{array}\right]$
c. $M-W=\left[\begin{array}{lll}400 & 600 & 600 \\ 400 & 500 & 700 \\ 400 & 500 & 500\end{array}\right]$

The differences between the basic caloric needs
of men and women by age and activity level
63. a. System 1: The midterm and final both count for 50% of the course grade. System 2: The midterm counts for 30% of the course grade and the final counts for 70%.
$\left[\begin{array}{ll}84 & 87.2 \\ 79 & 81 \\ 90 & 88.4 \\ 73 & 68.6 \\ 69 & 73.4\end{array}\right]$ System
$\left[\begin{array}{rr}15,800 & 18,600 \\ 12,500 & 14,800 \\ 3700 & 4600\end{array}\right]$
82. When a matrix of this type is multiplied by itself, each diagonal element of the product is the square of the corresponding element of the original; all other elements are zero. \quad 83. $A B=-B A$ so they are anticommutative.
87. $\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$

Mid-Chapter 8 Check Point

1. $\{(1,-1,2)\}$
2. $\left[\begin{array}{cc}-4 & -\frac{1}{2} \\ 3 & 3\end{array}\right]$
3. $\left[\begin{array}{cc}-12 & -2 \\ -21 & -4 \\ 3 & 1\end{array}\right]$
4. $\left[\begin{array}{cc}12 & -4 \\ 22 & -7 \\ -4 & 1\end{array}\right]$
5. $A+C$ does not exist because A is 3×2 and C is 2×2.

Exercise Set 8.4

10. $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -3 & \frac{1}{2}\end{array}\right]$
11. $A B=\left[\begin{array}{rr}-3 & -4 \\ 0 & 1\end{array}\right] ; B A=\left[\begin{array}{ll}-3 & 0 \\ -4 & 1\end{array}\right] ; B \neq A^{-1}$
12. $A B=\left[\begin{array}{rr}8 & -16 \\ -2 & 7\end{array}\right] ; B A=\left[\begin{array}{rr}12 & 12 \\ 1 & 3\end{array}\right] ; B \neq A^{-1}$
13. $A B=\left[\begin{array}{rr}-6 & -12 \\ 3 & 6\end{array}\right] ; B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] ; B \neq A^{-1}$
14.

$\left[\begin{array}{rr}\frac{2}{7} & -\frac{3}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right]$
14. $\left[\begin{array}{ll}\frac{1}{6} & \frac{1}{4} \\ \frac{1}{3} & 0\end{array}\right]$
15. $\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
16. $\left[\begin{array}{rr}-1 & 3 \\ -\frac{1}{2} & 1\end{array}\right]$
17. A does not have an inverse
18. A does not have an inverse.
22. $\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ 23. $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 6\end{array}\right]$ 24. $\left[\begin{array}{rrr}\frac{7}{2} & -2 & -2 \\ -\frac{5}{2} & 1 & 2 \\ -1 & 0 & 1\end{array}\right]$
28. $\left[\begin{array}{rrrr}\frac{1}{2} & 0 & 0 & -\frac{1}{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$
29. $\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}13 \\ 10\end{array}\right]$
30. $\left[\begin{array}{ll}7 & 5 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}23 \\ 10\end{array}\right]$
31. $\left[\begin{array}{lll}1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}-3 \\ -2 \\ -6\end{array}\right]$
32. $\left[\begin{array}{lll}1 & 4 & -1 \\ 1 & 3 & -2 \\ 2 & 7 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}3 \\ 5 \\ 12\end{array}\right]$
37. a. $\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}8 \\ 10 \\ 9\end{array}\right]$
b. $\{(1,2,-1)\}$
38. $\mathbf{a} \cdot\left[\begin{array}{rrr}1 & 2 & 5 \\ 2 & 3 & 8 \\ -1 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$
b. $\{(-2,-3,2)\}$
39. a. $\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}8 \\ -7 \\ 1\end{array}\right]$
b. $\{(2,-1,5)\}$
40. a. $\left[\begin{array}{rrr}1 & -6 & 3 \\ 2 & -7 & 3 \\ 4 & -12 & 5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}11 \\ 14 \\ 25\end{array}\right]$
b. $\{(2,-1,1)\}$
41. \mathbf{a}. $\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2\end{array}\right]\left[\begin{array}{c}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-3 \\ 4 \\ 2 \\ -4\end{array}\right]$
42. a. $\left[\begin{array}{rrrr}2 & 0 & 1 & 1 \\ 3 & 0 & 0 & 1 \\ -1 & 1 & -2 & 1 \\ 4 & -1 & 1 & 0\end{array}\right]\left[\begin{array}{c}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}6 \\ 9 \\ 4 \\ 6\end{array}\right]$
43. $\left[\begin{array}{ll}\frac{1}{2} e^{-x} & -\frac{1}{2} e^{-3 x} \\ \frac{1}{2} e^{-3 x} & \frac{1}{2} e^{-5 x}\end{array}\right]$
44. $\left[\begin{array}{ll}\frac{1}{2} e^{-2 x} & \frac{1}{2} e^{-3 x} \\ -\frac{1}{2} e^{-x} & \frac{1}{2} e^{-2 x}\end{array}\right]$
45. $\left[\begin{array}{cc}\frac{1}{8} & \frac{5}{8} \\ \frac{3}{8} & \frac{7}{8}\end{array}\right]$
46. $\left[\begin{array}{ll}\frac{1}{4} & \frac{5}{8} \\ \frac{1}{2} & \frac{3}{4}\end{array}\right]$
47. $(A B)^{-1}=\left[\begin{array}{rr}-23 & 16 \\ 13 & -9\end{array}\right] ; A^{-1} B^{-1}=\left[\begin{array}{rr}-3 & 11 \\ 8 & -29\end{array}\right] ; B^{-1} A^{-1}=\left[\begin{array}{rr}-23 & 16 \\ 13 & -9\end{array}\right] ;(A B)^{-1}=B^{-1} A^{-1}$
48. $(A B)^{-1}=\left[\begin{array}{rr}-11 & 26 \\ 19 & -45\end{array}\right] ; A^{-1} B^{-1}=\left[\begin{array}{rr}-79 & 101 \\ 18 & 23\end{array}\right] ; B^{-1} A^{-1}=\left[\begin{array}{rr}-11 & 26 \\ 19 & -45\end{array}\right] ;(A B)^{-1}=B^{-1} A^{-1}$
50. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ;\left[\begin{array}{ll}a w+b y & a x+b z \\ c w+d y & c x+d z\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ;\left\{\begin{array}{l}a w+b y=1 \\ c w+d y=0\end{array}\right.$ and $\left\{\begin{array}{l}a x+b z=0 \\ c x+d z=1\end{array}\right.$;
$w=\frac{d}{a d-b c}, x=\frac{-b}{a d-b c}, y=\frac{-c}{a d-b c}, z=\frac{a}{a d-b c} ; A^{-1}=\left[\begin{array}{cc}w & x \\ y & z\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
51. The encoded message is $27,-19,32,-20$.; The decoded message is $8,5,12,16$ or HELP.
52. The encoded message is $33,-21,83,-61$.; The decoded message is $12,15,22,5$ or LOVE.
53. The encoded message is $14,85,-33,4,18,-7,-18,19,-9$.
54. The encoded message is $-1,59,-20,25,121,-48,-7,39,-17$.
67. $\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & 1\end{array}\right]$
68. $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5\end{array}\right]$
69. $\left[\begin{array}{rrrr}0 & -1 & 0 & 1 \\ -1 & -5 & 0 & 3 \\ -2 & -4 & 1 & -2 \\ -1 & -4 & 0 & 1\end{array}\right]$
70.
$\left[\begin{array}{rrrr}\frac{3}{5} & 0 & -\frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & 0 & \frac{1}{5} & -\frac{1}{10} \\ 0 & 1 & 0 & 0 \\ -\frac{6}{5} & 0 & \frac{4}{5} & \frac{1}{10}\end{array}\right]$
71. $\{(2,3,-5)\} \quad$ 72. $\{(1,2,-1)\}$
73. $\{(1,2,-1)\}$
74. $\{(5,4,-1)\}$
79. does not make sense
86. false

Exercise Set 8.5

29. $\{(-5,-2,7)\}$
30. $\{(-2,3,4)\}$
31. $\{(2,-3,4)\}$
32. $\{(2,3,5)\}$
33. $\{(3,-1,2)\}$
34. $\{(-1,3,2)\}$
35. $\{(2,3,1)\}$
36. $\{(0,4,2)\}$
37. The equation of the line is $y=-\frac{11}{5} x+\frac{8}{5}$.
38. The equation of the line is $y=\frac{1}{3} x+\frac{10}{3}$.
39. -2100
40. 13,200
41. does not make sense 70. does not make sense 71. d. Each determinant has zeros below the main diagonal and a 's everywhere else.
e. Each determinant equals a raised to the power equal to the order of the determinant. 73. The sign of the value is changed when 2 columns are interchanged in a 2 nd order determinant. 74. For both systems, $x=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ and $y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$.
42. $\left|\begin{array}{lll}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=x\left(y_{1}-y_{2}\right)-y\left(x_{1}-x_{2}\right)+\left(x_{1} y_{2}-x_{2} y_{1}\right)=0$; solving for $y, y=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} x+\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}$, and $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ and $b=\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}$.
43.

Chapter 8 Review Exercises

3. $\{(1,3,-4)\}$
4. $\{(-2,-1,0)\}$
5. $\{(2 t+4, t+1, t)\}$
6. a. $\left\{\begin{array}{l}x+z=750 \\ y-z=-250 \\ x+y=500\end{array}\right.$
b. $\{(-t+750, t-250, t)\}$
7. $\left[\begin{array}{lll}0 & 2 & 3 \\ 8 & 1 & 3\end{array}\right]$
8. $\left[\begin{array}{rr}0 & -4 \\ 6 & 4 \\ 2 & -10\end{array}\right] \quad$ 16. $\left[\begin{array}{rrr}-4 & 4 & -1 \\ -2 & -5 & 5\end{array}\right] \quad$ 17. Not possible since B is 3×2 and C is $3 \times 3 . \quad$ 18. $\left[\begin{array}{rrr}2 & 3 & 8 \\ 21 & 5 & 5\end{array}\right] \quad$ 19. $\left[\begin{array}{rrr}-12 & 14 & 0 \\ 2 & -14 & 18\end{array}\right]$
9. $\left[\begin{array}{rrr}0 & -10 & -15 \\ -40 & -5 & -15\end{array}\right]$
10. $\left[\begin{array}{rr}-1 & -16 \\ 8 & 1\end{array}\right]$
11. $\left[\begin{array}{rrr}-10 & -6 & 2 \\ 16 & 3 & 4 \\ -23 & -16 & 7\end{array}\right]$
12. $\left[\begin{array}{rrr}-6 & 4 & -8 \\ 0 & 5 & 11 \\ -17 & 13 & -19\end{array}\right]$
13. $\left[\begin{array}{rr}10 & 5 \\ -2 & -30\end{array}\right]$
14. Not possible since $A B$ is 2×2 and $B A$ is 3×3.
15. $\left[\begin{array}{rrr}7 & 6 & 5 \\ 2 & -1 & 11\end{array}\right]$
16. $\left[\begin{array}{rrr}-6 & -22 & -40 \\ 9 & 43 & 58 \\ -14 & -48 & -94\end{array}\right]$ 29. $\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right]$
17. $\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1\end{array}\right]$
18. $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 1 & 1 & -3\end{array}\right]$
19. $\left[\begin{array}{ccc}0 & 1 & 1 \\ -2 & -2 & -4\end{array}\right]$
20. $\left[\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]$

The effect is a reflection over the x-axis
34. $\left[\begin{array}{ccc}0 & -2 & -2 \\ 0 & 0 & -4\end{array}\right]$
35. $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 2 & 2\end{array}\right]$

The effect is a 90° counterclockwise rotation about the origin.
36. $\left[\begin{array}{ccc}0 & 4 & 4 \\ 0 & 0 & -4\end{array}\right]$

The effect is a horizontal stretch by a factor of 2 .

The effect is a reflection over the y-axis.
41. $\left[\begin{array}{rrr}3 & 0 & -2 \\ -6 & 1 & 4 \\ 1 & 0 & -1\end{array}\right] \quad$ 42. $\left[\begin{array}{rrr}8 & -8 & 5 \\ -3 & 2 & -1 \\ -1 & -1 & 1\end{array}\right]$
43. a. $\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}7 \\ -2 \\ 0\end{array}\right]$
b. $\{(-18,79,-27)\}$

$$
\text { 44. } \mathbf{a} \text {. }\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 1 & -1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
12 \\
-5 \\
10
\end{array}\right]
$$

b. $\{(4,-2,3)\}$
45. The encoded message is $96,135,46,63$; The decoded
37. $A B=\left[\begin{array}{ll}1 & 7 \\ 0 & 5\end{array}\right] ; B A=\left[\begin{array}{ll}1 & 0 \\ 1 & 5\end{array}\right] ; B \neq A^{-1}$
message is $18,21,12,5$ or RULE. \quad 54. $\{(23,-12,3)\}$
55. $\{(-3,2,1)\}$
56. $a=\frac{5}{8} ; b=-50 ; c=1150 ; 30$ - and 50 -year-olds are involved in an average of 212.5 automobile accidents per day.

Chapter 8 Test

3. $\left[\begin{array}{rr}5 & 4 \\ 1 & 11\end{array}\right]$ 4. $\left[\begin{array}{ll}5 & -2 \\ 1 & -1 \\ 4 & -1\end{array}\right] \quad$ 5. $\left[\begin{array}{rr}\frac{3}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5}\end{array}\right] \quad$ 6. $\left[\begin{array}{ll}-1 & 2 \\ -5 & 4\end{array}\right] \quad$ 8. a. $\left[\begin{array}{rr}3 & 5 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}9 \\ -13\end{array}\right] \quad$ b. $\left[\begin{array}{ll}\frac{3}{19} & \frac{5}{19} \\ \frac{2}{19} & -\frac{3}{19}\end{array}\right]$

Cumulative Review Exercises (Chapters P-8)

1. $\left\{\frac{-1+\sqrt{33}}{4}, \frac{-1-\sqrt{33}}{4}\right\}$
2.

17.

12.

15. $\frac{8}{x-3}+\frac{-2}{x-2}+\frac{-3}{x+2}$
16.

21.

23. $\frac{\cos 2 x}{\cos x-\sin x}=\frac{\cos ^{2} x-\sin ^{2} x}{\cos x-\sin x}=\frac{(\cos x+\sin x)(\cos x-\sin x)}{\cos x-\sin x}=\cos x+\sin x$
24. $\frac{3 \pi}{2}$
25. $2 \mathbf{i}-13 \mathbf{j}$

CHAPTER 9

Section 9.1

Check Point Exercises

1. foci at $(-3 \sqrt{3}, 0)$ and $(3 \sqrt{3}, 0)$

$$
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
$$

2. foci at $(0,-\sqrt{7})$ and $(0, \sqrt{7})$

$16 x^{2}+9 y^{2}=144$
3. foci at $(-1-\sqrt{5}, 2)$ and $(-1+\sqrt{5}, 2)$

Exercise Set 9.1

1. foci at $(-2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)$
2. foci at $(-3,0)$ and $(3,0)$

3. foci at $(0,-\sqrt{39})$ and $(0, \sqrt{39})$

4. foci at $(0,-6)$ and $(0,6)$

$\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
5. foci at $(0,-3 \sqrt{3})$ and $(0,3 \sqrt{3})$
6. foci at $(-\sqrt{13}, 0)$ and $(\sqrt{13}, 0)$

$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
7. foci at $(0,-2)$ and $(0,2)$

8. foci at $\left(-\frac{\sqrt{299}}{4}, 0\right)$ and $\left(\frac{\sqrt{299}}{4}, 0\right)$

9. foci at $(0,-\sqrt{21})$ and $(0, \sqrt{21})$

10. foci at $(-\sqrt{21}, 0)$ and $(\sqrt{21}, 0)$

11. $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$; foci at $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$
12. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$; foci at $(-2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)$
13. $\frac{x^{2}}{1}+\frac{y^{2}}{4}=1$; foci at $(0, \sqrt{3})$ and $(0,-\sqrt{3})$
14. $\frac{(x+1)^{2}}{4}+\frac{(y-1)^{2}}{1}=1$; foci at $(-1-\sqrt{3}, 1)$ and $(-1+\sqrt{3}, 1)$
15. $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$; foci at $(0,2 \sqrt{3})$ and $(0,-2 \sqrt{3})$
16. $\frac{(x+1)^{2}}{1}+\frac{(y+1)^{2}}{4}=1$; foci at $(-1,-1-\sqrt{3})$ and $(-1,-1+\sqrt{3})$
17. $\frac{x^{2}}{64}+\frac{y^{2}}{39}=1$
18. $\frac{x^{2}}{36}+\frac{y^{2}}{32}=1 \quad$ 27. $\frac{x^{2}}{33}+\frac{y^{2}}{49}=1$
$\begin{array}{llll}\text { 28. } \frac{x^{2}}{7}+\frac{y^{2}}{16}=1 & \text { 29. } \frac{x^{2}}{13}+\frac{y^{2}}{9}=1 & \text { 30. } \frac{x^{2}}{4}+\frac{y^{2}}{8}=1 & \text { 31. } \frac{x^{2}}{16}+\frac{y^{2}}{4}=1\end{array} \quad$ 32. $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 \quad$ 33. $\frac{(x+2)^{2}}{4}+\frac{(y-3)^{2}}{25}=1$
19. $\frac{(x-2)^{2}}{25}+\frac{(y+3)^{2}}{100}=1$
20. $\frac{(x-7)^{2}}{4}+\frac{(y-6)^{2}}{9}=1$
21. $\frac{(x-5)^{2}}{9}+\frac{(y-2)^{2}}{1}=1$
22. foci at $(2-\sqrt{5}, 1)$ and $(2+\sqrt{5}, 1)$
23. foci at $(1-\sqrt{7},-2)$ and $(1+\sqrt{7},-2)$

24. foci at $(-1,-2)$ and $(7,-2)$

25. foci at $(0,2+\sqrt{11}),(0,2-\sqrt{11})$

$\frac{x^{2}}{25}+\frac{(y-2)^{2}}{36}=1$

26. foci at $(4,2)$ and $(4,-6)$

27. foci at $(4, \sqrt{21})$ and $(4,-\sqrt{21})$

28. foci at $(-3-2 \sqrt{3}, 2)$ and $(-3+2 \sqrt{3}, 2)$

29. foci at $(3,-1+\sqrt{7})$ and $(3,-1-\sqrt{7})$

30. foci at $(-3-2 \sqrt{2}, 2)$ and $(-3+2 \sqrt{2}, 2)$

31. foci at $(-2-\sqrt{15}, 3)$ and $(-2+\sqrt{15}, 3)$

32. foci at $(1,-3+\sqrt{5})$ and $(1,-3-\sqrt{5})$

33. $\frac{(x-4)^{2}}{9}+\frac{(y+2)^{2}}{4}=1$
foci at $(4-\sqrt{5},-2)$ and $(4+\sqrt{5},-2)$

$4 x^{2}+9 y^{2}-32 x+36 y+64=0$
34. $\frac{(x+2)^{2}}{16}+\frac{(y-3)^{2}}{64}=1$
foci at $(-2,3+4 \sqrt{3})$ and $(-2,3-4 \sqrt{3})$

$4 x^{2}+y^{2}+16 x-6 y-39=0$
35. foci at $(1,-3+\sqrt{3})$ and $(1,-3-\sqrt{3})$

36. foci at $(-4,-3+\sqrt{35})$ and $(-4,-3-\sqrt{35})$

37. $\frac{(x-1)^{2}}{16}+\frac{(y+2)^{2}}{9}=1$
foci at $(1-\sqrt{7},-2)$ and $(1+\sqrt{7},-2)$

38. $\frac{(x-3)^{2}}{25}+\frac{(y+2)^{2}}{4}=1 \quad \begin{aligned} & \text { foci at }(3-\sqrt{21},-2) \text { and }(3+\sqrt{21},-2)\end{aligned}$
39. foci at $(-1,3+\sqrt{3})$ and $(-1,3-\sqrt{3})$

40. $\frac{(x-2)^{2}}{25}+\frac{(y+1)^{2}}{9}=1$
foci at $(-2,-1)$ and $(6,-1)$

41. $\frac{(x+5)^{2}}{16}+\frac{(y-1)^{2}}{4}=1$
foci at $(-5-2 \sqrt{3}, 1)$ and $(-5+2 \sqrt{3}, 1)$

42. $\{(0,-1),(0,1)\} \quad$ 58. $\{(0,-5),(0,5)\}$
43. $\{(0,3)\} \quad$ 60. $\{(-2,0)\}$
44. $\{(0,-2),(1,0)\} \quad$ 62. \varnothing
45.

64.

68. One person should stand at 10 feet along the 100 foot width and the other person should stand at 90 feet.
78. Earth's orbit: $\frac{x^{2}}{8649}+\frac{y^{2}}{8630.41}=1$ Mars's orbit: $\frac{x^{2}}{20,093.0625}+\frac{y^{2}}{19,390.5625}=1$

81. does not make sense 83. $\frac{x^{2}}{\frac{36}{5}}+\frac{y^{2}}{36}=1$
86. $\frac{c}{a}$ is close to zero when c is very small. This happens when a and b are nearly equal, or when the shape of the graph is nearly circular.
87. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$; Terms are separated by subtraction rather than addition.
88. b. The equation $y^{2}=-9$ has no real solutions.
89. b. The equation $x^{2}=-16$ has no real solutions.

Section 9.2

Check Point Exercises

3. foci at $(-3 \sqrt{5}, 0)$ and $(3 \sqrt{5}, 0)$ asymptotes: $y= \pm \frac{1}{2} x$

4. foci at $(0, \sqrt{5})$ and $(0,-\sqrt{5})$
asymptotes: $y= \pm 2 x$

5. foci at $(3-\sqrt{5}, 1)$ and $(3+\sqrt{5}, 1)$ asymptotes: $(y-1)= \pm \frac{1}{2}(x-3)$

6. foci at $(3,-5+\sqrt{13})$ and $(3,-5-\sqrt{13})$
asymptotes: $(y+5)= \pm \frac{2}{3}(x-3)$

Exercise Set 9.2

1. vertices at $(2,0)$ and $(-2,0)$; foci at $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$; graph (b) 2. vertices at $(1,0)$ and $(-1,0)$; foci at $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$; graph (d) 3. vertices at $(0,2)$ and $(0,-2)$; foci at $(0, \sqrt{5})$ and $(0,-\sqrt{5})$; graph (a) 4. vertices at $(0,1)$ and $(0,-1)$; foci at $(0, \sqrt{5})$ and $(0,-\sqrt{5})$; graph (c)
2. $y^{2}-\frac{x^{2}}{8}=1$
3. $\frac{y^{2}}{4}-\frac{x^{2}}{32}=1$
4. $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$
5. $\frac{x^{2}}{25}-\frac{y^{2}}{24}=1$
6. $\frac{y^{2}}{36}-\frac{x^{2}}{9}=1$
7. $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$
8. $\frac{(x-4)^{2}}{4}-\frac{(y+2)^{2}}{5}=1$
9. foci: $(\pm \sqrt{34}, 0)$
asymptotes: $y= \pm \frac{5}{3} x$

10. foci: $(0, \pm 2 \sqrt{13})$
asymptotes: $y= \pm \frac{2}{3} x$

11. foci: $(\pm \sqrt{13}, 0)$
asymptotes: $y= \pm \frac{3}{2} x$

12. foci: $(\pm 2,0)$
asymptotes: $y= \pm x$

13. $\frac{(y-1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1$
14. foci: $(\pm \sqrt{41}, 0)$ asymptotes: $y= \pm \frac{5}{4} x$

15. foci: $(0, \pm \sqrt{89})$
asymptotes: $y= \pm \frac{5}{8} x$

16. foci: $(\pm \sqrt{29}, 0)$ asymptotes: $y= \pm \frac{2}{5} x$

17. foci: $(\pm \sqrt{6}, 0)$ asymptotes: $y= \pm x$

18. foci: $(\pm 2 \sqrt{41}, 0)$ asymptotes: $y= \pm \frac{4}{5} x$

19. foci: $\left(0, \pm \frac{\sqrt{5}}{2}\right)$
asymptotes: $y= \pm \frac{1}{2} x$

20. foci: $(0, \pm \sqrt{34})$ asymptotes: $y= \pm \frac{5}{3} x$

21. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
22. $\frac{y^{2}}{25}-\frac{x^{2}}{9}=1$
23. $\frac{(x-2)^{2}}{4}-\frac{(y+3)^{2}}{9}=1$
24. $\frac{(x+1)^{2}}{4}-\frac{(y+2)^{2}}{4}=1$
25. foci: $(\pm 15,0)$ asymptotes: $y= \pm \frac{3}{4} x$

26. foci: $\left(0, \pm \frac{\sqrt{10}}{3}\right)$
asymptotes: $y= \pm \frac{1}{3} x$

27. foci: $(0, \pm 5)$
asymptotes: $y= \pm \frac{3}{4} x$

28. foci: $(-9,-3),(1,-3)$
asymptotes: $(y+3)= \pm \frac{4}{3}(x+4)$

29. foci: $(-2 \pm \sqrt{34}, 0)$
asymptotes: $y= \pm \frac{5}{3}(x+2)$

30. foci: $(3 \pm \sqrt{5},-3)$
asymptotes: $(y+3)= \pm \frac{1}{2}(x-3)$

31. foci: $(-3,2 \pm \sqrt{10})$
asymptotes: $(y-2)= \pm(x+3)$

32. $\frac{(y+1)^{2}}{4}-\frac{(x+2)^{2}}{0.25}=1$ foci: $(-2,-1 \pm \sqrt{4.25})$
asymptotes: $(y+1)= \pm 4(x+2)$

33. $\frac{(x+1)^{2}}{\frac{1}{4}}-\frac{(y+1)^{2}}{\frac{1}{9}}=1$
foci: $\left(-1 \pm \frac{\sqrt{13}}{6},-1\right)$
asymptotes: $(y+1)= \pm \frac{2}{3}(x+1)$

34. foci: $(-2 \pm \sqrt{34}, 1)$
asymptotes: $(y-1)= \pm \frac{5}{3}(x+2)$

35. foci: $(1,-2 \pm 2 \sqrt{5})$
asymptotes: $(y+2)= \pm \frac{1}{2}(x-1)$

36. foci: $(-3 \pm \sqrt{10}, 4)$
asymptotes: $(y-4)= \pm \frac{1}{3}(x+3)$

37. $(x-1)^{2}-(y+2)^{2}=1$
foci: $(1 \pm \sqrt{2},-2)$
asymptotes: $(y+2)= \pm(x-1)$

38. $\frac{(y-1)^{2}}{4}-\frac{(x-3)^{2}}{9}=1$
foci: $(3,1 \pm \sqrt{13})$
asymptotes: $(y-1)= \pm \frac{2}{3}(x-3)$

39. $\frac{y^{2}}{4}-\frac{(x-4)^{2}}{25}=1$
foci: $(4, \pm \sqrt{29})$
asymptotes: $y= \pm \frac{2}{5}(x-4)$

40. foci: $(-3 \pm \sqrt{41}, 0)$
asymptotes: $y= \pm \frac{4}{5}(x+3)$

41. foci: $(-1,2 \pm \sqrt{85})$
asymptotes: $(y-2)= \pm \frac{6}{7}(x+1)$

42. foci: $(1 \pm \sqrt{6}, 2)$
asymptotes: $(y-2)= \pm(x-1)$

43. $\frac{(x+4)^{2}}{4}-\frac{(y-3)^{2}}{16}=1$
foci: $(-4 \pm 2 \sqrt{5}, 3)$
asymptotes: $(y-3)= \pm 2(x+4)$

44. $\frac{(x-2)^{2}}{9}-\frac{(y-3)^{2}}{4}=1$
foci: $(2 \pm \sqrt{13}, 3)$
asymptotes: $(y-3)= \pm \frac{2}{3}(x-2)$

45. $\frac{(y+2)^{2}}{9}-\frac{(x-2)^{2}}{16}=1$
foci: $(2,-7),(2,3)$
asymptotes: $(y+2)= \pm \frac{3}{4}(x-2)$

46. domain: $(-\infty,-3] \cup[3, \infty)$
range: $(-\infty, \infty)$

47. domain: $(-\infty, \infty)$
range: $(-\infty,-4] \cup[4, \infty)$

48. domain: $(-\infty,-5] \cup[5, \infty)$
range: $(-\infty, \infty)$

$$
\frac{x^{2}}{25}-\frac{y^{2}}{4}=1
$$

56. domain: $(-\infty, \infty)$
range: $(-\infty,-2] \cup[2, \infty)$

57. domain: $[-3,3]$
range: $[-4,4]$

$\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
58. domain: $[-5,5]$
range: $[-2,2]$

$\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
59. If M_{1} is located 2640 feet to the right of the origin on the x-axis, the explosion is located on the right branch of the hyperbola given by the equation $\frac{x^{2}}{1,210,000}-\frac{y^{2}}{5,759,600}=1$.
60. a. $\frac{x^{2}}{5625}-\frac{y^{2}}{4375}=1$
61. a. ellipse \quad b. $x^{2}+4 y^{2}=4$
62. a. hyperbola \quad b. $x^{2}-y^{2}=1$
63.

Answers may vary depending on the choice for a and b. For $a=2, b=3$, a graph is shown. The two graphs open right/left and up/down, sharing a common set sharing a common set
of asymptotes given by $y= \pm \frac{b}{a} x$.
80.

The second equation is a function with domain $(-\infty, \infty)$.

The $x y$-term rotates the hyperbola.
81. does not make sense
90. $\frac{y^{2}}{36}-\frac{(x-5)^{2}}{20}=1$
92.

82. makes sense
85. false
89. $\frac{c}{a}$ will be large when a is small. When this happens, the asymptotes will be nearly vertical. 91. Any hyperbola where $a=b$, such as $\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$, has perpendicular asymptotes.
79. $2 y^{2}+(10-6 x) y+\left(4 x^{2}-3 x-6\right)=0$ $y=\frac{3 x-5 \pm \sqrt{x^{2}-24 x+37}}{2}$

93.

Section 9.3

Check Point Exercises

1. focus: $(2,0)$
directrix: $x=-2$

2. focus: $(0,-3)$ directrix: $y=3$

3. vertex: $(2,-1)$; focus: $(2,0)$ directrix: $y=-2$

4. vertex: $(2,-1)$; focus: $(1,-1)$ directrix: $x=3$

Exercise Set 9.3

1. focus: $(1,0)$; directrix: $x=-1$; graph (c)
2. focus: $(-1,0)$; directrix: $x=1$; graph (d)
3. focus: $(4,0)$; directrix: $x=-4$

4. focus: $(-3,0)$; directrix: $x=3$

5. focus: $(0,-4)$; directrix: $y=4$

6. focus: $\left(0, \frac{3}{2}\right)$; directrix: $y=-\frac{3}{2}$

7. focus: $(0,1)$; directrix: $y=-1$; graph (a)
8. focus: $(1,0)$; directrix: $x=-1$

9. focus: $(0,3)$; directrix: $y=-3$

10. focus: $(0,-5)$; directrix: $y=5$

11. focus: $\left(0,-\frac{1}{8}\right)$; directrix: $y=\frac{1}{8}$

12. focus: $(0,-1)$, directrix: $y=1$; graph (b)
13. focus: $(-2,0)$; directrix: $x=2$

14. focus: $(0,2)$; directrix: $y=-2$

15. focus: $\left(\frac{3}{2}, 0\right)$; directrix: $x=-\frac{3}{2}$

16. focus: $\left(-\frac{1}{8}, 0\right)$; directrix: $x=\frac{1}{8}$

17. vertex: $(1,1)$; focus: $(2,1)$; directrix: $x=0$; graph (c) \quad 32. vertex: $(-1,-1)$; focus: $(-1,0)$; directrix: $y=-2$; graph (a) 33. vertex: $(-1,-1)$; focus: $(-1,-2)$; directrix: $y=0$; graph (d) 34. vertex: $(1,1)$; focus: $(0,1)$; directrix: $x=2$; graph (b)
18. vertex: $(2,1)$; focus: $(2,3)$

$$
\text { directrix: } y=-1
$$

38. vertex: $(-2,-2)$; focus: $(-2,-4)$ directrix: $y=0$

41. vertex: $(0,-1)$; focus: $(-2,-1)$
directrix: $x=2$

36. vertex: $(-2,-1)$; focus: $(-2,0)$
directrix: $y=-2$

39. vertex: $(-1,-3)$; focus: $(2,-3)$ directrix: $x=-4$

42. vertex: $(0,1)$; focus: $(-2,1)$ directrix: $x=2$

37. vertex: $(-1,-1)$; focus: $(-1,-3)$ directrix: $y=1$

40. vertex: $(-2,-4)$; focus: $(1,-4)$ directrix: $x=-5$

43. $(x-1)^{2}=4(y-2)$; vertex: $(1,2)$ focus: $(1,3)$; directrix: $y=1$

44. $(x+3)^{2}=-8(y-1)$
vertex: $(-3,1)$; focus: $(-3,-1)$
directrix: $y=3$

47. $(x+3)^{2}=4(y+2)$
vertex: $(-3,-2)$; focus: $(-3,-1)$
directrix: $y=-3$

55. $\{(-4,2),(0,0)\}$

58. $\{(-5,0),(4,-3),(4,3)\}$

77. $y=-1 \pm \sqrt{6 x-12}$

46. $(y-1)^{2}=8 x$
vertex: $(0,1)$; focus: $(2,1)$
directrix: $x=-2$

49. domain: $[-4, \infty)$
range: $(-\infty, \infty)$; not a function
50. domain: $[-6, \infty)$
range: $(-\infty, \infty)$; not a function
51. domain: $(-\infty, \infty)$
range: $(-\infty, 1]$; function
52. domain: $(-\infty, \infty)$
range: $(-\infty, 8]$; function
53. domain: $(-\infty, 3]$
range: $(-\infty, \infty)$; not a function
54. domain: $(-\infty,-2]$
range: $(-\infty, \infty)$; not a function
57. $\{(-2,1)\}$

60. \varnothing

79. $9 y^{2}+(-24 x-80) y+16 x^{2}-60 x+100=0$
$y=\frac{12 x+40 \pm 10 \sqrt{15 x+7}}{9}$

80. $3 y^{2}+(2 \sqrt{3} x-8) y+x^{2}+8 \sqrt{3} x+32=0$

$$
y=\frac{-\sqrt{3} x+4 \pm 4 \sqrt{-2 \sqrt{3} x-5}}{3}
$$

83. makes sense
89. focus: $\left(0,-\frac{E}{4 A}\right)$; directrix: $y=\frac{E}{4 A}$
90. $(x+1)^{2}=-8(y-2)$
92. $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=2$
93. a.

c. $\sin \theta=\frac{4}{5}=0.8 ; \cos \theta=\frac{3}{5}=0.6$

Mid-Chapter 9 Check Point

1. foci: $(\pm \sqrt{21}, 0)$
2. foci: $(\pm \sqrt{10}, 0)$
asymptotes: $y= \pm \frac{1}{3} x$
3. foci: $(0, \pm \sqrt{10})$
asymptotes: $y= \pm 3 x$

4. foci: $(2,2),(2,-4)$
5. foci: $(-5,1),(1,1)$
6. foci: $(2 \pm 4 \sqrt{2},-3)$

7. foci: $(0, \pm \sqrt{5})$

8. foci: $(\pm \sqrt{53}, 0)$
asymptotes: $y= \pm \frac{2}{7} x$
9. foci: $(-3,-2),(7,-2)$ asymptotes: $(y+2)= \pm \frac{4}{3}(x-2)$

$\frac{x^{2}}{9}-y^{2}=1$

10. foci: $(0, \pm 2 \sqrt{5})$
asymptotes: $y= \pm 2 x$

11.

15.

11. foci: $(-1,3 \pm 2 \sqrt{5})$;
asymptotes:
$(y-3)= \pm 2(x+1)$

12. focus: $(2,-4)$;
directrix: $y=2$;

13. focus: $\left(-\frac{5}{2}, 1\right)$; directrix: $x=-\frac{7}{2} ;$

17.

18.

22. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
23. $\frac{(x-1)^{2}}{81}+\frac{(y-2)^{2}}{56}=1$
24. $\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$
25. $\frac{(x+1)^{2}}{4}-\frac{(y-5)^{2}}{5}=1$
19.

20.

16.

16.
21.

a. $\frac{x^{2}}{1.1025}-\frac{y^{2}}{7.8975}=1$
b.

Section 9.4

Check Point Exercises

3.

4. $\quad\left(x^{\prime}, y^{\prime}\right)=(2,4)$

AA100 Answers to Selected Exercises

Exercise Set 9.4

15. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right) \quad$ 16. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right) \quad$ 17. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)$
16. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)$
17. $x=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2} ; y=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2} \quad$ 20. $x=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2} ; y=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}$
$\begin{array}{ll}\text { 21. } x=\frac{3 x^{\prime}-4 y^{\prime}}{5} ; y=\frac{4 x^{\prime}+3 y^{\prime}}{5} & \text { 22. } x=\frac{3 x^{\prime}-4 y^{\prime}}{5} ; y=\frac{4 x^{\prime}+3 y^{\prime}}{5} \quad \text { 23. } x=\sqrt{5}\left(\frac{2 x^{\prime}-y^{\prime}}{5}\right) ; y=\sqrt{5}\left(\frac{x^{\prime}+2 y^{\prime}}{5}\right)\end{array}$
18. $x=\sqrt{10}\left(\frac{3 x^{\prime}-y^{\prime}}{10}\right) ; y=\sqrt{10}\left(\frac{x^{\prime}+3 y^{\prime}}{10}\right)$
19. a. $3 x^{\prime 2}+y^{\prime 2}=20$
b. $\frac{x^{\prime 2}}{\frac{20}{3}}+\frac{y^{\prime 2}}{20}=1$
c. $\left(x^{\prime}, y^{\prime}\right) \approx(0,4.47)$

20. a. $x^{\prime 2}+9 y^{\prime 2}=9$
b. $\frac{x^{\prime 2}}{9}+\frac{y^{\prime 2}}{1}=1$
c. $\left(x^{\prime}, y^{\prime}\right)=(0,1)$

21. a. $650 x^{\prime 2}+25 y^{\prime 2}=225$
b. $\frac{x^{\prime 2}}{\frac{9}{26}}+\frac{y^{\prime 2}}{9}=1$
c.

22. a. $x^{\prime 2}-9 y^{\prime 2}=-36$
b. $\frac{y^{\prime 2}}{4}-\frac{x^{\prime 2}}{36}=1$
c.

23.

25. $x=\frac{4 x^{\prime}-3 y^{\prime}}{5} ; y=\frac{3 x^{\prime}+4 y^{\prime}}{5}$
28. a. $3 x^{\prime 2}-y^{\prime 2}=3$
b. $\frac{x^{\prime 2}}{1}-\frac{y^{\prime 2}}{3}=1$
26. $x=\sqrt{10}\left(\frac{3 x^{\prime}-y^{\prime}}{10}\right) ; y=\sqrt{10}\left(\frac{x^{\prime}+3 y^{\prime}}{10}\right)$
29. a. $-4 x^{\prime 2}+16 y^{\prime 2}=64$
b. $\frac{y^{\prime 2}}{4}-\frac{x^{\prime 2}}{16}=1$
c. $\quad\left(x^{\prime}, y^{\prime}\right)=(0,2)$

32. a. $16 x^{\prime 2}+64 y^{\prime 2}=64$
b. $\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{1}=1$

35. a. $50 x^{\prime 2}-75 y^{\prime 2}=25$
b. $\frac{x^{\prime 2}}{\frac{1}{2}}-\frac{y^{\prime 2}}{\frac{1}{3}}=1$
c.

38. a. $500 x^{\prime 2}+1500 y^{\prime 2}=4500$
b. $\frac{x^{\prime 2}}{9}+\frac{y^{\prime 2}}{3}=1$

56.

57.

58.

59.

60.

66. In a rotated $x^{\prime} y^{\prime}$-system, x and y are replaced with x^{\prime} and y^{\prime}, respectively.
67. $A^{\prime}=A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta$
$C^{\prime}=A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta$
$A^{\prime}+C^{\prime}=A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta+A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta$
$=A\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+B(\sin \theta \cos \theta-\sin \theta \cos \theta)+C\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=A(1)+B(0)+C(1)$
$=A+C$
68. $B^{\prime 2}-4 A^{\prime} C^{\prime}$
$=\left[B\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2(C-A)(\sin \theta \cos \theta)\right]^{2}-4\left[A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta\right]\left[A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta\right]$
$=4 A^{2}\left[(\sin \theta \cos \theta)^{2}-(\sin \theta \cos \theta)^{2}\right]+B^{2}\left[\cos ^{4} \theta+2 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta\right]+4 C^{2}\left[(\sin \theta \cos \theta)^{2}-(\sin \theta \cos \theta)^{2}\right]$
$+4 A B\left[\cos ^{2} \theta(\sin \theta \cos \theta)-\sin ^{2} \theta(\sin \theta \cos \theta)-(\sin \theta \cos \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]$
$-4 A C\left[\cos ^{4} \theta+2(\sin \theta \cos \theta)^{2}+\sin ^{4} \theta\right]+4 B C\left[(\sin \theta \cos \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-(\sin \theta \cos \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]$
$=4 A^{2}[0]+B^{2}\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}\right]+4 C^{2}[0]+4 A B\left[\sin \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta-\cos ^{2} \theta+\sin ^{2} \theta\right)\right]$
$-4 A C\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}\right]+4 B C\left[\sin \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta-\cos ^{2} \theta+\sin ^{2} \theta\right)\right]$
$=B^{2}\left[(1)^{2}\right]+4 A B[0]-4 A C\left[(1)^{2}\right]+4 B C[0]=B^{2}-4 A C$
70.

Section 9.5

Check Point Exercises

1.

2.

71.

72.

Exercise Set 9.5

7. $(60 \sqrt{3}, 1) \quad$ 8. $(80 \sqrt{2},-58+80 \sqrt{2})$
8.

13.

17.

21. $y=2 x$

25. $y=x^{2}-1, x \geq 0$

29. $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{9}=1$

18.

19. $t=-2 ;(-4,3)$

20.

23. $y=(x+4)^{2}$

24. $y=(x+2)^{2}$

27. $\frac{x^{2}}{4}+\frac{y^{2}}{4}=1$

28. $\frac{x^{2}}{9}+\frac{y^{2}}{9}=1$

30. $\frac{(x+1)^{2}}{4}+\frac{(y-1)^{2}}{4}=1$
31. $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
32. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

33. $\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{4}=1,-2 \leq x \leq 4,-1 \leq y \leq 1$

35. $x^{2}-y^{2}=1$
36. $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$

37. $y=x-4, x \geq 2, y \geq-2$
38. $y=x-4, x \geq 2, y \geq-2$

39. $y=\frac{1}{x}, x \geq 1, y \geq 0$
40. $y=\frac{1}{x}, x \geq 1, y \geq 0$

41. $(x-h)^{2}+(y-k)^{2}=r^{2}$
42. $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
43. $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
44. $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
57. a.

b.

c.

d.

58. a.

b.

c.

d.

59.

63.

60.

64.

61.

62.

65.

a. decreasing: $(-\infty, 1)$; increasing: $(1, \infty)$
66.

a. increasing: $(-\infty, 1)$; decreasing: $(1, \infty)$
67.

a. increasing: $(0,2 \pi)$; decreasing: $(2 \pi, 4 \pi)$
b. maximum of 4 at $x=2 \pi$
minimum of 0 at $x=0$ and $x=4 \pi$
68.

a. increasing: $(0,3 \pi)$; decreasing: $(3 \pi, 6 \pi)$
b. maximum of 6 at $x=3 \pi$
minimum of 0 at $x=0$ and $x=6 \pi$
69. a. $x=\left(180 \cos 40^{\circ}\right) t ; y=3+\left(180 \sin 40^{\circ}\right) t-16 t^{2}$
b. After 1 second: 137.9 feet in distance, 102.7 feet in height; After 2 seconds: 275.8 feet in distance, 170.4 feet in height; After 3 seconds: 413.7 feet in distance, 206.1 feet in height
78.

82.

79.

70. a. $x=\left(150 \cos 35^{\circ}\right) t ; y=3+\left(150 \sin 35^{\circ}\right) t-16 t^{2}$
b. After 1 second; 122.9 feet in distance, 73.0 feet in height; After 2 seconds; 245.7 feet in distance, 111.1 feet in height; After 3 seconds; 368.6 feet in distance, 117.1 feet in height
80.

81.

83.

Window: $[-100,1500] \times[-100,500]$; The maximum height is 419.4 feet at a time of 5.1 seconds.
The range of the projectile is 1174.6 feet horizontally.
It hits the ground at 10.2 seconds.
84.

Window: $[-100,3000] \times[-100,500]$;
The maximum height is 462.6 feet at a time of 5.4 seconds.
The range of the projectile is 2642.9 feet horizontally.
It hits the ground at 10.8 seconds.

AA104 Answers to Selected Exercises

85. a. $x=\left(140 \cos 22^{\circ}\right) t ; y=5+\left(140 \sin 22^{\circ}\right) t-16 t^{2}$
86. $\sqrt[3]{x^{2}}+\sqrt[3]{y^{2}}=1$
b.

Window: $[-100,500] \times[-10,60]$
92. a. $\sin t=\frac{P B}{a} \Rightarrow \sin t=\frac{X A}{a} \Rightarrow a \sin t=X A$
$O A$ is the same as the length of $\operatorname{arc} P A$. Since the radius is a, and the central angle is t, the length of the arc is $a t$. So $O A=$ at. Therefore,

$$
\begin{aligned}
& x=O A-X A \\
& x=a t-a \sin t \\
& x=a(t-\sin t)
\end{aligned}
$$

b. $\cos t=\frac{B C}{a} \Rightarrow a \sin t=B C$ and $A C=a$, since a is the radius of the circle. So,

$$
\begin{aligned}
& y=A C-B C \\
& y=a-a \cos t \\
& y=a(1-\cos t)
\end{aligned}
$$

93. $r=\frac{2}{1+\frac{1}{2} \cos \theta}$
94. $\frac{4}{3} \approx 1.33 ; 2 ; \frac{8}{3} \approx 2.67 ; 3.09 ; 3.53 ; 4 ;$

95. a.

$$
\begin{aligned}
r & =\frac{1}{3-3 \cos \theta} \\
r(3-3 \cos \theta) & =1 \\
3 r-3 r \cos \theta & =1 \\
3 r & =1+3 r \cos \theta \\
(3 r)^{2} & =(1+3 r \cos \theta)^{2} \\
9 r^{2} & =(1+3 r \cos \theta)^{2}
\end{aligned}
$$

b. $9 y^{2}=1+6 x$; parabola

Section 9.6

Check Point Exercises

1.

2.

3.

Exercise Set 9.6

1. a. parabola b. The directrix is 3 units above the pole, at $y=3$. 2. a. parabola $\quad \mathbf{b}$. The directrix is 3 units to the right of the pole, at $x=3$.
2. a. ellipse \quad b. The directrix is 3 units to the left of the pole, at $x=-3$. 4. a. ellipse
b. The directrix is 3 units to the right of the pole, at $x=3$.
3. a. parabola
b. The directrix is 4 units above the pole, at $y=4$. 6. a. parabola
b. The directrix is 3 units to the left of the pole, at $x=-3$.
4. a. hyperbola
5. a. hyperbola
6.

13.

16.

19.

21. $[-3,15,1]$ by $[-7,7,1]$
22. $[-2,8,1]$ by $[-4,4,1]$
23. $[-4,2,1]$ by $[-10,10,1]$
25. $[-2,5,1]$ by $[-10,10,1]$
26. $[0,9,1]$ by $[-5,5,1]$
27. $[-4,4,1]$ by $[-10,0.4,1]$
40.

41.

11.

14.

17.

20.

24. $[-2,4,1]$ by $[-10,10,1]$
28. $[-4,4,1]$ by $\left[-10, \frac{1}{3}, 1\right]$
42.

43.

The graph appears to be rotated counterclockwise through an angle of $\frac{\pi}{4}$ radians.
44.

The graph appears to be rotated clockwise through an angle of $\frac{\pi}{3}$ radians.
45. Mercury: $r=\frac{\left(1-0.2056^{2}\right)\left(36.0 \times 10^{6}\right)}{1-0.2056 \cos \theta}$

Earth: $r=\frac{\left(1-0.0167^{2}\right)\left(92.96 \times 10^{6}\right)}{1-0.0167 \cos \theta}$

51. $r=\frac{2}{1-\frac{1}{2} \cos \theta}$ or $r=\frac{6}{1+\frac{1}{2} \cos \theta}$
52. $r=\frac{\frac{3}{2}}{1-\frac{3}{2} \cos \theta}$
53. parabola; using the relationships between rectangular and polar coordinates,

$$
x^{2}+y^{2}=r^{2} \text { and } x=r \cos \theta: y^{2}=x+\frac{1}{4}
$$

57. $2 ; 5 ; 10 ; 17 ; 26 ; 37$; Sum is 97 .

Chapter 9 Review Exercises

1. foci: $(\pm \sqrt{11}, 0)$

$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$
2. foci: $(1 \pm \sqrt{7},-2)$

3. $\frac{(x+3)^{2}}{36}+\frac{(y-5)^{2}}{4}=1$
4. foci: $(\pm \sqrt{17}, 0) ; y= \pm \frac{1}{4} x$

5. foci: $(2 \pm \sqrt{41},-3)$
$y+3= \pm \frac{4}{5}(x-2)$

6. foci: $(0, \pm 3)$

7. foci: $(-1,2 \pm \sqrt{7})$

8. foci: $(0, \pm 2 \sqrt{3})$

9. foci: $(-3 \pm \sqrt{5}, 2)$ $4 x_{(-6,2)}^{2}$
10. foci: $(\pm \sqrt{5}, 0)$

11. foci: $(1,-1 \pm \sqrt{5})$

12. The hit ball will collide with the other ball.
13. foci: $(0, \pm \sqrt{17}) ; y= \pm 4 x$

14. foci: $(3,-2 \pm \sqrt{41})$

$$
y+2= \pm \frac{5}{4}(x-3)
$$

17. foci: $(\pm 5,0) ; y= \pm \frac{3}{4} x$

21. foci: $(1,2 \pm \sqrt{5})$
$y-2= \pm 2(x-1)$

18. foci: $(0, \pm 2 \sqrt{5}) ; y= \pm \frac{1}{2} x$

22. foci: $(1 \pm \sqrt{2},-1)$
$y+1= \pm(x-1)$

25. c must be greater than a.
27. vertex: $(0,0)$; focus: $(2,0)$ directrix: $x=-2$

31. vertex: $(0,1)$; focus: $(0,0)$ directrix: $y=2$

28. vertex: $(0,0)$; focus: $(0,-4)$ directrix: $y=4$

32. vertex: $(-1,5)$; focus: $(0,5)$
directrix: $x=-2$

48. a. $3 x^{\prime 2}+y^{\prime 2}=2$
b. $\frac{x^{\prime 2}}{\frac{2}{3}}+\frac{y^{\prime 2}}{2}=1$
c.

51. a. $16 x^{\prime 2}+96 y^{\prime}=0$
b. $x^{\prime 2}=-6 y^{\prime}$
b. $\frac{x^{\prime 2}}{9}+\frac{y^{\prime 2}}{3}=1$
c.

29. vertex: $(0,2)$; focus: $(-4,2)$ directrix: $x=4$

30. vertex: $(4,-1)$; focus: $(4,0)$ directrix: $y=-2$

33. vertex: $(2,-2)$; focus: $\left(2,-\frac{3}{2}\right)$; directrix: $y=-\frac{5}{2}$

49. a. $18 x^{\prime 2}-2 y^{\prime 2}=18$
b. $\frac{x^{\prime 2}}{1}-\frac{y^{\prime 2}}{9}=1$
c.
52. $y=-\frac{1}{2} x+\frac{1}{2}$

$\left(x^{\prime}, y^{\prime}\right)=(-3 \sqrt{2},-3)$

53. $(y+1)^{2}=x, 0 \leq x \leq 9$, $-2 \leq y \leq 2$

57. $\frac{x^{2}}{9}-\frac{y^{2}}{9}=1$,
$3 \leq x \leq 3 \sqrt{2} .0 \leq y \leq 3$

54. $(y-1)^{2}=\frac{1}{4} x$

55. $\begin{aligned} & \frac{x^{2}}{16}+\frac{y^{2}}{9}=1,0 \leq x \leq 4, \\ & -3<y \leq 3\end{aligned}$

$$
0
$$

56. $\frac{(x-3)^{2}}{4}+\frac{(y-1)^{2}}{4}=1$ or $(x-3)^{2}+(y-1)^{2}=4$

59. a. $x=\left(100 \cos 40^{\circ}\right) t ; y=6+\left(100 \sin 40^{\circ}\right) t-16 t^{2}$
b. After 1 second: 76.6 feet in distance, 54.3 feet in height; after 2 seconds: 153.2 feet in distance, 70.6 feet in height; after 3 seconds: 229.8 feet in distance, 54.8 feet in height.
d.

; The ball is at its maximum height at 2.0 seconds. The maximum height is 70.6 feet.
60. a. $r=\frac{4}{1-\sin \theta} \quad$ b. $e=1 ; p=4$; parabola
c.

62. a. $r=\frac{3}{1+\frac{1}{2} \sin \theta} \quad$ b. $e=\frac{1}{2} ; p=6$; ellipse
c.

64. a. $r=\frac{2}{1+2 \sin \theta}$
b. $e=2 ; p=1$; hyperbola
c.

61. a. $r=\frac{6}{1+\cos \theta} \quad$ b. $e=1 ; p=6$; parabola
c.

63. a. $r=\frac{\frac{2}{3}}{1-\frac{2}{3} \cos \theta} \quad$ b. $e=\frac{2}{3} ; p=1$; ellipse
c.

65. a. $r=\frac{2}{1+4 \cos \theta}$
b. $e=4 ; p=\frac{1}{2}$; hyperbola
c.

Chapter 9 Test

1. foci: $(\pm \sqrt{13}, 0)$
asymptotes: $y= \pm \frac{3}{2} x$

2. vertex: $(0,0)$; focus: $(0,-2)$
directrix: $y=2$
3. foci: $(-1,1 \pm \sqrt{5})$
asymptotes: $y-1= \pm 2(x+1)$

4. vertex: $(-5,1)$; focus: $(-5,3)$ directrix: $y=-1$
$\begin{array}{ll}\text { 6. } \frac{x^{2}}{100}+\frac{y^{2}}{51}=1 & \text { 7. } \frac{y^{2}}{49}-\frac{x^{2}}{51}=1\end{array}$
5. foci: $(-6,5),(2,5)$

6.

15.

16.

17.

Cumulative Review Exercises (Chapters P-9)

11.

12.

13.

14. a. $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{1}{16}, \pm \frac{3}{16}, \pm \frac{1}{32}, \pm \frac{3}{32}$
15. a. domain: $(-2,2)$; range: $[-3, \infty) \quad$ b. minimum of -3 at $x=0$
g.

h. $\quad x=-1 y_{\lambda} x=1$

16. $(g \circ f)(x)=x^{2}-2 \quad$ 19. The costs will be the same when the number of miles driven is 175 miles. The cost will be $\$ 67$.
21. $\frac{\csc \theta-\sin \theta}{\sin \theta}=\frac{\csc \theta}{\sin \theta}-\frac{\sin \theta}{\sin \theta}=\frac{\frac{1}{\sin \theta}}{\sin \theta}-1=\frac{1}{\sin ^{2} \theta}-1=\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta$
22.

25. $b \approx 14.4, C=44^{\circ}, c \approx 10.5$

Exercise Set 10.1

7. $-4,5,-6,7$
8. $5,-6,7,-8$
9. $\frac{1}{3},-\frac{1}{5}, \frac{1}{9},-\frac{1}{17}$
10. $2, \frac{3}{2}, \frac{8}{3}, \frac{15}{2}$
11. $-2,-2,-4,-12$
12. a. 1515; A total of 1515 thousand, or
$1,515,000$, autism cases were diagnosed in the United States from 2001 through 2008. 70. a. 116.5; Average state cigarette tax per pack each year averaged 116.5ϕ for the years 2005 through 2010.
13. 1,307,674,368,000
14. 8.109673361 E15
15. $a_{10}=2.5937 ; a_{100}=2.7048 ; a_{1000}=2.7169 ; a_{10,000}=2.7181 ; a_{100,000}=2.7183$; As n gets larger, a_{n} gets closer to $e \approx 2.7183$.
16.

As n gets larger, a_{n} approaches 1 .
90.

As n gets larger, a_{n} approaches 0 .
91.

As n gets larger, a_{n} approaches 0 .
92.

As n gets larger, a_{n} approaches $\frac{3}{5}$.
96. does not make sense 103. $-5 ;-5 ;-5 ;-5$; The difference between consecutive terms is always -5 . 104. $4 ; 4 ; 4 ; 4$; The difference between consecutive terms is always 4 .

Exercise Set 10.2

1. $200,220,240,260,280,300$
2. $200,140,80,20,-40,-100$
3. $30,20,10,0,-10,-20$
4. $300,350,400,450,500,550 \quad$ 3. $-7,-3,1,5,9,13$
5. $-8,-3,2,7,12,17$
6. $300,210,120,30,-60,-150$
$\begin{array}{lll}\text { 12. } 50,30,10,-10,-30,-50 & \text { 23. } a_{n}=4 n-3 ; a_{20}=77 & \text { 24. } a_{n}=5 n-3 ; a_{20}=97\end{array}$
7. $a_{n}=11-4 n ; a_{20}=-69 \quad$ 26. $a_{n}=11-5 n ; a_{20}=-89 \quad$ 27. $a_{n}=7+2 n ; a_{20}=47 \quad$ 28. $a_{n}=3 n+3 ; a_{20}=63$
8. $a_{n}=-16-4 n ; a_{20}=-96$
9. $a_{n}=-65-5 n ; a_{20}=-165$
10. $a_{n}=1+3 n ; a_{20}=61$
11. $a_{n}=5 n+1 ; a_{20}=101$
12. $a_{n}=40-10 n ; a_{20}=-160$
13. $a_{n}=36-12 n ; a_{20}=-204$
14. $8+13+18+\cdots+88 ; 816 \quad$ 46. $2+8+14+\cdots+116 ; 1180$
15. $2-1-4-\cdots-85 ;-1245$
16. $4+2+0-\cdots-74 ;-1400$
17. $4+8+12+\cdots+400 ; 20,200$
18. $-4-8-12-\cdots-200 ;-5100 \quad$ 69. Company A: $\$ 307,000$; Company B: $\$ 324,000 ;$ Company B pays the greater total amount.
19. makes sense 85. $-2 ;-2 ;-2 ;-2$; The ratio of a term to the term that directly precedes it is always -2 .
20. $5 ; 5 ; 5 ; 5$; The ratio of a term to the term that directly precedes it is always 5 .

Exercise Set 10.3

1. $5,15,45,135,405$
2. $4,12,36,108,324$
3. $20,10,5, \frac{5}{2}, \frac{5}{4}$
4. $24,8, \frac{8}{3}, \frac{8}{9}, \frac{8}{27}$
5. $10,-40,160,-640,2560$
6. $10,-30,90,-270,810$
7. $-6,30,-150,750,-3750$
8. $-2,12,-72,432,-2592$
9. $a_{n}=3(4)^{n-1} ; a_{7}=12,288$
10. $a_{n}=3(5)^{n-1} ; a_{7}=46,875$
11. $a_{n}=18\left(\frac{1}{3}\right)^{n-1} ; a_{7}=\frac{2}{81}$
12. $a_{n}=12\left(\frac{1}{2}\right)^{n-1} ; a_{7}=\frac{3}{16}$
13. $a_{n}=1.5(-2)^{n-1} ; a_{7}=96$
14. $a_{n}=5\left(-\frac{1}{5}\right)^{n-1} ; a_{7}=\frac{1}{3125}$
$\begin{array}{llll}\text { 72. } \$ 1,073,741,823 & \text { 77. a. } \$ 11,617 & \text { 78. a. } \$ 14,163 & \text { 86. } \$ 15 \text { billion }\end{array}$
15.

horizontal asymptote: $y=3$; sum of series: 3
100.

horizontal asymptote: $y=10$; sum of series: 10

Mid-Chapter 10 Check Point

1. $1,-2, \frac{3}{2},-\frac{2}{3}, \frac{5}{24}$
2. $5,2,-1,-4,-7$
3. $5,-15,45,-135,405$
4. $3,1,3,1,3$
5. $a_{n}=4 n-2 ; a_{20}=78$
6. $a_{n}=3(2)^{n-1}$; $a_{10}=1536$
7. $464 \mathrm{ft} ; 3600 \mathrm{ft}$

Section 10.4

Check Point Exercises

1. a. $S_{1}: 2=1(1+1) ; S_{k}: 2+4+6+\cdots+2 k=k(k+1) ; S_{k+1}: 2+4+6+\cdots+2(k+1)=(k+1)(k+2)$
b. $S_{1}: 1^{3}=\frac{1^{2}(1+1)^{2}}{4} ; S_{k}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4} ; S_{k+1}: 1^{3}+2^{3}+3^{3}+\cdots+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}$
2. $S_{1}: 2=1(1+1) ; S_{k}: 2+4+6+\cdots+2 k=k(k+1) ; S_{k+1}: 2+4+6+\cdots+2 k+2(k+1)=(k+1)(k+2) ; S_{k+1}$ can be obtained by adding $2 k+2$ to both sides of S_{k}.
3. $S_{1}: 1^{3}=\frac{1^{2}(1+1)^{2}}{4} ; S_{k}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4} ; S_{k+1}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4} ; S_{k+1}$ can be obtained by adding $k^{3}+3 k^{2}+3 k+1$ to both sides of S_{k}.
4. $S_{1}: 2$ is a factor of $1^{2}+1 ; S_{k}: 2$ is a factor of $k^{2}+k ; S_{k+1}: 2$ is a factor of $(k+1)^{2}+(k+1)=k^{2}+3 k+2 ; S_{k+1}$ can be obtained from S_{k} by writing $k^{2}+3 k+2$ as $\left(k^{2}+k\right)+2(k+1)$.

Exercise Set 10.4

1. $S_{1}: 1=1^{2} ; S_{2}: 1+3=2^{2} ; S_{3}: 1+3+5=3^{2}$
2. $S_{1}: 3=\frac{1(6)}{2} ; S_{2}: 3+4=\frac{2(7)}{2} ; S_{3}: 3+4+5=\frac{3(8)}{2}$
3. $S_{1}: 2$ is a factor of $1-1=0 ; S_{2}: 2$ is a factor of $2^{2}-2=2 ; S_{3}: 2$ is a factor of $3^{2}-3=6$.
4. $S_{1}: 3$ is a factor of $1^{3}-1=0 ; S_{2}: 3$ is a factor of $2^{3}-2=6 ; S_{3}: 3$ is a factor of $3^{3}-3=24$.
5. $S_{k}: 4+8+12+\cdots+4 k=2 k(k+1) ; S_{k+1}: 4+8+12+\cdots+(4 k+4)=2(k+1)(k+2)$
6. $S_{k}: 3+4+5+\cdots+(k+2)=\frac{k(k+5)}{2} ; S_{k+1}: 3+4+5+\cdots+(k+3)=\frac{(k+1)(k+6)}{2}$
7. $S_{k}: 3+7+11+\cdots+(4 k-1)=k(2 k+1) ; S_{k+1}: 3+7+11+\cdots+(4 k+3)=(k+1)(2 k+3)$
8. $S_{k}: 2+7+12+\cdots+(5 k-3)=\frac{k(5 k-1)}{2} ; S_{k+1}: 2+7+12+\cdots+(5 k+2)=\frac{(k+1)(5 k+4)}{2}$
9. $S_{k}: 2$ is a factor of $k^{2}-k+2 ; S_{k+1}: 2$ is a factor of $k^{2}+k+2$. 10. $S_{k}: 2$ is a factor of $k^{2}-k ; S_{k+1}: 2$ is a factor of $k^{2}+k$.
10. $S_{1}: 4=2(1)(1+1) ; S_{k}: 4+8+12+\cdots+4 k=2 k(k+1) ; S_{k+1}: 4+8+12+\cdots+4(k+1)=2(k+1)(k+2) ; S_{k+1}$ can be obtained by adding $4 k+4$ to both sides of S_{k}.
11. $S_{1}: 3=\frac{1(1+5)}{2} ; S_{k}: 3+4+5+\cdots+(k+2)=\frac{k(k+5)}{2} ; S_{k+1}: 3+4+5+\cdots+(k+3)=\frac{(k+1)(k+6)}{2} ; S_{k+1}$ can be obtained by adding $k+3$ to both sides of S_{k}.
12. $S_{1}: 1=1^{2} ; S_{k}: 1+3+5+\cdots+(2 k-1)=k^{2} ; S_{k+1}: 1+3+5+\cdots+(2 k+1)=(k+1)^{2} ; S_{k+1}$ can be obtained by adding $2 k+1$ to both sides of S_{k}.
13. $S_{1}: 3=\frac{3(1)(1+1)}{2} ; S_{k}: 3+6+9+\cdots+3 k=\frac{3 k(k+1)}{2} ; S_{k+1}: 3+6+9+\cdots+3(k+1)=\frac{3(k+1)(k+2)}{2} ; S_{k+1}$ can be obtained by adding $3 k+3$ to both sides of S_{k}.
14. $S_{1}: 3=1[2(1)+1] ; S_{k}: 3+7+11+\cdots+(4 k-1)=k(2 k+1) ; S_{k+1}: 3+7+11+\cdots+(4 k+3)=(k+1)(2 k+3) ; S_{k+1}$ can be obtained by adding $4 k+3$ to both sides of S_{k}.
15. $S_{1}: 2=\frac{1[5(1)-1]}{2} ; S_{k}: 2+7+12+\cdots+(5 k-3)=\frac{k(5 k-1)}{2} ; S_{k+1}: 2+7+12+\cdots+(5 k+2)=\frac{(k+1)(5 k+4)}{2} ; S_{k+1}$ can be obtained by adding $5 k+2$ to both sides of S_{k}.
16. $S_{1}: 1=2^{1}-1 ; S_{k}: 1+2+2^{2}+\cdots+2^{k-1}=2^{k}-1 ; S_{k+1}: 1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1 ; S_{k+1}$ can be obtained by adding 2^{k} to both sides of S_{k}.
17. $S_{1}: 1=\frac{3^{1}-1}{2} ; S_{k}: 1+3+3^{2}+\cdots+3^{k-1}=\frac{3^{k}-1}{2} ; S_{k+1}: 1+3+3^{2}+\cdots+3^{k}=\frac{3^{k+1}-1}{2} ; S_{k+1}$ can be obtained by adding 3^{k} to both sides of S_{k}.
18. $S_{1}: 2=2^{1+1}-2 ; S_{k}: 2+4+8+\cdots+2^{k}=2^{k+1}-2 ; S_{k+1}: 2+4+8+\cdots+2^{k+1}=2^{k+2}-2 ; S_{k+1}$ can be obtained by adding 2^{k+1} to both sides of S_{k}.
19. $S_{1}: \frac{1}{2}=1-\frac{1}{2^{i}} ; S_{k}: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}} ; S_{k+1}: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k+1}} ; S_{k+1}$ can be obtained by adding $\frac{1}{2^{k+1}}$ to both sides of S_{k}.
20. $S_{1}: 1 \cdot 2=\frac{1(1+1)(1+2)}{3} ; S_{k}: 1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}$;
$S_{k+1}: 1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3} ; S_{k+1}$ can be obtained by adding $(k+1)(k+2)$ to both sides of S_{k}.
21. $S_{1}: 1 \cdot 3=\frac{1(1+1)[2(1)+7]}{6} ; S_{k}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+k(k+2)=\frac{k(k+1)(2 k+7)}{6}$;
$S_{k+1}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3)=\frac{(k+1)(k+2)(2 k+9)}{6} ; S_{k+1}$ can be obtained by adding $(k+1)(k+3)$ to both sides of S_{k}.
22. $S_{1}: \frac{1}{1 \cdot 2}=\frac{1}{1+1} ; S_{k}: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1} ; S_{k+1}: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}$; S_{k+1} can be obtained by adding $\frac{1}{(k+1)(k+2)}$ to both sides of S_{k}.
23. $S_{1}: \frac{1}{2 \cdot 3}=\frac{1}{2(1)+4} ; S_{k}: \frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k}{2 k+4} ; S_{k+1}$: $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(k+2)(k+3)}=\frac{k+1}{2 k+6} ; S_{k+1}$ can be obtained by adding $\frac{1}{(k+2)(k+3)}$ to both sides of S_{k}.
24. $S_{1}: 2$ is a factor of $0 ; S_{k}: 2$ is a factor of $k^{2}-k ; S_{k+1}: 2$ is a factor of $k^{2}+k ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{2}+k$ as $\left(k^{2}-k\right)+2 k$.
25. $S_{1}: 2$ is a factor of $4 ; S_{k}: 2$ is a factor of $k^{2}+3 k ; S_{k+1}: 2$ is a factor of $k^{2}+5 k+4 ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{2}+5 k+4$ as $\left(k^{2}+3 k\right)+2(k+2)$.
26. $S_{1}: 6$ is a factor of $6 ; S_{k}: 6$ is a factor of $k(k+1)(k+2) ; S_{k+1}: 6$ is a factor of $(k+1)(k+2)(k+3) ; S_{k+1}$ can be obtained from S_{k} by rewriting $(k+1)(k+2)(k+3)$ as $k(k+1)(k+2)+3(k+1)(k+2)$ and noting that either $k+1$ or $k+2$ is even, so 6 is a factor of $3(k+1)(k+2)$.
27. $S_{1}: 3$ is a factor of $0 ; S_{k}: 3$ is a factor of $k(k+1)(k-1)$ or $k^{3}-k ; S_{k+1}: 3$ is a factor of $(k+1)(k+2) k$ or $k^{3}+3 k^{2}+2 k ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{3}+3 k^{2}+2 k$ as $\left(k^{3}-k\right)+3\left(k^{2}+k\right)$.
28. $S_{1}: 5 \cdot 6^{1}=6\left(6^{1}-1\right) ; S_{k}: \sum_{i=1}^{k} 5 \cdot 6^{i}=6\left(6^{k}-1\right) ; S_{k+1}: \sum_{i=1}^{k+1} 5 \cdot 6^{i}=6\left(6^{k+1}-1\right) ; S_{k+1}$ can be obtained by adding $5 \cdot 6^{k+1}$ to both sides of S_{k}.
29. $S_{1}: 7 \cdot 8^{1}=8\left(8^{1}-1\right) ; S_{k}: \sum_{i=1}^{k} 7 \cdot 8^{i}=8\left(8^{k}-1\right) ; S_{k+1}: \sum_{i=1}^{k+1} 7 \cdot 8^{i}=8\left(8^{k+1}-1\right) ; S_{k+1}$ can be obtained by adding $7 \cdot 8^{k+1}$ to both sides of S_{k}.
30. $S_{1}: 1+2>1 ; S_{k}: k+2>k ; S_{k+1}: k+3>k+1 ; S_{k+1}$ can be obtained by adding 1 to both sides of S_{k}.
31. S_{1} : If $0<x<1$, then $0<x^{1}<1 ; S_{k}$: If $0<x<1$, then $0<x^{k}<1 ; S_{k+1}$: If $0<x<1$, then $0<x^{k+1}<1 ; S_{k+1}$ can be obtained by multiplying the respective parts of $0<x<1$ and $0<x^{k}<1$.
32. $S_{1}:(a b)^{1}=a^{1} b^{1} ; S_{k}:(a b)^{k}=a^{k} b^{k} ; S_{k+1}:(a b)^{k+1}=a^{k+1} b^{k+1} ; S_{k+1}$ can be obtained by multiplying both sides of S_{k} by (ab).
33. $S_{1}:\left(\frac{a}{b}\right)^{1}=\frac{a^{1}}{b^{1}} ; S_{k}:\left(\frac{a}{b}\right)^{k}=\frac{a^{k}}{b^{k}} ; S_{k+1}:\left(\frac{a}{b}\right)^{k+1}=\frac{a^{k+1}}{b^{k+1}} ; S_{k+1}$ can be obtained by multiplying both sides of S_{k} by $\left(\frac{a}{b}\right)$.
34. $S_{3}: 3^{2}>2(3)+1 ; S_{k}: k^{2}>2 k+1$ for $k \geq 3 ; S_{k+1}:(k+1)^{2}>2(k+1)+1$ or $k^{2}+2 k+1>2 k+3 ; S_{k+1}$ can be obtained from S_{k} by noting that S_{k+1} is the same as $k^{2}>2$ which is true for $k \geq 3$.
35. $S_{5}: 2^{5}>5^{2} ; S_{k}: 2^{k}>k^{2}$ for $k \geq 5 ; S_{k+1}: 2^{k+1}>(k+1)^{2}$ or $2\left(2^{k}\right)>k^{2}+2 k+1 ; S_{k+1}$ can be obtained from S_{k} by multiplying both sides of S_{k} by 2 and noting that $k^{2}>2 k+1$ for $k \geq 5$.
36. $S_{1}: \frac{1}{4} ; S_{2}: \frac{1}{3} ; S_{3}: \frac{3}{8} ; S_{4}: \frac{2}{5} ; S_{5}: \frac{5}{12} ; S_{n}: \frac{n}{2 n+2} ;$ Use S_{k} to obtain the conjectured formula.
37. $S_{1}: \frac{1}{2} ; S_{2}: \frac{1}{3} ; S_{3}: \frac{1}{4} ; S_{4}: \frac{1}{5} ; S_{5}: \frac{1}{6} ; S_{n}: \frac{1}{n+1} ;$ Use S_{k} to obtain the conjectured formula.
38. The exponents begin with the exponent on $a+b$ and decrease by 1 in each successive term.
39. The exponents begin with 0 , increase by 1 in each successive term, and end with the exponent on $a+b$.

Exercise Set 10.5

$\begin{array}{llll}\text { 9. } x^{3}+6 x^{2}+12 x+8 & \text { 10. } x^{3}+12 x^{2}+48 x+64 & \text { 11. } 27 x^{3}+27 x^{2} y+9 x y^{2}+y^{3} & \text { 12. } x^{3}+9 x^{2} y+27 x y^{2}+27 y^{3}\end{array}$
$\begin{array}{llll}\text { 13. } 125 x^{3}-75 x^{2}+15 x-1 & \text { 14. } 64 x^{3}-48 x^{2}+12 x-1 & \text { 15. } 16 x^{4}+32 x^{3}+24 x^{2}+8 x+1 & \text { 16. } 81 x^{4}+108 x^{3}+54 x^{2}+12 x+1\end{array}$
17. $x^{8}+8 x^{6} y+24 x^{4} y^{2}+32 x^{2} y^{3}+16 y^{4} \quad$ 18. $x^{8}+4 x^{6} y+6 x^{4} y^{2}+4 x^{2} y^{3}+y^{4} \quad$ 19. $y^{4}-12 y^{3}+54 y^{2}-108 y+81$
20. $y^{4}-16 y^{3}+96 y^{2}-256 y+256 \quad$ 21. $16 x^{12}-32 x^{9}+24 x^{6}-8 x^{3}+1 \quad$ 22. $16 x^{20}-32 x^{15}+24 x^{10}-8 x^{5}+1$
23. $c^{5}+10 c^{4}+40 c^{3}+80 c^{2}+80 c+32 \quad$ 24. $c^{5}+15 c^{4}+90 c^{3}+270 c^{2}+405 c+243 \quad$ 25. $x^{5}-5 x^{4}+10 x^{3}-10 x^{2}+5 x-1$
26. $x^{5}-10 x^{4}+40 x^{3}-80 x^{2}+80 x-32 \quad$ 27. $243 x^{5}-405 x^{4} y+270 x^{3} y^{2}-90 x^{2} y^{3}+15 x y^{4}-y^{5}$
28. $x^{5}-15 x^{4} y+90 x^{3} y^{2}-270 x^{2} y^{3}+405 x y^{4}-243 y^{5} \quad$ 29. $64 a^{6}+192 a^{5} b+240 a^{4} b^{2}+160 a^{3} b^{3}+60 a^{2} b^{4}+12 a b^{5}+b^{6}$
30. $a^{6}+12 a^{5} b+60 a^{4} b^{2}+160 a^{3} b^{3}+240 a^{2} b^{4}+192 a b^{5}+64 b^{6} \quad$ 31. $x^{8}+16 x^{7}+112 x^{6}+\cdots \quad$ 32. $x^{8}+24 x^{7}+252 x^{6}+\cdots$
33. $x^{10}-20 x^{9} y+180 x^{8} y^{2}-\cdots \quad$ 34. $x^{9}-18 x^{8} y+144 x^{7} y^{2}-\cdots \quad$ 35. $x^{32}+16 x^{30}+120 x^{28}+\cdots \quad$ 36. $x^{34}+17 x^{32}+136 x^{30}+\cdots$
37. $y^{60}-20 y^{57}+190 y^{54}-\cdots$
38. $y^{63}-21 y^{60}+210 y^{57}-\cdots$
49. $x^{12}+4 x^{7}+6 x^{2}+\frac{4}{x^{3}}+\frac{1}{x^{8}}$
50. $x^{8}+4 x^{3}+\frac{6}{x^{2}}+\frac{4}{x^{7}}+\frac{1}{x^{12}}$
51. $x-3 x^{1 / 3}+\frac{3}{x^{1 / 3}}-\frac{1}{x}$
52. $x^{2}-3 x+3-\frac{1}{x}$
53. $4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}$
54. $5 x^{4}+10 x^{3} h+10 x^{2} h^{2}+5 x h^{3}+h^{4}$
68.

f_{2}, f_{3}, and f_{4} are approaching $f_{1}=f_{5}$.
69.

70. $f_{1}(x)=x^{3}-3 x^{2}+3 x-1$
71. $f_{1}(x)=x^{4}-8 x^{3}+24 x^{2}-32 x+16$
83. $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!}=\frac{n!}{(n-r)![n-(n-r)]!}=\binom{n}{n-r}$
84. $\binom{n}{r}+\binom{n}{r+1}=\frac{n!}{r!(n-r)!}+\frac{n!}{(r+1)!(n-(r+1))!}=\frac{n!}{r!(n-r)!}+\frac{n!}{(r+1) r!(n-r-1)!}$

$$
=\frac{n!(r+1)+n!(n-r)}{(r+1) r!(n-r)!}=\frac{n!(r+1+n-r)}{(r+1) r!(n-r)!}=\frac{n!(n+1)}{(r+1) r!(n-r)!}=\frac{(n+1)!}{(r+1)!(n-r)!}=\frac{(n+1)!}{(r+1)!(n+1-(r+1))!}=\binom{n+1}{r+1}
$$

85. a. $(a+b)^{1}=a+b=\binom{1}{0} a^{1}+\binom{1}{1} b^{1} \quad$ b. Assume: $(a+b)^{k}=\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\binom{k}{2} a^{k-2} b^{2}+\cdots+\binom{k}{k-1} a b^{k-1}$ $+\binom{k}{k} b^{k}$; Prove: $(a+b)^{k+1}=\binom{k+1}{0} a^{k+1}+\binom{k+1}{1} a^{k+1-1} b+\binom{k+1}{2} a^{k+1-2} b^{2}+\cdots+\binom{k+1}{k+1-1} a b^{k+1-1}+\binom{k+1}{k+1} b^{k+1}$
c. $(a+b)(a+b)^{k}=(a+b)\left[\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\binom{k}{2} a^{k-2} b^{2}+\cdots+\binom{k}{k-1} a b^{k-1}+\binom{k}{k} b^{k}\right]$ or $(a+b)^{k+1}=\binom{k}{0} a^{k+1}$ $+\binom{k}{0} a^{k} b+\binom{k}{1} a^{k} b+\binom{k}{1} a^{k-1} b^{2}+\binom{k}{2} a^{k-1} b^{2}+\binom{k}{2} a^{k-2} b^{3}+\cdots+\binom{k}{k-1} a^{2} b^{k-1}+\binom{k}{k-1} a b^{k}+\binom{k}{k} a b^{k}+\binom{k}{k} b^{k+1}$
d. $(a+b)^{k+1}=\binom{k}{0} a^{k+1}+\left[\binom{k}{0}+\binom{k}{1}\right] a^{k} b+\left[\binom{k}{1}+\binom{k}{2}\right] a^{k-1} b^{2}+\left[\binom{k}{2}+\binom{k}{3}\right] a^{k-2} b^{3}+\cdots+\left[\binom{k}{k-1}+\binom{k}{k}\right] a b^{k}+\binom{k}{k} b^{k+1}$
e. $(a+b)^{k+1}=\binom{k}{0} a^{k+1}+\binom{k+1}{1} a^{k} b+\binom{k+1}{2} a^{k-1} b^{2}+\binom{k+1}{3} a^{k-2} b^{3}+\cdots+\binom{k+1}{k} a b^{k}+\binom{k}{k} b^{k+1}$
f. $(a+b)^{k+1}=\binom{k+1}{0} a^{k+1}+\binom{k+1}{1} a^{k} b+\binom{k+1}{2} a^{k-1} b^{2}+\binom{k+1}{3} a^{k-2} b^{3}+\cdots+\binom{k+1}{k} a b^{k}+\binom{k+1}{k+1} b^{k+1}$

Exercise Set 10.6

17. combinations

Exercise Set 10.7

27. $\frac{1}{18,009,460} ; \frac{5}{900,473}$
28. $\frac{1}{593,775} ; \frac{4}{23,751}$
29. a. $2,598,960$
b. 1287
c. $\frac{1287}{2,598,960} \approx 0.0005$
30. $\frac{11}{1105} \approx 0.00995$
31. c. $\left(\frac{15}{16}\right)^{10} \approx 0.524$
d. $1-\left(\frac{15}{16}\right)^{10} \approx 0.476$
32. does not make sense
33. a. The first person can have any birthday in the year. The second person can have all but one birthday.
34.

77.

Chapter 10 Review Exercises

10. $\sum_{i=1}^{15} \frac{i}{i+2}$
11. $\sum_{i=4}^{13} i^{3}$ or $\sum_{i=1}^{10}(i+3)^{3}$
12. $7,11,15,19,23,27$
13. $-4,-9,-14,-19,-24,-29$
14. $\frac{3}{2}, 1, \frac{1}{2}, 0,-\frac{1}{2},-1$
15. $-2,3,8,13,18,23$
16. $16,-8,4,-2,1$
17. $-1,5,-25,125,-625$
18. $a_{n}=2^{n-1} ; a_{8}=128$
19. $a_{n}=100\left(\frac{1}{10}\right)^{n-1} ; a_{8}=\frac{1}{100,000} \quad$ 55. a. $\$ 91,361$
20. $S_{1}: 5=\frac{5(1)(1+1)}{2} ; S_{k}: 5+10+15+\cdots+5 k=\frac{5 k(k+1)}{2} ; S_{k+1}: 5+10+15+\cdots+5(k+1)=\frac{5(k+1)(k+2)}{2} ; S_{k+1}$
can be obtained by adding $5(k+1)$ to both sides of S_{k}.
21. $S_{1}: 1=\frac{4^{1}-1}{3} ; S_{k}: 1+4+4^{2}+\cdots+4^{k-1}=\frac{4^{k}-1}{3} ; S_{k+1}: 1+4+4^{2}+\cdots+4^{k}=\frac{4^{k+1}-1}{3} ; S_{k+1}$ can be obtained by adding 4^{k} to both sides of S_{k}.
22. $S_{1}: 2=2(1)^{2} ; S_{k}: 2+6+10+\cdots+(4 k-2)=2 k^{2} ; S_{k+1}: 2+6+10+\cdots+(4 k+2)=2 k^{2}+4 k+2 ; S_{k+1}$ can be obtained by adding $4 k+2$ to both sides of S_{k}.
23. $S_{1}: 1 \cdot 3=\frac{1(1+1)[2(1)+7]}{6} ; S_{k}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+k(k+2)=\frac{k(k+1)(2 k+7)}{6}$;
$S_{k+1}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3)=\frac{(k+1)(k+2)(2 k+9)}{6} ; S_{k+1}$ can be obtained by adding $(k+1)(k+3)$ to both sides of S_{k}.
24. $S_{1}: 2$ is a factor of $6 ; S_{k}: 2$ is a factor of $k^{2}+5 k ; S_{k+1}: 2$ is a factor of $k^{2}+7 k+6 ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{2}+7 k+6$ as $\left(k^{2}+5 k\right)+2(k+3)$.
25. $8 x^{3}+12 x^{2}+6 x+1 \quad$ 65. $x^{8}-4 x^{6}+6 x^{4}-4 x^{2}+1 \quad$ 66. $x^{5}+10 x^{4} y+40 x^{3} y^{2}+80 x^{2} y^{3}+80 x y^{4}+32 y^{5}$
26. $x^{6}-12 x^{5}+60 x^{4}-160 x^{3}+240 x^{2}-192 x+64 \quad$ 68. $x^{16}+24 x^{14}+252 x^{12}+\cdots \quad$ 69. $x^{9}-27 x^{8}+324 x^{7}-\cdots$

Chapter 10 Test

9. $a_{n}=5 n-1 ; a_{12}=59 \quad$ 10. $a_{n}=16\left(\frac{1}{4}\right)^{n-1} ; a_{12}=\frac{1}{262,144}$
10. $S_{1}: 1=\frac{1[3(1)-1]}{2} ; S_{k}: 1+4+7+\cdots+(3 k-2)=\frac{k(3 k-1)}{2} ; S_{k+1}: 1+4+7+\cdots+(3 k+1)=\frac{(k+1)(3 k+2)}{2} ; S_{k+1}$ can be obtained by adding $3 k+1$ to both sides of S_{k}.

AA114 Answers to Selected Exercises

Cumulative Review Exercises (Chapters P-10)
8.

9.

23.

24.

25.

26.

27.

28.

29.

30. $(f \circ g)(x)=-x^{2}+2 ;(g \circ f)(x)=-x^{2}-2 x$ 32. $\left[\begin{array}{rr}-2 & 10 \\ -5 & 7 \\ 15 & -15\end{array}\right]$
33. $\frac{-1}{x-2}+\frac{3 x-2}{x^{2}+2 x+2}$
34. $x^{15}+10 x^{12} y+40 x^{9} y^{2}+80 x^{6} y^{3}+80 x^{3} y^{4}+32 y^{5}$
41. a. 6 sec
44. a. 10 in .
b. $\frac{3}{8}$ cycles/sec
c. $\frac{8}{3} \sec$
45. $\tan x+\frac{1}{\tan x}=\frac{\sin x}{\cos x}+\frac{1}{\frac{\sin x}{\cos x}}=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x}=\frac{1}{\cos x \sin x}$
46. $\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\frac{1-\frac{\sin ^{2} x}{\cos ^{2} x}}{1+\frac{\sin ^{2} x}{\cos ^{2} x}} \cdot \frac{\cos ^{2} x}{\cos ^{2} x}=\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x+\sin ^{2} x}=\frac{\cos 2 x}{1}=\cos 2 x$
47.

51.

52. $B \approx 54^{\circ}, C \approx 92^{\circ}, c \approx 39.3$ or $B \approx 126^{\circ}, C \approx 20^{\circ}, c \approx 13.5$
53. $y=2-x^{2}$;

CHAPTER 11

Section 11.1

Check Point Exercises

4.

$$
f(x)= \begin{cases}3 x-2 & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

Exercise Set 11.1

42. 20
43. a. 8; As your nose approaches the fan, the speed of the breeze that your nose feels approaches 8 miles per hour.
b. Answers may vary. 68. 124; This means that the recommended safe distance between cars traveling at 60 miles per hour is 124 feet.
44. a. 30 ; The cost to rent the car one day and drive it 100 miles is $\$ 30 . \quad$ 72. b. 450 ; Yes, the same limit is obtained. The graph shows that the limit is the maximum area.
45. $0.69315 ; 0.693147$
46. $0.25000 ; 0.250000$
47. $1.5000 ; 1.50000$
48. $0.50000 ; 0.50000017$
49. values of x in the interval $\left(\frac{29}{30}, \frac{31}{30}\right)$; values of x in the interval $\left(\frac{299}{300}, \frac{301}{300}\right)$ 95. 31.544281
50. a.

b. $\lim _{x \rightarrow 2^{-}} f(x)=9 ; \lim _{x \rightarrow 2^{+}} f(x)=7 ; \lim _{x \rightarrow 2} f(x)$ does not exist.

Exercise Set 11.2

59. b. The length of the starship appears to approach 0 . c. It is not possible to exceed the speed of light. you will barely grow older. c. It is not possible to exceed the speed of light.
60. 4
61.

No, it is not necessary to lift your pencil off the paper.
87.

Yes, it is necessary to lift your pencil off the paper.
88.

Yes, it is necessary to lift your pencil off the paper.

Exercise Set 11.3

19. continuous for every number x
20. continuous for every number x
21. -1 and 4
22. -2 and 5
23. continuous for every number x
24. continuous for every number x
25. h. As the end of the course approached, the percentage of material learned by the student approached 100%. 44. c. $\lim _{x \rightarrow 3} f(x)$ does not exist; the graph shows a discontinuity at $x=3$. d. The graph jumps at its discontinuities due to per-ounce charges.
26. $2.7183 ; 2.71828$
27. does not make sense
28. does not make sense
29. makes sense
30. No. In Exercise 58, $\lim _{x \rightarrow 9} f(x)$ exists. In this exercise, however, $\lim _{x \rightarrow 9} \frac{1}{x-9}$ does not exist. \quad 64. $-32 a-16 h+48$

Mid-Chapter 11 Check Point

17. does not exist 18. c. does not exist

Exercise Set 11.4

1. a. 2
b. $y=2 x+3$
2. a.
b. $y=4 x+2$
3. a. -2
b. $y=-2 x+3$
4. a. -2
b. $y=-2 x+6$
5. a. -20
b. $y=-20 x-20$
6. a. -16
b. $y=-16 x-16$
7. a. 7
b. $y=7 x-8$
8. a. $7 \quad$ b. $y=7 x-3$
9. a. $\frac{1}{6}$
b. $y=\frac{1}{6} x+\frac{3}{2}$
10. a. $\frac{1}{8}$
b. $y=\frac{1}{8} x+2$
11. a. -1
b. $y=-x+2$
12. a. -2
b. $y=-2 x+4$
13. a. \& c.

14. a. \& c.

15. a. \& c.

16. a. \& c.

17. a. \& c.

18. a. \& c.

19. a. \& c.

20. a. \& c.

21. a. 32 feet per second; -32 feet per second
22. a. 56 feet per second; -56 feet per second 66. does not make sense 68. does not make sense
23. a. 32 feet per second; -32 feet per second
24. $A^{\prime}(r)=\lim _{h \rightarrow 0} \frac{A(r+h)-A(r)}{h}$
$=\lim _{h \rightarrow 0} \frac{\pi(r+h)^{2}-\pi r^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{\pi\left(r^{2}+2 r h+h^{2}\right)-\pi r^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{\pi r^{2}+2 \pi r h+\pi h^{2}-\pi r^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h(2 \pi r+\pi h)}{h}$
$=\lim _{h \rightarrow 0}(2 \pi r+\pi h)=2 \pi r+0=2 \pi r$
25. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{a(x+h)^{2}+b(x+h)+c-\left(a x^{2}+b x+c\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{a x^{2}+2 a x h+a h^{2}+b x+b h+c-a x^{2}-b x-c}{h}$
$=\lim _{h \rightarrow 0} \frac{2 a x h+a h^{2}+b h}{h}$
$=\lim _{h \rightarrow 0} \frac{h(2 a x+a h+b)}{h}$
$=\lim _{h \rightarrow 0}(2 a x+a h+b)=2 a x+b$
When $2 a x+b=0, x=-\frac{b}{2 a}$.

Chapter 11 Review Exercises

12. does not exist
13. does not exist
14. does not exist
15. continuous for every number x
16. 1 and -3
17. 0
18. continuous for every number x
19. a. $-\frac{1}{x^{2}}$
b. $-\frac{1}{4} ;-\frac{1}{4}$
20. a. $\frac{1}{2 \sqrt{x}}$
b. $\frac{1}{12} ; \frac{1}{18}$
21. a. 16 feet per second; -48 feet per second

Cumulative Review Exercises (Chapters P-11)

6.

$f(x)=\frac{2 x^{2}-5 x+2}{x^{2}-4}$
10.

$y=\frac{1}{2} \sec 2 \pi x, 0 \leq x \leq 2$
11.

8.

$$
f(x)=\left\{\begin{array}{ccc}
-x+1 & \text { if } & -1 \leq x<1 \\
2 & \text { if } & x=1 \\
x^{2} & \text { if } & x>1
\end{array}\right.
$$

12.

9.

$$
y=2 \sin \left(2 x+\frac{\pi}{2}\right)
$$

13.

$f(x)=\sqrt{x}$
$g(x)=\sqrt{x-2}+1$
14.

23. $\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta} \\
& =\sec \theta \csc \theta
\end{aligned}
$$

15.

24. $\tan (\theta+\pi)=\frac{\tan \theta+\tan \pi}{1-\tan \theta \tan \pi}$

$$
\begin{aligned}
& =\frac{\tan \theta+0}{1-\tan \theta(0)} \\
& =\tan \theta
\end{aligned}
$$

19. $x^{8}-12 x^{6} y+54 x^{4} y^{2}-108 x^{2} y^{3}+81 y^{4}$
20. $\left[\begin{array}{lll}2 & 1 & 3 \\ 8 & 1 & 9 \\ 5 & 1 & 6\end{array}\right]$
21.

This page intentionally left blank

ANSWERS TO SELECTED EXERCISES

CHAPTER P

Section P. 1

Check Point Exercises

1. 608
2. $\$ 9209$
3. $\{3,7\}$
4. $\{3,4,5,6,7,8,9\}$
5. a. $\sqrt{9}$
b. $0, \sqrt{9}$
c. $-9,0, \sqrt{9}$
d. $-9,-1.3,0,0 . \overline{3}, \sqrt{9}$
e. $\frac{\pi}{2}, \sqrt{10}$
f. $-9,-1.3,0,0 . \overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10}$
6. a. $\sqrt{2}-1$
b. $\pi-3$
c. 1
7. 9
8. $38 x^{2}+23 x$
9. $42-4 x$

Concept and Vocabulary Check

1. expression
2. b to the nth power; base; exponent
3. formula; modeling; models
4. intersection; $A \cap B$
5. union; $A \cup B$
$\begin{array}{lll}\text { 6. natural } & \text { 7. whole } & \text { 8. integers }\end{array}$ 9. rational
6. irrational
7. rational; irrational
8. absolute value; $x ;-x$
9. $b+a ; b a$
10. $a+(b+c) ;(a b) c$
11. $a b+a c$
12. 0 ; inverse; 0 ; identity
13. inverse; 1 ; identity
14. simplifie
15. a

Exercise Set P. 1

$\begin{array}{lll}\text { 1. } 57 & \text { 3. } 10 & \text { 5. } 88\end{array}$
$\begin{array}{lll}\text { 7. } 10 & \text { 9. } 44 & \text { 11. } 46\end{array}$
13. 10
15. -8
17. $10^{\circ} \mathrm{C}$
19. 60 ft
21. $\{2,4\}$
23. $\{s, e, t\}$
25. \varnothing
27. \varnothing 29. $\{1,2,3,4,5\}$
31. $\{1,2,3,4,5,6,7,8,10\}$
33. $\{a, e, i, o, u\}$
d. $-9,-\frac{4}{5}, 0,0.25,9.2, \sqrt{100}$
e. $\sqrt{3}$
f. $-9,-\frac{4}{5}, 0,0.25, \sqrt{3}, 9.2, \sqrt{100}$
35. a. $\sqrt{100}$
b. $0, \sqrt{100}$
c. $-9,0, \sqrt{100}$
d. $-11,-\frac{5}{6}, 0,0.75, \sqrt{64}$
e. $\sqrt{5}, \pi \quad$ f. $-11,-\frac{5}{6}, 0,0.75, \sqrt{5}, \pi, \sqrt{64}$
39. 0
37. a. $\sqrt{64}$
b. $0, \sqrt{64}$
c. $-11,0, \sqrt{64}$
45. true 47. true
49. true
51. 300
$\begin{array}{lll}\text { 53. } 12-\pi & \text { 55. } 5-\sqrt{2} & \text { 57. }-1\end{array}$
41. Answers may vary; an example is 2 .
43. true
69. $|5-(-2)| \cdot 7 \quad 71-4-(-19)|\cdot 15 \quad 73-1.4-(-3.6)| \cdot 22 \quad 75$ commutative property of addition
79. commutative property of addition 81. distributive property of multiplication over addition 83. inverse property of multiplication
85. $15 x+16$
87. $27 x-10$
89. $29 y-29$
91. $8 y-12$
93. $16 y-25$
95. $12 x^{2}+11$ 97. $14 x$
99. $-2 x+3 y+6 \quad$ 101. x
103. $>\quad$ 105. $=$
107. $<$
109. $=$
111. 45
113. $\frac{1}{121}$
115. 14
117. $-\frac{8}{3} \quad$ 119. $-\frac{1}{2}$
121. $x-(x+4) ;-4$
123. $6(-5 x) ;-30 x \quad$ 125. $5 x-2 x ; 3 x \quad$ 127. $8 x-(3 x+6) ; 5 x-6 \quad$ 129. a. 140 beats per minute b. 160 beats per minute
131. a. $\$ 26,317$
b. overestimates by $\$ 44$
c. $\$ 30,568$
-0.07
b. $\$ 780$
145. does not make sense
147. does not make sense 149. false 151. false \quad 153. false \quad 155. true \quad 157. $>\quad$ 159. a. $b^{7} \quad$ b. $b^{10} \quad$ c. Add the exponents. 160. a. b^{4}
b. b^{6}
c. Subtract the exponents.
161. It moves the decimal point 3 places to the right.

Section P. 2

Check Point Exercises

1. a. $16 x^{12} y^{24}$
b. $-18 x^{3} y^{8}$
c. $\frac{5 y^{6}}{x^{4}}$
d. $\frac{y^{8}}{25 x^{2}}$
2. a. $-2,600,000,000$
b. 0.000003017
3. a. 5.21×10^{9}
b. -6.893×10^{-8}
4. 4.1×10^{9}
5. a. 3.55×10^{-1}
b. 4×10^{8}
6. $\$ 8300$
7. $2.5344 \times 10^{3}=2534.4$ centimeters per second

Concept and Vocabulary Check

1. b^{m+n}; add \quad 2. b^{m-n}; subtract
2. 1
3. $\frac{1}{b^{n}}$
4. false
5. b^{n}
6. true
7. a number greater than or equal to 1 and less than 10 ; integer
8. true 10. false

Exercise Set P. 2

1. 50
2. 64
3. -64
4. 1
5. -1
6. $\frac{1}{64}$
7. 32
8. 64
9. 16
10. $\frac{1}{9}$
11. $\frac{1}{16}$
12. $\frac{y}{x^{2}}$
13. y^{5}
14. x^{10}
15. x^{5}
16. x^{21}
17. $\frac{1}{x^{15}}$
18. x^{7}
19. x^{21}
20. $64 x^{6}$
21. $-\frac{64}{x^{3}}$
22. $9 x^{4} y^{10}$
23. $6 x^{11}$
24. $18 x^{9} y^{5}$
25. $4 x^{16}$
26. $-5 a^{11} b$
27. $\frac{2}{b^{7}}$
28. $\frac{1}{16 x^{6}}$
29. $\frac{3 y^{14}}{4 x^{4}}$
30. $\frac{y^{2}}{25 x^{6}}$
31. $-\frac{27 b^{15}}{a^{18}}$
32. 1
33. 380
34. 0.0006
35. $-7,160,000$
36. 0.79
37. -0.00415
38. $-60,000,100,000 \quad$ 77. $3.2 \times 10^{4} \quad$ 79. 6.38×10^{17}
39. -5.716×10^{3}
40. 2.7×10^{-3}
41. -5.04×10^{-9}
42. 6.3×10^{7}
43. 6.4×10^{4}
44. 1.22×10^{-11}
45. 2.67×10^{13}
46. 2.1×10^{3}
47. 4×10^{5}
48. 2×10^{-8}
49. 5×10^{3}
50. 4×10^{15}
51. 9×10^{-3}
52. 1
53. $\frac{y}{16 x^{8} z^{6}}$
54. $\frac{1}{x^{12} y^{16} z^{20}}$
55. $\frac{x^{18} y^{6}}{4}$
56. a. 2.17×10^{12}
b. 3.09×10^{8}
c. $\$ 7023$
57. $\$ 1.0586 \times 10^{10} \quad$ 119. $1.06 \times 10^{-18} \mathrm{~g}$
58. $4.064 \times 10^{9} \quad$ 133. makes sense
59. makes sense
60. true
c. $\sqrt{300}=10 \sqrt{3}$
$\begin{array}{lll}\text { 143. true } & \text { 145. } A=C+D & \text { 148. a. } 8\end{array}$
b. $8 \quad$ c. $\sqrt{16} \cdot \sqrt{4}=\sqrt{16 \cdot 4}$
61. a. 17.32
b. 17.32
62. a. $31 x$
b. $31 \sqrt{2}$

Section P. 3

Check Point Exercises

1. a. 9
b. -3
c. $\frac{1}{5}$
d. 10
e. 14
2. a. $5 \sqrt{3}$
b. $5 x \sqrt{2}$
3. a. $\frac{5}{4}$
b. $5 x \sqrt{3}$
4. a. $17 \sqrt{13}$
b. $-19 \sqrt{17 x}$
5. a. $17 \sqrt{3}$
b. $10 \sqrt{2 x}$
6. a. $\frac{5 \sqrt{3}}{3}$
b. $\sqrt{3}$
7. $\frac{8(4-\sqrt{5})}{11}$ or $\frac{32-8 \sqrt{5}}{11}$
8. a. $2 \sqrt[3]{5}$
b. $2 \sqrt[5]{2}$
c. $\frac{5}{3}$
9. $5 \sqrt[3]{3}$
10. a. 5
b. 2
c. -3
d. -2
e. $\frac{1}{3}$
11. a. 81
b. 8
c. $\frac{1}{4}$
12. a. $10 x^{4}$
b. $4 x^{5 / 2}$
13. \sqrt{x}

Concept and Vocabulary Check

1. principal
2. 8^{2}
3. $|a|$
4. $\sqrt{a} \cdot \sqrt{b}$
5. $\frac{\sqrt{a}}{\sqrt{b}}$
6. $18 \sqrt{3}$
7. $5 ; 6 \sqrt{3}$
8. $7-\sqrt{3}$
9. $\sqrt{10}+\sqrt{2}$
10. index; radicand
11. $(-2)^{5}$
12. $a ;|a|$
13. $\sqrt[n]{a}$
14. $2 ; 8$

Exercise Set P. 3

1. $6 \quad$ 3. -6
2. not a real number
3. 3
4. 1
5. 13
6. $5 \sqrt{2}$
7. $3|x| \sqrt{5}$
8. $2 x \sqrt{3}$
9. $x \sqrt{x}$
10. $2 x \sqrt{3 x}$
11. $\frac{1}{9}$
12. $\frac{7}{4} \quad$ 27. $4 x$
13. $5 x \sqrt{2 x}$
14. $2 x^{2} \sqrt{5}$
15. $13 \sqrt{3}$
16. $-2 \sqrt{17 x}$
17. $5 \sqrt{2}$
18. $3 \sqrt{2 x}$
19. $34 \sqrt{ } 2$
20. $20 \sqrt{2}-5 \sqrt{3}$
21. $\frac{\sqrt{7}}{7}$
22. $\frac{\sqrt{10}}{5}$
23. $\frac{13(3-\sqrt{11})}{-2}$
24. $7(\sqrt{5}+2)$
25. $3(\sqrt{5}-\sqrt{3})$
26. 5 57. -2
27. not a real number
28. 3
29. -3
30. $-\frac{1}{2} \quad$ 67. $2 \sqrt[3]{4} \quad$ 69. $x \sqrt[3]{x}$
$\begin{array}{lll}\text { 71. } 3 \sqrt[3]{2} & \text { 73. } 2 x & \text { 75. } 7 \sqrt[5]{2}\end{array}$
31. $13 \sqrt[3]{2}$
32. $-y \sqrt[3]{2 x}$
33. $\sqrt{2}+2$
34. $6 \quad 85.2$
35. 25
36. $\frac{1}{16}$
37. $14 x^{7 / 12}$
38. $4 x^{1 / 4}$
39. $x^{2} \quad$ 97. $5 x^{2}|y|^{3}$
40. $27 y^{2 / 3}$
41. $\sqrt{5}$
42. x^{2}
43. $\sqrt[3]{x^{2}} \quad$ 107. $\sqrt[3]{x^{2} y}$
44. 3
45. $\frac{x^{2}}{7 y^{3 / 2}} \quad$ 113. $\frac{x^{3}}{y^{2}} \quad$ 115. Paige Fox is bad at math. \quad 117. $\frac{\sqrt{5}+1}{2} ; 1.62$ to $1 \quad$ 119. $P=18 \sqrt{5} \mathrm{ft}$; $A=100 \mathrm{ft}^{2} \quad$ 129. does not make sense $\begin{array}{lllllllll}\text { 131. does not make sense } & \text { 133. false } & \text { 135. false } & \text { 137. Let } \square=3 . & \text { 139. } 4 & \text { 141. a. } 8 & \text { b. } \frac{1}{4} & \text { 142. } 10 x^{7} y^{9} & \text { 143. } 16 x^{8}+6 x^{5}\end{array}$
46. $2 x^{3}+11 x^{2}+22 x+15$

Section P. 4

Check Point Exercises

1. a. $-x^{3}+x^{2}-8 x-20$
b. $20 x^{3}-11 x^{2}-2 x-8$
2. $15 x^{3}-31 x^{2}+30 x-8$
3. $28 x^{2}-41 x+15$
4. a. $21 x^{2}-25 x y+6 y^{2}$
b. $4 x^{2}+16 x y+16 y^{2}$
5. a. $9 x^{2}+12 x+4-25 y^{2}$
b. $4 x^{2}+4 x y+y^{2}+12 x+6 y+9$

Concept and Vocabulary Check

1. whole 2. standard 3. monomial 10. $3 x^{2} ; 5 x ; 21 x ; 35 \quad$ 11. $A^{2}-B^{2}$; minus of the terms; plus 14. $n+m$
2. binomial \quad 5. trinomial \quad 6. $n \quad$ 7. like \quad 8. distributive; $4 x^{5}-8 x^{2}+6 ; 7 x^{3} \quad$ 9. $5 x$; 3 ; like 12. $A^{2}+2 A B+B^{2}$; squared; product of the terms; squared \quad 13. $A^{2}-2 A B+B^{2}$; minus; product

Exercise Set P. 4

1. yes; $3 x^{2}+2 x-5 \quad$ 3. no \quad 5. $2 \quad$ 7. $4 \quad$ 9. $11 x^{3}+7 x^{2}-12 x-4 ; 3 \quad$ 11. $12 x^{3}+4 x^{2}+12 x-14 ; 3 \quad$ 13. $6 x^{2}-6 x+2 ; 2$
$\begin{array}{llllll}\text { 15. } x^{3}+1 & \text { 17. } 2 x^{3}-9 x^{2}+19 x-15 & \text { 19. } x^{2}+10 x+21 & \text { 21. } x^{2}-2 x-15 & \text { 23. } 6 x^{2}+13 x+5 & \text { 25. } 10 x^{2}-9 x-9\end{array}$
$\begin{array}{llllll}\text { 27. } 15 x^{4}-47 x^{2}+28 & \text { 29. } 8 x^{5}-40 x^{3}+3 x^{2}-15 & \text { 31. } x^{2}-9 & \text { 33. } 9 x^{2}-4 & \text { 35. } 25-49 x^{2} & \text { 37. } 16 x^{4}-25 x^{2}\end{array}$ 39. $1-y^{10}$
2. $x^{2}+4 x+4 \quad$ 43. $4 x^{2}+12 x+9 \quad$ 45. $x^{2}-6 x+9 \quad$ 47. $16 x^{4}-8 x^{2}+1 \quad$ 49. $4 x^{2}-28 x+49 \quad$ 51. $x^{3}+3 x^{2}+3 x+1$
3. $8 x^{3}+36 x^{2}+54 x+27 \quad$ 55. $x^{3}-9 x^{2}+27 x-27 \quad$ 57. $27 x^{3}-108 x^{2}+144 x-64 \quad$ 59. $7 x^{2}+38 x y+15 y^{2}$
4. $2 x^{2}+x y-21 y^{2} \quad$ 63. $15 x^{2} y^{2}+x y-2 \quad$ 65. $49 x^{2}+70 x y+25 y^{2} \quad$ 67. $x^{4} y^{4}-6 x^{2} y^{2}+9 \quad$ 69. $x^{3}-y^{3} \quad$ 71. $9 x^{2}-25 y^{2}$
5. $x^{2}+2 x y+y^{2}-9 \quad$ 75. $9 x^{2}+42 x+49-25 y^{2} \quad$ 77. $25 y^{2}-4 x^{2}-12 x-9 \quad$ 79. $x^{2}+2 x y+y^{2}+2 x+2 y+1$
6. $4 x^{2}+4 x y+y^{2}+4 x+2 y+1 \quad$ 83. $48 x y \quad$ 85. $-9 x^{2}+3 x+9$ 87. $16 x^{4}-625 \quad$ 89. $4 x^{2}-28 x+49 \quad$ 91. a. $\$ 54,647$; overestimates by $\$ 556$ b. $M-W=1.8 x^{3}-82 x^{2}+2644 x-11,449 \quad$ c. $\$ 14,434 \quad$ d. $\$ 15,136$; underestimates by $\$ 702 \quad 93.4 x^{3}-36 x^{2}+80 x \quad 95.6 x+22$ $\begin{array}{lllllll}\text { 103. makes sense } & \text { 105. makes sense } & \text { 107. } x^{2}+2 x & \text { 109. } 2 x^{3}+12 x^{2}+12 x+10 & \text { 111. } 4 & \text { 112. } 2 & \text { 113. } 3\end{array}$

Section P. 5

Check Point Exercises

1. a. $2 x^{2}(5 x-2) \quad$ b. $(x-7)(2 x+3) \quad$ 2. $(x+5)\left(x^{2}-2\right) \quad$ 3. $(x+8)(x+5)$ or $(x+5)(x+8) \quad$ 4. $(x-7)(x+2)$ or $(x+2)(x-7)$
2. $(3 x-1)(2 x+7)$ or $(2 x+7)(3 x-1) \quad$ 6. $(3 x-y)(x-4 y)$ or $(x-4 y)(3 x-y) \quad$ 7. a. $(x+9)(x-9) \quad$ b. $(6 x+5)(6 x-5)$
3. $\left(9 x^{2}+4\right)(3 x+2)(3 x-2) \quad$ 9. a. $(x+7)^{2} \quad$ b. $(4 x-7)^{2} \quad$ 10. a. $(x+1)\left(x^{2}-x+1\right) \quad$ b. $(5 x-2)\left(25 x^{2}+10 x+4\right) \quad$ 11. $3 x(x-5)^{2}$
4. $(x+10+6 a)(x+10-6 a)$
5. $\frac{2 x-1}{(x-1)^{1 / 2}}$

Concept and Vocabulary Check

1. d 2. g
2. b
3. C
4. e 6. a
5. f
6. $(x+1)^{1 / 2}$

Exercise Set P. 5

1. $9(2 x+3) \quad$ 3. $3 x(x+2)$
2. $9 x^{2}\left(x^{2}-2 x+3\right)$
3. $(x+5)(x+3)$
4. $(x-3)\left(x^{2}+12\right)$
5. $(x-2)\left(x^{2}+5\right)$
6. $(x-1)\left(x^{2}+2\right)$
7. $(3 x-2)\left(x^{2}-2\right)$
8. $(x+2)(x+3)$
9. $(x-5)(x+3)$
10. $(x-5)(x-3)$
11. $(3 x+2)(x-1)$
12. $(3 x-28)(x+1)$
13. $(2 x-1)(3 x-4)$
14. $(2 x+3)(2 x+5)$
15. $(3 x-2)(3 x-1) \quad$ 33. $(5 x+8)(4 x-1)$
16. $(2 x+y)(x+y)$
17. $(3 x+2 y)(2 x-3 y)$
18. $(x+10)(x-10)$
19. $(6 x+7)(6 x-7)$
20. $(3 x+5 y)(3 x-5 y)$
21. $\left(x^{2}+4\right)(x+2)(x-2)$
22. $\left(4 x^{2}+9\right)(2 x+3)(2 x-3)$
23. $(x+1)^{2}$
24. $(x-7)^{2}$
25. $(2 x+1)^{2}$
26. $(3 x-1)^{2}$
27. $(x+3)\left(x^{2}-3 x+9\right)$
28. $(x-4)\left(x^{2}+4 x+16\right)$
29. $(2 x-1)\left(4 x^{2}+2 x+1\right)$
30. $(4 x+3)\left(16 x^{2}-12 x+9\right)$
31. $3 x(x+1)(x-1)$
32. $4(x+2)(x-3)$
33. $2\left(x^{2}+9\right)(x+3)(x-3)$
34. $(x-3)(x+3)(x+2)$
35. $2(x-8)(x+7)$
36. $x(x-2)(x+2)$
37. prime
38. $(x-2)(x+2)^{2}$
39. $y\left(y^{2}+9\right)(y+3)(y-3)$
40. $5 y^{2}(2 y+3)(2 y-3)$
41. $(x-6+7 y)(x-6-7 y)$
42. $(x+y)(3 b+4)(3 b-4)$
43. $(y-2)(x+4)(x-4)$
44. $2 x(x+6+2 a)(x+6-2 a)$
45. $x^{1 / 2}(x-1)$
46. $\frac{4(1+2 x)}{x^{2 / 3}}$
47. $-(x+3)^{1 / 2}(x+2)$
48. $\frac{x+4}{(x+5)^{3 / 2}}$
49. $-\frac{4(4 x-1)^{1 / 2}(x-1)}{3}$
50. $(x+1)(5 x-6)(2 x+1)$
51. $\left(x^{2}+6\right)\left(6 x^{2}-1\right)$
52. $y\left(y^{2}+1\right)\left(y^{4}-y^{2}+1\right)$
53. $(x+2 y)(x-2 y)(x+y)(x-y)$
54. $(x-y)^{2}(x-y+2)(x-y-2) \quad$ 113. $\left(2 x-y^{2}\right)\left(x-3 y^{2}\right) \quad$ 115. a. $(x-0.4 x)(1-0.4)=(0.6 x)(0.6)=0.36 x \quad$ b. no; 36%
55. a. $9 x^{2}-16$
b. $(3 x+4)(3 x-4)$
56. a. $x(x+y)-y(x+y)$
b. $(x+y)(x-y)$
57. $4 a^{3}-4 a b^{2}=4 a(a+b)(a-b)$
58. makes sense
59. makes sense
60. true
61. false
62. $-(x+5)(x-1)$
63. $-\frac{10}{(x-5)^{3 / 2}(x+5)^{1 / 2}}$
64. $b=0,3,4,-c(c+4)$, where $c>0$ is an integer
65. $\frac{(x+5)(x+1)}{(x+5)(x-5)}=\frac{x+1}{x-5}$
66. $\frac{2}{3}$
67. $\frac{7}{6}$

Mid-Chapter P Check Point

1. $12 x^{2}-x-35$
2. $-x+12$
3. $10 \sqrt{6}$
4. $3 \sqrt{3}$
5. $x+45$
6. $64 x^{2}-48 x+9$
7. $\frac{x^{2}}{y^{3}}$
8. $\frac{3}{4}$
9. $-x^{2}+5 x-6$
10. $2 x^{3}-11 x^{2}+17 x-5$
11. $-x^{6}+2 x^{3}$
12. $18 a^{2}-11 a b-10 b^{2}$
13. $\{a, c, d, e, f, h\}$
14. $\{c, d\}$
15. $5 x^{2} y^{3}+2 x y-y^{2}$
16. $-\frac{12 y^{15}}{x^{3}}$
17. $\frac{6 y^{3}}{x^{7}}$
18. $\sqrt[3]{x}$
19. $16 y^{2}-9 x^{2}-12 x-4$
20. $x^{2}-4 x y+4 y^{2}-2 x+4 y+1$
21. 1.2×10^{-2}
22. $2 \sqrt[3]{2}$
23. $x^{6}-4$
24. $x^{4}+4 x^{2}+4$
25. $10 \sqrt{3}$
26. $\frac{77+11 \sqrt{3}}{46}$
27. $\frac{11 \sqrt{3}}{3}$
28. $(7 x-1)(x-3)$
29. prime
30. $\left(x^{2}+3\right)(x+5)$
31. $(3 x-7 y)(x+y)$
32. $y(4-y)\left(16+4 y+y^{2}\right)$
33. $2 x(5 x+1)^{2}$
34. $(x-3-7 y)(x-3+7 y)$
35. $\frac{(1-x)^{2}}{x^{3 / 2}}$
36. $\frac{(x-3)(x+3)}{\left(x^{2}+1\right)^{1 / 2}}$
37. $-11,-\frac{3}{7}, 0,0.45, \sqrt{25}$
38. $\sqrt{13}-2$
39. $-x^{3}$
40. 1.38×10^{9} pounds
41. 4 times
42. a. model 2
b. overestimates by $\$ 5$

Section P. 6
Check Point Exercises

1. a. -5
b. $6,-6$
c. $-2,7$
2. a. $x^{2}, x \neq-3$
b. $\frac{x-1}{x+1}, x \neq-1$
3. $\frac{x-3}{(x-2)(x+3)}, x \neq 2, x \neq-2, x \neq-3$
4. $\frac{3(x-1)}{x(x+2)}, x \neq 1, x \neq 0, x \neq-2 \quad$ 5. $-2, x \neq-1$
5. $\frac{2(4 x+1)}{(x+1)(x-1)}, x \neq 1, x \neq-1$
6. $(x-3)(x-3)(x+3)$ or $(x-3)^{2}(x+3)$
7. $\frac{-x^{2}+11 x-20}{2(x-5)^{2}}, x \neq 5$
8. $\frac{2(2-3 x)}{4+3 x}, x \neq 0, x \neq-\frac{4}{3}$
9. $-\frac{1}{x(x+7)}, x \neq 0, x \neq-7$
10. $\frac{x+1}{x^{3 / 2}}$ or $\frac{x+1}{\sqrt{x^{3}}}$
11. $\frac{1}{\sqrt{x+3}+\sqrt{x}}$

Concept and Vocabulary Check

1. polynomials
2. domain; 0
3. factoring; common factors
4. $\frac{x^{2}}{15} \quad$ 5. $\frac{3}{5} \quad$ 6. $\frac{x^{2}-x+4}{3}$
5. $x+3$ and $x-2 ; x+3$ and $x+1$;
$(x+3)(x-2)(x+1)$
6. $3 x+4$
7. complex; complex
8. $\frac{x-(x+3)}{3 x(x+3)}=\frac{-3}{3 x(x+3)}=-\frac{1}{x(x+3)}$
9. \sqrt{x}
10. $\sqrt{x+7}+\sqrt{x}$

Exercise Set P. 6

1. 3 3. $5,-5$
2. $-1,-10$
3. $\frac{3}{x-3}, x \neq 3$
4. $\frac{x-6}{4}, x \neq 6$
5. $\frac{y+9}{y-1}, y \neq 1,2$
6. $\frac{x+6}{x-6}, x \neq 6,-6$
7. $\frac{1}{3}, x \neq 2,-3$
8. $\frac{(x-3)(x+3)}{x(x+4)}, x \neq 0,-4,3$
9. $\frac{x-1}{x+2}, x \neq-2,-1,2,3$
10. $\frac{x^{2}+2 x+4}{3 x}, x \neq-2,0,2$
11. $\frac{7}{9}, x \neq-1$
12. $\frac{(x-2)^{2}}{x}, x \neq 0,-2,2$
13. $\frac{2(x+3)}{3}, x \neq 3,-3$
14. $\frac{x-5}{2}, x \neq 1,-5$
15. $\frac{(x+2)(x+4)}{x-5}, x \neq-6,-3,-1,3,5$
16. $2, x \neq-\frac{5}{6}$
17. $\frac{2 x-1}{x+3}, x \neq 0,-3$
18. $3, x \neq 2$
19. $\frac{3}{x-3}, x \neq 3,-4$
20. $\frac{9 x+39}{(x+4)(x+5)}, x \neq-4,-5$
21. $-\frac{3}{x(x+1)}, x \neq-1,0$
22. $\frac{3 x^{2}+4}{(x+2)(x-2)}, x \neq-2,2$
23. $\frac{2 x^{2}+50}{(x-5)(x+5)}, x \neq-5,5$
24. $\frac{13}{6(x+2)}, x \neq-2$
25. $\frac{4 x+16}{(x+3)^{2}}, x \neq-3$
26. $\frac{x^{2}-x}{(x+5)(x-2)(x+3)}, x \neq-5,2,-3$
27. $\frac{-x^{2}-2 x+1}{(x+1)(x-1)}, x \neq-1,1$
28. $\frac{x-1}{x+2}, x \neq-2,-1$
29. $\frac{1}{3}, x \neq 3$
30. $\frac{x+1}{3 x-1}, x \neq 0, \frac{1}{3}$
31. $\frac{1}{x y}, x \neq 0, y \neq 0, x \neq-y$
32. $\frac{x}{x+3}, x \neq-2,-3$
33. $-\frac{x-14}{7}, x \neq-2,2$
34. $\frac{x-3}{x+2}, x \neq-2,-1,3$
35. $-\frac{2 x+h}{x^{2}(x+h)^{2}}, x \neq 0, h \neq 0, x \neq-h$
36. $1-\frac{1}{3 x} ; x>0$
37. $-\frac{2}{x^{2} \sqrt{x^{2}+2}}$
38. $\frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x} \sqrt{x+h}}$
39. $\frac{1}{\sqrt{x+5}+\sqrt{x}}$
40. $\frac{1}{(x+y)(\sqrt{x}-\sqrt{y})}$
41. $\frac{x^{2}+5 x+8}{(x+2)(x+1)}$
42. 2 87. $\frac{1}{y(y+5)} \quad$ 89. $\frac{2 d}{a^{2}+a b+b^{2}} \quad$ 91. a. $86.67,520,1170$; It costs $\$ 86,670,000$ to inoculate 40% of the population against this strain of flu, $\$ 520,000,000$ to inoculate 80% of the population, and $\$ 1,170,000,000$ to inoculate 90% of the population. b. $x=100 \quad$ c. The cost increases rapidly; it is impossible to inoculate 100% of the population.
43. a. 2078; underestimates by 22 calories
b. $x=100 \quad$ c. The cost increases
b. 2662 ; underestimates by 38 calories
$\begin{array}{ll}\text { c. } \frac{-33 x^{2}+263 x+515}{-60 x^{2}+499 x+295} & \text { 95. } \frac{4 x^{2}+14 x}{(x+3)(x+4)}\end{array} \quad$ 109. does not make sense
44. does not make sense
45. false
46. true
47. $\frac{1}{x^{2 n}-1}$
48. $\frac{x-y+1}{(x-y)(x-y)}$
49. true
50. $-x+10$
51. -5

Section P. 7

Check Point Exercises

1. $\{5\}$
2. $\{1\}$
3. $\{7\}$
4. $\varnothing \quad$ 5. $q=\frac{p f}{p-f}$
5. $\{-2,3\}$
6. a. $\{0,3\}$
b. $\left\{\frac{1}{2},-1\right\}$
7. a. $\{-\sqrt{7}, \sqrt{7}\}$
b. $\{-5+\sqrt{11},-5-\sqrt{11}\}$
8. $\{-2+\sqrt{5},-2-\sqrt{5}\}$
9. $\left\{\frac{-1+\sqrt{3}}{2}, \frac{-1-\sqrt{3}}{2}\right\}$
10. -56 ; no real solutions
11. $\{6\}$

Concept and Vocabulary Check

$\begin{array}{lll}\text { 1. linear } & \text { 2. equivalent } & \text { 3. apply the distributive property }\end{array}$
$\begin{array}{lll}\text { 4. least common denominator; } 12 & \text { 5. } 0 & \text { 6. } x \neq 2 ; x \neq-4\end{array}$
7. $5(x+3)+3(x+4)=12 x+9 \quad$ 8. isolated on one side
$\begin{array}{llll}\text { 9. factoring } & \text { 10. } c ;-c & \text { 11. } 3 x-1=7 ; 3 x-1=-7 & \text { 12. quadratic }\end{array}$
13. $A=0$ or $B=0$
14. $\pm \sqrt{d}$
15. $\pm \sqrt{7}$
16. 9
17. $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
18. $2 ; 9 ;-5$
19. $1 ;-4 ;-1$
20. $2 \pm \sqrt{2}$
21. $b^{2}-4 a c$
22. no
23. two
24. the square root property
25. the quadratic formula
26. factoring and the zero-product principle
$\begin{array}{lll}\text { 27. radical } & \text { 28. extraneous } & \text { 29. } 2 x+1 ; x^{2}-14 x+49\end{array}$

Exercise Set P. 7

1. $\{11\}$
2. $\left\{\frac{33}{2}\right\}$
3. $\{-12\}$
4. $\left\{\frac{46}{5}\right\}$
5. a. 1
b. $\{3\}$
6. a. -1
b. \varnothing
7. a. 1
b. $\{2\}$
8. a. $-1,1$
b. $\{-3\}$
9. a. $-2,4$
b. \varnothing
10. $P=\frac{I}{r t}$
11. $p=\frac{T-D}{m}$
12. $a=\frac{2 A}{h}-b$
13. $r=\frac{S-P}{P t}$
14. $S=\frac{F}{B}+V$
15. $I=\frac{E}{R+r}$
16. $f=\frac{p q}{p+q}$
17. $f_{1}=-\frac{f f_{2}}{f-f_{2}}$ or $f_{1}=\frac{f f_{2}}{f_{2}-f}$
18. $\{-5,9\}$
19. $\{-2,3\}$
20. $\left\{-\frac{5}{3}, 3\right\}$
21. $\left\{-\frac{4}{5}, 4\right\}$
22. \varnothing
23. $\left\{\frac{1}{2}\right\}$
24. $\{-2,5\}$
25. $\{3,5\}$
26. $\{0,4\}$
27. $\{ \pm 3\}$
28. $\{ \pm \sqrt{10}\}$
29. $\{4 \pm \sqrt{5}\}$
30. $\{-7,1\}$
31. $\{1+\sqrt{3}, 1-\sqrt{3}\}$
32. $\{3+2 \sqrt{5}, 3-2 \sqrt{5}\}$
33. $\{-2+\sqrt{3},-2-\sqrt{3}\}$
34. $\{-5,-3\}$
35. $\left\{\frac{-5+\sqrt{13}}{2}, \frac{-5-\sqrt{13}}{2}\right\}$
36. $\left\{\frac{3+\sqrt{57}}{6}, \frac{3-\sqrt{57}}{6}\right\}$
37. $\left\{\frac{1+\sqrt{29}}{4}, \frac{1-\sqrt{29}}{4}\right\}$
38. $36 ; 2$ unequal real solutions
39. 97; 2 unequal real solutions
40. $0 ; 1$ real solution
41. 37 ; 2 unequal real solutions
42. $\left\{-\frac{1}{2}, 1\right\} \quad$ 93. $\left\{\frac{1}{5}, 2\right\}$
43. $\{-2 \sqrt{5}, 2 \sqrt{5}\}$
44. $\{1+\sqrt{2}, 1-\sqrt{2}\}$
45. $\left\{\frac{-11+\sqrt{33}}{4}, \frac{-11-\sqrt{33}}{4}\right\}$
46. $\left\{0, \frac{8}{3}\right\}$
47. $\{2\}$
48. $\{-2,2\}$
49. $\{2 \pm \sqrt{2}\}$
50. $\left\{0, \frac{7}{2}\right\}$
51. $\{2+\sqrt{10}, 2-\sqrt{10}\}$
52. $\{-5,-1\}$ 115. $\{6\}$
53. $\{6\}$
54. $\{-6\}$
55. $\{10\}$
56. $\{-5\}$
57. $\{-2\}$
58. $\{-3,1\}$
59. $\{-8,-6,4,6\}$
60. $\left\{\frac{-1 \pm \sqrt{21}}{2}\right\}$
61. $\{8\} \quad$ 135. $\frac{-2-\sqrt{22}}{2}$ and $\frac{-2+\sqrt{22}}{2}$
62. a. underestimates by 2%
b. 2030
63. 125 liters
64. 33-year-olds and 58-year-olds; The
65. false
66. true
67. 2
68. $C=\frac{L V-S N}{L-N}$
69. $x+150$
$\begin{array}{ll}\text { 172. } 20+0.05 x & \text { 173. } 4 x+400\end{array}$

Section P. 8

Check Point Exercises

1. computer science: $\$ 56$ thousand; economics: $\$ 49$ thousand; education: $\$ 35$ thousand
2. by 67 years after 1969 , or in 2036
3. $\$ 1200$
4. 50 ft by 94 ft
5. 2 ft
6. 120 yd
7. 5 people

Concept and Vocabulary Check

1. $x+658.6$
2. $31+2.4 x$
3. $x-0.15 x$ or $0.85 x$
4. $x+5 ; 2(x+5)+2 x ; x(x+5) \quad$ 5. right; hypotenuse; legs
5. $\frac{10,000}{x} ; \frac{10,000}{x+2}$
6. right; legs; the square of the length of the hypotenuse
7. by 2015 7. a. $y=24,000-3000 x$
b. after 5 years
8. TV: 9 years; sleeping: 28 years \quad 3. bachelor's: $\$ 55$ thousand; master's: $\$ 61$ thousand
9. 36 ft by $78 \mathrm{ft} \quad$ 21. 2 in .
$\begin{array}{lllll}\text { 9. } 2019 ; 22,300 \text { students } & \text { 11. } \$ 420 & \text { 13. } \$ 150 & \text { 15. } \$ 467.20 & \text { 17. } 50 \mathrm{yd} \text { by } 100 \mathrm{yd}\end{array}$
$\begin{array}{llllll}\text { 23. length: } 9 \mathrm{ft} \text {; width: } 6 \mathrm{ft} & \text { 25. } 5 \mathrm{in} & \text { 27. } 5 \mathrm{~m} & \text { 29. } 3 \mathrm{ft} & \text { 31. } 13.2 \mathrm{ft}\end{array}$
10. $21.9 \mathrm{yd} \quad$ 37. 8 people
11. car: 50 miles per hour; bus: 30 miles per hour \quad 41. 6 miles per hour $\quad 43.11 \mathrm{hr} \quad 45.5 \mathrm{ft} 7 \mathrm{in}$. 47. $10 \quad$ 53. does not make sense 55. does not make sense \quad 57. 3 miles, 4 miles, 5 miles \quad 59. Coburn $=60$ years old; woman $=20$ years old $\quad 61$. $\$ 4000$ for the mother; $\$ 8000$ for the boy; $\$ 2000$ for the girl 64. yes 65. $\{-3\} \quad$ 66. $\{14\}$

Section P. 9

Check Point Exercises

1. a. $\{x \mid-2 \leq x<5\}$

b. $\{x \mid 1 \leq x \leq 3.5\}$
c. $\{x \mid x<-1\}$
2. a. $(2,3]$
b. $[1,6)$
3. $[-1, \infty)$ or $\{x \mid x \geq-1\}$

4. $\{x \mid x<4\}$ or $(-\infty, 4)$

5. $\{x \mid x \geq 13\}$ or $[13, \infty)$

6. $[-1,4)$ or $\{x \mid-1 \leq x<4\}$

7. $(-3,7)$ or $\{x \mid-3<x<7\}$

8. $\left\{x \left\lvert\,-\frac{11}{5} \leq x \leq 3\right.\right\}$ or $\left[-\frac{11}{5}, 3\right]$

9. $\{x \mid x<-4$ or $x>8\}$ or $(-\infty,-4) \cup(8, \infty)$

10. more than 720 mi per week

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. } 2 ; 5 ; 2 ; 5 & \text { 2. greater than } \\ \text { 3. less than or equal to }\end{array}$
4. $(-\infty, 9)$; intersection
5. $(-\infty, 12)$; union
6. adding 4 ; dividing; -3 ; direction; $>$; $<$
7. middle
8. $-c ; c \quad$ 9. $-c ; c$
10. $-2<x-7<2$
11. $x-7<-2$ or $x-7>2$

Exercise Set P. 9

1. $\{x \mid 1<x \leq 6\}$

2. $\{x \mid-5 \leq x<2\}$

3. $\{x \mid-3 \leq x \leq 1\}$

4. $\{x \mid x>2\}$

5. $\{x \mid x \geq-3\}$

6. $\{x \mid x<3\}$

7. $\{x \mid x<5.5\}$

8. $(-3,2]$
9. $[1,5)$
10. $(-\infty, 8)$
11. $(6, \infty)$
12. $[3, \infty)$
13. $(-\infty, 3)$

14. $\left[\frac{20}{3}, \infty\right)$

15. $[0, \infty)$

16. $(-\infty, 1)$

17. $[6, \infty)$

18. $[13, \infty)$
19. $(-\infty,-2)$
20. $(3,5)$
21. $[-1,3)$
22. $[-10, \infty)$

23. $(-5,-2]$
24. $[3,6)$
25. $(-3,3) \quad$ 59. $[-1,3]$
26. $(-1,7)$
27. $[-5,3]$
28. $(-6,0)$
29. $(-\infty,-3) \cup(3, \infty)$
30. $(-\infty,-1] \cup[3, \infty)$ 71. $\left(-\infty, \frac{1}{3}\right) \cup(5, \infty)$
31. $(-\infty,-5] \cup[3, \infty)$
32. $(-\infty,-3) \cup(12, \infty)$ 77. $(-\infty,-1] \cup[3, \infty)$
33. $[2,6] \quad$ 81. $(-\infty,-3) \cup(5, \infty)$
34. $(-\infty,-1] \cup[2, \infty)$
35. $(-1,9) \quad$ 87. $\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)$
36. $\left(-\infty,-\frac{75}{14}\right) \cup\left(\frac{87}{14}, \infty\right)$
37. $(-\infty,-6] \cup[24, \infty)$
38. $[6, \infty)$
39. $(-\infty,-10] \cup[2, \infty)$
40. $\left(-\infty,-\frac{1}{3}\right] \cup[3, \infty)$
41. $(0,4)$
42. intimacy \geq passion or passion \leq intimacy
43. commitment $>$ passion or passion $<$ commitment

AA6 Answers to Selected Exercises

105. 9; after 3 years \quad 107. a. years after 2016 b. years after $2020 \quad$ c. years after 2020 d. years after 2016 109. between 80 and 110 minutes, inclusive 111. $h \leq 41$ or $h \geq 59 \quad$ 113. $15+0.08 x<3+0.12 x$; more than 300 texts $\quad 115.2+0.08 x<8+0.05 x$; 199 checks or fewer 117. $5.50 x>3000+3 x$; more than 1200 packages \quad 119. $245+95 x \leq 3000$; at most 29 bags \quad 121. a. $\frac{86+88+x}{3} \geq 90$; at least a 96 b. $\frac{86+88+x}{3}<80$; a grade less than 66 123. more than 3 and fewer than 15 crossings per three-month period
106. makes sense \quad 135. makes sense \quad 137. false \quad 139. true \quad 141. \mathbf{a}. $|x-4|<3 \quad$ b. $|x-4| \geq 3 \quad$ 143. 7; 6; 5; 4; 3; $2 ; 1$
107. $-5 ; 0 ; 3 ; 4 ; 3 ; 0 ;-5 \quad$ 145. $3 ; 2 ; 1 ; 0 ; 1 ; 2 ; 3$

Chapter P Review Exercises

$\begin{array}{ll}\text { 1. } 51 & \text { 2. } 16\end{array}$
3. 124 ft
4. $\{a, c\}$
5. $\{a, b, c, d, e\}$
6. $\{a, b, c, d, f, g\}$
7. $\{a\}$
8. a. $\sqrt{81}$
b. $0, \sqrt{81}$
c. $-17,0, \sqrt{81}$
d. $-17,-\frac{9}{13}, 0,0.75, \sqrt{81}$
e. $\sqrt{2}, \pi$
$\begin{array}{lll}\text { f. }-17,-\frac{9}{13}, 0,0.75, \sqrt{2}, \pi, \sqrt{81} & \text { 9. } 103\end{array}$
10. $\sqrt{2}-1$
11. $\sqrt{17}-3$
12. $|4-(-17)| ; 21$
13. commutative property of addition 14. associative property of multiplication 15. distributive property of multiplication over addition 16. commutative property of multiplication 17 . commutative property of multiplication \quad 18. commutative property of addition
19. $17 x-15$
20. $2 x$
21. $5 y-17$
22. $10 x$
23. 55; It's the same.
24. -108
25. $\frac{5}{16}$
26. $\frac{1}{25}$
27. $\frac{1}{27}$
28. $-8 x^{12} y^{9}$
29. $\frac{10}{x^{8}}$
30. $\frac{1}{16 x^{12}}$
31. $\frac{y^{8}}{4 x^{10}}$
32. 37,400
33. 0.0000745
34. 3.59×10^{6}
35. 7.25×10^{-3}
36. 390,000
37. 0.023
38. 1.35×10^{12}
39. 3.2×10^{7}
40. 42,188 years
41. $10 \sqrt{3}$
42. $2|x| \sqrt{3}$
43. $2 x \sqrt{5}$
44. $r \sqrt{ } \bar{r}$
45. $\frac{11}{2}$
46. $4 x \sqrt{3}$
47. $20 \sqrt{5}$
48. $16 \sqrt{ } \sqrt{2}$
49. $24 \sqrt{2}-8 \sqrt{3}$
50. $6 \sqrt{5}$ 51. $\frac{\sqrt{6}}{3} \quad$ 52. $\frac{5(6-\sqrt{3})}{33}$
53. $7(\sqrt{7}+\sqrt{5})$
54. 5
55. -2
56. not a real number
57. 5
58. $3 \sqrt[3]{3}$
59. $y \sqrt[3]{y^{2}}$
60. $2 \sqrt[4]{5}$
61. $13 \sqrt[3]{2}$
62. $x \sqrt[4]{2}$
63. 4
64. $\frac{1}{5}$
65. $5 \quad$ 66. $\frac{1}{3}$
67. 16
68. $\frac{1}{81} \quad$ 69. $20 x^{11 / 12}$
70. $3 x^{1 / 4}$
71. $25 x^{4}$
72. \sqrt{y}
73. $8 x^{3}+10 x^{2}-20 x-4$; degree 3
74. $8 x^{4}-5 x^{3}+6$; degree 4
75. $12 x^{3}+x^{2}-21 x+10$
76. $6 x^{2}-7 x-5$
77. $16 x^{2}-25$
78. $4 x^{2}+20 x+25$
79. $9 x^{2}-24 x+16$
80. $8 x^{3}+12 x^{2}+6 x+1$
81. $125 x^{3}-150 x^{2}+60 x-8$
82. $-x^{2}-17 x y-3 y^{2}$; degree 2
83. $24 x^{3} y^{2}+x^{2} y-12 x^{2}+4$; degree 5
84. $3 x^{2}+16 x y-35 y^{2}$
85. $9 x^{2}-30 x y+25 y^{2}$
86. $9 x^{4}+12 x^{2} y+4 y^{2}$
87. $49 x^{2}-16 y^{2}$
88. $a^{3}-b^{3}$
89. $3 x^{2}(5 x+1)$
90. $(x-4)(x-7)$
91. $(3 x+1)(5 x-2)$
92. $(8-x)(8+x) \quad$ 93. prime
94. $3 x^{2}(x-5)(x+2)$
95. $4 x^{3}\left(5 x^{4}-9\right)$
96. $(x+3)(x-3)^{2}$
97. $(4 x-5)^{2}$
98. $\left(x^{2}+4\right)(x+2)(x-2) \quad$ 99. $(y-2)\left(y^{2}+2 y+4\right)$
100. $(x+4)\left(x^{2}-4 x+16\right)$
101. $3 x^{2}(x-2)(x+2)$
102. $(3 x-5)\left(9 x^{2}+15 x+25\right)$
103. $x(x-1)(x+1)\left(x^{2}+1\right)$
104. $\left(x^{2}-2\right)(x+5)$
105. $(x+9+y)(x+9-y)$
106. $\frac{16(1+2 x)}{x^{3 / 4}}$
107. $(x+2)(x-2)\left(x^{2}+3\right)^{1 / 2}\left(-x^{4}+x^{2}+13\right) \quad$ 108. $\frac{6(2 x+1)}{x^{3 / 2}}$
109. $x^{2}, x \neq-2 \quad$ 110. $\frac{x-3}{x-6}, x \neq-6,6$
111. $\frac{x}{x+2}, x \neq-2$
112. $\frac{(x+3)^{3}}{(x-2)^{2}(x+2)}, x \neq 2,-2$
113. $\frac{2}{x(x+1)}, x \neq 0,1,-1,-\frac{1}{3}$
114. $\frac{x+3}{x-4}, x \neq-3,4,2,8$
115. $\frac{1}{x-3}, x \neq 3,-3$
116. $\frac{4 x(x-1)}{(x+2)(x-2)}, x \neq 2,-2 \quad$ 117. $\frac{2 x^{2}-3}{(x-3)(x+3)(x-2)}, x \neq 3,-3,2 \quad$ 118. $\frac{11 x^{2}-x-11}{(2 x-1)(x+3)(3 x+2)}, x \neq \frac{1}{2},-3,-\frac{2}{3} \quad$ 119. $\frac{3}{x}, x \neq 0,2$
120. $\frac{3 x}{x-4}, x \neq 0,4,-4$
121. $\frac{3 x+8}{3 x+10}, x \neq-3,-\frac{10}{3}$
122. $\frac{25 \sqrt{25-x^{2}}}{(5-x)^{2}(5+x)^{2}}$
123. $\{-13\}$
124. $\{-3\}$
125. $\{-1\}$
126. all real numbers except 1 and -1
127. $\{7\}$
128. $\{-2,1\}$
129. $\left\{\frac{1}{2}, 5\right\} \quad$ 130. $\left\{-2, \frac{10}{3}\right\}$
131. $\left\{\frac{7+\sqrt{37}}{6}, \frac{7-\sqrt{37}}{6}\right\}$
132. $\{-3,3\} \quad$ 133. $\{3 \pm 2 \sqrt{6}\}$
134. $\{4\} \quad$ 135. $\{2\} \quad$ 136. $\{2\}$
137. $g=\frac{s-v t}{t^{2}}$
138. $P=\frac{A}{1+r T}$
139. no real solutions
140. one repeated real solution
141. Scream: 6; Scream 2: 8; Scream 3: 9 142. by 40 years after 1980, or in 2020
143. $\$ 60$
$\begin{array}{lllll}\text { 144. } \$ 10,000 \text { in sales } & \text { 145. } 44 \text { yd by } 126 \text { yd } & \text { 146. } 2022 ; 32,100 & \text { 147. length: } 5 \mathrm{yd} \text {; width: } 3 \mathrm{yd} & \text { 148. approximately } 134 \mathrm{~m}\end{array}$
149. 2 in 150. 10 people
151. $\{x \mid-3 \leq x<5\}$

158. $[-2, \infty)$

162. $(-\infty,-2]$

166. $(-\infty,-3]$ or $[-2, \infty)$
152. $\{x \mid x>-2\}$

159. $\left[\frac{3}{5}, \infty\right)$

163. $(2,3]$

167. $(-\infty,-5] \cup[1, \infty)$
153. $\{x \mid x \leq 0\}$
160. $\xrightarrow[-\left(-\infty,-\frac{21}{2}\right)]{\stackrel{\text { 21 }}{2}}$ 164. $[-9,6]$

168. no more than 80 miles per day
154. $[-1,1]$
155. $(-2,3)$
156. $[1,3)$
157. $(0,4)$
161. $(-3, \infty)$

165. $(-\infty,-6)$ or $(0, \infty)$

169. $[49 \%, 99 \%)$

Chapter P Test

1. $6 x^{2}-27 x$
2. $-6 x+17$
3. $\{5\}$
4. $\{1,2,5, a\}$
5. $\frac{5 y^{8}}{x^{6}}$
6. $3 r \sqrt{2} \quad$ 7. $11 \sqrt{ } 2$
7. $\frac{3(5-\sqrt{2})}{23}$
8. $2 x \sqrt[3]{2 x}$
9. $\frac{x+3}{x-2}, x \neq 2,1$
10. 2.5×10^{1}
11. $2 x^{3}-13 x^{2}+26 x-15$
12. $25 x^{2}+30 x y+9 y^{2}$
13. $\frac{2(x+3)}{x+1}, x \neq 3,-1,-4,-3$
14. $\frac{x^{2}+2 x+15}{(x+3)(x-3)}, x \neq 3,-3$
15. $\frac{11}{(x-3)(x-4)}, x \neq 3,4$
16. $\frac{2 x}{(x+2)(x+1)}$
17. $\frac{10 x}{\sqrt{\left(x^{2}+5\right)^{3}}}$
18. $(x-3)(x-6)$
19. $\left(x^{2}+3\right)(x+2)$
20. $(5 x-3)(5 x+3)$
21. $(6 x-7)^{2}$
22. $(y-5)\left(y^{2}+5 y+25\right)$
23. $(x+5+3 y)(x+5-3 y)$
24. $\frac{2 x+3}{(x+3)^{3 / 5}}$
25. $-7,-\frac{4}{5}, 0,0.25, \sqrt{4}, \frac{22}{7}$
26. commutative property of addition
27. distributive property of multiplication over addition
28. 7.6×10^{-4}
29. $\frac{1}{243}$
30. 1.32×10^{10}
31. a. 43.08%; overestimates by 0.08%
b. $R=\frac{-0.28 n+47}{0.28 n+53}$
c. $\frac{2}{3}$; Three women will receive bachelor's degrees for every two men.; It describes the projections exactly.
32. $\{-6\}$
33. $\{5\}$
34. $\left\{-\frac{1}{2}, 2\right\}$
35. $\left\{\frac{1-5 \sqrt{3}}{3}, \frac{1+5 \sqrt{3}}{3}\right\}$
36. $\{1-\sqrt{5}, 1+\sqrt{5}\}$
37. $\{7\}$
38. $(-\infty, 12]$

39. $\{2\}$
40. $\{6,12\}$
41. $\left\{\frac{1}{2}, 3\right\}$
42. $\{4\}$
43. $\left[\frac{21}{8}, \infty\right)$

44. $\left[-7, \frac{13}{2}\right)$

45. $\underset{-\frac{5}{3}}{\left(-\infty,-\frac{5}{3}\right] \cup\left[\frac{1}{3}, \infty\right)} \underset{\frac{1}{3}}{\longrightarrow}$
46. $h=\frac{3 V}{l w}$
47. $x=\frac{y-y_{1}}{m}+x_{1}$
48. $a=-\frac{R s}{R-s}$ or $a=\frac{R s}{s-R}$
49. 2018
50. 2018
51. quite well
52. average: 59%; good-looking: 27%; strikingly attractive: 2%
53. $26 \mathrm{yr} ; \$ 33,600$
54. length: 12 ft ; width: 4 ft
55. 10 ft
56. $\$ 50$
57. 20 people
58. more than 200 text messages

CHAPTER 1

Section 1.1

Check Point Exercises

1.

2.

3.

4. $\operatorname{minimum} x$-value: -100 ; maximum x-value: 100 ; distance between tick marks on x-axis: 50; minimum y-value: -100 ; maximum y-value: 100 ; distance between tick marks on y-axis: 10

5. a. x-intercept: -3 ; y-intercept: 5
b. no x-intercept; y-intercept: 4
c. x-intercept: $0 ; y$-intercept: 0
6. a. 65%
b. 60%
c. overestimates by 5

Concept and Vocabulary Check

1. x-axis
2. y-axis
3. origin
4. quadrants; four
5. x-coordinate; y-coordinate
6. x-intercept; zero
7. y-intercept; zero

Exercise Set 1.1

1.

3.

15.

5.

17.

7.

19.

9.

21.

11.

23.

25.

27.

29. c 31.
33. c
35. no
45. a. -1
b. 2
43. a. $1,-2$ 45.
37. $(2,0)$
b. none
39. $(-2,4)$ and $(1,1)$
47. $y=2 x+4$
49. $y=3-x^{2}$

51.

53.

55. a. 20% underestimates by 0.5% c. Answers will vary.; approximately $47 \% \quad$ d. 46.5%; It's less than the estimate, although answers may vary. e. 1990; 14\%
57. $8 ; 1 \quad$ 59. about 1.9
67. makes sense
69. does not make sense
71. false
73. true
75. I, III
77. IV
79. a
81. b
83. b
85. c 87. set 1
88.

Section 1.2

Check Point Exercises

1. domain: $\{0,10,20,30,40\}$; range: $\{9.1,6.7,10.7,13.2,21.2\} \quad$ 2. a. not a function \quad b. function \quad 3. a. $y=6-2 x$; function
b. $y= \pm \sqrt{1-x^{2}}$; not a function
$\begin{array}{lll}\text { 4. a. } 42 & \text { b. } x^{2}+6 x+15 & \text { c. } x^{2}+2 x+7\end{array}$
2. $\quad f(x)=2 x$

; The graph of g is the graph of f shifted down by 3 units.
3. a. function
b. not a function
$\begin{array}{lll}\text { c. function } & \text { d. not a function } & \text { 7. a. } 400\end{array}$
b. 9 c. approximately 425
4. a. domain: $\{x \mid-2 \leq x \leq 1\}$ or $[-2,1]$; range: $\{y \mid 0 \leq y \leq 3\}$ or $[0,3]$
b. domain: $\{x \mid-2<x \leq 1\}$ or $(-2,1]$; range: $\{y \mid-1 \leq y<2\}$ or $[-1,2)$
c. domain: $\{x \mid-3 \leq x<0\}$ or $[-3,0)$; range: $\{-3,-2,-1\}$

Concept and Vocabulary Check

$\begin{array}{llllllll}\text { 1. relation; domain; range } & \text { 2. function } & \text { 3. } f ; x & \text { 4. true } & \text { 5. false } & \text { 6. } x ; x+6 & \text { 7. ordered pairs } & \text { 8. more than once; function }\end{array}$
9. $[0,3)$; domain
10. $[1, \infty)$; range
11. $0 ; 0$; zeros
12. false

Exercise Set 1.2

1. function; $\{1,3,5\} ;\{2,4,5\} \quad$ 3. not a function; $\{3,4\} ;\{4,5\} \quad$ 5. function; $\{3,4,5,7\} ;\{-2,1,9\} \quad$ 7. function; $\{-3,-2,-1,0\} ;\{-3,-2,-1,0\}$ 9. not a function; $\{1\} ;\{4,5,6\} \quad$ 11. y is a function of x. $\begin{array}{lll}\text { 13. } y \text { is a function of } x & \text { 15. } y \text { is not a function of } x \text {. } & \text { 17. } y \text { is not a function of } x \text {. }\end{array}$ $\begin{array}{lllllllll}\text { 19. } y \text { is a function of } x & \text { 21. } y \text { is a function of } x & \text { 23. } y \text { is a function of } x & \text { 25. } y \text { is a function of } x & \text { 27. a. } 29 & \text { b. } 4 x+9 & \text { c. }-4 x+5\end{array}$
2. a. 2
b. $x^{2}+12 x+38$
c. $x^{2}-2 x+3$
3. a. 13
b. $1 \quad$ c. $x^{4}-x^{2}+1$
d. $81 a^{4}-9 a^{2}+1$
4. a. 3
b. 7
c. $\sqrt{x}+3$
5. a. $\frac{15}{4}$
b. $\frac{15}{4}$
c. $\frac{4 x^{2}-1}{x^{2}}$
6. a. 1
b. -1
c. 1
7.

The graph of g is the graph of f shifted up by 3 units.
41.

The graph of g is the graph of f shifted down by 1 unit.
43.

The graph of g is the graph of f shifted up by 1 unit.
45.

The graph of g is the graph of f shifted down by 2 units.

The graph of g is the graph of f shifted up by 2 units.

The graph of g is the graph of f shifted up by 2 units.
51.

The graph of g is the graph of f shifted down by 1 unit.
53.

The graph of g is the graph of f shifted to the right by 1 unit.
55. function 57. function 59. not a function 61. function
75. -2
77. a. $(-\infty, \infty)$
b. $[-4, \infty)$
c. -3 and 1
d. -3
63. function 65. -4 67. 4
69. $0 \quad 71.2$
73. 2
b. $[1, \infty) \quad$ c. none
b. $[1, \infty)$
$\begin{array}{lllllllll}\text { d. } 1 & \text { e. } f(4)=3 & \text { 85. a. }[-2,6] & \text { b. }[-2,6] & \text { c. } 4 & \text { d. } 4 & \text { e. } f(-1)=5 & \text { 87. } \text { a. }(-\infty, \infty) & \text { b. }(-\infty,-2]\end{array}$ c. none
$\begin{array}{lllllll}\text { d. }-2 & \text { e. } f(-4)=-5 \text { and } f(4)=-2 & \text { 89. a. }(-\infty, \infty) & \text { b. }(0, \infty) & \text { c. none } & \text { d. } 1.5 & \text { e. } f(4)=6\end{array}$ 91. a. $\{-5,-2,0,1,3\}$
b. $\{2\}$
c. none
d. 2
e. $f(-5)+f(3)=4$
93. $-2 ; 10$ 95. -38
97. $-2 x^{3}-2 x$
99. a. $\{$ (Philippines, 12), (Spain, 13), (Italy, 14), (Germany, 14), (Russia, 16) \} b. yes; Each country corresponds to exactly one age.
c. $\{(12$, Philippines $),(13$, Spain $),(14$, Italy $),(14$, Germany $),(16$, Russia $)\} \quad$ d. no; 14 in the domain corresponds to two members of the range, Italy and Germany. 101. a. 83 ; The chance that a 60 -year-old will survive to age 70 is 83%. b. 76 ; The chance that a 60 -year-old will survive to age 70 is 76%. $\begin{array}{llll}\text { c. } f & \text { 103. a. } 81 \text {; In } 2010 \text {, the wage gap was } 81 \% . ; ~ & 30,81) & \text { b. underestimates by } 2 \% \\ \text { 105. } C=100,000+100 x \text {, where } x \text { is the number of }\end{array}$
bicycles produced; $C(90)=109,000$; It costs $\$ 109,000$ to produce 90 bicycles.
$T(30)=2$; It takes 2 hours, traveling 30 mph outgoing and 60 mph returning.
107. $T=\frac{40}{x}+\frac{40}{x+30}$, where x is the rate on the outgoing trip; 123. false 125. false 127. Answers will vary; an example is $\{(1,1),(2,1)\}$.
119. does not make sense 121. does not make sense
129. 36 ; For 100 calling minutes, the monthly cost is $\$ 36$.
130. $f(x)=x+2, x \leq 1$
131. $4 x h+2 h^{2}+3 h$

Section 1.3

Check Point Exercises

1. increasing on $(-\infty,-1)$, decreasing on $(-1,1)$, increasing on $(1, \infty) \quad$ 2. a. even \quad b. odd \quad c. neither
2. a. 20 ; With 40 calling minutes, the cost is $\$ 20 . ;(40,20) \quad$ b. 28 ; With 80 calling minutes, the cost is $\$ 28 . ;(80,28)$
3.

5. a. $-2 x^{2}-4 x h-2 h^{2}+x+h+5$
b. $-4 x-2 h+1, h \neq 0$

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. }<f\left(x_{2}\right) ;>f\left(x_{2}\right) ;=f\left(x_{2}\right) & \text { 2. maxim }\end{array}$
8. false $\quad 9$. false
7. difference quotient; $x+h ; f(x) ; h ; h$

Exercise Set 1.3

$\begin{array}{lllllllll}\text { 1. a. }(-1, \infty) & \text { b. }(-\infty,-1) & \text { c. none } & \text { 3. a. }(0, \infty) & \text { b. none } & \text { c. none } & \text { 5. a. none } & \text { b. }(-2,6) & \text { c. none }\end{array}$ 7. a. $(-\infty,-1)$ $\begin{array}{lllllll}\text { b. none } & \text { c. }(-1, \infty) & \text { 9. a. }(-\infty, 0) \text { or }(1.5,3) & \text { b. }(0,1.5) \text { or }(3, \infty) & \text { c. none } & \text { 11. a. }(-2,4) & \text { b. none }\end{array} \quad$ c. $(-\infty,-2)$ or $(4, \infty)$ $\begin{array}{lllllll}\text { 13. a. } 0 ; f(0)=4 & \text { b. }-3,3 ; f(-3)=f(3)=0 & \text { 15. a. }-2 ; f(-2)=21 & \text { b. } 1 ; f(1)=-6 & \text { 17. odd } & \text { 19. neither } & \text { 21. even }\end{array}$ 23. even $\begin{array}{llllllllll}\text { 25. even } & \text { 27. odd } & \text { 29. even } & \text { 31. odd } & \text { 33. a. }(-\infty, \infty) & \text { b. }[-4, \infty) & \text { c. } 1 \text { and } 7 & \text { d. } 4 & \text { e. }(4, \infty) & \text { f. }(0,4) \\ \text { g. }(-\infty, 0)\end{array}$ $\begin{array}{llllllllllll}\text { h. } 4 & \text { i. }-4 & \text { j. } 4 & \text { k. } 2 \text { and } 6 & \text { I. neither } & \text { 35. a. }(-\infty, 3] & \text { b. }(-\infty, 4] & \text { c. }-3 \text { and } 3 & \text { d. } 3 & \text { e. }(-\infty, 1) & \text { f. }(1,3) & \text { g. }(-\infty,-3] \cup\{3\}\end{array}$ h. A relative maximum of 4 occurs at $1 . \begin{array}{llllllllll} & \text { i. } 1 & \text { j. positive } & \text { 37. a. }-1 & \text { b. } 7 & \text { c. } 19 & \text { 39. a. } 3 & \text { b. } 3 & \text { c. } 0 & \text { 41. a. } 8\end{array}$ b. 3 c. 6
43. a.

b. $[0, \infty)$
45. a.

b. $(-\infty, 0] \cup\{2\}$
47. a.

b. $(-\infty, \infty)$
49. a.

b. $\{-3,3\}$
55. $4, h \neq 0 \quad$ 57. $3, h \neq 0 \quad$ 59. $2 x+h, h \neq 0$
67. $-4 x-2 h+5, h \neq 0$ 69. $-4 x-2 h-1, h \neq 0$ 81. $C(t)= \begin{cases}50 & \text { if } \quad 0 \leq t \leq 400 \\ 50+0.30(t-400) & \text { if } \quad t>400\end{cases}$

83. increasing: $(25,55)$; decreasing: $(55,75) \quad$ 85. 55 years old; 38% 87. domain: $[25,75]$; range: $[34,38]$ 89. men
91. 2575; A single taxpayer with taxable income of $\$ 20,000$ owes $\$ 2575$.
93. $42,449+0.33(x-174,400)$
95. 0.85 ; It costs $\$ 0.85$ to mail a 3 -ounce first-class letter.
97. $\$ 0.65$
99.

111.

increasing: $(0, \infty)$
decreasing: $(-\infty, 0)$
c. increasing: $(0, \infty)$; decreasing: $(-\infty, 0)$
115. makes sense
117. makes sense
124. $y=\frac{-3 x+4}{2}$ or $y=-\frac{3}{2} x+2$

Section 1.4

Check Point Exercises

107.

increasing: $(-\infty, 1)$ or $(3, \infty)$ decreasing: $(1,3)$
113. a.

109.

increasing: $(2, \infty)$
decreasing: $(-\infty,-2)$ constant: $(-2,2)$
b.

d. $f(x)=x^{n}$ is increasing for $(-\infty, \infty)$ when n is positive and odd.
122. 3
123. $\left(\frac{3}{2}, 0\right)$ and $(0,-2)$
e.

As n increases the steepness increases.

1. a. 6
b. $-\frac{7}{5}$
2. $y+5=6(x-2) ; y=6 x-17$
3. $y+1=-5(x+2)$ or $y+6=-5(x+1) ; y=-5 x-11$
4.

5.

6.

7. slope: $-\frac{1}{2} ; y$-intercept: 2

8.

9. $f(x)=0.016 x+52.0 ; 61.6^{\circ} \mathrm{F}$

Concept and Vocabulary Check

1. scatter plot; regression
2. $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
3. positive
4. negative
5. zero
6. undefined
7. $y-y_{1}=m\left(x-x_{1}\right)$
8. $y=m x+b ;$ slope; y-intercept
9. $(0,3) ; 2 ; 5$
10. horizontal
11. vertical
12. general

Exercise Set 1.4

1. $\frac{3}{4}$; rises
2. $\frac{1}{4}$; rises
3. 0 ; horizontal
4. -5 ; falls
5. undefined; vertical
6. $y-5=2(x-3) ; y=2 x-1$
7. $y-5=6(x+2) ; y=6 x+17$
8. $y+3=-3(x+2) ; y=-3 x-9$
9. $y-0=-4(x+4) ; y=-4 x-16$
10. $y+2=-1\left(x+\frac{1}{2}\right) ; y=-x-\frac{5}{2}$
11. $y-0=\frac{1}{2}(x-0) ; y=\frac{1}{2} x$
12. $y+2=-\frac{2}{3}(x-6) ; y=-\frac{2}{3} x+2$
13. using (1,2), $y-2=2(x-1) ; y=2 x \quad$ 27. using $(-3,0), y-0=1(x+3) ; y=x+3 \quad$ 29. using $(-3,-1), y+1=1(x+3) ; y=x+2$
14. using $(-3,-2), y+2=\frac{4}{3}(x+3) ; y=\frac{4}{3} x+2 \quad$ 33. using $(-3,-1), y+1=0(x+3) ; y=-1 \quad$ 35. using $(2,4), y-4=1(x-2) ; y=x+2$
15. using $(0,4), y-4=8(x-0)$; $y=8 x+4$
16. $m=2 ; b=1$

$$
\text { 41. } m=-2 ; b=1
$$

49.

43. $m=\frac{3}{4} ; b=-2$
45. $m=-\frac{3}{5} ; b=7$

47. $m=-\frac{1}{2} ; b=0$

51.

51.
53. $y=0 \quad y$

55.

57.

59. a. $y=-3 x+5$
b. $m=-3 ; b=5$
c.

61. a. $y=-\frac{2}{3} x+6$
b. $m=-\frac{2}{3} ; b=6$
c.

63. a. $y=2 x-3$
b. $m=2 ; b=-3$
c.

65. a. $y=3$
b. $m=0 ; b=3$
c.

67.

69.

87. a. $y-31.1=0.78(x-10)$ or $y-38.9=0.78(x-20)$
71.

$8 x-2 y+12=0$
73. $m=-\frac{a}{b}$; falls
75. undefined slope; vertical
77. $m=-\frac{A}{B} ; b=\frac{C}{B}$
79. -2

83. 5
85. $m_{1}, m_{3}, m_{2}, m_{4}$
89. a \& b. Life Expectancy for United States; $E(x)=0.215 x+65.7$ Males, by Year of Birth

91. Answers will vary; an example is $y=-2.3 x+255$,
where x is the percentage of adult females who are literate and y is under-five mortality per thousand.; Predictions will vary.
101. $m=-3$

103. $m=\frac{3}{4}$

105. does not make sense
107. does not make sense
109. false 111. true
113. coefficient of $x:-6$; coefficient of $y: 3$
118. $y=2 x+7$ or $f(x)=2 x+7$
119. $4 x-y-17=0 \quad$ 120. 5

Section 1.5

Check Point Exercises

1. $y-5=3(x+2) ; y=3 x+11$ or $f(x)=3 x+11 \quad$ 2. a. $3 \quad$ b. $3 x-y=0 \quad$ 3. $m \approx 0.32$; The number of men living alone increased at a rate of 0.32 million per year. The rate of change is 0.32 million men per year.
2. a. 1 $\begin{array}{lll}\text { b. } 7 & \text { c. } 4 & \text { 5. } 0.01 \mathrm{mg} \text { per } 100 \mathrm{ml} \text { per } \mathrm{hr}\end{array}$
3. a. $12 \mathrm{ft} / \mathrm{sec}$
b. $10 \mathrm{ft} / \mathrm{sec}$
c. $8.04 \mathrm{ft} / \mathrm{sec}$

Concept and Vocabulary Check

1. the same
2. -1
3. $-\frac{1}{3} ; 3$
4. $-2 ; \frac{1}{2}$
5. $y ; x$
6. $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
7. $\frac{s(6)-s(3)}{6-3}$

Exercise Set 1.5

1. $y-2=2(x-4) ; y=2 x-6$ or $f(x)=2 x-6 \quad$ 3. $y-4=-\frac{1}{2}(x-2) ; y=-\frac{1}{2} x+5$ or $f(x)=-\frac{1}{2} x+5$
2. $y+10=-4(x+8) ; y=-4 x-42$
3. $y+3=-5(x-2) ; y=-5 x+7$
4. $y-2=\frac{2}{3}(x+2) ; 2 x-3 y+10=0$
5. $y+7=-2(x-4) ; 2 x+y-1=0$
6. 3
7. 10
8. $\frac{1}{5}$
9. a. $70 \mathrm{ft} / \mathrm{sec}$
b. $65 \mathrm{ft} / \mathrm{sec}$
c. $60.1 \mathrm{ft} / \mathrm{sec}$
d. $60.01 \mathrm{ft} / \mathrm{sec}$
10. $f(x)=5$
11. $f(x)=-\frac{1}{2} x+1$
12. $f(x)=-\frac{2}{3} x-2$
13. $p(x)=-0.25 x+22$
14. 137; There was an average increase of approximately 137 discharges per year. 31 . a. 142 b. overestimates by 5 discharges per year
15. a. The product of their slopes is -1 .
b.

; no c.

; The lines now appear to be perpendicular.
16. makes sense 43. makes sense
17. $-\frac{3}{7}$
18. a.

b.

b.

c. The graph in part (b) is the graph in part (a) shifted down 4 units.
19. a.

c. The graph in part (b) is the graph in part (a) shifted to the right 2 units.
c. The graph in part (b) is the graph in part (a) reflected across the y-axis.
20. a.

b.

Mid-Chapter 1 Check Point

1. not a function; domain: $\{1,2\}$; range: $\{-6,4,6\} \quad$ 2. function; domain: $\{0,2,3\}$; range: $\{1,4\} \quad$ 3. function; domain: $\{x \mid-2 \leq x<2\}$ or $[-2,2)$; range: $\{y \mid 0 \leq y \leq 3\}$ or $[0,3] \quad$ 4. not a function; domain: $\{x \mid-3<x \leq 4\}$ or $(-3,4]$; range: $\{y \mid-1 \leq y \leq 2\}$ or $[-1,2]$
2. not a function; domain: $\{-2,-1,0,1,2\}$; range: $\{-2,-1,1,3\} \quad$ 6. function; domain: $\{x \mid x \leq 1\}$ or $(-\infty, 1]$; range: $\{y \mid y \geq-1\}$ or $[-1, \infty)$
3. y is a function of x 8. y is not a function of x. \quad 9. No vertical line intersects the graph in more than one point. 10. ($-\infty, \infty$)
4. $(-\infty, 4]$
5. -6 and 2
6. 3
7. $(-\infty,-2)$
8. $(-2, \infty)$
9. -2
10. 4
11. 3
12. -7 and 3
13. -6 and 2
$\begin{array}{lll}\text { 21. }(-6,2) & \text { 22. negative } & \text { 23. neither } \\ \text { 24. }-1\end{array}$
14.

30.

35.

26.

31.

36.

27.

32.

28

29.

33.

34

37. a. $f(-x)=-2 x^{2}-x-5$; neither \quad b. $-4 x-2 h+1, h \neq 0 \quad$ 38. a. $30 \quad$ b. 50
39. $f(x)=-2 x-5 \quad$ 40. $f(x)=2 x-3 \quad$ 41. $f(x)=3 x-13$
42. $f(x)=-\frac{5}{2} x-13$
44. a. $0.16 \quad$ b. $0.16 ; 0.16$; minute of brisk walking
45. 2

Section 1.6

Check Point Exercises

2.

3.

b.

4.

8.

5.

9.

Concept and Vocabulary Check

1. vertical; down
2. horizontal; to the right
3. x-axis
4. y-axis
5. vertical; y
6. horizontal; x
7. false

Exercise Set 1.6

1.

3.

5.

11.

13.

15.

7.

9.

17.

19.

25.

27.

$g(x)=2 f(x)$
29.

$g(x)=f(2 x)$
31.

41.

$g(x)=-\frac{1}{2} f(x+2)-2$
51.

61.

71.

81.

91.

101.

111.

43.

$g(x)=\frac{1}{2} f(2 x)$
53.

33.
63.

73.

83.

93.

103.

113.

35.

45.

55.

65.

75.

85.

95.

105.

115.

37.

47.

57.

67.

77.

87.

97.

107.

117.

39.

49.

59.

69.

79.

89.

99.

109.

119.

123. $y=\sqrt{x-2} \quad$ 125. $y=(x+1)^{2}-4$
127. a. First, vertically stretch the graph of $f(x)=\sqrt{x}$
by the factor 2.9 ; then, shift the result up 20.1 units. b. 40.2 in.; very well
c. 0.9 in. per month d. 0.2 in. per month; This is a much smaller rate of change; The graph is not as steep between 50 and 60 as it is between 0 and 10 .
$h(x)=\operatorname{int}(-x)+1$
135. a.

b.

137. makes sense
139. does not make sense
141. false
143. false
145. $g(x)=-(x+4)^{2}$
147. $g(x)=-\sqrt{x-2}+2$
149. $(-a, b)$
151. $(a+3, b)$
153. $2 x^{3}+x^{2}-5 x+2$
154. $9 x^{2}-30 x+30$

$$
\text { 155. } \frac{2 x}{3-x}
$$

Section 1.7

Check Point Exercises

1. a. $(-\infty, \infty)$
b. $(-\infty,-7) \cup(-7,7) \cup(7, \infty)$
c. $[3, \infty)$
d. $(-\infty, 8)$
2. a. $(f+g)(x)=x^{2}+x-6 ;(-\infty, \infty)$
b. $(f-g)(x)=-x^{2}+x-4 ;(-\infty, \infty)$
c. $(f g)(x)=x^{3}-5 x^{2}-x+5 ;(-\infty, \infty)$
d. $\left(\frac{f}{g}\right)(x)=\frac{x-5}{x^{2}-1} ;(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
3. a. $(f+g)(x)=\sqrt{x-3}+\sqrt{x+1}$
b. $[3, \infty)$
4. a. $(B+D)(x)=-3.2 x^{2}+56 x+6406$
b. 6545.2 thousand c. overestimates by
7.2 thousand
5. a. $(f \circ g)(x)=10 x^{2}-5 x+1$
b. $(g \circ f)(x)=50 x^{2}+115 x+65$
c. 16
6. a. $(f \circ g)(x)=\frac{4 x}{1+2 x}$
b. $\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, 0\right) \cup(0, \infty)$
7. If $f(x)=\sqrt{x}$ and $g(x)=x^{2}+5$, then $h(x)=(f \circ g)(x)$.

Concept and Vocabulary Check

1. zero
2. negative
3. $f(x)+g(x)$
4. $f(x)-g(x)$
5. $f(x) \cdot g(x)$
6. $\frac{f(x)}{g(x)} ; g(x)$
7. $(-\infty, \infty)$
8. $(2, \infty)$
9. $(0,3) ;(3, \infty)$
10. composition; $f(g(x))$
11. $f ; g(x)$
12. composition; $g(f(x))$
13. $g ; f(x)$
14. false
15. false
16. 2

Exercise Set 1.7

1. $(-\infty, \infty) \quad$ 3. $(-\infty, 4) \cup(4, \infty) \quad$ 5. $(-\infty, \infty) \quad$ 7. $(-\infty,-3) \cup(-3,5) \cup(5, \infty) \quad$ 9. $(-\infty,-7) \cup(-7,9) \cup(9, \infty)$
2. $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
3. $(-\infty, 0) \cup(0,3) \cup(3, \infty)$
4. $(-\infty, 1) \cup(1,3) \cup(3, \infty)$
5. $[3, \infty)$
6. $(3, \infty)$
7. $[-7, \infty)$
8. $(-\infty, 12]$
9. $[2, \infty)$
10. $[2,5) \cup(5, \infty)$
11. $(-\infty,-2) \cup(-2,2) \cup(2,5) \cup(5, \infty)$
12. $(f+g)(x)=3 x+2$; domain: $(-\infty, \infty) ;(f-g)(x)=x+4$; domain: $(-\infty, \infty) ;(f g)(x)=2 x^{2}+x-3$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{2 x+3}{x-1}$; domain: $(-\infty, 1) \cup(1, \infty) \quad$ 33. $(f+g)(x)=3 x^{2}+x-5$; domain: $(-\infty, \infty) ;(f-g)(x)=-3 x^{2}+x-5$; domain: $(-\infty, \infty) ;(f g)(x)=3 x^{3}-15 x^{2}$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{x-5}{3 x^{2}}$; domain: $(-\infty, 0) \cup(0, \infty) \quad$ 35. $(f+g)(x)=2 x^{2}-2$; domain: $(-\infty, \infty) ;(f-g)(x)=2 x^{2}-2 x-4$; domain: $(-\infty, \infty) ;(f g)(x)=2 x^{3}+x^{2}-4 x-3$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=2 x-3$; domain: $(-\infty,-1) \cup(-1, \infty)$
13. $(f+g)(x)=2 x-12$; domain: $(-\infty, \infty) ;(f-g)(x)=-2 x^{2}-2 x+18$; domain: $(-\infty, \infty) ;(f g)(x)=-x^{4}-2 x^{3}+18 x^{2}+6 x-45$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{3-x^{2}}{x^{2}+2 x-15}$; domain: $(-\infty,-5) \cup(-5,3) \cup(3, \infty)$
14. $(f+g)(x)=\sqrt{x}+x-4$; domain: $[0, \infty) ;(f-g)(x)=\sqrt{x}-x+4$; domain: $[0, \infty) ;(f g)(x)=\sqrt{x}(x-4)$; domain: $[0, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{x-4}$; domain: $[0,4) \cup(4, \infty) \quad$ 41. $(f+g)(x)=\frac{2 x+2}{x}$; domain: $(-\infty, 0) \cup(0, \infty) ;(f-g)(x)=2$; domain: $(-\infty, 0) \cup(0, \infty) ;(f g)(x)=\frac{2 x+1}{x^{2}}$; domain: $(-\infty, 0) \cup(0, \infty) ;\left(\frac{f}{g}\right)(x)=2 x+1$; domain: $(-\infty, 0) \cup(0, \infty) \quad$ 43. $(f+g)(x)=\frac{9 x-1}{x^{2}-9}$; domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;(f-g)(x)=\frac{x+3}{x^{2}-9}=\frac{1}{x-3} ;$ domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;(f g)(x)=\frac{20 x^{2}-6 x-2}{\left(x^{2}-9\right)^{2}} ;$ domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{5 x+1}{4 x-2}$; domain: $(-\infty,-3) \cup\left(-3, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 3\right) \cup(3, \infty) \quad$ 45. $(f+g)(x)=\frac{8 x^{2}+30 x-12}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;(f-g)(x)=\frac{8 x^{2}+18 x+12}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;(f g)(x)=\frac{48 x}{(x-2)(x+3)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{4 x(x+3)}{3(x-2)}$; domain: $(-\infty,-3) \cup(-3,2) \cup(2, \infty) \quad$ 47. $(f+g)(x)=\sqrt{x+4}+\sqrt{x-1}$; domain: $[1, \infty) ;(f-g)(x)=\sqrt{x+4}-\sqrt{x-1}$; domain: $[1, \infty) ;(f g)(x)=\sqrt{x^{2}+3 x-4} ;$ domain: $[1, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+4}}{\sqrt{x-1}} ;$ domain: $(1, \infty)$

AA16 Answers to Selected Exercises

49. $(f+g)(x)=\sqrt{x-2}+\sqrt{2-x}$; domain: $\{2\} ;(f-g)(x)=\sqrt{x-2}-\sqrt{2-x}$; domain: $\{2\} ;(f g)(x)=\sqrt{x-2} \cdot \sqrt{2-x}$; domain:
$\{2\} ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x-2}}{\sqrt{2-x}}$; domain: $\varnothing \quad$ 51. a. $(f \circ g)(x)=2 x+14 \quad$ b. $(g \circ f)(x)=2 x+7 \quad$ c. $(f \circ g)(2)=18 \quad$ d. $(g \circ f)(2)=11$
50. a. $(f \circ g)(x)=2 x+5$
b. $(g \circ f)(x)=2 x+9$
c. $(f \circ g)(2)=9 \quad$ d. $(g \circ f)(2)=13$
51. a. $(f \circ g)(x)=20 x^{2}-11$
b. $(g \circ f)(x)=80 x^{2}-120 x+43 \quad$ c. $(f \circ g)(2)=69 \quad$ d. $(g \circ f)(2)=123 \quad$ 57. a. $(f \circ g)(x)=x^{4}-4 x^{2}+6 \quad$ b. $(g \circ f)(x)=x^{4}+4 x^{2}+2$
c. $(f \circ g)(2)=6 \quad$ d. $(g \circ f)(2)=34 \quad$ 59. a. $(f \circ g)(x)=-2 x^{2}-x-1 \quad$ b. $(g \circ f)(x)=2 x^{2}-17 x+41 \quad$ c. $(f \circ g)(2)=-11 \quad$ d. $(g \circ f)(2)=15$
$\begin{array}{llllll}\text { 61. a. }(f \circ g)(x)=\sqrt{x-1} & \text { b. }(g \circ f)(x)=\sqrt{x}-1 & \text { c. }(f \circ g)(2)=1 & \text { d. }(g \circ f)(2)=\sqrt{2}-1 & \text { 63. a. }(f \circ g)(x)=x & \text { b. }(g \circ f)(x)=x\end{array}$
c. $(f \circ g)(2)=2 \quad$ d. $(g \circ f)(2)=2 \quad$ 65. a. $(f \circ g)(x)=x$
b. $(g \circ f)(x)=x$
c. 2
d. $(g \circ f)(2)=2$
52. a. $(f \circ g)(x)=\frac{2 x}{1+3 x}$
b. $\left(-\infty,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, 0\right) \cup(0, \infty) \quad$ 69. a. $(f \circ g)(x)=\frac{4}{4+x}$
b. $(-\infty,-4) \cup(-4,0) \cup(0, \infty)$
53. a. $(f \circ g)(x)=\sqrt{x-2}$
b. $[2, \infty)$
54. a. $(f \circ g)(x)=5-x$
b. $(-\infty, 1]$
55. $f(x)=x^{4}, g(x)=3 x-1$
56. $f(x)=\sqrt[3]{x}, g(x)=x^{2}-9$
57. $f(x)=|x|, g(x)=2 x-5$
58. $f(x)=\frac{1}{x}, g(x)=2 x-3$
59. 5
60. -1
61. $[-4,3]$
62.
63. $1 \quad 93 .-6$
64. 1 and 2
65. a. $(M+F)(x)=2.99 x+235.5$
b. 295.3 million
c. underestimates by 2.7 million

$(R-C)(20,000)=-200,000$; The company loses $\$ 200,000$ when 20,000 radios are sold.; $(R-C)(30,000)=0 ;$ The company breaks even when 30,000 radios are sold.; $(R-C)(40,000)=200,000$; The company makes a profit of $\$ 200,000$ when 40,000 radios are sold. 101. a. f gives the price of the computer after a $\$ 400$ discount. g gives the price of the computer after a 25% discount. \quad b. $(f \circ g)(x)=0.75 x-400$; This models the price of a computer after first a 25% discount and then a $\$ 400$ discount. \quad c. $(g \circ f)(x)=0.75(x-400)$; This models the price of a computer after first a $\$ 400$ discount and then a 25% discount. d. $f \circ g$ because $0.75 x-400<0.75(x-400)$
66.

111. makes sense 113. does not make sense 115. false 117. true
119. Answers will vary; One possible answer is $f(x)=x+1$ and $g(x)=x-1$.
120. $\{(4,-2),(1,-1),(1,1),(4,2)\}$; no
121. $y=\frac{5}{x-4} \quad$ 122. $y=\sqrt{x+1}$

Domain: [0, 4]

Section 1.8

Check Point Exercises

1. $f(g(x))=4\left(\frac{x+7}{4}\right)-7=x+7-7=x ; g(f(x))=\frac{(4 x-7)+7}{4}=\frac{4 x}{4}=x \quad$ 2. $f^{-1}(x)=\frac{x-7}{2} \quad$ 3. $f^{-1}(x)=\sqrt[3]{\frac{x+1}{4}}$
2. $f^{-1}(x)=\frac{3}{x+1}$
3. (b) and (c)
4.

7. $f^{-1}(x)=\sqrt{x-1}$

Concept and Vocabulary Check

1. inverse
2. $x ; x$
3. horizontal; one-to-one
4. $y=x$

Exercise Set 1.8

1. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses. 3. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
2. $f(g(x))=\frac{5 x-56}{9} ; g(f(x))=\frac{5 x-4}{9} ; f$ and g are not inverses. \quad 7. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
3. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses.
4. $f^{-1}(x)=x-3$
5. $f^{-1}(x)=\frac{x}{2}$
6. $f^{-1}(x)=\frac{x-3}{2}$
7. $f^{-1}(x)=\sqrt[3]{x-2}$
8. $f^{-1}(x)=\sqrt[3]{x}-2$
9. $f^{-1}(x)=\frac{1}{x}$
10. $f^{-1}(x)=x^{2}, x \geq 0$
11. $f^{-1}(x)=\frac{7}{x+3}$
12. $f^{-1}(x)=\frac{3 x+1}{x-2} ; x \neq 2$
13. The function is not one-to-one, so it does not have an inverse function.
14. The function is not one-to-one, so it does not have an inverse function.
15. The function is one-to-one, so it does have an inverse function.
16.

37.

39. a. $f^{-1}(x)=\frac{x+1}{2}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
45. a. $f^{-1}(x)=\sqrt[3]{x+1}$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
51. a. $f^{-1}(x)=(x-1)^{3}$
b.

$(0,-1)$
c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
41. a. $f^{-1}(x)=\sqrt{x+4}$
b.

c. domain of $f=$ range of $f^{-1}=[0, \infty)$; range of $f=$ domain of $f^{-1}=[-4, \infty)$
47. a. $f^{-1}(x)=\sqrt[3]{x}-2$
b.

c. domain of $f=$ range of $f^{-1}=(-\infty, \infty)$;
range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
53. 5
55. $1 \quad 57.2$
59. -7
61. 3
63. 11
65. a. $\{($ Zambia, 4.2), (Colombia, 4.5), (Poland, 3.3), (Italy, 3.3), (United States, 2.5) $\}$
b. $\{(4.2$, Zambia), (4.5, Colombia), (3.3, Poland), (3.3, Italy), (2.5, United States) \}; no; The inverse of f is not a function. 67. a. f is a one-to-one function. b. $f^{-1}(0.25)$ is the number of people in a room for a 25% probability of two people sharing a birthday. $f^{-1}(0.5)$ is the number of people in a room for a 50% probability of two people sharing a birthday. $f^{-1}(0.7)$ is the number of people in a room for a 70% probability of two people sharing a birthday.
69. $f(g(x))=\frac{9}{5}\left[\frac{5}{9}(x-32)\right]+32=x$ and $g(f(x))=\frac{5}{9}\left[\left(\frac{9}{5} x+32\right)-32\right]=x$
77.

one-to-one
85.

f and g are inverses.
79.

not one-to-one
87. makes sense
89. makes sense
81.

not one-to-one
91. false 93. false
83.

not one-to-one
95. $(f \circ g)^{-1}(x)=\frac{x-15}{3} ;\left(g^{-1} \circ f^{-1}\right)(x)=\frac{x}{3}-5=\frac{x-15}{3}$
97. No; The spacecraft was at the same height, $s(t)$, for two different values of t-once during the ascent and once again during the descent.
100. $3 \sqrt{5}$
101.
102. $\{3 \pm \sqrt{13}\}$

Section 1.9

Check Point Exercises

1. $3 \sqrt{5} \approx 6.71$
2. $\left(4,-\frac{1}{2}\right)$
3. $x^{2}+y^{2}=16$
4. $x^{2}+(y+6)^{2}=100$
5. a. center: $(-3,1)$; radius: 2
b.

c. domain: $[-5,-1]$ range: $[-1,3]$

Concept and Vocabulary Check

1. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
2. $\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}$
3. circle; center; radius
4. $(x-h)^{2}+(y-k)^{2}=r^{2}$
5. general
6. $4 ; 16$

AA18 Answers to Selected Exercises

Exercise Set 1.9

1. 13 3. $2 \sqrt{29} \approx 10.77$
2. 5 7. $\sqrt{29} \approx 5.39$
3. $4 \sqrt{2} \approx 5.66$
4. $2 \sqrt{5} \approx 4.47$
5. $2 \sqrt{2} \approx 2.83$
6. $\sqrt{93} \approx 9.64$
7. $\sqrt{5} \approx 2.24 \quad$ 19. $(4,6)$
8. $(-4,-5) \quad$ 23. $\left(\frac{3}{2},-6\right)$
9. $(x+1)^{2}+(y-4)^{2}=4$
10. $(-3,-2)$
11. $(1,5 \sqrt{5})$
12. $(2 \sqrt{2}, 0)$
13. $x^{2}+y^{2}=49$
14. $(x-3)^{2}+(y-2)^{2}=25$
15. $(x+1)^{2}+(y-4)^{2}=4$
16. $(x+3)^{2}+(y+1)^{2}=3$
17. $(x+4)^{2}+y^{2}=100$
18. center: $(0,0)$ radius: 4
domain: $[-4,4]$
range: $[-4,4]$

19. center: $(-1,0)$ radius: 5
domain: $[-6,4]$
range: $[-5,5]$

center: $(3,1)$ radius: 6
domain: $[-3,9]$
range: $[-5,7]$
20. center: $(-3,2)$ radius: 2
domain: $[-5,-1]$
range: $[0,4]$

21. center: $(-2,-2)$
radius: 2
domain: $[-4,0]$ range: $[-4,0]$

22. center: $(0,1)$ radius: 1 domain: $[-1,1]$ range: [0, 2]

23. $(x+3)^{2}+(y+1)^{2}=4$
center: $(-3,-1)$ radius: 2

$$
5=
$$

55. $(x-5)^{2}+(y-3)^{2}=64$ center: $(5,3)$ radius: 8
56. $(x+4)^{2}+(y-1)^{2}=25$ center: $(-4,1)$ radius: 5

57. $\left(x+\frac{3}{2}\right)^{2}+(y-1)^{2}=\frac{17}{4}$
center: $\left(-\frac{3}{2}, 1\right)$ radius: $\frac{\sqrt{17}}{2}$

$$
x^{2}+y^{2}+3 x-2 y-1=0
$$

65. a. $(5,10) \quad$ b. $\sqrt{5}$ c. $(x-5)^{2}+(y-10)^{2}=5$
67. $\{(0,-4),(4,0)\}$

69. $\{(0,-3),(2,-1)\}$

85.

87. makes sense
89. makes sense
91. false
93. false
95. a. Distance between $\left(x_{1}, y_{1}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
=\sqrt{\left(\frac{x_{1}+x_{2}}{2}-x_{1}\right)^{2}+\left(\frac{y_{1}+y_{2}}{2}-y_{1}\right)^{2}}
$$

$$
=\sqrt{\left(\frac{x_{1}+x_{2}-2 x_{1}}{2}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{1}}{2}\right)^{2}}
$$

$$
=\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{x_{2}^{2}-2 x_{1} x_{2}+x_{1}^{2}}{4}+\frac{y_{2}^{2}-2 y_{1} y_{2}+y_{1}^{2}}{4}}
$$

$$
=\sqrt{\frac{x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}}{4}+\frac{y_{1}^{2}-2 y_{1} y_{2}+y_{2}^{2}}{4}}
$$

$$
=\sqrt{\left(\frac{x_{1}-x_{2}}{2}\right)^{2}+\left(\frac{y_{1}-y_{2}}{2}\right)^{2}}
$$

$$
=\sqrt{\left(\frac{x_{1}+x_{2}-2 x_{2}}{2}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{2}}{2}\right)^{2}}
$$

$$
=\sqrt{\left(\frac{x_{1}+x_{2}}{2}-x_{2}\right)^{2}+\left(\frac{y_{1}+y_{2}}{2}-y_{2}\right)^{2}}
$$

$$
=\text { Distance between }\left(x_{2}, y_{2}\right) \text { and }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

b. $\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}+\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}$
$=2 \sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}$
$=2 \sqrt{\frac{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}{4}}$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=$ Distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$
97. $y+4=\frac{3}{4}(x-3)$
98. $x-2000$
99. a. perimeter: 140 yd ; area: $1200 \mathrm{yd}^{2}$
b. perimeter: 140 yd ; area: $1000 \mathrm{yd}^{2}$
100. $h=\frac{22}{\pi r^{2}} ; 2 \pi r^{2}+\frac{44}{r}$

Section 1.10

Check Point Exercises

1. a. $f(x)=0.08 x+15$
b. $g(x)=0.12 x+3$
c. 300 text messages
2. a. $N(x)=-100 x+18,000$
b. $R(x)=-100 x^{2}+18,000 x$
3. a. $V(x)=x(15-2 x)(8-2 x)$
b. $\{x \mid 0<x<4\}$ or $(0,4)$
4. $A(x)=x(100-x)=100 x-x^{2} \mathrm{ft}^{2}$
5. $A(r)=2 \pi r^{2}+\frac{2000}{r}$
6. $I(x)=0.07 x+0.09(25,000-x)$
7. $d(x)=\sqrt{x^{6}+x^{2}}$

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. } 4+0.15 x & \text { 2. } x-300 ; 50(x-300) ; 5000 ; 50(x-300)\end{array}$
3. $10-2 x ; 10-2 x ; x ;(10-2 x) ;(10-2 x) ; x$
4. $x y ; 2 x+2 y ; 90-x ; x(90-x)$
5. $0.12 x+0.09 y ; 30,000-x ; 0.12 x+0.09(30,000-x)$
6. $\sqrt{x^{2}+y^{2}} ; \sqrt{x^{2}+x^{6}}$

Exercise Set 1.10

1. a. $f(x)=200+0.15 x$
b. 800 mi
2. a. $M(x)=239.4-0.3 x$
b. 2152
3. a. $f(x)=1.25 x$
b. $g(x)=21+0.5 x$
c. 28 times; $\$ 35 \quad$ 7. a. $f(x)=100+0.8 x \quad$ b. $g(x)=40+0.9 x \quad$ c. $\$ 600 ; \$ 580 \quad$ 9. a. $N(x)=-500 x+40,000 \quad$ b. $R(x)=-500 x^{2}+40,000 x$ 11. a. $N(x)=-50 x+16,500 \quad$ b. $R(x)=-50 x^{2}+16,500 x \quad$ 13. a. $Y(x)=-4 x+520 \quad$ b. $T(x)=-4 x^{2}+520 x$
4. a. $V(x)=x(24-2 x)^{2} \quad$ b. $V(2)=800$; If a 2 -in. square is cut from each corner, the volume is 800 cubic in.; $V(3)=972$; if a 3 -in. square is cut from each corner, the volume is 972 cubic in.; $V(4)=1024$; if a 4-in. square is cut from each corner, the volume is 1024 cubic in.; $V(5)=980$; if a 5 -in. square is cut from each corner, the volume is 980 cubic in.; $V(6)=864$; if a $6-\mathrm{in}$. square is cut from each corner, the volume is 864 cubic in. Initially, as x increases, V increases. When $x=4, V$ is a maximum. As x increases beyond $4, V$ decreases. c. $(0,12) \quad$ 17. $A(x)=x(20-2 x)$
5. $P(x)=x(66-x)$ 21. $A(x)=x(400-x) \quad$ 23. Let x be the length of the side perpendicular to the canal. $A(x)=x(800-2 x)$
$\begin{array}{lll}\text { 25. } A(x)=\frac{x(1000-2 x)}{3} & \text { 27. } A(r)=r(440-\pi r) & \text { 29. Let } x \text { be the length of the interior wall. } C(x)=475 x+\frac{1,400,000}{x}\end{array}$
6. $A(x)=\frac{40}{x}+x^{2}$
7. $V(x)=300 x^{2}-4 x^{3}$
8. a. $I(x)=0.15 x+0.07(50,000-x)$
b. $\$ 31,250$ at $15 \%, \$ 18,750$ at 7%
9. $I(x)=0.12 x-0.05(8000-x)$
10. $d(x)=\sqrt{x^{4}-7 x^{2}+16} \quad$ 41. $d(x)=\sqrt{x^{2}-x+1}$
11. a. $A(x)=2 x \sqrt{4-x^{2}}$
b. $P(x)=4 x+2 \sqrt{4-x^{2}}$
12. $f(x)=\sqrt{x^{2}+36}+\sqrt{x^{2}-20 x+164}$
13. $A(x)=3 x^{2}+x-4$
14. $V(x)=2 x^{3}+12 x^{2}+12 x+10$
15. does not make sense
16. does not make sense
17. $T(x)=\frac{\sqrt{x^{2}+4}}{2}+\frac{6-x}{5}$
18. $A(r)=12 r-\frac{4+\pi}{2} r^{2} \quad$ 71. $15 x^{2}-29 x-14$
19. $\sqrt{2}$
20. $-\frac{54+43 \sqrt{2}}{46}$

Chapter 1 Review Exercises

1.

3.

4.

5.

6. x-intercept: $-2 ; y$-intercept: 2
7. x-intercepts: -2 , $2 ; y$-intercept: -4
8. x-intercept: 5; no y-intercept
9. $(20,8) ; 8 \%$ of college students anticipated a starting salary of $\$ 20$ thousand.
10. $\$ 30$ thousand; 22% 12. $\$ 25$ thousand and $\$ 30$ thousand \quad 13. $14 \% \quad$ 14. 19.7%; It's greater than the estimate. 15. function; domain: $\{2,3,5\}$; range: $\{7\}$
16. function; domain: $\{1,2,13\}$; range: $\{10,500, \pi\} \quad$ 17. not a function; domain: $\{12,14\}$; range: $\{13,15,19\} \quad$ 18. y is a function of x.
$\begin{array}{lllll}\text { 19. } y \text { is a function of } x . & \text { 20. } y \text { is not a function of } x . & \text { 21. } \text { a. } f(4)=-23 & \text { b. } f(x+3)=-7 x-16 & \text { c. } f(-x)=5+7 x\end{array}$
22. a. $g(0)=2 \quad$ b. $g(-2)=24 \quad$ c. $g(x-1)=3 x^{2}-11 x+10 \quad$ d. $g(-x)=3 x^{2}+5 x+2 \quad$ 23. a. $g(13)=3$
$\begin{array}{llllllll}\text { b. } g(0)=4 & \text { c. } g(-3)=7 & \text { 24. a. }-1 & \text { b. } 12 & \text { c. } 3 & \text { 25. not a function } & \text { 26. function } & \text { 27. function }\end{array}$ 28. not a function
29. not a function \quad 30. function \quad 31. a. $[-3,5) \quad$ b. $[-5,0] \quad$ c. $-3 \quad$ d. $-2 \quad$ e. increasing: $(-2,0)$ or $(3,5)$; decreasing: $(-3,-2)$ or $(0,3) \quad$ f. $f(-2)=-3$ and $f(3)=-5 \quad$ 32. a. $(-\infty, \infty) \quad$ b. $(-\infty, 3] \quad$ c. -2 and $3 \quad$ d. $3 \quad$ e. increasing: $(-\infty, 0)$; decreasing: $(0, \infty) \quad$ f. $f(-2)=0$ and $f(6)=-3 \quad$ 33. a. $(-\infty, \infty) \quad$ b. $[-2,2] \quad$ c. $0 \quad$ d. $0 \quad$ e. increasing: $(-2,2)$; constant: $(-\infty,-2)$ or $(2, \infty) \quad$ f. $f(-9)=-2$ and $f(14)=2 \quad$ 34. a. $0 ; f(0)=-2 \quad$ b. $-2,3 ; f(-2)=-3, f(3)=-5$
35. a. $0 ; f(0)=3 \quad$ b. none \quad 36. odd; symmetric with respect to the origin $\quad 37$. even; symmetric with respect to the y-axis
38. odd; symmetric with respect to the origin
39.

40.

; $(-\infty, 0]$

AA20 Answers to Selected Exercises

41. $8 \quad$ 42. $-4 x-2 h+1 \quad$ 43. a. yes; The graph passes the vertical line test. b. $(3,12)$; The eagle descended.
c. $(0,3)$ and $(12,17)$; The eagle's height held steady during the first 3 seconds and the eagle was on the ground for 5 seconds.
d. $(17,30)$; The eagle was ascending.
42.

45. $-\frac{1}{2}$; falls
46. 1 ; rises
47. 0 ; horizontal
48. undefined; vertical
49. $y-2=-6(x+3) ; y=-6 x-16$
50. using (1, 6), $y-6=2(x-1) ; y=2 x+4$
51. $y+7=-3(x-4) ; y=-3 x+5$
52. $y-6=-3(x+3) ; y=-3 x-3$
53. $x+6 y+18=0$
54. Slope: $\frac{2}{5} ; y$-intercept: -1

$y=\frac{2}{5} x-1$
55. Slope: $-4 ; y$-intercept: 5

56. Slope: $-\frac{2}{3} ; y$-intercept: -2

57. Slope: $0 ; y$-intercept: 4

58.

59. 2

60. a. $y-2.3=0.116(x-15)$ or $y-11=0.116(x-90) \quad$ b. $f(x)=0.116 x+0.56 \quad$ c. approximately 5 deaths per 100,000 persons d. 4.3 deaths per 100,000 persons; underestimates by 0.7 death per 100,000 persons; The line passes below the point for France.
61. a. -0.48
b. $0.48 ;-0.48 \%$; year
62. $10 \quad$ 63. a. $32 \mathrm{ft} / \mathrm{sec}$
b. $-32 \mathrm{ft} / \mathrm{sec}$
c. The positive sign means the ball is moving up on $(0,2)$.

The negative sign means the ball is moving down on $(2,4)$.
64.
65.

66.

67.

68.

69.

70.

71.

72.

76.

77.

79.

84.

75.

80.

81.

82

78.

73.

83.

85. $(-\infty, \infty) \quad$ 86. $(-\infty, 7) \cup(7, \infty) \quad$ 87. $(-\infty, 4] \quad$ 88. $(-\infty,-7) \cup(-7,3) \cup(3, \infty)$
89. $[2,5) \cup(5, \infty) \quad$ 90. $[1, \infty) \quad$ 91. $(f+g)(x)=4 x-6$; domain: $(-\infty, \infty) ;(f-g)(x)=2 x+4$; domain: $(-\infty, \infty) ;(f g)(x)=3 x^{2}-16 x+5$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{3 x-1}{x-5}$; domain: $(-\infty, 5) \cup(5, \infty)$
92. $(f+g)(x)=2 x^{2}+x$; domain: $(-\infty, \infty) ;(f-g)(x)=x+2$; domain: $(-\infty, \infty) ;(f g)(x)=x^{4}+x^{3}-x-1$; domain: $(-\infty, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{x^{2}+x+1}{x^{2}-1}$; domain: $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
93. $(f+g)(x)=\sqrt{x+7}+\sqrt{x-2}$; domain: $[2, \infty) ;(f-g)(x)=\sqrt{x+7}-\sqrt{x-2} ;$ domain: $[2, \infty) ;(f g)(x)=\sqrt{x^{2}+5 x-14}$; domain:
$[2, \infty) ;\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+7}}{\sqrt{x-2}}$; domain: $(2, \infty)$
94. a. $(f \circ g)(x)=16 x^{2}-8 x+4$
b. $(g \circ f)(x)=4 x^{2}+11$
c. $(f \circ g)(3)=124$
95. a. $(f \circ g)(x)=\sqrt{x+1}$
b. $(g \circ f)(x)=\sqrt{x}+1$
c. $(f \circ g)(3)=2$
96. a. $(f \circ g)(x)=\frac{1+x}{1-2 x}$
b. $(-\infty, 0) \cup\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$
97. a. $(f \circ g)(x)=\sqrt{x+2}$
b. $[-2, \infty)$
98. $f(x)=x^{4}, g(x)=x^{2}+2 x-1$
99. $f(x)=\sqrt[3]{x}, g(x)=7 x+4$
100. $f(g(x))=x-\frac{7}{10}$;
$g(f(x))=x-\frac{7}{6} ; f$ and g are not inverses of each other.
101. $f(g(x))=x ; g(f(x))=x ; f$ and g are inverses of each other.
102. $f^{-1}(x)=\frac{x+3}{4}$
103. $f^{-1}(x)=\sqrt[3]{\frac{x-1}{8}}$ or $\frac{\sqrt[3]{x-1}}{2} \quad$ 104. $f^{-1}(x)=\frac{2}{x-5} \quad$ 105. Inverse function exists. \quad 106. Inverse function does not exist.
107. Inverse function exists. 108. Inverse function does not exist.
109.

110. $f^{-1}(x)=\sqrt{1-x}$

119. center: $(-2,3)$; radius: 3 domain: $[-5,1]$; range: $[0,6]$
111. $f^{-1}(x)=(x-1)^{2}, x \geq 1$

112. 13 113. $2 \sqrt{2} \approx 2.83$
114. $(-5,5)$ 115. $\left(-\frac{11}{2},-2\right)$
116. $x^{2}+y^{2}=9$
117. $(x+2)^{2}+(y-4)^{2}=36$
118. center: $(0,0)$; radius: 1 domain: $[-1,1]$; range: $[-1,1]$

120. center: $(2,-1)$; radius: 3 domain: $[-1,5]$; range: $[-4,2]$

121. a. $W(x)=15 x+567$
b. 2009
122. a. $f(x)=0.05 x+15$
b. $g(x)=0.07 x+5$
c. 500 texts
123. a. $N(x)=640-2 x$
b. $R(x)=x(640-2 x)$
124. a. $V(x)=x(16-2 x)(24-2 x)$
b. $(0,8)$
125. $A(x)=x\left(\frac{400-3 x}{2}\right)$
126. $A(x)=2 x^{2}+\frac{32}{x}$
127. $I(x)=0.08 x+0.12(10,000-x)$

Chapter 1 Test

1. $\mathrm{b}, \mathrm{c}, \mathrm{d}$
2. a. $f(4)-f(-3)=5$
b. $(-5,6]$
c. $[-4,5]$
d. $(-1,2)$
e. $(-5,-1)$ or $(2,6)$
f. $2 ; f(2)=5$
g. $-1 ; f(-1)=-4$
h. $-4,1$, and 5
i. -3
3. a. -2 and 2
b. -1 and 1
c. 0
d. even
e. no
f. relative minimum
g.

$(-1,-3)$
h.

4. x

5.

domain: $(-\infty, \infty)$;
range: $(-\infty, \infty)$
8.

domain: $[-5,1]$;
range: $[-2,4]$
domain: $(-\infty, \infty)$;
range: $(-\infty, \infty)$
9.

domain: $(-\infty, \infty)$;
range: $\{-1,2\}$

domain: $[-2,2]$;
range: $[-2,2]$
domain: $(-\infty, \infty)$; range: $\{4\}$
6.

domain: $[-6,2]$;
range: $[-1,7]$
11.

domain of $f=$ domain of $g=(-\infty, \infty)$; range of $f=[0, \infty)$; range of $g=[-2, \infty)$
12.

domain of $f=$ domain of $g=(-\infty, \infty)$; range of $f=[0, \infty)$; range of $g=(-\infty, 4]$
13.

domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
14.

domain of $f=$ range of $f^{-1}=(-\infty, \infty)$; range of $f=$ domain of $f^{-1}=(-\infty, \infty)$
15.

16. $f(x-1)=x^{2}-3 x-2$
17. $2 x+h-1$
18. $(g-f)(x)=-x^{2}+3 x-2$
19. $\left(\frac{f}{g}\right)(x)=\frac{x^{2}-x-4}{2 x-6} ;(-\infty, 3) \cup(3, \infty) \quad$ 20. $(f \circ g)(x)=4 x^{2}-26 x+38 \quad$ 21. $(g \circ f)(x)=2 x^{2}-2 x-14$
22. $-10 \quad$ 23. $f(-x)=x^{2}+x-4$; neither
24. using $(2,1), y-1=3(x-2) ; y=3 x-5$
$\begin{array}{lll}\text { 25. } y-6=4(x+4) ; y=4 x+22 & \text { 26. } 2 x+y+24=0 & \text { 27. a. using }(1,4571), y-4571=433(x-1)\end{array}$
b. $f(x)=433 x+4138$
c. 8468 deaths
28. 48 29. $g(-1)=4 ; g(7)=2$
30. $(-\infty,-5) \cup(-5,1) \cup(1, \infty)$
domain of $f=$ range of $f^{-1}=[0, \infty)$;
range of $f=$ domain of $f^{-1}=[-1, \infty)$
31. $[1, \infty)$

$$
\text { 32. } \frac{7 x}{2-4 x} \text {; domain: }(-\infty, 0) \cup\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)
$$

33. $f(x)=x^{7}, g(x)=2 x+3$
34. $5 ;\left(\frac{7}{2}, 0\right)$ or $(3.5,0)$
35. a. $T(x)=41.78-0.19 x$
b. 2012
36. a. $Y(x)=50-1.5(x-30)$
b. $T(x)=x(50-1.5(x-30))$
37. $A(x)=x(300-x)$
38. $A(x)=2 x^{2}+\frac{32,000}{x}$

CHAPTER 2

Section 2.1

Check Point Exercises

1. a. $8+i$
b. $-10+7 i$
2. a. $63+14 i$
b. $58-11 i$
3. $\frac{16}{17}+\frac{21}{17} i$
4. a. $7 i \sqrt{3}$
b. $1-4 i \sqrt{3}$
c. $-7+i \sqrt{3}$
5. $\{1 \pm i\}$

Concept and Vocabulary Check

1. $\sqrt{-1} ;-1$
2. complex; imaginary; real
3. $-6 i$
4. $14 i$
5. $18 ;-15 i ; 12 i ;-10 i^{2} ; 10$
6. $2+9 i$
7. $2+5 i$
8. $i ; i ; 2 i \sqrt{5}$
9. $-1 \pm i \frac{\sqrt{6}}{2}$

Exercise Set 2.1

21. $\frac{3}{5}+\frac{1}{5} i$
22. $-2+9 i$
23. $24-3 i$
24. $-14+17 i$
25. $21+15 i$
26. $-19+7 i$
27. $-29-11 i$
28. 34
29. 26
30. $-5+12 i$
31. $-2 \sqrt{6}-2 i \sqrt{10}$
32. $24 \sqrt{15}$
33. $\{3 \pm i\}$
34. $\left\{-1 \pm \frac{3}{2} i\right\}$
35. $\left\{\frac{4}{3} \pm i \frac{\sqrt{5}}{3}\right\}$
36. $2+6 i \sqrt{7}$
37. $-\frac{1}{3}+i \frac{\sqrt{2}}{6}$
38. $-\frac{1}{8}-i \frac{\sqrt{3}}{24}$
39. 0
40. $\frac{20}{13}+\frac{30}{13} i$
41. $(47+13 i)$ volts
42. $(5+i \sqrt{15})+$
$+(5$
43. false
44. false
45. $\frac{14}{25}-\frac{2}{25} i$
46. $\frac{8}{5}+\frac{16}{5} i$
47. $\{1,5\}$
48. $\{-1 \pm \sqrt{ } 2\}$
49. makes sense
50. does not make sense
51. $-11-5 i$
52. $-5+10 i$
53. $0+47 i$ or $47 i$
54.

$f(x)=x^{2}$
$g(x)=(x+3)^{2}+1$

Section 2.2

Check Point Exercises

1.

2.

3.

domain: $(-\infty, \infty)$; range: $(-\infty, 5]$
6. $4,-4 ;-16 \quad$ 7. 30 ft by $30 \mathrm{ft} ; 900 \mathrm{sq} \mathrm{ft}$
4. a. minimum \quad b. Minimum is 984 at $x=2$.
c. domain: $(-\infty, \infty)$; range: $[984, \infty)$
5. a. $205 \mathrm{ft} ; 200 \mathrm{ft}$
b. 402 ft
c.

Concept and Vocabulary Check

1. standard; parabola; $(h, k) ;>0 ;<0$
2. $-\frac{b}{2 a} ; f\left(-\frac{b}{2 a}\right) ;-\frac{b}{2 a} ; f\left(-\frac{b}{2 a}\right)$
3. true
4. false
5. true
6. $x-8 ; x^{2}-8 x$
7. $40-x ;-x^{2}+40 x$

Exercise Set 2.2

1. $h(x)=(x-1)^{2}+1$
2. $j(x)=(x-1)^{2}-1$
3. $h(x)=x^{2}-1$
4. $(2,-5)$
5. $(-1,9)$
6. domain: $(-\infty, \infty)$
range: $[-1, \infty)$
axis of symmetry: $x=4$

$f(x)=(x-4)^{2}-1$
7. domain: $(-\infty, \infty)$
range: $(-\infty, 4]$
axis of symmetry: $x=1$

$f(x)=4-(x-1)^{2}$
8. domain: $(-\infty, \infty)$
range: $[-6, \infty)$
axis of symmetry: $x=-3$

9. domain: $(-\infty, \infty)$
range: $[2, \infty)$
axis of symmetry: $x=1$

$f(x)=(x-1)^{2}+2$
10. domain: $(-\infty, \infty)$
range: $[-4, \infty)$
axis of symmetry: $x=1$

$f(x)=x^{2}-2 x-3$
11. domain: $(-\infty, \infty)$
range: $[-5, \infty)$
axis of symmetry: $x=-1$

12. $g(x)=x^{2}-2 x+1$
13. $(3,1)$
14. $(-1,5)$
15. domain: $(-\infty, \infty)$
range: $[1, \infty)$
axis of symmetry: $x=3$

16. domain: $(-\infty, \infty)$
range: $\left[-\frac{49}{4}, \infty\right)$
axis of symmetry: $x=-\frac{3}{2}$

17. domain: $(-\infty, \infty)$
range: $(-\infty,-1]$
axis of symmetry: $x=1$

$f(x)=2 x-x^{2}-2$
18. a. minimum
b. Minimum is -13 at $x=2$.
c. domain: $(-\infty, \infty)$; range: $[-13, \infty)$
19. a. maximum
b. Maximum is 1 at $x=1$.
c. domain: $(-\infty, \infty)$; range: $(-\infty, 1]$
20. a. minimum
b. Minimum is $-\frac{5}{4}$ at $x=\frac{1}{2}$.
c. domain: $(-\infty, \infty)$; range: $\left[-\frac{5}{4}, \infty\right)$
21. domain: $(-\infty, \infty)$; range: $[-2, \infty)$
22. domain: $(-\infty, \infty)$; range: $(-\infty,-6]$
23. $f(x)=2(x-5)^{2}+3$
24. $f(x)=2(x+10)^{2}-5$
25. $f(x)=-3(x+2)^{2}+4$
26. $f(x)=3(x-11)^{2}$
27. a. $18.35 \mathrm{ft} ; 35 \mathrm{ft}$
b. 77.8 ft
c. 6.1 ft
28. a. $7.8 \mathrm{ft} ; 1.5 \mathrm{ft}$
b. 4.6 ft
c.

29. length: 300 ft ; width: 150 ft ; maximum area: $45,000 \mathrm{sq} \mathrm{ft}$
30. 5 in.; 50 sq in.
31. $\$ 65 ; \$ 422,500$
32. $25 ; 1250 \mathrm{lb}$
33. 12.5 yd by $12.5 \mathrm{yd} ; 156.25 \mathrm{sq} \mathrm{yd}$
34. 150 ft by $100 \mathrm{ft} ; 15,000 \mathrm{sq} \mathrm{ft}$
35. $(80,1600)$

36. $(-4,520)$

37. a \& e.

b. $f(x)=-0.68 x^{2}+7.94 x+6.78$
c. $6 ; 29.9$ million
d. The greatest number of viewers actually occurred in Season 5, not Season 6, and the model underestimates the greatest number by 0.5 million.
38. makes sense 93. does not make sense 95. false \quad 97. false \quad 99. $x=3 ;(0,11) \quad$ 101. $f(x)=-2(x+3)^{2}-1$ 103. $\$ 95 ; \$ 21,675 \quad$ 106. $(x+3)(x+1)(x-1) \quad$ 107. $f(2)=-1 ; f(3)=16$; The graph passes through $(2,-1)$, which is below the x-axis, and $(3,16)$, which is above the x-axis. Since the graph of f is continuous, it must cross the x-axis somewhere between 2 and 3 to get from one of these points to the other. 108. even; symmetric with respect to the y-axis

Section 2.3

Check Point Exercises

1. The graph rises to the left and to the right. 2. The graph falls to the left and rises to the right. 3. Since n is odd and the leading coefficient is negative, the graph falls to the right. Since the ratio cannot be negative, the model won't be appropriate. 4. No; the graph should fall to the left but doesn't appear to do so. \quad 5. -2 and $2 \quad$ 6. $-2,0$, and $2 \quad$ 7. $-\frac{1}{2}$ with multiplicity 2 and 5 with multiplicity 3 ; touches and turns at $-\frac{1}{2}$ and crosses at 5
2. $f(-3)=-42 ; f(-2)=5 \quad$ 9.

$f(x)=x^{3}-3 x^{2}$
3.

$f(x)=2(x+2)^{2}(x-3)$

Concept and Vocabulary Check

1. $5 ;-2$
2. false
3. end; leading 4. falls; rises
4. rises; falls
5. rises; rises
6. falls; falls
7. true
8. true
9. x-intercept 11. turns around; crosses
10. 0 ; Intermediate Value
11. $n-1$

Exercise Set 2.3

1. polynomial function; degree: $3 \quad$ 3. polynomial function; degree: $5 \quad$ 5. not a polynomial function \quad 7. not a polynomial function
2. not a polynomial function 11. could be polynomial function 13. not a polynomial function 15. b 17. a
3. falls to the left and rises to the right 21. rises to the left and to the right 23 . falls to the left and to the right
4. $x=5$ has multiplicity 1 ; The graph crosses the x-axis; $x=-4$ has multiplicity 2 ; The graph touches the x-axis and turns around.
5. $x=3$ has multiplicity 1 ; The graph crosses the x-axis; $x=-6$ has multiplicity 3 ; The graph crosses the x-axis.
6. $x=0$ has multiplicity 1 ; The graph crosses the x-axis; $x=1$ has multiplicity 2 ; The graph touches the x-axis and turns around.
7. $x=2, x=-2$ and $x=-7$ have multiplicity 1 ; The graph crosses the x-axis. \quad 33. $f(1)=-1 ; f(2)=5 \quad$ 35. $f(-1)=-1 ; f(0)=1$
8. $f(-3)=-11 ; f(-2)=1 \quad$ 39. $f(-3)=-42 ; f(-2)=5$
9. a. $f(x)$ rises to the right and falls to the left. b. $x=-2, x=1, x=-1$;
$f(x)$ crosses the x-axis at each.
c. The y-intercept is -2 .
d. neither
e.

$f(x)=x^{3}+2 x^{2}-x-2$
10. a. $f(x)$ falls to the left and the right.
b. $x=0, x=4, x=-4$;
$f(x)$ crosses the x-axis at -4 and 4 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

$f(x)=-x^{4}+16 x^{2}$
11. a. $f(x)$ rises to the left and the right.
b. $x=0, x=3, x=-3$;
$f(x)$ crosses the x-axis at -3 and 3 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. y-axis symmetry
e.

$$
f(x)=x^{4}-9 x^{2}
$$

47. a. $f(x)$ rises to the left and the right.
b. $x=0, x=1$;
$f(x)$ touches the x-axis at 0 and 1.
c. The y-intercept is 0 .
d. neither
e.

$f(x)=x^{4}-2 x^{3}+x^{2}$
48. a. $f(x)$ falls to the left and the right.
b. $x=0, x=2$;
$f(x)$ crosses the x-axis at 0 and 2.
c. The y-intercept is 0 .
d. neither
e.

$f(x)=-2 x^{4}+4 x^{3}$
49. a. $f(x)$ rises to the left and falls to the right.
b. $x=0, x=3$;
$f(x)$ crosses the x-axis at 3 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

50. a. $f(x)$ rises to the left and the right.
b. $x=-2, x=0, x=1$;
$f(x)$ crosses the x-axis at -2 and 1 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

51. a. $f(x)$ falls to the left and the right.
b. $x=-5, x=0, x=1$;
$f(x)$ crosses the x-axis at -5 and 0 ;
$f(x)$ touches the x-axis at 1 .
c. The y-intercept is 0 .
d. neither
e.

52. a. $f(x)$ rises to the left and falls to the right.
b. $x=0, x= \pm \sqrt{3}$;
$f(x)$ crosses the x-axis at 0 ;
$f(x)$ touches the x-axis at $\sqrt{3}$ and $-\sqrt{3}$.
c. The y-intercept is 0 .
d. origin symmetry
e.

53. a. $f(x)$ falls to the left and the right.
b. $x=1, x=-2, x=2$;
$f(x)$ crosses the x-axis at -2 and 2 ;
$f(x)$ touches the x-axis at 1 .
c. The y-intercept is 12 .
d. neither
e.

54. a. $f(x)$ falls to the left and the right.
b. $x=-3, x=0, x=1$;
$f(x)$ crosses the x-axis at -3 and 1 ;
$f(x)$ touches the x-axis at 0 .
c. The y-intercept is 0 .
d. neither
e.

55. a. $f(x)$ rises to the left and the right.
b. $x=-4, x=1, x=2$;
$f(x)$ crosses the x-axis at -4 and 1 ;
$f(x)$ touches the x-axis at 2 .
c. The y-intercept is -16 .
d. neither
e.

56. a. -2 , odd; 1 , odd; 4 , odd
b. $f(x)=(x+2)(x-1)(x-4)$
c. $8 \quad$ 67. a. -1 , odd; 3 , even
b. $f(x)=(x+1)(x-3)^{2}$
c. 9
57. a. -3 , even; 2 , even \quad b. $f(x)=-(x+3)^{2}(x-2)^{2} \quad$ c. $-36 \quad$ 71. a. -2 , even; -1 , odd; 1 , odd
b. $f(x)=(x+2)^{2}(x+1)(x-1)^{3}$
c. $-4 \quad$ 73. a. 3167 ; The world tiger population in 2010 was approximately $3167 . ;(40,3167) \quad$ b. underestimates by $33 \quad$ c. rises to the right; no; The model indicates an increasing world tiger population that will actually decrease without conservation efforts. 75. a. from 1 through 4 min and from 8 through $10 \mathrm{~min} \quad$ b. from 4 through 8 min and from 10 through $12 \mathrm{~min} \quad$ c. $3 \quad$ d. $4 \quad$ e. negative; The graph falls to the left and falls to the right. f. 116 ± 1 beats per min; $10 \mathrm{~min} \quad$ g. 64 ± 1 beats per min; 8 min
58.

97.

99.

101. does not make sense 103. makes sense 105. false 107. false 109. $f(x)=x^{3}-2 x^{2}$ 110. $35 \frac{2}{21} \quad$ 111. $6 x^{3}-x^{2}-5 x+4 \quad$ 112. $(x-3)(2 x-1)(x+2)$

Section 2.4

Check Point Exercises

1. $x+5$
2. $2 x^{2}+3 x-2+\frac{1}{x-3}$
3. $2 x^{2}+7 x+14+\frac{21 x-10}{x^{2}-2 x}$
4. $x^{2}-2 x-3$
5. -105
6. $\left\{-1,-\frac{1}{3}, \frac{2}{5}\right\}$

Concept and Vocabulary Check

$\begin{array}{llll}\text { 1. } 2 x^{3}+0 x^{2}+6 x-4 & \text { 2. } 6 x^{3} ; 3 x ; 2 x^{2} ; 7 x^{2} & \text { 3. } 2 x^{2} ; 5 x-2 ; 10 x^{3}-4 x^{2} ; 10 x^{3}+6 x^{2} & \text { 4. } 6 x^{2}-10 x ; 6 x^{2}+8 x ; 18 x ;-4 ; 18 x-4\end{array}$
5. $9 ; 3 x-5 ; 9 ; 3 x-5+\frac{9}{2 x+1}$
6. divisor; quotient; remainder; dividend
7. $4 ; 1 ; 5 ;-7 ; 1$
8. $-5 ; 4 ; 0 ;-8 ;-2$
9. true
10. $f(c)$
11. $x-c$

Exercise Set 2.4
$\begin{array}{llllll}\text { 1. } x+3 & \text { 3. } x^{2}+3 x+1 & \text { 5. } 2 x^{2}+3 x+5 & \text { 7. } 4 x+3+\frac{2}{3 x-2} & \text { 9. } 2 x^{2}+x+6-\frac{38}{x+3} & \text { 11. } 4 x^{3}+16 x^{2}+60 x+246+\frac{984}{x-4}\end{array}$
13. $2 x+5$ 15. $6 x^{2}+3 x-1-\frac{3 x-1}{3 x^{2}+1}$ 17. $2 x+5$
19. $3 x-8+\frac{20}{x+5}$
21. $4 x^{2}+x+4+\frac{3}{x-1}$
23. $6 x^{4}+12 x^{3}+22 x^{2}+48 x+93+\frac{187}{x-2}$
25. $x^{3}-10 x^{2}+51 x-260+\frac{1300}{x+5}$
27. $x^{4}+x^{3}+2 x^{2}+2 x+2$
29. $x^{3}+4 x^{2}+16 x+64$
31. $2 x^{4}-7 x^{3}+15 x^{2}-31 x+64-\frac{129}{x+2}$
33. $-25 \quad$ 35. $-133 \quad$ 37. 240
39. 1
41. $x^{2}-5 x+6 ; x=-1, x=2, x=3$
43. $\left\{-\frac{1}{2}, 1,2\right\}$
45. $\left\{-\frac{3}{2},-\frac{1}{3}, \frac{1}{2}\right\}$
47. 2; The remainder is zero, $\{-3,-1,2\}$
49. 1 ; The remainder is zero; $\left\{\frac{1}{3}, \frac{1}{2}, 1\right\}$
51. a. The remainder is $0 . \quad$ b. 3 mm
53. $0.5 x^{2}-0.4 x+0.3$
55. a. 70; When the tax rate is 30%, tax revenue is $\$ 700$ billion.; $(30,70)$
b. $80+\frac{800}{x-110} ; f(30)=70$; yes c. No, f is a rational function because it is a quotient of two polynomials.
67. makes sense
69. does not make sense
71. true
73. false
75. $x-2$
79. $\{-2 \pm \sqrt{5}\}$
80. $\{-2 \pm i \sqrt{ } 2\}$
81. -3

Section 2.5

Check Point Exercises

1. $\pm 1, \pm 2, \pm 3, \pm 6$
2. $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2}, \pm \frac{3}{4} \quad$ 3. $-5,-4$, and 1
3. $2, \frac{-3-\sqrt{5}}{2}$, and $\frac{-3+\sqrt{5}}{2}$
4. $\{1,2-3 i, 2+3 i\}$
5. $f(x)=x^{3}+3 x^{2}+x+3$
6. 4,2 , or 0 positive zeros, no possible negative zeros

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. } a_{0} ; a_{n} & \text { 2. true }\end{array}$
3. false
4. n
5. $a-b i$
6. $-6 ;(x+6)\left(2 x^{2}-x-1\right)=0$
7. $n ; 1$
8. false
9. true
10. true

Exercise Set 2.5

1. $\pm 1, \pm 2, \pm 4$

$$
\text { 3. } \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}
$$

5. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2}, \pm \frac{3}{4}$
6. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
7. a. $\pm 1, \pm 2, \pm 4$
b. $-2,-1$, or 2
c. $-2,-1$, and 2
8. a. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$
b. $-2, \frac{1}{2}$, or 3
c. $-2, \frac{1}{2}$, and 3
9. a. $\pm 1, \pm 2, \pm 3, \pm 6$
b. $-1 \quad$ c. $-1, \frac{-3-\sqrt{33}}{2}$, and $\frac{-3+\sqrt{33}}{2}$
10. a. $\pm 1, \pm \frac{1}{2}, \pm 2$
b. -2
c. $-2, \frac{-1+i}{2}$, and $\frac{-1-i}{2}$
11. a. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
b. $-3,1$, or $4 \quad$ c. $\{-3,1,4\} \quad$ 19. a. $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \quad$ b. $-2 \quad$ c. $\{-2,1+\sqrt{7}, 1-\sqrt{7}\}$
12. a. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{1}{6}, \pm \frac{5}{6}$
b. $-5, \frac{1}{3}$, or $\frac{1}{2} \quad$ c. $\left\{-5, \frac{1}{3}, \frac{1}{2}\right\}$
13. a. $\pm 1, \pm 2, \pm 4$
b. -2 or 2
c. $\{-2,2,1+\sqrt{2}, 1-\sqrt{2}\}$
14. $f(x)=2 x^{3}-2 x^{2}+50 x-50$
15. $f(x)=x^{3}-3 x^{2}-15 x+125 \quad$ 29. $f(x)=x^{4}+10 x^{2}+9 \quad$ 31. $f(x)=x^{4}-9 x^{3}+21 x^{2}+21 x-130 \quad$ 33. no positive real roots;

3 or 1 negative real roots $\quad 35.3$ or 1 positive real roots; no negative real roots $\quad 37.2$ or 0 positive real roots; 2 or 0 negative real roots
39. $-2,5$, and 1
41. $\left\{-\frac{1}{2}, \frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}\right\}$
43. $-1,2+2 i$, and $2-2 i$
45. $\{-1,-2,3+\sqrt{13}, 3-$
$\sqrt{13}\}$
47. $-1,2,-\frac{1}{3}$, and 3
49. $\left\{1,-\frac{3}{4}, i \sqrt{2},-i \sqrt{ } 2\right\}$
51. $\left\{-2, \frac{1}{2}, \sqrt{2},-\sqrt{2}\right\}$
53. a. $-4,1$, and 4
55. a. -1 and $\frac{3}{2}$
b.
b.

57. a. $\frac{1}{2}, 3,-1 \pm i$
b.

59. a. $-2,-1,-\frac{2}{3}, 1$, and 2
b.

61. 7.8 in., 10 in. 63. a. $(7.8,2000),(10,2000)$
b. $(0,15)$
73. $\left\{\frac{1}{2}, \frac{2}{3}, 2\right\}$
75. $\left\{ \pm \frac{1}{2}\right\}$
77. 5, 3, or 1 positive real zeros; no negative real zeros
79.

1 real zero, 2 nonreal complex zeros
81.

2 real zeros, 2 nonreal complex zeros
83. makes sense 85. makes sense 87. false
89. true $\quad 91.3$ in. 93.3 95. 5
$\begin{array}{lll}\text { 98. } x=1 \text { and } x=2 & \text { 99. } x=1 & \text { 100. } y=0\end{array}$

Mid-Chapter 2 Check Point

1. $-1-i$
2. $-3+6 i$
3. $7+i$
4. i
5. $3 i \sqrt{3}$
6. $1-4 i \sqrt{3}$
7. $\frac{3}{4} \pm i \frac{\sqrt{23}}{4}$
8.

domain: $(-\infty, \infty)$
range: $[-4, \infty)$
12. -1 and 2

16. -1

20. $3,1 \pm \sqrt{2}$

9.

domain: $(-\infty, \infty)$
range: $(-\infty, 5]$
13. -1 and 2

17. $-\frac{1}{3}, \frac{1}{2}$, and 1

21. $\{-2,1\}$
22. $\left\{\frac{1}{3}, \frac{1}{2}, 1\right\}$
23. $\left\{-\frac{1}{2}, \frac{2}{3}, \frac{7}{2}\right\}$
24. $\left\{-10,-\frac{5}{2}, 10\right\}$
28. $-9,-9 ; 81$
32. $f(x)=-2 x^{3}+2 x^{2}-2 x+2$
31. $2 x^{3}-5 x^{2}-3 x+6$
34. yes

Section 2.6

Check Point Exercises

1. a. $\{x \mid x \neq 5\}$ or $(-\infty, 5) \cup(5, \infty)$
2. a. $x=1, x=-1$
b. $x=-1$
c. none
3. a. $y=3$
b. $y=0$
4.

5.
6.

7.

8. $y=2 x-1$
9. a. $C(x)=500,000+400 x$
b. $\bar{C}(x)=\frac{500,000+400 x}{x}$
c. $\bar{C}(1000)=900$: The average cost per wheelchair of producing 1000 wheelchairs per month is $\$ 900 . ; \bar{C}(10,000)=450$: The average cost per wheelchair of producing 10,000 wheelchairs per month is $\$ 450$.; $\bar{C}(100,000)=405$: The average cost per wheelchair of producing 100,000 wheelchairs per month is $\$ 405$. d. $y=400$; The cost per wheelchair approaches $\$ 400$ as more wheelchairs are produced.
10. $T(x)=\frac{20}{x}+\frac{20}{x-10}$

Concept and Vocabulary Check

1. polynomial
2. false
3. true
4. vertical asymptote; $x=-5$
5. horizontal asymptote; $y=0 ; y=\frac{1}{3}$
6. true
7. left; down
8. one more than
9. $y=3 x+5$
10. $x-20 ; \frac{30}{x-20}$

Exercise Set 2.6

1. $\{x \mid x \neq 4\}$
2. $\{x \mid x \neq 5, x \neq-4\}$
3. $\{x \mid x \neq 7, x \neq-7\}$
4. all real numbers
5. $-\infty$
6. $-\infty$
7. 0 15. $+\infty$
8. $-\infty \quad$ 19. $1 \quad$ 21. vertical asymptote: $x=-4$; no holes \quad 23. vertical asymptotes: $x=-4, x=0$; no holes \quad 25. vertical asymptote: $x=-4$; hole at $x=0 \quad$ 27. no vertical asymptotes; no holes \quad 29. no vertical asymptotes; hole at $x=3 \quad$ 31. vertical asymptote: $x=-3$; hole at $x=3$
9. vertical asymptote: $x=3$; hole at $x=-7$
10. no vertical asymptotes; hole at $x=-7$
11. $y=0$
12. $y=4$
13. no horizontal asymptote
14.

$$
\text { 43. } y=-\frac{2}{3}
$$

47.

$h(x)=\frac{1}{x}+2$
49.

57.

65.

73.

81. a. Slant asymptote: $y=x$
b.

51.

59.

$f(x)=\frac{2 x}{x^{2}-4}$
67.

75.

83. a. Slant asymptote: $y=x$
b.

85. a. Slant asymptote: $y=x+4$ b.

93.

87. a. Slant asymptote: $y=x-2$

$f(x)=\frac{x^{3}+1}{x^{2}+2 x}$
95. $g(x)=\frac{1}{x+3}+2$

89.

91.

99. a. $C(x)=100 x+100,000$
b. $\bar{C}(x)=\frac{100 x+100,000}{x}$
c. $\bar{C}(500)=300$, when 500 bicycles are produced, it costs $\$ 300$ to produce each bicycle; $\bar{C}(1000)=200$, when 1000 bicycles are produced, it costs $\$ 200$ to produce each bicycle; $\bar{C}(2000)=150$, when 2000 bicycles are produced, it costs $\$ 150$ to produce each bicycle; $\bar{C}(4000)=125$, when 4000 bicycles are produced, it costs $\$ 125$ to produce each bicycle. \quad d. $y=100$; The cost per bicycle approaches $\$ 100$ as more bicycles are produced. \quad 101. a. $6.0 \quad$ b. after 6 minutes; about $4.8 \quad$ c. $6.5 \quad$ d. $y=6.5$; Over time, the pH level rises back to normal. e. It quickly drops below normal and then slowly begins to approach the normal level. 103. 90; An incidence ratio of 10 means 90% of the deaths are smoking related. 105. $y=100$; The percentage of deaths cannot exceed 100% as the incidence ratios increase.
107. a. $f(x)=\frac{1.75 x^{2}-15.9 x+160}{2.1 x^{2}-3.5 x+296}$
b. 67%
c. 66%; underestimates by 1%
d. $y=\frac{1.75}{2.1} ; 83 \%$
109. $T(x)=\frac{10}{x}+\frac{5}{x} \quad$ 111. $A(x)=2 x+\frac{50}{x}+52$
123.

125. a.

b. The graph increases and reaches a maximum of about 356 arrests per 100,000 drivers at age 25.
c. at age 25 , about 356 arrests

The graph approaches the horizontal asymptote faster and the vertical asymptote slower as n increases.
127. does not make sense
129. does not make sense
131. true
133. true
138. $\left\{-3, \frac{5}{2}\right\}$
139. $\{-2,-1,2\}$
140. $\frac{-x-5}{x+3}$ or $-\frac{x+5}{x+3}$

Section 2.7

Check Point Exercises

1. $\{x \mid x<-4$ or $x>5\}$ or $(-\infty,-4) \cup(5, \infty)$

2. $\left\{x \left\lvert\, \frac{-3-\sqrt{7}}{2} \leq x \leq \frac{-3+\sqrt{7}}{2}\right.\right\}$ or $\left[\frac{-3-\sqrt{7}}{2}, \frac{-3+\sqrt{7}}{2}\right]$

Concept and Vocabulary Check

1. $x^{2}+8 x+15=0$; boundary
2. $(-\infty,-5) ;(-5,-3) ;(-3, \infty)$
3. true
4. true
5. $(-\infty,-2) \cup[1, \infty)$

Exercise Set 2.7

1. $(-\infty,-2) \cup(4, \infty)$

2. $[-3,7]$

3. $(-\infty, 1) \cup(4, \infty)$

4. \varnothing
\qquad
5. $\left[-2, \frac{1}{3}\right]$

6. $\frac{[2-\sqrt{2}, 2+\sqrt{2}]}{2-\sqrt{2}} \underset{\mathbf{2}+\sqrt{2}}{[2}$
7. $(-\infty, 2) \cup\left(2, \frac{7}{2}\right)$
8. $\{0\} \cup[9, \infty)$

9. $\underset{-\frac{4}{3}}{\left(-\infty,-\frac{4}{3}\right) \cup[2, \infty)}$
10. $\left(-\infty, \frac{1}{2}\right) \cup\left[\frac{7}{5}, \infty\right)$

11. $(-\infty,-8) \cup(-6,4) \cup(6, \infty)$

12. $(-3,2)$

13. $(-\infty,-1) \cup(1,2) \cup(3, \infty)$

14. $\left[-6,-\frac{1}{2}\right] \cup[1, \infty)$
15. $(-\infty,-2) \cup[-1,2)$
 $(76,540)$
16. The sides (in feet) are in $(0,6]$ or $[19,25)$.
17. $\left[-3, \frac{1}{2}\right]$
18. $(1,4]$
19. $(-4,-1) \cup[2, \infty)$
20. a. $f(x)=0.1375 x^{2}+0.7 x+37.8 \quad$ b. speeds exceeding 52 miles per hour $\quad 95$. does not make sense 97 . does not make sense
21. false 101. true 103. Answers may vary. One possible solution is $\frac{x-3}{x+4} \geq 0$. 105. $\{2\} \quad$ 107. $(-\infty, 2) \cup(2, \infty)$
22. $27-3 x^{2} \geq 0$

$$
\begin{aligned}
3 x^{2} & \leq 27 \\
x^{2} & \leq 9 \\
-3 \leq x & \leq 3
\end{aligned}
$$

110. a. 16
b. $y=16 x^{2}$
c. 400
111. a. 96
b. $y=\frac{96}{x}$
c. 32
112. 8

Section 2.8

Check Point Exercises

1. 66 gal
2. 9375 lb
3. 512 cycles per second
4. 24 min
5. 96π cubic feet

Concept and Vocabulary Check

1. $y=k x$; constant of variation
2. $y=k x^{n}$
3. $y=\frac{k}{x} \quad$ 4. $y=\frac{k x}{z}$
4. $y=k x z$
5. directly; inversely
6. jointly; inversely

Exercise Set 2.8

1. 156
$\begin{array}{ll}\text { 3. } 30 & \text { 5. } \frac{5}{6}\end{array}$
2. 240
3. 50
4. $x=k y z ; y=\frac{x}{k z}$
5. $x=\frac{k z^{3}}{y} ; y=\frac{k z^{3}}{x}$
6. $x=\frac{k y z}{\sqrt{w}} ; y=\frac{x \sqrt{w}}{k z}$
7. $x=k z(y+w) ; y=\frac{x-k z w}{k z}$
8. $x=\frac{k z}{y-w} ; y=\frac{x w+k z}{x}$
9. 5.4 ft
10. 80 in.
11. about 607 lb
12. 32°
13. 90 milliroentgens per hour
14. $\frac{1}{4}$ of what it was originally
15. a. $C=\frac{k P_{1} P_{2}}{d^{2}}$
b. $k \approx 0.02 ; C=\frac{0.02 P_{1} P_{2}}{d^{2}}$
c. 39,813 daily phone calls
16. a.

b. Current varies inversely as resistance.
c. $R=\frac{6}{I}$
17. does not make sense
18. makes sense
19. The destructive power is four times as much.
20. Reduce the resistance by a factor of $\frac{1}{3}$.
21.

59.

60
$h(x)=f(x)+1=2^{x}+1$

Chapter 2 Review Exercises

1. $-9+4 i$
2. $-12-8 i$
3. $17+19 i$
4. $-7-24 i$
5. 113
6. $2+i \sqrt{2}$
7. $\{1+i \sqrt{3}, 1-i \sqrt{3}\}$
8. $\left\{\frac{3}{2}+\frac{1}{2} i, \frac{3}{2}-\frac{1}{2} i\right\}$
9. $\frac{15}{13}-\frac{3}{13} i$
10. $\frac{1}{5}+\frac{11}{10} i$
11. $i \sqrt{ } 2$
12. $-96-40 i$
13.

axis of symmetry; $x=-1$ domain: $(-\infty, \infty)$; range: $(-\infty, 4]$
14.

axis of symmetry: $x=-4$ domain: $(-\infty, \infty)$; range: $[-2, \infty)$
15.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $(-\infty, 4]$
16.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $[-8, \infty)$
17. a. maximum is -57 at $x=7 \quad$ b. domain: $(-\infty, \infty)$; range: $(-\infty,-57]$
18. a. minimum is 685 at $x=-3 \quad$ b. domain: $(-\infty, \infty)$; range: $[685, \infty)$
19. a. $16 \mathrm{ft} ; 20 \mathrm{yd} \quad$ b. $6 \mathrm{ft} \quad$ c. $45.3 \mathrm{yd} \quad$ d. $\quad y_{\uparrow} \quad f(x)=-\mathbf{0 . 0 2 5} \boldsymbol{x}^{2}+x+6$

22. $x=166 \frac{2}{3} \mathrm{ft}$ by $y=125 \mathrm{ft}$
23. 36; 5256 lb
24. c
25. b
26. a
20. 250 yd by $500 \mathrm{yd} ; 125,000 \mathrm{sq}$ yard
21. -7 and $7 ;-49$
increasing deforestation despite a declining rate in which the forest is being cut down amount of forest cleared, in square kilometers, will eventually be negative, which is not possible. 29. No; the graph falls to the right, so eventually there would be a negative number of thefts, which is not possible.
30. $x=1$, multiplicity 1 , crosses; $x=-2$, multiplicity 2 , touches; $x=-5$, multiplicity 3 , crosses
31. $x=-5$, multiplicity 1 , crosses; $x=5$, multiplicity 2 , touches
32. $f(1)$ is negative and $f(2)$ is positive, so by the Intermediate Value Theorem, f has a real zero between 1 and 2.
33. a. The graph falls to the left and rises to the right.
b. no symmetry

$f(x)=x^{3}-x^{2}-9 x+9$
34. a. The graph rises to the left and falls to the right.
b. origin symmetry
c.

35. a. The graph falls to the left and rises to the right.
b. no symmetry
c.

36. a. The graph falls to the left and to the right.
b. y-axis symmetry
c.

37. a. The graph falls to the left and to the right.
b. no symmetry
c.

38. a. The graph rises to the left and to the right.
b. no symmetry
c.

39.

40.

41. $4 x^{2}-7 x+5-\frac{4}{x+1}$
42. $2 x^{2}-4 x+1-\frac{10}{5 x-3}$
43. $2 x^{2}+3 x-1 \quad$ 44. $3 x^{3}-4 x^{2}+7$
$\begin{array}{ll}\text { 45. } 3 x^{3}+6 x^{2}+10 x+10+\frac{20}{x-2} & \text { 46. }-5697\end{array}$
47. $2, \frac{1}{2},-3$
48. $\{4,-2 \pm \sqrt{5}\}$
49. $\pm 1, \pm 5$
50. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{8}{3}, \pm \frac{4}{3}, \pm \frac{2}{3}, \pm \frac{1}{3}$
51. 2 or 0 positive real zeros; no negative real zeros
52. 3 or 1 positive real zeros; 2 or 0 negative real zeros \quad 53. No sign variations exist for either $f(x)$ or $f(-x)$, so no real roots exist.
54. a. $\pm 1, \pm 2, \pm 4 \quad$ b. 1 positive real zero; 2 or no negative real zeros \quad c. -2 or $1 \quad$ d. $-2,1$
55. a. $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6} \quad$ b. 2 or 0 positive real zeros; 1 negative real zero
c. $-1, \frac{1}{3}$, or $\frac{1}{2} \quad$ d. $-1, \frac{1}{3}, \frac{1}{2}$
56. a. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{8}, \pm \frac{5}{2}, \pm \frac{5}{4}, \pm \frac{5}{8}, \pm \frac{15}{2}, \pm \frac{15}{4}, \pm \frac{15}{8} \quad$ b. 3 or 1 positive real solutions; no negative real solutions
c. $\frac{1}{2}, \frac{3}{2}$, or $\frac{5}{2}$
d. $\left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\right\}$
57. a. $\pm 1, \pm \frac{1}{2}$
b. 2 or 0 positive real solutions; 1 negative solution
c. $\frac{1}{2}$
d. $\left\{\frac{1}{2}, \frac{-5-\sqrt{29}}{2}, \frac{-5+\sqrt{29}}{2}\right\}$
58. a. $\pm 1, \pm 2, \pm 3, \pm 6$
b. 2 or zero positive real solutions; 2 or zero negative real solutions
c. $-2,-1,1$, or 3
d. $\{-2,-1,1,3\}$
59. a. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$
b. 1 positive real root; 1 negative real root
c. $-\frac{1}{2}$ or $\frac{1}{2}$
d. $\left\{-\frac{1}{2}, \frac{1}{2}, i \sqrt{2},-i \sqrt{2}\right\}$
60. a. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$
b. 2 or no positive zeros; 2 or no negative zeros
c. $-2,-1, \frac{1}{2}$, or 2
d. $-2,-1, \frac{1}{2}, 2$
61. $f(x)=x^{3}-6 x^{2}+21 x-26$
62. $f(x)=2 x^{4}+12 x^{3}+20 x^{2}+12 x+18$
63. $-2, \frac{1}{2}, \pm i ; f(x)=(x-i)(x+i)(x+2)(2 x-1)$
64. $-1,4 ; g(x)=(x+1)^{2}(x-4)^{2}$
65. 4 real zeros, one with multiplicity two
66. 3 real zeros; 2 nonreal complex zeros
67. 2 real zeros, one with multiplicity two; 2 nonreal complex zeros 68.1 real zero; 4 nonreal complex zeros
69.

71. Vertical asymptotes: $x=3$ and $x=-3$ horizontal asymptote: $y=0$

74. Vertical asymptote: $x=-2$ horizontal asymptote: $y=1$

70.

72. Vertical asymptote: $x=-3$ horizontal asymptote: $y=2$

$$
f(x)=\frac{2 x-4}{x+3}
$$

75. Vertical asymptote: $x=-1$ no horizontal asymptote slant asymptote: $y=x-1$

$y=\frac{x^{2}}{x+1}$
76. Vertical asymptotes: $x=3$ and $x=-2$ horizontal asymptote: $y=1$

77. Vertical asymptote: $x=3$ no horizontal asymptote slant asymptote: $y=x+5$

78. No vertical asymptote no horizontal asymptote slant asymptote: $y=-2 x$

$$
f(x)=\frac{-2 x^{3}}{x^{2}+1}
$$

78. Vertical asymptote: $x=\frac{3}{2}$ no horizontal asymptote ${ }^{2}$ slant asymptote: $y=2 x-5$

79. a. $C(x)=25 x+50,000$
b. $\bar{C}(x)=\frac{25 x+50,000}{x}$
c. $\bar{C}(50)=1025$, when 50 calculators are manufactured, it costs $\$ 1025$ to manufacture each; $\bar{C}(100)=525$, when 100 calculators are manufactured, it costs $\$ 525$ to manufacture each; $\bar{C}(1000)=75$, when 1000 calculators are manufactured, it costs $\$ 75$ to manufacture each; $\bar{C}(100,000)=25.5$, when 100,000 calculators are manufactured, it costs $\$ 25.50$ to manufacture each.
d. $y=25$; costs will approach $\$ 25$.
80. $y=3000$; The number of fish in the pond approaches 3000 .
81. $y=0$; As the number of years of education increases the percentage rate of unemployment approaches zero.
82. a. $P(x)=2.99 x+235.5$
b. $R(x)=\frac{1.53 x+114.8}{2.99 x+235.5}$
c. $y=0.51$; Over time the percentage of men in the U.S. population will approach 51%.
83. $T(x)=\frac{4}{x+3}+\frac{2}{x}$
84. $P(x)=2 x+\frac{2000}{x}$
85. $\left(-3, \frac{1}{2}\right)$

86. $(-\infty,-2) \cup(6, \infty)$

87. a. 261 ft ; overestimates by 1 ft
b. speeds exceeding 40 miles per hour

88. $(-3,0) \cup(1, \infty)$

89. $(-\infty, 4) \cup\left[\frac{23}{4}, \infty\right)$

90. $134.4 \mathrm{~cm}^{3}$
91. 1600 ft
92. from 1 to 2 sec
93. 440 vibrations per second
94. 112 decibels
95. 16 hr
96. $800 \mathrm{ft}^{3}$
b. an approximate model
c. 70 yr

Chapter 2 Test

1. $47+16 i$
2. $2+i$
3. $38 i$
4. $\{2 \pm i\}$
5.

axis of symmetry: $x=-1$
domain: $(-\infty, \infty)$; range: $[4, \infty)$
10. a. $5,2,-2$
b.

6.

axis of symmetry: $x=1$
domain: $(-\infty, \infty)$; range: $[-4, \infty)$
11. Since the degree of the polynomial is odd and the leading coefficient is positive, the graph of f should fall to the left and rise to the right.
The x-intercepts should be $-1,0$, and 1 .
12.
$\begin{array}{lll}\text { a. } 2 & \text { b. } \frac{1}{2}, \frac{2}{3} & \text { 13. } \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}\end{array}$
14. 3 or 1 positive real zeros; no negative real zeros
15. $\{-3,-3-\sqrt{11},-3+\sqrt{11}\}$
16. a. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$
b. $-\sqrt{5},-1, \frac{3}{2}$, and $\sqrt{5}$
17. $(x-1)(x+2)^{2}$

7. a. maximum of 2 at $x=3$;
b. domain: $(-\infty, \infty)$; range: $(-\infty, 2]$
8. 23 computers;
maximum daily profit $=\$ 16,900$
9. 7 and $7 ; 49$
18. $f(x)=2 x^{4}-2$

$$
\text { 19. }-1 \text { and } \frac{2}{3}
$$

20. domain: $\{x \mid x \neq-3\}$

21. domain: $\{x \mid x \neq 1\}$
22. domain: $\{x \mid x \neq 4, x \neq-4\}$

23. domain: $\{x \mid x \neq 2\}$

$f(x)=\frac{x^{2}-9}{x-2}$
24. domain: $\{x \mid x \neq-3, x \neq 1\}$

$$
f(x)=\frac{x+1}{x^{2}+2 x-3}
$$

25. domain: all real numbers
26. a. $\bar{C}(x)=\frac{300,000+10 x}{x}$
b. $y=10$; As the number of satellite radio players increases, the average cost approaches $\$ 10$.
27. $(-3,4)$

28. $(-\infty, 3) \cup[10, \infty)$
29. 45 foot-candles

Cumulative Review Exercises (Chapters P-2)

1. domain: $(-2,2)$; range: $[0, \infty)$
2. -1 and 1 , both of multiplicity 2
3. 0
4. $3 \quad$ 5. $x \rightarrow-2^{+} ; x \rightarrow 2^{-}$
5.

7. $\{2,-1\}$
6.
12. $(-\infty,-1) \cup\left(\frac{5}{3}, \infty\right)$
13.

15.

16.

17.

18.

19. $(f \circ g)(x)=32 x^{2}-20 x+2$
20. $4 x+2 h-1$

CHAPTER 3

Section 3.1

Check Point Exercises

1. approximately $\$ 160$; overestimates by $\$ 11$

$f(x)=3^{x}$
2.

$f(x)=\left(\frac{1}{3}\right)^{x}$

$f(x)=3^{x}$
$g(x)=3^{x-1}$

$f(x)=2^{x}$ $g(x)=2^{x}+1$
6. approximately 4446
7. a. $\$ 14,859.47$
b. $\$ 14,918.25$

Concept and Vocabulary Check

1. $b^{x} ;(-\infty, \infty) ;(0, \infty)$
2. $x ; y=0$; horizontal
3. e; natural; 2.72
4. $A ; P ; r ; n$
5. semiannually; quarterly; continuous

Exercise Set 3.1

1. 10.556
2. 11.665
3.

$f(x)=4^{x}$

5. 0.125
7. 9.974
9. 0.387

$g(x)=\left(\frac{3}{2}\right)^{x}$
15.

$h(x)=\left(\frac{1}{2}\right)^{x}$
17.

25.

$f(x)=2^{x}$
$g(x)=2^{x+1}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
35.

$g(x)=e^{x-1}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
27.

$$
\begin{gathered}
f(x)=2^{x} \\
g(x)=2^{x}-1
\end{gathered}
$$

asymptote: $y=-1$
domain: $(-\infty, \infty)$
range: $(-1, \infty)$
37.

$g(x)=e^{x}+2$
asymptote: $y=2$
domain: $(-\infty, \infty)$
range: $(2, \infty)$
45.

$$
h(x)=e^{2 x}+1
$$

asymptote: $y=1$
domain: $(-\infty, \infty)$
range: $(1, \infty)$
47.

$f(x)=3^{x}$
$g(x)=3^{-x}$
asymptote of $f: y=0$ asymptote of $g: y=0$
57. $(0,1)$

59.

29.

$f(x)=2^{x}$
$h(x)=2^{x+1}-1$
asymptote: $y=-1$
domain: $(-\infty, \infty)$
range: $(-1, \infty)$
39.

$h(x)=e^{x-1}+2$
asymptote: $y=2$
domain: $(-\infty, \infty)$
range: $(2, \infty)$
49.

$f(x)=3^{x}$
$g(x)=\frac{1}{3} \cdot 3^{x}$
asymptote of $f: y=0$ asymptote of $g: y=0$
31.

$$
\begin{aligned}
& f(x)=2^{x} \\
& g(x)=-2^{x}
\end{aligned}
$$

asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(-\infty, 0)$
41.

$h(x)=e^{-x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$
51.

53. a. $\$ 13,116.51$
b. $\$ 13,140.67$
c. $\$ 13,157.04$
d. $\$ 13,165.31$
55. 7% compounded monthly
33.

$f(x)=2^{x}$
$g(x)=2 \cdot 2^{x}$
asymptote: $y=0$ domain: $(-\infty, \infty)$ range: $(0, \infty)$
43.

$g(x)=2 e^{x}$
asymptote: $y=0$
domain: $(-\infty, \infty)$
range: $(0, \infty)$

$$
\begin{aligned}
& f(x)=\left(\frac{1}{2}\right)^{x} \\
& g(x)=\left(\frac{1}{2}\right)^{x-1}+1
\end{aligned}
$$

asymptote of $f: y=0$
asymptote of $g: y=1$
61. $y=4^{x}$
63. $y=-e^{x}$
65. a. 574 million \quad b. 1148 million
c. 2295 million d. 4590 million e. It appears to double. 67. $\$ 832,744$
69. $3.249009585 ; 3.317278183 ; 3.321880096 ; 3.321995226 ; 3.321997068 ; 2^{\sqrt{3}} \approx 3.321997085$; The closer the exponent is to $\sqrt{3}$, the closer the value is to $2^{\sqrt{3}}$.
71. a. $\$ 15,166$
b. $\$ 16,037$
c. linear model
73. a. 100%
b. $\approx 68.5 \%$
c. $\approx 30.8 \%$
d. $\approx 20 \%$
75. the function g
81. a. $A=10,000\left(1+\frac{0.05}{4}\right)^{4 t} ; A=10,000\left(1+\frac{0.045}{12}\right)^{12 t}$
b. 24,000

83. does not make sense
85. does not make sense
87. false
89. false
91. $y=3^{x}$ is $(\mathrm{d}) ; y=5^{x}$ is $(\mathrm{c}) ; y=\left(\frac{1}{3}\right)^{x}$ is $(\mathrm{a}) ; y=\left(\frac{1}{5}\right)^{x}$ is (b).
5% interest compounded quarterly
93. a. $\cosh (-x)=\frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^{-x}+e^{x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh x$
c. $\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \stackrel{?}{=} 1$
b. $\sinh (-x)=\frac{e^{-x}-e^{-(-x)}}{2}=\frac{e^{-x}-e^{x}}{2}=-\frac{e^{x}-e^{-x}}{2}=-\sinh x$

$$
\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4} \stackrel{?}{=} 1
$$

$$
\frac{e^{2 x}+2^{+}+e^{-2 x}-e^{2 x}+2^{4}-e^{-2 x}}{4} \stackrel{?}{=} 1
$$

$$
\begin{aligned}
& \frac{4}{4} \stackrel{?}{=} 1 \\
& 1=1
\end{aligned}
$$

94. We don't know how to solve $x=2^{y}$ for y.
95. $\frac{1}{2}$
96. $(-\infty, 3) \cup(3, \infty)$

Section 3.2

Check Point Exercises

1. a. $7^{3}=x$
b. $b^{2}=25$
c. $4^{y}=26$
2. a. $5=\log _{2} x$
b. $3=\log _{b} 27$
c. $y=\log _{e} 33$
3. a. 2 b. -3
c. $\frac{1}{2}$
d. $\frac{1}{7}$
$\begin{array}{lllll}\text { 4. a. } 1 & \text { b. } 0 & \text { 5. a. } 8 & \text { b. } 17 & 6 .\end{array}$
4.

7. $(5, \infty)$
8. 80%
9. 4.0
10. a. $(-\infty, 4)$
b. $(-\infty, 0) \cup(0, \infty)$
11. 34°; extremely well

Concept and Vocabulary Check

1. $b^{y}=x$
2. logarithmic; b 3. $1 \quad$ 4. 0
3. x
4. x
5. $(0, \infty) ;(-\infty, \infty)$
6. $y ; x=0$; vertical
7. up 5 units
8. to the left 5 units
9. x-axis
10. y-axis
11. $5-x>0$
12. common; $\log x$
13. natural; $\ln x$

Exercise Set 3.2

1. $2^{4}=16$
2. $3^{2}=x$
3. $b^{5}=32$
4. $6^{y}=216$
5. $\log _{2} 8=3$
6. $\log _{2} \frac{1}{16}=-4 \quad$ 13. $\log _{8} 2=\frac{1}{3}$
7. $\log _{13} x=2$
8. $\log _{b} 1000=3$
9. $\log _{7} 200=y$
10. 2
$\begin{array}{lll}\text { 23. } 6 & \text { 25. }-1 & \text { 27. }-3\end{array}$
11. $\frac{1}{2} \quad$ 31. $-\frac{1}{2}$
12. $\frac{1}{2}$
13. 1
14. 0
15. $7 \quad$ 41. 19
16.

$f(x)=4^{x}$
$g(x)=\log _{4} x$
45.

$f(x)=\left(\frac{1}{2}\right)^{x}$
$g(x)=\log _{1 / 2} x$
53.

$$
f(x)=\log _{2} x
$$

$$
g(x)=\log _{2}(x+1)
$$

vertical asymptote: $x=-1$
domain: $(-1, \infty)$
range: $(-\infty, \infty)$

$h(x)=\log x-1$
asymptote: $x=0$ domain: $(0, \infty)$ range: $(-\infty, \infty)$
69.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
55.

vertical asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
63.

$g(x)=1-\log x$
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
71.

asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
57.

vertical asymptote: $x=0$ domain: $(0, \infty)$ range: $(-\infty, \infty)$
65.

$g(x)=\ln (x+2)$
asymptote: $x=-2$ domain: $(-2, \infty)$ range: $(-\infty, \infty)$
73.

$g(x)=\mathbf{2 - \operatorname { l n } x}$
asymptote: $x=0$
domain: $(0, \infty)$
range: $(-\infty, \infty)$
59.

asymptote: $x=1$ domain: $(1, \infty)$ range: $(-\infty, \infty)$
67.

$h(x)=\ln (2 x)$
asymptote: $x=0$ domain: $(0, \infty)$ range: $(-\infty, \infty)$
75. $(-4, \infty)$ 77. $(-\infty, 2)$
79. $(-\infty, 2) \cup(2, \infty) \quad$ 81. 2
83. 7
85. 33
87. $0 \quad$ 89. 6 91. -6
93. 125
95. $9 x$
97. $5 x^{2} \quad$ 99. $\sqrt{x} \quad$ 101. $3^{2}=x-1 ;\{10\} \quad$ 103. $4^{-3}=x ;\left\{\frac{1}{64}\right\}$
105. $0 \quad$ 107. 2 109. $(-\infty,-1) \cup(2, \infty) \quad$ 111. $(-\infty,-1) \cup(5, \infty)$
113. 95.4%
115. a. 25.5%; underestimates by 0.7%
b. 24.2%
117. $\approx 188 \mathrm{db}$; yes
119. a. 88
b. $71.5 ; 63.9 ; 58.8 ; 55 ; 52 ; 49.5$
c. 100

Material retention decreases as time passes.
129.

$g(x)$ is $f(x)$ shifted upward 3 units.
131.

$g(x)$ is $f(x)$ shifted right 2 units and upward 1 unit.
133. a.

c.

b.

d. They are the same. $\log _{b} M+\log _{b} N$
e. the sum of the logarithms of its factors
135. makes sense
137. makes sense
139. false
141. false
143. $\frac{4}{5}$
145. $\log _{3} 40>\log _{4} 60$
147. a. 5
b. 5
c. $\log _{2}(8 \cdot 4)=\log _{2} 8+\log _{2} 4$
149. a. 4
b. 4
c. $\log _{3} 9^{2}=2 \log _{3} 9$

Section 3.3

Check Point Exercises

1. a. $\log _{6} 7+\log _{6} 11$
b. $2+\log x$
2. a. $\log _{8} 23-\log _{8} x$
b. $5-\ln 11$
3. a. $9 \log _{6} 3$
b. $\frac{1}{3} \ln x \quad$ c. $2 \log (x+4)$
4. a. $4 \log _{b} x+\frac{1}{3} \log _{b} y$
b. $\frac{1}{2} \log _{5} x-2-3 \log _{5} y$
5. a. $\log 100=2$
b. $\log \frac{7 x+6}{x}$
6. a. $\ln x^{2} \sqrt[3]{x+5}$
b. $\log \frac{(x-3)^{2}}{x}$
c. $\log _{b} \frac{\sqrt[4]{x}}{25 y^{10}}$
7. 4.02
8. 4.02

Concept and Vocabulary Check

1. $\log _{b} M+\log _{b} N$; sum
2. $\log _{b} M-\log _{b} N$; difference
3. $p \log _{b} M$; product
4. $\frac{\log _{a} M}{\log _{a} b}$

Exercise Set 3.3

1. $\log _{5} 7+\log _{5} 3 \quad$ 3. $1+\log _{7} x$
2. $3+\log x$
3. $1-\log _{7} x$
4. $\log x-2$
5. $3-\log _{4} y$
6. $2-\ln 5$
7. $3 \log _{b} x$
8. $-6 \log N$ 19. $\frac{1}{5} \ln x$
9. $2 \log _{b} x+\log _{b} y$
10. $\frac{1}{2} \log _{4} x-3$
11. $2-\frac{1}{2} \log _{6}(x+1)$
12. $2 \log _{b} x+\log _{b} y-2 \log _{b} z$
13. $1+\frac{1}{2} \log x$ 31. $\frac{1}{3} \log x-\frac{1}{3} \log y$
14. $\frac{1}{2} \log _{b} x+3 \log _{b} y-3 \log _{b} z$
15. $\frac{2}{3} \log _{5} x+\frac{1}{3} \log _{5} y-\frac{2}{3} \quad$ 37. $3 \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-4 \ln (x+1)$
16. $1+2 \log x+\frac{1}{3} \log (1-x)-\log 7-2 \log (x+1)$
17. 1 43. $\ln (7 x)$
18. 5
19. $\log \left(\frac{2 x+5}{x}\right)$
20. $\log \left(x y^{3}\right)$
21. $\ln \left(x^{1 / 2} y\right)$ or $\ln (y \sqrt{x})$
22. $\log _{b}\left(x^{2} y^{3}\right)$
23. $\ln \left(\frac{x^{5}}{y^{2}}\right)$
24. $\ln \left(\frac{x^{3}}{y^{1 / 3}}\right)$ or $\ln \left(\frac{x^{3}}{\sqrt[3]{y}}\right)$
25. $\ln \frac{(x+6)^{4}}{x^{3}}$
26. $\ln \left(\frac{x^{3} y^{5}}{z^{6}}\right)$
27. $\log \sqrt{x y}$
28. $\log _{5}\left(\frac{\sqrt{x y}}{(x+1)^{2}}\right)$
29. $\ln \sqrt[3]{\frac{(x+5)^{2}}{x\left(x^{2}-4\right)}}$
30. $\log \frac{x\left(x^{2}-1\right)}{7(x+1)}=\log \frac{x(x-1)}{7}$
31. 1.5937
32. 1.6944
33. -1.2304
34. 3.6193
35.

81.

83. $C-A$
85. $3 A$
87. $\frac{1}{2} A-\frac{3}{2} C$
89. false; $\ln e=1$
91. false; $\log _{4}(2 x)^{3}=3 \log _{4}(2 x)$
93. true
95. true
97. false; $\log (x+3)-\log (2 x)=\log \left(\frac{x+3}{2 x}\right) \quad$ 99. true \quad 101. true
113. a.

b.

103. a. $D=10 \log \frac{I}{I_{0}} \quad$ b. 20 decibels louder
$y=2+\log _{3} x$ shifts the graph of $y=\log _{3} x$ two units upward;
$y=\log _{3}(x+2)$ shifts the graph of $y=\log _{3} x$ two units left; $y=-\log _{3} x$ reflects the graph of $y=\log _{3} x$ about the x-axis.
115.

a. top graph: $y=\log _{100} x$; bottom graph: $y=\log _{3} x$
b. top graph: $y=\log _{3} x$; bottom graph: $y=\log _{100} x$
c. The graph of the equation with the largest b will be on the top in the interval $(0,1)$ and on the bottom in the interval $(1, \infty)$.
121. makes sense
123. makes sense
125. true
127. false
129. $\log e=\log _{10} e=\frac{\ln e}{\ln 10}=\frac{1}{\ln 10}$
131. $4 x^{3}$
133. Let $\log _{b} M=R$ and $\log _{b} N=S$.

Then $\log _{b} M=R$ means $b^{R}=M$ and $\log _{b} N=S$ means $b^{S}=N$.

$$
\begin{aligned}
\frac{M}{N} & =\frac{b^{R}}{b^{S}}=b^{R-S} \\
\log _{b} \frac{M}{N} & =\log _{b} b^{R-S}=R-S=\log _{b} M-\log _{b} N
\end{aligned}
$$

134. $x=\frac{2 a+3 b}{a-2 b} \quad$ 135. $\left\{\frac{7 \pm \sqrt{61}}{2}\right\} \quad$ 136. $\{-1,3\}$

Mid-Chapter 3 Check Point

1.

$f(x)=2^{x}$
$g(x)=2^{x}-3$
asymptote of $f: y=0$
asymptote of $g: y=-3$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=(0, \infty)$; range of $g=(-3, \infty)$
4.

$$
f(x)=\log _{2} x
$$

$g(x)=\log _{2}(x-1)+1$
asymptote of $f: x=0$
asymptote of g : $x=1$
domain of $f=(0, \infty)$; domain of $g=(1, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=$ range of $g=(0, \infty)$
5.

$f(x)=\mathrm{e}^{x}$
$g(x)=\ln x$
asymptote of $f: y=0$
asymptote of $g: x=0$
domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
6. $(-6, \infty)$
7. $(0, \infty)$
8. $(-\infty,-6) \cup(-6, \infty)$
9. $(-\infty, \infty)$
10. 5
11. $-2 \quad$ 12. $\frac{1}{2}$
13. $\frac{1}{3}$
14. 2
15. Evaluation not possible; $\log _{2} \frac{1}{8}=-3$ and $\log _{3}(-3)$ is undefined.
16. 5
17. $\sqrt{7}$
18. 13
19. $-\frac{1}{2}$
20. $\sqrt{\pi}$
21. $\frac{1}{2} \log x+\frac{1}{2} \log y-3$
22. $19+20 \ln x$
23. $\log _{7}\left(\frac{x^{8}}{\sqrt[3]{y}}\right)$
24. $\log _{5} x^{9}$
25. $\ln \left[\frac{\sqrt{x}}{y^{3}(z-2)}\right]$
26. \$8

Section 3.4

Check Point Exercises

1. a. $\{3\}$
b. $\{-12\}$
2. a. $\left\{\frac{\ln 134}{\ln 5}\right\} ; \approx 3.04$
b. $\{\log 8000\} ; \approx 3.90$
3. $\left\{\frac{\ln 9}{2}\right\} ; \approx 1.10$
4. $\left\{\frac{\ln 3+\ln 7}{2 \ln 3-\ln 7}\right\} ; \approx 12.11$
5. $\{0, \ln 7\} ; \ln 7 \approx 1.95$
6. a. $\{12\}$
b. $\left\{\frac{e^{2}}{3}\right\}$
7. $\{5\}$
8. $\{4,5\}$
9. 0.01
10. 16.2 yr
11. 14

Concept and Vocabulary Check

1. $M=N$
2. $4 x-1$
$\begin{array}{ll}\text { 3. } \frac{\ln 20}{\ln 9} & \text { 4. } \ln 6\end{array}$
3. $5^{3} \quad$ 6. $\left(x^{2}+x\right)$
4. $\frac{7 x-23}{x+1}$
5. false
6. true
7. false
8. true

Exercise Set 3.4

1. $\{6\}$
2. $\{3\}$
3. $\{3\}$
4. $\{2\}$
5. $\left\{\frac{3}{5}\right\}$
6. $\left\{\frac{3}{2}\right\}$
7. $\{4\}$
8. $\{5\}$
9. $\left\{-\frac{1}{4}\right\}$
10. $\{13\}$
11. $\{-2\}$
12. $\left\{\frac{\ln 3.91}{\ln 10}\right\} ; \approx 0.59$
13. $\{\ln 5.7\} ; \approx 1.74$
14. $\left\{\frac{\ln 17}{\ln 5}\right\} ; \approx 1.76$
15. $\left\{\ln \frac{23}{5}\right\} ; \approx 1.53$
16. $\left\{\frac{\ln 659}{5}\right\} ; \approx 1.30$
17. $\left\{\frac{\ln 793-1}{-5}\right\} ; \approx-1.14$
18. $\left\{\frac{\ln 10,478+3}{5}\right\} ; \approx 2.45$
19. $\left\{\frac{\ln 410}{\ln 7}-2\right\} ; \approx 1.09$ 39. $\left\{\frac{\ln 813}{0.3 \ln 7}\right\} ; \approx 11.48$
20. $\left\{\frac{3 \ln 5+\ln 3}{\ln 3-2 \ln 5}\right\} ; \approx-2.80$
21. $\{0, \ln 2\} ; \ln 2 \approx 0.69$
22. $\left\{\frac{\ln 3}{2}\right\} ; \approx 0.55$
23. $\{0\}$
24. $\{81\}$
25. $\left\{e^{2}\right\} ; \approx 7.39$
26. $\{59\}$
27. $\{-9\}$
28. $\left\{-\frac{107}{27}\right\}$
29. $\left\{\frac{62}{3}\right\}$
30. $\left\{\frac{e^{4}}{2}\right\} ; \approx 27.30$
31. $\left\{e^{-1 / 2}\right\} ; \approx 0.61$
32. $\left\{e^{2}-3\right\} ; \approx 4.39$
33. $\left\{\frac{5}{4}\right\}$
34. $\{-3\}$
35. $\{6\}$
36. $\{5\}$
37. $\{12\}$
38. $\left\{\frac{4}{3}\right\}$
39. \varnothing
40. $\{5\}$
41. $\left\{\frac{2}{9}\right\}$
42. $\{28\}$
43. $\{2\}$
44. \varnothing
45. $\left\{\frac{11}{3}\right\}$
46. $\left\{\frac{1}{2}\right\}$
47. $\left\{e^{3}, e^{-3}\right\}$
48. $\left\{ \pm \sqrt{\frac{\ln 45}{\ln 3}}\right\}$
49. $\left\{\frac{5+\sqrt{37}}{2}\right\}$
$\begin{array}{llllllll}\text { 101. }\{-2,6\} & \text { 103. a. } 37.3 \text { million } & \text { b. } 2017 & \text { 105. } 118 \mathrm{ft} \text {; by the point }(118,1) & \text { 107. } 8.2 \mathrm{yr} & \text { 109. } 2.0 \mathrm{yr} & \text { 111. } 8.7 \mathrm{yr} & 113.7 .0 \mathrm{yr}\end{array}$ $\begin{array}{lllllll}\text { 115. a. } 17.0 \% \text {; underestimates by } 0.3 \% & \text { b. } 2016 & \text { 117. } 2.8 \text { days; }(2.8,50) & \text { 119. } \text { a. } 10^{-5.6} \text { mole per liter } & \text { b. } 10^{-2.4} \text { mole per liter }\end{array}$
c. $10^{3.2}$ times greater
50. $\{2\}$
51. $\{4\}$
52. $\{2\}$
53. $\{-1.391606,1.6855579\}$
54.

135. 150

As distance from eye increases, barometric air pressure increases.
137. does not make sense 139. makes sense 141. false 143. true
145. after 36 yr
147. $\left\{10^{-2}, 10^{3 / 2}\right\}, 10^{3 / 2}=10 \sqrt{10} \approx 31.62$
150. a. 10 million; 9.97 million; 9.94 million; 9.91 million b. decreasing
151. a. 3
b. $e^{(\ln 3) x}$ 152.

Section 3.5

Check Point Exercises

1. a. $A=807 e^{0.024 t}$
$\begin{array}{ll}\text { b. } 2038 & \text { 2. a. } A=A_{0} e^{-0.0248 t}\end{array}$
b. about 72 yr
2. a. 0.4 correct responses
b. 0.7 correct responses
c. 0.8 correct responses 4. a. $T=30+70 e^{-0.0673 t}$ b. $48^{\circ} \mathrm{C} \quad$ c. 39 min
3.

$y_{\text {个 }}$			
	-		2, 2.2)
	- ${ }^{(71,1 .}$		
	-(14, 1.0)		
	(5.5, 0.6)		
	(1)		
	010020	300	400

6.

7. a. the exponential function g
b. the linear function f
8. $y=4 e^{(\ln 7.8) x} ; y=4 e^{2.054 x}$

AA40 Answers to Selected Exercises

Concept and Vocabulary Check

1. $>0 ;<0$
2. $A_{0} ; A$
3. $A ; c$
4. logarithmic
5. exponential
6. linear
7. $\ln 5$

Exercise Set 3.5

1. 127.3 million \quad 3. Iraq; 1.9%
2. 2030
3. a. $A=6.04 e^{0.01 t}$
b. 2040
4. 146.1 million
5. 0.0088
6. -0.0039
7. approximately 8 grams 17. 8 grams after 10 seconds; 4 grams after 20 seconds; 2 grams after 30 seconds; 1 gram after 40 seconds; 0.5 gram after 50 seconds \quad 19. approximately 15,679 years old \quad 21. $12.6 \mathrm{yr} \quad$ 23. $-0.000428 ; 0.0428 \%$ per year \quad 25. $-0.039608 ; 3.9608 \%$ per day 27. a. $\frac{1}{2}=e^{1.31 k}$ yields $k=\frac{\ln \left(\frac{1}{2}\right)}{1.31} \approx-0.52912$. b. about 0.1069 billion or $106,900,000$ years old
8. 7.1 yr
9. 5.5 hr
10. $2 A_{0}=A_{0} e^{k t} ; 2=e^{k t} ; \ln 2=\ln e^{k t} ; \ln 2=k t ; \frac{\ln 2}{k}=t$
11. a. 1%
b. about 69 yr
12. a. about 20 people
b. about 1080 people
c. 100,000 people
13. quite well
14. 2025
15. about 3.7%
16. about 48 years old
17. a. $T=45+25 e^{-0.0916 t}$
b. $51^{\circ} \mathrm{F}$
c. 18 min
18. 26 min
19. a.

b. exponential function
20. a.

b. logarithmic function
21. a.

b. linear function
22. $y=100 e^{(\ln 4.6) x} ; y=100 e^{1.526 x} \quad$ 59. $y=2.5 e^{(\ln 0.7) x} ; y=2.5 e^{-0.357 x} \quad$ 71. $y=191.9+24.569 \ln x$; $r \approx 0.870$; Fit is ok, but not great. 73. $y=195.056 x^{0.100} ; r \approx 0.896$; Fits data fairly well. \quad 75. a. $y=3.46(1.02)^{x} \quad$ b. $y=3.46 e^{(\ln 1.02) x} ; y=3.46 e^{0.02 x}$; by approximately 2%
23. does not make sense
24. makes sense
25. true
26. true
27. about 8:02 A.M.
28. $\left\{\frac{5}{8}\right\}$
29. $\frac{5 \pi}{6}$
30. $\frac{23 \pi}{12}$

Chapter 3 Review Exercises

1. $g(x)=4^{-x}$
2. $h(x)=-4^{-x}$
3. $r(x)=-4^{-x}+3$
4. $f(x)=4^{x}$
5.

$$
\begin{gathered}
f(x)=2^{x} \\
g(x)=2^{x-1}
\end{gathered}
$$

asymptote of $f: y=0$ asymptote of $g: y=0$ domain of $f=$ domain of $g=(-\infty, \infty)$ range of $f=$ range of $g=(0, \infty)$
8.

$$
\begin{aligned}
& f(x)=\left(\frac{1}{2}\right)^{x} \\
& g(x)=\left(\frac{1}{2}\right)^{-x}
\end{aligned}
$$

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=$ range of $g=(0, \infty)$
6.

asymptote of $f: y=0$ asymptote of $g: y=-1$ domain of $f=$ domain of $g=(-\infty, \infty)$ range of $f=(0, \infty)$; range of $g=(-1, \infty)$ 9.

$f(x)=e^{x}$
$g(x)=2 e^{x / 2}$
asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=$ range of $g=(0, \infty)$
7.

asymptote of $f: y=0$
asymptote of $g: y=0$
domain of $f=$ domain of $g=(-\infty, \infty)$
range of $f=(0, \infty)$; range of $g=(-\infty, 0)$
10. 5.5% compounded semiannually \quad 11. 7% compounded monthly \quad 12. a. $200^{\circ} \quad$ b. $120^{\circ} ; 119^{\circ} \quad$ c. 70°; The temperature in the room is 70°.
13. $49^{1 / 2}=7$
14. $4^{3}=x$
15. $3^{y}=81$
16. $\log _{6} 216=3$
17. $\log _{b} 625=4$
$\begin{array}{lll}\text { 18. } \log _{13} 874=y & \text { 19. } 3 & \text { 20. }-2\end{array}$
21. undefined;
$\log _{b} x$ is defined only for $x>0$.
22. $\frac{1}{2}$
23. 1
24. 8
25. 5
26. $-\frac{1}{2}$
27. -2
28. -3
29. 0
30.

$f(x)=2^{x}$
$g(x)=\log _{2} x$
domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
36.

$f(x)=\log _{2} x$
$g(x)=\log _{2}(x-2)$
x-intercept: $(3,0)$
vertical asymptote: $x=2$
domain: $(2, \infty)$; range: $(-\infty, \infty)$
39.

$f(x)=\log x$
$g(x)=-\log (x+3)$
asymptote of $f: x=0$
asymptote of $g: x=-3$
domain of $f=(0, \infty)$; domain of $g=(-3, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$
48. a. 76
b. $\approx 67, \approx 63, \approx 61, \approx 59, \approx 56$
c.

Time (months)
31.

$f(x)=\left(\frac{1}{3}\right)^{x}$
$g(x)=\log _{1 / 3} x$
domain of $f=$ range of $g=(-\infty, \infty)$
range of $f=$ domain of $g=(0, \infty)$
37.

$$
f(x)=\log _{2} x
$$

$h(x)=-1+\log _{2} x$
x-intercept: $(2,0)$
vertical asymptote: $x=0$
domain: $(0, \infty)$; range: $(-\infty, \infty)$
40.

$f(x)=\ln x$
$g(x)=-\ln (2 x)$
32. $g(x)=\log (-x)$
33. $r(x)=1+\log (2-x)$
34. $h(x)=\log (2-x)$
35. $f(x)=\log x$
38.

x-intercept: $(-1,0)$
vertical asymptote: $x=0$
domain: $(-\infty, 0)$; range: $(-\infty, \infty)$
41. $(-5, \infty)$
42. $(-\infty, 3)$
43. $(-\infty, 1) \cup(1, \infty)$
44. $6 x$
45. \sqrt{x}
46. $4 x^{2}$
47. 3.0
asymptote of $f: x=0$
asymptote of g : $x=0$
domain of $f=$ domain of $g=(0, \infty)$
range of $f=$ range of $g=(-\infty, \infty)$
49. about 9 weeks \quad 50. $2+3 \log _{6} x \quad$ 51. $\frac{1}{2} \log _{4} x-3$
52. $\log _{2} x+2 \log _{2} y-6$
53. $\frac{1}{3} \ln x-\frac{1}{3}$
54. $\log _{b} 21$
55. $\log \frac{3}{x^{3}}$
56. $\ln \left(x^{3} y^{4}\right)$
57. $\ln \frac{\sqrt{x}}{y}$
58. 6.2448
59. -0.1063
60. true
61. false; $\log (x+9)-\log (x+1)=\log \left(\frac{x+9}{x+1}\right)$
62. false; $4 \log _{2} x=\log _{2} x^{4} \quad$ 63. true \quad 64. $\{2\} \quad$ 65. $\left\{\frac{2}{3}\right\} \quad$ 66. $\{\log 7000\} ; \approx 3.85$
67. $\left\{-\frac{4}{5}\right\} \quad$ 68. $\left\{\frac{\ln 12,143}{\ln 8}\right\} ; \approx 4.52$
69. $\left\{\frac{1}{5} \ln 141\right\} ; \approx 0.99$
70. $\left\{\frac{12-\ln 130}{5}\right\} ; \approx 1.43$
71. $\left\{\frac{\ln 37,500-2 \ln 5}{4 \ln 5}\right\} ; \approx 1.14$
72. $\left\{\frac{\ln 7+4 \ln 3}{2 \ln 7-\ln 3}\right\} ; \approx 2.27$
73. $\{\ln 3\} ; \approx 1.10$
74. $\{23\}$ 75. $\left\{\frac{e^{3}}{2}\right\} ; \approx 10.04 \quad$ 76. $\{5\}$
77. \varnothing
78. $\{2\}$
79. $\{4\}$
$\begin{array}{llll}\text { 80. } 5.5 \mathrm{mi} & \text { 81. } 2013 & \text { 82. a. } 2031 & \text { b. } 1994\end{array}$
83. 7.3 yr
84. 14.6 yr
85. about 22%
86. a. 0.036
b. 60.6 million
c. 2019
87. 325 days
88. a. 200 people
b. about 45,411 people
c. 500,000 people
89. a. $T=65+120 e^{-0.144 t}$
b. 8 min
90. a.

b. linear function
91. a.

b. logarithmic function
92. a.

b. exponential function
93. $y=73 e^{(\ln 2.6) x} ; y=73 e^{0.956 x}$
94. $y=6.5 e^{(\ln 0.43) x} ; y=6.5 e^{-0.844 x}$

Chapter 3 Test

1.

$f(x)=2^{x}$
$g(x)=2^{x+1}$
2.
3. $5^{3}=125$
4. $\log _{36} 6=\frac{1}{2}$
5. $(-\infty, 3)$
6. $3+5 \log _{4} x$
7. $\frac{1}{3} \log _{3} x-4$
8. $\log \left(x^{6} y^{2}\right)$
9. $\ln \frac{7}{x^{3}}$
10. 1.5741
11. $\{-10\}$
12. $\left\{\frac{\ln 1.4}{\ln 5}\right\}$
13. $\left\{\frac{\ln 4}{0.005}\right\}$
14. $\{0, \ln 5\}$
15. $\{54.25\}$
16. $\left\{\frac{e^{4}}{3}\right\}$
17. $\{5\}$
18. \varnothing
19. 120 db
20. $5 x$
21. 1
24. 13.9 years
22. 0
25. about 6.9%
26. a. 82.3 million b. decreasing; The growth rate, -0.004 , is negative c. 2020 27. $A=4121 e^{0.006 t} \quad$ 28. 12.5 days 29. a. 14 elk b. about 51 elk c. 140 elk
30. linear
31. logarithmic
32. exponential
33. quadratic
34. $y=96 e^{(\ln 0.38) x} ; y=96 e^{-0.968 x}$

Cumulative Review Exercises (Chapters P-3)

1. $\left\{\frac{2}{3}, 2\right\}$
2. $\{-1 \pm 2 i\}$
3. $\{-2,-1,1\}$
4. $\left\{\frac{\ln 128}{5}\right\}$
5. $\{3\}$
6. \varnothing
7. $(-\infty, 4]$
8. $[1,3]$
9.

13.

$f(x)=2 x-4$
$f^{-1}(x)=\frac{x+4}{2}$
10.

14.

$f(x)=\ln x$
$g(x)=\ln (x-2)+1$
11.

12.

15. using (1,3), $y-3=-3(x-1) ; y=-3 x+6$
16. $(f \circ g)(x)=(x+2)^{2} ;(g \circ f)(x)=x^{2}+2$
17. You can expect to sleep 2 hours.
18. after $2 \mathrm{sec} ; 69 \mathrm{ft}$
19. 4.1 sec
20. $\$ 12$ per hr

CHAPTER 4

Section 4.1

Check Point Exercises

1. 3.5 radians
2. a. $\frac{\pi}{3}$ radians
b. $\frac{3 \pi}{2}$ radians
c. $-\frac{5 \pi}{3}$ radians
3. a. 45°
b. -240°
c. 343.8°
4. a.

b.

c.

d.

5. a. 40°
b. 225°
6. a. $\frac{3 \pi}{5} \quad$ b. $\frac{29 \pi}{15}$
7. a. 135°
b. $\frac{5 \pi}{3}$
$\begin{array}{ll}\text { c. } \frac{11 \pi}{6} & \text { 8. } \frac{3 \pi}{2} \mathrm{in} . \approx 4.71 \mathrm{in} .\end{array}$
8. $135 \pi \mathrm{in} . / \mathrm{min} \approx 424 \mathrm{in} . / \mathrm{min}$

Concept and Vocabulary Check

1. origin; x-axis
2. counterclockwise; clockwise
3. $r \theta$
4. false
5. $r \omega$; angular
6. acute; right; obtuse; straight
7. $\frac{s}{r}$
8. $\frac{\pi}{180^{\circ}}$
9. $\frac{180^{\circ}}{\pi}$
10. coterminal; $360^{\circ} ; 2 \pi$

Exercise Set 4.1

1. obtuse
2. acute
3. straight
4. 4 radians
5. $-\frac{5 \pi}{4}$ radians
6. 90°
7. 120°
8. 210°
9. $\frac{4}{3}$ radians
10. 4 radians
11. $\frac{\pi}{4}$ radian
12. $\frac{3 \pi}{4}$ radians
13. $\frac{5 \pi}{3}$ radians
14. -540°
15. 0.31 radian
16. -0.70 radian
17. 3.49 radians
18. 114.59°
19. 13.85°
20. -275.02°
21.

; quadrant III 43.

; quadrant II
45.

47.

; quadrant II
49.

; quadrant II
53.

55. y_{A}; quadrant I

; quadrant III
51.

57. $35^{\circ} \quad$ 59. 210°
59. 210°
61. 315°
63. $\frac{7 \pi}{6}$
65. $\frac{3 \pi}{5}$
67. $\frac{99 \pi}{50}$
69. $\frac{11 \pi}{7}$
71. 3π in. $\approx 9.42 \mathrm{in}$.
73. $10 \pi \mathrm{ft} \approx 31.42 \mathrm{ft}$
75. $\frac{12 \pi \text { radians }}{\text { second }}$
77. $-\frac{4 \pi}{3}$ and $\frac{2 \pi}{3}$
79. $-\frac{3 \pi}{4}$ and $\frac{5 \pi}{4}$
81. $-\frac{\pi}{2}$ and $\frac{3 \pi}{2}$
83. $\frac{11 \pi}{6} \quad 85 . \frac{22 \pi}{3}$
87. $60^{\circ} ; \frac{\pi}{3}$ radians
89. $\frac{8 \pi}{3}$ in. $\approx 8.38 \mathrm{in}$.
91. $12 \pi \mathrm{in} . \approx 37.70 \mathrm{in}$.
93. 2 radians; 114.59°
95. $2094 \mathrm{mi} \quad 97.1047 \mathrm{mph}$
99. $1508 \mathrm{ft} / \mathrm{min} \quad$ 113. 30.25°
115. $30^{\circ} 25^{\prime} 12^{\prime \prime}$
117. does not make sense
119. makes sense
121. smaller than a right angle
123. $1815 \mathrm{mi} \quad 124$.

125. domain: $\{x \mid-1 \leq x \leq 1\}$ or $[-1,1]$; range: $\{y \mid-1 \leq y \leq 1\}$ or $[-1,1]$
126. $-\frac{\sqrt{3}}{3}$

Section 4.2

Check Point Exercises

1. $\sin t=\frac{1}{2} ; \cos t=\frac{\sqrt{3}}{2} ; \tan t=\frac{\sqrt{3}}{3} ; \csc t=2 ; \sec t=\frac{2 \sqrt{3}}{3} ; \cot t=\sqrt{3} \quad$ 2. $\sin \pi=0 ; \cos \pi=-1 ; \tan \pi=0$; $\csc \pi$ is undefined;
$\sec \pi=-1 ; \cot \pi$ is undefined
2. $\sqrt{ } \overline{2} ; \sqrt{2} ; 1$
$\begin{array}{ll}\text { 4. a. } \sqrt{2} & \text { b. }-\frac{\sqrt{2}}{2}\end{array}$
3. $\tan t=\frac{2 \sqrt{5}}{5} ; \csc t=\frac{3}{2} ; \sec t=\frac{3 \sqrt{5}}{5} ; \cot t=\frac{\sqrt{5}}{2}$
4. $\frac{\sqrt{3}}{2}$
5. a. 1
b. $\frac{\sqrt{2}}{2}$
6. a. 0.7071
b. 1.0025

Concept and Vocabulary Check

1. intercepted arc
2. cosine; sine
3. sine; cosine; $(-\infty, \infty)$
4. $1 ;-1 ;[-1,1]$
5. $\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2} ; 1$
6. $\cos t ; \sec t ;$ even
7. $-\sin t ;-\csc t ;-\tan t ;-\cot t ;$ odd
8. $\sin t ; \cos t ; \tan t$
9. $\tan t ; \cot t$
10. $1 ; \sec ^{2} t ; \csc ^{2} t$
11. periodic; period
12. $\sin t ; \cos t ;$ periodic; 2π
13. $\tan t ; \cot t ;$ periodic; π

Exercise Set 4.2

1. $\sin t=\frac{8}{17} ; \cos t=-\frac{15}{17} ; \tan t=-\frac{8}{15} ; \csc t=\frac{17}{8} ; \sec t=-\frac{17}{15} ; \cot t=-\frac{15}{8}$
$\begin{array}{llllllll}\text { 3. } \sin t=-\frac{\sqrt{2}}{2} ; \cos t=\frac{\sqrt{2}}{2} ; \tan t=-1 ; \csc t=-\sqrt{2} ; \sec t=\sqrt{2} ; \cot t=-1 & \text { 5. } \frac{1}{2} & \text { 7. }-\frac{\sqrt{3}}{2} & \text { 9. } 0 & \text { 11. }-2 & \text { 13. } \frac{2 \sqrt{3}}{3} & \text { 15. }-1\end{array}$
2. undefined
$\begin{array}{lll}\text { 19. a. } \frac{\sqrt{3}}{2} & \text { b. } \frac{\sqrt{3}}{2} & \text { 21. a. } \frac{1}{2}\end{array}$
$\begin{array}{ll}\text { b. }-\frac{1}{2} & \text { 23. a. }-\sqrt{3}\end{array}$
b. $\sqrt{3} \quad$ 25. $\tan t=\frac{8}{15} ; \csc t=\frac{17}{8} ; \sec t=\frac{17}{15} ; \cot t=\frac{15}{8}$
3. $\tan t=\frac{\sqrt{2}}{4} ; \csc t=3 ; \sec t=\frac{3 \sqrt{2}}{4} ; \cot t=2 \sqrt{2}$
4. $\frac{\sqrt{13}}{7}$
5. $\frac{5}{8}$
6. 1
7. 1
8. 1
9. $\frac{\sqrt{2}}{2}$
10. $-\frac{\sqrt{2}}{2}$
11. 1
12. $-1 \quad$ 47. -1
13. $-\frac{\sqrt{2}}{2}$
14. $\frac{\sqrt{2}}{2}$
15. a. $\frac{\sqrt{2}}{2}$
b. $\frac{\sqrt{2}}{2}$
16. a. 0
$\begin{array}{ll}\text { b. } 0 & \text { 57. a. } 0\end{array}$
$\begin{array}{ll}\text { b. } 0 & \text { 59. a. }-\frac{\sqrt{2}}{2}\end{array}$
b. $-\frac{\sqrt{2}}{2}$
17. 0.7174
18. 0.2643
19. 1.1884
20. 0.9511
21. 3.7321
22. $-2 a$
23. $3 b$ 75. $a-b+c$
24. $-a-b+c$
$\begin{array}{lllllll}\text { 79. } 3 a+2 b-2 c & \text { 81. a. } 12 \mathrm{hr} & \text { b. } 20.3 \mathrm{hr} & \text { c. } 3.7 \mathrm{hr} & \text { 83. a. } 1 ; 0 ;-1 ; 0 ; 1 & \text { b. } 28 \text { days } & \text { 97. makes sense }\end{array}$
25. $\mathrm{c} \quad$ 103. $-\frac{1}{4}$
26. $\frac{5}{13}$
27. $\frac{\sqrt{2}}{2}$
28. 1

Section 4.3

Check Point Exercises

1. $\sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=\frac{5}{4} ; \cot \theta=\frac{4}{3} \quad$ 2. $\sin \theta=\frac{1}{5} ; \cos \theta=\frac{2 \sqrt{6}}{5} ; \tan \theta=\frac{\sqrt{6}}{12} ; \csc \theta=5 ; \sec \theta=\frac{5 \sqrt{6}}{12} ; \cot \theta=2 \sqrt{6}$
2. $\sqrt{2} ; \sqrt{2} ; 1$
3. $\sqrt{3} ; \frac{\sqrt{3}}{3}$
4. a. $\cos 44^{\circ}$
b. $\tan \frac{5 \pi}{12}$
5. 333.9 yd
6. 54°

Concept and Vocabulary Check

1. $\sin \theta=\frac{a}{c} ; \cos \theta=\frac{b}{c} ; \tan \theta=\frac{a}{b} ; \csc \theta=\frac{c}{a} ; \sec \theta=\frac{c}{b} ; \cot \theta=\frac{b}{a}$
2. opposite; adjacent to; hypotenuse
3. true
4. $\sin \theta ; \tan \theta ; \sec \theta$

AA44 Answers to Selected Exercises

Exercise Set 4.3

1. $15 ; \sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5} ; \tan \theta=\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=\frac{5}{4} ; \cot \theta=\frac{4}{3} \quad 3.20 ; \sin \theta=\frac{20}{29} ; \cos \theta=\frac{21}{29} ; \tan \theta=\frac{20}{21} ; \csc \theta=\frac{29}{20} ; \sec \theta=\frac{29}{21} ; \cot \theta=\frac{21}{20}$ 5. $24 ; \sin \theta=\frac{5}{13} ; \cos \theta=\frac{12}{13} ; \tan \theta=\frac{5}{12} ; \csc \theta=\frac{13}{5} ; \sec \theta=\frac{13}{12} ; \cot \theta=\frac{12}{5} \quad$ 7. $28 ; \sin \theta=\frac{4}{5} ; \cos \theta=\frac{3}{5} ; \tan \theta=\frac{4}{3} ; \csc \theta=\frac{5}{4} ; \sec \theta=\frac{5}{3} ; \cot \theta=\frac{3}{4}$
2. $\frac{\sqrt{3}}{2}$
3. $\sqrt{2}$
4. $\sqrt{3}$
5. 0
6. $\frac{\sqrt{6}-4}{4}$
7. $\frac{12 \sqrt{3}+\sqrt{6}}{6}$
8. $\cos 83^{\circ}$
9. $\sec 65^{\circ}$
10. $\cot \frac{7 \pi}{18}$
11. $\sin \frac{\pi}{10}$
12. 188 cm
13. 182 in.
14. 41 m
15. 17°
16. 78°
17. 1.147 radians
18. 0.395 radian
19. 0
20. 2
21. 1
22. $\frac{2 \sqrt{3}-1}{2}$
23. $\frac{1}{4}$
24. 529 yd
25. 36°
26. 2879 ft
27. 37°
28. $0.92106,-0.19735 ; 0.95534,-0.148878 ; 0.98007,-0.099667 ; 0.99500,-0.04996 ; 0.99995,-0.005$; $0.9999995,-0.0005 ; 0.999999995,-0.00005 ; 0.99999999995,-0.000005 ; \frac{\cos \theta-1}{\theta}$ approaches 0 as θ approaches 0 . 71. does not make sense 73. makes sense
29. true
30. false
31. As θ approaches $90^{\circ}, \tan \theta$ increases without bound. At $90^{\circ}, \tan \theta$ is undefined.
32. a. $\frac{y}{r}$
b. $\frac{4}{5}$; positive
33. a. $\frac{x}{r}$
b. $-\frac{3 \sqrt{34}}{34}$; negative
34. a. 15°
b. $\frac{\pi}{6}$

Section 4.4

Check Point Exercises

$\begin{array}{lll}\text { 1. } \sin \theta=-\frac{3 \sqrt{10}}{10} ; \cos \theta=\frac{\sqrt{10}}{10} ; \tan \theta=-3 ; \csc \theta=-\frac{\sqrt{10}}{3} ; \sec \theta=\sqrt{10} ; \cot \theta=-\frac{1}{3} & \text { 2. a. } 1 \text {; undefined } \quad \text { b. } 0 ; 1 \quad \text { c. }-1 \text {; undefined }\end{array}$
d. $0 ;-1$
3. quadrant III
4. $\frac{\sqrt{10}}{10} ;-\frac{\sqrt{10}}{3}$
5. a. 30°
b. $\frac{\pi}{4}$
c. 60°
d. 0.46
6. a. 55°
b. $\frac{\pi}{4}$
c. $\frac{\pi}{3}$
7. a. $-\frac{\sqrt{3}}{2}$
b. 1
c. $\frac{2 \sqrt{3}}{3}$
8. a. $-\frac{\sqrt{3}}{2}$
b. $\frac{\sqrt{3}}{2}$

Concept and Vocabulary Check

1. $\sin \theta=\frac{y}{r} ; \cos \theta=\frac{x}{r} ; \tan \theta=\frac{y}{x} ; \csc \theta=\frac{r}{y} ; \sec \theta=\frac{r}{x} ; \cot \theta=\frac{x}{y} \quad$ 2. undefined when $x=0: \tan \theta$ and $\sec \theta$; undefined when $y=0$: $\cot \theta$ and $\csc \theta$; do not depend on $r: \tan \theta$ and $\cot \theta \quad$ 3. $\sin \theta ; \csc \theta \quad$ 4. $\tan \theta ; \cot \theta \quad$ 5. $\cos \theta ; \sec \theta \quad$ 6. terminal; x 7. a. $180^{\circ}-\theta \quad$ b. $\theta-180^{\circ} \quad$ c. $360^{\circ}-\theta$

Exercise Set 4.4

1. $\sin \theta=\frac{3}{5} ; \cos \theta=-\frac{4}{5} ; \tan \theta=-\frac{3}{4} ; \csc \theta=\frac{5}{3} ; \sec \theta=-\frac{5}{4} ; \cot \theta=-\frac{4}{3} \quad 3 \cdot \sin \theta=\frac{3 \sqrt{13}}{13} ; \cos \theta=\frac{2 \sqrt{13}}{13} ; \tan \theta=\frac{3}{2} ; \csc \theta=\frac{\sqrt{13}}{3} ; \sec \theta=\frac{\sqrt{13}}{2}$; $\cot \theta=\frac{2}{3} \quad$ 5. $\sin \theta=-\frac{\sqrt{2}}{2} ; \cos \theta=\frac{\sqrt{2}}{2} ; \tan \theta=-1 ; \csc \theta=-\sqrt{2} ; \sec \theta=\sqrt{2} ; \cot \theta=-1 \quad$ 7. $\sin \theta=-\frac{5 \sqrt{29}}{29} ; \cos \theta=-\frac{2 \sqrt{29}}{29} ; \tan \theta=\frac{5}{2} ;$ $\csc \theta=-\frac{\sqrt{29}}{5} ; \sec \theta=-\frac{\sqrt{29}}{2} ; \cot \theta=\frac{2}{5} \quad$ 9. $-1 \quad$ 11. $-1 \quad$ 13. undefined $\begin{array}{lllll} & \text { 15. } 0 & \text { 17. quadrant I } & \text { 19. quadrant III } & \text { 21. quadrant II }\end{array}$ 23. $\sin \theta=-\frac{4}{5} ; \tan \theta=\frac{4}{3} ; \csc \theta=-\frac{5}{4} ; \sec \theta=-\frac{5}{3} ; \cot \theta=\frac{3}{4} \quad$ 25. $\cos \theta=-\frac{12}{13} ; \tan \theta=-\frac{5}{12} ; \csc \theta=\frac{13}{5} ; \sec \theta=-\frac{13}{12} ; \cot \theta=-\frac{12}{5}$
2. $\sin \theta=-\frac{15}{17} ; \tan \theta=-\frac{15}{8} ; \csc \theta=-\frac{17}{15} ; \sec \theta=\frac{17}{8} ; \cot \theta=-\frac{8}{15} \quad$ 29. $\sin \theta=\frac{2 \sqrt{13}}{13} ; \cos \theta=-\frac{3 \sqrt{13}}{13} ; \csc \theta=\frac{\sqrt{13}}{2} ; \sec \theta=-\frac{\sqrt{13}}{3} ; \cot \theta=-\frac{3}{2}$
3. $\sin \theta=-\frac{4}{5} ; \cos \theta=-\frac{3}{5} ; \csc \theta=-\frac{5}{4} ; \sec \theta=-\frac{5}{3} ; \cot \theta=\frac{3}{4} \quad$ 33. $\sin \theta=-\frac{2 \sqrt{2}}{3} ; \cos \theta=-\frac{1}{3} ; \tan \theta=2 \sqrt{2} ; \csc \theta=-\frac{3 \sqrt{2}}{4} ; \cot \theta=\frac{\sqrt{2}}{4}$
4. 20°
5. 25°
6. 5°
7. $\frac{\pi}{4}$
8. $\frac{\pi}{6}$
9. 30°
10. 25°
11. 1.56
12. 25°
13. $\frac{\pi}{6}$
14. $\frac{\pi}{4}$
15. $\frac{\pi}{4}$
16. $\frac{\pi}{6}$
17. $-\frac{\sqrt{2}}{2}$
18. $\frac{\sqrt{3}}{3} \quad$ 65. $\sqrt{3}$
19. $\frac{\sqrt{3}}{2}$
20. -2
21. 1
22. $\frac{\sqrt{3}}{2}$
23. -1
24. $-\sqrt{2}$
25. $\sqrt{3}$
26. $\frac{\sqrt{2}}{2}$
27. $\frac{\sqrt{3}}{3}$
28. $\frac{\sqrt{3}}{2}$
29. $\frac{1-\sqrt{3}}{2}$
30. $\frac{-\sqrt{6}-\sqrt{2}}{4}$ or $-\frac{\sqrt{6}+\sqrt{2}}{4}$
31. $-\frac{3}{2}$
32. $\frac{-1-\sqrt{3}}{2}$ or $-\frac{1+\sqrt{3}}{2}$
33. 1
34. $\frac{2 \sqrt{2}-4}{\pi}$
35. $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$
36. $\frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$
37. $\frac{2 \pi}{3}$ and $\frac{5 \pi}{3}$
38. does not make sense
39. makes sense
40. $\frac{1}{2} ; 0 ;-\frac{1}{2} ; 0 ; \frac{1}{2}$
41. $0 ; 4 ; 0 ;-4 ; 0$
42. $0 ; \frac{3}{2} ; 3 ; \frac{3}{2} ; 0 ;-\frac{3}{2} ;-3 ;-\frac{3}{2} ; 0$

Mid-Chapter 4 Check Point

1. $\frac{\pi}{18}$
2. $-\frac{7 \pi}{12}$
3. 75°
4. -117°
5. a. $\frac{5 \pi}{3}$
b.

c. $\frac{\pi}{3}$
6. a. $\frac{5 \pi}{4}$
b.

c. $\frac{\pi}{4}$
7. a. 150°
b.
c. 30°
8. $\sin t=-\frac{4}{5} ; \cos t=-\frac{3}{5} ; \tan t=\frac{4}{3} ; \csc t=-\frac{5}{4} ; \sec t=-\frac{5}{3} ; \cot t=\frac{3}{4} \quad 9 . \sin \theta=\frac{5}{6} ; \cos \theta=\frac{\sqrt{11}}{6} ; \tan \theta=\frac{5 \sqrt{11}}{11} ; \csc \theta=\frac{6}{5} ; \sec \theta=\frac{6 \sqrt{11}}{11} ; \cot \theta=\frac{\sqrt{11}}{5}$ 10. $\sin \theta=-\frac{2 \sqrt{13}}{13} ; \cos \theta=\frac{3 \sqrt{13}}{13} ; \tan \theta=-\frac{2}{3} ; \csc \theta=-\frac{\sqrt{13}}{2} ; \sec \theta=\frac{\sqrt{13}}{3} ; \cot \theta=-\frac{3}{2} \quad$ 11. $\sin \theta=\frac{3}{5} ; \cos \theta=-\frac{4}{5} ; \csc \theta=\frac{5}{3} ; \sec \theta=-\frac{5}{4}$; $\cot \theta=-\frac{4}{3} \quad$ 12. $\sin \theta=-\frac{2 \sqrt{10}}{7} ; \tan \theta=-\frac{2 \sqrt{10}}{3} ; \csc \theta=-\frac{7 \sqrt{10}}{20} ; \sec \theta=\frac{7}{3} ; \cot \theta=-\frac{3 \sqrt{10}}{20}$
9. 52 cm
10. 809 m
11. $\sqrt{35}$
12. $\frac{\sqrt{3}}{3}$
13. $-\frac{\sqrt{3}}{3}$
14. $-\frac{1}{2}$
15. $\frac{2 \sqrt{3}}{3}$
16. $1 \quad$ 21. $-\frac{\sqrt{ } 3}{2}$
17. $-\frac{2 \sqrt{3}}{3}$
18. $-\frac{\sqrt{2}}{2}$
19. $\frac{\sqrt{3}}{3}$
20. 2
21. $-\frac{5 \sqrt{3}}{6}$
22. $8 \pi \mathrm{~cm} \approx 25.13 \mathrm{~cm}$
23. $160 \pi \mathrm{ft} / \mathrm{min} \approx 502.7 \mathrm{ft} / \mathrm{min}$
24. $551.9 \mathrm{ft} \quad 30.40^{\circ}$

Section 4.5

Check Point Exercises

1. 3
2. $\frac{1}{2}$

$\left(\frac{3 \pi}{2},-3\right)$

3. $\frac{3}{2} ; \pi ;-\frac{\pi}{2}$

4. $2 ; 4 \pi$
5.

5. $4 ; 2$

4. $3 ; \pi ; \frac{\pi}{6}$

8. $y=4 \sin 4 x$
9. $y=2 \sin \left(\frac{\pi}{6} x-\frac{\pi}{2}\right)+12$

Concept and Vocabulary Check

1. $|A| ; \frac{2 \pi}{B}$
2. $3 ; 4 \pi$
3. $\pi, 0 ; \frac{\pi}{4} ; \frac{\pi}{2} ; \frac{3 \pi}{4} ; \pi$
4. $\frac{C}{B} ;$ right; left
5. $|A| ; \frac{2 \pi}{B}$
6. $\frac{1}{2} ; \frac{2 \pi}{3}$
7. false
8. true
9. true
10. true

Exercise Set 4.5

1. 4

$\left(\frac{3 \pi}{2},-4\right)$
2. $\frac{1}{3}$

3. $4 ; 2$

4. 3

5. $3 ; 1$

6. $1 ; \pi$

7. $1 ; 3 \pi$

8. $1 ; 2 \pi ; \pi$

9. $2 ; \pi ;-\frac{\pi}{4}$

10. 2

11. $\frac{1}{2} ; 6$

12. $3 ; \pi ; \frac{\pi}{4}$

13.

$$
y=2 \sin \frac{1}{2} x+1
$$

67.

$y=\left|2 \cos \frac{x}{2}\right|$
19. $1 ; \pi ; \frac{\pi}{2}$

27. $3 ; 2 ;-\frac{2}{\pi}$

35. $1 ; \pi$

43. $1 ; 2 \pi, \frac{\pi}{2}$

51. $2 ; 1 ;-4$

59.

69.

21. $3 ; \pi ; \frac{\pi}{2}$

29. $2 ; 1 ;-2$

23. $\frac{1}{2} ; 2 \pi ;-\frac{\pi}{2}$

31. 2

39. $4 ; 4 \pi$

47. $\frac{1}{2} ; \frac{2 \pi}{3} ;-\frac{\pi}{6}$
55.

63. One possibility: $y=-2 \sin (2 x)$

61. One possibility: $y=3 \cos \left(\frac{1}{2} x\right)$
65. One possibility: $y=2 \sin \left(\frac{\pi}{2} x\right)$
71.

73.

75. 33 days
77. 23 days
79. March 21
81. No
83.

85. a. 3
b. 365 days d. 9 hours of daylight
e.

c. 15 hours of daylight
87. $y=3 \cos \frac{\pi x}{6}+9$
101.

103.

105.

107.

The graph is similar to $y=\sin x$ except the amplitude is greater and the curve is less smooth.
111. makes sense 113. makes sense
115. a. range: $[-5,1] ;\left[-\frac{\pi}{6}, \frac{23 \pi}{6}, \frac{\pi}{6}\right]$ by $[-5,1,1]$
b. range: $[-3,-1] ;\left[-\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{\pi}{6}\right]$ by $[-3,-1,1]$

b. $y=22.61 \sin (0.50 x-2.04)+57.17$

117.

or $y=\frac{1}{2}-\frac{1}{2} \cos 2 x$
120. $\left\{x \left\lvert\,-\frac{3 \pi}{4}<x<\frac{\pi}{4}\right.\right\}$ or $\left(-\frac{3 \pi}{4}, \frac{\pi}{4}\right)$
121. $-\frac{\pi}{4}$ 122. a.

b. The reciprocal function is undefined.

Section 4.6

Check Point Exercises

1.

3.

4.

5.

Concept and Vocabulary Check

1. $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) ;-\frac{\pi}{4} ; \frac{\pi}{4}$
2. $(0, \pi) ; 0 ; \pi$
3. $(0,2) ; 0 ; 2$
4. $\left(-\frac{\pi}{4}, \frac{3 \pi}{4}\right) ;-\frac{\pi}{4} ; \frac{3 \pi}{4}$
5. $3 \sin 2 x$
6. $y=2 \cos \pi x$
7. false
8. true

Exercise Set 4.6

1. $y=\tan (x+\pi) \quad$ 3. $y=-\tan \left(x-\frac{\pi}{2}\right)$
2.

7.

9.

11.

13. $y=-\cot x$
15. $y=\cot \left(x+\frac{\pi}{2}\right)$
17.

25. $y=-\frac{1}{2} \csc \frac{x}{2}$
19.

21.

23.

29.

31.

39.
41.

37.

35.

43.

45.

53.

61. $d=10 \sec x$

81.

85.

87.

89. makes sense 91. does not make sense
93. $y=\cot \frac{3}{2} x$
95. $y=2 \csc \frac{3 x}{2}$
97. a. range: $(-\infty,-1] \cup[1, \infty) ;\left[-\frac{\pi}{6}, \pi, \frac{7 \pi}{6}\right]$ by $[-3,3,1]$
b. range: $(-\infty,-3] \cup[3, \infty) ;\left[-\frac{1}{2}, \frac{7}{2}, 1\right]$ by $[-6,6,1]$
99. a.

100. a.

b. yes
c. $\frac{5 \pi}{6} ;\left(\frac{5 \pi}{6},-\frac{\sqrt{3}}{2}\right)$
101. a.

Section 4.7

Check Point Exercises

1. $\frac{\pi}{3}$
2. $-\frac{\pi}{4}$
3. $\frac{2 \pi}{3}$
4. $-\frac{\pi}{4}$
5. a. 1.2310
b. -1.5429
6. a. 0.7
b. 0
c. not defined
7. $\frac{3}{5}$
8. $\frac{\sqrt{3}}{2}$
9. $\sqrt{x^{2}+1}$

Concept and Vocabulary Check

1. $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} ; \sin ^{-1} x$
2. $0 \leq x \leq \pi ; \cos ^{-1} x$
3. $-\frac{\pi}{2}<x<\frac{\pi}{2} ; \tan ^{-1} x$
4. $[-1,1] ;\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$
5. $[-1,1] ;[0, \pi]$
6. $(-\infty, \infty) ;\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
7. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
8. $[0, \pi]$
9. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
10. false

Exercise Set 4.7

1. $\frac{\pi}{6}$
2. $\frac{\pi}{4}$
3. $-\frac{\pi}{6}$
4. $\frac{\pi}{6}$
5. $\frac{3 \pi}{4}$
6. $\frac{\pi}{2}$
7. $\frac{\pi}{6}$
8. 0
9. $-\frac{\pi}{3}$
10. 0.30
11. -0.33
12. 1.19
13. 1.25
14. -1.52
15. -1.52
16. 0.9
17. $\frac{\pi}{3}$
18. $\frac{\pi}{6}$
19. $125 \quad$ 39. $-\frac{\pi}{6}$
20. $-\frac{\pi}{3}$
21. 0
22. not defined 47. $\frac{3}{5}$
23. $\frac{12}{5}$
24. $-\frac{3}{4}$
25. $\frac{\sqrt{2}}{2}$
26. $\frac{4 \sqrt{15}}{15}$
27. $-2 \sqrt{2}$
28. 2
29. $\frac{3 \sqrt{13}}{13} \quad$ 63. $\frac{\sqrt{1-x^{2}}}{x}$
30. $\sqrt{1-4 x^{2}}$
31. $\frac{\sqrt{x^{2}-1}}{x}$
32. $\frac{\sqrt{3}}{x}$
33. $\frac{\sqrt{x^{2}+4}}{2}$
34. a.

b. No horizontal line intersects the graph of $y=\sec x$ more than once, so the function is one-to-one and has an inverse function.
c.

35.

domain: $[-1,1]$;
range: $[0, \pi]$
77.

domain: $[-2,0]$;
range: $[0, \pi]$
79.

domain: $(-\infty, \infty)$;
range: $(-\pi, \pi)$
81.

$f(x)=\sin ^{-1}(x-2)-\frac{\pi}{2}$
domain: $[1,3]$; range: $[-\pi, 0]$

AA50

83.

domain: $[-2,2]$;
range: $[0, \pi]$
85. domain: $[-1,1]$; range: $[-1,1] \quad$ 87. domain: $(-\infty, \infty)$; range: $[0, \pi] \quad$ 89. domain: $(-\infty, \infty)$; range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
91. domain: $[-1,1]$; range: $\left\{\frac{\pi}{2}\right\}$ 93. 0.408 radian; 0.602 radian; 0.654 radian; 0.645 radian; 0.613 radian
95. 1.3157 radians or 75.4°
97. 1.1071 sq units

Shifted left 2 units and up 1 unit
115.

It seems
$\begin{array}{lll}\text { 117. does not make sense } & \text { 119. does not make sense } & \text { 121. } x=\sin \frac{\pi}{8}\end{array}$
123. $\tan \alpha=\frac{8}{x}$, so $\tan ^{-1} \frac{8}{x}=\alpha \cdot \tan (\alpha+\theta)=\frac{33}{x}$, so $\tan ^{-1} \frac{33}{x}=\alpha+\theta \cdot \theta=\alpha+\theta-\alpha=\tan ^{-1} \frac{33}{x}-\tan ^{-1} \frac{8}{x}$. 124. $a \approx 4.96 ; c \approx 13.08$
125. $35.8^{\circ} \quad$ 126. amplitude: 10 ; period: 12

Section 4.8

Check Point Exercises

1. $B=27.3^{\circ} ; b \approx 4.34 ; c \approx 9.45$
2. 994 ft
3. 29.0°
4. 60.3 ft
5. a. $\mathrm{S} 25^{\circ} \mathrm{E}$
b. $\mathrm{S} 15^{\circ} \mathrm{W}$
6. a. 4.2 mi
b. $\mathrm{S} 87.7^{\circ} \mathrm{W}$
7. $d=-6 \cos \frac{\pi}{2} t$
8. a. 12 cm
b. $\frac{1}{8} \mathrm{~cm}$ per sec
c. 8 sec

Concept and Vocabulary Check

1. sides; angles
2. north-south
3. simple harmonic; $|a| ; \frac{2 \pi}{\omega} ; \frac{\omega}{2 \pi}$

Exercise Set 4.8

1. $B=66.5^{\circ} ; a \approx 4.35 ; c \approx 10.90$
2. $b \approx 39.95 ; A \approx 37.3^{\circ} ; B \approx 52.7^{\circ}$
3. $\mathrm{S} 80^{\circ} \mathrm{W} \quad$ 17. $d=-6 \cos \frac{\pi}{2} t$
4. $B=37.4^{\circ} ; a \approx 42.90 ; b \approx 32.80$
5. $c \approx 26.96 ; A \approx 23.6^{\circ} ; B \approx 66.4^{\circ}$
6. $A=73.2^{\circ} ; a \approx 101.02 ; c \approx 105.52$
7. $a \approx 6.71 ; B \approx 16.6^{\circ} ; A \approx 73.4^{\circ} \quad$ 13. N $15^{\circ} \mathrm{E}$
8. $d=-3 \sin \frac{4 \pi}{3} t$
9. a. 5 in.
b. $\frac{1}{4}$ in. per sec
c. 4 sec
10. a. 6 in.
b. 1 in. per sec
c. 1 sec
11. a. $\frac{1}{2}$ in.
b. 0.32 in. per sec
c. 3.14 sec
12. a. 5 in.
b. $\frac{1}{3}$ in. per sec
c. 3 sec
13. 653 units
14. 39 units
15. 298 units 35.257 units
16.

39.

41. 2059 ft
43. 695 f
45. 1376 ft
47. 15.1°
49. 33.7 ft 51. 90 mi north and 120 mi east \quad 53. $13.2 \mathrm{mi} \quad$ 55. N $53^{\circ} \mathrm{W}$ 57. $\mathrm{N} 89.5^{\circ} \mathrm{E}$
59. $d=6 \sin \pi t$
61. $d=\sin 528 \pi t$
a. 4 in.
b. $\frac{1}{2}$ in. per sec
c. 2 sec
d. $\frac{1}{2}$
b. $\frac{1}{8}$ in. per sec
a. 2 in.
c. 8 sec
d. -2
71. 6

73. does not make sense
75. does not make sense
77. 48 ft
79. $\csc x$
80. 1
81. $\frac{1+\sin x}{\cos x}$

10 complete oscillations

Chapter 4 Review Exercises

1. 4.5 radians
2. $\frac{\pi}{12}$ radian
3. $\frac{2 \pi}{3}$ radians
4. $\frac{7 \pi}{4}$ radians
5. 300°
6. 252°
7. -150°
8.

9.

10.

13. 40°
14. 275°
15. $\frac{5 \pi}{4}$
16. $\frac{7 \pi}{6} \quad$ 17. $\frac{4 \pi}{3}$
18. $\frac{15 \pi}{2} \mathrm{ft} \approx 23.56 \mathrm{ft}$
11.

12.

21. $\sin t=-\frac{3}{5} ; \cos t=-\frac{4}{5} ; \tan t=\frac{3}{4} ; \csc t=-\frac{5}{3} ; \sec t=-\frac{5}{4} ; \cot t=\frac{4}{3} \quad$ 22. $\sin t=-\frac{15}{17} ; \cos t=\frac{8}{17} ; \tan t=-\frac{15}{8} ; \csc t=-\frac{17}{15} ; \sec t=\frac{17}{8} ; \cot t=-\frac{8}{15}$
23. $-\frac{2 \sqrt{3}}{3}$
24. $\sqrt{3}$
25. undefined
26. undefined
27. $\cos t=\frac{\sqrt{21}}{7} ; \tan t=\frac{2 \sqrt{3}}{3} ; \csc t=\frac{\sqrt{7}}{2} ; \sec t=\frac{\sqrt{21}}{3} ; \cot t=\frac{\sqrt{3}}{2}$
28. 1
29. $1 \quad$ 30. -1
31. $\sin \theta=\frac{5 \sqrt{89}}{89} ; \cos \theta=\frac{8 \sqrt{89}}{89} ; \tan \theta=\frac{5}{8} ; \csc \theta=\frac{\sqrt{89}}{5} ; \sec \theta=\frac{\sqrt{89}}{8} ; \cot \theta=\frac{8}{5}$
32. $\frac{7}{2}$
33. $-\frac{1}{2}$
34. 1
35. 1
36. $\cos 20^{\circ}$
37. $\sin 0$
38. 42 mm
39. 23 cm
40. 37 in .
41. $\sqrt{15}$
42. 772 ft
43. 31 m
44. 56°
45. $\sin \theta=-\frac{5 \sqrt{26}}{26} ; \cos \theta=-\frac{\sqrt{26}}{26} ; \tan \theta=5 ; \csc \theta=-\frac{\sqrt{26}}{5} ; \sec \theta=-\sqrt{26} ; \cot \theta=\frac{1}{5}$
46. $\sin \theta=-1$; $\cos \theta=0$; $\tan \theta$ is undefined; $\csc \theta=-1 ; \sec \theta$ is undefined; $\cot \theta=0 \quad$ 47. quadrant I 48. quadrant III
49. $\sin \theta=-\frac{\sqrt{21}}{5} ; \tan \theta=-\frac{\sqrt{21}}{2} ; \csc \theta=-\frac{5 \sqrt{21}}{21} ; \sec \theta=\frac{5}{2} ; \cot \theta=-\frac{2 \sqrt{21}}{21}$
50. $\sin \theta=\frac{\sqrt{10}}{10} ; \cos \theta=-\frac{3 \sqrt{10}}{10} ; \csc \theta=\sqrt{10} ; \sec \theta=-\frac{\sqrt{10}}{3} ; \cot \theta=-3 \quad$ 51. $\sin \theta=-\frac{\sqrt{10}}{10} ; \cos \theta=-\frac{3 \sqrt{10}}{10} ; \tan \theta=\frac{1}{3} ; \csc \theta=-\sqrt{10}$;
$\sec \theta=-\frac{\sqrt{10}}{3} \quad$ 52. 85°
53. $\frac{3 \pi}{8}$
54. 50°
55. $\frac{\pi}{6}$
56. $\frac{\pi}{3}$
57. $-\frac{\sqrt{3}}{2}$
58. $-\sqrt{3}$
59. $\sqrt{2}$
60. $\frac{\sqrt{3}}{2}$
61. $-\sqrt{3}$
62. $-\frac{2 \sqrt{3}}{3}$
63. $-\frac{\sqrt{3}}{2}$
64. $\frac{\sqrt{2}}{2}$
65. 1
66. $-\frac{\sqrt{3}}{2}$
67. $\frac{\sqrt{3}}{2}$
68.

72.

76.

69.

73.

77.

70.

71.

$$
y=\frac{1}{2} \sin \frac{\pi}{3} x
$$

75.

78.

$y=-3 \sin \left(\frac{\pi}{3} x-3 \pi\right)$

74.

79.

80.

81. a. $\approx 98.52^{\circ}$
b. 24 hr
c. $5: 00$ Р.М.; 98.9°
d. 5:00 A.M.; 98.3°
e.

82. blue: $y=\sin \frac{\pi}{240} x$; red: $y=\sin \frac{\pi}{320} x$
83.

84.

85.

87.

88.

89.

86.

90.

91.

92.

93.

94. $\frac{\pi}{2}$
$\begin{array}{ll}\text { 95. } 0 & \text { 96. } \frac{\pi}{4}\end{array}$
97. $-\frac{\pi}{3}$
98. $\frac{2 \pi}{3}$
99. $-\frac{\pi}{6}$
100. $\frac{\sqrt{2}}{2} \quad 101.1$
202. $-\frac{\sqrt{3}}{3}$
103. $-\frac{\sqrt{3}}{3}$
$\begin{array}{lll}\text { 104. } 2 & \text { 105. } \frac{4}{5} & \text { 106. } \frac{4}{5}\end{array}$
$\begin{array}{lll}\text { 107. }-\frac{3}{4} & \text { 108. }-\frac{3}{4} & \text { 109. }-\frac{\sqrt{10}}{10}\end{array}$
$\begin{array}{lll}\text { 110. } \frac{\pi}{3} & \text { 111. } \frac{\pi}{3} & \text { 112. }-\frac{\pi}{6}\end{array}$
113. $\frac{2 \sqrt{x^{2}+4}}{x^{2}+4}$
114. $\frac{x \sqrt{x^{2}-1}}{x^{2}-1}$
115. $B \approx 67.7^{\circ} ; a \approx 3.79 ; b \approx 9.25$
116. $A \approx 52.6^{\circ} ; a \approx 7.85 ; c \approx 9.88$
117. $A \approx 16.6^{\circ} ; B \approx 73.4^{\circ} ; b \approx 6.71$
118. $A \approx 21.3^{\circ} ; B \approx 68.7^{\circ} ; c \approx 3.86$
119. $38 \mathrm{ft} \quad$ 120. 90 yd
121. 21.7 ft
122. $\mathrm{N} 35^{\circ} \mathrm{E} \quad$ 123. $\mathrm{S} 35^{\circ} \mathrm{W}$
$\begin{array}{ll}\text { 124. } 24.6 \mathrm{mi} & \text { 125. a. } 1282.2 \mathrm{mi}\end{array}$
b. $\mathrm{S} 74^{\circ} \mathrm{E}$
126. a. 20 cm
b. $\frac{1}{8} \mathrm{~cm}$ per sec
c. 8 sec
127. a. $\frac{1}{2} \mathrm{~cm}$
b. 0.64 cm per sec
c. 1.57 sec
128. $d=-30 \cos \pi t$
129. $d=\frac{1}{4} \sin \frac{2 \pi}{5} t$

Chapter 4 Test

$\begin{array}{llll}\text { 1. } \frac{3 \pi}{4} \text { radians } & \text { 2. } \frac{25 \pi}{3} \mathrm{ft} \approx 26.18 \mathrm{ft} & \text { 3. a. } \frac{4 \pi}{3} & \text { b. } \frac{\pi}{3}\end{array}$
4. $\sin \theta=\frac{5 \sqrt{29}}{29} ; \cos \theta=-\frac{2 \sqrt{29}}{29} ; \tan \theta=-\frac{5}{2} ; \csc \theta=\frac{\sqrt{29}}{5} ; \sec \theta=-\frac{\sqrt{29}}{2} ; \cot \theta=-\frac{2}{5}$
5. quadrant III
6. $\sin \theta=-\frac{2 \sqrt{2}}{3} ; \tan \theta=-2 \sqrt{2} ; \csc \theta=-\frac{3 \sqrt{2}}{4} ; \sec \theta=3 ; \cot \theta=-\frac{\sqrt{2}}{4}$
$\begin{array}{ll}\text { 7. } \frac{\sqrt{3}}{6} & \text { 8. }-\sqrt{3}\end{array}$
9. $-\frac{\sqrt{2}}{2}$
10. -2
11. $\frac{\sqrt{3}}{3}$
12. $\sqrt{3}$
13. a. $-a+b$ or $b-a$
b. $\frac{a}{b}-\frac{1}{b}$ or $\frac{a-1}{b}$
14.

15.

16.

17.

18. $-\sqrt{3}$
19. $\frac{\sqrt{9-x^{2}}}{3}$
20. $B=69^{\circ} ; a=4.7 ; b=12.1$
21. 23 yd
25. Trigonometric functions are periodic.

Cumulative Review Exercises (Chapters P-4)

1. $\{-3,6\}$
2. $\{-5,-2,2\}$
3. $\{4\}$
4. $\{7\}$
5. $\{-1,2,3\}$
6. $[-3,8]$
7. $f^{-1}(x)=x^{2}+6$
8. $4 x^{2}-\frac{14}{5} x-\frac{17}{25}+\frac{284}{125 x+50}$
9. $\log 1000=3$
10. 280°
11. 3 positive real roots; 1 negative real root
12.

13.

14.

15.

16.

17. 48 performances
18. a. $A=110 e^{0.1013 t}$ where t is the number of years after 2000
b. 13 years after 2000 , or 2013
19. 1540 Btu per hr
20. 76°

CHAPTER 5

Section 5.1

Check Point Exercises

1. $\csc x \tan x=\frac{1}{\sin x} \cdot \frac{\sin x}{\cos x}=\frac{1}{\cos x}=\sec x$
2. $\cos x \cot x+\sin x=\cos x \cdot \frac{\cos x}{\sin x}+\sin x=\frac{\cos ^{2} x}{\sin x}+\sin x \cdot \frac{\sin x}{\sin x}=\frac{\cos ^{2} x+\sin ^{2} x}{\sin x}=\frac{1}{\sin x}=\csc x$
3. $\sin x-\sin x \cos ^{2} x=\sin x\left(1-\cos ^{2} x\right)=\sin x \cdot \sin ^{2} x=\sin ^{3} x$
4. $\frac{1+\cos \theta}{\sin \theta}=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=\csc \theta+\cot \theta$
5. $\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{\sin x(\sin x)}{(1+\cos x)(\sin x)}+\frac{(1+\cos x)(1+\cos x)}{(\sin x)(1+\cos x)}=\frac{\sin ^{2} x+1+2 \cos x+\cos ^{2} x}{(1+\cos x)(\sin x)}$
$=\frac{\sin ^{2} x+\cos ^{2} x+1+2 \cos x}{(1+\cos x)(\sin x)}=\frac{1+1+2 \cos x}{(1+\cos x)(\sin x)}=\frac{2+2 \cos x}{(1+\cos x)(\sin x)}=\frac{2(1+\cos x)}{(1+\cos x)(\sin x)}=\frac{2}{\sin x}=2 \csc x$
6. $\frac{\cos x}{1+\sin x}=\frac{\cos x(1-\sin x)}{(1+\sin x)(1-\sin x)}=\frac{\cos x(1-\sin x)}{1-\sin ^{2} x}=\frac{\cos x(1-\sin x)}{\cos ^{2} x}=\frac{1-\sin x}{\cos x} \quad$ 7. $\frac{\sec x+\csc (-x)}{\sec x \csc x}=\frac{\sec x-\csc x}{\sec x \csc x}$
$=\frac{\frac{1}{\cos x}-\frac{1}{\sin x}}{\frac{1}{\cos x} \cdot \frac{1}{\sin x}}=\frac{\frac{\sin x}{\cos x \cdot \sin x}-\frac{\cos x}{\cos x \cdot \sin x}}{\frac{1}{\cos x \cdot \sin x}}=\frac{\frac{\sin x-\cos x}{\cos x \cdot \sin x}}{\frac{1}{\cos x \cdot \sin x}}=\frac{\sin x-\cos x}{\cos x \cdot \sin x} \cdot \frac{\cos x \cdot \sin x}{1}=\sin x-\cos x$
7. Left side: $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=\frac{1(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}+\frac{1(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}=\frac{2}{1-\sin ^{2} \theta}$;

Right side: $2+2 \tan ^{2} \theta=2+2\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)=\frac{2 \cos ^{2} \theta}{\cos ^{2} \theta}+\frac{2 \sin ^{2} \theta}{\cos ^{2} \theta}=\frac{2 \cos ^{2} \theta+2 \sin ^{2} \theta}{\cos ^{2} \theta}=\frac{2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\cos ^{2} \theta}=\frac{2}{\cos ^{2} \theta}=\frac{2}{1-\sin ^{2} \theta}$

Concept and Vocabulary Check

1. complicated; other
2. sines; cosines
3. false
4. $(\csc x-1)(\csc x+1)$
5. identical/the same

Exercise Set 5.1

For Exercises 1-59, proofs may vary.
61. $\cos x$; Proofs may vary.
63. $2 \sin x$; Proofs may vary.
65. $2 \sec x$; Proofs may vary.
67. $\frac{1}{\cos x}$
69. $\frac{1}{\cos x} \quad$ 71. $2 \csc ^{2} x-1$
73. $\sec x \tan x$
79.

Proofs may vary.
81.

Values for x may vary.
83.

Values for x may vary.
85.

Proofs may vary.
87.

Values for x may vary
89. makes sense
91. does not make sense For Exercises 93 and 95, proofs may vary.
98. $\frac{\sqrt{3}}{2} ; \frac{1}{2} ; \frac{1}{2} ; \frac{\sqrt{3}}{2} ; 0 ; 1$
99. a. no
b. yes
100. a. no
b. yes

Section 5.2

Check Point Exercises

1. $\frac{\sqrt{3}}{2}$
2. $\frac{\sqrt{3}}{2}$
3. $\cos (\alpha-\beta)$
$\cos \alpha \cos \beta+\sin \alpha \sin \beta$
4. $\frac{\sqrt{2}+\sqrt{6}}{4}$
5. a. $\cos \alpha=-\frac{3}{5}$
b. $\cos \beta=\frac{\sqrt{3}}{2}$
c. $\frac{-3 \sqrt{3}-4}{10}$
d. $\frac{4 \sqrt{3}-3}{10}$
6. a. $y=\sin x$
b. $\cos \left(x+\frac{3 \pi}{2}\right)=\cos x \cos \frac{3 \pi}{2}-\sin x \sin \frac{3 \pi}{2}=\cos x \cdot 0-\sin x \cdot(-1)=\sin x$
7. $\tan (x+\pi)=\frac{\tan x+\tan \pi}{1-\tan x \tan \pi}=\frac{\tan x+0}{1-\tan x \cdot 0}=\frac{\tan x}{1}=\tan x$

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. } \cos x \cos y-\sin x \sin y & \text { 2. } \cos x \cos y+\sin x \sin y\end{array}$
3. $\sin C \cos D+\cos C \sin D$
4. $\sin C \cos D-\cos C \sin D$
5. $\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}$
6. $\frac{\tan \theta-\tan \phi}{1+\tan \theta \tan \phi}$
7. false
8. false

Exercise Set 5.2

1. $\frac{\sqrt{6}+\sqrt{2}}{4}$
2. $\frac{\sqrt{2}-\sqrt{6}}{4}$
3. a. $\alpha=50^{\circ}, \beta=20^{\circ}$
b. $\cos 30^{\circ}$
c. $\frac{\sqrt{3}}{2}$
4. a. $\alpha=\frac{5 \pi}{12}, \beta=\frac{\pi}{12}$
b. $\cos \frac{\pi}{3} \quad$ c. $\frac{1}{2}$

For Exercises 9 and 11, proofs may vary.

$$
\text { 13. } \frac{\sqrt{6}-\sqrt{2}}{4} \quad \text { 15. } \frac{\sqrt{6}+\sqrt{2}}{4}
$$

17. $-\frac{\sqrt{6}+\sqrt{2}}{4}$
18. $\frac{\sqrt{6}-\sqrt{2}}{4}$
19. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
20. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
21. $\sin 30^{\circ} ; \frac{1}{2}$
22. $\tan 45^{\circ} ; 1$
23. $\sin \frac{\pi}{6} ; \frac{1}{2}$
24. $\tan \frac{\pi}{6} ; \frac{\sqrt{3}}{3}$

For Exercises 33-55, proofs may vary.
57. a. $-\frac{63}{65}$
b. $-\frac{16}{65}$
c. $\frac{16}{63}$
59. a. $-\frac{4+6 \sqrt{2}}{15}$
b. $\frac{3-8 \sqrt{2}}{15}$
c. $\frac{54-25 \sqrt{2}}{28}$
61. a. $-\frac{8 \sqrt{3}+15}{34}$
b. $\frac{15 \sqrt{3}-8}{34}$
c. $\frac{480-289 \sqrt{3}}{33}$
63. a. $-\frac{4+3 \sqrt{15}}{20}$
b. $\frac{-3+4 \sqrt{15}}{20}$
c. $\frac{3-4 \sqrt{15}}{4+3 \sqrt{15}}$
65. a. $y=\sin x \quad$ b. $\sin (\pi-x)=\sin \pi \cos x-\cos \pi \sin x=0 \cdot \cos x-(-1) \sin x=\sin x \quad$ 67. a. $y=2 \cos x$
b. $\sin \left(x+\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}-x\right)=\sin x \cos \frac{\pi}{2}+\cos x \sin \frac{\pi}{2}+\sin \frac{\pi}{2} \cos x-\cos \frac{\pi}{2} \sin x=\sin x \cdot 0+\cos x \cdot 1+1 \cdot \cos x-0 \cdot \sin x$ $=\cos x+\cos x=2 \cos x$
69. $\cos \alpha$
71. $\tan \beta$
73. $\cos \frac{\pi}{3}=\frac{1}{2}$
75. $\cos 3 x$; Proofs may vary.
77. $\sin \frac{x}{2}$; Proofs may vary.
79. Proofs may vary.; amplitude is $\sqrt{13}$; period is 2π
89.

Proofs may vary.
91.

Values for x may vary.
95. makes sense 97. makes sense.
99. $\frac{4 \sqrt{3}+3}{10}$
101. $-\frac{33}{65}$
103. $y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}$
93.

Proofs may vary.
107. $\sin 30^{\circ}=\frac{1}{2} ; \cos 30^{\circ}=\frac{\sqrt{3}}{2} ; \sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2}$
108. a. no
b. yes
109. a. no
b. yes

Section 5.3

Check Point Exercises

1. a. $-\frac{24}{25}$
b. $-\frac{7}{25}$
c. $\frac{24}{7}$
2. $\frac{\sqrt{3}}{2}$
3. $\sin 3 \theta=\sin (2 \theta+\theta)=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta=2 \sin \theta \cos \theta \cos \theta$
$+\left(2 \cos ^{2} \theta-1\right) \sin \theta=2 \sin \theta \cos ^{2} \theta+2 \sin \theta \cos ^{2} \theta-\sin \theta=4 \sin \theta \cos ^{2} \theta-\sin \theta=4 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin \theta=4 \sin \theta-4 \sin { }^{3} \theta$
$-\sin \theta=3 \sin \theta-4 \sin ^{3} \theta$
4. $\sin ^{4} x=\left(\sin ^{2} x\right)^{2}=\left(\frac{1-\cos 2 x}{2}\right)^{2}=\frac{1-2 \cos 2 x+\cos ^{2} 2 x}{4}=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{4} \cos ^{2} 2 x=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{4}\left(\frac{1+\cos 2(2 x)}{2}\right)$ $=\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{8}+\frac{1}{8} \cos 4 x=\frac{3}{8}-\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x \quad$ 5. $-\frac{\sqrt{2-\sqrt{3}}}{2}$
5. $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\frac{2 \sin \theta \cos \theta}{1+\left(1-2 \sin ^{2} \theta\right)}=\frac{2 \sin \theta \cos \theta}{2-2 \sin ^{2} \theta}=\frac{2 \sin \theta \cos \theta}{2\left(1-\sin ^{2} \theta\right)}=\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta$
6. $\frac{\sec \alpha}{\sec \alpha \csc \alpha+\csc \alpha}=\frac{\frac{1}{\cos \alpha}}{\frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha}+\frac{1}{\sin \alpha}}=\frac{\frac{1}{\cos \alpha}}{\frac{1}{\cos \alpha \sin \alpha}+\frac{\cos \alpha}{\cos \alpha \sin \alpha}}=\frac{\frac{1}{\cos \alpha}}{\frac{1+\cos \alpha}{\cos \alpha \sin \alpha}}=\frac{1}{\cos \alpha} \cdot \frac{\cos \alpha \sin \alpha}{1+\cos \alpha}=\frac{\sin \alpha}{1+\cos \alpha}=\tan \frac{\alpha}{2}$

Concept and Vocabulary Check

1. $2 \sin x \cos x$
2. $\sin ^{2} A ; 2 \cos ^{2} A ; 2 \sin ^{2} A$
3. $\frac{2 \tan B}{1-\tan ^{2} B}$
4. $1-\cos 2 \alpha$
5. $1+\cos 2 \alpha$
6. $1-\cos 2 y$
7. $1-\cos x$
8. $1+\cos y$
9. $1-\cos \alpha ; 1-\cos \alpha ; 1+\cos \alpha$
10. false
11. false
12. false
13. +
14. -
15. +

Exercise Set 5.3

1. $\frac{24}{25}$
2. $\frac{24}{7}$
3. $\frac{527}{625}$
4. a. $-\frac{240}{289}$
b. $-\frac{161}{289}$
c. $\frac{240}{161}$
5. a. $-\frac{336}{625}$
b. $\frac{527}{625}$
c. $-\frac{336}{527}$
6. a. $\frac{4}{5}$
$\begin{array}{ll}\text { b. } \frac{3}{5} & \text { c. } \frac{4}{3}\end{array}$
7. a. $\frac{720}{1681}$
b. $\frac{1519}{1681}$
c. $\frac{720}{1519}$
$\begin{array}{ll}\text { 15. } \frac{1}{2} & \text { 17. }-\frac{\sqrt{3}}{2}\end{array}$
8. $\frac{\sqrt{2}}{2}$
9. $\frac{\sqrt{3}}{3}$

For Exercises 23-33, proofs may vary.
35. $\frac{9}{4}-3 \cos 2 x+\frac{3}{4} \cos 4 x$
37. $\frac{1}{8}-\frac{1}{8} \cos 4 x$
39. $\frac{\sqrt{2-\sqrt{3}}}{2}$
41. $-\frac{\sqrt{2+\sqrt{2}}}{2}$
43. $2+\sqrt{3}$
45. $-\sqrt{2}+1$
47. $\frac{\sqrt{10}}{10}$
49. $\frac{1}{3} \quad$ 51. $\frac{7 \sqrt{2}}{10}$
53. $\frac{3}{5} \quad$ 55. a. $\frac{2 \sqrt{5}}{5}$
b. $-\frac{\sqrt{5}}{5}$
$\begin{array}{ll}\text { c. }-2 & \text { 57. a. } \frac{3 \sqrt{13}}{13}\end{array}$
b. $\frac{2 \sqrt{13}}{13} \quad$ c. $\frac{3}{2}$

For Exercises 59-67, proofs may vary.
69. $\cos 2 x$; Proofs may vary.
71. $1+\sin x$; Proofs may vary.
73. $\sec x$; Proofs may vary.
75. $2 \csc 2 x$; Proofs may vary.
77. $\sin 3 x$; Proofs may vary.
79. a. $d=\frac{v_{0}^{2}}{32} \cdot \sin 2 \theta$
b. $\theta=\frac{\pi}{4}$
81. $\sqrt{2-\sqrt{2}} \cdot(2+\sqrt{2}) \approx 2.6$
95.

Proofs may vary.
97.

Values for x may vary.
99.

a. $y=1+2 \sin x$
b. Proofs may vary.
101.

a. $y=\tan \frac{x}{2}$
b. Proofs may vary.
103. does not make sense
105. does not makes sense
107. $\frac{\sqrt{3}}{2}$
109. $\frac{9}{10}$
111. $2 x \sqrt{1-x^{2}}$
113. Both sides equal $\frac{\sqrt{3}}{4}$.
114. Both sides equal 0 .
115. Both sides equal 0 .

Mid-Chapter 5 Check Point

For Exercises 1-18, proofs may vary.
19. $\frac{33}{65}$
20. $-\frac{16}{63}$
21. $-\frac{24}{25}$
22. $-\frac{\sqrt{26}}{26}$
23. $-\frac{\sqrt{6}+\sqrt{2}}{4}$
24. $\frac{\sqrt{3}}{2}$
25. $\frac{1}{2}$ 26. $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$

Section 5.4

Check Point Exercises

1. a. $\frac{1}{2}[\cos 3 x-\cos 7 x]$
b. $\frac{1}{2}[\cos 6 x+\cos 8 x]$
2. a. $2 \sin 5 x \cos 2 x$
b. $2 \cos \frac{5 x}{2} \cos \frac{x}{2}$
3. $\frac{\cos 3 x-\cos x}{\sin 3 x+\sin x}=\frac{-2 \sin \left(\frac{3 x+x}{2}\right) \sin \left(\frac{3 x-x}{2}\right)}{2 \sin \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)}=\frac{-2 \sin \left(\frac{4 x}{2}\right) \sin \left(\frac{2 x}{2}\right)}{2 \sin \left(\frac{4 x}{2}\right) \cos \left(\frac{2 x}{2}\right)}=\frac{-2 \sin 2 x \sin x}{2 \sin 2 x \cos x}=-\frac{\sin x}{\cos x}=-\tan x$

Concept and Vocabulary Check

1. product; difference 2. product; sum
2. sum; product
3. difference; product
4. product; sum
5. product; difference
6. sum; product
7. difference; product

AA56 Answers to Selected Exercises

Exercise Set 5.4

1. $\frac{1}{2}[\cos 4 x-\cos 8 x]$
2. $\frac{1}{2}[\cos 4 x+\cos 10 x]$
3. $\frac{1}{2}[\sin 3 x-\sin x]$ 7. $\frac{1}{2}[\sin 2 x-\sin x]$ 9. $2 \sin 4 x \cos 2 x$
4. $2 \sin 2 x \cos 5 x$
5. $2 \cos 3 x \cos x$
6. $2 \sin \frac{3 x}{2} \cos \frac{x}{2}$
7. $2 \cos x \cos \frac{x}{2}$
8. $\frac{\sqrt{6}}{2}$
9. $-\frac{\sqrt{2}}{2}$

For Exercises 23-29, proofs may vary.
31. a. $y=\cos x \quad$ b. Proofs may vary.
33. a. $y=\tan 2 x \quad$ b. Proofs may vary.
35. a. $y=-\cot 2 x$
b. Proofs may vary.
37. a. $y=\sin 1704 \pi t+\sin 2418 \pi t$ b. $2 \sin 2061 \pi t \cdot \cos 357 \pi t$
45.

Values for x may vary.
51. a.

47.

49.

Proofs may vary.
b.

53. makes sense 55. makes sense

For Exercises 57-61, proofs may vary.
63. $\left\{-\frac{1}{2}, 2\right\} \quad$ 64. $\{-\sqrt{3}, 0, \sqrt{3}\}$
65. $\left\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}$

Section 5.5

Check Point Exercises

1. $x=\frac{\pi}{3}+2 n \pi$ or $x=\frac{2 \pi}{3}+2 n \pi$, where n is any integer.
2. $\frac{\pi}{6}, \frac{2 \pi}{3}, \frac{7 \pi}{6}, \frac{5 \pi}{3}$
$\begin{array}{ll}\text { 3. } \frac{\pi}{2} & \text { 4. } \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}\end{array}$
3. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
4. $0, \frac{\pi}{4}, \pi, \frac{5 \pi}{4}$
5. $\frac{\pi}{3}, \frac{5 \pi}{3}$
6. $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
7. $\frac{3 \pi}{4}, \frac{7 \pi}{4}$
8. $\frac{\pi}{2}, \pi$
9. a. $1.2592,4.4008$
b. $3.3752,6.0496$
10. $2.3423,3.9409$

Concept and Vocabulary Check

$\begin{array}{llll}\text { 1. } \frac{3 \pi}{4} ; \frac{\pi}{4}+2 n \pi ; \frac{3 \pi}{4}+2 n \pi & \text { 2. } \frac{2 \pi}{3} ; x=\frac{2 \pi}{3}+n \pi & \text { 3. false } & \text { 4. true }\end{array}$ 5. false
$\begin{array}{llll}\text { 6. } 2 \cos x+1 ; \cos x-5 ; \cos x-5=0 & \text { 7. } \cos x ; 2 \sin x+\sqrt{2} & \text { 8. } \cos ^{2} x ; 1-\sin ^{2} x & \text { 9. } \pi ; 2 \pi\end{array}$

Exercise Set 5.5

1. Solution
2. Not a solution
3. Solution
4. Solution
5. Not a solution
6. $x=\frac{\pi}{3}+2 n \pi$ or $x=\frac{2 \pi}{3}+2 n \pi$, where n is any integer.
7. $x=\frac{\pi}{4}+n \pi$, where n is any integer. \quad 15. $x=\frac{2 \pi}{3}+2 n \pi$ or $x=\frac{4 \pi}{3}+2 n \pi$, where n is any integer. \quad 17. $x=n \pi$, where n is any integer.
8. $x=\frac{5 \pi}{6}+2 n \pi$ or $x=\frac{7 \pi}{6}+2 n \pi$, where n is any integer.
9. $\theta=\frac{\pi}{6}+2 n \pi$ or $\theta=\frac{5 \pi}{6}+2 n \pi$, where n is any integer.
10. $\theta=\frac{3 \pi}{2}+2 n \pi$, where n is any integer.
11. $\frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}$
12. $\frac{5 \pi}{24}, \frac{7 \pi}{24}, \frac{17 \pi}{24}, \frac{19 \pi}{24}, \frac{29 \pi}{24}, \frac{31 \pi}{24}, \frac{41 \pi}{24}, \frac{43 \pi}{24}$
13. $\frac{\pi}{18}, \frac{7 \pi}{18}, \frac{13 \pi}{18}, \frac{19 \pi}{18}, \frac{25 \pi}{18}, \frac{31 \pi}{18}$
14. $\frac{2 \pi}{3}$
15. no solution
16. $\frac{4 \pi}{9}, \frac{8 \pi}{9}, \frac{16 \pi}{9}$
17. $0, \frac{\pi}{3}, \pi, \frac{4 \pi}{3}$
18. $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
19. $\frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}$
20. $\frac{3 \pi}{2}$
21. $\frac{\pi}{2}, \frac{3 \pi}{2}$
22. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
23. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
24. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
25. $\frac{\pi}{4}, \pi, \frac{5 \pi}{4}$
26. $\frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
27. $\frac{\pi}{4}, \frac{5 \pi}{4}$
28. $0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}$
29. $0, \pi$
30. $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
31. π
32. $\frac{\pi}{6}, \frac{5 \pi}{6}$
33. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
34. $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
35. $\frac{2 \pi}{3}, \frac{4 \pi}{3}$
36. $\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}$
37. $0, \frac{\pi}{2}$
38. $\frac{\pi}{4}, \frac{3 \pi}{4}$
39. $\frac{\pi}{12}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{11 \pi}{12}, \frac{17 \pi}{12}, \frac{19 \pi}{12}$
40. 0
41. 0.9695, 2.1721
42. 1.9823, 4.3009
43. 1.8926, 5.0342
44. 2.2370, 4.0462
45. $0.4636,0.9828,3.6052,4.1244$
46. $0.3876,2.7540,3.5292,5.8956$
47. $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
$\begin{array}{ll}\text { 99. } 0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3} & \text { 101. } \frac{\pi}{6}, \frac{11 \pi}{6}\end{array}$
48. $1.7798,4.9214$
49. $\frac{\pi}{2}$
50. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
51. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
52. $0.7494,5.5338$
53. $\frac{7 \pi}{6}, \frac{11 \pi}{6}$
54. $2.1588, \frac{3 \pi}{4}, 5.3004, \frac{7 \pi}{4} \quad$ 117. $\left(\frac{2 \pi}{3},-\frac{3}{2}\right),\left(\frac{4 \pi}{3},-\frac{3}{2}\right)$

55. $(3.5163,0.7321),(5.9085,0.7321)$

$f(x)=\cos 2 x$
$g(x)=-2 \sin x$
56. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
57. $\frac{\pi}{6}, \frac{5 \pi}{6}, 3.3430,6.0818$
58. $0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}$
59. $0.3649,1.2059,3.5065,4.3475 ;$ a
60. 0.4 sec and 2.1 sec
61. 49 days and 292 days after January 1 147. 7

$$
x=1.37, x=2.30, x=3.98, \text { or } x=4.91
$$

133. $t=2+6 n$ or $t=4+6 n$ where n is any nonnegative integer.
134. 21° or 69°.

$x=0.37$ or $x=2.77$
135.

$x=0, x=1.57, x=2.09, x=3.14, x=4.19$,
or $x=4.71$
153. makes sense
155. does not make sense
157. false
159. false
161. $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}$
163. $a \approx 45.2$

Chapter 5 Review Exercises

For Exercises 1-13, proofs may vary.
14. $\frac{\sqrt{6}-\sqrt{2}}{4}$
15. $\frac{\sqrt{2}-\sqrt{6}}{4}$
16. $2-\sqrt{3}$
17. $\sqrt{3}+2$
18. $\frac{1}{2}$
19. $\frac{1}{2}$

For Exercises 20-31, proofs may vary.
32. a. $y=\cos x$
b. $\sin \left(x-\frac{3 \pi}{2}\right)=\sin x \cos \frac{3 \pi}{2}-\cos x \sin \frac{3 \pi}{2}=\sin x \cdot 0-\cos x \cdot-1=\cos x$
33. a. $y=-\sin x$
b. $\cos \left(x+\frac{\pi}{2}\right)=\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2}=\cos x \cdot 0-\sin x \cdot 1=-\sin x$
34. a. $y=\tan x$
b. $y=\frac{\tan x-1}{1-\cot x}=\frac{\frac{\sin x}{\cos x}-1}{1-\frac{\cos x}{\sin x}}=\frac{\frac{\sin x-\cos x}{\cos x}}{\frac{\sin x-\cos x}{\sin x}}=\frac{\sin x-\cos x}{\cos x} \cdot \frac{\sin x}{\sin x-\cos x}=\frac{\sin x}{\cos x}=\tan x$
35. a. $\frac{33}{65}$
b. $\frac{16}{65}$
c. $-\frac{33}{56}$
d. $\frac{24}{25}$
e. $\frac{2 \sqrt{13}}{13}$
36. a. $-\frac{63}{65}$
b. $-\frac{56}{65}$
c. $\frac{63}{16}$
d. $\frac{24}{25} \quad$ e. $\frac{5 \sqrt{26}}{26}$
37. a. 1
b. $-\frac{3}{5}$
c. undefined d. $-\frac{3}{5}$
e. $\frac{\sqrt{10+3 \sqrt{10}}}{2 \sqrt{5}}$
38. a. 1
b. $\frac{4 \sqrt{2}}{9}$
c. undefined
d. $\frac{4 \sqrt{2}}{9}$
e. $-\frac{\sqrt{3}}{3}$
39. $\frac{\sqrt{3}}{2}$
40. $-\frac{\sqrt{3}}{3}$
41. $\frac{\sqrt{2-\sqrt{2}}}{2}$
42. $2-\sqrt{3}$
43. $\frac{1}{2}[\cos 2 x-\cos 10 x]$
44. $\frac{1}{2}[\sin 10 x+\sin 4 x]$
45. $-2 \sin x \cos 3 x$
46. $\frac{\sqrt{6}}{2}$
47. Proofs may vary.
48. Proofs may vary.
49. a. $y=\cot x$
b. Proofs may vary.
50. $x=\frac{2 \pi}{3}+2 n \pi$ or $x=\frac{4 \pi}{3}+2 n \pi$, where n is any integer. \quad 51. $x=\frac{\pi}{4}+2 n \pi$ or $x=\frac{3 \pi}{4}+2 n \pi$, where n is any integer.
52. $x=\frac{7 \pi}{6}+2 n \pi$ or $x=\frac{11 \pi}{6}+2 n \pi$, where n is any integer.
53. $x=\frac{\pi}{6}+n \pi$, where n is any integer.
54. $\frac{\pi}{2}, \frac{3 \pi}{2}$
55. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{9 \pi}{6}$
56. $\frac{3 \pi}{2}$
57. $0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
58. π
59. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
60. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
61. $0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
62. $0, \frac{\pi}{6}, \pi, \frac{11 \pi}{6}$
63. $0, \pi$
64. $3.7890,5.6358$
65. $0.6847,2.4569,3.8263,5.5985$
66. $\frac{\pi}{4}, 1.2490, \frac{5 \pi}{4}, 4.3906$
67. $0.8959,2.2457$
68. $t=\frac{2}{3}+4 n$ or $t=\frac{10}{3}+4 n$, where n is any integer.
69. 12° or 78°

Chapter 5 Test

1. $-\frac{63}{65}$
2. $\frac{56}{33}$
3. $-\frac{24}{25}$
4. $\frac{3 \sqrt{13}}{13}$
5. $\frac{\sqrt{6}+\sqrt{2}}{4}$
6. $\cos x \csc x=\cos x \cdot \frac{1}{\sin x}=\frac{\cos x}{\sin x}=\cot x$
7. $\frac{\sec x}{\cot x+\tan x}=\frac{\frac{1}{\cos x}}{\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}}=\frac{\frac{1}{\cos x}}{\frac{\cos ^{2} x+\sin ^{2} x}{\sin x \cos x}}=\frac{1}{\cos x} \cdot \frac{\sin x \cos x}{1}=\sin x$
8. $1-\frac{\cos ^{2} x}{1+\sin x}=1-\frac{\left(1-\sin ^{2} x\right)}{1+\sin x}=1-\frac{(1+\sin x)(1-\sin x)}{1+\sin x}=1-(1-\sin x)=\sin x$
9. $\cos \left(\theta+\frac{\pi}{2}\right)=\cos \theta \cos \frac{\pi}{2}-\sin \theta \sin \frac{\pi}{2}=\cos \theta \cdot 0-\sin \theta \cdot 1=-\sin \theta$
10. $\frac{\sin (\alpha-\beta)}{\sin \alpha \cos \beta}=\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \alpha \cos \beta}=\frac{\sin \alpha \cos \beta}{\sin \alpha \cos \beta}-\frac{\cos \alpha \sin \beta}{\sin \alpha \cos \beta}=1-\cot \alpha \tan \beta$
11. $\sin t \cos t(\tan t+\cot t)=\sin t \cos t\left(\frac{\sin t}{\cos t}+\frac{\cos t}{\sin t}\right)=\sin ^{2} t+\cos ^{2} t=1 \quad$ 12. $\frac{7 \pi}{18}, \frac{11 \pi}{18}, \frac{19 \pi}{18}, \frac{23 \pi}{18}, \frac{31 \pi}{18}$, and $\frac{35 \pi}{18}$
12. $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$
13. $0, \frac{\pi}{3}, \frac{5 \pi}{3}$
14. $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
15. $2.5136,3.7696$
16. $1.2310, \frac{\pi}{2}, \frac{3 \pi}{2}, 5.0522$
17. $1.2971,2.6299,4.4387,5.7715$

Cumulative Review Exercises (Chapters P-5)

$\begin{array}{ll}\text { 1. }-3,1+2 i \text {, and } 1-2 i & \text { 2. } x=\frac{\log 125}{\log 11}+1 \text { or } x \approx 3.01\end{array}$
3. $(-\infty,-4] \cup[2, \infty)$
4. $\frac{\pi}{3}, \frac{5 \pi}{3}$
5. $\frac{\pi}{4}, 2.0345, \frac{5 \pi}{4}, 5.1761$
6.

7.

8.

9.

10.

11.

$f(x)=(x-1)^{2}(x-3)$
12. $2 a+h+3$
13. $-\frac{\sqrt{2}}{2}$
14. Proofs may vary.
15. $\frac{16 \pi}{9}$ radians
16. $t \approx 19.1 \mathrm{yr}$
17. $f^{-1}(x)=\frac{3 x+1}{x-2}$
18. $B=67^{\circ}, b=28.27, c=30.71$
19. 106 mg
20. $h \approx 15.9 \mathrm{ft}$

CHAPTER 6

Section 6.1

Check Point Exercises

1. $B=34^{\circ}, a \approx 12.7 \mathrm{~cm}, b \approx 7.9 \mathrm{~cm}$ 2. $B=117.5^{\circ}, a \approx 8.7, c \approx 5.2$
2. $B \approx 41^{\circ}, C \approx 82^{\circ}, c \approx 39.0$
3. no triangle
4. two triangles; $B_{1} \approx 50^{\circ}, C_{1} \approx 95^{\circ}, c_{1} \approx 20.8 ; B_{2} \approx 130^{\circ}, C_{2} \approx 15^{\circ}, c_{2} \approx 5.4$
5. approximately 34 sq m
6. approximately 11 mi

Concept and Vocabulary Check

1. oblique; sides; angles

$$
\text { 2. } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

3. side; angles
4. false
5. $\frac{1}{2} a b \sin C$

Exercise Set 6.1

$\begin{array}{lll}\text { 1. } B=42^{\circ}, a \approx 8.1, b \approx 8.1 & \text { 3. } A=44^{\circ}, b \approx 18.6, c \approx 22.8 & \text { 5. } C=95^{\circ}, b \approx 81.0, c \approx 134.1 \quad \text { 7. } B=40^{\circ}, b \approx 20.9, c \approx 31.8\end{array}$
9. $C=111^{\circ}, b \approx 7.3, c \approx 16.1 \quad$ 11. $A=80^{\circ}, a \approx 39.5, c \approx 10.4 \quad$ 13. $B=30^{\circ}, a \approx 316.0, b \approx 174.3 \quad$ 15. $C=50^{\circ}, a \approx 7.1, b \approx 7.1$
17. one triangle; $B \approx 29^{\circ}, c \approx 111^{\circ}, c \approx 29.0 \quad$ 19. one triangle; $C \approx 52^{\circ}, B \approx 65^{\circ}, b \approx 10.2 \quad$ 21. one triangle; $C \approx 55^{\circ}, B \approx 13^{\circ}, b \approx 10.2$
23. no triangle \quad 25. two triangles; $B_{1} \approx 77^{\circ}, C_{1} \approx 43^{\circ}, c_{1} \approx 12.6 ; B_{2} \approx 103^{\circ}, C_{2} \approx 17^{\circ}, c_{2} \approx 5.4$
27. two triangles; $B_{1} \approx 54^{\circ}, C_{1} \approx 89^{\circ}, c_{1} \approx 19.9 ; B_{2} \approx 126^{\circ}, C_{2} \approx 17^{\circ}, c_{2} \approx 5.8$
29. two triangles; $C_{1} \approx 68^{\circ}, B_{1} \approx 54^{\circ}, b_{1} \approx 21.0 ; C_{2} \approx 112^{\circ}, B_{2} \approx 10^{\circ}, b_{2} \approx 4.5$
31. no triangle
33. 297 sq ft
35. 5 sq yd
37. 10 sq m
39. $\overline{B C} \approx 523.1 ; h \approx 481.5 \quad$ 41. $A \approx 82^{\circ}, B \approx 41^{\circ}, C \approx 57^{\circ}, c \approx 255.7$
43. Station A is about 5.7 miles from the fire, station B is about 9.2 miles from the fire. 45. The platform is about 3671.8 yards from one end of the beach and 3576.4 yards from the other. $\quad 47$. about $184.3 \mathrm{ft} \quad$ 49. about $56.0 \mathrm{ft} \quad$ 51. about $30.0 \mathrm{ft} \quad$ 53. a. $a \approx 493.8 \mathrm{ft} \quad$ b. about 343.0 ft
55. either 9.9 mi or 2.4 mi 67. does not make sense
69. does not make sense
71. no
73. 41 ft
75. 127°
76. $\sqrt{7280}=4 \sqrt{455} \approx 85$

Section 6.2

Check Point Exercises

1. $a=13, B \approx 28^{\circ}, C \approx 32^{\circ}$
2. $A \approx 52^{\circ}, B \approx 98^{\circ}, C \approx 30^{\circ}$
3. approximately 917 mi apart
4. approximately 47 sq m

Concept and Vocabulary Check

1. $b^{2}+c^{2}-2 b c \cos A$
2. side; Cosines; Sines; acute; 180°
3. Cosines; Sines
4. $\sqrt{s(s-a)(s-b)(s-c)} ; \frac{1}{2}(a+b+c)$

Exercise Set 6.2

1. $a \approx 6.0, B \approx 29^{\circ}, C \approx 105^{\circ}$
2. $c \approx 7.6, A \approx 52^{\circ}, B \approx 32^{\circ}$
3. $A \approx 44^{\circ}, B \approx 68^{\circ}, C \approx 68^{\circ}$
4. $A \approx 117^{\circ}, B \approx 36^{\circ}, C \approx 27^{\circ}$
5. $c \approx 4.7, A \approx 45^{\circ}, B \approx 93^{\circ}$
6. $a \approx 6.3, C \approx 28^{\circ}, B \approx 50^{\circ}$
7. $b \approx 4.7, C \approx 55^{\circ}, A \approx 75^{\circ}$
8. $b \approx 5.4, C \approx 22^{\circ}, A \approx 68^{\circ}$
9. $C \approx 112^{\circ}, A \approx 28^{\circ}, B \approx 40^{\circ} \quad$ 19. $B \approx 100^{\circ}, A \approx 19^{\circ}, C \approx 61^{\circ} \quad$ 21. $A=60^{\circ}, B=60^{\circ}, C=60^{\circ} \quad$ 23. $A \approx 117^{\circ}, B \approx 18^{\circ}, C=45^{\circ}$
10. $4 \mathrm{sqft} \quad$ 27. $22 \mathrm{sqm} \quad$ 29. $31 \mathrm{sqyd} \quad$ 31. $A \approx 31^{\circ}, B \approx 19^{\circ}, C=130^{\circ}, c \approx 19.1$
11. $A \approx 51^{\circ}, B \approx 61^{\circ}, C \approx 68^{\circ}, A B=9, A C=8.5, B C=7.5 \quad$ 35. $A \approx 145^{\circ}, B \approx 13^{\circ}, C \approx 22^{\circ}, a=\sqrt{61} \approx 7.8, b=\sqrt{10} \approx 3.2, c=5$
$\begin{array}{llllll}\text { 37. } 157^{\circ} & \text { 39. about } 61.7 \mathrm{mi} \text { apart } & \text { 41. about } 193 \mathrm{yd} & \text { 43. } \mathrm{N} 12^{\circ} \mathrm{E} & \text { 45. a. about } 19.3 \mathrm{mi} & \text { b. } \mathrm{S} 58^{\circ} \mathrm{E}\end{array}$
12. The guy wire anchored downhill is about 417.4 feet. The one anchored uphill is about 398.2 feet. _49. about $63.7 \mathrm{ft} \quad 51$. $\$ 123,454$
13. does not make sense
14. makes sense
15. about 8.9 in. and 23.9 in.
16. $\sqrt{m^{2}+h^{2}-m h}$
17.

70.

71. $(x+3)^{2}+y^{2}=9$; center: $(-3,0)$; radius: 3 ;

Section 6.3

Check Point Exercises

1. a.

b.

c.

2. a. $\left(5, \frac{9 \pi}{4}\right)$
b. $\left(-5, \frac{5 \pi}{4}\right)$
c. $\left(5,-\frac{7 \pi}{4}\right)$
3. a. $(-3,0)$
b. $(-5 \sqrt{3},-5)$
4. $\left(2, \frac{5 \pi}{3}\right)$
5. $\left(4, \frac{3 \pi}{2}\right)$
6. a. $r=\frac{6}{3 \cos \theta-\sin \theta}$
b. $r=-2 \sin \theta$
7. a. $x^{2}+y^{2}=16$
b. $y=-x$
c. $x=-2$
d. $x^{2}+(y-5)^{2}=25$

Concept and Vocabulary Check

1. pole; polar axis
2. pole; polar axis
3. II
4. IV
5. IV
6. III
7. IV
8. II
$\begin{array}{lll}\text { 9. } r & \text { 10. }-r & \text { 11. } r \cos \theta ; r \sin \theta\end{array}$
9. squaring; $x^{2}+y^{2}$
10. tangent $; \frac{y}{x}$
11. multiplying; $r ; x^{2}+y^{2} ; y$

Exercise Set 6.3

1. C
2. A
3. B
4. C
5. A
6.

13.

15.

17.
19.

21.

a. $\left(5, \frac{13 \pi}{6}\right)$
b. $\left(-5, \frac{7 \pi}{6}\right)$
c. $\left(5,-\frac{11 \pi}{6}\right)$
23.

25.

$\frac{3 \pi}{2}$
a. $\left(10, \frac{11 \pi}{4}\right)$
b. $\left(-10, \frac{7 \pi}{4}\right)$
c. $\left(10,-\frac{5 \pi}{4}\right)$
$\begin{array}{ll}\text { a. }\left(4, \frac{5 \pi}{2}\right) & \text { b. }\left(-4, \frac{3 \pi}{2}\right) \\ \text { c. }\left(4,-\frac{3 \pi}{2}\right) & \end{array}$
27. a, b, d
29. b, d
31. a, b
33. $(0,4)$
35. $(1, \sqrt{3}) \quad$ 37. $(0,-4)$
39. approximately $(-5.9,4.4)$
41. $\left(2 \sqrt{2}, \frac{3 \pi}{4}\right)$
43. $\left(4, \frac{5 \pi}{3}\right) \quad$ 45. $\left(2, \frac{7 \pi}{6}\right)$
47. $(5,0) \quad$ 49. $r=\frac{7}{3 \cos \theta+\sin \theta}$
51. $r=\frac{7}{\cos \theta}$
53. $r=3$
55. $r=4 \cos \theta$
57. $r=\frac{6 \cos \theta}{\sin ^{2} \theta}$
59. $x^{2}+y^{2}=64$
61. $x=0$

67. $x^{2}+y^{2}=y$

69. $(x-6)^{2}+y^{2}=36$

63. $y=3$

65. $y=4$

73. $y=\frac{1}{x}$
71. $x^{2}+y^{2}=6 x+4 y$

75. $r=a \sec \theta ; r \cos \theta=a ; x=a ; x=a$ is a vertical line a units to the right of the y-axis when $a>0$ and $|a|$ to the left of the y-axis when $a<0$.
77. $r=a \sin \theta ; r^{2}=a r \sin \theta ; x^{2}+y^{2}=a y ; x^{2}+y^{2}-a y=0 ; x^{2}+\left(y-\frac{a}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2} \quad$ 79. $y=x+2 \sqrt{2}$; slope: $1 ; y$-intercept: $2 \sqrt{2}$
81. $(-1, \sqrt{3}),(2 \sqrt{3}, 2) ; 2 \sqrt{5}$
83. $\left(15, \frac{4 \pi}{3}\right)$
85. 6.3 knots at an angle of 50° to the wind
87. Answers may vary.
97. (-2, 3.464)
99. $(-1.857,-3.543)$
101. $(3,0.730)$
103. does not make sense
105. makes sense
109. $0 ; 0.13 ; 0.5 ; 1 ; 1.5 ; 1.87 ; 2$

110. $1 ; 2 ; 2.73 ; 3 ; 2.73 ; 2 ; 1 ; 0 ;-0.73 ;-1$

111. $0 ; 3.46 ; 4 ; 3 ; 3.46 ; 0 ;-3.46 ;-4 ;-3.46 ; 0$

Section 6.4

Check Point Exercises

1.

4.

2

5.

Concept and Vocabulary Check

1. $\theta ; r$
2. circles
3. $\theta ;-\theta$
4. $(r, \theta) ;(-r,-\theta)$
5. $r ;-r$
6. true
7. limaçon; cardioid; loop
8. $2 n ; n \quad$ 9. lemniscates; pole; polar axis; pole; $\theta=\frac{\pi}{2}$

Exercise Set 6.4

1. $r=1-\sin \theta$
2. $r=2 \cos \theta$
3. $r=3 \sin 3 \theta$
4. a. May or may not have symmetry with respect to polar axis.
b. Has symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. May or may not have symmetry about the pole.
5. a. Has symmetry with respect to polar axis.
b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. May or may not have symmetry about pole
6. a. Has symmetry with respect to polar axis.
b. Has symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. Has symmetry about the pole.
7.
8.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.
45. 6 knots
47. 8 knots
49. 90°; about $7 \frac{1}{2}$ knots

59.

61.

63.

65.

67.

69.

71.

73.

75.

77. 2π
79.

81.

83. If n is odd, there are n loops and $\theta \max =\pi$ traces the graph once; while if n is even, there are $2 n$ loops and $\theta \max =2 \pi$ traces the graph once. In each separate case, as n increases, $\sin n \theta$ increases its number of loops. 85. There are n small petals and n large petals for each value of n. For odd values of n, the small petals are inside the large petals. For even n, they are between the large petals.
87.

89. does not make sense
91. makes sense
93.

96. 4 i
97. 8
98. 2

The graph of r_{2} is the
graph of r_{1} rotated $\frac{\pi}{4}$ or 45°.
Mid-Chapter 6 Check Point

1. $C=107^{\circ}, b \approx 24.8, c \approx 36.1$
\qquad 2. $B \approx 37^{\circ}, C \approx 101^{\circ}, c \approx 92.4$
2. no triangle 4. $A \approx 26^{\circ}, C \approx 44^{\circ}, b \approx 21.6$
3. Two triangles:
4. 147.9 miles
5. 15.0 miles
6. 327.0 ft
7. $\left(\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$
8. $(0,-6)$
9. $\left(4, \frac{5 \pi}{3}\right)$
10. $(6, \pi)$
11.

a. $\left(4, \frac{11 \pi}{4}\right)$
b. $\left(-4, \frac{7 \pi}{4}\right)$
c. $\left(4,-\frac{5 \pi}{4}\right)$
17.

a. $\left(\frac{5}{2}, \frac{5 \pi}{2}\right)$
b. $\left(-\frac{5}{2}, \frac{3 \pi}{2}\right)$
c. $\left(\frac{5}{2},-\frac{3 \pi}{2}\right)$
18. $r=\frac{7}{5 \cos \theta-\sin \theta}$
19. $r=-7 \csc \theta$
21. $x^{2}+y^{2}=36$

24. $(x+5)^{2}+y^{2}=25$

20. $r=-2 \cos \theta$
22. $y=\sqrt{3} x$

23. $y=-3$

25. $y=\frac{1}{4} x^{2}$

26. a. Has symmetry with respect to the polar axis.
b. May or may not have symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. May or may not
have symmetry with respect to the pole.
27. a. Has symmetry with respect to the polar axis.
b. Has symmetry with respect to the line $\theta=\frac{\pi}{2}$.
c. Has symmetry with respect to the pole.
28.

29.

30.

31.

32.

Section 6.5

Check Point Exercises

b.

C.

d.

4. $z=2 \sqrt{3}+2 i$
5. $30\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
6. $10(\cos \pi+i \sin \pi)$
7. $-16 \sqrt{3}+16 i$
8. -4
9. $2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right) ; 2\left(\cos 105^{\circ}+i \sin 105^{\circ}\right) ; 2\left(\cos 195^{\circ}+i \sin 195^{\circ}\right) ; 2\left(\cos 285^{\circ}+i \sin 285^{\circ}\right)$
10. $3 ;-\frac{3}{2}+\frac{3 \sqrt{3}}{2} i ;-\frac{3}{2}-\frac{3 \sqrt{3}}{2} i$

Concept and Vocabulary Check

1. real; imaginary
2. absolute value
3. modulus; argument
4. $\sqrt{a^{2}+b^{2}} ; \frac{b}{a}$
5. $r_{1} r_{2} ; \theta_{1}+\theta_{2} ; \theta_{1}+\theta_{2}$; multiplying; adding
6. $\frac{r_{1}}{r_{2}} ; \theta_{1}-\theta_{2} ; \theta_{1}-\theta_{2}$; dividing; subtracting
7. $r^{n} ; n \theta ; n \theta$
8. n

Exercise Set 6.5

5.

; $\sqrt{13}$
11. Imaginary

$2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
or $2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
13.

$\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$ or $\sqrt{2}\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$
17. Imaginary

$4\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)$ or $4\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$
21.

$\approx 3 \sqrt{5}\left(\cos 230.8^{\circ}+i \sin 230.8^{\circ}\right)$
23.

$\approx 5\left(\cos 126.9^{\circ}+i \sin 126.9^{\circ}\right)$
25.

$\approx \sqrt{7}\left(\cos 319.1^{\circ}+i \sin 319.1^{\circ}\right)$
$\begin{array}{lll}\text { 27. } 3 \sqrt{3}+3 i & \text { 29. }-2-2 i \sqrt{ } 3 & \text { 31. } 4 \sqrt{2}-4 i \sqrt{2}\end{array}$
39. $12\left(\cos \frac{3 \pi}{10}+i \sin \frac{3 \pi}{10}\right)$ 41. $\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}$ 33. $5 i \quad$ 35. $z \approx-18.1-8.5 i$ 37. $30\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)$
49. $\cos 240^{\circ}+i \sin 240^{\circ}$ 51. $2\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)$
43. $2(\cos \pi+i \sin \pi)$
45. $5\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$
47. $\frac{3}{4}\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$
53. $32 \sqrt{2}+32 i \sqrt{2}$
55. $-4-4 i \sqrt{3}$
57. $\frac{1}{64} i$
59. $-2-2 i \sqrt{3} \quad$ 61. $-4-4 i$
63. $-64 \quad$ 65. $3\left(\cos 15^{\circ}+i \sin 15^{\circ}\right) ; 3\left(\cos 195^{\circ}+i \sin 195^{\circ}\right)$
67. $2\left(\cos 70^{\circ}+i \sin 70^{\circ}\right) ; 2\left(\cos 190^{\circ}+i \sin 190^{\circ}\right) ; 2\left(\cos 310^{\circ}+i \sin 310^{\circ}\right)$
69. $\frac{3}{2}+\frac{3 \sqrt{3}}{2} i ;-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i ;-\frac{3}{2}-\frac{3 \sqrt{3}}{2} i ; \frac{3 \sqrt{3}}{2}-\frac{3}{2} i$
71. $2 ; \approx 0.6+1.9 i ; \approx-1.6+1.2 i ; \approx-1.6-1.2 i ; \approx 0.6-1.9 i$
73. $1 ;-\frac{1}{2}+\frac{\sqrt{3}}{2} i ;-\frac{1}{2}-\frac{\sqrt{3}}{2} i \quad$ 75. $\approx 1.1+0.2 i ; \approx-0.2+1.1 i ; \approx-1.1-0.2 i ; \approx 0.2-1.1 i$
77. $\left[1\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right]\left[2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right]\left[2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)\right] ; 4 \sqrt{2}\left(\cos 285^{\circ}+i \sin 285^{\circ}\right) ; \approx 1.4641-5.4641 i$
79. $\frac{\left[2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]\left[\sqrt{2}\left(\cos \left(315^{\circ}\right)+i \sin \left(315^{\circ}\right)\right)\right]}{4\left(\cos \left(330^{\circ}\right)+i \sin \left(330^{\circ}\right)\right)} ; \frac{\sqrt{2}}{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) ; \frac{1}{2}+\frac{1}{2} i$
81. $\cos 0^{\circ}+i \sin 0^{\circ}, \cos 60^{\circ}+i \sin 60^{\circ}, \cos 120^{\circ}+i \sin 120^{\circ}, \cos 180^{\circ}+i \sin 180^{\circ}, \cos 240^{\circ}+i \sin 240^{\circ}, \cos 300^{\circ}+i \sin 300^{\circ}$;
$1, \frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-1,-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \frac{1}{2}-\frac{\sqrt{3}}{2} i$
83. $2\left(\cos 67.5^{\circ}+i \sin 67.5^{\circ}\right), 2\left(\cos 157.5^{\circ}+i \sin 157.5^{\circ}\right), 2\left(\cos 247.5^{\circ}+i \sin 247.5^{\circ}\right), 2\left(\cos 337.5^{\circ}+i \sin 337.5^{\circ}\right)$;
$0.7654+1.8478 i,-1.8478+0.7654 i,-0.7654-1.8478 i, 1.8478-0.7654 i$
85. $\sqrt[3]{2}\left(\cos 20^{\circ}+i \sin 20^{\circ}\right), \sqrt[3]{2}\left(\cos 140^{\circ}+i \sin 140^{\circ}\right), \sqrt[3]{2}\left(\cos 260^{\circ}+i \sin 260^{\circ}\right) ; 1.1839+0.4309 i,-0.9652+0.8099 i,-0.2188-1.2408 i$

89.

91. a. $i ;-1+i ;-i ;-1+i ;-i ;-1+i$ 107. does not make sens 111.

b. Complex numbers may vary.
109. does not make sense
113. Yes, both have length $3 \sqrt{5}$.
114. Yes, both have slope 2 .
115. $8 x+34 y$

Section 6.6

Check Point Exercises

1. $\|\mathbf{u}\|=5=\|\mathbf{v}\|$ and $m_{u}=\frac{4}{3}=m_{v}$
2.

$;\|\mathbf{v}\|=3 \sqrt{2}$
3. $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$
4. a. $11 \mathbf{i}-2 \mathbf{j}$
b. $3 \mathbf{i}+8 \mathbf{j}$
5. a. $56 \mathbf{i}+80 \mathbf{j}$
b. $-35 \mathbf{i}-50 \mathbf{j}$
6. $30 \mathbf{i}+33 \mathbf{j}$
7. $\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j} ; \sqrt{\left(\frac{4}{5}\right)^{2}+\left(-\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}+\frac{9}{25}}=\sqrt{\frac{25}{25}}=1$
8. $30 \sqrt{2} \mathbf{i}+30 \sqrt{2} \mathbf{j}$
9. $82.54 \mathrm{lb} ; 46.2^{\circ}$

Concept and Vocabulary Check

1. vector
2. scalar
3. $\mathbf{v} ; \mathbf{b}$
4. a
5. w
6. unit; $x ; y$
7. $a ; b ; \sqrt{a^{2}+b^{2}}$
8. position
9. $x_{2}-x_{1} ; y_{2}-y_{1}$
10. $a_{1}+a_{2} ; b_{1}+b_{2} ; a_{1}-a_{2} ; b_{1}-b_{2} ; k a_{1} ; k b_{1}$
11. $\frac{\mathbf{v}}{\|\mathbf{v}\|}$; magnitude
12. $\cos \theta ; \sin \theta$
13. resultant

Exercise Set 6.6

1. a. $\sqrt{41}$
b. $\sqrt{41}$
c. $\mathbf{u}=\mathbf{v}$
2. a. 6
b. 6
c. $\mathbf{u}=\mathbf{v}$

$\sqrt{10}$

$\sqrt{2}$
3.

$2 \sqrt{10}$
11.

4
13. $10 \mathbf{i}+6 \mathbf{j}$
15. $6 \mathbf{i}-3 \mathbf{j}$
17. $-6 \mathbf{i}-14 \mathbf{j}$
19. 9 i
21. $-\mathbf{i}+2 \mathbf{j}$
23. $5 \mathbf{i}-12 \mathbf{j}$
27. $-15 \mathbf{i}+35 \mathbf{j}$
29. $4 \mathbf{i}+24 \mathbf{j}$
31. $-9 \mathbf{i}-4 \mathbf{j}$
33. $-5 \mathbf{i}+45 \mathbf{j}$
35. $2 \sqrt{ } \overline{29}$
37. $\sqrt{10}$
39. i
41. $\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}$
43. $\frac{3 \sqrt{13}}{13} \mathbf{i}-\frac{2 \sqrt{13}}{3} \mathbf{j}$
45. $\frac{\sqrt{2}}{2} \mathbf{i}+\frac{\sqrt{2}}{2} \mathbf{j}$
47. $3 \sqrt{3} \mathbf{i}+3 \mathbf{j} \quad$ 49. $-6 \sqrt{2} \mathbf{i}-6 \sqrt{2} \mathbf{j} \quad$ 51. $\approx-0.20 \mathbf{i}+0.46 \mathbf{j} \quad 53 .-23 \mathbf{i}+14 \mathbf{j} \quad 55 .-60 \quad$ 57. commutative property
59. distributive property
61. $18.03 ; 123.7^{\circ}$
63. $6 ; 90^{\circ} \quad 65.22 \sqrt{3} \mathbf{i}+22 \mathbf{j}$
67. $148.5 \mathbf{i}+20.9 \mathbf{j} \quad 69 . \approx 1.4 \mathbf{i}+0.6 \mathbf{j} ; 1.4 \mathrm{in}$.
71. $\approx 108.21 \mathrm{lbs} ; 374.4^{\circ}$
73. $2038 \mathrm{lb} ; 162.8^{\circ}$
75. $\approx 30.9 \mathrm{lbs}$
77. a. 335 lb
b. $3484 \mathrm{lb} \quad$ 79. $\mathbf{a} . \mathbf{F}=9 \mathbf{i}-3 \mathbf{j}$
b. $\mathbf{F}_{3}=-9 \mathbf{i}+3 \mathbf{j}$
81. a. $\mathbf{F}=-2 \mathbf{j} \quad$ b. $\mathbf{F}_{5}=2 \mathbf{j}$
83. \mathbf{a}. $\mathbf{v}=180 \cos 40^{\circ} \mathbf{i}+180 \sin 40^{\circ} \mathbf{j} \approx 137.89 \mathbf{i}+115.70 \mathbf{j}, \mathbf{w}=40 \cos 0^{\circ} \mathbf{i}+40 \sin 0^{\circ} \mathbf{j}=40 \mathbf{i} \quad$ b. $\mathbf{v}+\mathbf{w} \approx 177.89 \mathbf{i}+115.70 \mathbf{j}$
$\begin{array}{llll}\text { c. } 212 \mathrm{mph} & \text { d. } 33.0^{\circ} ; \mathrm{N} 57^{\circ} \mathrm{E} & 85.78 \mathrm{mph}, 75.4^{\circ} & \text { 105. does not make sense } \quad \text { 107. does not make sense } \quad \text { 109. true }\end{array}$
113. The plane's true speed relative to the ground is about 269 miles per hour.; The compass heading relative to the ground is 278.3°.
115. a. 104°
b. decrease
116. 137.7°
117. $\frac{7}{5} \mathbf{i}-\frac{21}{5} \mathbf{j}$
118. a. $\|\mathbf{u}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$
b. $\|\mathbf{u}\|=\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}} ;\|\mathbf{u}\|^{2}=\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2} ;\|\mathbf{v}\|=\sqrt{a_{1}^{2}+b_{1}^{2}} ;$
$\|\mathbf{v}\|^{2}=a_{1}^{2}+b_{1}^{2} ;\|\mathbf{w}\|=\sqrt{a_{2}^{2}+b_{2}^{2}} ;\|\mathbf{w}\|^{2}=a_{2}^{2}+b_{2}^{2}$

Section 6.7

Check Point Exercises

1. a. 18
b. 18
c. 5
2. 100.3°
3. orthogonal
4. $\frac{7}{2} \mathbf{i}-\frac{7}{2} \mathbf{j}$
5. $\mathbf{v}_{1}=\frac{7}{2} \mathbf{i}-\frac{7}{2} \mathbf{j} ; \mathbf{v}_{2}=-\frac{3}{2} \mathbf{i}-\frac{3}{2} \mathbf{j}$
6. approximately $2598 \mathrm{ft}-\mathrm{lb}$

Concept and Vocabulary Check

1. dot product; $a_{1} a_{2}+b_{1} b_{2}$
2. $\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$
3. orthogonal
4. true
5. false

Exercise Set 6.7

1. $6 ; 10$
2. $-6 ; 41$
3. $100 ; 61$
4. $0 ; 25$
5. 3
6. 3
7. 20
8. 20
9. 79.7°
10. 160.3°
11. 38.7°
12. orthogonal
13. orthogonal 27. not orthogonal 29. not orthogonal 31. orthogonal \quad 33. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{5}{2} \mathbf{i}-\frac{5}{2} \mathbf{j} ; \mathbf{v}_{2}=\frac{1}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}$
14. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\frac{26}{29} \mathbf{i}+\frac{65}{29} \mathbf{j} ; \mathbf{v}_{2}=\frac{55}{29} \mathbf{i}+\frac{22}{29} \mathbf{j}$
15. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\mathbf{i}+2 \mathbf{j} ; \mathbf{v}_{2}=0$
16. 25
17. $5 \mathbf{i}-5 \mathbf{j}$
18. 30°
19. parallel
20. neither 49. orthogonal $\quad \mathbf{5 1} .1617 ; \mathbf{v} \cdot \mathbf{w}=1617$ means that $\$ 1617$ in revenue is generated when 240 gallons of regular gasoline are sold at $\$ 2.90$ per gallon and 300 gallons of premium gasoline are sold at $\$ 3.09$ per gallon. 53.7600 foot-pounds 55 . 3392 foot-pounds 57. 1079 foot-pounds \quad 59. 40 foot-pounds \quad 61. 22 foot-pounds
21. a. $\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j} \quad$ b. $-175 \sqrt{3} \mathbf{i}-175 \mathbf{j} \quad$ c. 350 ; A force of 350 pounds is required to keep the boat from rolling down the ramp.
22. makes sense
23. makes sense
24. $\mathbf{u} \cdot \mathbf{v}=\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)$

$$
=a_{1} a_{2}+b_{1} b_{2}
$$

$$
=a_{2} a_{1}+b_{2} b_{1}
$$

$$
=\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right) \cdot\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right)
$$

$$
=\mathbf{v} \cdot \mathbf{u}
$$

$$
\text { 81. } \begin{aligned}
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left[\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)+\left(a_{3} \mathbf{i}+b_{3} \mathbf{j}\right)\right] \\
& =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left[\left(a_{2}+a_{3}\right) \mathbf{i}+\left(b_{2}+b_{3}\right) \mathbf{j}\right] \\
& =a_{1}\left(a_{2}+a_{3}\right)+b_{1}\left(b_{2}+b_{3}\right) \\
& =a_{1} a_{2}+a_{1} a_{3}+b_{1} b_{2}+b_{1} b_{3} \\
& =a_{1} a_{2}+b_{1} b_{2}+a_{1} a_{3}+b_{1} b_{3} \\
& =\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{2} \mathbf{i}+b_{2} \mathbf{j}\right)+\left(a_{1} \mathbf{i}+b_{1} \mathbf{j}\right) \cdot\left(a_{3} \mathbf{i}+b_{3} \mathbf{j}\right) \\
& =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
\end{aligned}
$$

83. $b=-20$
84. any two vectors, \mathbf{v} and \mathbf{w}, having the same direction
85. $\{4\}$

Chapter 6 Review Exercises

1. $C=55^{\circ}, b \approx 10.5$, and $c \approx 10.5$
2. $C \approx 98^{\circ}, A \approx 55^{\circ}$, and $B \approx 27^{\circ}$
$B_{2} \approx 125^{\circ}, C_{2} \approx 16^{\circ}$, and $c_{2} \approx 8.8$
3. $B \approx 25^{\circ}, C \approx 115^{\circ}$, and $c \approx 8.5$
4. $B \approx 9^{\circ}, C \approx 148^{\circ}$, and $c \approx 73.6$
5. $A=43^{\circ}, a \approx 171.9$, and $b \approx 241.0 \quad$ 3. $b \approx 16.3, A \approx 72^{\circ}$, and $C \approx 42^{\circ}$
6. $C=120^{\circ}, a \approx 45.0$, and $b \approx 33.2 \quad$ 6. two triangles; $B_{1} \approx 55^{\circ}, C_{1} \approx 86^{\circ}$, and $c_{1} \approx 31.7$;
7. no triangle 8. $a \approx 59.0, B \approx 3^{\circ}$, and $C \approx 15^{\circ} \quad$ 9. $B \approx 78^{\circ}, A \approx 39^{\circ}$, and $C \approx 63^{\circ}$
8. two triangles; $A_{1} \approx 59^{\circ}, C_{1} \approx 84^{\circ}, c_{1} \approx 14.4 ; A_{2} \approx 121^{\circ}, C_{2} \approx 22^{\circ}, c_{2} \approx 5.4$
9. 8 sqft 14. 4 sq ft
10. 4 sq m
11. 2 sq m
12. 30.5 ft
13. 35.6 mi
14.

$(2,2 \sqrt{3})$
27.

$(-\sqrt{2}, \sqrt{2})$
28.

a. $\left(3, \frac{13 \pi}{6}\right)$
b. $\left(-3, \frac{7 \pi}{6}\right)$
c. $\left(3,-\frac{11 \pi}{6}\right)$
31. $\left(4 \sqrt{2}, \frac{3 \pi}{4}\right) \quad$ 32. $\left(3 \sqrt{2}, \frac{7 \pi}{4}\right)$
37. $r=\frac{8}{2 \cos \theta+3 \sin \theta}$
38. $r=10$
40. $x^{2}+y^{2}=9$

43. $y=5$

46. $y=-\frac{1}{x}$

$$
\frac{\left(\sqrt{2}, \frac{3 \pi}{4}\right)}{\frac{\pi}{2}}
$$

33. approximately $\left(13,67^{\circ}\right)$
34. approximately $\left(5,127^{\circ}\right)$
35.

30.

a. $\left(2, \frac{8 \pi}{3}\right)$
b. $\left(-2, \frac{5 \pi}{3}\right)$
c. $\left(2,-\frac{4 \pi}{3}\right)$
39. $r=12 \cos \theta$
41. $y=-x$
44. $\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$

47. a. has symmetry b. may or may not have symmetry
48. a. may or may not have symmetry

b. has symmetry
49. a. has symmetry
b. has symmetry
a. $\left(3.5, \frac{5 \pi}{2}\right) \quad$ b. $\left(-3.5, \frac{3 \pi}{2}\right)$
c. $\left(3.5,-\frac{3 \pi}{2}\right)$
35. $\left(5, \frac{3 \pi}{2}\right)$
36. $(1,0)$
42. $x=-1$

45. $y=-4 x+8$

c. may or may not have symmetry
c. may or may not have symmetry
50.

53.

56.

51.

54.

57.

$\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$ or
$\sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
52.

55.

58.

$4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ or
$4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
59.

$z=-3-4 i \approx 5\left(\cos 233^{\circ}+i \sin 233^{\circ}\right)$
60.

$5\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$ or
$5\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
69. $\frac{1}{2}(\cos \pi+i \sin \pi)$
70. $2\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)$
71. $4+4 i \sqrt{3} \quad$ 72. $-32 \sqrt{3}+32 i$
73. $\frac{1}{128} i$
74. $-2-2 i \sqrt{3}$
75. $128+128 i$
76. $7\left(\cos 25^{\circ}+i \sin 25^{\circ}\right) ; 7\left(\cos 205^{\circ}+i \sin 205^{\circ}\right) \quad$ 77. $5\left(\cos 55^{\circ}+i \sin 55^{\circ}\right) ; 5\left(\cos 175^{\circ}+i \sin 175^{\circ}\right) ; 5\left(\cos 295^{\circ}+i \sin 295^{\circ}\right)$
78. $\sqrt{3}+i ;-1+i \sqrt{3} ;-\sqrt{3}-i ; 1-i \sqrt{3} \quad$ 79. $\sqrt{3}+i ;-\sqrt{3}+i ;-2 i \quad$ 80. $\frac{1}{2}+\frac{\sqrt{3}}{2} i ;-1 ; \frac{1}{2}-\frac{\sqrt{3}}{2} i$
81. $\frac{\sqrt[10]{2}}{2}+\frac{\sqrt[10]{2}}{2} i ; \approx-0.49+0.95 i ; \approx-1.06-0.17 i ; \approx-0.17-1.06 i ; \approx 0.95-0.49 i$
82.

83.

84.

85. $3 \mathbf{i}-2 \mathbf{j}$
86. $\mathbf{i}-2 \mathbf{j}$
87. $-\mathbf{i}+2 \mathbf{j}$
88. $-3 \mathbf{i}+12 \mathbf{j}$
89. $12 \mathbf{i}-51 \mathbf{j}$
90. $2 \sqrt{26}$
91. $\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}$
92. $-\frac{\sqrt{5}}{5} \mathbf{i}+\frac{2 \sqrt{5}}{5} \mathbf{j}$
93. $6 \mathbf{i}+6 \sqrt{3} \mathbf{j}$
94. $270 \mathrm{lb} ; 27.7^{\circ}$
95. a. $13.59 \mathbf{i}+6.34 \mathbf{j}$
b. 14 mph
c. 13.9°
96. 4
97. $2 ; 86.1^{\circ}$
98. $-32 ; 124.8^{\circ}$
99. $1 ; 71.6^{\circ}$ 100. orthogonal 01. not orthogonal 2. $\mathbf{v}_{1}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{50}{41} \mathbf{i}+\frac{40}{41} \mathbf{j} ; \mathbf{v}_{2}=-\frac{132}{41} \mathbf{i}+\frac{165}{41} \mathbf{j}$
103. $\mathbf{v}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=-\frac{3}{2} \mathbf{i}+\frac{1}{2} \mathbf{j} ; \mathbf{v}_{2}=\frac{1}{2} \mathbf{i}+\frac{3}{2} \mathbf{j} \quad$ 104. $1115 \mathrm{ft}-\mathrm{lb}$

Chapter 6 Test

1. 8.0
2. 6.2
3. 206 sq in .
4.

5. $\begin{array}{ll}\left.\sqrt{2}, \frac{7 \pi}{4}\right) & \text { 7. } x=-4\end{array}$
6. $r=-16 \sin \theta$

8.

9.

20. 1.0 mi
21. 323 pounds; 3.4°
22. $1966 \mathrm{ft}-\mathrm{lb}$
10. $2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ or $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
11. $50\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$
12. $\frac{1}{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
13. $32\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$
14. $3 ;-\frac{3}{2}+i \frac{3 \sqrt{3}}{2} ;-\frac{3}{2}-i \frac{3 \sqrt{3}}{2}$
15. $\mathbf{a} . \mathbf{i}+2 \mathbf{j} \quad$ b. $\sqrt{5}$
16. $-23 \mathbf{i}+22 \mathbf{j}$
17. -18
18. 138°
19. $-\frac{9}{5} \mathbf{i}+\frac{18}{5} \mathbf{j}$

Cumulative Review Exercises (Chapters P-6)

1. $\{-1,2, i,-i\}$
2. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}$
3. $(-\infty,-4) \cup(2, \infty)$
4. $\frac{3 \pi}{4}, \frac{7 \pi}{4}$
5. $\left(\frac{3 \pi}{4}, 3\right)$ y_{4}
$5 y=3 \sin (2 x-\pi)$
$\left(\frac{\pi}{2}, 0\right)$
6.

7. $\sin \theta \csc \theta-\cos ^{2} \theta=\sin \theta\left(\frac{1}{\sin \theta}\right)-\cos ^{2} \theta$

$$
=1-\cos ^{2} \theta=\sin ^{2} \theta
$$

8. $\begin{gathered}\cos \left(\theta+\frac{3 \pi}{2}\right)=\cos \theta \cos \frac{3 \pi}{2}-\sin \theta \sin \frac{3 \pi}{2} \\ =\cos \theta(0)-\sin \theta(-1)=\sin \theta\end{gathered}$
9. 0
10. $(-\infty, 5]$
11. $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
12. $1.5 \mathrm{sec} ; 44 \mathrm{ft}$
13. slope is $-\frac{1}{2} ; y$-intercept is 2 .
-11. $\frac{\sqrt{5}}{5}$
14. a. $5 \mathbf{i}+23 \mathbf{j}$
b. -12
15. $\log _{b} \frac{\sqrt{x}}{x^{2}+1}$
16. $y=-\frac{1}{2} x+1$
17. a. 0.014
b. 73 words
c. about 144 min

AA72 Answers to Selected Exercises

CHAPTER 7

Section 7.1

Check Point Exercises

1. a. solution
b. not a solution
2. $\{(-2,5)\}$
3. $\{(2,-1)\}$
4. $\left\{\left(\frac{60}{17},-\frac{11}{17}\right)\right\}$
5. no solution or \varnothing
6. $\{(x, y) \mid x=4 y-8\}$ or $\{(x, y) \mid 5 x-20 y=-40\}$
7. 4 liters of 18% solution; 8 liters of 45% solution \quad 8. boat: 35 mph ; current: 7 mph
8. a. $C(x)=300,000+30 x$
b. $R(x)=80 x$ c. $(6000,480,000)$; The company will break even if it produces and sells 6000 pairs of shoes.

Concept and Vocabulary Check

1. satisfies both equations in the system
2. the intersection point
3. $\left\{\left(\frac{1}{3},-2\right)\right\}$
4. -2
5. -3
6. \varnothing; inconsistent; parallel
7. $\{(x, y) \mid x=3 y+2\}$ or $\{(x, y) \mid 5 x-15 y=10\}$; dependent; are identical or coincide
8. $0.09 x+0.6 y$
9. $x+y ; x-y$
10. $4(x+y)$
11. revenue; profit
12. break-even point

Exercise Set 7.1

1. solution
2. not a solution
3. $\{(1,3)\}$
4. $\{(5,1)\}$
5. $\{(-22,-5)\}$
6. $\{(0,0)\}$
7. $\{(3,-2)\}$
8. $\{(5,4)\}$
9. $\{(7,3)\}$
10. $\{(2,-1)\}$
11. $\{(3,0)\}$
12. $\{(-4,3)\}$
13. $\{(3,1)\}$
14. $\{(1,-2)\}$
15. $\left\{\left(\frac{7}{25},-\frac{1}{25}\right)\right\}$
16. \varnothing
17. $\{(x, y) \mid y=3 x-5\}$
18. $\{(1,4)\}$
19. $\{(x, y) \mid x+3 y=2\}$
20. $\{(-5,-1)\}$
21. $\left\{\left(\frac{29}{22},-\frac{5}{11}\right)\right\}$
22. $x+y=7 ; x-y=-1 ; 3$ and 4
23. $3 x-y=1 ; x+2 y=12 ; 2$ and 5
24. $\{(6,-1)\}$
25. $\left\{\left(\frac{1}{a}, 3\right)\right\}$
26. $m=-4, b=3$
27. $y=x-4 ; y=-\frac{1}{3} x+4$
28. California: 100 gal; French: 100 gal
29. 18-karat gold: $96 \mathrm{~g} ; 12$-karat gold: $204 \mathrm{~g} \quad$ 59. cheaper candy: 30 lb ; more expensive candy: 45 lb
30. plane: 130 mph ; wind: $30 \mathrm{mph} \quad$ 63. crew: $6 \mathrm{~km} / \mathrm{hr}$; current: $2 \mathrm{~km} / \mathrm{hr} \quad$ 65. velocity in still water: 4.5 mph ; current: $1.5 \mathrm{mph} \quad 67.500 \mathrm{radios}$
31. -6000; When the company produces and sells 200 radios, the loss is $\$ 6000$. 71. a. $P(x)=20 x-10,000 \quad$ b. $\$ 190,000$
32. a. $C(x)=18,000+20 x \quad$ b. $R(x)=80 x \quad$ c. $(300,24,000)$; When 300 canoes are produced and sold, both revenue and cost are $\$ 24,000$.
33. a. $C(x)=30,000+2500 x \quad$ b. $R(x)=3125 x \quad$ c. $(48,150,000)$; For 48 sold-out performances, both cost and revenue are $\$ 150,000$.
34. a. 4 million workers; $\$ 4.50$ per hour \quad b. $\$ 4.50 ; 4 ; 4 \quad$ c. 2 million \quad d. 5.7 million \quad e. 3.7 million $\quad 79$. a. $2039 ; 37 \%$
b. by the intersection point $(69,37) \quad$ 81. a. $y=0.45 x+0.8 \quad$ b. $y=0.15 x+2.6 \quad$ c. week $6 ; 3.5$ symptoms; by the intersection point ($6,3.5$) 83. a. $y=0.2 x+5 \quad$ b. $y=-0.4 x+47 \quad$ c. $2030 ; 19 \% \quad$ 85. Mr. Goodbar: 264 cal; Mounds: 258 cal 87. 3 Mr. Goodbars and 2 Mounds bars 89. 50 rooms with kitchen facilities, 150 rooms without kitchen facilities $\quad 91.100 \mathrm{ft}$ long by 80 ft wide $93.80^{\circ}, 50^{\circ}, 50^{\circ}$
35. does not make sense \quad 107. makes sense \quad 109. $y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} ; x=\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}} \quad$ 111. Yes; 8 hexagons and 4 squares \quad 113. yes 114. $11 x+4 y=-3 \quad$ 115. $1682=16 a+4 b+c$

Section 7.2

Check Point Exercises

1. $(-1)-2(-4)+3(5)=22 ; 2(-1)-3(-4)-5=5 ; 3(-1)+(-4)-5(5)=-32$
2. $\{(1,4,-3)\}$
3. $\{(4,5,3)\}$
4. $y=3 x^{2}-12 x+13$

Concept and Vocabulary Check

1. triple; all
2. $-2 ;-4$
3. z; add Equations 1 and 3

Exercise Set 7.2

1. solution 3 . solution
2. $\{(2,3,3)\}$
3. $\{(2,-1,1)\}$
4. $\{(1,2,3)\}$
5. $\{(3,1,5)\}$
6. $\{(1,0,-3)\}$
7. $\{(1,-5,-6)\}$
8. $\left\{\left(\frac{1}{2}, \frac{1}{3},-1\right)\right\}$
9. $y=2 x^{2}-x+3$
10. $y=2 x^{2}+x-5$
11. 7,4 , and 5
12. $\{(4,8,6)\}$
13. $y=-\frac{3}{4} x^{2}+6 x-11$
14. $\left\{\left(\frac{8}{a},-\frac{3}{b},-\frac{5}{c}\right)\right\}$
15. a. $y=-16 x^{2}+40 x+200$
b. $y=0$ when $x=5$; The ball hits the ground after 5 seconds.
16. housing: $\$ 6133$; vehicles/gas: $\$ 2269$; health care: $\$ 5438 \quad$ 35. milk: $\$ 3.50$; water: $\$ 1.50$; chips: $\$ 0.75 \quad$ 37. $200 \$ 8$ tickets; $150 \$ 10$ tickets; $50 \$ 12$ tickets
17. $\$ 1200$ at $8 \%, \$ 2000$ at 10%, and $\$ 3500$ at 12%
18. $x=60, y=55, z=65$
19. does not make sense
20. makes sense
21. 13 triangles, 21 rectangles, and 6 pentagons
22. $\frac{x+14}{(x-4)(x+2)}$
23. $\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}$
24. $\{(5,-2,3)\}$

Section 7.3

Check Point Exercises

1. $\frac{2}{x-3}+\frac{3}{x+4}$
2. $\frac{2}{x}-\frac{2}{x-1}+\frac{3}{(x-1)^{2}}$
3. $\frac{2}{x+3}+\frac{6 x-8}{x^{2}+x+2}$
4. $\frac{2 x}{x^{2}+1}+\frac{-x+3}{\left(x^{2}+1\right)^{2}}$

Concept and Vocabulary Check

Exercise Set 7.3

1. $\frac{A}{x-2}+\frac{B}{x+1}$

$$
\text { 3. } \frac{A}{x+2}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}
$$

5. $\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$
6. $\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}$
7. $\frac{3}{x-3}-\frac{2}{x-2}$
8. $\frac{7}{x-9}-\frac{4}{x+2}$ 13. $\frac{24}{7(x-4)}+\frac{25}{7(x+3)}$ 15. $\frac{4}{7(x-3)}-\frac{8}{7(2 x+1)}$
9. $\frac{3}{x}+\frac{2}{x-1}-\frac{1}{x+3}$
10. $\frac{3}{x}+\frac{4}{x+1}-\frac{3}{x-1}$
11. $\frac{6}{x-1}-\frac{5}{(x-1)^{2}}$
12. $\frac{1}{x-2}-\frac{2}{(x-2)^{2}}-\frac{5}{(x-2)^{3}}$
13. $\frac{7}{x}-\frac{6}{x-1}+\frac{10}{(x-1)^{2}}$
14. $\frac{1}{4(x+1)}+\frac{3}{4(x-1)}+\frac{1}{2(x-1)^{2}}$
15. $\frac{3}{x-1}+\frac{2 x-4}{x^{2}+1}$
16. $\frac{2}{x+1}+\frac{3 x-1}{x^{2}+2 x+2}$
17. $\frac{1}{4 x}+\frac{1}{x^{2}}-\frac{x+4}{4\left(x^{2}+4\right)}$
18. $\frac{4}{x+1}+\frac{2 x-3}{x^{2}+1}$
19. $\frac{x+1}{x^{2}+2}-\frac{2 x}{\left(x^{2}+2\right)^{2}}$
20. $\frac{x-2}{x^{2}-2 x+3}+\frac{2 x+1}{\left(x^{2}-2 x+3\right)^{2}} \quad$ 41. $\frac{3}{x-2}+\frac{x-1}{x^{2}+2 x+4}$
21. $x^{3}+x-\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
22. $x+1-\frac{2}{x}-\frac{2}{x^{2}}+\frac{2}{x-1}$
23. $\frac{\frac{1}{2 c}}{x-c}-\frac{\frac{1}{2 c}}{x+c}$
24. $\frac{a}{x-c}+\frac{a c+b}{(x-c)^{2}}$
25. $\frac{1}{x}-\frac{1}{x+1} ; \frac{99}{100}$
26. does not make sense
27. does not make sense
28. $\frac{2}{x-3}+\frac{2 x+5}{x^{2}+3 x+3}$
29. $\{(2.5,-2)\}$
30. $\{(4,-3)\}$
31.

Section 7.4

Check Point Exercises

1. $\{(0,1),(4,17)\}$

$$
\text { 2. }\left\{\left(-\frac{6}{5}, \frac{3}{5}\right),(2,-1)\right\}
$$

3. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
4. $\{(0,5)\}$
5. length: 7 ft ; width: 3 ft or length: 3 ft ; width: 7 ft

Concept and Vocabulary Check

1. nonlinear
2. $\{(-4,3),(0,1)\}$
3. 3
4. $\{(2, \sqrt{3}),(2,-\sqrt{3}),(-2, \sqrt{3}),(-2,-\sqrt{3})\}$
5. $-1 ; y^{2}+y=6$
6. $\frac{4}{x} ; \frac{4}{x} ; y$

Exercise Set 7.4

1. $\{(-3,5),(2,0)\}$
2. $\{(1,1),(2,0)\}$
3. $\{(4,-10),(-3,11)\}$
4. $\{(4,3),(-3,-4)\}$
5. $\left\{\left(-\frac{3}{2},-4\right),(2,3)\right\}$
6. $\{(-5,-4),(3,0)\}$
7. $\{(3,1),(-3,-1),(1,3),(-1,-3)\}$
8. $\{(4,-3),(-1,2)\} \quad$ 17. $\{(0,1),(4,-3)\} \quad$ 19. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
9. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
10. $\{(2,1),(2,-1),(-2,1),(-2,-1)\} \quad$ 25. $\{(3,4),(3,-4)\}$
11. $\{(0,2),(0,-2),(-1, \sqrt{3}),(-1,-\sqrt{3})\}$
12. $\{(2,1),(2,-1),(-2,1),(-2,-1)\} \quad$ 31. $\{(-2 \sqrt{2},-\sqrt{2}),(-1,-4),(1,4),(2 \sqrt{2}, \sqrt{2})\}$
13. $\{(2,2),(4,1)\}$
14. $\{(0,0),(-1,1)\}$
15. $\{(0,0),(-2,2),(2,2)\}$
16. $\left\{(-4,1),\left(-\frac{5}{2}, \frac{1}{4}\right)\right\}$
17. $\left\{\left(\frac{12}{5},-\frac{29}{5}\right),(-2,3)\right\}$
18. 4 and $6 \quad$ 45. 2 and 1,2 and $-1,-2$ and 1 , or -2 and -1
19. $\{(2,-1),(-2,1)\}$
20. $\{(2,20),(-2,4),(-3,0)\}$
21. $\left\{\left(-1,-\frac{1}{2}\right),\left(-1, \frac{1}{2}\right),\left(1,-\frac{1}{2}\right),\left(1, \frac{1}{2}\right)\right\}$
22.

55. $(0,-4),(-2,0),(2,0)$
57. 11 ft and 7 ft
59. width: 6 in.; length: 8 in.
61. $x=5 \mathrm{~m}, y=2 \mathrm{~m}$
63. a. between the 1940s and the 1960 s answers may vary.
69. makes sense
b. $1949 ; 43 \% ; 43 \%$
c. 1920; 28\%
71. makes sense
73. false
75. false
d. 1919 ; white collar: 27.5%; farmers: 27.4%; fairly well, although
81.

82.

83.

Mid-Chapter 7 Check Point

1. $\{(-1,2)\}$
2. $\{(1,-2)\}$
3. $\{(6,10)\}$
4. $\{(x, y) \mid y=4 x-5\}$ or $\{(x, y) \mid 8 x-2 y=10\}$
5. $\left\{\left(\frac{11}{19}, \frac{7}{19}\right)\right\}$
6. \varnothing
7. $\{(-1,2,-2)\}$
8. $\{(4,-2,3)\}$
9. $\left\{\left(-\frac{9}{5}, \frac{12}{5}\right),(3,0)\right\}$
10. $\{(-2,-1),(-2,1),(2,-1),(2,1)\}$
11. $\{(-\sqrt{7}, 1),(-2,-2),(2,-2),(\sqrt{7}, 1)\}$
12. $\{(0,-2),(6,1)\}$
13. $\frac{1}{x-2}-\frac{2}{(x-2)^{2}}-\frac{5}{(x-2)^{3}}$
14. $\frac{5}{x+2}+\frac{3}{x+1}+\frac{2}{x-1}$
15. $-\frac{2}{x+3}+\frac{3 x-5}{x^{2}+4}$
16. $\frac{x}{x^{2}+4}-\frac{4 x}{\left(x^{2}+4\right)^{2}}$ 17. a. $C(x)=400,000+20 x \quad$ b. $R(x)=100 x \quad$ c. $P(x)=80 x-400,000 \quad$ d. $(5000,500,000)$; The company will break even when it produces and sells 5000 PDAs. At this level, both revenue and cost are $\$ 500,000$. 18. 6 roses and 14 carnations 19. north campus: 300 students; $\begin{array}{llll}\text { south campus: } 900 \text { students } & \text { 20. rate in still water: } 3 \mathrm{mph} \text { current: } 1.5 \mathrm{mph} & \text { 21. } x=55^{\circ}, y=35^{\circ} & \text { 22. } y=-x^{2}+2 x+3 \quad \text { 23. length: } 8 \mathrm{~m} \text {; width: } 2.5 \mathrm{~m}\end{array}$

Section 7.5

Check Point Exercises
1.

2.

3.

b.

4.

5. Point $B=(66,130) ; 4.9(66)-130 \geq 165$, or $193.4 \geq 165$, is true; $3.7(66)-130 \leq 125$, or $114.2 \leq 125$, is true.

7.

8. $x+y<2$

Concept and Vocabulary Check

1. solution; $x ; y ; 5>1$
2. graph 3. half-plane
3. false
4. true
5. false
6. $(0,0)$, although answers will vary
7. $x-y<1 ; 2 x+3 y \geq 12$ 9. false

Exercise Set 7.5

1.

11.

21.

31.

41. \varnothing
3.

13.

23.

33.

43.

5.

15.

25.

35. $\left\{\begin{array}{l}x \leq \\ y \geq\end{array}\right.$

45.

7.

17.

27. $\{3 x+6 y \leq 6$
$2 x+y \leq 8 y$

37. $-2 \leq x<5 y$

47.

9.

19.

29. $\{2 x-5 y \leq 10$ $\left\{\begin{array}{l}3 x-2 y>6 y_{\uparrow}\end{array}\right.$

39. $\left\{\begin{array}{l}x-y \leq 1 \\ x \geq 2\end{array}\right.$

49.

51.

53.

$\left\{\begin{array}{c}x^{2}+y^{2} \leq 1 \\ y-x^{2}>0\end{array}\right.$
55.

63.

65.

67.

59.
$\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ 2 x+5 y<10 \\ 3 x+4 y \leq 12\end{array}\right.$

61.
$\left\{\begin{array}{l}3 x+y \leq 6 \\ 2 x-y \leq-1 \\ x>-2 \\ y<4\end{array}\right.$

73. no solution
75. infinitely many solutions
77. Point $A=(66,160) ; 5.3(66)-160 \geq 180$, or $189.8 \geq 180$, is true; $4.1(66)-160 \leq 140$, or $110.6 \leq 140$, is true.
79. no
81. a. $50 x+150 y>2000$
b.

c. Answers may vary. Example: $(20,20): 20$ children and 20 adults will cause the elevator to be overloaded.
97.

83. a. $\left\{\begin{array}{l}y \geq 0 \\ x+y \geq 5 \\ x \geq 1 \\ 200 x+100 y \leq 700\end{array}\right.$
b.
$\left\{\begin{array}{l}y \geq 0 \\ x+y \geq 5 \\ x \geq 1\end{array}\right.$ $x \geq 1$ $200 x+100 y \leq 700$

85. a. 27.1
b. overweight
99.

101.

107. does not make sense
109. makes sense
111. $\left\{\begin{array}{l}y>x-3 \\ y \leq x\end{array} \quad\right.$ 113. $x+2 y \leq 6$ or $2 x+y \leq 6$

116. a. $y_{\text {A }}$

c. at $(1,5): 13$; at $(8,5): 34$; at $(8,-2): 20$
117. a.

c. at $(0,0): 0 ;$ at $(2,0): 4 ;$ at $(4,3): 23 ;(0,7): 35$
118. $20 x+10 y \leq 80,000$

Section 7.6

Check Point Exercises

1. $z=25 x+55 y$
2. $x+y \leq 80$
3. $30 \leq x \leq 80 ; 10 \leq y \leq 30$; objective function: $z=25 x+55 y$; constraints: $\left\{\begin{array}{c}x+y \leq 80 \\ 30 \leq x \leq 80 \\ 10 \leq y \leq 30\end{array}\right.$
4. 50 bookshelves and 30 desks; $\$ 2900$

AA76 Answers to Selected Exercises

Concept and Vocabulary Check

1. linear programming
2. objective
3. constraints; corner

Exercise Set 7.6

1. $(1,2): 17 ;(2,10): 70 ;(7,5): 65 ;(8,3): 58$; maximum: $z=70$; minimum: $z=17$
2. $(0,0): 0 ;(0,8): 400 ;(4,9): 610 ;(8,0): 320$; maximum: $z=610$; minimum: $z=0$
3. a.

b. $(0,8): 16 ;(0,4): 8 ;(4,0): 12$
4. a.

b. $(0,4): 4 ;(0,3): 3 ;(3,0): 12 ;(6,0): 24$
c. maximum value: 24 at $x=6$ and $y=0$
c. maximum value: 16 at $x=0$
5. a.

b. $(0,6): 72 ;(0,0): 0 ;(5,0): 50 ;(3,4): 78$
c. maximum value: 78 at $x=3$ and $y=4$
b. $(1,2):-1 ;(1,4):-5 ;(5,8):-1 ;(5,2): 11$
c. maximum value: 11 at $x=5$ and $y=2$
6. a.

b. $(0,4): 8 ;(0,2): 4 ;(2,0): 8 ;(4,0): 16$ $\left(\frac{12}{5}, \frac{12}{5}\right): \frac{72}{5}$
c. maximum value: 16 at $x=4$ and $y=0$
7. a. $z=125 x+200 y$
b. $\left\{\begin{array}{l}x \leq 450 \\ y \leq 200 \\ 600 x+9\end{array}\right.$
d. $(0,0): 0 ;(0,200): 40,000$; $(300,200): 77,500 ;(450,100): 76,250$; $(450,0): 56,250$
e. $300 ; 200 ; \$ 77,500$

c.

17. 40 model A bicycles and no model B bicycles
18. 300 cartons of food and 200 cartons of clothing
19. 50 students and 100 parents
20. 10 Boeing 727 s and 42 Falcon 20 s
21. does not make sense
22. makes sense
23. $\$ 5000$ in stocks and $\$ 5000$ in bonds
24. $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -11 & -11\end{array}\right]$

$$
\left[\begin{array}{lll}
0 & -11 & -11
\end{array}\right]
$$

37. $\{(6,3,5)\}$; Answers may vary.
38. $\{(-2,1,4,3)\}$; Answers may vary.

Chapter 7 Review Exercises

1. $\{(1,5)\}-2\{(2,3)\}-3 \cdot\{(2,-3)\}$
2. $\{(x, y) \mid 3 x-6 y=12\}$
3. a. $C(x)=60,000+200 x$
b. $R(x)=450 x$
c. $(240,108,000)$; This means the company will break even if it produces and sells 240 desks. 7. Klimt: $\$ 135$ million; Picasso: $\$ 104$ million
4. a. $y=219 x+142 \quad$ b. 2006 ; 580 million of each \quad 9. $\$ 80$ per day for the room, $\$ 60$ per day for the car $\quad \mathbf{1 0} .10 \mathrm{ml}$ of $34 \% ; 90 \mathrm{ml}$ of 4%
5. plane: 630 mph ; wind: $90 \mathrm{mph} \quad$ 12. $\{(0,1,2)\} \quad$ 13. $\{(2,1,-1)\} \quad$ 14. $y=3 x^{2}-4 x+5 \quad$ 15. war: 124 million; famine: 111 million; tobacco: 71 million
6. $\frac{3}{5(x-3)}+\frac{2}{5(x+2)}$
7. $\frac{6}{x-4}+\frac{5}{x+3}$
8. $\frac{2}{x}+\frac{3}{x+2}-\frac{1}{x-1}$
9. $\frac{2}{x-2}+\frac{5}{(x-2)^{2}}$
10. $-\frac{4}{x-1}+\frac{4}{x-2}-\frac{2}{(x-2)^{2}}$
11. $\frac{6}{5(x-2)}+\frac{-6 x+3}{5\left(x^{2}+1\right)}$
12. $\frac{5}{x-3}+\frac{2 x-1}{x^{2}+4}$
13. $\frac{x}{x^{2}+4}-\frac{4 x}{\left(x^{2}+4\right)^{2}}$
14. $\frac{4 x+1}{x^{2}+x+1}+\frac{2 x-2}{\left(x^{2}+x+1\right)^{2}}$
15. $\{(4,3),(1,0)\}$
16. $\{(0,1),(-3,4)\}$
17. $\{(1,-1),(-1,1)\}$
18. $\{(3, \sqrt{6}),(3,-\sqrt{6}),(-3, \sqrt{6}),(-3,-\sqrt{6})\}$
19. $\{(2,2),(-2,-2)\}$
20. $\{(9,6),(1,2)\}$
21. $\{(-3,-1),(1,3)\}$
22. $\left\{\left(\frac{1}{2}, 2\right),(-1,-1)\right\}$
23. $\left\{\left(\frac{5}{2},-\frac{7}{2}\right),(0,-1)\right\}$
24. $\{(3,1),(3,-1),(-3,1),(-3,-1)\}$
25. 8 m and 5 m
$(1,6),(3,2)$
26.

40.

41.

34. $\{(2,-3),(-2,-3),(3,2),(-3,2)\}$
38. $x=46$ and $y=28$ or $x=50$ and $y=20$
42.

43.

44.

49.

45.

50.

46.

51. no solution
55.

47.

52.

56. $(2,2): 10 ;(4,0): 8 ;\left(\frac{1}{2}, \frac{1}{2}\right): \frac{5}{2} ;(1,0): 2$; maximum value: 10 ; minimum value: 2
57.

Maximum is 24 at $x=0, y=8$.
58.

Maximum is 33 at $x=5, y=7$.
59.
60. a. $z=500 x+350 y$
b. $\left\{\begin{array}{l}x+y \leq 200 \\ x \geq 10 \\ y \geq 80\end{array}\right.$
48.

53.

48.
54.

$\left\{\begin{array}{c}y>x^{2} \\ x+y<6 \\ y<x+6\end{array}\right.$

Maximum is 44 at $x=y=4$.
c.

d. $(10,80): 33,000 ;(10,190): 71,500 ;(120,80): 88,000$
e. $120 ; 80 ; 88,000$
61. 480 of model A and 240 of model B

Chapter 7 Test

1. $\{(1,-3)\}$
2. $\{(4,-2)\}$
3. $\{(1,3,2)\}$
4. $\{(4,-3),(-3,4)\}$
5. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
6. $\frac{-1}{10(x+1)}+\frac{x+9}{10\left(x^{2}+9\right)}$

7.

9.

10.

11. $26 \quad$ 12. shrimp: 42 mg ; scallops: $15 \mathrm{mg} \quad$ 13. a. $C(x)=360,000+850 x \quad$ b. $R(x)=1150 x \quad$ c. $(1200,1,380,000)$; The company will break even if it produces and sells 1200 computers. \quad 14. 40 oz of $20 \% ; 20 \mathrm{oz}$ of $50 \% \quad$ 15. plane: $725 \mathrm{~km} / \mathrm{hr}$; wind: $75 \mathrm{~km} / \mathrm{hr}$ 16. $y=x^{2}-3 \quad$ 17. $x=7.5 \mathrm{ft}$ and $y=24 \mathrm{ft}$ or $x=12 \mathrm{ft}$ and $y=15 \mathrm{ft} \quad$ 18. 50 regular and 100 deluxe jet skis; $\$ 35,000$

Cumulative Review Exercises (Chapters P-7)

$\begin{array}{llll}\text { 1. domain: }(-2,2) \text {; range: }(-\infty, 3] & \text { 2. }-1 \text { and } 1 & \text { 3. maximum of } 3 \text { at } x=0 & \text { 4. }(0,2)\end{array}$
5. positive
6. 3
7. $x \rightarrow-2^{+} ; x \rightarrow 2^{-}$
8. even
9.

10.

11. $\{3,4\}$
12. $\left\{\frac{2+i \sqrt{3}}{2}, \frac{2-i \sqrt{3}}{2}\right\}$
13. $(-18,6) \quad$ 14. $(1,7)$
15. $\left\{-3, \frac{1}{2}, 2\right\} \quad$ 16. $\{-2\}$
17. $\{2\} \quad$ 18. $\left\{-2+\log _{3} 11\right\}$
19. $\{625\}$
20. $\left\{\left(-\frac{1}{2}, \frac{1}{2}\right),(2,8)\right\}$
21. $\{(8,-2,-2)\}$
22.

23.

24.

26.

27.

28.

25.

29. $(f \circ g)(x)=2 x^{2}-3 x$;
$(g \circ f)(x)=-2 x^{2}+x+2$
30. $4 x+2 h-1$
31. $y=-3 x+10$
32. $y=3 x+3$
33. $\$ 2600$ at $12 \% ; \$ 1400$ at 14%
34. 4 m by 9 m
35. 10.99 \%
36. $\sec \theta-\cos \theta=\frac{1}{\cos \theta}-\cos \theta=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{\sin ^{2} \theta}{\cos \theta}=\frac{\sin \theta}{\cos \theta} \sin \theta=\tan \theta \sin \theta$
37. $\tan x+\tan y=\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}=\frac{\sin x \cos y+\sin y \cos x}{\cos x \cos y}=\frac{\sin (x+y)}{\cos x \cos y} \quad$ 38. $\{0, \pi\} \quad$ 39. $\left\{0, \frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
40. 92.9

CHAPTER 8

Section 8.1

Check Point Exercises

1. a. $\left[\begin{array}{rrr|r}1 & 6 & -3 & 7 \\ 4 & 12 & -20 & 8 \\ -3 & -2 & 1 & -9\end{array}\right]$
b. $\left[\begin{array}{rrr|r}1 & 3 & -5 & 2 \\ 1 & 6 & -3 & 7 \\ -3 & -2 & 1 & -9\end{array}\right]$
c. $\left[\begin{array}{rrr|r}4 & 12 & -20 & 8 \\ 1 & 6 & -3 & 7 \\ 0 & 16 & -8 & 12\end{array}\right]$
2. $\{(5,2,3)\}$
3. $\{(1,-1,2,-3)\}$
4. $\{(5,2,3)\}$

Concept and Vocabulary Check

1. matrix; elements
2. 3; second; -2; third

$$
\text { 3. }\left[\begin{array}{rrr|r}
2 & 1 & 4 & -4 \\
3 & 0 & 1 & 1 \\
4 & 3 & 1 & 8
\end{array}\right]
$$

4. $\{(1,3,-2)\}$
5. true
6. false

Exercise Set 8.1

1. $\left[\begin{array}{rrr|r}2 & 1 & 2 & 2 \\ 3 & -5 & -1 & 4 \\ 1 & -2 & -3 & -6\end{array}\right]$
2. $\left[\begin{array}{rrr|r}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0 & 0 & 1 & 1\end{array}\right]$
3. $\left[\begin{array}{rrr|r}5 & -2 & -3 & 0 \\ 1 & 1 & 0 & 5 \\ 2 & 0 & -3 & 4\end{array}\right]$
4. $\left[\begin{array}{rrrr|r}2 & 5 & -3 & 1 & 2 \\ 0 & 3 & 1 & 0 & 4 \\ 1 & -1 & 5 & 0 & 9 \\ 5 & -5 & -2 & 0 & 1\end{array}\right]$
5. $\left\{\begin{aligned} 5 x+3 z & =-11 \\ y-4 z & =12 \\ 7 x+2 y & =3\end{aligned}\right.$
6. $\left\{\begin{aligned} w+x+4 y+z & =3 \\ -w+x-y & =7 \\ 2 w+5 z & =11 \\ 12 y+4 z & =5\end{aligned}\right.$
7. $\left[\begin{array}{rrr|r}1 & -3 & 2 & 5 \\ 1 & 5 & -5 & 0 \\ 3 & 0 & 4 & 7\end{array}\right]$
8. $\left[\begin{array}{rrr|r}1 & -3 & 2 & 0 \\ 0 & 10 & -7 & 7 \\ 2 & -2 & 1 & 3\end{array}\right]$
9. $\left[\begin{array}{rrrr|r}1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -2 & -1 & 0 \\ 0 & 2 & 1 & 2 & 5 \\ 0 & 6 & -3 & -1 & -9\end{array}\right]$
10. $R_{2}:-3,-18 ; R_{3}:-12,-15 ; R_{2}:-\frac{3}{5},-\frac{18}{5} ; R_{3}:-12,-15 \quad$ 21. $\{(1,-1,2)\} \quad$ 23. $\{(3,-1,-1)\} \quad$ 25. $\{(2,-1,1)\} \quad$ 27. $\{(2,1,1)\}$
11. $\{(2,-1,1)\}$
12. $\{(-1,2,-2)\}$
13. $\{(1,2,-1)\}$
14. $\{(1,2,3,-2)\}$
15. $\{(0,-3,0,-3)\}$
16. $f(x)=-x^{2}+x+2$
17. $f(x)=x^{3}-2 x^{2}+3 \quad$ 43. $\left\{\left(e^{-1}, e, e^{-3}, e^{-2}\right)\right\} \quad$ 45. a. $a=-32, v_{0}=56, s_{0}=0 \quad$ b. 0 ; The ball hits the ground 3.5 seconds after it is thrown; $(3.5,0)$.
$\begin{array}{ll}\text { c. } 1.75 \mathrm{sec} ; 49 \mathrm{ft} \quad \text { 47. } 4 \text { oz of Food } A ; \frac{1}{2} \text { oz of Food } B ; 1 \text { oz of Food } C \quad \text { 49. Asians: } 122 \text {; Africans: } 28 \text {; Europeans: } 24 \text {; Americans: } 9 & \text { 59. makes sense }\end{array}$
18. makes sense
19. false
20. false
21. 60 units: $\$ 7700$
22. For $z=0,(12 z+1,10 z-1, z)$ is $(1,-1,0) ; 3(1)-4(-1)+4(0)=7$ is true; $1-(-1)-2(0)=2$ is true; $2(1)-3(-1)+6(0)=5$ is true.
23. For $z=1,(12 z+1,10 z-1, z)$ is $(13,9,1) ; 3(13)-4(9)+4(1)=7$ is true; $13-9-2(1)=2$ is true; $2(13)-3(9)+6(1)=5$ is true.
24. a. Answers may vary. b. This system has more than one solution.

Section 8.2

Check Point Exercises

1. \varnothing
2. $\{(11 t+13,5 t+4, t)\}$
3. $\{(t+50,-2 t+10, t)\}$
4. a. $\left\{\begin{array}{l}w+z=15 \\ w+x=30 \\ x+y=45 \\ y+z=30\end{array}\right.$
b. $\{(-t+15, t+15,-t+30, t)\}$
c. $w=5 ; x=25 ; y=20$

Concept and Vocabulary Check

$\begin{array}{lll}\text { 1. no solution } & \text { 2. one solution } & \text { 3. infinitely many solutions }\end{array}$ 4. true
5. $\left\{\begin{array}{l}x-y+z=5 \\ y-z=-3\end{array} ; z-3 ; 2 ;\{(2, z-3, z)\}\right.$

Exercise Set 8.2

1. \varnothing

$$
\text { 3. }\left\{\left(-2 t+2,2 t+\frac{1}{2}, t\right)\right\}
$$

5. $\{(-3,4,-2)\}$
6. $\{(5-2 t,-2+t, t)\}$
7. $\{(-1,2,1,1)\}$
8. $\{(1,3,2,1)\}$
9. $\{(1,-2,1,1)\}$
10. $\left\{\left(1+\frac{1}{3} t, \frac{1}{3} t, t\right)\right\}$
11. $\{(-13 t+5,5 t, t)\}$
12. $\left\{\left(2 t-\frac{5}{4}, \frac{13}{4}, t\right)\right\}$
13. $\{(1,-t-1,2, t)\}$
14. $\left\{\left(-\frac{2}{11} t+\frac{81}{11}, \frac{1}{22} t+\frac{10}{11}, \frac{4}{11} t-\frac{8}{11}, t\right)\right\}$
15. a. $4 w-2 x+2 y-3 z=0 ; 7 w-x-y-3 z=0 ; w+x+y-z=0$
b. $\{(0.5 t, 0,0.5 t, t)\}$
16. a. $w+2 x+5 y+5 z=-3 ; w+x+3 y+4 z=-1 ; w-x-y+2 z=3$
b. $\{(1-3 s-t,-2-s-2 t, t, s)\}$
17. $z+12=x+6$
18. $\{(t+6, t+2, t)\}$
19. a. $\left\{\begin{aligned} w+z & =380 \\ w+x & =600 \\ x-y & =170 \\ y-z & =50\end{aligned}\right.$
b. $\{(380-t, 220+t, 50+t, t)\}$
c. $w=330, x=270, y=100$
20. a. The system has no solution, so there is no way to satisfy these dietary requirements with no Food 1 available.
b. 4 oz of Food 1, 0 oz of Food 2, 10 oz of Food $3 ; 2 \mathrm{oz}$ of Food $1,5 \mathrm{oz}$ of Food 2, 9 oz of Food 3 (other answers are possible).
21. does not make sense
22. does not make sense
23. $a=1$ or $a=3$
24. -1
25. -12
26. 8

Section 8.3

Check Point Exercises

$\begin{array}{lll}\text { 1. a. } 3 \times 2 & \text { b. } a_{12}=-2 ; a_{31}=1 & \left.\text { 2. a. }\left[\begin{array}{rr}2 & 0 \\ 9 & -10\end{array}\right] \quad \text { b. }\left[\begin{array}{rr}9 & -4 \\ -9 & 7 \\ 5 & -2\end{array}\right] \quad \text { 3. a. }\left[\begin{array}{rr}6 & 12 \\ -48 & -30\end{array}\right] \quad \text { b. }\left[\begin{array}{rr}-14 & -1 \\ 25 & 10\end{array}\right] \begin{array}{rr}\text { 4. } \\ -4 & 3 \\ -3\end{array}\right]\end{array}$
5. $\left[\begin{array}{cc}7 & 6 \\ 13 & 12\end{array}\right]$
6. $[30] ;\left[\begin{array}{rrr}2 & 0 & 4 \\ 6 & 0 & 12 \\ 14 & 0 & 28\end{array}\right]$
7. a. $\left[\begin{array}{rrrr}2 & 18 & 11 & 9 \\ 0 & 10 & 8 & 2\end{array}\right]$
b. The product is undefined.
8. $\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1\end{array}\right]+\left[\begin{array}{rrr}-1 & 2 & 2 \\ -1 & 2 & 2 \\ -1 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 3 & 3 \\ 1 & 1 & 3\end{array}\right]$
9. a. $\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 5 & 2\end{array}\right]+\left[\begin{array}{lll}-3 & -3 & -3 \\ -1 & -1 & -1\end{array}\right]=\left[\begin{array}{lll}-3 & 0 & 1 \\ -1 & 4 & 1\end{array}\right]$
b. $2\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 5 & 2\end{array}\right]=\left[\begin{array}{ccc}0 & 6 & 8 \\ 0 & 10 & 4\end{array}\right]$

c. $\left[\begin{array}{ccc}0 & 3 & 4 \\ 0 & -5 & -2\end{array}\right]$; Multiplying by B reflects the triangle over the x-axis.

Concept and Vocabulary Check

1. third; fourth
2. 1×3
3. square
4. $-10 ; 6$
5. true
6. false
7. true
8. $m ; p$; columns; rows
9. true
10. false

Exercise Set 8.3

1. a. 2×3
b. a_{32} does not exist; $a_{23}=-1$
2. a. 3×4
b. $a_{32}=\frac{1}{2} ; a_{23}=-6$
3. $x=6 ; y=4$
4. $x=4 ; y=6 ; z=3$
5. a. $\left[\begin{array}{rr}9 & 10 \\ 3 & 9\end{array}\right]$
b. $\left[\begin{array}{rr}-1 & -8 \\ 3 & -5\end{array}\right]$
c. $\left[\begin{array}{ll}-16 & -4 \\ -12 & -8\end{array}\right]$
d. $\left[\begin{array}{rr}22 & 21 \\ 9 & 20\end{array}\right]$
6. a. $\left[\begin{array}{ll}3 & 2 \\ 6 & 2 \\ 5 & 7\end{array}\right]$
b. $\left[\begin{array}{rr}-1 & 4 \\ 0 & 6 \\ 5 & 5\end{array}\right]$
c. $\left[\begin{array}{rr}-4 & -12 \\ -12 & -16 \\ -20 & -24\end{array}\right]$
d. $\left[\begin{array}{rr}7 & 7 \\ 15 & 8 \\ 15 & 20\end{array}\right]$
7. a. $\left[\begin{array}{r}-3 \\ -1 \\ 0\end{array}\right]$
b. $\left[\begin{array}{r}7 \\ -7 \\ 2\end{array}\right]$ c. $\left[\begin{array}{r}-8 \\ 16 \\ -4\end{array}\right]$
d. $\left[\begin{array}{r}-4 \\ -6 \\ 1\end{array}\right]$
8. \mathbf{a}. $\left[\begin{array}{rrr}8 & 0 & -4 \\ 14 & 0 & 6 \\ -1 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{rrr}-4 & -20 & 0 \\ 14 & 24 & 14 \\ 9 & -4 & 4\end{array}\right]$
c. $\left[\begin{array}{rrr}-8 & 40 & 8 \\ -56 & -48 & -40 \\ -16 & 8 & -8\end{array}\right]$
d. $\left[\begin{array}{rrr}18 & -10 & -10 \\ 42 & 12 & 22 \\ 2 & -2 & 2\end{array}\right]$
9. $\left[\begin{array}{rr}-8 & -8 \\ 2 & -9 \\ 8 & -4\end{array}\right] \quad$ 19. $\left[\begin{array}{rr}-1 & 3 \\ -1 & \frac{9}{2} \\ -1 & -2\end{array}\right]$
10. $\left[\begin{array}{rr}\frac{1}{3} & \frac{13}{3} \\ -\frac{4}{3} & 6 \\ -\frac{7}{3} & -\frac{4}{3}\end{array}\right]$
11. $\left[\begin{array}{rr}7 & 27 \\ -8 & 36 \\ -17 & -4\end{array}\right] \quad$ 25. $\left[\begin{array}{cc}\frac{27}{2} & \frac{31}{2} \\ -4 & 18 \\ -\frac{29}{2} & 6\end{array}\right]$
12. a. $\left[\begin{array}{rr}0 & 16 \\ 12 & 8\end{array}\right]$
b. $\left[\begin{array}{rr}-7 & 3 \\ 29 & 15\end{array}\right]$
13. a. [30]

$$
\text { b. }\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12 \\
4 & 8 & 12 & 16
\end{array}\right]
$$

$$
\text { 31. } \left.\mathbf{a} \cdot \begin{array}{rrr}
4 & -5 & 8 \\
6 & -1 & 5 \\
0 & 4 & -6
\end{array}\right]
$$

$$
\text { b. }\left[\begin{array}{rrr}
5 & -2 & 7 \\
17 & -3 & 2 \\
3 & 0 & -5
\end{array}\right]
$$

$$
\text { 33. a. }\left[\begin{array}{rrr}
6 & 8 & 16 \\
11 & 16 & 24 \\
1 & -1 & 12
\end{array}\right]
$$

b. $\left[\begin{array}{rr}38 & 27 \\ -16 & -4\end{array}\right]$
35. a. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ b. $\left[\begin{array}{rrrr}4 & -1 & -3 & 1 \\ -1 & 4 & -3 & 2 \\ 14 & -11 & -3 & -1 \\ 25 & -25 & 0 & -5\end{array}\right]$
37. $\left[\begin{array}{rr}17 & 7 \\ -5 & -11\end{array}\right]$
39. $\left[\begin{array}{rr}11 & -1 \\ -7 & -3\end{array}\right]$
41. $A-C$ is not defined because A is 3×2 and C is 2×2.
43. $\left[\begin{array}{rr}16 & -16 \\ -12 & 12 \\ 0 & 0\end{array}\right] \quad$ 45. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
47. Answers will vary.; Example:

$$
\begin{aligned}
& A(B+C)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& A B+A C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

So, $A(B+C)=A B+A C$.
49. $\left[\begin{array}{c}x \\ -y\end{array}\right]$; It changes the sign of the y-coordinate.
51. a. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right] \quad$ b. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right]=\left[\begin{array}{lll}0 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 0\end{array}\right] \quad$ c. $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 3 & 3 \\ 1 & 3 & 1\end{array}\right]+\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & -2 & -2 \\ 1 & -2 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]$
53. $\left[\begin{array}{cccccc}-2 & 1 & 1 & -1 & -1 & -2 \\ -3 & -3 & -2 & -2 & 2 & 2\end{array}\right]$ 55. $\left[\begin{array}{llllll}0 & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 1 & \frac{3}{2} & \frac{3}{2} & \frac{7}{2} & \frac{7}{2}\end{array}\right]$

57. a. $\left[\begin{array}{rrrrrr}0 & 3 & 3 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 & -5 & -5\end{array}\right]$
b. The effect is a reflection across the x-axis.

59. a. $\left[\begin{array}{rrrrrr}0 & 0 & -1 & -1 & -5 & -5 \\ 0 & 3 & 3 & 1 & 1 & 0\end{array}\right]$
61. a. $A=\left[\begin{array}{rr}2 & 6 \\ 31 & 46\end{array}\right]$
b. $B=\left[\begin{array}{rr}9 & 29 \\ 65 & 77\end{array}\right]$
b.

c. $B-A=\left[\begin{array}{rr}7 & 23 \\ 34 & 31\end{array}\right]$

The difference between the percentage of people completing the transition to adulthood in 1960 and 2000 by age and gender

The effect is a 90° counterclockwise
rotation about the origin.
63. a. System 1: The midterm and final both count for 50% of the course grade. System 2: The midterm counts for 30% of the course grade and the final counts for 70%.
b. $\left[\begin{array}{ll}84 & 87.2 \\ 79 & 81 \\ 90 & 88.4 \\ 73 & 68.6 \\ 69 & 73.4\end{array}\right]$ System 1 grades are listed first (if different). Student 1: B; Student 2: C or B; Student 3: A or B; Student 4: C or D; Student 5: D or C
$\begin{array}{lll}\text { 77. makes sense } & \text { 79. makes sense } & \text { 83. } A B=-B A \text { so they are anticommutative. }\end{array}$
85. $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$; Nothing happens to the elements in the first matrix.
86. $\{(15,-12,-4)\}$
87. $\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$

Mid-Chapter 8 Check Point

1. $\{(1,-1,2)\}$
2. \varnothing
3. $\left\{\left(-\frac{4}{7}-\frac{4}{7} t, \frac{5}{7}+\frac{5}{7} t, t\right)\right\}$
4. $\{(3,6,-4,1)\}$
5. \varnothing
6. $\left[\begin{array}{cc}-4 & -\frac{1}{2} \\ 3 & 3\end{array}\right]$
7. $\left[\begin{array}{cc}-12 & -2 \\ -21 & -4 \\ 3 & 1\end{array}\right]$
8. $\left[\begin{array}{cc}12 & -4 \\ 22 & -7 \\ -4 & 1\end{array}\right]$
9. $A+C$ does not exist because A is 3×2 and C is 2×2.
10. $\{(3,6,-4,1)\}$
11. 10. $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -3 & \frac{1}{2}\end{array}\right]$

Section 8.4

Check Point Exercises

1. $A B=I_{2} ; B A=I_{2}$
2. $\left[\begin{array}{rr}3 & -7 \\ -2 & 5\end{array}\right]$
3. $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
4. $\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$
5. $\{(4,-2,1)\}$
6. The encoded message is $-7,10,-53,77$.
7. The decoded message is $2,1,19,5$ or BASE.

Concept and Vocabulary Check

1. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
3. multiplicative inverse
4. true
5. $a d-b c \neq 0$
6. singular
7. false
8. A^{-1}
9. $A^{-1} B$

Exercise Set 8.4

1. $A B=I_{2} ; B A=I_{2} ; B=A^{-1}$
2. $A B=\left[\begin{array}{rr}8 & -16 \\ -2 & 7\end{array}\right] ; B A=\left[\begin{array}{rr}12 & 12 \\ 1 & 3\end{array}\right] ; B \neq A^{-1}$
3. $A B=I_{2} ; B A=I_{2} ; B=A^{-1}$
4. $A B=I_{3} ; B A=I_{3} ; B=A^{-1}$
5. $A B=I_{3} ; B A=I_{3} ; B=A^{-1}$
6. $A B=I_{4} ; B A=I_{4} ; B=A^{-1}$
7. $\left[\begin{array}{rr}\frac{2}{7} & -\frac{3}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right]$
8. $\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
9. A does not have an inverse.
10. $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{6}\end{array}\right]$
11. $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 3 & 4\end{array}\right]$
12. $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 6\end{array}\right]$
13. $\left[\begin{array}{rrr}-3 & 2 & -4 \\ -1 & 1 & -1 \\ 8 & -5 & 10\end{array}\right]$ 27. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1\end{array}\right]$
14. $\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}13 \\ 10\end{array}\right]$
15. $\left[\begin{array}{lll}1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}-3 \\ -2 \\ -6\end{array}\right]$
16. $\left\{\begin{array}{l}4 x-7 y=-3 \\ 2 x-3 y=1\end{array}\right.$
17. $\left\{\begin{array}{r}2 x-z=6 \\ 3 y=9 \\ x+y=5\end{array} \quad\right.$ 37. a. $\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}8 \\ 10 \\ 9\end{array}\right]$
b. $\{(1,2,-1)\}$
18. a. $\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}8 \\ -7 \\ 1\end{array}\right]$
b. $\{(2,-1,5)\}$
19. a. $\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2\end{array}\right]\left[\begin{array}{c}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-3 \\ 4 \\ 2 \\ -4\end{array}\right]$
b. $\{(2,3,-1,0)\}$
20. $\left[\begin{array}{ll}\frac{1}{2} e^{-x} & -\frac{1}{2} e^{-3 x} \\ \frac{1}{2} e^{-3 x} & \frac{1}{2} e^{-5 x}\end{array}\right]$
21. $\left[\begin{array}{cc}\frac{1}{8} & \frac{5}{8} \\ \frac{3}{8} & \frac{7}{8}\end{array}\right]$
22. $(A B)^{-1}=\left[\begin{array}{rr}-23 & 16 \\ 13 & -9\end{array}\right] ; A^{-1} B^{-1}=\left[\begin{array}{rr}-3 & 11 \\ 8 & -29\end{array}\right] ; B^{-1} A^{-1}=\left[\begin{array}{rr}-23 & 16 \\ 13 & -9\end{array}\right] ;(A B)^{-1}=B^{-1} A^{-1} \quad$ 49. $A A^{-1}=I_{3}$ and $A^{-1} A=I_{3}$
23. The encoded message is $27,-19,32,-20$.; The decoded message is $8,5,12,16$ or HELP.
24. The encoded message is $14,85,-33,4,18,-7,-18,19,-9$.
25. $\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ 67. $\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & 1\end{array}\right] \quad$ 69. $\left[\begin{array}{rrrr}0 & -1 & 0 & 1 \\ -1 & -5 & 0 & 3 \\ -2 & -4 & 1 & -2 \\ -1 & -4 & 0 & 1\end{array}\right]$
26. $\{(2,3,-5)\}$
27. $\{(1,2,-1)\}$
28. $\{(2,1,3,-2,4)\}$
29. does not make sense
30. makes sense
31. false
32. false
33. false
34. $a=3$ or $a=-2$
35. 2
36. $6 \quad 95 .-31$

Section 8.5

Check Point Exercises

1. a. -4
b. -17
2. $\{(4,-2)\}$
3. 80
4. -24
5. $\{(2,-3,4)\}$
6. -250

Concept and Vocabulary Check

1. $5 \cdot 3-2 \cdot 4=15-8=7$; determinant; 7
2. $x=\frac{\left|\begin{array}{rr}8 & 1 \\ -2 & -1\end{array}\right|}{\left|\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right|} ; y=\frac{\left|\begin{array}{rr}1 & 8 \\ 1 & -2\end{array}\right|}{\left|\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right|}$
3. $3\left|\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right|-4\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|+5\left|\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right|$
4. $\frac{\left|\begin{array}{rrr}3 & -8 & 4 \\ 2 & 11 & -2 \\ 1 & 4 & -2\end{array}\right|}{\left|\begin{array}{rrr}3 & 1 & 4 \\ 2 & 3 & -2 \\ 1 & -3 & -2\end{array}\right|}$
5. column 3/the last column

Exercise Set 8.5

1. 1 3. -29
2. 0
3. 33
4. $-\frac{7}{16}$
5. $\{(5,2)\}$
6. $\{(2,-3)\}$
7. $\{(3,-1)\}$
8. $\left\{\left(2, \frac{1}{2}\right)\right\}$
9. $\{(4,2)\}$
10. $\{(7,4)\}$
11. 72
12. -75
13. 0
14. $\{(-5,-2,7)\}$
15. $\{(2,-3,4)\}$
16. $\{(3,-1,2)\}$
17. $\{(2,3,1)\}$
18. $-200 \quad$ 39. 195
19. $-42 \quad$ 43. $2 x-4 y=8 ; 3 x+5 y=-10 \quad$ 45. $-11 \quad$ 47. $4 \quad$ 49. 28 sq units \quad 51. yes \quad 53. The equation of the line is $y=-\frac{11}{5} x+\frac{8}{5}$.
20. $13,200 \quad$ 67. does not make sense \quad 69. does not make sense \quad 71. a. $a^{2} \quad$ b. $a^{3} \quad$ c. $a^{4} \quad$ d. Each determinant has zeros below the main diagonal and a 's everywhere else. e. Each determinant equals a raised to the power equal to the order of the determinant.
21. The sign of the value is changed when 2 columns are interchanged in a 2 nd order determinant.
22. $\left|\begin{array}{lll}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=x\left(y_{1}-y_{2}\right)-y\left(x_{1}-x_{2}\right)+\left(x_{1} y_{2}-x_{2} y_{1}\right)=0$; solving for $y, y=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} x+\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}$, and $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ and $b=\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}$.
$\begin{array}{llll}\text { 77. a. }-3 \text { and } 3 & \text { b. }-2 \text { and } 2 & \text { 78. } \frac{x^{2}}{16}+\frac{y^{2}}{25}=1 & \text { 79. }(x-1)^{2}+(y+2)^{2}=9 \text {; center: }(1,-2) \text {; radius: } 3 \text {; }\end{array}$

Chapter 8 Review Exercises

1. $\left[\begin{array}{rrr|r}1 & 2 & 2 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 9 & -9\end{array}\right]$ 2. $\left[\begin{array}{rrr|r}1 & -1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 2 & -1 & 2 \\ 6 & 4 & 3 & 5\end{array}\right] \quad$ 3. $\{(1,3,-4)\} \quad$ 4. $\{(-2,-1,0)\} \quad$ 5. $\{(2,-2,3,4)\}$
2. a. $a=-2 ; b=32 ; c=42 \quad$ b. 2:00 p.m.; 170 parts per million \quad 7. capitalist: 1%; upper middle: 15%; lower middle: 34%; working: 30%
3. $\varnothing \quad$ 9. $\{(2 t+4, t+1, t)\}$
4. $\{(-37 t+2,16 t,-7 t+1, t)\}$
5. $\{(7 t+18,-3 t-7, t)\}$
6. a. $\left\{\begin{array}{l}x+z=750 \\ y-z=-250 \\ x+y=500\end{array}\right.$
b. $\{(-t+750, t-250, t)\}$
c. $x=350 ; y=150$
7. $x=-5 ; y=6 ; z=6$
8. $\left[\begin{array}{lll}0 & 2 & 3 \\ 8 & 1 & 3\end{array}\right]$
9. $\left[\begin{array}{rr}0 & -4 \\ 6 & 4 \\ 2 & -10\end{array}\right]$
10. $\left[\begin{array}{rrr}-4 & 4 & -1 \\ -2 & -5 & 5\end{array}\right]$
11. Not possible since B is 3×2 and C is 3×3.
12. $\left[\begin{array}{rrr}2 & 3 & 8 \\ 21 & 5 & 5\end{array}\right]$
13. $\left[\begin{array}{rrr}-12 & 14 & 0 \\ 2 & -14 & 18\end{array}\right]$
14. $\left[\begin{array}{rrr}0 & -10 & -15 \\ -40 & -5 & -15\end{array}\right]$
15. $\left[\begin{array}{rr}-1 & -16 \\ 8 & 1\end{array}\right]$ 22. $\left[\begin{array}{rrr}-10 & -6 & 2 \\ 16 & 3 & 4 \\ -23 & -16 & 7\end{array}\right]$
16. $\left[\begin{array}{rrr}-6 & 4 & -8 \\ 0 & 5 & 11 \\ -17 & 13 & -19\end{array}\right]$
17. $\left[\begin{array}{rr}10 & 5 \\ -2 & -30\end{array}\right]$
18. Not possible since $A B$ is 2×2 and $B A$ is 3×3.
19. $\left[\begin{array}{rrr}7 & 6 & 5 \\ 2 & -1 & 11\end{array}\right]$
20. $\left[\begin{array}{rrr}-6 & -22 & -40 \\ 9 & 43 & 58 \\ -14 & -48 & -94\end{array}\right]$
21. $\left[\begin{array}{rr}-2 & -6 \\ 3 & \frac{1}{3}\end{array}\right]$
22. $\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right]$
23. $\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1\end{array}\right]$
24. $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 1 & 1 & -3\end{array}\right]$
25. $\left[\begin{array}{ccc}0 & 1 & 1 \\ -2 & -2 & -4\end{array}\right]$
26. $\left[\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]$

The effect is a reflection over the x-axis
34. $\left[\begin{array}{ccc}0 & -2 & -2 \\ 0 & 0 & -4\end{array}\right]$

The effect is a reflection over the y-axis.
35. $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 2 & 2\end{array}\right]$

The effect is a 90° counterclockwise rotation about the origin.
36. $\left[\begin{array}{ccc}0 & 4 & 4 \\ 0 & 0 & -4\end{array}\right]$

The effect is a horizontal stretch by a factor of 2 .
37. $A B=\left[\begin{array}{ll}1 & 7 \\ 0 & 5\end{array}\right] ; B A=\left[\begin{array}{ll}1 & 0 \\ 1 & 5\end{array}\right] ; B \neq A^{-1}$
38. $A B=I_{3} ; B A=I_{3} ; B=A^{-1}$
39. $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
40. $\left[\begin{array}{rr}-\frac{3}{5} & \frac{1}{5} \\ 1 & 0\end{array}\right]$
41. $\left[\begin{array}{rrr}3 & 0 & -2 \\ -6 & 1 & 4 \\ 1 & 0 & -1\end{array}\right]$
44. a. $\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}12 \\ -5 \\ 10\end{array}\right]$
42. $\left[\begin{array}{rrr}8 & -8 & 5 \\ -3 & 2 & -1 \\ -1 & -1 & 1\end{array}\right]$
43. a. $\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}7 \\ -2 \\ 0\end{array}\right]$
b. $\{(-18,79,-27)\}$
b. $\{(4,-2,3)\} \quad$ 45. The encoded message is $96,135,46,63$; The decoded message is $18,21,12,5$ or RULE. 46. 17 47. 4
48. -86
49. -236
50. 4
51. 16
52. $\left\{\left(\frac{7}{4},-\frac{25}{8}\right)\right\}$
53. $\{(2,-7)\}$
54. $\{(23,-12,3)\}$
55. $\{(-3,2,1)\}$
56. $a=\frac{5}{8} ; b=-50 ; c=1150 ; 30$ - and 50 -year-olds are involved in an average of 212.5 automobile accidents per day.

Chapter 8 Test

1. $\left\{\left(-3, \frac{1}{2}, 1\right)\right\}$
2. $\{(t, t-1, t)\}$
3. $\left[\begin{array}{rr}5 & 4 \\ 1 & 11\end{array}\right]$
4. $\left[\begin{array}{ll}5 & -2 \\ 1 & -1 \\ 4 & -1\end{array}\right]$
5. $\left[\begin{array}{rr}\frac{3}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5}\end{array}\right]$
6. $\left[\begin{array}{ll}-1 & 2 \\ -5 & 4\end{array}\right]$
7. $A B=I_{3} ; B A=I_{3}$
8. a. $\left[\begin{array}{rr}3 & 5 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}9 \\ -13\end{array}\right]$
b. $\left[\begin{array}{cc}\frac{3}{19} & \frac{5}{19} \\ \frac{2}{19} & -\frac{3}{19}\end{array}\right]$
c. $\{(-2,3)\}$
9. 18
10. $x=2$

Cumulative Review Exercises (Chapters P-8)

1. $\left\{\frac{-1+\sqrt{33}}{4}, \frac{-1-\sqrt{33}}{4}\right\}$
2. $\left[\frac{1}{2}, \infty\right)$
3. $\{5\}$
4. $\left\{-4, \frac{1}{3}, 1\right\}$
5. $\{\ln 5, \ln 9\}$
6. $\{1\}$
7. $\{(7,-4,6)\}$
8. $y=-1$
9. $f^{-1}(x)=\frac{x^{2}+7}{4}(x \geq 0)$
10.

11. $f(x)=(x+2)(x-3)(2 x+1)(2 x-1) \quad 12$.

13. a. $A=900 e^{-0.017 t}$
b. 759.30 g
14. $\left[\begin{array}{rr}2 & -1 \\ 13 & 1\end{array}\right]$
15. $\frac{8}{x-3}+\frac{-2}{x-2}+\frac{-3}{x+2}$
16.

17.

18.

19.

20. $x^{2}+2 x-2$
21.

22. $\frac{3}{5}$
23. $\frac{\cos 2 x}{\cos x-\sin x}=\frac{\cos ^{2} x-\sin ^{2} x}{\cos x-\sin x}=\frac{(\cos x+\sin x)(\cos x-\sin x)}{\cos x-\sin x}=\cos x+\sin x$
24. $\frac{3 \pi}{2}$
25. $2 \mathbf{i}-13 \mathbf{j}$

CHAPTER 9

Section 9.1

Check Point Exercises

1. foci at $(-3 \sqrt{3}, 0)$ and $(3 \sqrt{3}, 0)$

$$
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
$$

2. foci at $(0,-\sqrt{7})$ and $(0, \sqrt{7})$

$16 x^{2}+9 y^{2}=144$
3. $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
4. foci at $(-1-\sqrt{5}, 2)$ and $(-1+\sqrt{5}, 2)$

$\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$
5. Yes

Concept and Vocabulary Check

1. ellipse; foci; center
2. $5 ;(0,-\sqrt{5}) ;(0, \sqrt{5})$
3. $25 ;-5 ; 5 ;(-5$
4. $(-1,4)$
5. $25 ;-5 ; 5 ;(0,-5) ;(0,5) ; 9 ;-3 ; 3 ;(-3,0) ;(3,0)$
6. $4 ; 1 ; 16$

Exercise Set 9.1

1. foci at $(-2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)$

$$
\frac{x^{2}}{16}+\frac{y^{2}}{4}=1
$$

7. foci at $(0,-4 \sqrt{2})$ and $(0,4 \sqrt{2})$

$$
\frac{x^{2}}{49}+\frac{y^{2}}{81}=1
$$

13. foci at $(0,-\sqrt{21})$ and $(0, \sqrt{21})$

$$
25 x^{2}+4 y^{2}=100
$$

3. foci at $(0,-3 \sqrt{3})$ and $(0,3 \sqrt{3})$
4. foci at $(0,-\sqrt{39})$ and $(0, \sqrt{39})$

$$
\frac{x^{2}}{9}+\frac{y^{2}}{36}=1
$$

9. foci at $(0,-2)$ and $(0,2)$

10. foci at $(-2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{64}=1
$$

11. foci at $\left(-\frac{\sqrt{3}}{2}, 0\right)$ and $\left(\frac{\sqrt{3}}{2}, 0\right)$

12. foci at $(0,-\sqrt{2})$ and $(0, \sqrt{2})$

13. $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$; foci at $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$
14. $\frac{x^{2}}{1}+\frac{y^{2}}{4}=1$; foci at $(0, \sqrt{3})$ and $(0,-\sqrt{3})$
15. $\frac{(x+1)^{2}}{4}+\frac{(y-1)^{2}}{1}=1$; foci at $(-1-\sqrt{3}, 1)$ and $(-1+\sqrt{3}, 1) \quad$ 25. $\frac{x^{2}}{64}+\frac{y^{2}}{39}=1$
16. $\frac{x^{2}}{33}+\frac{y^{2}}{49}=1$
17. $\frac{x^{2}}{13}+\frac{y^{2}}{9}=1$
18. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
19. $\frac{(x+2)^{2}}{4}+\frac{(y-3)^{2}}{25}=1$
20. $\frac{(x-7)^{2}}{4}+\frac{(y-6)^{2}}{9}=1$
21. foci at $(2-\sqrt{5}, 1)$ and $(2+\sqrt{5}, 1)$

22. foci at $(0,2+\sqrt{11}),(0,2-\sqrt{11})$

$\frac{x^{2}}{25}+\frac{(y-2)^{2}}{36}=1$
23. foci at $(-3-2 \sqrt{2}, 2)$ and $(-3+2 \sqrt{2}, 2)$

24. foci at $(1,-3+\sqrt{3})$ and $(1,-3-\sqrt{3})$

25. foci at $(1,-3+\sqrt{5})$ and $(1,-3-\sqrt{5})$

26. $\frac{(x-2)^{2}}{25}+\frac{(y+1)^{2}}{9}=1$
foci at $(-2,-1)$ and $(6,-1)$

27. $\frac{(x-1)^{2}}{16}+\frac{(y+2)^{2}}{9}=1 \quad \begin{aligned} & \text { foci at }(1-\sqrt{7},-2) \text { and }(1+\sqrt{7},-2)\end{aligned}$

28.

65. Yes 67. a. $\frac{x^{2}}{2304}+\frac{y^{2}}{529}=1$
b. about 42 feet
83. $\frac{x^{2}}{\frac{36}{5}}+\frac{y^{2}}{36}=1$
79. does not make sense
81. does not make sense
87. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$; Terms are separated by subtraction rather than addition.
85. large circle: $x^{2}+y^{2}=25$; small circle: $x^{2}+y^{2}=9$
87. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1 ;$ Terms are
89. a. -3 and 3
b. The equation $x^{2}=-16$ has no real solutions.
88. a. -4 and 4
b. The equation $y^{2}=-9$ has no real solutions.
55. $\frac{(x+2)^{2}}{16}+\frac{(y-3)^{2}}{64}=1$
foci at $(-2,3+4 \sqrt{3})$ and $(-2,3-4 \sqrt{3})$

59. $\{(0,3)\}$
61. $\{(0,-2),(1,0)\}$
57. $\{(0,-1),(0,1)\}$
-
\square
Section 9.2

Check Point Exercises

1. a. vertices at $(5,0)$ and $(-5,0)$; foci at $(\sqrt{41}, 0)$ and $(-\sqrt{41}, 0) \quad$ b. vertices at $(0,5)$ and $(0,-5)$; foci at $(0, \sqrt{41})$ and $(0,-\sqrt{41})$
2. $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
3. foci at $(-3 \sqrt{5}, 0)$ and $(3 \sqrt{5}, 0)$ asymptotes: $y= \pm \frac{1}{2} x$

4. foci at $(0, \sqrt{5})$ and $(0,-\sqrt{5})$
asymptotes: $y= \pm 2 x$

5. $\frac{x^{2}}{2,722,500}-\frac{y^{2}}{25,155,900}=1$
6. foci at $(3,-5+\sqrt{13})$ and $(3,-5-\sqrt{13})$
7. foci at $(3-\sqrt{5}, 1)$ and $(3+\sqrt{5}, 1)$ asymptotes: $(y-1)= \pm \frac{1}{2}(x-3)$

$$
\begin{gathered}
y_{A} \\
(1,1) \\
\frac{(x-3)^{2}}{4}-\frac{(y-1)^{2}}{1}=1
\end{gathered}
$$

asymptotes: $(y+5)= \pm \frac{2}{3}(x-3)$

AA86 Answers to Selected Exercises

Concept and Vocabulary Check

1. hyperbola; foci; vertices; transverse
2. $(-5,0) ;(5,0) ;(-\sqrt{34}, 0) ;(\sqrt{34}, 0)$
3. $(0,-5) ;(0,5) ;(0,-\sqrt{34}) ;(0, \sqrt{34})$
4. asymptotes; center
5. dividing; 36
6. $y=-\frac{3}{2} x ; y=\frac{3}{2} x$
7. $y=-2 x ; y=2 x$
8. $(-3,3) ;(7,3)$
9. $(7,-2)$
10. $16 ; 1 ; 128$

Exercise Set 9.2

1. vertices at $(2,0)$ and $(-2,0)$; foci at $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$; graph $(b) \quad$ 3. vertices at $(0,2)$ and $(0,-2)$; foci at $(0, \sqrt{5})$ and $(0,-\sqrt{5})$; graph $($ a)
2. $y^{2}-\frac{x^{2}}{8}=1$
3. $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$
4. $\frac{y^{2}}{36}-\frac{x^{2}}{9}=1$
5. $\frac{(x-4)^{2}}{4}-\frac{(y+2)^{2}}{5}=1$
6. foci: $(\pm \sqrt{34}, 0)$
asymptotes: $y= \pm \frac{5}{3} x$

7. foci: $(\pm \sqrt{13}, 0)$
asymptotes: $y= \pm \frac{3}{2} x$

8. foci: $(-9,-3),(1,-3)$
asymptotes: $(y+3)= \pm \frac{4}{3}(x+4)$

9. foci: $(3 \pm \sqrt{5},-3)$
asymptotes: $(y+3)= \pm \frac{1}{2}(x-3)$

10. $\frac{(y+1)^{2}}{4}-\frac{(x+2)^{2}}{0.25}=1$
foci: $(-2,-1 \pm \sqrt{4.25})$
asymptotes: $(y+1)= \pm 4(x+2)$

$16 x^{2}-y^{2}+64 x-2 y+67=0$
11. foci: $(\pm 2 \sqrt{41}, 0)$ asymptotes: $y= \pm \frac{4}{5} x$

12. foci: $(0, \pm \sqrt{34})$
asymptotes: $y= \pm \frac{5}{3} x$

13. foci: $(-3 \pm \sqrt{41}, 0)$
asymptotes: $y= \pm \frac{4}{5}(x+3)$

14. foci: $(1 \pm \sqrt{6}, 2)$
asymptotes: $(y-2)= \pm(x-1)$

15. $\frac{(x-2)^{2}}{9}-\frac{(y-3)^{2}}{4}=1$
foci: $(2 \pm \sqrt{13}, 3)$
asymptotes: $(y-3)= \pm \frac{2}{3}(x-2)$
16. foci: $\left(0, \pm \frac{\sqrt{5}}{2}\right)$ asymptotes: $y= \pm \frac{1}{2} x$

17. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
18. $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$
19. $\frac{(x-2)^{2}}{4}-\frac{(y+3)^{2}}{9}=1$
20. foci: $(1,-2 \pm 2 \sqrt{5})$
asymptotes: $(y+2)= \pm \frac{1}{2}(x-1)$

21. $(x-1)^{2}-(y+2)^{2}=1$
foci: $(1 \pm \sqrt{2},-2)$
asymptotes: $(y+2)= \pm(x-1)$

22. $\frac{y^{2}}{4}-\frac{(x-4)^{2}}{25}=1$
foci: $(4, \pm \sqrt{29})$
asymptotes: $y= \pm \frac{2}{5}(x-4)$

23. domain: $(-\infty,-3] \cup[3, \infty)$
range: $(-\infty, \infty)$

24. domain: $[-3,3]$
range: $[-4,4]$

25. domain: $(-\infty, \infty)$
range: $(-\infty,-4] \cup[4, \infty)$

26. $\{(-2,0),(2,0)\} \quad$ 59. $\{(0,-3),(0,3)\}$
27. If M_{1} is located 2640 feet to the right of the origin on the x-axis, the explosion is located on the right branch of the hyperbola given by the equation $\frac{x^{2}}{1,210,000}-\frac{y^{2}}{5,759,600}=1 . \quad$ 63. $40 \mathrm{yd} \quad$ 65. a. ellipse \quad b. $x^{2}+4 y^{2}=4$
28.

$$
\begin{aligned}
& \text { 79. } 2 y^{2}+(10-6 x) y+\left(4 x^{2}-3 x-6\right)=0 \\
& y=\frac{3 x-5 \pm \sqrt{x^{2}-24 x+37}}{2}
\end{aligned}
$$

The $x y$-term rotates the hyperbola.
81. does not make sense
83. makes sense
85. false
87. true
89. $\frac{c}{a}$ will be large when a is small. When this happens, the asymptotes will be nearly vertical. 91. Any hyperbola where $a=b$, such as $\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$, has perpendicular asymptotes.
92.

93.

94. $(y+1)^{2}=-12 x+24$

Section 9.3

Check Point Exercises

1. focus: $(2,0)$
directrix: $x=-2$

2. focus: $(0,-3)$ directrix: $y=3$

3. $y^{2}=32 x$
4. vertex: $(2,-1)$; focus: $(2,0)$ directrix: $y=-2$

5. vertex: $(2,-1)$; focus: $(1,-1)$ directrix: $x=3$

6. $x^{2}=\frac{9}{4} y$; The light should be placed at $\left(0, \frac{9}{16}\right)$, or $\frac{9}{16}$ inch above the vertex.

Concept and Vocabulary Check

1. parabola; directrix; focus
2. a
3. $(-7,0)$
4. $x=7$
5. $28 ;(-7,-14) ;(-7,14)$
6. d
7. $(-2,0)$
8. $y=-2$
9. $4 ;(-4,0) ;(0,0)$

Exercise Set 9.3

1. focus: $(1,0)$; directrix: $x=-1$; graph (c)
2. focus: $(4,0)$; directrix: $x=-4$
3. focus: $(0,-1)$, directrix: $y=1$; graph (b)
4. focus: $(-2,0)$; directrix: $x=2$

5. focus: $(0,3)$; directrix: $y=-3$

6. focus: $(0,-4)$; directrix: $y=4$

7. focus: $\left(\frac{3}{2}, 0\right)$; directrix: $x=-\frac{3}{2}$

8. focus: $\left(0,-\frac{1}{8}\right)$; directrix: $y=\frac{1}{8}$

$\begin{array}{ll}\text { 17. } y^{2}=28 x & \text { 19. } y^{2}=-20 x\end{array}$
9. $x^{2}=60 y$
10. $x^{2}=-100 y$
11. $(x-2)^{2}=-8(y+3)$
12. $(y-2)^{2}=8(x-1)$
13. $(x+3)^{2}=4(y-3) \quad$ 31. vertex: $(1,1)$; focus: $(2,1)$; directrix: $x=0$; graph (c) \quad 33. vertex: $(-1,-1)$; focus: $(-1,-2)$; directrix: $y=0$; graph (d)
14. vertex: $(2,1)$; focus: $(2,3)$ directrix: $y=-1$

15. vertex: $(-1,-1)$; focus: $(-1,-3)$
directrix: $y=1$
16. vertex: $(-1,-3)$; focus: $(2,-3)$ directrix: $x=-4$

17. $(x-1)^{2}=4(y-2)$; vertex: $(1,2)$ focus: $(1,3)$; directrix: $y=1$

18. $(x+3)^{2}=4(y+2)$
vertex: $(-3,-2)$; focus: $(-3,-1)$
directrix: $y=-3$

19. $\{(-4,2),(0,0)\}$

20. $\{(-2,1)\}$

21. \varnothing

22. 1 inch above the vertex
23. 4.5 feet from the base of the dish
24. 76 m
25. yes
26. $y=-1 \pm \sqrt{6 x-12}$

27. $9 y^{2}+(-24 x-80) y+16 x^{2}-60 x+100=0$ $y=\frac{12 x+40 \pm 10 \sqrt{15 x+7}}{9}$

28. does not make sense
29. makes sense
30. false
31. false
32. focus: $\left(0,-\frac{E}{4 A}\right)$; directrix: $y=\frac{E}{4 A}$
33. $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=2$
34. a.

b. $-\frac{7}{25} \quad$ c. $\sin \theta=\frac{4}{5}=0.8 ; \cos \theta=\frac{3}{5}=0.6$
d. Since $90^{\circ}<2 \theta<180^{\circ}$, we have $45^{\circ}<\theta<90^{\circ}$. Both $\cos \theta$ and $\sin \theta$ are positive when $45^{\circ}<\theta<90^{\circ}$.

Mid-Chapter 9 Check Point

1. foci: $(\pm \sqrt{21}, 0)$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
$$

6. foci: $(\pm \sqrt{10}, 0)$
asymptotes: $y= \pm \frac{1}{3} x$

$$
\frac{x^{2}}{9}-y^{2}=1
$$

11. foci: $(-1,3 \pm 2 \sqrt{5})$; asymptotes:

$$
(y-3)= \pm 2(x+1)
$$

16.

21.

26. $(x-4)^{2}=12(y-2)$
30. a. $\frac{x^{2}}{1.1025}-\frac{y^{2}}{7.8975}=1$
2. foci: $(0, \pm \sqrt{5})$

7. foci: $(0, \pm \sqrt{10})$
asymptotes: $y= \pm 3 x$

12. focus: $(2,-4)$; directrix: $y=2$;

17.

3. foci: $(2,2),(2,-4)$

4. foci: $(-5,1),(1,1)$

5. foci: $(2 \pm 4 \sqrt{2},-3)$

8. foci: $(0, \pm 2 \sqrt{5})$
asymptotes: $y= \pm 2 x$

9. foci: $(\pm \sqrt{53}, 0)$
asymptotes: $y= \pm \frac{2}{7} x$

10. foci: $(-3,-2),(7,-2)$ asymptotes: $(y+2)= \pm \frac{4}{3}(x-2)$

13. focus: $\left(-\frac{5}{2}, 1\right)$;
directrix: $x=-\frac{7}{2}$;

14.

15.

19.

20.

22. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
23. $\frac{(x-1)^{2}}{81}+\frac{(y-2)^{2}}{56}=1$
24. $\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$
25. $\frac{(x+1)^{2}}{4}-\frac{(y-5)^{2}}{5}=1$
27. $(y-6)^{2}=-20(x-3)$
28. no
29. $20 \sqrt{3} \mathrm{~cm}$
b.

31. 1.4 m

Section 9.4

Check Point Exercises

1. a. ellipse
b. circle
c. parabola
d. hyperbola
2. $\frac{x^{\prime 2}}{4}-\frac{y^{\prime 2}}{4}=1$

3. $\frac{x^{\prime 2}}{\frac{4}{5}}+\frac{y^{\prime 2}}{4}=1$

4. $\left(x^{\prime}, y^{\prime}\right)=(2,4)$;
5. parabola

AA90 Answers to Selected Exercises

Concept and Vocabulary Check

$\begin{array}{lll}\text { 1. circle; parabola; ellipse; hyperbola } & \text { 2. } \cot 2 \theta=\frac{A-C}{B} & \text { 3. parabola; ellipse; circle; hyperbola }\end{array}$

Exercise Set 9.4

1. parabola
2. hyperbola 5. circle
3. hyperbola
4. $\frac{y^{\prime 2}}{2}-\frac{x^{\prime 2}}{2}=1$
5. $\frac{y^{\prime 2}}{1}-\frac{x^{\prime 2}}{3}=1$
6. $\frac{x^{\prime 2}}{4}-\frac{y^{\prime 2}}{9}=1$
7. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)$
8. $x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) ; y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)$
9. $x=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2} ; y=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}$
10. $x=\frac{3 x^{\prime}-4 y^{\prime}}{5} ; y=\frac{4 x^{\prime}+3 y^{\prime}}{5}$
11. $x=\sqrt{ } 5\left(\frac{2 x^{\prime}-y^{\prime}}{5}\right) ; y=\sqrt{ } 5\left(\frac{x^{\prime}+2 y^{\prime}}{5}\right)$
12. $x=\frac{4 x^{\prime}-3 y^{\prime}}{5} ; y=\frac{3 x^{\prime}+4 y^{\prime}}{5}$
13. a. $3 x^{\prime 2}+y^{\prime 2}=20$
14. a. $-4 x^{\prime 2}+16 y^{\prime 2}=64$
15. a. $64 x^{\prime 2}-16 y^{\prime 2}=16$
b. $\frac{x^{\prime 2}}{\frac{20}{3}}+\frac{y^{\prime 2}}{20}=1$
b. $\frac{y^{\prime 2}}{4}-\frac{x^{\prime 2}}{16}=1$
b. $\frac{x^{\prime 2}}{\frac{1}{4}}-\frac{y^{\prime 2}}{1}=1$
c. $\left(x^{\prime}, y^{\prime}\right) \approx(0,4.47)$
c. $\left(x^{\prime}, y^{\prime}\right)=(0,2)$
c.

16. a. $650 x^{\prime 2}+25 y^{\prime 2}=225$
17. a. $50 x^{\prime 2}-75 y^{\prime 2}=25$
b. $\frac{x^{\prime 2}}{\frac{1}{2}}-\frac{y^{\prime 2}}{\frac{1}{3}}=1$
b. $\frac{x^{\prime 2}}{\frac{9}{26}}+\frac{y^{\prime 2}}{9}=1$
c. ${ }_{(x,}$

c.

18. a. $625 x^{\prime 2}+1250 y^{\prime 2}=625$
b. $\frac{x^{\prime 2}}{1}+\frac{y^{\prime 2}}{\frac{1}{2}}=1$

19. ellipse or circle
20. parabola
21.

61. does not make sense
63. makes sense
65. There are no solutions to this equation just as there is no such sound.
67. $A^{\prime}=A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta$

$$
C^{\prime}=A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta
$$

$A^{\prime}+C^{\prime}=A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta+A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta$

$$
=A\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+B(\sin \theta \cos \theta-\sin \theta \cos \theta)+C\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
$$

$$
=A(1)+B(0)+C(1)
$$

$$
=A+C
$$

70.

71.

72

59.

Section 9.5

Check Point Exercises

1.

2.

3.

4. $x=t$ and $y=t^{2}-25$
15.

23. $y=(x+4)^{2}$

31. $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

37. $y=x-4, x \geq 2, y \geq-2$

39. $y=\frac{1}{x}, x \geq 1, y \geq 0$
41. $(x-h)^{2}+(y-k)^{2}=r^{2}$
43. $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
45. $x=3+6 \cos t ; y=5+6 \sin t$

47. $x=-2+5 \cos t ; y=3+2 \sin t \quad$ 49. $x=4 \sec t ; y=2 \sqrt{5} \tan t \quad$ 51. $x=-2+3 t ; y=4+3 t$
53. Answers may vary. Sample answer: $x=t$ and $y=4 t-3$; $x=t+1$ and $y=4 t+1$
55. Answers may vary. Sample answer: $x=t$ and $y=t^{2}+4 ; x=t+1$ and $y=t^{2}+2 t+5$
57. a.

59.

domain: $[-2,6]$
range: $[-5,3]$
b.

c.

63.

a. increasing: $(-\infty, \infty)$
b. no maximum or minimum
d.

65.

a. decreasing: $(-\infty, 1)$; increasing: $(1, \infty)$
b. minimum of -5 at $x=1$
67.

a. increasing: $(0,2 \pi)$; decreasing: $(2 \pi, 4 \pi)$
b. maximum of 4 at $x=2 \pi$ minimum of 0 at $x=0$ and $x=4 \pi$
79.

81.

83.

Window: $[-100,1500] \times[-100,500]$;
The maximum height is 419.4 feet at a time of 5.1 seconds. The range of the projectile is 1174.6 feet horizontally. It hits the ground at 10.2 seconds.
87. makes sense
89. makes sense
91. $x=3 \sin t ; y=3 \cos t$
93. $r=\frac{2}{1+\frac{1}{2} \cos \theta}$
95. a. $\quad r=\frac{1}{3-3 \cos \theta}$

$$
\begin{aligned}
r(3-3 \cos \theta) & =1 \\
3 r-3 r \cos \theta & =1 \\
3 r & =1+3 r \cos \theta \\
(3 r)^{2} & =(1+3 r \cos \theta)^{2} \\
9 r^{2} & =(1+3 r \cos \theta)^{2}
\end{aligned}
$$

Section 9.6

Check Point Exercises

1.

2.

3.

Concept and Vocabulary Check

1. focus; directrix; eccentricity; parabola; ellipse; hyperbola \quad 2. pole; eccentricity \quad 3. 3 ; hyperbola; 1 ; perpendicular; 1 ; right
2. 1; parabola; 2; parallel; 2; below
3. 1 ; dividing the numerator and denominator by 4

Exercise Set 9.6

1. a. parabola
b. The directrix is 3 units above the pole, at $y=3$.
b. The directrix is 4 units above the pole, at $y=4$.
2. a. parabola
3. a. ellipse
b. The directrix is 3 units to the left of the pole, at $x=-3$
b. The directrix is 3 units to the left of the pole, at $x=-3$.
4.

15.

11.

17.

13.

19.

21. $[-3,15,1]$ by $[-7,7,1]$
23. $[-4,2,1]$ by $[-10,10,1]$
25. $[-2,5,1]$ by $[-10,10,1]$
27. $[-4,4,1]$ by $[-10,0.4,1]$
29. 0.54 astronomical units or 51 million miles 31. 4122 miles from the center of the Earth; 162 miles from the surface of the Earth
41. hyperbola

43.

The graph appears to be rotated counterclockwise through an angle of $\frac{\pi}{4}$ radians.
45. Mercury: $r=\frac{\left(1-0.2056^{2}\right)\left(36.0 \times 10^{6}\right)}{1-0.2056 \cos \theta}$

Earth: $r=\frac{\left(1-0.0167^{2}\right)\left(92.96 \times 10^{6}\right)}{1-0.0167 \cos \theta}$

47. does not make sense
49. does not make sense
51. $r=\frac{2}{1-\frac{1}{2} \cos \theta}$ or $r=\frac{6}{1+\frac{1}{2} \cos \theta}$
53. parabola; using the relationships between rectangular and polar coordinates, $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta: y^{2}=x+\frac{1}{4}$
55. $-\frac{1}{2} ; \frac{1}{8} ;-\frac{1}{26} ; \frac{1}{80}$
56. 120
57. $2 ; 5 ; 10 ; 17 ; 26 ; 37$; Sum is 97 .

Chapter 9 Review Exercises

1. foci: $(\pm \sqrt{11}, 0)$
2. foci: $(0, \pm 3)$
3. foci: $(0, \pm 2 \sqrt{3})$
$\frac{y^{2}}{25}+\frac{x^{2}}{16}=1$

4. foci: $(\pm \sqrt{5}, 0)$

5. foci: $(1 \pm \sqrt{7},-2)$
6. foci: $(-1,2 \pm \sqrt{7})$

7. foci: $(-3 \pm \sqrt{5}, 2)$

8. $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1 \quad$ 13. yes
9. $\frac{(x+3)^{2}}{36}+\frac{(y-5)^{2}}{4}=1$
10. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
11. $\frac{x^{2}}{27}+\frac{y^{2}}{36}=1$
12. The hit ball will collide with the other ball.
13. foci: $(\pm \sqrt{17}, 0) ; y= \pm \frac{1}{4} x$
14. foci: $(0, \pm \sqrt{17}) ; y= \pm 4 x$

15. foci: $(3,-2 \pm \sqrt{41})$

$$
y+2= \pm \frac{5}{4}(x-3)
$$

25. c must be greater than a.
23. $\frac{y^{2}}{4}-\frac{x^{2}}{12}=1 \quad$ 24. $\frac{x^{2}}{9}-\frac{y^{2}}{55}=1$
28. vertex: $(0,0)$; focus: $(0,-4)$ directrix: $y=4$

32. vertex: $(-1,5)$; focus: $(0,5)$ directrix: $x=-2$
directrix: $y=2$

17. foci: $(\pm 5,0) ; y= \pm \frac{3}{4} x$

21. foci: $(1,2 \pm \sqrt{5})$ $y-2= \pm 2(x-1)$

26. $\frac{x^{2}}{2162.25}-\frac{y^{2}}{7837.75}=1$
29. vertex: $(0,2)$; focus: $(-4,2)$ directrix: $x=4$

8. foci: $(1,-1 \pm \sqrt{5})$

18. foci: $(0, \pm 2 \sqrt{5}) ; y= \pm \frac{1}{2} x$

22. foci: $(1 \pm \sqrt{2},-1)$ $y+1= \pm(x-1)$

30. vertex: $(4,-1)$; focus: $(4,0)$ directrix: $y=-2$

33. vertex: $(2,-2)$; focus: $\left(2,-\frac{3}{2}\right)$; directrix: $y=-\frac{5}{2}$

34. $y^{2}=48 x \quad$ 35. $x^{2}=-44 y \quad$ 36. $x^{2}=12 y$; Place the light 3 inches from the vertex at $(0,3)$. 37 . approximately 58 ft
38. approximately 128 ft 39. parabola
40. ellipse
41. ellipse
42. hyperbola
43. ellipse or circle
44. ellipse or circle
45. parabola 46. ellipse or circle
47. a. $x^{\prime 2}-y^{\prime 2}=8$
b. $\frac{x^{\prime 2}}{8}-\frac{y^{\prime 2}}{8}=1$

48. a. $3 x^{\prime 2}+y^{\prime 2}=2$
b. $\frac{x^{\prime 2}}{\frac{2}{3}}+\frac{y^{\prime 2}}{2}=1$
c.

49. a. $18 x^{\prime 2}-2 y^{\prime 2}=18$
b. $\frac{x^{\prime 2}}{1}-\frac{y^{\prime 2}}{9}=1$
c.

50. a. $50 x^{\prime 2}+150 y^{\prime 2}=450$
b. $\frac{x^{\prime 2}}{9}+\frac{y^{\prime 2}}{3}=1$
c.

51. a. $16 x^{\prime 2}+96 y^{\prime}=0$
b. $x^{\prime 2}=-6 y^{\prime}$
c.

$\left(x^{\prime}, y^{\prime}\right)=(-3 \sqrt{2},-3)$
52. $y=-\frac{1}{2} x+\frac{1}{2}$

56. $\begin{aligned} & \frac{(x-3)^{2}}{4}+\frac{(y-1)^{2}}{4}=1 \\ & \text { or }(x-3)^{2}+(y-1)^{2}=4\end{aligned}$

58. Answers may vary. Sample answer: $x=t$ and $y=t^{2}+6 ; x=t+1$ and $y=t^{2}+2 t+7$
59. a. $x=\left(100 \cos 40^{\circ}\right) t ; y=6+\left(100 \sin 40^{\circ}\right) t-16 t^{2}$
b. After 1 second: 76.6 feet in distance, 54.3 feet in height; after 2 seconds: 153.2 feet in distance, 70.6 feet in height; after 3 seconds: 229.8 feet in distance, 54.8 feet in height.
c. $4.1 \mathrm{sec} ; 314.1 \mathrm{ft}$
d.

; The ball is at its maximum height at 2.0 seconds. The maximum height is 70.6 feet.
60. a. $r=\frac{4}{1-\sin \theta} \quad$ b. $e=1 ; p=4$; parabola
c.

61. a. $r=\frac{6}{1+\cos \theta} \quad$ b. $e=1 ; p=6$; parabola
c.

62. a. $r=\frac{3}{1+\frac{1}{2} \sin \theta}$
b. $e=\frac{1}{2} ; p=6$; ellipse

63. a. $r=\frac{\frac{2}{3}}{1-\frac{2}{3} \cos \theta} \quad$ b. $e=\frac{2}{3} ; p=1$; ellipse
c.

64. a. $r=\frac{2}{1+2 \sin \theta} \quad$ b. $e=2 ; p=1$; hyperbola
c.

65. a. $r=\frac{2}{1+4 \cos \theta} \quad$ b. $e=4 ; p=\frac{1}{2}$; hyperbola

Chapter 9 Test

1. foci: $(\pm \sqrt{13}, 0)$
asymptotes: $y= \pm \frac{3}{2} x$

2. foci: $(-1,1 \pm \sqrt{5})$
asymptotes: $y-1= \pm 2(x+1)$
3. vertex: $(-5,1)$; focus: $(-5,3)$ directrix: $y=-1$

4. vertex: $(0,0)$; focus: $(0,-2)$ directrix: $y=2$

5. foci: $(-6,5),(2,5)$

6. $\frac{x^{2}}{100}+\frac{y^{2}}{51}=1 \quad$ 7. $\frac{y^{2}}{49}-\frac{x^{2}}{51}=1$
7. a. $x^{2}=3 y$
b. Light is placed $\frac{3}{4}$ inch above the vertex.
8. $y^{2}=200 x$
9. 32 ft

10. $(y+1)^{2}=x$

11. $\frac{(x-1)^{2}}{9}+\frac{y^{2}}{4}=1$

12. parabola

13. ellipse

Cumulative Review Exercises (Chapters P-9)

1. $\{2\}$
2. $\{x \mid x<2\}$ or $(-\infty, 2)$
3. $\{9\}$
4. $\{2+2 \sqrt{5}, 2-2 \sqrt{5}\}$
5. $\{x \mid x \geq 4$ or $x \leq-3\}$ or $(-\infty,-3] \cup[4, \infty)$
6. $\left\{\frac{2}{3},-1 \pm \sqrt{2}\right\}$
7. $\{3\}$
8. $\{(2,-1)\}$
9. $\{(2,-4),(-14,-20)\}$
10. $\{(7,-4,6)\}$
11.

12.

13.

14. a. $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{1}{16}, \pm \frac{3}{16}, \pm \frac{1}{32}, \pm \frac{3}{32}$
b. $\left\{-\frac{1}{8}, \frac{3}{4}, 1\right\}$
15. a. domain: $(-2,2)$; range: $[-3, \infty)$
b. minimum of -3 at $x=0$
c. $(0,2)$
d. 3
e. -3
f. $x \rightarrow-2^{+} ; x \rightarrow 2^{-}$
g.

h. $\quad x=-1 y_{A} x=1$

16. $(g \circ f)(x)=x^{2}-2$
17. $3 \log _{5} x+\frac{1}{2} \log _{5} y-3$
18. $y=-2 x-2$
19. The costs will be the same when the number of miles driven is 175 miles. The cost will be $\$ 67$.
20. $\$ 25$ for basic cable service and $\$ 10$ for each movie channel
21. $\frac{\csc \theta-\sin \theta}{\sin \theta}=\frac{\csc \theta}{\sin \theta}-\frac{\sin \theta}{\sin \theta}=\frac{\frac{1}{\sin \theta}}{\sin \theta}-1=\frac{1}{\sin ^{2} \theta}-1=\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta$
22.

23. $-3 \mathbf{i}-3 \mathbf{j}$
24. $\theta=0, \theta=\pi, \theta=\frac{\pi}{3}$, or $\theta=\frac{5 \pi}{3}$
25. $b \approx 14.4, C=44^{\circ}, c \approx 10.5$

CHAPTER 10

Section 10.1

Check Point Exercises

1. a. $7,9,11,13$
b. $-\frac{1}{3}, \frac{1}{5},-\frac{1}{9}, \frac{1}{17}$
2. $3,11,27,59$
3. $10, \frac{10}{3}, \frac{5}{6}, \frac{1}{6}$
4. a. 91
b. n
5. a. 182
b. 47
c. 20
6. a. $\sum_{i=1}^{9} i^{2}$
b. $\sum_{i=1}^{n} \frac{1}{2^{i-1}}$

Concept and Vocabulary Check

1. sequence; integers; terms
2. general
3. 4
4. $\frac{1}{15}$
5. 2
6. factorial; $5 ; 1 ; 1$
7. $n+3$
8. $a_{1}+a_{2}+a_{3}+\cdots+a_{n}$; index; upper limit; lower limit

Exercise Set 10.1

1. $5,8,11,14$
2. $3,9,27,81$
3. $-3,9,-27,81$
4. $-4,5,-6,7$
5. $\frac{2}{5}, \frac{2}{3}, \frac{6}{7}, 1$
6. $1,-\frac{1}{3}, \frac{1}{7},-\frac{1}{15}$
7. $7,12,17,22$
8. $3,12,48,192$
9. $4,11,25,53$
10. $1,2, \frac{3}{2}, \frac{2}{3}$
11. $4,12,48,240$
12. 272
13. 120
14. $(n+2)(n+1)$
15. 105
16. 60
17. 115
18. $-\frac{5}{16}$
19. 55
20. $\frac{3}{8}$
21. 15
22. $\sum_{i=1}^{15} i^{2}$
23. $\sum_{i=1}^{11} 2^{i}$
24. $\sum_{i=1}^{30} i$
25. $\sum_{i=1}^{14} \frac{i}{i+1}$
26. $\sum_{i=1}^{n} \frac{4^{i}}{i}$
27. $\sum_{i=1}^{n}(2 i-1)$
28. $\sum_{k=1}^{14}(2 k+3)$
29. $\sum_{k=0}^{12} a r^{k}$
30. $\sum_{k=0}^{n}(a+k d)$
31. 45
32. 0
33. 2
34. 80
35. a. 1515; A total of 1515 thousand, or $1,515,000$, autism cases were diagnosed in the

United States from 2001 through 2008.
b. 1512 ; underestimates by 3 thousand
85. $24,80489$.

As n gets larger, a_{n} approaches 1.
91.

As n gets larger, a_{n} approaches 0 .
71. $\$ 8081.13$
81. 39,800
83. 8.109673361 E15
93. does not make sense 95. makes sense 97. false 99. false 101. $9,32,16,8,4$ 103. $-5 ;-5 ;-5 ;-5$; The difference between consecutive terms is always -5 .
104. $4 ; 4 ; 4 ; 4$; The difference between consecutive terms is always 4 . 105. -45

Section 10.2

Check Point Exercises

1. $100,70,40,10,-20,-50$
2. -34
3. a. $a_{n}=0.35 n+15.65$
b. 23%
4. 360
5. 2460
6. $\$ 740,300$

Concept and Vocabulary Check

1. arithmetic; common difference
2. $a_{1}+(n-1) d$; first term; common difference
3. $\frac{n}{2}\left(a_{1}+a_{n}\right)$; first term; nth term
4. $2 ; 116$
5. $8 ; 13 ; 18 ; 5$

AA98 Answers to Selected Exercises

Exercise Set 10.2

1. $200,220,240,260,280,300$
2. $-7,-3,1,5,9,13$
3. $300,210,120,30,-60,-150$
4. $\frac{5}{2}, 2, \frac{3}{2}, 1, \frac{1}{2}, 0$
5. $-9,-3,3,9,15,21$
6. $30,20,10,0,-10,-20$
7. $1.6,1.2,0.8,0.4,0,-0.4$
8. 33
9. 252
10. 955
11. $-142 \quad$ 23. $a_{n}=4 n-3 ; a_{20}=77$
12. $a_{n}=11-4 n ; a_{20}=-69$
13. $a_{n}=7+2 n ; a_{20}=47$ 29. $a_{n}=-16-4 n ; a_{20}=-96$
14. $a_{n}=1+3 n ; a_{20}=61$
15. $a_{n}=40-10 n ; a_{20}=-160 \quad$ 35. $1220 \quad$ 37. $4400 \quad$ 39. $5050 \quad$ 41. $3660 \quad$ 43. $396 \quad$ 45. $8+13+18+\cdots+88$; 816
16. $2-1-4-\cdots-85 ;-1245 \quad$ 49. $4+8+12+\cdots+400 ; 20,200 \quad$ 51. $7 \quad$ 53. $22 \quad$ 55. $847 \quad$ 57. $f(x)=-4 x+5$
17. $a_{n}=3 n-2 \quad$ 61. a. $a_{n}=0.5 n+10.5 \quad$ b. $35.5 \% \quad$ 63. Company A will pay $\$ 1400$ more in year 10 . 65. a. $\$ 25,626$
b. $\$ 25,626$; It's the same. 69. Company A: $\$ 307,000$; Company B: $\$ 324,000$; Company B pays the greater total amount. 71. 2869 seats 79. makes sense 81. makes sense 83. 320 degree-days $85 .-2 ;-2 ;-2 ;-2$; The ratio of a term to the term that directly precedes it is always $-2 . \quad$ 86. $5 ; 5 ; 5 ; 5$; The ratio of a term to the term that directly precedes it is always 5 . 87. 8019

Section 10.3

Check Point Exercises

1. $12,6,3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}$
2. 3645
3. $a_{n}=3(2)^{n-1} ; a_{8}=384$
4. 9842
5. 19,680
6. $\$ 2,371,746$
7. a. $\$ 333,946$
b. $\$ 291,946$
$\begin{array}{lll}\text { 8. } 9 & \text { 9. } 1 & \text { 10. } \$ 4000\end{array}$

Concept and Vocabulary Check

1. geometric; common ratio \quad 2. $a_{1} r^{n-1}$; first term; common ratio
2. $\frac{a_{1}\left(1-r^{n}\right)}{1-r}$; first term; common ratio
3. annuity; $P ; r ; n$
4. infinite geometric series; $1 ; \frac{a_{1}}{1-r} ;|r| \geq 1$
5. $2 ; 4 ; 8 ; 16 ; 2$
6. arithmetic
7. geometric
8. geometric
9. arithmetic

Exercise Set 10.3

1. $5,15,45,135,405$
2. $20,10,5, \frac{5}{2}, \frac{5}{4}$
3. $10,-40,160,-640,2560$
$\begin{array}{ll}\text { 7. }-6,30,-150,750,-3750 & \text { 9. } a_{8}=768\end{array}$
4. $a_{12}=-10,240$
5. $a_{40} \approx-0.000000002$
6. $a_{8}=0.1$
7. $a_{n}=3(4)^{n-1} ; a_{7}=12,288$
8. $a_{n}=18\left(\frac{1}{3}\right)^{n-1} ; a_{7}=\frac{2}{81}$
9. $a_{n}=1.5(-2)^{n-1} ; a_{7}=96$
10. $a_{n}=0.0004(-10)^{n-1} ; a_{7}=400$
11. 531,440
12. 2049
13. $\frac{16,383}{2}$
14. 9840
15. 10,230
16. $\frac{63}{128}$
17. $\frac{3}{2}$
18. 4 41. $\frac{2}{3}$
19. $\frac{80}{13} \approx 6.15385$
20. $\frac{5}{9}$
21. $\frac{47}{99}$
22. $\frac{257}{999}$
23. arithmetic, $d=1$
24. geometric, $r=2$
25. neither
26. 2435
27. 2280
28. $-140 \quad$ 63. $a_{2}=12, a_{3}=18$
29. $\$ 3,795,957$
30. a. approximately 1.01 for each division
b. $a_{n}=33.87(1.01)^{n-1}$
c. approximately 41.33 million
31. $\$ 32,767$
32. $\$ 793,583$
33. 130.26 in.
34. a. $\$ 11,617$
b. $\$ 1617$
35. a. $\$ 87,052$
b. $\$ 63,052$
36. a. $\$ 693,031$
b. $\$ 293,031$
37. $\$ 30,000$
38. $\$ 9$ million
39. $\frac{1}{3}$
40.
41. makes sense 103. makes sense 105. false 107. false
42. Release 2000 flies each day. 112. $6=6 \quad$ 113. $15=15$
43. $\frac{(k+1)(k+2)(2 k+3)}{6}$
 horizontal asymptote: $y=3$; sum of series: 3

Mid-Chapter 10 Check Point

1. $1,-2, \frac{3}{2},-\frac{2}{3}, \frac{5}{24}$
2. $5,2,-1,-4,-7$
3. $5,-15,45,-135,405$
4. $3,1,3,1,3$
5. $a_{n}=4 n-2 ; a_{20}=78$
6. $a_{n}=3(2)^{n-1} ; a_{10}=1536$
7. $a_{n}=-\frac{1}{2} n+2 ; a_{30}=-13$
8. 5115
9. 2350
10. 6820
11. $-29,300$
12. 44
13. 3725
14. $\frac{1995}{64}$
15. $\frac{5}{7}$
16. $\frac{5}{11}$
$\begin{array}{llll}\text { 17. Answers will vary. An example is } \sum_{i=1}^{18} \frac{i}{i+2} \text {. } & \text { 18. } 464 \mathrm{ft} ; 3600 \mathrm{ft} & \text { 19. } \$ 311,249\end{array}$

Section 10.4

Check Point Exercises

1. a. $S_{1}: 2=1(1+1) ; S_{k}: 2+4+6+\cdots+2 k=k(k+1) ; S_{k+1}: 2+4+6+\cdots+2(k+1)=(k+1)(k+2)$
b. $S_{1}: 1^{3}=\frac{1^{2}(1+1)^{2}}{4} ; S_{k}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4} ; S_{k+1}: 1^{3}+2^{3}+3^{3}+\cdots+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}$
2. $S_{1}: 2=1(1+1) ; S_{k}: 2+4+6+\cdots+2 k=k(k+1) ; S_{k+1}: 2+4+6+\cdots+2 k+2(k+1)=(k+1)(k+2)$; S_{k+1} can be obtained by adding $2 k+2$ to both sides of S_{k}.
3. $S_{1}: 1^{3}=\frac{1^{2}(1+1)^{2}}{4} ; S_{k}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4} ; S_{k+1}: 1^{3}+2^{3}+3^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4} ; S_{k+1}$ can be obtained by adding $k^{3}+3 k^{2}+3 k+1$ to both sides of S_{k}.
4. $S_{1}: 2$ is a factor of $1^{2}+1 ; S_{k}: 2$ is a factor of $k^{2}+k ; S_{k+1}: 2$ is a factor of $(k+1)^{2}+(k+1)=k^{2}+3 k+2 ; S_{k+1}$ can be obtained from S_{k} by writing $k^{2}+3 k+2$ as $\left(k^{2}+k\right)+2(k+1)$.

Concept and Vocabulary Check

1. induction; $1 ; k+1 \quad$ 2. $2+4+6=3(3+1) ; 2+4+6+\cdots+2(k+1)=(k+1)(k+2)$
2. $3+7+11=3(6+1) ; 3+7+11+\cdots+[4(k+1)-1]=(k+1)[2(k+1)+1] ; 3+7+11+\cdots+(4 k+3)=(k+1)(2 k+3)$
3. $4 ; 10 ; 18 ;(k+1)^{2}+3(k+1) ; k^{2}+5 k+4 \quad$ 5. $(k+1)$

Exercise Set 10.4

1. $S_{1}: 1=1^{2} ; S_{2}: 1+3=2^{2} ; S_{3}: 1+3+5=3^{2} \quad$ 3. $S_{1}: 2$ is a factor of $1-1=0 ; S_{2}: 2$ is a factor of $2^{2}-2=2 ; S_{3}: 2$ is a factor of $3^{2}-3=6$.
2. $S_{k}: 4+8+12+\cdots+4 k=2 k(k+1) ; S_{k+1}: 4+8+12+\cdots+(4 k+4)=2(k+1)(k+2)$
3. $S_{k}: 3+7+11+\cdots+(4 k-1)=k(2 k+1) ; S_{k+1}: 3+7+11+\cdots+(4 k+3)=(k+1)(2 k+3)$
4. $S_{k}: 2$ is a factor of $k^{2}-k+2 ; S_{k+1}: 2$ is a factor of $k^{2}+k+2$.
5. $S_{1}: 4=2(1)(1+1) ; S_{k}: 4+8+12+\cdots+4 k=2 k(k+1) ; S_{k+1}: 4+8+12+\cdots+4(k+1)=2(k+1)(k+2) ; S_{k+1}$ can be obtained by adding $4 k+4$ to both sides of S_{k}.
6. $S_{1}: 1=1^{2} ; S_{k}: 1+3+5+\cdots+(2 k-1)=k^{2} ; S_{k+1}: 1+3+5+\cdots+(2 k+1)=(k+1)^{2} ; S_{k+1}$ can be obtained by adding $2 k+1$ to both sides of S_{k}.
7. $S_{1}: 3=1[2(1)+1] ; S_{k}: 3+7+11+\cdots+(4 k-1)=k(2 k+1) ; S_{k+1}: 3+7+11+\cdots+(4 k+3)=(k+1)(2 k+3) ; S_{k+1}$ can be obtained by adding $4 k+3$ to both sides of S_{k}.
8. $S_{1}: 1=2^{1}-1 ; S_{k}: 1+2+2^{2}+\cdots+2^{k-1}=2^{k}-1 ; S_{k+1}: 1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1 ; S_{k+1}$ can be obtained by adding 2^{k} to both sides of S_{k}.
9. $S_{1}: 2=2^{1+1}-2 ; S_{k}: 2+4+8+\cdots+2^{k}=2^{k+1}-2 ; S_{k+1}: 2+4+8+\cdots+2^{k+1}=2^{k+2}-2 ; S_{k+1}$ can be obtained by adding 2^{k+1} to both sides of S_{k}.
10. $S_{1}: 1 \cdot 2=\frac{1(1+1)(1+2)}{3} ; S_{k}: 1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}$; $S_{k+1}: 1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3} ; S_{k+1}$ can be obtained by adding $(k+1)(k+2)$ to both sides of S_{k}.
11. $S_{1}: \frac{1}{1 \cdot 2}=\frac{1}{1+1} ; S_{k}: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1} ; S_{k+1}: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}$; S_{k+1} can be obtained by adding $\frac{1}{(k+1)(k+2)}$ to both sides of S_{k}.
12. $S_{1}: 2$ is a factor of $0 ; S_{k}: 2$ is a factor of $k^{2}-k ; S_{k+1}: 2$ is a factor of $k^{2}+k ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{2}+k$ as $\left(k^{2}-k\right)+2 k$.
13. $S_{1}: 6$ is a factor of $6 ; S_{k}: 6$ is a factor of $k(k+1)(k+2) ; S_{k+1}: 6$ is a factor of $(k+1)(k+2)(k+3) ; S_{k+1}$ can be obtained from S_{k} by rewriting $(k+1)(k+2)(k+3)$ as $k(k+1)(k+2)+3(k+1)(k+2)$ and noting that either $k+1$ or $k+2$ is even, so 6 is a factor of $3(k+1)(k+2)$.
14. $S_{1}: 5 \cdot 6^{1}=6\left(6^{1}-1\right) ; S_{k}: \sum_{i=1}^{k} 5 \cdot 6^{i}=6\left(6^{k}-1\right) ; S_{k+1}: \sum_{i=1}^{k+1} 5 \cdot 6^{i}=6\left(6^{k+1}-1\right) ; S_{k+1}$ can be obtained by adding $5 \cdot 6^{k+1}$ to both sides of S_{k}.
15. $S_{1}: 1+2>1 ; S_{k}: k+2>k ; S_{k+1}: k+3>k+1 ; S_{k+1}$ can be obtained by adding 1 to both sides of S_{k}.
16. $S_{1}:(a b)^{1}=a^{1} b^{1} ; S_{k}:(a b)^{k}=a^{k} b^{k} ; S_{k+1}:(a b)^{k+1}=a^{k+1} b^{k+1} ; S_{k+1}$ can be obtained by multiplying both sides of S_{k} by (ab).
17. does not make sense 39. does not make sense
18. $S_{3}: 3^{2}>2(3)+1 ; S_{k}: k^{2}>2 k+1$ for $k \geq 3 ; S_{k+1}:(k+1)^{2}>2(k+1)+1$ or $k^{2}+2 k+1>2 k+3 ; S_{k+1}$ can be obtained from S_{k} by noting that S_{k+1} is the same as $k^{2}>2$ which is true for $k \geq 3$.
19. $S_{1}: \frac{1}{4} ; S_{2}: \frac{1}{3} ; S_{3}: \frac{3}{8} ; S_{4}: \frac{2}{5} ; S_{5}: \frac{5}{12} ; S_{n}: \frac{n}{2 n+2} ;$ Use S_{k} to obtain the conjectured formula.
20. The exponents begin with the exponent on $a+b$ and decrease by 1 in each successive term. 47. The exponents begin with 0 , increase by 1 in each successive term, and end with the exponent on $a+b$. 48. The sum of the exponents is the exponent on $a+b$.

Section 10.5

Check Point Exercises

1. a. 20
b. 1
c. 28
d. 1
2. $x^{4}+4 x^{3}+6 x^{2}+4 x+1$
3. $x^{5}-10 x^{4} y+40 x^{3} y^{2}-80 x^{2} y^{3}+80 x y^{4}-32 y^{5}$
4. $4032 x^{5} y^{4}$

Concept and Vocabulary Check

1. binomial \quad 2. $\frac{8!}{2!6!} \quad$ 3. $\frac{n!}{r!(n-r)!} \quad$ 4. $\binom{5}{0} x^{5}+\binom{5}{1} x^{4} \cdot 2+\binom{5}{2} x^{3} \cdot 2^{2}+\binom{5}{3} x^{2} \cdot 2^{3}+\binom{5}{4} x \cdot 2^{4}+\binom{5}{5} 2^{5}$
2. $\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} b^{n} ; n \quad$ 6. Binomial \quad 7. $a^{n-r} b^{r}$

Exercise Set 10.5

$\begin{array}{llll}\text { 1. } 56 & \text { 3. } 12 & \text { 5. } 1 & \text { 7. } 4950\end{array}$
9. $x^{3}+6 x^{2}+12 x+8 \quad$ 11. $27 x^{3}+27 x^{2} y+9 x y^{2}+y^{3} \quad$ 13. $125 x^{3}-75 x^{2}+15 x-1$
15. $16 x^{4}+32 x^{3}+24 x^{2}+8 x+1$
17. $x^{8}+8 x^{6} y+24 x^{4} y^{2}+32 x^{2} y^{3}+16 y^{4}$
19. $y^{4}-12 y^{3}+54 y^{2}-108 y+81$
21. $16 x^{12}-32 x^{9}+24 x^{6}-8 x^{3}+1 \quad$ 23. $c^{5}+10 c^{4}+40 c^{3}+80 c^{2}+80 c+32 \quad$ 25. $x^{5}-5 x^{4}+10 x^{3}-10 x^{2}+5 x-1$
27. $243 x^{5}-405 x^{4} y+270 x^{3} y^{2}-90 x^{2} y^{3}+15 x y^{4}-y^{5} \quad$ 29. $64 a^{6}+192 a^{5} b+240 a^{4} b^{2}+160 a^{3} b^{3}+60 a^{2} b^{4}+12 a b^{5}+b^{6}$
31. $x^{8}+16 x^{7}+112 x^{6}+\cdots \quad$ 33. $x^{10}-20 x^{9} y+180 x^{8} y^{2}-\cdots \quad$ 35. $x^{32}+16 x^{30}+120 x^{28}+\cdots \quad$ 37. $y^{60}-20 y^{57}+190 y^{54}-\cdots$
$\begin{array}{llll}\text { 39. } 240 x^{4} y^{2} & \text { 41. } 126 x^{5} & \text { 43. } 56 x^{6} y^{15} & \text { 45. }-\frac{21}{2} x^{6}\end{array}$
47. $319,770 x^{16} y^{14}$
49. $x^{12}+4 x^{7}+6 x^{2}+\frac{4}{x^{3}}+\frac{1}{x^{8}}$
51. $x-3 x^{1 / 3}+\frac{3}{x^{1 / 3}}-\frac{1}{x}$
53. $4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}$
55. 252
57. 0.1138
69.

71. $f_{1}(x)=x^{4}-8 x^{3}+24 x^{2}-32 x+16$
73. makes sense 75. does not make sense 77. false
79. false 81. $x^{6}+3 x^{5}+6 x^{4}+7 x^{3}+6 x^{2}+3 x+1$
f_{2}, f_{3}, f_{4}, and f_{5} are approaching $f_{1}=f_{6}$.
83. $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!}=\frac{n!}{(n-r)![n-(n-r)]!}=\binom{n}{n-r}$
85. a. $(a+b)^{1}=a+b=\binom{1}{0} a^{1}+\binom{1}{1} b^{1} \quad$ b. Assume: $(a+b)^{k}=\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\binom{k}{2} a^{k-2} b^{2}+\cdots+\binom{k}{k-1} a b^{k-1}$ $+\binom{k}{k} b^{k}$; Prove: $(a+b)^{k+1}=\binom{k+1}{0} a^{k+1}+\binom{k+1}{1} a^{k+1-1} b+\binom{k+1}{2} a^{k+1-2} b^{2}+\cdots+\binom{k+1}{k+1-1} a b^{k+1-1}+\binom{k+1}{k+1} b^{k+1}$
c. $(a+b)(a+b)^{k}=(a+b)\left[\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\binom{k}{2} a^{k-2} b^{2}+\cdots+\binom{k}{k-1} a b^{k-1}+\binom{k}{k} b^{k}\right]$ or $(a+b)^{k+1}=\binom{k}{0} a^{k+1}$ $+\binom{k}{0} a^{k} b+\binom{k}{1} a^{k} b+\binom{k}{1} a^{k-1} b^{2}+\binom{k}{2} a^{k-1} b^{2}+\binom{k}{2} a^{k-2} b^{3}+\cdots+\binom{k}{k-1} a^{2} b^{k-1}+\binom{k}{k-1} a b^{k}+\binom{k}{k} a b^{k}+\binom{k}{k} b^{k+1}$
d. $(a+b)^{k+1}=\binom{k}{0} a^{k+1}+\left[\binom{k}{0}+\binom{k}{1}\right] a^{k} b+\left[\binom{k}{1}+\binom{k}{2}\right] a^{k-1} b^{2}+\left[\binom{k}{2}+\binom{k}{3}\right] a^{k-2} b^{3}+\cdots+\left[\binom{k}{k-1}+\binom{k}{k}\right] a b^{k}+\binom{k}{k} b^{k+1}$
e. $(a+b)^{k+1}=\binom{k}{0} a^{k+1}+\binom{k+1}{1} a^{k} b+\binom{k+1}{2} a^{k-1} b^{2}+\binom{k+1}{3} a^{k-2} b^{3}+\cdots+\binom{k+1}{k} a b^{k}+\binom{k}{k} b^{k+1}$
f. $(a+b)^{k+1}=\binom{k+1}{0} a^{k+1}+\binom{k+1}{1} a^{k} b+\binom{k+1}{2} a^{k-1} b^{2}+\binom{k+1}{3} a^{k-2} b^{3}+\cdots+\binom{k+1}{k} a b^{k}+\binom{k+1}{k+1} b^{k+1}$
86. $6840 \quad$ 87. $56 \quad$ 88. true

Section 10.6

Check Point Exercises

1. 72
2. 729
3. 676,000
4. 840
5. 720
6. a. combinations
b. permutations
7. 210
8. 1820

Concept and Vocabulary Check

$\begin{array}{lllll}\text { 1. } M \cdot N & \text { 2. multiplying; Fundamental Counting } & \text { 3. } \frac{n!}{(n-r)!} & \text { 4. } \frac{n!}{(n-r)!r!} & \text { 5. } r \text { ! }\end{array}$

Exercise Set 10.6

1. 3024
2. 6720
3. 720
4. 1
5. 126
6. 330
7. 1
8. 1
9. combinations
10. permutations
11. 0
12. $\frac{3}{4}$
13. -9499 27. $\frac{3}{68}$
14. 27 ways
15. 40 ways
16. 243 ways
17. 144 area codes
18. 120 ways
19. 6 paragraphs
20. 720 ways
21. $8,648,640$ ways
$\begin{array}{lllll}\text { 47. } 360 \text { ways } & \text { 59. } 120 \text { ways } & \text { 47. } 15,120 \text { lineups } & \text { 49. } 20 \text { ways }\end{array}$
22. 1140 ways
23. 840 passwords
24. 495 collections
25. 24,310 groups
26. $22,957,480$ selections
27. false
28. true
29. 14,400 ways
30. 2730 cones
31. 720
32. 20
33. 24
34. makes sense
35. does not make sense
36. false
37. 450 ways
38. $\frac{2}{3}$
39. $\frac{1}{3}$
40. $\frac{2}{3}$

Section 10.7

Check Point Exercises

1. a. $\frac{7664}{100,000}$ or $\frac{479}{6250} \approx 0.077$
b. $\frac{720}{800}$ or $\frac{9}{10}=0.9$
c. $\frac{720}{7664}$ or $\frac{45}{479} \approx 0.094$
2. $\frac{1}{3}$
3. $\frac{1}{9}$
4. $\frac{1}{13}$
5. $\frac{1}{13,983,816} \approx 0.0000000715$
6. $\frac{129}{140} \approx 0.921$
7. $\frac{1}{3}$
8. $\frac{3}{4}$
9. a. $\frac{189}{242} \approx 0.78$
b. $\frac{19}{121} \approx 0.16$
10. $\frac{1}{361} \approx 0.00277$
11. $\frac{1}{16}$

Concept and Vocabulary Check

1. empirical \quad 2. sample space \quad 3. $P(E)$; number of outcomes in E; total number of possible outcomes 4. 52; hearts; diamonds; clubs; spades
2. 1 ; combinations
3. $1-P(E) ; 1-P(\operatorname{not} E)$
4. mutually exclusive; $P(A)+P(B)$
5. $P(A)+P(B)-P(A$ and $B)$
6. independent; $P(A) \cdot P(B)$

Exercise Set 10.7

1. $\frac{12}{121} \approx 0.10$
2. $\frac{62}{121} \approx 0.51$
3. $\frac{3}{242} \approx 0.01$
4. $\frac{7}{12} \approx 0.58$
5. $\frac{65}{118} \approx 0.55$
6. $\frac{1}{6}$
7. $\frac{1}{2}$
8. $\frac{1}{3}$
9. $\frac{1}{13}$
10. $\frac{3}{13}$
11. $\frac{1}{4} \quad$ 23. $\frac{7}{8}$
12. $\frac{1}{12}$
13. $\frac{1}{18,009,460} ; \frac{5}{900,473}$
14. a. $2,598,960$
b. 1287
c. $\frac{1287}{2,598,960} \approx 0.0005$
15. $\frac{43}{58} \quad$ 33. $\frac{50}{87}$
16. $\frac{113}{174}$
17. $\frac{12}{13}$
18. $\frac{2}{13}$
19. $\frac{7}{13}$
20. $\frac{3}{4}$
21. $\frac{33}{40}$
22. $\frac{1}{36}$
23. $\frac{1}{3}$
24. $\frac{1}{64}$
25. a. $\frac{1}{256}$
b. $\frac{1}{4096}$
c. $\left(\frac{15}{16}\right)^{10} \approx 0.524$
d. $1-\left(\frac{15}{16}\right)^{10} \approx 0.476$
26. does not make sense
27. makes sense
28. a. $\frac{12}{25}$
b. $\frac{3}{10}$
29. a. The first person can have any birthday in
the year. The second person can have all but one birthday.
b. $\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \approx 0.99$
c. ≈ 0.01
d. ≈ 0.41
e. 23 people
30. a. The denominator is zero when $x=4$. b. $2 \quad$ c. 276.

; The two pieces of the graph approach the point $(4,2) 77$.

Chapter 10 Review Exercises

1. $a_{1}=3 ; a_{2}=10 ; a_{3}=17 ; a_{4}=24$
2. $a_{1}=-\frac{3}{2} ; a_{2}=\frac{4}{3} ; a_{3}=-\frac{5}{4} ; a_{4}=\frac{6}{5}$
3. $a_{1}=1 ; a_{2}=1 ; a_{3}=\frac{1}{2} ; a_{4}: \frac{1}{6}$
4. $a_{1}=\frac{1}{2} ; a_{2}=-\frac{1}{4} ; a_{3}=\frac{1}{8} ; a_{4}=-\frac{1}{16} \quad$ 5. $a_{1}=9 ; a_{2}=\frac{2}{27} ; a_{3}=9 ; a_{4}=\frac{2}{27}$
5. $a_{1}=4 ; a_{2}=11 ; a_{3}=25 ; a_{4}=53$
6. 65
7. 95
8. -20
9. $\sum_{i=1}^{15} \frac{i}{i+2}$
10. $\sum_{i=4}^{13} i^{3}$ or $\sum_{i=1}^{10}(i+3)^{3}$
11. $7,11,15,19,23,27$
12. $-4,-9,-14,-19,-24,-29$
13. $\frac{3}{2}, 1, \frac{1}{2}, 0,-\frac{1}{2},-1$
14. $-2,3,8,13,18,23$
15. $a_{6}=20$
16. $a_{12}=-30$
17. $a_{14}=-38$
18. $a_{n}=4 n-11 ; a_{20}=69$
19. $a_{n}=220-20 n ; a_{20}=-180$
20. $a_{n}=8-5 n ; a_{20}=-92$
21. 1727
22. 225
$\begin{array}{ll}\text { 24. } 15,150 & \text { 25. } 440\end{array}$
23. -500
24. -2325
25. a. $a_{n}=34.8-0.3 n$
b. 18 hours per week
26. $\$ 418,500$
27. 1470 seats
28. $3,6,12,24,48$
29. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$
30. $16,-8,4,-2,1$
31. $-1,5,-25,125,-625$
32. $a_{7}=1458$
33. $a_{6}=\frac{1}{2}$
34. $a_{5}=-48$
35. $a_{n}=2^{n-1} ; a_{8}=128$
36. $a_{n}=100\left(\frac{1}{10}\right)^{n-1} ; a_{8}=\frac{1}{100,000}$
37. $a_{n}=12\left(-\frac{1}{3}\right)^{n-1} ; a_{8}=-\frac{4}{729}$
38. $17,936,135$
39. $\frac{127}{8}$
40. 19,530
41. -258
42. $\frac{341}{128}$
43. $\frac{27}{2}$
44. $\frac{4}{3}$
45. $-\frac{18}{5}$
46. 20
47. $\frac{2}{3}$
48. $\frac{47}{99}$
49. a. approximately 1.02 for each division
b. $a_{n}=15.98(1.02)^{n-1}$
c. 28.95 million
50. $\$ 42,823 ; \$ 223,210$
51. a. $\$ 19,129$
b. $\$ 8729$
52. a. $\$ 91,361$
$\begin{array}{ll}\text { b. } \$ 55,361 & \text { 56. } \$ 9 \frac{1}{3} \text { million } \\ 5 k(k+1)\end{array}$
53. $S_{1}: 5=\frac{5(1)(1+1)}{2} ; S_{k}: 5+10+15+\cdots+5 k=\frac{5 k(k+1)}{2} ; S_{k+1}: 5+10+15+\cdots+5(k+1)=\frac{5(k+1)(k+2)}{2} ; S_{k+1}$ can be obtained by adding $5(k+1)$ to both sides of S_{k}.
54. $S_{1}: 1=\frac{4^{1}-1}{3} ; S_{k}: 1+4+4^{2}+\cdots+4^{k-1}=\frac{4^{k}-1}{3} ; S_{k+1}: 1+4+4^{2}+\cdots+4^{k}=\frac{4^{k+1}-1}{3} ; S_{k+1}$ can be obtained by adding 4^{k} to both sides of S_{k}.
55. $S_{1}: 2=2(1)^{2} ; S_{k}: 2+6+10+\cdots+(4 k-2)=2 k^{2} ; S_{k+1}: 2+6+10+\cdots+(4 k+2)=2 k^{2}+4 k+2 ; S_{k+1}$ can be obtained by adding $4 k+2$ to both sides of S_{k}.
56. $S_{1}: 1 \cdot 3=\frac{1(1+1)[2(1)+7]}{6} ; S_{k}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+k(k+2)=\frac{k(k+1)(2 k+7)}{6}$;
$S_{k+1}: 1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3)=\frac{(k+1)(k+2)(2 k+9)}{6} ; S_{k+1}$ can be obtained by adding $(k+1)(k+3)$ to both sides of S_{k}.
57. $S_{1}: 2$ is a factor of $6 ; S_{k}: 2$ is a factor of $k^{2}+5 k ; S_{k+1}: 2$ is a factor of $k^{2}+7 k+6 ; S_{k+1}$ can be obtained from S_{k} by rewriting $k^{2}+7 k+6$ as $\left(k^{2}+5 k\right)+2(k+3)$
58. 165 63. $4005 \quad$ 64. $8 x^{3}+12 x^{2}+6 x+1 \quad$ 65. $x^{8}-4 x^{6}+6 x^{4}-4 x^{2}+1 \quad$ 66. $x^{5}+10 x^{4} y+40 x^{3} y^{2}+80 x^{2} y^{3}+80 x y^{4}+32 y^{5}$
59. $x^{6}-12 x^{5}+60 x^{4}-160 x^{3}+240 x^{2}-192 x+64 \quad$ 68. $x^{16}+24 x^{14}+252 x^{12}+\cdots \quad$ 69. $x^{9}-27 x^{8}+324 x^{7}-\cdots \quad$ 70. $80 x^{2} \quad$ 71. $4860 x^{2}$
60. 336
61. 15,120
62. 56
63. 78 76. 20 choices
64. 243 possibilities
65. 32,760 ways \quad 79. 4845 ways
66. 1140 sets
67. 116,280 ways
68. 120 ways
69. $\frac{18}{25}$
70. $\frac{6}{7}$
71. $\frac{3}{5}$
72. $\frac{12}{35}$
73. $\frac{10}{21}$
74. $\frac{5}{16}$
75. $\frac{2}{3}$
76. $\frac{2}{3}$
77. $\frac{2}{13}$
78. $\frac{7}{13}$
79. $\frac{5}{6}$
80. $\frac{5}{6}$
81. $\frac{1}{6}$
82. a. $\frac{1}{15,504}$
b. $\frac{25}{3876}$
83. $\frac{1}{32}$
84. a. 0.04
b. 0.008
c. 0.4096

AA102 Answers to Selected Exercises

Chapter 10 Test

1. $a_{1}=1 ; a_{2}=-\frac{1}{4} ; a_{3}=\frac{1}{9} ; a_{4}=-\frac{1}{16} ; a_{5}=\frac{1}{25}$
2. 105
3. 550
4. $-21,846$
5. 36
6. 720
7. 120
8. $\sum_{i=1}^{20} \frac{i+1}{i+2}$
$\begin{array}{llllll}\text { 9. } a_{n}=5 n-1 ; a_{12}=59 & \text { 10. } a_{n}=16\left(\frac{1}{4}\right)^{n-1} ; a_{12}=\frac{1}{262,144} & \text { 11. }-2387 & \text { 12. }-385 & \text { 13. } 8 & \text { 14. } \frac{73}{99}\end{array}$ 15. $\$ 276,427$
9. $S_{1}: 1=\frac{1[3(1)-1]}{2} ; S_{k}: 1+4+7+\cdots+(3 k-2)=\frac{k(3 k-1)}{2} ; S_{k+1}: 1+4+7+\cdots+(3 k+1)=\frac{(k+1)(3 k+2)}{2} ; S_{k+1}$ can be obtained by adding $3 k+1$ to both sides of S_{k}.
10. $x^{10}-5 x^{8}+10 x^{6}-10 x^{4}+5 x^{2}-1$
11. $x^{8}+8 x^{7} y^{2}+28 x^{6} y^{4}$
12. 990 ways
13. 210 sets
14. $10^{4}=10,000$
15. $\frac{3}{5}$
16. $\frac{39}{50}$
17. $\frac{3}{5}$
18. $\frac{9}{19}$
19. $\frac{10}{1001}$
20. $\frac{8}{13}$
21. $\frac{3}{5}$
22. $\frac{1}{256}$
23. $\frac{1}{16}$

Cumulative Review Exercises (Chapters P-10)

1. domain: $[-4,1)$; range: $(-\infty, 2]$
2. maximum of 2 at $x=-2$
3. $(-2,1)$
4. neither
5. -3 and -1
6. $0 \quad$ 7. $x \rightarrow 1^{-}$
7.

9.
 $h(x)=-f(2 x)$
10. $\left\{\frac{14}{5}\right\}$
11. $\left\{\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}\right\}$
12. $\{2\}$
13. $\{16,256\} \quad$ 14. $\{\ln 2, \ln 4\} \quad$ 15. $-1 \leq x \leq 0$ or $[-1,0]$
16. $\left(-\frac{2}{3}, \frac{3}{2}\right)$
17. $(-3,1]$
18. $\{2.9706\}$
19. $\left\{1, \frac{1}{2},-3\right\}$
20. $\{(3,2),(3,-2),(-3,2),(-3,-2)\}$
21. $\{(6,-4,2)\}$
22. $\{(0,-1),(2,1)\}$
23.

24.

25.

26.

27.

28.

30. $(f \circ g)(x)=-x^{2}+2 ;(g \circ f)(x)=-x^{2}-2 x \quad$ 31. $-2 x-h-2$
32. $\left[\begin{array}{rr}-2 & 10 \\ -5 & 7 \\ 15 & -15\end{array}\right] \quad$ 33. $\frac{-1}{x-2}+\frac{3 x-2}{x^{2}+2 x+2}$
34. $x^{15}+10 x^{12} y+40 x^{9} y^{2}+80 x^{6} y^{3}+80 x^{3} y^{4}+32 y^{5} \quad$ 35. 3850
36. $f(x)=\frac{1}{4} x+\frac{3}{2}$
37. $g(x)=-5 x-2$
38. $\$ 2000$
39. length: 100 yd ; width: 50 yd
40. pen: $\$ 1.80$; pad: $\$ 2$
41. a. 6 sec
b. $2.5 \mathrm{sec} ; 196 \mathrm{ft} \quad$ 42. $11 \mathrm{amps} \quad$ 43. Answers will vary. An example is: $f(x)=11.8 x+68.4$ where x is the number of years after 2010 .
44. a. 10 in.
$\begin{array}{ll}\text { b. } \frac{3}{8} \text { cycles } / \mathrm{sec} & \text { c. } \frac{8}{3} \mathrm{sec}\end{array}$
45. $\tan x+\frac{1}{\tan x}=\frac{\sin x}{\cos x}+\frac{1}{\frac{\sin x}{\cos x}}=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x}=\frac{1}{\cos x \sin x}$
46. $\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\frac{1-\frac{\sin ^{2} x}{\cos ^{2} x}}{1+\frac{\sin ^{2} x}{\cos ^{2} x}} \cdot \frac{\cos ^{2} x}{\cos ^{2} x}=\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x+\sin ^{2} x}=\frac{\cos 2 x}{1}=\cos 2 x$

48. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
49. $0, \frac{\pi}{3}, \frac{5 \pi}{3} \quad$ 50. $-\frac{5 \sqrt{11}}{11} \quad 51$.

52. $B \approx 54^{\circ}, C \approx 92^{\circ}, c \approx 39.3$ or $B \approx 126^{\circ}, C \approx 20^{\circ}, c \approx 13.5 \quad$ 53. $y=2-x^{2}$;

CHAPTER 11

Section 11.1

Check Point Exercises

1. 36
2. 0
3. a. 5
b. 3
4.
5. a. 2
b. 1
c. does not exist
d. 1

$$
f(x)= \begin{cases}3 x-2 & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

Concept and Vocabulary Check

$\begin{array}{ll}\text { 1. limit; } f(x) ; x ; a ; L & \text { 2. } x ; a ; a ; f(x) ; L\end{array}$
3. false
4. left-hand; $x ; a ; a ; f(x) ; L$
5. right-hand; $x ; a ; a ; f(x) ; L$
6. $=L$
7. does not exist

Exercise Set 11.1

$\begin{array}{lll}\text { 1. } 8 & \text { 3. } 3 & \text { 5. } 20\end{array}$
7. $1 \quad$ 9. 0
11. 12
$\begin{array}{llll}\text { 13. } 1 & \text { 15. } 1 & \text { 17. } 1 & \text { 19. a. }-1\end{array}$
b. -1
21. a. 2
b. 1
23. -3
25. -1
27. a. 4
b. 2
c. does not exist
d. 4
29. a. 2
b. 2
c. 2
d. 2 e. 4
f. 3
g. does not exist
h. does not exist $\begin{array}{llllllllllllllllllllll}\text { j. } 2 & \text { k. } 2 & \text { l. } 1 & \text { 31. a. } 1 & \text { b. } 2 & \text { c. } \text { does not exist } & \text { d. } 2 & \text { e. } 2 & \text { f. } 2 & \text { g. } 2 & \text { h. } 2 & \text { 33. } 7 & \text { 35. }-5 & \text { 37. } 0\end{array}$ $\begin{array}{lllllllllllll}\text { 39. }-1 & 41.2 & 43.1 & 45.0 & \text { 47. } 3 & \text { 49. does not exist } & \text { 51. } 2 & \text { 53. does not exist } & \text { 55. }-3 & \text { 57. } 2 & \text { 59. } 3 & \text { 61. } 0\end{array}$
63. 2 65. $0 \quad$ 67. a. 8; As your nose approaches the fan, the speed of the breeze that your nose feels approaches 8 miles per hour.
b. Answers may vary.
69. $\lim _{x \rightarrow 67} f(x)=45$
71. a. 30 ; The cost to rent the car one day and drive it 100 miles is $\$ 30$.
b. $\$ 40$
c. $\$ 60$
85. $0.69315 ; 0.693147$
87. $1.5000 ; 1.50000$
89. makes sense
91. makes sense
95. 31.544281
96. a.

b. $\lim _{x \rightarrow 2^{-}} f(x)=9 ; \quad \lim _{x \rightarrow 2^{+}} f(x)=7 ; \quad \lim _{x \rightarrow 2} f(x)$ does not exist.
97. $x+2$
98. $\frac{1}{\sqrt{4+x}+2}$

Section 11.2

Check Point Exercises

1. a. 11
b. -9
2. a. 19
b. $-\sqrt{ } / \overline{2}$
3. 13
4. 5
5. -70
6. a. -22
b. 72
7. -56
8. 61
9. 343
10. $\sqrt{2}$
11. -3
12. a. -1
b. 1
c. does not exist
13. 4
14. $\frac{1}{6}$

Concept and Vocabulary Check

1. c 2. a
2. $f(a)$
3. $L+M$
4. $L-M$
5. $L M$
6. L^{n}
7. $\sqrt[n]{L}$
8. $\frac{L}{M}$
9. $x^{2}+5 ; x^{3}+1$
10. true
11. false

Exercise Set 11.2

1. $8 \quad$ 3. 2
2. 14
3. 28
4. 6
5. 8
6. 16
7. 5
8. $\frac{5}{6}$
9. 3
10. 2
11. 2
12. 2
13. $\frac{8}{9}$
14. $\frac{1}{2}$
15. 1125
16. $\frac{1}{4} \quad$ 35. $-\frac{1}{4}$
17. -7
18. $-\frac{1}{9}$
19. $\frac{1}{3}$
$\begin{array}{ll}\text { 43. a. } 6 & \text { b. } 8\end{array}$
c. does not exist
20. a. 9
b. 9 c. 9
21. a. 6
b. 6
c. 6
22. a. 0
b. 0
c. 0
23. $13 ; 2$
24. 0; 3
25. 2
26. $\frac{5}{2}$
27. a. 0
b. The length of the starship appears to approach 0 . c. It is not possible to exceed the speed of light.
28. makes sense
29. makes sense
30. $-\frac{1}{16}$
31. $\frac{1}{2}$
32. $\frac{2}{3}$
33.

No, it is not necessary to lift your pencil off the paper.
87.

Yes, it is necessary to lift your pencil off the paper.
88.

Yes, it is necessary to lift your pencil off the paper.

Section 11.3

Check Point Exercises

1. a. continuous
b. discontinuous
2. discontinuous at 0

Concept and Vocabulary Check

1. f is defined at a, so that $f(a)$ is a real number; $\lim _{x \rightarrow a} f(x)$ exists; $\lim _{x \rightarrow a} f(x)=f(a)$ 2. true \quad 3. false \quad 4. $1-x ; x^{2}-1 ; 0 ; f$ is continuous at 1
2. true
3. false

Exercise Set 11.3

1. continuous
2. continuous
3. continuous 7. discontinuous
4. continuous
5. -1 and 4
6. continuous 17. continuous
7. continuous for every number x
8. discontinuou
9. $0 \quad$ 25. continuous for every number x 37. discontinuous at each integer 27. 1 29. continuous for every number $x \quad$ 31. $2 \quad$ 33. $4 \quad$ 35. discontinuous at π 39. continuous for every number $x \quad$ 41. discontinuous at $\frac{\pi}{2} \begin{array}{llll}\text { 43. a. } 20 ; 20 & \text { b. yes }\end{array}$
c. $40 ; 10$
d. no
e. does not exist; 70
f. no
g. 100 h. As the end of the course approached, the percentage of material learned by the student approached 100% 45. a. continuous
b. continuous
c. Answers may vary.
10. $2.7183 ; 2.71828$
11. does not make sense
12. makes sense
13. No. In Exercise 58, $\lim _{x \rightarrow 9} f(x)$ exists. In this exercise, however, $\lim _{x \rightarrow 9} \frac{1}{x-9}$ does not exist. \quad 62. $5+h \quad$ 63. $3 x^{2}+3 x h+h^{2} \quad$ 64. $-32 a-16 h+48$

Mid-Chapter 11 Check Point

1. 2 2.
2. does not exist
3. -2
4. -1
5. -3
6. 3
7. discontinuous at -1 and 0
8. -1
9. 1
10. 4
11. -1
12. 2
$\begin{array}{lll}\text { 14. } \frac{49}{4} & \text { 15. } 13 & \text { 16. } \frac{1}{6}\end{array}$
13. does not exist
14. a. 1
b. 0
c. does not exist
15. a. 32
b. 32
c. 32
16. yes
17. yes
18. discontinuous at 5

Section 11.4

Check Point Exercises

$\begin{array}{lllll}\text { 1. } 7 & \text { 2. } y=\frac{1}{2} x+\frac{1}{2} & \text { 3. a. } 2 x-5 & \text { b. }-7 ; 1 & \text { 4. a. } 49.21 \text { cubic inches per inch; } 48.1201 \text { cubic inches per inch }\end{array}$
b. 48 cubic inches per inch
5. a. $-32 \mathrm{ft} / \mathrm{sec}$
b. $-96 \mathrm{ft} / \mathrm{sec}$

Concept and Vocabulary Check

1. $\frac{f(a+h)-f(a)}{h}$; instantaneous; $f ; x \quad$ 2. $y-4=7(x-1) \quad$ 3. $f^{\prime}(x) ; \frac{f(x+h)-f(x)}{h} \quad$ 4. true \quad 5. $y-23=9(x-6) \quad$ 6. 32 ; upward

Exercise Set 11.4

1. a. 2
b. $y=2 x+3$
2. a. $-2 \quad$ b. $y=-2 x+3$
3. a. -20
b. $y=-20 x-20$
4. a. 7
b. $y=7 x-8$
5. a. 1
$\begin{array}{ll}\text { b. } y=x-3 & \text { 11. a. } \frac{1}{6}\end{array}$
$\begin{array}{ll}\text { b. } y=\frac{1}{6} x+\frac{3}{2} & \text { 13. a. }-1\end{array}$
$\begin{array}{ll}\text { b. } y=-x+2 & \text { 15. a. }-3\end{array}$
b. $-3 ;-3$
6. a. $2 x$
b. $-2 ; 6$
7. a. $2 x-3$
b. $0 ; 1$
8. a. $3 x^{2}$
b. $3 ; 3$
9. a. $\frac{1}{2 \sqrt{x}}$
b. $\frac{1}{2} ; \frac{1}{4}$
10. a. $-\frac{4}{x^{2}}$
b. $-1 ;-4$
11. a. $6.4 x+2.1$
b. $2.1 ; 27.7$
12. a. \& c.
b. $y=2 x-5$
13. a. \& c.
b. $y=\frac{1}{2} x-1$

14. a. \& c.
b. $y=3 x+4$
15. a. \& c.
b. $y=x+1$

16. a. 12.1 square inches per inch; 12.01 square inches per inch
b. 12 square inches per inch
17. a. 4.1π square inches per inch; 4.01π square inches per inch b. 4π square inches per inch \quad 41. 48π square inches per inch \quad 43. a. 32 feet per second; -32 feet per second b. -64 feet $\begin{array}{lllllll}\text { per second } & \text { 45. a. } 32 \text { feet per second; }-32 \text { feet per second } & \text { b. } 3 \mathrm{sec} ; 148 \mathrm{ft} & \text { 63. }-0.33 & \text { 65. } 3.64 & \text { 67. makes sense } & \text { 69. makes sense }\end{array}$ 71. e 73. d 75. b
18. $A^{\prime}(r)=\lim _{h \rightarrow 0} \frac{A(r+h)-A(r)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\pi(r+h)^{2}-\pi r^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\pi\left(r^{2}+2 r h+h^{2}\right)-\pi r^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\pi r^{2}+2 \pi r h+\pi h^{2}-\pi r^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{h(2 \pi r+\pi h)}{h}
$$

$$
=\lim _{h \rightarrow 0}(2 \pi r+\pi h)=2 \pi r+0=2 \pi r
$$

Chapter 11 Review Exercises

1. 3
2. $\frac{1}{2}$
3. 2
4. 0
5. 1
6. 3
7. 2
8. 3
9. 3
10. 5
11. -3
12. does not exist
13. 1
14. 3 15. -3
$\begin{array}{llll}\text { 20. } 5 & \text { 21. } 5 & \text { 22. } 0 & \text { 23. } 0\end{array}$
15. 6
16. does not exist
17. 3 18. does not exist
18. 5
19. -1
20. 1
21. 15
22. 8
23. 1000
24. 5
25. 2
26. -8
27. 5
28. $\frac{1}{20}$
29. 2
30. $\frac{1}{20}$
31. $-\frac{1}{25}$
32. a. 5
b. 7
c. does not exist
33. a. 2
b. 4 c. does not exist
34. a. -10
b. -10
c. $-10 \quad$ 41. continuous
$\begin{array}{llllll}\text { 44. continuous 45. discontinuous } & \text { 46. continuous for every number } x & \text { 47. } 1 \text { and - } 3 & \text { 48. } 0 & \text { 49. continuous for every number } x\end{array}$
35. discontinuous
36. discontinuous
37. -2
38. 11
39. a. 9
b. $y=9 x-2$
40. a. -9
b. $y=-9 x-5$
41. a. $6 x+12$
b. $0 ; 18$
42. a. $6 x^{2}-1$
b. $5 ; 5$
43. a. $-\frac{1}{x^{2}}$
b. $-\frac{1}{4} ;-\frac{1}{4}$
44. a. $\frac{1}{2 \sqrt{x}}$
b. $\frac{1}{12} ; \frac{1}{18}$
45. a. 20.5 cubic inches per inch; 20.05 cubic inches per inch
b. 20 cubic inches per inch \quad 59. 100π cubic inches per inch
46. a. 16 feet per second; -48 feet per second
b. $2.5 \mathrm{sec} ; 105 \mathrm{ft}$

Chapter 11 Test

1. $6 \quad$ 2. -3
2. -5
3. 4
4. 6
5. does not exist
6. 4
7. 81
8. -3
9. $\frac{1}{6}$
10. discontinuous
11. continuous
12. $2 x-5$
13. $-\frac{10}{x^{2}}$
14. $y=-6 x-9$
15. -24 feet per second

Cumulative Review Exercises (Chapters P-11)

1. $\left(-\infty,-\frac{5}{2}\right) \cup(-2,-1)$
2. $\left\{1,-\frac{1}{2},-6\right\}$
3. $\left(-\infty,-\frac{7}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$
4. $\left\{\frac{3 \pi}{2}\right\}$
5. $\{67\}$
6.

$f(x)=\frac{2 x^{2}-5 x+2}{x^{2}-4}$
12.

8.

$f(x)=\left\{\begin{array}{lll}-x+1 & \text { if } & -1 \leq x<1 \\ 2 & \text { if } & x=1 \\ x^{2} & \text { if } & x>1\end{array}\right.$
13.

$f(x)=\sqrt{x}$
$g(x)=\sqrt{x-2}+1$

AA106 Answers to Selected Exercises

14.

15.

16. $-4 x+7$
17. $\frac{1}{7} x+\frac{1}{7}$
18. $\frac{5}{4}$
19. $x^{8}-12 x^{6} y+54 x^{4} y^{2}-108 x^{2} y^{3}+81 y^{4}$
20. $y=-2 x+1$
21. $-11 ; 170^{\circ}$
22. $\frac{1}{x}-\frac{x+1}{x^{2}+x+1}$
23. $\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta} \\
& =\sec \theta \csc \theta
\end{aligned}
$$

24. $\tan (\theta+\pi)=\frac{\tan \theta+\tan \pi}{1-\tan \theta \tan \pi}$

$$
\begin{aligned}
& =\frac{\tan \theta+0}{1-\tan \theta(0)} \\
& =\tan \theta
\end{aligned}
$$

25. $\left[\begin{array}{lll}2 & 1 & 3 \\ 8 & 1 & 9 \\ 5 & 1 & 6\end{array}\right]$
26.

27. $f(x)=x^{9} ; g(x)=x^{2}-3 x+7$
29. $168 \quad$ 30. $2+2 \sqrt{3} i$
28. $\left\{\left(\frac{1}{2},-1, \frac{3}{2}\right)\right\}$
31. a. $I(x)=21,600-0.1 x$
b. $\$ 116,000$ at $8 \% ; \$ 4000$ at 18%
32. $23 \mathrm{~cm} \times 23 \mathrm{~cm}$
33. 100 ft by $50 \mathrm{ft} ; 5000 \mathrm{sq} \mathrm{ft}$
34. a. $T=72+303 e^{-0.0769 t}$
b. after 6.9 min
35. $C(x)=25 x+\frac{600,000}{x}$
36. 71.7 mi
37. $29 \frac{1}{3}$ cu in. 38. -24 feet per second
39. $A(x)=x^{2}+\frac{16}{x} \quad$ 40. 15.6 years old

SUBJECT INDEX

A
Absolute value, 9-11
of complex number, 727-728
definition of, 10
evaluating, 10
to find distance between two points, 11
properties of, 11
Absolute value bars
rewriting absolute value equation without, 92
rewriting inequalities without, 127
Absolute value equations, solving, 92-93
Absolute value function, graph of, 216
Absolute value inequalities, solving, 127-129
Abstract algebra, 880
Acute angle, 493
in right triangle, 523-524, 528
Adams, John Quincy, 928, 932
Addition
associative property of, 12
commutative property of, 11-12
of complex numbers, 293-294
distributive property of
multiplication over, 12
of functions, 234, 235
identity property of, 12
inverse property of, 12
of like radicals, 36
matrix, 873-874
of polynomial in two variables, 53
of polynomials, 50
of rational expressions with different denominators, 75-78
of rational expressions with same denominators, 75
of real numbers, 11-12
of square roots, 36-37
vector, 744-745, 746
Addition method
nonlinear systems solved by, 814-817
systems of linear equations in three variables solved by, 793-794
systems of linear equations in two variables solved by, 775-778
variables eliminated using, 775-778, 793-796, 814-817
Addition property of inequality, 124
Additive identity, 12
for matrices, 874
Additive inverses, 13
for matrices, 874
Aging rate of astronaut, 44
Alcohol, in a person's blood, 15-16
Algebra, Fundamental Theorem of, 352-353

Algebraic expressions, 2-3
containing fractional and negative exponents, factoring, 67
defined, 2
evaluating, 3
properties of negatives applied to, 14-15
simplifying, 13-14, 15, 87
terms of, 13
Algebra of functions, 233-237
applying, 236-237
difference, 234
product, 234, 235
quotient, 234, 235
sum, 234, 235
using, 233-234
Allen, Woody, 1067
Ambiguous case, triangle in, 685
solving, using Law of Sines, 685-688
Amount of rotation formula, 966
Amplitude
of cosine function, 561-563
of simple harmonic motion, 606, 608
of sine function, 553-558
of sine wave, 660
Amusia, sound quality and, 633, 635
Analytic geometry, 142
Analytic trigonometry, 621-680
double-angle formulas, 644-647, 651
half-angle formulas, 648-650, 651
power-reducing formulas, 647-648, 651
product-to-sum formulas, 657
sum and difference formulas, 633-644, 651
sum-to-product formulas, 658-659
trigonometric equations, 664-677
verifying trigonometric identities, 622-633
And probabilities with independent
events, 1077-1079
Angle(s), 492-507
acute, 493, 523-524, 528
central, 494, 495
conversion between degrees and radians, 495-496
coterminal, 500-502, 542-543
of depression, 530
direction, 747, 748-749
of elevation, 530-532
equations involving multiple, 666-667
formed by revolutions of terminal sides, 497-499
initial side of, 492-493
lying in quadrant, 493
measuring, using degrees, 493-494, 499, 547
measuring, using radians, 494-495, 499, 547
naming, 492
negative, 493, 499
notation, 493
obtuse, 493
positive, 492, 493, 499
quadrantal, 493, 537-538, 547
reference, 541-547
right, 493
in standard position, 492, 493, 497-499
straight, 493
terminal side of, 492-493
between two vectors, 756
vertex of, 492
Angular speed, 503, 504
Annuities, 1030-1032
Architecture
angles in, 492
hyperbolas in, 943
Area
formulas for, 111
maximizing, 311-312
of oblique triangle, 688
of a rectangle with fixed
perimeter, modeling, 271-273
of a triangle, 698
Argument of complex number, 728
Arithmetic sequences, 1013-1023
applications with, 1019-1020
common difference of, 1013-1014
defined, 1014
general term of, 1015-1017, 1018
sum of first n terms of, 1017-1020
writing terms of, 1015
Armstrong, Neil, 402
Arrow notation, 362-364
Arrows
in graph, 163
in limit notation, 1093
showing orientation of curve, 976
Ars Magna (Cardano), 346
Associative property
of addition, 12
and English language, 12
of matrix addition, 874
of matrix multiplication, 881
of multiplication, 12
of scalar multiplication, 876,881
Asteroids, 811
Asymptotes, 363
of graph, horizontal and vertical, 416, 417, 431-432
horizontal, in graph of logistic growth model, 470
horizontal, of rational functions, 366-368
of hyperbola, 936-937, 938-939, 941, 943, 965
slant, of rational functions, 372-373
vertical, of rational functions, 364-366
Augmented matrix, 850-858,
862-863, 864, 866, 867, 893, 894
Average cost, business problems involving, 374-375

Average cost function, 374-375
Average rate of change, 207, 1125,
1131-1133
of a function, 207-209
slope as, 207-209
Average velocity, 210-211, 1133
time involved in uniform motion and, 375-376
Axis
conjugate, 937
imaginary, 726
polar, 702-703
real, 726
of symmetry, 300, 989
of parabola, 301, 949, 950, 953
polar axis as, $986,988,989$
B
Babbage, Charles, 902
Back-substitution, 793-795
Gaussian elimination with, 852-857
Base
change-of-base property, 446-448
natural (e), 420-421, 437, 477
Bearings
defined, 604
solving problems involving, 604-605
Berlin Airlift, 835
Binomial(s), 49
common binomial factor,
factoring out, 59
cubing, 53
multiplying trinomial and, 50-51
product of two, 51-52
squaring, 53
Binomial coefficients, 1049
Binomial expansions, 1049-1052
finding particular term in, 1052
patterns in, 1049-1050
Binomial Theorem, 1049-1052
Biorhythms, 491
Blood-alcohol concentration (BAC), 15-16, 458-459
Boundary points, 382-383
locating on number line, 383, 385, 386, 388
Braces, 5
Brackets, 121
Branches, of hyperbola, 933, 943
Break-even analysis, 783-785
Break-even point, 783-784
Breathing cycle, modeling air flow in, 566
Burrows, Christopher J., 956
Business
average cost for, 374-375
functions, 783-785
C
Calculator. See also Graphing calculators/graphing utilities; Scientific calculators changing angle from degree, minute, second notation to decimal form, 494

Calculator (cont.)
degree vs. radian mode, setting, 518
evaluating inverse trigonometric functions with, 593
evaluating trigonometric functions using, 518-519
inverse trigonometric function keys on, 672
radian mode on, 672
solving trigonometric equation using, 672-673
Calculus, 1091-1142. See also Limits
and change studies, 210
derivatives, 1125-1137
fractional expressions in, 80-81
instantaneous velocity in, 211, 1133-1134
in Japan, 1109
motion and change analyzed in, 1092, 1125
partial fraction decomposition in, 800-810
Carbon dating, 469
Carbon dioxide concentration, global temperature and atmospheric, 141, 196-197
Cardano, Girolamo, 299, 346
Cardioids, 718
Carlin, George, 1066
Cartesian coordinate system, 142.
See also Rectangular coordinate system
Cayley, Arthur, 880
Centaurus galaxy, 1048
Center
of circle, 258, 259, 261-262
of ellipse, 921
of hyperbola, 933
Central angle, 494, 495
length of circular arc intercepted by, 502-503
Centrifugal force, modeling, 400-401
Change-of-base property, 446-448
Chaos and chaos theory, 681, 726
China, "Pascal's" triangle discovered in, 1053
Circles, 257, 259-263, 920
area and perimeter formulas for, 111
defined, 259
general form of equation of, 262-263
identifying, 963, 972
in polar coordinates, 715
standard form of equation of, 259-263
tangent line to, 266
unit, 508-509
Circular arc, length of, 502-503
Circular cylinder
surface area formula for, 273
volume formula for, 111
Circular functions, 510. See also Trigonometric functions
Circular path, linear and angular speed describing motion on, 503-504
"Clearing equation of fractions," 88
Closed dots, 163
Closed interval, 120
Coded matrix, 897

Coding matrix, 897
inverses for, 897-898
Coefficient matrix, 895
Coefficients, 13, 53
binomial, 1049
correlation, 202, 474, 476
leading, 49, 318
Leading Coefficient Test, 319-322
Cofactor, 911
Cofunction identities, 529
Cofunctions, 529, 636
Column matrices, 895
Combinations, 1060-1064
defined, 1061
formula for, 1062-1064
permutations compared to, 1061-1062
probability and, 1072-1073
Combined variation, 399-400
Combining like terms, 13,14
Comets
hyperbolic orbit of, 943 parabolic paths, 955
Common binomial factor, factoring out, 59
Common difference, of arithmetic sequence, 1013-1014
Common logarithmic functions, 434-435
Common logarithms, 434-435 changing base to, 447
introducing, 447
properties of, 434
Common ratio, of geometric sequence, 1024, 1027
Commutative property of addition, 11-12
of matrix addition, 874 of multiplication, 12 noncommutativity of matrix multiplication, 879,880
Complements, cofunctions of, 636 equal cofunctions, using, 528-529
Completing the square, $96,262,927$ converting general form of circle's equation to standard form by, 262-263
to derive quadratic formula, 97 graphing quadratic functions in form $f(x)=a x^{2}+b x+c$, 304
identifying a conic section without, 962-963
Complex conjugates
dividing complex numbers using, 294-295
as solution to quadratic equations, 297
Complex fractions. See Complex rational expressions
Complex nth root, 733
Complex numbers, 292-299, 726-738
absolute value of, 727-728
adding and subtracting, 293-294
dividing, 294-295, 730-731
equality of, 293
Mandelbrot set, 726, 735
multiplying, 294, 729-730
plotting, in complex plane, 726-727
in polar form, 728-735
powers of, 731-732
product of two, 729-730
quotient of two, 730-731
in rectangular form, 728, 729
roots of, 733-735
simplified, 293
in standard form, 293
Complex plane, 726
plotting the complex number on, 726-727
Complex rational expressions, 78-80
simplifying by multiplying by one, 79-80
Complex sixth root, 733
Composite functions, 237-240
decomposing functions, 241-242
forming, 239-240
writing function as composition, 241-242
Compound inequalities, 126-127
solving those involving "and," 126
Compound interest, 421-423, 1031
formulas for, 422, 459-460, 466-467, 1030
Computer, history behind, 902
Computer graphics, matrices and, 882
Computing power, exponential growth in, 418
Condensing logarithmic expressions, 445-446
properties for, 445
Cone, volume formula for, 111
Conic sections, 919-974. See also
Circles; Ellipse(s); Hyperbolas;

Parabolas

circles, 111, 257, 259-263
defined, 920
degenerate, 957
focus-directrix definitions of, 985
identifying, 962-963, 971-972
parabolas, 300-306
parametric equations and, 974-984
in polar coordinates, 984-994
rotated, graphing equation of, 969-971
rotation of axes, 962-974
standard forms of, transforming rotated conics to, 966-971
Conjugate axis, 937
Conjugates, 38-39
of complex number, 294-295
to divide complex numbers, using, 294-295
multiplying, 38-39
as solution to quadratic equations, 297
Consistent systems, 779
Constant function, 174-175, 194, 319
graph of, 216
limits of, 1104-1105
Constant matrix, 895
Constant numerators, partial fraction decomposition with, 804, 808
Constant of variation, 395, 397
Constant term, 49
Constraints, in linear programming, 836-837
Continuity, limits and, 1117-1123
Continuous compounding of interest, 422, 460, 466-467

Continuous function
graph of, 1117
at a number, determining, 1118-1119
Continuous graphs, 319
Converse of the Pythagorean Theorem, 114
Coordinates. See Polar coordinates;
Rectangular coordinate system
Copernicus, Nicolaus, 142, 991
Correlation coefficient, 202, 474, 476
Cosecant (csc)
of 45°, evaluating, 527
as cofunction of secant, 529
defined, 524
evaluating, 525
Cosecant curve
characteristics of, 577
sine curve to obtain, 578-579
Cosecant function
graph of, 577-579, 580
as odd function, 514
Cosine (cos)
of 30° and 60°, evaluating, 527-528
of 45°, evaluating, 527, 528
as cofunction of sine, 529
defined, 524
of difference of two angles, 633-636
double-angle formula for, 644, 645, 646, 651
evaluating, 525
half-angle formula for, 648, 651
Law of Cosines, 694-702, 756
power-reducing formula for, 651
product-to-sum formulas for, 657
rotation of axes and, 964-965
sum and difference formulas for, 633-639, 651
sum-to-product formulas for, 658-659
verifying an identity by changing to, 623-628
Cosine curves, 560
to obtain a secant curve, 579
vertical shifts of, 564-565
Cosine function
domain of, 512, 561
domain of restricted, vs. interval of nonrestricted, 592
in equation for simple harmonic motion, 606-607
as even function, 513-514, 561
of form $y=A \cos B x, 561-563$
of form $y=A \cos (B x-C)$, 563-564
graph of $y=\cos x, 560-564,580$
inverse, 588-590, 592
inverse properties, 594
key points in, 563-564, 565
period, 560-564
periodic properties of, 517
range, 512, 561
reference angle to evaluate, 545
repetitive behavior of, 518
solving right triangles using, 602
variations of, graphing, 561-564
vertical shifts of cosine curve, 564-565
Cost, 783
Cost function, 374-375, 783-784

Cotangent (cot)
of 45°, evaluating, 527
as cofunction of tangent, 529
defined, 524
evaluating, 525
Cotangent curve, characteristics of 576
Cotangent function
graph of, 575-577, 580
as odd function, 514
periodic properties of, 517
reference angle to evaluate, 545
Coterminal angles, 500-502
finding, 500-502
finding reference angles for angles greater than 360° or less than 360° using, 542-543
Counting principles, 1056-1058
Cramer, Gabriel, 902
Cramer's rule, 902, 903-905
with inconsistent and dependent systems, 910
system of linear equations in three variables solved using, 908-910
system of linear equations in two variables solved using, 903-905
for systems with four or more equations, 911
Crick, Francis, 980
Cryptogram, encoding and decoding, 897-898
Crystal, David, 1065
Cube(s)
factoring sum and difference of, 65
surface area formula for, 273
volume formula for, 111
Cube root function, graph of, 216
Cube roots, 40
combining, 41
Cubic function, standard, 216
Cubing a binomial, 53
Cycles, 508, 537
Cycloid, 981, 983
Cylinder. See Circular cylinder

D

Data, modeling, 196-197, 796
with slope-intercept form, 197
Dead Sea Scrolls, and carbon-14 dating, 469
Decaying entity, 467
Decimal notation
converting from scientific notation to, 24-25
converting to scientific notation from, 25-26
Decomposing functions, 241-242
Decomposition of vector into two orthogonal vectors, 759-760
Decreasing function, 174-175 relative maximum/minimum, 175-176
Degenerate conic sections, 957
Degree(s)
of $a x^{n}, 49$
converting between radians and, 495-496
fractional parts of (minutes and seconds), 494
measuring angles using, 493-494, 499, 547
of nonzero constant, 49
of polynomial, 49, 53
of polynomial in two variables, 53
of term $a x^{n} y^{m}, 53$
turning points of polynomial function and, 326
Degree-day, 1023
DeMoivre, Abraham, 731
DeMoivre's Theorem, 731-733
for finding complex roots, 733-735
Denominator(s), 13. See also Least common denominator (LCD) adding rational expressions with different, 75-78
adding rational expressions with the same, 75
factors of, partial fraction decomposition and, 801-809
rationalizing, 37-39
rationalizing those containing two terms, 38-39
subtracting rational expressions with different, 75-78
subtracting rational expressions with the same, 75
zero as limit of, 1112-1114
Dependent equations, $779,796,864$, 865
Dependent systems, geometric possibilities for, 865
Dependent systems, identifying
determinants used for, 910
matrices used for, 864
Dependent variables, 158
Derivatives, 1125-1137
applications of, 1131-1134
of a function, 1129-1134
instantaneous rate of change,
finding, 1131-1133
instantaneous velocity, finding, 1133-1134
roller coasters and, 1134
Descartes, René, 142, 354
Descartes's Rule of Signs, 354-356
Determinants, 902-914
higher-order, 910-911
inconsistent and dependent
systems identified with, 910
second-order, 902-903
solving systems of linear equations in two variables using, 903-905
systems of linear equations in three variables solved using, 908-910
third-order, 905-908
Difference
binomial, square of, 53
of cubes, factoring, 65
of functions, 234
limit of, 1106, 1111
of two squares, 63-64
of two squares, factoring, 63-64
of two terms, product of sum and, 53
of two vectors, 742
Difference engine, 902
Difference formulas
for cosines, 633-637, 651
for sines, 636-639, 651
for tangents, 639-640
Difference quotient, 180-181
Digital photography, matrices and, 881-882
Diller, Phyllis, 1066
Dinosaurs, extinction theory, 811
Directed line segments, 740-741
Direction angle, 747, 748-749
Direction of vector
reversing, 741
vectors with same magnitude and, 740-741
writing a vector in terms of its magnitude and, 747-748
Directrix, of parabola, 949, 950-952
953
focus-directrix definitions of conic sections, 985
Direct variation, 394-397
in combined variation, 399-400
with powers, 396
and problem solving, 394-397
Discontinuous function, at a number, 1118
determining for what numbers, 1119-1121
Discriminant, 98-99
for determining number/type of solutions, 99
negative, 297
using, 98-99
Distance
from origin to point on graph, modeling, 275
between two points on real number line, 11
Distance formula, 257-258, 259, 275, 921
in derivation of Law of Cosines, 695
equal vectors and, 740
finding magnitude of vector using, 743
in proof of identity for cosine of difference of two angles, 634
Distributive property(ies), 13
adding and subtracting square roots, 37
of matrix multiplication, 881
of multiplication over addition, 12
for multiplying complex numbers, 294
for multiplying monomial and polynomial that is not monomial, 50
properties of negatives and, 14-15
of scalar multiplication, 876
Division. See also Quotient rule of complex numbers, 294-295, 730-731
definition of, 13
long, 334-338
of polynomials, 334-340
of radical expressions, 40-41
of rational expressions, 74-75
of real numbers, 13
simplifying complex rational expressions by, 79
synthetic, 338-340

Division Algorithm, 337, 340-341
DNA, parametrization of, 980
Domain, 156, 157
of any quadratic function, 306
of composite function, 238, 239, 240-241
of cosecant function, 577
of cosine function, 512, 561
of cotangent function, 576
determining, 235
of function, 231-233
graphing the rectangular equation of curve defined parametrically and, 977
identifying, from function's graph, 165-167
of inverse sine function, 585-586, 588-589
of logarithmic function, 433
of natural logarithmic function, 435
of rational expression, 72
of rational function, 361-362
of relation, 155
of secant function, 578
of sequence, 1002
of sine function, $511,512,552$
of tangent function, 573
Domain-restricted function, finding
the inverse of, 253
Dot product, 754-763
alternative formula for, 756
angle between two vectors and, 756
application of, 760-761
definition, 755
orthogonal vectors and, 757
projection of vector onto another vector and of two orthogonal vectors, 758-759
properties of, 755
of two vectors, 755-756
vector as sum of two orthogonal vectors, 759-760
Double-angle formulas, 644-647, 651
Double-angle identity, solving trigonometric equation using, 670, 671
Doubling time, savings and, 460

E

Earthquake magnitude, 427, 435
Eccentricity, 985-986
of planetary orbits, 991
Einstein, Albert, 32
theory of relativity, 44
Elements
of matrix, 850, 877-878
of set, 5
Elevation, angle of, 530
Eliminating the parameter, 976-979
Eliminating variables. See under Variables
Ellipse(s), 920-933
applications with, 928-929
definition of, 921
eccentricity for, 985
elliptical planetary orbits, 991
focus-directrix definition of, 985
graphing, 923-927
center at origin, 923-925
not centered at origin, 925-927

Ellipse(s) (cont.)
horizontal and vertical
elongations of, 921
identifying, 963, 972
parametric vs. rectangular representation of, 980
polar equation of, graphing, 987-988
rotated, transforming to standard form, 968-969
standard form of equation of, 921-925
Ellipsis, 5
Empirical probability, 1068-1069
formula, 1068
with real-world data, 1068-1070
Empty set, 6, 91
e (natural base), 437
evaluating functions with, 420-421
expressing exponential model in, 477
End behavior, 319-322
determining, 326-327
Endeavor space shuttle, 956
English language associative property and, 12
English sentences, and inequalities, 123
Equal and unequal one-sided limits, 1098-1099
Equality of complex numbers, 293
Equal matrices, 873
Equals sign, 3, 823
Equal vectors, 740-741
Equation(s), 3. See also Linear equations; Polynomial equations absolute value, 92-93
dependent, 779, 796, 864, 865
equivalent, 86-87
exponential, 451-455, 458-461
functions as, 158-159
graphing, 143-149
graphing, using point-plotting method, 143-144
of the inverse, finding, 248-250
inverse variation, 398
logarithmic, 455-461
matrix, solving, 876-877, 896-897
modeling with, 106-119
polar, 708-709, 714
rational, 89-91
trigonometric, 664-677
in two variables, 143
of variation, 394
word problems solved using, 107-116
Equation of line
general form, 194-195, 196, 206
horizontal lines, 194, 196
parallel to given line, 203-204
point-slope form of, 190-191, 196, 203-204, 205-206, 1128, 1129
slope-intercept form of, 192-193, 195, 196, 205, 1128
tangent lines, 1127-1128
various forms of, finding, 196
vertical lines, 194, 196
Equilibrium, 752
Equilibrium position, 606
Equivalent equations, 86-87

Equivalent inequalities, 123, 124
Euler, Leonhard, 437
Evaluating an algebraic expression, 3
Evaluating the function, 160-161 piecewise function, 178-180
Even function, 176-178
cosine function as, 561
definition of, 176
secant function as, 578
y-axis symmetry and, 178
Even multiplicity, zero of, 324
Even-odd identities, 622
Even roots, 40
Event(s)
defined, 1070
empirical probabilities assigned to, 1068
independent, 1077-1079
mutually exclusive, 1074-1075
non-mutually exclusive, 1075-1077
theoretical probability of, 1070-1073
Even trigonometric function,
513-514
to find exact values, 514
Exact value(s)
of composite functions with inverse trigonometric functions, 593-597
of $\cos ^{-1} x, 589-590$
cosine of sum to find, using, 638
difference formula for cosines to find, 635
double-angle formulas to find, 645-646
half-angle formula to find, 649
of $\sin ^{-1} x, 587-588$
sine of sum to find, using, 637, 639
of $\tan ^{-1} x, 591-592$
of trigonometric functions at $t=\pi / 4,512-513$
using even and odd functions to find, 514
Expanding a logarithmic expression,
441-445
and power rule, 443-444
and product rule, 441-442
properties for, 444
and quotient rule, 442-443
Expanding binomials, 1049-1052
Expanding the summation notation, 1007-1008
Expansion by minors, 906, 908
Experiment, 1070
Exponential equations
applications of, 458-461
defined, 451
logarithms used in solving, 453-455
solving, 452-455
Exponential expression, 2
simplifying, 22-24, 43-44
Exponential form, 428
changing from, to logarithmic form, 429
changing from logarithmic form to, 428
location of base and exponent in, 428

Exponential functions, 414-427
characteristics of, 417
defined, 414
evaluating, 415
examples of, 414
exponential growth, 418
expressing model in base $e, 477$
graphing, 415-417, 430-433
modeling data with, 471-477
natural, 420
transformations involving, 418-419
Exponential growth, 1025-1028
Exponential growth and decay models, 466-470
Exponential notation, 2
Exponents, 2-3, 20-21
fractional, factoring involving, 67
and large numbers, 24
negative, $24,25,67$
properties of, 43
rational, 41-44
Extraneous solutions, 101

F

Face cards, 1071
Factorial notation, 1005-1006
Factorials, from 0 through 20, 1005
Factoring
algebraic expressions containing fractional and negative exponents, 67
difference of two squares, 63-64
to find limits, 1112-1113
perfect square trinomials, 64
polynomials, 58-70
polynomials, strategy for, 65-67
quadratic equations solved by, 93-94, 100
separating different functions in trigonometric equation using, 668-669
over the set of integers, 58
sum and difference of two cubes, 65
trinomial in two variables, 62-63
trinomial whose leading coefficient is not $1,61-62$
trinomial with leading coefficient of $1,60-61$
verifying an identity using, 625-626
Factoring by grouping, 59
Factoring completely, 58, 63
Factoring out Greatest Common
Factor, 58-59, 67
Factors
in denominator, partial fraction decomposition and, 801-809
of polynomials, 337
of term, 13
Factor Theorem, 341-343
Fermat, Pierre de, 142, 1040, 1048
Fermat's Last Theorem, 1040, 1048
Ferrari, 346
Fibonacci (Leonardo of Pisa), 1002
Fibonacci numbers, on piano
keyboard, 1002
Fibonacci sequence, 1002
Finite sequences, 1003
First terms, in binomial, 52
Fixed cost, 783-784

Focus-directrix definitions of conic sections, 985
Focus (foci)
of ellipse, 921
of hyperbola, 933, 934, 935-936, 938, 939
of parabola, 949-955
FOIL method and factoring by grouping, 59
and factoring trinomials, 60, 62-63
for multiplying complex numbers, 294, 730
for multiplying polynomials, 51-52
for multiplying polynomials in two variables, 54
Forces, computing work done by, 760-761
Force vector, 748-749
Formula(s), 3
amount of rotation, 966
for the angle between two vectors, 756
for area, perimeter, and volume, 111
Binomial Theorem, 1050
for combinations, 1062-1064
compound interest, 422, 459-460, 466-467, 1030
distance, 257-258, 259, 275, 921
double-angle, 644-647, 651
empirical probability, 1068
exponential growth and decay, 467
for finding limits, 1105, 1111
functions from, 270-275
for general term of arithmetic sequence, 1015, 1018
for general term of geometric sequence, 1024-1027
half-angle, 648-650, 651
linear speed, 503
and mathematical models, 3-5
midpoint, 258-259
permutations, 1058-1060
power-reducing, 647-648, 651
product-to-sum, 657
quadratic, 97-98
radian measure, 495
recursion, 1004-1005
rotation of axes, 963-965
simple interest, 274
slope of the tangent line, 1127
solving for variable in, 91-92
special-product, 52-53
sum and difference, 633-644, 651
sum of first n terms of an arithmetic sequence, 1017-1020
sum of first n terms of geometric sequence, 1027-1030
sum-to-product, 658-659
for surface area, 273
Tartaglia's secret, 346
uniform motion, 375, 782
value of an annuity, 1030, 1031
variation, 394
Fourier, John, 607, 662
Fraction(s)
complex. See Complex rational expressions
with factorials, evaluating, 1006
linear equations with, 88-89
partial, 800-811
partial fraction decomposition, 800-810
writing repeating decimal as, 1033-1034
Fractional equation (rational equations), 89-91
Fractional exponents, factoring algebraic expressions containing, 67
Fractional expressions
in calculus, 80-81
verifying an identity by combining, 626-627
Free-falling object, modeling
position of, 389-390
Frequency, 607
of object in simple harmonic motion, 607, 608
of sine wave, 660
Function(s), 141, 154-202.
See also Exponential functions;
Logarithmic functions
Polynomial functions; Quadratic
functions; Rational functions
algebra of, 233-237
analyzing graphs of, 163-164
average cost, 374-375
average rate of change, 207-209
business, 783-785
combinations of, 231-237
composite, 237-240
constant, 174-175, 194, 319, 1104-1105
continuous, 1117, 1118-1119
cost, 374-375, 783-784
decomposing, 241-242
defined, 157
derivative of, 1129-1134
determining domain, 235
difference quotients of, 180-181
discontinuous, at a number, 1118, 1119-1121
domain of, 165-167, 231-233
as equations, 158-159
evaluating, 160-161
even, 176-178
even trigonometric, 513-514
finding a limit by graphing, 1096
from formulas, 270-275
graphing, 161-167, 173-187, 216
graphs of common, recognizing, 216
greatest integer, 180
identifying intercepts from graph of, 167
identity, 1104-1105
increasing and decreasing,
173-175
inverse, 245-256, 428
linear, 161, 188-202
modeling with, 266-281
objective, 835-836, 838
odd, 176-178, 513-514
one-to-one, 252
parametric equations for, finding, 979-980
periodic, 516-518
piecewise, 178-180, 1096, 1112, 1119-1121
profit, 785
quadratic, 270, 300-317, 319, 796
reciprocal, 362-364
relations as, 156-158
relative maximum or relative minimum of, 175-176
revenue, 783,785
step, 180
sum of (addition of), 234, 235
transformation of, 215-230
from verbal descriptions, 266-270
vertical line test for, 162
zeros of, 167
Function machine, 159
Function notation, 159-161
Fundamental Counting Principle, 1056-1058
applications of, 1057-1058 defined, 1057
Fundamental Theorem of Algebra, 352-353
Fundamental trigonometric
identities, 622-633
defined, 622
to verify other identities, using, 622-630

G

Galileo, 142
Galois, Evariste, 347
Games of chance, theoretical probability in, 1070-1072
Gauss, Carl Friedrich, 352, 852, 857
Gaussian elimination, 852-857,
862-871
applied to dependent systems, 864-865
applied to inconsistent systems, 863-864
applied to systems with more variables than equations, 866
applied to systems without unique solutions, 862-866, 867-868
with back-substitution, 852-857
solving problems using, 867-868
Gauss-Jordan elimination, 857-858, 893-894
General form
of equation of a line, 194-195, 196
perpendicular lines, 205
using intercepts to graph, 195-196
of equation of circle, 262-263
of quadratic equation, $93,97,297$
General second-degree equation, 963-964
graphing, 969
transformed to standard equations of conic sections, 966-971
General term
of arithmetic sequence,
1015-1017, 1018
of geometric sequence, 1024-1027
of sequence, 1002-1004
Geometric figures, formulas for area, perimeter, and volume, 111
Geometric formula, obtaining a function from, 270-271

Geometric population growth, 1025-1026
Geometric sequences, 1023-1039
applications with, 1030-1032
common ratio of, 1024, 1027
defined, 1024
general term of, 1024-1027
Ponzi schemes and, 1027
sum of first n terms of, 1027-1030
writing terms of, 1024
Geometric series, 1032-1034
infinite, 1032-1034
Gilbert, Dennis, 916
Glenn, John, 984, 993
Global warming, 141
modeling, 196-197
Golden rectangle, 47
Graphing calculators/graphing utilities, 145
adding and subtracting matrices, 874
angle of elevation problems on, 531
binomial coefficients computed with, 1049, 1051
change-of-base property to graph logarithmic functions on, 448
checking partial fraction decomposition on, 807
checking solutions of trigonometric equation on, 671
checking tables and graphs on, 161
circles graphed on, 260-261
combinations on, 1063
common logarithms evaluated on, 434
computations with scientific notation on, 26
converting from decimal to scientific notation on, 26
derivative of function, 1132
determinant of matrix evaluated on, 907
"dot" mode, 366
DRAW TANGENT feature, 1128
ellipse graphed on, 923
equations graphed on, 145-147
e to various powers evaluated on, 420
evaluating trigonometric functions using, 518-519
exponential expressions evaluated on, 415
factorials found on, 1005
functions evaluated on, 160
graphing polar equation using, 715
greatest integer function on, 180
inverse sine key, 531
inverse trigonometric functions on, 593
keystroke sequences for rational exponents, 43
linear system with unique solution on, 896
logarithmic regression option, 474
logistic growth function on, 473
matrix multiplication on, 879
maximum function feature, 271, 312
minimum function feature, 273, 275, 796
modeling data with, 474
modeling from formulas on, 270-271, 273, 275
models for scatter plots obtained on, 198
multiplicative inverse of matrix on, 890,895
parabola on, 951, 952, 954, 955
parametric mode and radian mode of, 980
permutations on, 1060
plane curve represented by parametric equations on, 976
polar mode, 988
polar-to-rectangular point conversion on, 706
providing evidence of identity on, 623
rational functions graphed with, 366
rectangular-to-polar point conversion on, 707
reduced row-echelon form on, 858
row-echelon form on, 854,856
SHADE feature, 825
SINe REGression feature, 565
solving systems on, 775
sum of first n terms of arithmetic sequence on, 1019
sum of first n terms of geometric sequence on, 1029
sum of sequence on, 1008
TABLE feature on, 311, 458, 476, 623, 668, 807, 1093
Table Setup function, 146
terms of sequences, 1004
verifying model of periodic behavior with, 567
verifying observations on, 639
verifying solution set of logarithmic equation, 456
verifying solution set of polynomial inequality, 384, 385, 386
verifying solution set of rational inequality, 389
verifying solutions of trigonometric equation quadratic in form on, 668
verifying solution to scalar multiplication, 875
verifying verbal models with, 268
ZERO feature, 323
zeros of polynomial function on, 323
ZOOM SQUARE setting, 260, 923
Graphs/graphing
asymptotes of, horizontal and
vertical, 416, 417, 431-432
circles, 260, 262-263
of complex numbers, 726-727
continuous, 319
of continuous function, 1117
of cosecant function, 577-579, 580
of cosine function, 560-564, 580

Graphs/graphing (cont.)
of cotangent function, 575-577, 580
ellipse, 923-927
equations, 143-149
even functions, 177-178
exponential functions, 415-417, 430-433
finding limits using, 1095-1096, 1098-1099
functions, 161-167, 173-187, 216
general second-degree equation, 969
and horizontal line test, 251-252
horizontal shifts, 218-220, 224, $225,226,418,432$
horizontal stretching and shrinking, 223-224, 225, 418, 432
hyperbolas, 937-943
information obtained from, 163-164
interpreting information given by, 147-149
inverse functions, 252-253, 592
lemniscates, 721
limaçons, 718
linear inequalities in two variables, 823-826
lines, 147-149
logarithmic functions, 430-433
modeling periodic behavior, 565-568
nonlinear inequalities in two variables, 826-827
odd functions, 177-178
one-to-one function, 252
parabolas, 950-955
piecewise function, 179-180
plane curves described by
parametric equations, 975-976
polar equations, 714-724, 987-991
polynomial functions, 319-322, 326-329
quadratic functions, 300-306 in form $f(x)=a x^{2}+b x+c$, 96
rational functions, 368-372
real numbers, 8
reciprocal function, 363-364
rectangular equation of curve defined parametrically, 977-979
reflection about the x-axis, 220-221, 224
reflection about the y-axis, 221, 224
reflections of, 220-221, 224, 252, 418, 432, 433
relative maximum or relative minimum on, 175-176
rose curves, 719-720
secant function, 577-579
sequences, 1003-1004
transformations, 224-226
sine function, 551-560, 580
smooth, 319
systems of linear equations in two variables solved by, 773, 779
systems of linear inequalities, 828-831
tangent function, 572-575, 580
of transformations of functions, 215-230
using intercepts, 146-147, 195-196
vertical lines, 194
vertical shifts, 216-217, 220, 224, 225, 226, 564-565
vertical stretching and shrinking, 222-223, 224, 225, 226, 418, 432
Gravitation, Newton's formula for, 400
Greater than or equal to symbol, 9, 120
Greater than symbol, 9, 120
absolute value inequalities using, 127
Greatest Common Factor (GCF), 58 common binomial factor, 59 factoring out, 58-59, 67
Greatest integer function, 180
Ground speed, 752
Grouping/grouping method, factoring by, 59
Growing entity, 467
Growth models, logistic, 470-471
Growth rate, for world population, 466

H

Half-angle formulas, 648-650, 651
Half-life, 469
Half-planes, 823
Halley's Comet, 929, 943, 955
Harding, Warren G., 656
Harmonic motion, simple, 605-608
Harvey, William, 142
Heron's formula, 698
Higher-order determinants, 910-911
Horizontal asymptote(s)
definition of, 367
of exponential function, 431-432
locating, 367
in logistic growth model, 470
of rational functions, 366-368,
370, 371, 372, 375
x-axis as, 416,417
Horizontal component of vector, 742
Horizontal lines, 196
equations of, 194, 196
Horizontal line test
applying, 251-252
for inverse functions, 250-252
Horizontal shifts, 218-220, 224, 225, 226
of exponential function, 418
to left, 218, 219
of logarithmic function, 432
to right, 218
Horizontal stretching or shrinking, 223-224, 225
of exponential function, 418
of logarithmic function, 432
Hubble Space Telescope, 948, 956, 957
Hyperbolas, 920, 933-948
applications with, 943-944
asymptotes of, 936-937, 938-939,

$$
941,943,965
$$

definition of, 933
eccentricity for, 985
focus-directrix definition of, 985
graphing, 937-943
identifying, 963, 972
polar equation of, graphing, 990-991
standard form of equation of, 934-936, 940, 965
Hyperbolic cosine function, 427
Hyperbolic sine function, 427
Hypocycloid, 983
Hypotenuse of right triangle, 113, 524
Pythagorean Theorem to find length of, 525,526

I
i (imaginary unit), 292-293
square roots of negative numbers in terms of, 295-296
IBM, 902
Identity(ies), 664
for cosine of difference of two angles, 633-635
double-angle formulas, 644-647, 651
fundamental trigonometric, 622-633
half-angle formulas, 648-650, 651
principal trigonometric, 644-651
product-to-sum formulas, 657
Pythagorean, 622, 671
quotient, 515, 622
reciprocal, 622
solving trigonometric equations using, 669-672
sum-to-product formulas, 658-659
trigonometric. See Trigonometric identities
verifying. See Verifying an identity
Identity function
graph of, 216
limits of, 1104-1105
Identity property
of addition, 12
of multiplication, 12
scalar, 876
Imaginary axis, 726
Imaginary numbers, 292
Imaginary part, of complex number, 292
Incidence ratio, 379
Inconsistent systems, 778-779, 796
determinants used for identifying, 910
geometric possibilities for, 864
Increasing function, 174-175
relative maximum/minimum, 175-176
Independent events, 1077-1079
Independent variable, 158
Index, 39
reducing, 44
of summation, 1007, 1008
Individual Retirement Account, 1030-1032
Induction. See Mathematical induction
Inequalities
absolute value, 127-129
compound, 126-127
and English sentences, 123
equivalent, 123, 124
isolating x in middle of, 126
polynomial, 381-386, 389-390
rational, 387-389
solution set of, 120
solving, 123-126
triangle, 11
Inequality symbols, 9, 120, 823
reversal of direction of, 124
Infinite geometric series, 1032-1034
sum of, 1032-1034
Infinite interval, 120
Infinite sequence, 1003
Infinity symbol, 120
Initial point
of directed line segment, 740
of vector at origin (position vector), 743
Initial side of angle, 492-493
Inside terms, in binomial, 52
Instantaneous rate of change, 1126,
1127, 1129, 1130
finding, 1131-1133
Instantaneous velocity, 211,
1133-1134
Integers, 7
Intercepts
for graphing linear equations, 195-196
graphing using, 146-147, 195-196
identifying, 147
identifying, from function's graph, 167
Interest
compound, 421-423, 459-460, 466-467, 1030, 1031
simple, 274
Interest rates, doubling time and, 460
Intermediate Value Theorem, 325-326
Intersection(s)
of intervals, 121-122
of sets, 5-6, 232
Interval notation, 120-121, 126, 232
to represent function's domain and range, 165,166
Intervals
closed, 120
infinite, 120
intersections and unions of, 121-122
of nonrestricted cosine function, 592
open, 120, 174, 175
on real number line, 121
satisfying polynomial inequality, 384, 385, 386
satisfying rational inequality, 388
on which function increases, decreases, or is constant, 174-175
Inverse
additive, 13,874
equation of the, finding, 248-250
multiplicative (reciprocal), 13, 74
Inverse cosine function, 588-590 defined, 589
exact values of, 589-590
inverse properties, 594
Inverse function(s), 245-256, 585 defined, 247
of exponential function. See Logarithmic functions
finding, 248-250
graphing, 252-253
horizontal line test for, 250-252
inverse of domain-restricted function, finding, 253
notation, 247, 248
verifying, 247-248
Inverse property(ies)
of addition, 12
of logarithms, 430
of multiplication, 12
using, 436
Inverse sine function, 531, 585-588
defined, 586
exact values of, finding, 587-588
inverse properties, 594
notation, 586
simplifying expression involving, 597
Inverse tangent function, 590-592
defined, 590
exact values of, 591-592
inverse properties, 594
Inverse trigonometric functions, 585-601
exact values of composite
functions with, 593-597
inverse properties, 594
using calculator to evaluate, 593
Inverse variation, 397-399
in combined variation, 399-400
equations, 398
problem solving, 397-399
Inverted cycloid, 981
Invertible square matrix, 891, 894-895
Investments
choosing between, 422-423
and compound interest, 422-423, 459-460, 1031
Irrational number, 7
natural base $e, 420-421,437,477$
as solutions to quadratic equations, 99
Isolating x in the middle of
inequality, 126
Isosceles right triangle, 526

J

Japan, calculus in, 1109
Jeter, Derek, 983
Job offers, 1023
Joint variation, 400-401
Jordan, Wilhelm, 857

K

Kahl, Joseph, 916
Kepler, Johannes, 928, 991
Kidney stone disintegration, 919, 928
Kim, Scott, 300
Kurzweil, Ray, 418

L

Laffer, Arthur, 345
Large numbers
and exponents, 24
names of, 24
Last terms, in binomial, 52
Latus rectum of parabola, 951, 952, 954, 955

Law of Cosines, 694-702
applications of, 697-698
defined, 695
derivation, 694-696
dot product formula derived using, 756
oblique triangles solved using, 695-697
Law of Sines, 682-693, 696, 697
ambiguous case, solving triangle in, 685-688
applications of, 688-689
area of oblique triangle, finding, 688
defined, 682
derivation of, 682-683
solving oblique triangle using, 683-685
Leading coefficient, 49, 318
Leading Coefficient Test, 319-322
Leaning Tower of Pisa, 389-390
Least common denominator (LCD) finding, 76-77
in solving linear equation involving fractions, 88
in solving rational equations, 89, 91
Left-hand limit, 1097, 1098
Legs, of right triangle, 113
Leibniz, Gottfried, 1104, 1106
Lemniscates, 721
Less than or equal to symbol, 9,120
Less than symbol, 9
Light, theory of, 981
Like radicals, 36
adding and subtracting, 36
Like terms, 13
combining, $13,14,50$
Limaçon, 718
Limitations, inequalities to describe, 836-837
Limit notation, 1093
for one-sided limits, 1097
Limits, 1093-1123
of constant functions, 1104-1105
continuity and, 1117-1123
derivative of a function and, 1129-1134
of difference, 1106,1111
finding
by factoring, 1112-1113
by rationalizing a numerator, 1113
using graphs, 1095-1096, 1098-1099
using properties of limits, 1104-1116
using tables, 1093-1095
of fractional expressions when
limit of denominator is zero, 1112-1114
of identity function, 1104-1105
instantaneous rate of change,
1127, 1131-1133
of monomial, 1108
one-sided, 1097-1099, 1112
of polynomial, 1109
of power, 1109-1110, 1111
of product, 1107, 1111
properties of, 1105-1113
of quotient, 1110-1111
of root, 1110, 1111
slope of tangent line, 1127-1128 of sum, 1106, 1111
Line(s)
equations of, 196. See also
Equation of line
parallel, 203-204, 778
perpendicular, 204-206
regression, 188
secant, 207-208, 210, 1125, 1126
slope of, 188-190
tangent, to circle, 266
Linear combination of vectors, 742
Linear equations, 86-89
defined, 86
with fractions, 88-89
intercepts used for graphing,
195-196
in one variable, 86
solving, 86, 87-89
in three variables, 792-800
Linear Factorization Theorem, 353-354
Linear factors
partial fraction decomposition with, 803-805
partial fraction decomposition with distinct, 801-803
Linear functions, 161, 188-202, 319
constant function, 194, 319
data modeled with, 196-197
graphing in slope-intercept form, 192-193
limit of, 1109
Linear inequalities
in one variable, 120, 123-126
problem solving with, 129-130
properties of, 124
solving, 123-126
systems of, 827-831, 835-842
in two variables, 822-826
Linear numerators, partial fraction
decomposition with, 805-806, 807-808
Linear programming, 835-842
constraints in, 836-837
objective functions in, 835-836, 838 problem solving with, 837-839
Linear speed, 503, 504
Linear systems. See Systems of linear equations
Line graphs, 147
interpreting, 147-149
Line segments
directed, 740-741
midpoint of, 258-259
Lissajous Curve, 983
Logarithmic equations, 455-461
applications of, 458-461
defined, 455
one-to-one property of logarithms to solve, 458
product rule used for solving, 457
quotient rule used for solving, 458 solving, 455-458
Logarithmic expressions
condensing, 445-446
expanding, 441-445
Logarithmic form, 428
changing from exponential form to, 429
changing to exponential form from, 428
equations in, 428
location of base and exponent in, 428
Logarithmic functions, 427-440
with base $b, 428$
change-of-base property to graph, 448
common, 434-435
definition of, 427-428
domain of, 433
graphs of, 430-433
modeling data with, 471-477
natural, 435-436
transformations involving, 432-433
Logarithmic properties, 441-450
change-of-base property, 446-448
involving one, 429
power rule, 443-444, 445
product rule, 441-442, 444, 445, 457
quotient rule, 442-443, 444, 445, 458
using, 429-430
Logarithmic regression option,
graphing utility, 474
Logarithms
common, 434-435, 447
evaluating, 429
inverse properties of, 430
natural, 435-436, 447, 448, 453-455
one-to-one property of, solving logarithmic equations using, 458
Logistic growth model, 470-471
Long division, polynomial, 334-338
Lower limit of summation, 1007 1008

M

Mach, Ernst, 654
Magnitude, 740
of directed line segment, 740
and direction. See Vector(s)
equal vectors with same direction and, 740-741
scalars involving, 740
of single point, 742
of vector in rectangular coordinates, finding, 743
writing vector in terms of its direction and, 747-748
Main diagonal, 850
Major axis, of ellipse, 921, 923, 924, 925, 926-927
Malthus, Thomas, 1025
Mandelbrot set, 726, 735
Marx, Groucho, 1066
Mathematical induction, 1040-1048
domino analogy illustrating, 1041
principle of, 1040-1043
proving statements about positive integers using, 1043-1046
steps in proof by, 1041
Mathematical models/modeling, 4,
148-149. See also Modeling
and formulas, 3-5
with systems of linear inequalities, 827-828
word problems, solving, 107-116

Mathematics, universality of, 1053
Matrix equations, solving, 876-877
using inverse of matrix, 896-897
Matrix (matrices), 849-918
augmented, 850-858, 862-863, 893, 894
coded, 897-898
coding, 897
coefficient, 895
column, 895
constant, 895
determinant of $2 \times 2,902-903$
determinant of 3×3, 905-908
equal, 873
inconsistent and dependent systems identified with, 862-871
linear systems solved using, 850-862
multiplicative inverse of, 888-901
nonsquare, 891
notation for, 872-873
of order $m \times n, 872$
square, $872,888-896$
zero, 874
Matrix operations, 872-887
addition, 873-874
applications, 881-883
multiplication, 877-881
scalar multiplication, 875-876
solving matrix equations involving, 876-877
subtraction, 873-874
Matrix row operations, 851-852
Maximized quantity, objective
function describing, 835-836, 838
Maximum, relative, 175-176
Maximum point
on cosine curve, 579
in graph of cosine function, 563, 564
in graph of sine function, 552,
553, 554, 557, 559, 562
on sine curve, 578
Maximum value of quadratic functions, 306-312
Midpoint formula, 258-259
Minimized quantity, objective
function describing, 835-836
Minimum, relative, 175-176
Minimum function feature, on
graphing utility, 796
Minimum point
on cosine curve, 579
in graph of cosine function, 563, 564
in graph of sine function, 552, $553,554,557,559,562$
on sine curve, 578
Minimum value of quadratic functions, 306-312
Minor, 906, 911
expansion by, 906, 908
Minor axis, of ellipse, 921, 926-927
Mixture problem, solving, 780-781
Model breakdown, 5
Modeling. See also Mathematical models/modeling
chaos theory and, 681
with equations, 106-119
with exponential and logarithmic functions, 473-476
with functions, 266-281
music, 607
periodic behavior, 565-568
simple harmonic motion, 605-608
with variation, 394-404
verbal models, 266-270
Modulus of complex number, 728
Monomials, 49
limit of, 1108
multiplying, 50
multiplying polynomial that is not monomial and, 50
Monteverdi, 142
Morphing, 215
Motion
and change analyzed in calculus, 1092, 1125
uniform, 375-376, 782-783
Moving object, parametric
representation of, 980
Multiple angles, trigonometric
equations involving, 666-667
Multiple representation of points,
704-705
Multiplication
associative property of, 12
of binomial and trinomial, 50-51
commutative property of, 12
of complex numbers, 294,
729-730
of conjugates, 38-39
distributive property of, over addition, 12
identity property of, 12
inverse property of, 12
matrix, 877-881
of monomial and polynomial, 50
of monomials, 50
with numbers in scientific notation, 26
of numerator and denominator by same factor, verifying an identity by, 627
of polynomials, 50-53, 55
of polynomials in two variables, 54
product rule. See Product rule
of radical expressions, 40-41
of rational expressions, 73-74
of real numbers, 12
scalar, $741,745,746,875-876$
of sum and difference of two terms, 53
Multiplication property of inequality, 124
Multiplicative identity, 12
Multiplicative identity matrix, 888-891
Multiplicative inverse of matrix, 888-901
applications to coding, 897-898
of $n \times n$ matrices with n greater than 2, 892-895
quick method for finding, 891, 892
solving systems of equations using, 895-897
of a square matrix, 888-896
Multiplicative inverse (or reciprocal), 13, 74
Multiplicities of zeros, x-intercepts and, 324-325, 327
Multiplier effect, and tax rebates, 1034

Music
sinusoidal sound, 660
sound quality and amusia, 633, 635
Mutually exclusive events, 1074-1075
N
National debt, 20, 24, 27-28
Natural base (e), 420-421, 437, 477
Natural exponential function, 420
Natural logarithmic functions, 435-436
Natural logarithms, 435-436
changing base to, 448 exponential equations solved using, 453-455
introducing, 447
properties of, 436
Natural numbers, 7
n compounding periods per year, 422
Negative angles, 493, 499
Negative discriminants, 297
Negative-exponent rule, 21
Negative exponents, 24, 25, 67
Negative multiplication property of inequality, 124
Negative numbers, 8
multiplying a vector by, 741
properties of, 14-15
square root of, 33
as multiples of $i, 292$
operations with, 295-296
principal, 295-296
Negative real zeros, 354-355
Negative reciprocal, 205
Negative slope, 190
Negative square root, 33
Newton, Isaac, 437, 471 calculus developed by, 1104, 1106 gravitation formula of, 400
Newton's Law of Cooling, 471-473
n factorial ($n!$), 437
Nonlinear inequality in two
variables, graphing, 826-827
Nonlinear systems, 811-821 applications with, 817-818
recognizing, 811
solving by addition method, 814-817
solving by substitution, 812-814
Nonsingular square matrix, 891
Nonsquare matrix, 891
Nonsquare systems, 866
n th-order determinant, 910
nth partial sum, 1017, 1027
nth roots
even and odd, 40
of real numbers, 39
solving radical equations containing, 101
Numbers, sets of, 5
irrational numbers, 7
rational numbers, 7
real numbers, 6-8
Numerator(s), 13
partial fraction decomposition with constant, 804,808
partial fraction decomposition with linear, 805-806, 807-808
rationalizing, 81-82, 1113
Numerical coefficient, 13

0
Objective functions, in linear programming, 835-836
Objective functions, in linear programming, 838
Oblique triangle, 682
abbreviating known
measurements in, 683
area of, finding, 688
Law of Cosines to solve, 695-697
Law of Sines to solve, 683-685
Obtuse angle, 493
Odd function, 176-178
cosecant function as, 577
cotangent function as, 576
definition of, 176
and origin symmetry, 178
sine function as, 552
tangent function as, 572,573
Odd multiplicity, zero of, 324
Odd roots, 40
Odd trigonometric function, 513-514
One radian, 494
One-sided limits, 1097-1099, 1112
equal and unequal, 1098-1099
finding, by using graph, 1098-1099
left-hand and right-hand, 1097, 1098
using limit properties to find, 1112
One-to-one correspondence, 8
One-to-one functions, 252
One-to-one property of logarithms, 458
Open dots, 163
Open intervals, 120, 174, 175
Opposites (additive inverses), 13
Orbits, planetary, 991
Order, distinguishing between combination and permutation and, 1061
Ordered pairs, 142 as solutions of systems, 772-773
Ordered triples, as solution of system of linear equation in three variables, 792-793, 864
Order of operations, 4
Orientation, 976
Origin, 8, 142
graphing ellipse centered at, 923-925
graphing ellipse not centered at, 925-927
graphing hyperbolas centered at, 937-940
graphing hyperbolas not centered at, 940-943
graphing parabolas with vertices at, 950-952
graphing parabolas with vertices not at, 952-955
modeling distance to point on graph from, 275
Origin symmetry, 178, 573
Or probabilities
with events that are not mutually exclusive, 1075-1077
with mutually exclusive events, 1074-1075
with real-world data, 1076-1077

Orthogonal vectors, 757
dot product and, 757
vector as sum of two, 759-760
Oscillatory motion, modeling, 605
diminishing motion with increasing time, 606
simple harmonic motion, 605-608
Outside terms, in binomial, 52

P

Parabolas, 300-306, 920, 948-960
applications with, 955-957
and axis of symmetry, 301, 949, 950, 953
definition of, 948-949
downward opening, 300-302, 305-306, 950, 952, 953
eccentricity for, 985
finding parametric equations for, 979
focus-directrix definition of, 985
in form $f(x)=a x^{2}+b x+c$, 304-306
in form $f(x)=a(x-h)^{2}+k$, 301-303
graphing, 950-955
identifying, 963, 972
latus rectum of, $951,952,954,955$
leftward opening, 950, 953
polar equation of, graphing, 989
rightward opening, 950, 953
standard form of equation of, 949-955
translations of, 952-955
upward opening, 300-304, 306, 950, 953
Parallel lines, 203-204
inconsistent system and, 778
and slope, 203-204
Parallel vectors, 757
Parameter, 975, 976-977
Parametric equations, 974-984
advantages over rectangular equations, 980-981
defined, 975
for function $y=f(x)$, finding, 979
plane curves and, 974-979
Parentheses
and distributive property, 14-15
in interval notation, 121
and simplifying algebraic expressions, 14
Partial fraction, 800-811
Partial fraction decomposition,
800-810
with distinct linear factors, 801-803
idea behind, 800-801
with prime, nonrepeated quadratic factors, 805-807
with prime, repeated quadratic factor, 807-809
with repeated linear factors, 803-805
steps in, 803
Pascal, Blaise, 142, 1053
Pascal's triangle, 1053
Per, rate of change described using, 209
Perfect nth power, 40
Perfect square, 34
greatest perfect square factor, 35, 37

Perfect square trinomials, 64, 96 factoring, 64
Perimeter, formulas for, 111
Period, 516
of cosecant function, 577
of cosine function, 560, 561-564
of cotangent function, 576
of secant function, 578
of simple harmonic motion, 606, 608
of sine function, 551-552, 553-558, 667
of tangent function, 572, 573, 666
Periodic functions, 516-518
definition of, 516
modeling periodic behavior, 565-568
Permutations, 1058-1060
combinations compared to, 1061-1062
defined, 1059
notation, 1059
of n things taken r at a time, 1059
Perpendicular lines, 204-206
and slope, 204-205
Phase shift, 558, 563
Phi $(\phi) 6$
Photography, digital, 881-882
Picture cards, 1071
Piecewise functions, 178-180
discontinuous, determining for what numbers, 1119-1121
finding a limit by graphing, 1096
properties of limits and, 1112
Pixels, 881, 882
Plane curves, 974-979
defined, 975
described by parametric equations, graphing, 975-976
finding parametric equations, 979-980
Planetary motion, modeling, 991
Plotting points
graphing functions by, 161-162
in polar coordinate system, 702-704
in rectangular system, 142-143
Point conversion
polar-to-rectangular, 705-706
rectangular-to-polar, 706-708
Point-plotting method, 714
graphing equation using, 143-144, 714-715
graphing plane curves described by parametric equations, 975-976
Points, plotting. See Plotting points
Point-slope form of equation of line, 190-191, 196
perpendicular lines, 205-206
tangent line, 1128, 1129
writing, 191
Polar axis, 702-703
as axis of symmetry, 986, 988, 989
symmetry with respect to, 716 , $717,719,720,986,988,989$
Polar coordinates, 702-713
circles in, 715
conic sections in, 984-994
equation conversion from rectangular coordinates to, 708-709
equation conversion to rectangular coordinates from, 709-710
multiple sets of, for given point, 704-705
plotting points with, 703-704
point conversion from rectangular coordinates to, 706-708
point conversion to rectangular coordinates from, 705-706
relations between rectangular coordinates and, 705
sign of r and point's location in, 703
tests for symmetry in, 716
Polar coordinate system, 702
multiple representation of points in, 704-705
plotting points in, 702-704
Polar equation, 708-709, 714
of conics, 985-991 graphing, 987-991 standard forms of, 986
conversion to rectangular equation, 709-710
converting rectangular equation to, 708-709
graphs of, 714-724
for planetary orbits, 991
Polar form of complex number, 728-735
defined, 728
powers of complex numbers, 731-732
product of two complex numbers, 729-730
quotient of two complex numbers, 730-731
roots of complex numbers, 733-735
Polar grids, 714
Pole, 702-703
symmetry with respect to, 716 , 717, 719, 720
Polk, James K., 656
Polynomial(s), 48-57
adding, 50
defined, 48
degree of, 49, 53
dividing, 334-340
dividing by those containing more than one term, 334-336
dividing using synthetic division, 338-340
factoring, 58-70
factoring completely, 58
limit of, 1109
long division of, 334-338
prime (irreducible over the integers), 58, 63
standard form of, 49
strategy for factoring, 60, 65-67
subtracting, 50
in two variables, 53
vocabulary of, 48-49
Polynomial equations
Factor Theorem to solve, 341-343
Fundamental Theorem of Algebra and roots of, 352-353
properties of, 352
solving for roots of, 350-353
Tartaglia's formula giving root for third degree, 346
Polynomial functions, 317-334
continuous at every number, 1119
definition of, 318
of degree $n, 318$
end behavior of, 319-322, 326-327
even-degree, 320, 322
example of, 291
with given zeros, finding, 353-354
graphs of, 319-322, 326-329
Intermediate Value Theorem for polynomials, 325-326
multiplicities of zeros of, 324-325, 327
odd-degree, 320, 321
quadratic functions, 300-317, 319, 796
rational zeros of, 347-348
Remainder Theorem used for evaluating, 340-341
turning points of, 326, 327
zeros of, 322-324, 327, 346-360
Polynomial inequality, 381-386
definition of, 382
solving, 383-386
solving problems modeled by, 389-390
Polynomial multiplication, 50-53, 55
FOIL method used in, 51-52
multiplying monomial and polynomial that is not monomial, 50
polynomials in two variables, 54
when neither is monomial, 50-51
Ponzi schemes, 1027
Population growth
geometric, 1025-1026
U.S., modeling, 467-468
world, 466. See also World population
Position function for a free-falling
object near Earth's surface,
389-390
Position vector, 743
Positive angles, 492, 493
degree and radian measures of selected, 499
in terms of revolutions of angle's terminal side around origin, 499
Positive multiplication property of
inequality, 124
Positive numbers, 8
Positive (or principal) square root.
See Principal square root
Positive real zeros, 354-355
Positive slope, 190
Power(s)
of complex numbers in polar form, 731-732
limit of a, 1109-1110, 1111
products raised to, 21
quotients raised to, 21
Power-reducing formulas, 647-648, 651
Power rule, 21, 443-444, 445
Prime polynomials, 58, 63
Prince, Richard E., 962

Principal, 421
Principal nth root of a real number, definition of, 39
Principal square root, 33, 34, 295-296
of $a^{2}, 34$
definition of, 33
of negative number, 295-296
Probability, 1067-1082
combinations and, 1072-1073
empirical, 1068-1070
of event not occurring, 1073-1074
or probabilities with events that
are not mutually exclusive,
1075-1077
or probabilities with mutually exclusive events, 1074-1075
and probabilities with
independent events,
1077-1079
theoretical, 1070-1073
Problem solving
involving maximizing/minimizing quadratic functions, 308-312
with linear inequalities, 129-130
with linear programming, 837-839
with scientific notation, 27-28
with systems of linear equations, 780-785
uniform motion problem, 782-783
word problems, 107-116
Product(s)
of functions, 234, 235
limit of, 1107, 1111
minimizing, 310-311
raised to powers, 21
of rational expressions, 73-74
special, 52-53
special-product formula, 52-53
of sum and difference of two terms, 53
of two binomials, 51-52
of two complex numbers in polar form, 729-730
of two matrices, defined, 878
Product rule, 21, 441-442, 444, 445
for radicals, 40-41
for solving logarithmic equations, 457
for square roots, 34-35
Product-to-sum formulas, 657
Profit function, 785
gain or loss, 785
Projectiles, 300
Pujols, Albert, 974
Pythagorean identities, 516, 622, 671
Pythagorean Theorem, 113-114
converse of, 114
and distance between two points, 257

Q
Quadrantal angle, 493, 537-538
degree and radian measures of, 547
trigonometric functions of, 539-540, 547
Quadrants, 142
signs of trigonometric functions and, 540-541, 547
in which angle lies, finding, 540

Quadratic equations
with complex imaginary solutions, 297
defined, 93
determining most efficient method for solving, 99-100
discriminant of, 98-99
in general form, 93, 97, 297
irrational solutions to, 99
rational solutions to, 99
solving
by completing the square, 96
by factoring, 93-94, 100
by square root property, 94-95, 99, 100
by using quadratic formula, 97-98, 100
Quadratic factors in denominator of
rational expression
prime, nonrepeated, 805-807
prime, repeated, 807-809
Quadratic formula, 97-98, 297
deriving, 97
quadratic equations solved with, 97-98, 100
trigonometric equation solved using calculator and, 673
Quadratic functions, 270, 291,
300-317, 319, 796
applications of, 308-312
defined, 300
graphs of, 300-306
minimum and maximum values of, 306-312
standard, graph of, 216
in standard form, 301-303, 304
Quadratic in form, solving equations, 667-668
Quantities
scalar, 739
vector. See Vector(s)
Quarterly compounding of interest, 422
Quotient(s), 13
of complex numbers in polar form, 730-731
difference, 180-181
of functions, 234, 235
limit of a, 1110-1111
raised to powers, 21
of two rational expressions, 74-75
Quotient identities, 515, 622
Quotient rule, 21, 442-443, 444, 445
for radicals, 40-41
for solving logarithmic equations, 442-443, 444, 445, 458
for square roots, 35-36

R
Radian(s), 494-495, 499, 547
converting between degrees and, 495-496
definition of, 494
Radical(s), 39
like, 36
simplifying fractional expression containing, 80-81
Radical equations, 100-102
solving, 101-102
solving those containing nth roots, 101

Radical expressions, 33
adding and subtracting, 36-37
combining those requiring simplification, 37
dividing, 40-41
product rule for, 40-41
quotient rule for, 40-41
simplifying, 34, 37, 40-41
simplifying using rational
exponents, 44
Radical sign, 33
Radical symbols, 33
Radicand, 33, 39
Radius of circle, 259, 261-262, 503
Range, 157
of cosecant function, 577
of cosine function, 512, 561
of cotangent function, 576
identifying, from function's graph, 165-167
of relation, 155
of secant function, 578
of sine function, $511,512,552$
of tangent function, 573
Rate of change
average, 207-209, 1125, 1131-1133
instantaneous, 1126, 1127, 1129, 1130, 1131-1133
slope as, 206-207
Rational equations, 89-91
Rational exponents, 41-44
defining, 41
with numerators other than one, 42-43
radical expressions simplified using, 44
reducing the index of, 44
simplifying expressions with, 43-44
Rational expressions, 71-85
addition of those with common
denominators, 76-77
addition of those with different denominators, 75-78
complex, 78-80
defined, 72
dividing, 74-75
domain of, excluding numbers from, 72
multiplying, 73-74
partial fraction decompositions for, 800-810
simplifying, 72-73
subtraction of those with different denominators, 75-78
subtraction of those with same denominators, 75
Rational functions, 361-381
applications, 374-376
domain of, 361-362
graphs of, 368-372
horizontal asymptote of, 366-368, 370, 371, 372, 375
inverse variation equation as, 398
reciprocal function and, 362-364
slant asymptotes of, 372-373
vertical asymptotes of, 364-366, 370, 371, 372
Rational inequalities, 387-389
solving, 387-389
solving problems modeled by, 389-390

Rationalizing denominators, 37-39
containing one term, 37-38
containing two terms, 38-39
Rationalizing the numerator, 81-82 to find limits, 1113
Rational numbers, 7
Rational Zero Theorem, 347-348, 349
Ray, 492
Ray, Greg, 1066
Real axis, 726
Real number line, 8-9
distance between two points on, 11
intervals on, 121
Real numbers
adding, 11-12
dividing, 13
graphing, 8-9
multiplying, 12
ordering, 9
principal nth root of, 39
properties of, 11-13
set of, 6-8
subsets of, 6-7
subtracting, 13
trigonometric functions of, 509-511
Real part, of complex number, 292
Reciprocal function, 362-364
defined, 362
graph of, 363-364
Reciprocal identities, 514, 622
Reciprocal (or multiplicative
inverse), 13, 74
negative, 205
Rectangle(s)
area and perimeter formulas for, 111, 112
with fixed perimeter, modeling area of, 271-273
golden, 47
Rectangular coordinate system, 142
circle in, 257
distance between two points on, 257
ellipse on, 921
equation conversion from polar to, 709-710
equation conversion to polar coordinates from, 708-709
graphing equations in, 143-147
point conversion from polar to, 705-706
point conversion to polar coordinates from, 706-708
points plotted in, 142-143
relations between polar
coordinates and, 705
vectors in, 742-744
Rectangular equation of curve defined parametrically, 977-979
Rectangular form, complex number in, 728, 729
Rectangular solid
surface area formula for, 273
volume of, 111, 270-271
Recursion formulas, 1004-1005
Reduced row-echelon form, 857-858
Reference angles, 541-547
for angles greater than 360° (2π) or less than $-360^{\circ}(-2 \pi)$, finding, 542-543
definition of, 541
evaluating trigonometric
functions using, 543-547
finding, 542-543
Reflecting light, and parabolas, 956-957
Reflections of graphs, 220-221, 224
of exponential function, 418
of logarithmic function, 432, 433
one-to-one functions, 252
about x-axis, 220-221, 224
about y-axis, 221, 224
Regression line, 188
Relations, 154-155
defined, 155
as functions, 156-158
Relative maximum, 175-176
Relative minimum, 175-176
Relativity, Einstein's theory of, 44
Remainder Theorem to evaluate polynomial function, 340-341
Repeated factorization, 63
Repeating decimals, 7 written as fractions, 1033-1034
Repetitive behavior of sine, cosine, and tangent functions, 518
Representative numbers test value, solving polynomial inequalities at, $383,384,385$, 386
test value, solving rational inequality at, 388
Resultant vector, 741, 748-749
Revenue, 783
Revenue function, 783, 785
Richter scale, 427, 435
Right angle, 493
Right-hand limit, 1097, 1098
Right triangle, 113, 257
isosceles, 526
names of sides of, 524
solving a, 601-604
solving problem using two, 603-604
special, 547
Right triangle trigonometry, 523-536. See also Trigonometric functions
applications of, 530-532
Rise, 188
Roller coasters, derivatives and, 1134
Rolling motion, 981
Root(s)
of complex numbers in polar form, 733-735
of equations, $86,322,350-353$
limit of a, 1110, 1111
Rose curves, 719-720
Roster method, 5
Rotational motion, 981
Rotation of axes, 962-974
equations of rotated conics in standard form, writing, 966-971
formulas, using, 963-965
identifying conic sections without, 962-963, 971-972
Row-echelon form, 851, 854, 856
Row equivalent, 851
Row operations, 851-852
on augmented matrix, 851-852
Run, 188
Rutherford, Ernest, 946

S
St. Mary's Cathedral (San
Francisco), 933
Saint-Vincent, Grégoire de, 437
Salaries
comparing, 1023
lifetime computation, 1029-1030
Sample space, 1070, 1071-1072
Satisfying the equation, 86, 143
Satisfying the inequality, 120,823
Savings, and doubling time, 460
Scalar, 739, 742
dot product of two vectors as, 755
Scalar identity property, 876
Scalar multiple, 741, 875
Scalar multiplication, 741, 746,
875-876
with vector in terms of \mathbf{i} and \mathbf{j}, 745
Scatter plots, 188, 197, 198, 473-474, 475, 476
Scientific calculators
angle of elevation problems on, 531
combinations on, 1063
common logarithms evaluated on, 434
computations with scientific notation on, 26
converting from decimal to scientific notation on, 26
evaluating e to various powers, 420
evaluating trigonometric functions using, 518-519
exponential expressions evaluated on, 415
factorials found with, 1005
inverse sine key, 531
inverse trigonometric functions on, 593
keystroke sequences for rational exponents, 43
Scientific notation, 24-29
computations with, 26-27
converting from decimal notation to, 25-26
converting to decimal notation from, 24-25
defined, 24
problem solving with, 27-28
Secant (sec)
of 45°, evaluating, 527
as cofunction of cosecant, 529
defined, 524
evaluating, 525
Secant curve
characteristics of, 578
cosine curve to obtain, 579
Secant function
as even function, 514
graph of, 577-579
reference angle to evaluate, 546
Secant line, 207-208, 210, 1125
slope of, 1126
Second-degree equation, general, 963-964
Second-degree polynomial equation,
93. See also Quadratic equations

Second-order determinants,
evaluating, 902-903
Seinfeld, Jerry, 1066

Seki Kowa, 1109
Semiannual compounding of interest, 422
Sense of the inequality, changing, 124
Sequences, 1002-1039
arithmetic, 1013-1023
defined, 1003
defined using recursion formulas, 1004-1005
factorial notation, 1005-1006
Fibonacci, 1002
finding particular terms of, from general term, 1003-1004
finite, 1003
geometric, 1023-1039
infinite, 1003
summation notation, 1006-1009
of transformations, 224-226
Series, geometric, 1032-1034
infinite, 1032-1034
Set(s), 5
empty (null), 6, 91
intersection of, 5-6, 232
of irrational numbers, 7
of numbers, 5
of rational numbers, 7
of real numbers, 6-8
union of, 6,232
Set-builder notation, 5, 120, 121,
126, 127
for or probabilities with mutually exclusive events, 1074
to represent function's domain and range, 165-166
Sherpa, Ang Rita, 523
Shrinking graphs
$\Sigma, 1007$
horizontal, 223-224, 225, 418, 432
vertical, 222-223, 225
Signs
Descartes's Rule of, 354-356
of trigonometric functions, 540-541, 547
Simple harmonic motion, 605-608
analyzing, 607-608
diminishing motion with increasing time, 606
finding equation for object in, 606-607
frequency of object in, 607, 608
resisting damage of, 608
Simple interest formula, 274
Simplifying algebraic expressions, 13
Simplifying complex numbers, 293
Simplifying complex rational
expressions
by dividing, 79
by multiplying by one, 79-80
Simplifying exponential expressions, 22-24
common errors in, 24
with rational exponents, 43
Simplifying radical expressions, 34, 37, 40-41, 44
Simplifying rational expressions, 72-73
Simplifying square roots, 35
Sine (sin)
of 30° and 60°, evaluating,
527-528
of 45°, evaluating, 527,528
as cofunction of cosine, 529
defined, 524
double-angle formula for, 644 , 645, 651
evaluating, 525
half-angle formula for, 648, 651 inverse, 531
Law of Sines, 682-693, 696, 697
power-reducing formula for, 651
product-to-sum formulas for, 657
rotation of axes and, 964-965
sum and difference formulas for, 636-639, 651
sum-to-product formulas for, 658-659
verifying an identity by changing to, 623-628
Sine curve, 552
to obtain cosecant curve, 578-579
stretching and shrinking, 553
vertical shifts of, 564-565
Sine function
amplitude of, 553-558
domain and range of, 511, 512, 552
domain of restricted, vs. interval of nonrestricted, 592
in form $y=A \sin B x, 556-558$
in form $y=A \sin (B x-C)$, 558-560
graph of, 551-560, 580
inverse, 585-588, 592, 597
inverse properties, 594
key points in graphing, 552-560, 562
modeling periodic behavior, 565-568
as odd function, 513-514, 552
period, 551-552, 553-558, 667
periodic properties of, 517
properties of, 552
of quadrantal angles, 539-540
reference angle to evaluate, 544
repetitive behavior of, 518
solving right triangles using, 603
variations of $y=\sin x$, graphing, 552-560
vertical shifts of sine curve, 564-565
Sine waves, 660
Singular square matrix, 891
Sinusoidal functions, modeling
musical sounds with, 607
Sinusoidal graphs, 561, 564-565
Sinusoidal sounds, 660
Slant asymptotes, 372-373
Slope
as average rate of change, 207-209
defined, 188, 206
interpreting, 206-207
of line, 188-190
negative, 190
notation for, 189
and parallel lines, 203-204
and perpendicular lines, 204-205
point-slope form of the equation
of a line, 190-191, 196, 205-206
positive, 190
as rate of change, 206-207
of secant line, 1126
undefined, 190
zero, 190

Slope-intercept form of equation of
line, 192-193, 195, 196
linear functions graphed in, 192
modeling data with, 197
perpendicular lines, 205
tangent line, 1128
Smooth graphs, 319
Solution(s), 664
of equation in two variables, 143
extraneous, 101
of inequality, 120
of inequality in two variables, 822
of linear equation in one variable, 86
of nonlinear system in two variables, 811
of polynomial equation, 322 , 350-353
of system of linear equations, 772-773
of system of linear equations in three variables, 792, 864
of system of linear inequalities, 827
of trigonometric equation, finding, 664-666
Solution set
of inequality, 120
of linear equation in one variable, 86
of nonlinear system in two variables, 811
of system of linear equations in three variables, 792
of system of linear inequalities, 828
Solving a formula for a variable, 91-92
Solving an inequality, 120
Solving an oblique triangle, 683-685
Solving a right triangle, 601-604
Solving linear equations, 86, 87-89
Sonic boom, hyperbolic shape of, 943
Sound quality and amusia, 633, 635
Sounds, sinusoidal, 660
Space, photographs sent back from, 882
Spaceguard Survey (NASA), 947
Space Telescope Science Institute, 956
Special-product formula, 52-53
Special products, using, 54
Speed
angular, 503-504
ground, 752
of light, 44
linear, 503-504
Sphere
surface area formula for, 273
volume formula for, 111
Square
area and perimeter formulas for, 111
perfect, 34
Square matrix, 872
invertible or nonsingular, 891, 894-895
multiplicative identity matrix of order $n, 888-896$
multiplicative inverse of, 888-896 singular, 891

Square of binomial difference, 53
Square of binomial sum, 53
Square root function, graph of, 216
Square root property, quadratic equations solved by, 94-95, 99, 100
Square roots, 6, 7, 33-34
adding and subtracting, 36-37
evaluating, 33-34
product rule for, 34-35
quotient rule for, 35-36
simplified, 35
Square root signs, 33
Square roots of negative numbers, 33, 34
as multiples of $i, 292$
multiplying, 295-296
Standard cubic function, graph of, 216
Standard form
complex numbers in, 293
of equation of circle, 259-262
of equation of ellipse, 921-925
of equation of hyperbola,
934-936, 940, 965
of equation of parabola, 949-955
of polynomial, 49
of quadratic function, graphing,
301-303, 304
transforming rotated conics to, 966-971
Standard position, angle in, 492, 493 drawing, 497-499
Standard quadratic function, graph of, 216
Standard viewing rectangle, 145
Statuary Hall (U.S. Capitol
Building), 928, 932
Step functions, 180
Stoppard, Tom, 256
Straight angle, 493
Stretching graphs
horizontal, 223-224, 225, 418, 432
vertical, 222-223, 225, 226
Subscripts, 49
Subsets of real numbers, 6-7
Substitution
for eliminating variables, 773-775, 793-795, 812-814
nonlinear systems solved by, 812-814
systems of linear equations in two variables solved by, 773-775
Subtraction
of complex numbers, 293-294
definition of, 13
of like radicals, 36
matrix, 873-874
of polynomials, 50
of radical expressions, 36-37
of rational expressions with
different denominators, 75-78
of rational expressions with same
denominators, 75
of real numbers, 13
of square roots, 36-37
vector, 744-745
Sum
binomial, square of, 53
of cubes, factoring, 65
and difference of two terms, product of, 53
of first n terms of arithmetic sequence, 1017-1020
of first n terms of geometric sequence, 1027-1030
of functions, 234, 235
of infinite geometric series, 1032-1034
limit of, 1106,1111
Sum and difference formulas, 633-644, 651
for cosines, 633-639, 651
for sines, 636-639, 651
for tangents, 639-640, 651
Summation notation, 1006-1009
properties of sums, 1009
using, 1007-1008
writing sums in, 1009
Sum-to-product formulas, 658-659
Supercomputers, 855
Surface area
common formulas for, 273
of cylinder with fixed volume, modeling, 273
Switch-and-solve strategy, 248
Symbols
approximation, 6
for binomial coefficients, 1049
for elements in sets, 5
greater than, 9, 120, 127
greater than or equal to, 9,120
inequality, $9,120,124,823$
infinity, 120
less than, 9
less than or equal to, 9,120
negative square root, 33
radical sign, 33
for set of real numbers, 7
sigma, in adding terms of sequence, 1007
square root, 33
for subsets of real numbers, 7
Symmetry
axis of, $300,301,949,950,953$,
986, 988, 989
even and odd functions and, 176-178
graphing a polar equation using, 716-721
with respect to polar axis, 716 , $717,719,720,986,988,989$
with respect to the origin, 178 , 573
with respect to y-axis, 177-178, 327, 716, 717, 719, 720, 986
tests for, in polar coordinates, 716
Synthesizers, 601, 607
Synthetic division, 338-340
polynomials divided using, 338-340
Systems of equations. See Systems of linear equations
Systems of inequalities. See Systems of linear inequalities
Systems of linear equations, 772
matrix solutions to, 850-862
multiplicative inverses of matrices to solve, 895-897
problem solving and business applications using, 783-785
problem solving using, 780-785

Systems of linear equations in three
variables, 792-800
Gaussian elimination applied to, 862-871
inconsistent and dependent systems, 796
problem solving with, 796
solution of, 792
solving by eliminating variables, 793-796
solving by using matrices, 850-862
solving those with missing terms, 795
solving using determinants and Cramer's rule, 908-910
Systems of linear equations in two
variables, 772-788
determining if ordered pair is solution of, 772-773
with infinitely many solutions, 778, 779-780
with no solutions, 778
number of solutions to, 778-780
solving by addition method, 775-778
solving by graphing, 773, 779
solving by substitution method, 773-775
solving by using determinants and Cramer's rule, 903-905
Systems of linear inequalities
applications of, 835-839
graphing, 828-831
Systems of nonlinear equations in
two variables, 811-821
applications with, 817-818
recognizing, 811
solving by addition method, 814-817
solving by substitution method, 812-814

T
Tables
creating with graphing utility, 146,

310, 458, 476, 807, 1093
of solutions of equations in two variables, 146
finding limits using, 1093-1095
Tangent (tan)
of 30° and 60°, evaluating, 528
of 45°, evaluating, 527,528
as cofunction of cotangent, 529
defined, 524
double-angle formula for, 644 , 645, 646, 651
evaluating, 525
half-angle formula for, 648, 650, 651
power-reducing formula for, 651
sum and difference formulas for, 639-640
Tangent curve, characteristics of, 573
Tangent function
domain, 573
domain of restricted, vs. interval of nonrestricted, 592
finding bearing using, 605
graph of, 572-575, 580
inverse, 590-592
inverse properties, 594
as odd function, 514, 572, 573
period, 572, 573, 666
periodic properties of, 517
of quadrantal angles, 539-540
range, 573
reference angle to evaluate, 544, 545-546
repetitive behavior of, 518
solving right triangles using, 602-604
vertical asymptote of, 572,573, 574
Tangent lines, 266, 1125-1129
point-slope equation of, 1128, 1129
slope-intercept equation of, 1128
slope of, 1127, 1129-1130
Tartaglia's formula giving root for third-degree polynomial equation, 346
Tax-deferred savings plans, 1031
Tax rebates, and multiplier effect, 1034
Tele-immersion, 849
Telephone numbers, running out of, 1058
Temperature, atmospheric carbon dioxide concentration and global, 141, 196-197
Terminal point of directed line segment, 740
Terminal side of angle, 492-493
angle lies in quadrant of, 493
angles formed by revolutions of, 497-499
Terminating decimals, 7
Terms
of algebraic expressions, 13
constant, 49
finding, in binomial expansion, 1052
of geometric sequence, 1024-1030
like, 13-14
multiplying sum and difference of, 53
outside/last/inside/first, in binomial, 52
of sequence, written from general term, 1003-1004
of sequences involving factorials, finding, 1005-1006
Test point
graphing linear inequalities without using, 825-826
graphing linear inequality in two variables, 823
graphing nonlinear inequalities in two variables, 826
Test value, 383 , 384, 385, 386, 388
Theoretical probability, 1070-1073 computing, 1070-1072
computing without listing event and sample space, 1071-1072
Third-order determinants
defined, 905, 906
evaluating, 905-908
Tidal cycle, modeling, 567
Time involved in uniform motion, 375-376
Total economic impact, 1038

Transformations of functions,
215-230
exponential functions, 418-419
horizontal shifts, 218-220, 224, 225, 226, 418, 432
horizontal stretching and shrinking, 223-224, 225, 418, 432
logarithmic functions, 432-433, 435-436
rational functions, 368-369
recognizing graphs of common functions and, 216
reflections of graphs, 220-221, 224, 252, 253, 418, 432, 433
sequences of, 224-225
vertical shifts, 216-217, 220, 224, $225,226,418,432$
vertical stretching and shrinking, 222-223, 224, 225, 226, 418, 432
Translations. See also Vertical shifts
(transformations)
of ellipses, 925-927
of hyperbolas, 940-943
of parabolas, 952-955
Transverse axis, of hyperbola, 933, 934, 940
Trapezoid, area and perimeter formulas for, 111
Tree diagram, 1057
Triangle
area and perimeter formulas for, 111
Heron's formula for area of, 698
oblique, 682, 683-685, 688, 695-697
Pascal's, 1053
right, 113, 257, 601-604
Triangle inequality, 11
Trigonometric equations, 664-677
defined, 664
factoring to separate two
different functions in, 668-669
finding all solutions of, 664-665
involving single trigonometric function, 665
with multiple angles, 666-667
quadratic in form, 667-668
solving
using calculator, 672-673
using identities, 669-672
Trigonometric functions, 523-529
of 30° and 60°, evaluating, 527-528, 547
of 45°, evaluating, $527,528,547$
of any angle, 537-550
applications of, 601-612
bearings, 604-605
simple harmonic motion, 605-608
solving right triangles, 601-604
cofunction identities, 529
and complements, 528-529
definitions of, in terms of unit circle, 510-511
equations involving single, 665
evaluating, 538, 540-541
even and odd, 513-514
finding values of, 510-511
function values for some special angles, 526-528, 547
fundamental identities, recognizing and using, 514-517
graphs of, 580. See also Graphs/graphing; specific trigonometric functions
inverse, 585-601
modeling periodic phenomena with, 516-517
of quadrantal angles, 539-540, 547
of real numbers, 509-511
reducing power of, 647-648
reference angles to evaluate, 543-547
right triangle definitions of, 523-526
signs of, 540-541, 547
at $t=\pi / 4,512-513$
using calculator to evaluate, 518-519
using right triangles to evaluate, 525-526
Trigonometric identities, 514-517
eliminating the parameter and, 977
principal, 644-651
Pythagorean identities, 516, 622, 671
quotient identities, 515, 622
reciprocal identities, 514, 622
verifying, 622-633
Trinomials, 49
factoring those whose leading coefficient is not 1,61-62
factoring those with leading coefficient of 1, 60-61
multiplying binomial and, 50-51
perfect square, 64,96
in two variables, factoring, 62-63
Turning points, 326
maximum number of, 327
\mathbf{U}
U.S. Census Bureau, 1026

Undefined slope, 190
Uniform motion, 375-376, 782-783
formula, 375, 782
solving problem of, 782-783
Union of sets, 6, 232
defined, 6
solution sets, 832
Unions of intervals, 121-122
Unit circle, 508-509
definitions of trigonometric functions in terms of, 510-511
Unit distance, 8
United Nation's Intergovernmental
Panel on Climate Change, 197
United States population, modeling growth of, 467-468
Unit vectors, 742, 746
finding, in same direction as given nonzero vector, 746-747
\mathbf{i} and $\mathbf{j}, 742-744$
Upper limit of summation, 1007, 1008

V

Value
of an annuity, 1030-1032
of second-order determinant, 902

Variable cost, 784
Variables, 2
dependent, 158
eliminating
addition method of, 775-778, 793-794, 814-817
solving linear system in three variables by, 793-796
solving linear systems in two variables by, 773-778, 794
solving nonlinear systems by, 812-817
substitution method of, 773-775, 793-796, 812-814
independent, 158
solving for, in formulas, 91-92
Variation
combined, 399-400
constant of, 394, 397
direct, 394-397
equations of, 394
formulas, 394
inverse, 397-399
joint, 400-401
modeling using, 394-404
Variation problems, solving,
394-397
Vector(s), 739-754
adding and subtracting, in terms
of \mathbf{i} and $\mathbf{j}, 744-745$
angle between two, 756
applications, 748-749
components of, 742
difference of two, 742
directed line segments and geometric, 740-742
dot product of, 755-756
equal, using magnitude and direction to show, 740-741
force, 748-749
orthogonal, 757
parallel, 757
position, 743
projection of vector onto another vector, 758-759
properties of vector addition and scalar multiplication, 746
in rectangular coordinate system, 742-744
relationships between, 740
resultant, 741, 748-749
scalar multiplication with, 741, 745, 746
as sum of two orthogonal vectors, 759-760
unit, 742-744, 746-747
velocity, 748, 749
writing, in terms of magnitude and direction, 747-748
zero, 746
Vector components of force, 758
Vector components of $\mathbf{v}, 759$
Vector projection of \mathbf{v} onto \mathbf{w},
758-759
Velocity
average, 210-211, 375-376, 1133
instantaneous, 211, 1133-1134
Velocity vector, 748, 749
Verbal models, 266-270

Verifying an identity, 622-623
changing to sines and cosines for, 623-628
combining fractional expressions for, 626-627
difference formula for cosines for, 636
double-angle formula for cosines for, 646-647
guidelines for verifying trigonometric identities, 629-630
half-angle formula for, 650
multiplying numerator and denominator by same factor for, 627
sum and difference formulas for tangents for, 640
sum-to-product formulas to, 659
using factoring, 625-626
using fundamental identities to, 622-633
using two techniques, 625-626
working with both sides separately in, 628-629
Vertex (vertices), 837
of angle, 492
of ellipse, 921
of hyperbola, 933, 934, 935-936, 938, 939, 940, 941, 942
of parabola, 300, 301-306, 949 , 953, 954-955
Vertical asymptotes
of cosecant function, 577
of cotangent function, 576-577
defined, 364
locating, 365
of logarithmic function, 432-433
of rational function, 364-366,
370, 371, 372
of secant function, 578
of tangent function, 572, 573, 574
y-axis as, 432-433
Vertical component of vector, 742
Vertical lines, 196
equations of, 194
graphs of, 194
Vertical line test, for functions, 162
Vertical shifts (transformations),
216-217, 224, 225, 226
combining horizontal shifts and, 220
downward, 217
of exponential function, 418
of logarithmic function, 432
of sinusoidal graphs, 564-565
upward, 217
Vertical stretching and shrinking, 222-223, 224, 225, 226
of exponential function, 418
of logarithmic function, 432
Viewing rectangle
on graphing utility, 145
understanding, 145-146
Volume
formulas for, 111
of rectangular solid, 111, 270-271

W

Wadlow, Robert, 402
Walters, Barbara, 1048
Washburn, Brad, 532
Watson, James, 980
Weierstrass, Karl, 1104
Whispering gallery, 928
Whole numbers, 7
Wiles, Andrew, 1040, 1048
Witch of Agnesi, 983
Wolf population, 420-421
Word problems, solving, 107-116
strategy for, 107

Work, 754
definition of, 760
dot product to compute, 760-761
World population
future of, 477
growth in, 466
modeling data about, 475-476
rewriting model in base $e, 477$
Wright, Steven, 1066

\mathbf{X}

x-axis, 142
as horizontal asymptote, 416,417
reflection about, 220-221, 224
x-coordinate, 142, 146
horizontal shifts and, 218
horizontal stretching and
shrinking and, 223-224
x-intercept, 146, 147, 195
on cosine curve, 579
of cotangent function, 576,577
of function, 167
graphing quadratic function in standard form, 302-306
in graph of cosine function, 564
in graph of sine function, 552, 554, 555, 557, 559, 562
multiplicity and, 324,327
on sine curve, 578
solving polynomial inequalities and, 382-383
of tangent function, 573, 574, 575

\mathbf{Y}

y-axis, 142
as axis of symmetry, 986
even function symmetric with
respect to, 178
reflection about, 221, 224
symmetry with respect to, 716 $717,719,720,986$
as vertical asymptote, 432-433
y-coordinate, 142, 146
vertical shifts and, 216-217
vertical stretching and shrinking and, 222-223
y-intercept, 146, 147, 192, 195
of function, 167
graphing polynomial function and, 327
graphing quadratic function in standard form, 302-306
graphing using slope and, 192-193
\mathbf{Z}
Zero, as limit of denominator, 1112-1114
Zero-exponent rule, 21
Zero factorial (0!), 1005
Zero matrix, 874
Zero-Product Principle, 93, 100
Zero slope, 190
Zeros of a function, 167
Zeros of polynomial functions,
322-324, 327, 346-360
Descartes's Rule of Signs and, 354-356
finding, 347-350
Intermediate Value Theorem and, 325-326
kinds of, 347
Linear Factorization Theorem, 353-354
multiplicities of, 324-325, 327
rational, 347-348
Zero vector, 746
Zero with multiplicity $k, 324$
Zoom in/zoom out, on graphing
utilities, 145-146

PHOTO CREDITS

FM COVER Mustache: Pelonmaker/Shutterstock p. iii (left) Courtesy of author p. iii (right) Courtesy of author p. iv (baby) Jose Luis Pelaez Inc/ Blend Images/Alamy p. iv (cap) Discpicture/Shutterstock p. v (bottom) SuperStock p. v (top) K. Magnusson/Alamy p. vi Big Cheese Photo LLC/ Alamy p. vii Charis Tsevis p. viii (bottom) Irochka/Dreamstime p. ix Zoonar/E Lam/AGE Fotostock p. x Alamy p. xiii Pearson Education, Inc. p. xiv Pearson Education, Inc. p. xvi Courtesy of author

CHAPTER P p. 1 (baby) Jose Luis Pelaez Inc/Blend Images/Alamy p. 1 (cap) Discpicture/Shutterstock p. 2 William Scott/Alamy p. 3 (left) Image Source/AGE Fotostock p. 3 (right) Stockbroker/SuperStock p. 4 (cap) Stephen Coburn/Shutterstock p. 4 (child) Iofoto/Shutterstock p. 8 Martin Allinger/Shutterstock p. 15 Ikon Images/SuperStock p. 20 (top) Foxtrot copyright © 2003, 2009 by Bill Amend/Distributed by Universal Uclick p. 29 Mike Kiev/Fotolia p. 32 Daily Mirror/Mirrorpix/Newscom p. 44 The Persistence of Memory (1931) Salvador Dali. Oil on canvas, $91 / 2 \times 13$ in. $(24.1 \times 33 \mathrm{~cm}) .(162.1934)$. Given anonoymously to the Museum of Modern Art/Digital image copyright © the Museum of Modern Art/Licensed by Scala/Art Resource, New York/Artists Rights Society (ARS), New York p. 46 Foxtrot © 2003, 2009 by Bill Amend/Used by permission of Universal Uclick. All rights reserved. p. 47 (left) John G. Ross/Photo Researchers, Inc. p. 47 (right) Peanuts © 1978 Peanuts Worldwide LLC. Used by permission of Universal Uclick. All rights reserved. p. 48 (left) Jan Tyler/iStockphoto p. 48 (right) Courtesy of Robert F. Blitzer p. 55 Fancy Collection/SuperStock p. 58 Steve Shot/Dorling Kindersley, Ltd. p. 71 Comstock/Thinkstock p. 86 Brian Goodman/Shutterstock p. 106 (Bryant) Icon Sports Media/Newscom p. 106 (CEO) ER Productions/Corbis Premium RF/Alamy p. 106 (doctor) Michael N. Paras/AGE Fotostock p. 106 (janitor) Kurhan/Shutterstock p. 106 (McGraw) S. Bukley/Newscom p. 106 (Pitt) WENN/Newscom p. 106 (Stern) Stuart Ramson/AP Images p. 106 (teacher) Image Source/AGE Fotostock p. 109 Courtesy of Robert F. Blitzer p. 119 Everett Collection p. 120 Craft Alan King/Alamy p. 137 (left) Paramount Pictures/Everett Collection p. 137 (right) Archives du 7e Art/Photos 12/Alamy p. 140 Alamy

CHAPTER 1 p. 140 Michael Nolan/Specialist Stock/AGE Fotostock p. 141 The Everett Collection p. 148 Mike Kemp/RubberBall/AGE Fotostock p. 154 (HIV virus) NIBSC/Photo Researchers, Inc. p. 154 (Cowell) Joy Scheller/iPhoto/Newscom p. 154 (DeGeneres) Nancy Kaszerman/ ZUMApress/Newscom p. 154 (McGraw) K03/ZUMA Press/Newscom p. 154 (Seacrest) Debbie VanStory/RockinExposures/Newscom p. 154 (Winfrey) Dan Herrick-KPA/ZUMA KPA/Newscom p. 173 (top) Matthew Ward/ Dorling Kindersley, Ltd. p. 187 Copyright © 2011 Scott Kim, scottkim.com p. 188 Image Source/AGE Fotostock p. 203 (left) SuperStock p. 203 (right) Nomad Soul/Shutterstock p. 213 John Serafin/French Government Tourist Office p. 215 Everett Collection p. 220 Gene Ahrens/SuperStock p. 231 Günay Mutlu/iStockphoto p. 245 (left) Archives du 7eme Art/Photos 12/Alamy p. 245 (right) The Everett Collection p. 256 By permission of John L. Hart FLP and Creators Syndicate, Inc. p. 257 Millard H. Sharp/Photo Researchers, Inc. p. 266 Todd Gipstein/Corbis

CHAPTER 2 p. 291 K. Magnusson/Alamy p. 292 Copyright © 2011 by Roz Chast/The New Yorker Collection/The Cartoon Bank p. 299 Gordon Caulkins p. 300 (top) Marcin Janiec/Fotolia p. 300 (bottom left) Pascal Rondeau/Getty Images p. 300 (bottom right) Copyright © 2011 Scott Kim, scottkim.com p. 316 (Allen) James Diddick/Globe Photos/ZUMA Press/Newscom p. 316 (Sparks) Pictorial Press Ltd/Alamy p. 316 (Barrino) Amanda M. Parks/iPhoto Inc/Newscom p. 316 (Clarkson) Dee Cercone/ Everett Collection/Alamy p. 316 (Cook) Roth Stock/Everett Collection/ Alamy p. 316 (DeWyze) Jen Lowery/Splash News/Newscom p. 316 (Hicks) Allstar Picture Library/Alamy p. 316 (Studdard) Allstar Picture Library/ Alamy p. 316 (Underwood) Debbie VanStory/iPhoto Inc/Newscom p. 317 Andrew D. Bernstein/Getty Images p. 334 Dorling Kindersley, Ltd. p. 346 Photo Researchers, Inc. p. 354 Library of Congress Prints and Photographs Division [LC-USZ62-61365] p. 361 Kyodo News/Newscom p. 363 Courtesy of KnuckleTattoos.com p. 374 Kyodo News/Newscom p. 381 Warren Miller/ Cartoonbank p. 394 (left) Shutterstock p. 394 (right) Alamy p. 395 NBC/Getty Images p. 396 Exactostock/SuperStock p. 400 (top) Ty Allison/Getty Images
p. 400 (bottom) David Madison/Photographer's Choice/Getty Images p. 402 Ullstein Bild/The Image Works

CHAPTER 3 p. 413 SuperStock p. 414 SuperStock p. 418 (left) Seth Wenig/AP Images p. 418 (right) Rolffimages/Dreamstime p. 421 Tim Davis/ Corbis p. 427 John Trotter/Sacramento Bee/ZUMA Press/Newscom p. 441 Colin Anderson/Alamy p. 451 Mitchel Gray/SuperStock p. 465 Jamaway/ Alamy p. 466 Chlorophylle/Fotolia p. 469 Courtesy of the French Ministry of Culture and Communication p. 474 Science Photo Library/SuperStock
CHAPTER 4 p. 491 Cultura/Liam Norris/Getty Images p. 492 Bjanka Kadic/AGE Fotostock p. 503 Sarah Beard Buckley/Flickr RF/Getty Images p. 508 (top) Laszlo Podor/Alamy p. 508 (bottom) Laszlo Podor/Alamy p. 522 Dale O'Dell p. 523 STR/AFP/Getty Images p. 532 AGE Fotostock/Superstock p. 535 (left) Robert Fried/Alamy p. 535 (right) Pixtal/SuperStock p. 537 Kathy Collins/Getty Images p. 551 Piotr Marcinsk/Alamy p. 572 Chaikovskiy Igor/Shutterstock p. 585 Columbia Pictures/Everett Collection p. 601 Image Source/Alamy p. 608 Paul Sakuma/AP Images
CHAPTER 5 p. 621 Markku Ojala/EPA/Newscom p. 622 Pictorial Press Ltd/Alamy p. 633 Elizabeth Livermore/Flikr/Getty Images p. 644 Radius Images/Alamy p. 656 (left) Archive Pics/Alamy p. 656 (right) Everett Collection Inc /Alamy p. 664 Corbis Bridge/Alamy
CHAPTER 6 p. 681 Imagebroker/Alamy p. 682 George H. H. Huey/ Alamy p. 694 Antonello Lanzellotto/AGE Fotostock p. 714 Maurizio La Pira/Splash News/Newscom p. 726 Richard F. Voss p. 739 Jeffrey Greenberg/ Photo Researchers, Inc. p. 754 Paul Childs/Action Images/Zuma Press/ Newscom p. 760 fStop/Alamy p. 763 (top left) AFP/Getty Images /Newscom p. 763 (bottom left) Zuma Press/Newscom p. 763 (right) Aquatic Creature/ Shutterstock
CHAPTER 7 p. 771 Big Cheese Photo LLC/Alamy p. 772 Vienetta/ Shutterstock p. 783 SUN/Newscom p. 787 Peanuts © 1978 Peanuts Worldwide LLC. Used by permission of Universal Uclick. All rights reserved. p. 792 Alamy p. 800 Alamy p. 811 Dave King/Graham High/Centaur Studios/ Dorling Kindersley, Ltd. p. 822 Terry J. Alcorn/iStockphoto p. 835 AP Images p. 836 David Crawford/US Navy/AP Images p. 844 (left) Adele Bloch-Bauer I (1907), Gustav Klimt/Neue Galerie/Art Resource, New York p. 844 (right) Boy with a Pipe (Garçon à la Pipe) (1905), Pablo Picasso. Oil on canvas, $100 \mathrm{~cm} \times 81.3 \mathrm{~cm}(39.4 \mathrm{in} \times 32.0 \mathrm{in})$. Private collection. © 2011 Picasso Estate/ARS/Photo by BridgemanArt Library/Superstock
CHAPTER 8 p. 849 Charis Tsevis p. 850 Zoonar/E Lam/AGE Fotostock p. 862 Alamy p. 872 Ian Shaw/Alamy p. 880 Photo Researchers, Inc. p. 882 Tim Furniss/Genesis Space Photo Library/NASA p. 888 Popperfoto/ Getty Images p. 902 SSPL/The Image Works
CHAPTER 9 p. 919 SuperStock p. 920 Kevin Fleming/Corbis p. 929 NASA p. 933 Gunter Marx/Alamy p. 948 NASA/Jeff Hester and Paul Scowen Arizona State University p. 956 NASA Johnson Space Center Collection p. 962 The Cone of Apollonius (Detail), Richard E. Prince. Fiberglass, steel, paint, graphite; $51 \times 18 \times 14 \mathrm{in}$. Equinox Gallery, Vancouver, Canada p. 974 Chris Carlson/AP Images p. 981 GIPhotoStock/Photo Researchers, Inc. p. 984 NASA

CHAPTER 10 p. 1001 Louis Lopez/Cal Sport Media/Newscom p. 1002 Irochka/Dreamstime p. 1012 © 2004 Harry Blair. All rights reserved. p. 1013 SuperStock p. 1023 SuperStock p. 1025 Shutterstock p. 1029 U.S. Bureau of Engraving and Printing p. 1040 Charles Rex Arbogast/AP Images p. 1048 Dr. Rudolph Schild/Photo Researchers, Inc. p. 1053 Reprinted with the permission of Cambridge University Press p. 1056 SuperStock p. 1057 Halfdark/Alamy p. 1058 Oleksiy Maksymenko/Alamy p. 1061 (Usher) Alamy p. 1061 (Beyonce) Sven Hoogerhuis/Alamy p. 1061 (Lady GaGa) JM5 WENN Photos/Newscom p. 1061 (Shakira) Edd Westmacott/Alamy p. 1061 (Timberlake) Sven Hoogerhuis/Alamy p. 1067 Thinkstock p. 1078 Corbis
CHAPTER 11 p. 1091 Cary Wolinsky/Getty Images p. 1092 Flirt/ SuperStock p. 1104 (left) Akg-images/Newscom p. 1104 (right) INTERFOTO/ Alamy p. 1109 Pearson Education, Inc. p. 1117 Alex Egorov/Shutterstock p. 1125 Saiko3p/Shutterstock p. 1134 David Wall/Alamy

[^0]: Source: National Clearinghouse for Alcohol and Drug Information

[^1]: Multiply the numerator and denominator by
 $x+2$ to get $(x+2)(x-1)(x+1)$, the LCD.

[^2]: - - -

[^3]: Source: Russell Ash, The Top 10 of Everything, 2011

[^4]: The number after the
 subtraction is $2: h=2$.
 The number after the
 subtraction is $-4: k=-4$.

[^5]: (3) Determine a quadratic function's minimum or maximum value.

[^6]: Source: The NPD Group

[^7]: Source: U.S. Census Bureau

[^8]: Delicate Arch in Arches National Park, Utah

[^9]: Substitute double-angle formulas. Because the right side of the given equation involves cosines only, use this form for $\cos 2 \theta$. Multiply.

[^10]: $b^{2}=16$. This is the denominator of the term preceded by a minus sign.

[^11]: (2)

 Use the permutations formula.

[^12]: Source: U.S. Census Bureau

[^13]: $y=2+\log _{3} x$ shifts the graph of $y=\log _{3} x$ two units upward; $y=\log _{3}(x+2)$ shifts the graph of $y=\log _{3} x$ two units left; $y=-\log _{3} x$ reflects the graph of $y=\log _{3} x$ about the x-axis.

